	BGE	UNDESGE ÜR ENDLA	SELLS	CHAFT NG		Deckb	att	
Projekt	PSP-Element	Aufgabe	UA	Lfd.Nr.	Rev.			Seite: I
9A	55110000	GHB	RZ	0086	00	-		Stand: 07.03.2017
Titel der Ur ERGEBN ERKUNE EINLAGE Ersteller: DMT GM	nterlage: VISBERICHT ZU DUNGSBOHRUI ERUNGSKAMM IBH & CO. KG	I GEOPI NG B 7/7 ER 7/75	HYSIł 750-B 0	KALISCH 1 AUF D	IEN BO ER 750	HRLOCHMESSUN -M-SOHLE IN RICH	GEN IN DER ITUNG	
Stempelfel	d:					· ····		811 B 18410 W 1999
	- 15			-				
bergrechtlin Person:	ch verantwortliche	atomre Persor	echtlich 1⊾	verantwort	tliche	Projektleitung:	Freia	abe zur An wenduna:
Datun	n und Unterschrift	1	Datum ur	nd Unterschrift		Datum und Unterschrit	ft	Datum und Unterschrift
Diese bei Be	e Unterlage unterlieg förderung und Vern	gt samt Inh	alt den d darf	n Schutz de vom Empfä	es Urhebe	errechts sowie der Pflich auftragsbezogen genutz	t zur √ertrauliche t, vervielfältigt u	en Behandlung auch nd Dritten zugänglich

Projekt NAAN	PSP-Elem NNNNNNN	ent NNN	Aufgabe AAAA	UA AA	Lfd. Nr. NNNN	Rev. NN		Seite: II
9A	551100	000	GHB	RZ	0086	00		Stand: 07.03.2
ERGEBI ERKUNE EINLAGI Rev.	RevStand	UVST	BEOPH B B 7/75 R 7/750	ifer	AUF DEF	Kat.*	OHLE IN RICHTUNG	Revision

					ASSE		eransvortich	handk
PT055221			Stand: 0	7.03.2017		Bla	tt: 1	
		Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Re
DECKBLAT	т	NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	N
		9A	55110000	SON	HF	BW	0005	C
Faktenerhebung Schritt 1 - Erkundt Bohrlochmessungen in der Erkundt	ungsbericht zu geo ungsbohrung B 7/7	ophysika 750-B1	lischen					
Ersteller / Unterschrift:				Prüfer / Ur	nterschrift	:	<i>c.</i> ,	
DMT GmbH & Co. KG								
				24. AP	R. 2017			
Titel der Unterlage:								
	Ergebr	nisberio	cht					
Freigabevermerk:					×		~	
×								
	Freigat	edurchlau	f					
Fachbereich: Technische Planung	Stabsstelle Qualitäts	manageme	ent: E	Endfreigabe: Geschäftsführu	ing Asse-	Gmbł	Н	
		0047		0 5	Ma	1 2	2017	
Datum: 0 4. MAI 2017	Datum: [] 4. MAI	201/		Datum: 💙 🔌				
Name:	Name:		٦	lame:				
	-		k.					
	Lint	orechrift			Unterec	brift		

KQM_Deck-Revisionsblatt_REV17_Stand-2016-06-15

								ASSE GMB	H	erantwortlich	handeln
									Blat	t: 2a	
					Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.
	RE	VISIONSE	BLATT		NNAA	NNNNNNNN	NNAAANN	AA	AA	NNNN	NN
					9A	55110000	SON	HF	BW	0005	00
Kurz	titel der Unterlage:	:									•
Fak Boh	tenerhebung S Irlochmessung	Schritt 1 - Erkı en in der Erkı	undungsbericht undungsbohrun	zu geo g B 7/7	physikal 50-B1	ischen					
Rev	Revisionsstand Datum	Verantwortl. Stelle	revidierte Blätter	Kat. *)		Erlä	iuterung der F	Revision			
00	07.03.2017	T-PF		-	Ersterst	ellung					
*) Ka Mind	tegorie R = redakt estens bei der Kat	tionelle Korrektur tegorie S müsser	, Kategorie V = ver n Erläuterungen ang	deutlicher gegeben v	nde Verbes werden.	sserung, Kategori	ie S = substar	ntielle Änd	derung	l.	

Projekt NNAA	PSP-Eleme	ent T NNN NN	Thema JAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev.	7	CCE
9A	551100	00 5	SON	HF	BW	0005	00	F	100E GMBH Verantwortlich handel
Faktene Bohrlocl	erhebung hmessun	Schritt 1 gen in de	- Erku er Erku	ındungs ındungs	berich bohrui	t zu geo ng B 7/7	ophysi 750-B	kalischen 1	Blatt: 3
Inhalt	sverze	ichnis							Blatt
Deckbla	att								
Revisio	nsblatt								2a
Inhalts	/erzeich	nis			•••••				
	eblatt				•••••		•••••		
	nieitung	 d Abkü		 on	•••••		•••••		/ ۶
2.1	Beari	ffe	in zurige				•••••		
2.2	Abkü	rzungen)						
3 Me	esskamp	bagne							
3.1	Allger	meine B	Beschr	eibung.					
3.2	Einge	setzte N	Messg	eräte			•••••		
3.2	2.1 Bo	hrlochka	amera	(PTZ 7	0)				
3.2	2.2 Op	TISCNER I	Bonrio	ik Modu	ner (JBI 52) Id)		
3.4 3.2	2.3 AP 24 VM	5544 IVI 1XR2 (E	lagnet	nagnet	ischa	Indukti	ia) ion)		
3.2	2.∓ viv 2.5 isG	ivro (Bo	hrloch	iverlauf)	maana	011)		
3.2	2.6 Pro	otonenp	räzess	sionsma	aaneta	ometer			
3.3	Mess	ergebni	sse de	er optiso	chen l	Bohrloo	chme	ssungen	
3.4	Mess	ergebni	sse de	er Magr	netfelc	lmessu	ing (A	APS544)	33
3.5	Mess	ungen c	der Scl	hwanku	ingen	des M	agne	tfeldes (Basismessung)	
3.6	Erfah	rungsge	ewinn i	im Eins	atz de	er Mag	netfe	dmessungen	
3.7	Mess	ergebni	sse de	er elekti	romag	netiscl	hen N	lessungen (Vallon-Sonde)	
3.8	Mess	ergebni	SSE BO	Shrioch'	verlau	Itsmes	sung		
4 Zu 5 Mi	taeltend	niassun A Dokur	ng unia monto	Emplei	niung	en			
0 101	igonona	e Donai	monto						
Tabelle	enverzei	ichnis							
Tabelle	1:	Einsatz	z unter	schied	licher	Bohrki	roner	۱	10
Tabelle	2:	Übersie	cht d	er Me	sseins	sätze	mit	Bohrlochkamera und optis	chem
-	•	Bohrlo	chsca	nner					
labelle	3:	Ubersi	cht (der E	rkunc	lungse	rgebr	nisse, nachgewiesen mit	der
Tabollo	1.	Bonno	chkan cht do	r Bobrl	a aen	1 Oplise	chen von m	bonnochscanner	
Tabelle	4. 5.	Übersi	cht de	r elektr	omad	netisch	nen M	lessungen VMXR2	41
Tabelle	6:	Übersi	cht de	r Bohrle	ochve	rlaufsn	nessi	Ingen	
Tabelle	7:	Messe	rgebni	sse der	r Bohi	lochve	rlaufs	smessung	48
			-					-	
Abbild	ungsvei	zeichn	is						
Abbildu	ing 1:	Positio	n des	Kamera	akopt	s bei 0	,00 m	n, Standrohr	
Abbildu	ing 2:	Positio	n des	Kamera	akopt		,00 m	h, Verunreinigung des Standro	onrs durch
Abbildu	10a 3.	Saizgru	us im t n doc	Sereicn Kamor	von	170° Di a bai 1	S Z IU	Standrohr ohno Vorunroinio	10
ADDIIUL	ing 5.	Salzari		Namero	акорт	S Del 1	,00 11		17
Abbildu	ına 4.	Positio	n des	Kamer	akonf	s bei 2	00 m	Standrohr ohne Verunreinio	ungen durch
7 1001101	ing n	Salzarı	us			0 001 2	,0011		
Abbildu	ing 5:	Positio	n des	Kamera	akopf	s bei 3	,00 m	n, scharfkantiger Übergang vo	m Standrohr
Abbildu	ına 6.	Positio	n dee	Kamor	akonf	s hai ?	 00 m	Übergang Standrohr (braun	10 Pfeile) zum
,		Injektio	nsmö	rtel (ora	ange F	Pfeile) h	bei 3	26 m (roter Kreis). Übergang	vom
		Injektio	onsmö	rtel zun	n Carı	nallitit (blaue	er Kreis) bei 4.04 m und Susp	ensionsblase
		(gelbe	Pfeile	am Übe	ergan	g vom	Injek	tionsmörtel zum Carnallitit	
Abbildu	ung 7:	Positio	n des	Kamera	akopf	s bei 4	,50 m	n, Carnallitit	19

KQM_Textblatt_REV09_Stand-2016-02-01

Projekt NNAA	PSP-Elem NNNNNNN	ent NNN	Thema NNAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev. NN		ACCE		
9A	551100	00	SON	HF	BW	0005	00		GMBH Veran	twortlich handielr	
Faktene	erhebung	Schi gen	ritt 1 - Erku in der Erku	Indungsl	bericht	t zu geo	physi 750-B	ikalischen 1	Blatt:	4	
		3		g-		.9					
Abbildu	ung 8:	Pos	sition des	Kamera	akopf	s bei 4	,50 m	n, Carnallitit (blaue Pfeile).		19	
Abbildu	ung 9:	Pos	sition des	Kamera	akopf	s bei 6	,00 m	۵		20	
Abbildu	ung 10:	Pos	sition des	Kamera	akopf	s bei 6	,00 m	n, Ubergang vom Carnallit	t (blaue Pfeile))	
		zun	um Steinsalz (gelbe Pfeile) bei 6,70 m (roter Kreis)								
Abbildu	ung 11:	Pos	sition des	Kamera	akopt	s bei 8	,00 m	۱		21	
Abbildi	ung 12:	Pos	sition des	Kamera	akopt:	s bei 8	,00 m Boro	1, Anhattung von Salzgrus	an der		
		Bok	pracetäna	iu (biau o (rotor	Dfail	mit rot	on R	ogronzungslinion)	JSSpuren vom	21	
Abbildu	ina 13.	Pos	ition doe	Kamor	akonf	s boi 1		m		21	
	1/19 10.	Pos	sition des	Kamor	akonf	s bei 1.	4,00	m helleres Steinsalz (hlau	م Pfaila) mit	22	
7.001101	ing 14.	ont	ischen Ro	hrloch	scan i	m Teuf	enhe	r_{reich} 14 30 m – 14 50 m r	achaewiesen	22	
Abbildı	ına 15:	Pos	sition des	Kamer	akonf	s bei 34	4.00	m	laongowiocom	23	
Abbild	una 16:	Pos	sition des	Kamera	akopf	s bei 34	4.00	m. Klüfte bei 34.32 m (bla	Jer Pfeil) und		
		bei	34.54 m (orange	r Pfeil) anget	troffe	n		23	
Abbildu	una 17:	Pos	sition des	Kamera	akopf	s bei 3	5.00	m		24	
Abbildu	ung 18:	Pos	sition des	Kamera	akopf	s bei 3	5,00r	n, offene Kluft bei 35,18 m	ı erkennbar		
	0	(bra	uner Um	riss)	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		24	
Abbildu	ung 19:	Pos	sition des	Kamera	akopf	s bei 3 [°]	7,60	m		25	
Abbildu	ung 20:	Pos	sition des	Kamera	akopf	s bei 3 [°]	7,60	m, offene Kluft mit Gefüge	öffnung bei		
	-	37,	70 m (bra	uner Ur	nriss)	und 37	7,80 i	m (roter Umriss) aufgeschl	ossen	25	
Abbildu	ung 21:	Pos	sition des	Kamera	akopf	s bei 3	8,50	m		26	
Abbildu	ung 22:	Pos	sition des	Kamera	akopf	s bei 3	8,50	m, Kluft mit Gefügeöffnun	g bei 38,89 m		
		(bra	une Pfeile	e)						26	
Abbildu	ung 23:	Pos	sition des	Kamera	akopf	s bei 3	9,00	m		27	
Abbildu	ung 24:	Pos	sition des	Kamera	akopf	s bei 4	0,00	m		27	
Abbildu	ung 25:	Pos	sition des	Kamera	akopf	s bei 4	1,00	m		28	
Abbildu	ung 26:	Pos	sition des	Kamera	akopf	s bei 4	2,00	m		28	
Abbildu	ung 27:	Pos	sition des	Kamera	akopf	s bei 4	4,00	m		29	
Abbildu	ung 28:	Pos	sition des	Kamera	akopt	s bei 4	7,00	m		29	
Abbildu	ung 29:	Pos	sition des	Kamera	akopt	s bei 5	0,00	m		30	
	ung 30:	Pos	sition des	Kamera	акорт	s bel 5	3,00	m		30	
	ung 31:	Pos	sition des	Kamera	акорт	s bel 5	0,00	m		31	
	ung 32:	Pos	sition des	Kamera	akopt	SDEL5	7,00	m		31	
DIIIda	ung 55.	58 (n n n	Kamera	акорі	s bei 5	7,00	m, Endleule der Erkundur	gsbonrung be	א גע	
Abbildı	ing 34.	Mai	netische	s Totali	feld (T	MAG)				02	
Abbild	ing 35:	Änc	leruna de	s magn	etisch	nen To	talfel	des in Bohrlochrichtung (X	-Gradient)	0 1	
Abbild	una 36:	Bas	sismessur	na des l	Magn	etfelde	s am	13.12.2014		37	
Abbild	una 37:	Bas	sismessur	na des l	Magn	etfelde	s am	14.12.2014		37	
Abbildu	una 38:	Bas	sismessur	na des l	Magn	etfelde	s am	15.12.2014		38	
Abbildu	ung 39:	Bas	sismessur	ng des l	Magn	etfelde	s am	18.12.2014 auf der 553-n	1-Sohle	38	
Abbildu	ung 40:	X-K	omponer	nte des	Magn	etfelde	s			40	
Abbildu	ung 41:	Vek	torsumm	e der N	lagne	tfeldko	mpoi	nenten senkrecht zur Boh	lochrichtung.	40	
Abbildu	ung 42:	Me	ssung mit	der Va	llon-S	Sonde \	/om ⁻	14.11.2014 im Teufenbere	ch von 24,70	m	
		bis	28,70 m							42	
Abbildu	ung 43:	Me	ssung mit	der Va	llon-S	Sonde \	/om ⁻	18.11.2014 im Teufenbere	ch von 24,90	m	
		bis	28,90 m							42	
Abbildu	ung 44:	Me	ssung mit	der Va	llon-S	Sonde \	/om 2	20.11.2014 im Teufenbere	ch von 25,10	m	
	• —	bis	29,10 m							43	
Abbildu	ung 45:	Me	ssung mit	der Va	llon-S	sonde v	/om 2	20.11.2014 im Teufenbere	ch von 25,30	m	
∧ k= k !! -!	100 40	DIS	29,30 m.						ab	43	
IDIIDIA	ung 46:		ssung mit	aer va	non-S	onae v	/om 2	21.11.2014 Im Teutenbere	ch von 25,50	111 • • •	
Apple	Ing 17.		∠9,30 M	dor Va	 Ilon S			0/ 11 201/ im Toufonboro	ich von 25 70	44 m	
ADDIIUU	ung 47.	hie	334119 11111 29 70 m	uer va	1011-3				UT VUT 25,70	ін ЛЛ	
		013	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•••••		•••••••••••••••••••••••••••••••••••••••		++	

Projekt NNAA	PSP-Elem NNNNNNN	ent Thema NNN NNAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev. NN	199	E		
9A	551100	00 SON	HF	BW	0005	00	GWBH Verantwortlich H			
Faktene Bohrloc	Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischenBlatt: 5Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1Blatt: 5									
Abbild	ung 48:	Messung mit bis 29,90 m	der Va	llon-S	Sonde \	/om 2	25.11.2014 im Teufenbereich vor	ו 25,90 m 45		
Abbild	ung 49:	Messung mit bis 30,10 m	lessung mit der Vallon-Sonde vom 25.11.2014 im Teufenbereich von 26,10 m is 30,10 m							
Abbild	ung 50:	Messung mit der Vallon-Sonde vom 25.11.2014 im Teufenbereich von 26,30 m bis 30,30 m.						າ 26,30 m 46		
Abbild	ung 51:	Messung mit bis 30,50 m	der Va	llon-S	Sonde \	/om 2	26.11.2014 im Teufenbereich vor	າ 26,50 m 46		
Abbild	ung 52:	Messung mit der Vallon-Sonde vom 26.11.2014 im Teufenbereich von 26,70 bis 30,70 m						າ 26,70 m 47		
Anzah	l der Blä	ätter dieses Dokumentes								
Verzei	chnis de	er Anlagen								
Anlage	e 1:	optischer Bohrlochscan mit Auswertung des Kluftsystems und								

	Totalmagnetielumessung
	Asse-KZL: 9A/55110000/GEO/HF/TC/0042/00
Anlage 2:	Grundrissausschnitt der 750-m-Sohle, Erkundungsbohrung B 7/750-B1 1
	Asse-KZL: 9A/55110000/GEO/HF/TC/0043/00
Anlage 3:	Schnitt D – D´, Erkundungsbohrung B 7/750-B11
	Asse-KZL: 9A/55110000/GEO/HF/TC/0044/00

Projekt NNAA	PSP-Element	Thema NNAAANN	Aufgabe	UA AA	Lfd Nr.	Rev.		ACCE
9A	55110000	SON	HF	BW	0005	00		GVBH Verantwortlich handeln
Faktene Bohrloo	Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischen Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1 Blatt: 6							Blatt: 6

DMT GmbH & Co. KG

Geo Engineering & Exploration Am Technologiepark 1, 45307 Essen Tel. +49 201 172-1979 Fax +49 201 172-1971 www.dmt-group.com

Bearbeiter / Ersteller:

eigenhändige Unterschrift

Bergvermessungstechniker

Essen, 07.03.2017

Freigabe:

eigenhändige Unterschrift

Projekt NNAA	PSP-Element NNNNNNNNN	Thema NNAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev. NN		ASSE
9A	55110000	SON	HF	BW	0005	00		GMBH Verantwortlich handeln
Faktene	erhebung Sch	ritt 1 - Erku in der Erku	ndungsl	bericht bohrur	zu geo na B 7/7	physi 250-B	kalischen 1	Blatt: 7

1 Einleitung

Im Rahmen der Faktenerhebung Schritt 1 zur Rückholung der radioaktiven Abfälle aus der Schachtanlage Asse II sollen mehrere Erkundungsbohrungen in die Schwebe der Einlagerungskammer 7 auf der 750-m-Sohle (im Weiteren ELK 7/750 genannt) erstellt werden. Die ELK 7/750 befindet sich in der gebirgsmechanisch stark beanspruchten Südflanke des Grubengebäudes im östlichen Feldesteil der 750-m-Sohle (Anlage 2). Sie erstreckt sich über eine mittlere Länge (Ost-West) von 59.00 m und über eine mittlere Breite (Nord-Süd) von 33.00 m. Benachbart zur ELK 7/750 befinden sich im Osten die ELK 11/750 und im Westen die ELK 6/750. Auf der 725-m-Sohle befindet sich ebenfalls der Abbau 8/725, der teilweise oberhalb der ELK 7/750 verläuft (Anlage 2). Die mittlere Kammerhöhe der ELK 7/750 beträgt 10,00 m und der mittlere Abstand zu dem darüber liegenden Abbau 8/725 14,00 m. Im nördlichen Bereich der ELK 7/750 befindet sich das Verschlussbauwerk, dessen Aufbau mit den Erkundungsbohrungen des Typs A untersucht wurde (/1/ und /2/). Der Bohrplatz der Erkundungsbohrung B 7/750-B1 befindet sich in der Einhausung auf der 750-m-Sohle vor dem Verschlussbauwerk zur ELK 7/750. Der Bohransatzpunkt liegt an der nachträglich vorgesetzten Schalwand des Verschlussbauwerks. Vorbereitend zur Erkundungsbohrung B 7/750-B1 wurde eine 4,04 m lange Vorbohrung erstellt, in die ein 3,52 m langes Standrohr eingebaut und mit Injektionsmörtel verpresst wurde. Anschließend wurden die Koordinaten des Standrohres durch die Markscheiderei der Asse-GmbH bestimmt und die Anfangs- und Endkoordinaten der Bohrung B 7/750-B1 ermittelt.

Im Rahmen der Faktenerhebung in der Schachtanlage Asse II wurden von der Firma DMT GmbH & Co. KG (im Weiteren DMT genannt) geophysikalische Bohrlochmessungen durchgeführt. Die wesentlichen Aufgaben der geophysikalischen Bohrlochmessungen sind:

- Die Inspektion des technischen Zustands der Erkundungsbohrung B 7/750-B1.
- Die Erkundung der geologischen Beschaffenheit des Gebirges an der Bohrlochwand der Erkundungsbohrung B 7/750-B1.
- Die Kontrolle des Bohrlochverlaufs der Erkundungsbohrung B 7/750-B1 in der X-, Y- und Z-Achse.
- Die Überwachung des Bohrlochverlaufs hinsichtlich möglicher Annäherungen an ein Einlagerungsgebinde, bzw. an die Einlagerungskammer.

Die Messkampagne erstreckte sich über den Zeitraum vom 05.11.2014 bis zum 14.01.2015.

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.	
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN	ASSEL
9A	55110000	SON	HF	BW	0005	00	GVBH Verantwortich handel
Faktene	erhebung Sch	ritt 1 - Erku	ndunas	bericht		nhvsi	ikalischen

Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikali Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1

2 Begriffe und Abkürzungen

2.1 Begriffe	
Ansatzpunkt Auflockerungszone	Punkt im Raum, in dem die Bohrung begonnen wird. Zone, in der das Gebirge in seinem Korn- und Flächengefüge gestört wird
Bohrlochfirste Bohrlochsohle Bohrstrang Carnallitit	Oberer Bereich des Bohrlochs bei einer horizontalen Bohrung. Unterer Bereich des Bohrlochs bei einer horizontalen Bohrung. Gesamtes Bohrgestänge mit Adapter und Bohrkrone. Salzgestein, das aus Carnallit, Steinsalz und anderen Salzmineralien besteht; Bestandteile sind Bischofit MgCl ₂ • 6H ₂ O, Carnallit KCI•MgCl ₂ • 6H ₂ O, Kieserit Mg[SO ₄] • H ₂ O, Steinsalz (NaCl), Anhydrit CaSO ₄
Datenlogger	Prozessgesteuerte Speichereinheit, die Daten in einem bestimmten Rhythmus über eine Schnittstelle aufnimmt und auf einem Speichermedium ablegt.
Einfallen	Als Fallen oder Einfallen bezeichnet man in den Geowissenschaften einen der beiden Parameter, die die Orientierung einer gegebenen geologischen Fläche im Raum definieren. Der andere Parameter ist das Streichen. Bei den in diesem Bericht angegebenen Einfallswinkeln handelt es sich um das sog. "Wahre Einfallen" der Schichten. Der Bohrlochverlauf wurde beim Ermitteln der Einfallwinkel berücksichtigt.
Fazies	Begriff aus der Geologie und beschreibt alle Eigenschaften eines Gesteins, die aus der Entstehungsgeschichte herrühren. Es können beschreibende Merkmale sein (Farbe, Schichtung, vorherrschendes Gestein oder Fossilien), solche zur Entstehung (zum Beispiel Sedimentation). oder zur Verwitterung
Gradient	mathematisch: Betrag und Richtung der stärksten Änderung eines Messwertes. Hier: Änderung eines Messwertes bezüglich einer Raumrichtung, zum Beispiel die Änderung des magnetischen Totalfeldes in Bohrlochrichtung
Kluft	Trennfläche im Gestein, welche durch tektonische und andere Prozesse wie Abkühlungskontraktion, Diagenese oder Spannungsumlagerungen im Gebirge infolge bergmännischer Auffahrungen entstanden sein kann.
Lithologie	Wird für den Bereich der Petrographie verwendet, der sich mit den Gesteinseigenschaften der Sedimentgesteine befasst. Er wird darüber hinaus auch für Sedimentgefüge sowie Schichtung/Bankung und andere Charakteristika der jeweiligen Gesteinsfazies verwendet.
Magnetfeld	Das Magnetfeld wird durch die physikalischen Größen "magnetische Feldstärke" und "magnetische Flussdichte" (oder auch "magnetische Induktion") beschrieben, die untereinander über die Eigenschaften der Stoffe (insbesondere die magnetische Permeabilität μ), in der sich das Feld ausbreitet, verknüpft sind (H [A/m] = μ x B [nT]). Umgangssprachlich wird bei beiden physikalischen Größen von "Magnetfeld" gesprochen. Im Weiteren ist die Flussdichte beziehungsweise die magnetische Induktion gemeint.

Projekt	PSP-Flement	Thema	Aufaabe	LIA	l fd Nr	Rev						
NNAA	NNNNNNNN	NNAAANN	AA	AA	NNNN	NN				ASSE		
9A	55110000	SON	HF	BW	0005	00				GMBH Verantwortic	h handeln	
Faktene Bohrloo	erhebung Schr chmessungen i	ritt 1 - Erku in der Erku	Indungsl Indungsl	berich bohru	t zu geo ng B 7/7	Blatt: 9						
Nahbe	ereich			lm vo	m vorliegenden Fall ist hier der Messbereich in einem Umfeld							
NQ-M	essgestänge	•		von r Vallo Besc Bohr bezei Auße 73,00	maxima n Sonc hreibt lochme ichnet ndurch) mm.	al 0,2 le bei ein essun ei mess	0 m um d der Indukt Gestänge gen einge nen be ser Der A	en Senso tionsmes Typ da setzt wu stimmter ußenduro	or des M sung ger as bei rde. Die n Dur chmesse	letalldetektors neint. geophysikaliscl Bezeichnung chmesser. r beträgt bei	der hen NQ Der NQ	
Rollwi	nkel			Orier senki	itierung recht z	g der ur Bo	Sonde ir hrlochricht	n Bohrlo :ung.	och, Win	kel in der Eb	ene	
Salzgr	us			Feink	örnige	s Salz	zgesteinsm	naterial.				
Sonde	•			Gerä	t oder	Vorrio	chtung, mi	t deren H	Hilfe es r	nöglich ist, Zug	griff	
				aut entfernte oder schwer zugängliche Stellen zu erhalten. An der entfernten Stelle soll zumeist mit Instrumenten oder Messsystemen etwas untersucht werden oder es soll Material dorthin transportiert werden oder von dort ontrommon								
				word	on ua	пэроі					пеп	
Stand	rohr			Vorrie und (chtung Gebirge	zur ə.	druckfeste	en Verbir	ndung zv	vischen Prever	nter	
Teufe,	End-, Bohrl	och		lst di gibt a Refer bezei geme die B	ie berg an, wie renzpul ichnet essen v ohrloc	ymänn e tief nkt an die /om A hachs	nische Bez ein Punkt uf der Ob Teufe ein Ansatzpunl se.	zeichnun unter Ta erfläche ner Boh kt bis zu	g für die ge unter liegt. Im irung di m Endpo	e Tiefe. Die Te einem definier vorliegenden e Bohrlochlän unkt, bezogen	eufe ten Fall ige, auf	
Teufer	nbereich, -at	oschnitt		Besc	hreibt	eine	n Bereich	n zwisch	nen zwe	ei Bohrlochteu	ıfen	
Totaln	nagnetfeld (1	ΓMAG)		entlang der Bohrlochachse. Der Absolutwert gibt die Länge des Vektors (die "Amplitude") der vektoriellen Größe, hier der magnetischen Flussdichte, unabhängig von der Raumrichtung an. Der Begriff hat sich aufgrund der Übersetzung aus dem Englischen ("total magnetic field") etabliert.								

2.2 Abkürzungen

keine

3 Messkampagne

3.1 Allgemeine Beschreibung

Die geophysikalischen Bohrlochmessungen erfolgten in mehreren Etappen innerhalb der Erkundungsbohrung B 7/750-B1 während des Bohrvortriebs. Vor jeder Messung wurden die Bohraktivitäten in zuvor festgelegten Zwischenteufen unterbrochen und das Bohrgestänge gezogen. Nachdem der vor Ort zuständige Strahlenschutzingenieur die Freigabe für die weiteren Arbeiten im Bohrloch erteilt hatte, wurden die Messsonden auf entsprechend vorbereitete Adapter, Distanzstangen beziehungsweise Schutzrohre verschraubt und mit dem von der Asse-GmbH zur Verfügung gestellten NQ-Messgestänge verbunden. Anschließend wurden die Messsonden mit Hilfe des Vorschubs der Bohrmaschine des Typs DE 140 der Firma Sandvik durch einen geschlossenen Drehpreventer auf die vorbestimmte Bohrlochteufe geschoben. Dabei wurde die Bohrmaschine von der Bohrmannschaft der Asse-GmbH bedient.

Die Teufenangaben in der Erkundungsbohrung B 7/750-B1 beziehen sich auf den Punkt der Flanschverbindung zwischen dem Standrohr und dem Preventer. An diesem Ansatzpunkt wurde die Bohrlochteufe mit 0,00 m festgelegt. Teufen werden in Bohrrichtung, bezogen auf die Bohrlochsohle fortlaufend in Meter und Zentimeter angegeben. Die vorgesetzte Schalwand des

Projekt NNAA	PSP-Element NNNNNNNNN	Thema NNAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev. NN		ASSE
9A	55110000	SON	HF	BW	0005	00		GMBH Verantwortlich handeln
Faktene Bohrloo	erhebung Sch hmessungen	ritt 1 - Erku in der Erku	ndungs	bericht bohrur	t zu geo ng B 7/7	physi 50-B	kalischen 1	Blatt: 10

Verschlussbauwerks befindet sich 0,26 m hinter dem Ansatzpunkt. Die Teufenangabe 58,00 m ist die Teufe am Ende der Erkundungsbohrung (Endteufe).

Bei der Auswertung der optischen Bohrlochmessungen wurde berücksichtigt, dass die für die Erstellung der Bohrung eingesetzte Bohrkrone üblicherweise eine glatte und saubere Bohrlochwand generiert. Der gleichzeitige Einsatz einer Freilaufkupplung an der Bohrmaschine bewirkte jedoch, dass die Bohrlochwand in einem wesentlich raueren Zustand vorgefunden wurde. Dabei konnte sich über einen Zeitraum von wenigen Tagen Bohrmehl an den rauen Stellen der Bohrlochwand flächig festsetzen und somit lockere Salzkrusten bilden. Beim Verfahren des Bohrgestänges wurden diese Salzkrusten wieder verdichtet. Dies erschwerte die Bewertung der Ergebnisse, die mit optischen Verfahren erzielt wurden, da die zu untersuchenden "realen" Strukturen an der Bohrlochwand von den Salzkrusten teilweise überdeckt waren. Bei der Erkundung der Bohrlochwand mit optischen Messgeräten stellen sich diese Salzkrusten als helle, oftmals auch poröse Oberflächen dar. Bei der Verwendung einer so genannten Dreiflügelkrone als Bohrkrone ist das Bohrmehl bedeutend gröber als beim Einsatz einer Flachbohrkrone. Demzufolge ist auch die Anhaftung des Bohrkleins an der Bohrlochwand im Vergleich zum Einsatz einer Flachbohrkrone geringer. Zur Optimierung der Ergebnisse der optischen Messverfahren wurde beginnend ab dem 12.12.2014 vor jeder optischen Bohrlochmessung eine "Reinigungsfahrt" durchgeführt, bei der über die gesamte Bohrlochlänge das Bohrloch mit Luft freigeblasen wurde. Die Teufenabschnitte, in denen unterschiedliche Bohrkronen eingesetzt wurden, sind in der Tabelle 1 aufgelistet.

Bohrlochteufe [m]	Beschreibung
0,00 bis 28,50	Dreiflügelkrone
28,50 bis 37,30	Flachbohrkrone
37,30 bis 44,80	Dreiflügelkrone
44,80 bis 47,80	Flachbohrkrone
47,80 bis 58,00	Dreiflügelkrone

Tabelle 1: Einsatz unterschiedlicher Bohrkronen

Um ein unvorhergesehenes Anbohren eines Einlagerungsgebindes zu vermeiden, wurden die im Rahmen der betrieblichen Erprobungsphase auf der 800-m-Sohle ermittelten Messverfahren für das Erkennen einer Annäherung an ein Einlagerungsgebinde eingesetzt. Mit Hilfe von Magnetfeldmessungen entlang einer Bohrung kann eine Annäherung der Bohrung an magnetische Gegenstände (zum Beispiel Metalle/Fässer) anhand lokaler Störfeldanomalien, die sich dem natürlichen Erdmagnetfeld überlagern, erkannt werden. Zusätzliche hochempfindliche elektromagnetische Messungen können das Vorhandensein metallischer Gegenstände in direkter Umgebung zur Messsonde (bis ca. 0,50 m Entfernung zur Sonde) anzeigen. Die Messungen des Magnetfeldes und des elektromagnetischen Störfeldes (Kompensationsspannung, siehe Kap. 3.2.3) wurden bohrbegleitend durchgeführt, um die mögliche Annäherung des Bohrvortriebs an metallische Körper (an die ELK 7/750) frühzeitig erkennen zu können.

3.2 Eingesetzte Messgeräte

3.2.1 Bohrlochkamera (PTZ 70)

Die Bohrlochkamera der Firma Everest VIT vom Typ PTZ 70 wird über ein Datenkabel mit einem Datenlogger verbunden. Über ein zweites Datenkabel wird eine Steuereinheit an den Datenlogger angeschlossen. Die Steuereinheit ist mit einem Joystick und einem Display ausgestattet. Mit dem

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.		
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN		ASSE I
9A	55110000	SON	HF	BW	0005	00		GMBH Verantwortlich handeln.
Faktene Bohrloc	erhebung Sch hmessungen	ritt 1 - Erku in der Erku	ndungsl ndungs	bericht bohrur	zu geo ng B 7/7	physi ′50-B	kalischen 1	Blatt: 11

Joystick werden die Bewegungen der Kamera innerhalb der Bohrung gesteuert. Auf einem Display werden online Bild- und Videoaufzeichnungen dargestellt.

3.2.2 Optischer Bohrlochscanner (OBI 52)

Der optische Bohrlochscanner der Firma Electromind vom Typ OBI 52 wird über ein Datenkabel mit einem Datenlogger und einem Notebook verbunden. Die Datenaufzeichnung wird über das Notebook während der Messfahrt überwacht und gesteuert. In "Echtzeit" wird ein "abgerolltes" und "orientiertes" Bild der Bohrlochwand in "Echtfarben" erstellt. Die Auswertung erfolgt mittels einer speziellen Software an einem hochauflösenden Bildschirm, der alle Teufenbereiche im Bohrloch hochauflösend darstellen kann. Dabei werden Strukturen an der Bohrlochwand erfasst (Strukturen picken) und räumlich orientiert. Eine Gesteinsansprache bezogen auf die Lithologie ist eingeschränkt möglich. Als visuelle Hilfe für die Beschreibung der erkundeten Strukturen an der Bohrlochwand enthält dieser Bericht eine Darstellung des optischen Bohrlochscans (Anlage 1). Dabei sind Strukturen wie Klüfte und Schichtgrenzen im "wahren" und "scheinbaren" Einfallen dargestellt und der jeweiligen Teufe zugeordnet. Die Teufenangaben dieser Strukturen beziehen sich auf die Bohrlochsohle. Damit die Bohrlochsohle in der Darstellung des optischen Bohrlochscans (Anlage 1) eindeutig zugewiesen werden kann, wurde eine Orientierungshilfe verwendet, welche die Bohrlochwand in Bereiche von 0° bis 270° aufteilt. Dabei liegt die Bohrlochsohle bei 180°. Die östliche Seite der Bohrlochwand befindet sich bei 270°, die westliche Seite der Bohrlochwand bei 90° und die Bohrlochfirste bei 0°. Zur Beschreibung des wahren Einfallens einer Struktur wurde sowohl der Wert des ermittelten Bohrlochverlaufes als auch die Deklination berücksichtigt (Schnitt D – D; Anlage 3).

3.2.3 APS544 Magnetik Modul (Magnetfeld)

Das APS544 Modul der Firma Applied Physics Systems ist im optischen Bohrlochscanner (OBI 52) verbaut. Dieses Modul zeichnet die drei Komponenten des Magnetfeldes im Raum mittels dreier Fluxgate-Magnetometer auf. Im räumlichen Bezugssystem der Sonde weist die X-Komponente in Richtung der Bohrlochachse. Aus den einzelnen Komponenten des Magnetfeldes wird unter anderem der Betrag des vektoriellen Magnetfeldes (Totalmagnetfeld TMAG) berechnet. Das APS544 Modul zeichnet darüber hinaus die drei Komponenten des Schwerefeldes mittels Gravitationssensoren auf.

3.2.4 VMXB2 (Elektromagnetische Induktion)

Der Bohrlochdetektor der Firma Vallon vom Typ VMXB2 ist ein aktives System zur Detektion metallischer Gegenstände. Durch eine Spule wird ein elektromagnetisches Feld im Umfeld der Sonde erzeugt. Über eine zweite Spule innerhalb der Sonde wird die durch das elektromagnetische Feld erzeugte elektrische Spannung beobachtet. Bei Vorhandensein von leitfähigen Objekten im Nahbereich der Sonde wirken diese auf das elektromagnetische Feld und verändern es. Dabei werden in der zweiten Spule veränderte elektrische Spannungen gemessen. Messwert der Sonde ist nicht direkt das elektromagnetisch induzierte Feld, sondern die dadurch in der Spule erzeugte elektrische Spannung. Die Sonde kompensiert die Veränderung des elektromagnetischen Feldes durch eine zusätzliche elektrische Spannung ("Kompensationsspannung") an der Sendespule. Die Kompensationsspannung ist ein Maß für die Veränderung des elektromagnetischen Feldes und damit ein Anzeichen für das Vorhandensein metallischer Gegenstände im Einflussbereich der Sonde. Das Spulensystem ist so aufgebaut, dass Objekte, die sich in axialer Richtung zur Sonde befinden, eine besonders starke Wirkung auf das gemessene elektromagnetische Feld besitzen.

3.2.5 isGyro (Bohrlochverlauf)

Bei der Bohrlochverlaufssonde der Firma Inertial Sensing wird die Lageveränderung der Sonde unabhängig von magnetischen Einflüssen aufgezeichnet. Vor einer Messfahrt werden die Anfangskoordinate und die Richtung der Bohrung in das System der Sonde eingetragen. Während der Messfahrt werden Beschleunigungswerte von der Sonde registriert. Ausgehend von den Messwerten werden mittels Winkelfunktionen die X-, Y- und Z-Koordinaten der Sondenlage

Projekt NNAA	PSP-Element NNNNNNNNN	Thema NNAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev. NN		ASSE
9A	55110000	SON	HF	BW	0005	00		GMBH Verantwortlich handeln
Faktene Bohrloc	erhebung Sch hmessungen	ritt 1 - Erku in der Erku	ndungsl Indungs	bericht bohrur	zu geo ng B 7/7	physi 750-B	kalischen 1	Blatt: 12

berechnet. Jede "neu" gemessene Koordinate steht somit im unmittelbaren Zusammenhang mit der jeweils zuvor ermittelten Koordinate.

3.2.6 Protonenpräzessionsmagnetometer

Als Referenz zu den Magnetfeldmessungen in der Bohrung wurde das Messgerät G-856 der Firma Geometrics im Grubenumfeld eingesetzt. Bei diesem Gerätetyp wird das Totalmagnetfeld (TMAG) aufgezeichnet. Es eignet sich sowohl für Feldmessungen als auch für automatische, stationäre Langzeitmessungen (Basismessungen).

3.3 Messergebnisse der optischen Bohrlochmessungen

Insgesamt wurden zwei Inspektionsfahrten mit der Bohrlochkamera (PTZ 70) und fünf Erkundungsfahrten mit dem optischen Bohrlochscanner (OBI 52) an verschiedenen Messtagen durchgeführt. Die Messeinsätze sind in Tabelle 2 zusammengefasst.

Datum	Bohrloch Bohrloc (in r	kamera hteufe m)	Optischer Bohrlochscan Bohrlochteufe (in m)		
	von	bis	Von	bis	
05.11.2014			0,00	12,00	
13.11.2014	0,00	28,50	0,00	28,50	
12.12.2014			0,00	36,90	
18.12.2014			0,00	37,30	
14.01.2015	0,00	58,00	0,00	58,00	

Tabelle 2: Übersicht der Messeinsätze mit Bohrlochkamera und optischem Bohrlochscanner

Bei der Ansprache der Lithologien konnten lediglich optische Kriterien, also die Farbe der Gebirgsstruktur und vereinzelt die Korngröße, verwendet werden. Bereiche mit hell grauen bis dunkel grauen Farbtönen wurden als Steinsalz angesprochen, orange oder rote Bereiche als Carnallitit. Hierbei ist zu beachten, dass je nach Beimengung bestimmter Elemente oder Mineralien (zum Beispiel Tonmineralien) die Farben der verschiedenen Lithologien sich ändern können. Eine detailliertere Gesteinsansprache kann auf Grundlage petrographischer Analysen (zum Beispiel Durchlichtmikroskopie) erfolgen. Neben dem Steinsalz und dem Carnallitit wurden in verschiedenen Teufenbereichen helle, meist nur wenige Millimeter bis Zentimeter mächtige "Bänder" angetroffen. Derartige Bänder stellen Klüfte dar, wobei die Kluftfüllung vermutlich aus Anhydrit besteht. Auch hier muss erwähnt werden, dass eine eindeutige Ansprache als Anhydrit nur durch zusätzliche Analysemethoden, zum Beispiel petrographischer Analysen, erfolgen kann.

Teufenbereich von 0,00 m bis 4,04 m

Wie in den Abbildungen 1 und 2 ersichtlich ist, wurde bei der Inspektion des Standrohrs im Bereich von 0,00 m bis 1,00 m eine dünne, lockere Salzgrusschicht (Verunreinigung) angetroffen. Anschließend wurden keine weiteren Verunreinigungen im Standrohr festgestellt (Abbildungen 3 und 4). Der Übergang vom Standrohr zum Injektionsmörtel wurde bei 3,26 m erkannt (Abbildungen 5 und 6). Bis zur Bohrlochteufe von 4,04 m ist Injektionsmörtel zu erkennen. Am Übergang vom Injektionsmörtel zum Carnallitit wurde im oberen Teil der Bohrung eine "Suspensionsblase" nachgewiesen, die während der Verpressarbeiten des Standrohrs entstanden ist (Abbildungen 5

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.		1005
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN		ASSE I
9A	55110000	SON	HF	BW	0005	00		GVBH Verantwortlich handeln.
Faktene	erhebung Sch	ritt 1 - Erku	ndungsl	berich	t zu geo	physi	kalischen	

Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1

und 6 sowie Anlage 1). Eine derartige Blasenbildung wurde bereits in der Erkundungsbohrung B 7/750-B1.2 an gleicher Stelle erkannt und beschrieben /3/. In den Erkundungsbohrungen B 7/750-A1 /1/ und B 7/750-A3 /2/ wurde der Übergang vom Standrohr zum Injektionsmörtel ohne Blasenbildung am Übergang vom Injektionsmörtel zum Carnallitit hergestellt.

Teufenbereich von 4,04 m bis 6,70 m

Die Wechsellagerung der verschiedenen Mineralbestandteile des Carnallitits ist durch deutliche Farbunterschiede (rötlich, grau) erkennbar (Abbildungen 7 und 8). Es wurden Schichtungen bei den Bohrlochteufen 5,69 m, 5,74 m, 5,80 m, 6,36 m und 6,42 m mit einem Einfallen von 85° bis 89° nachgewiesen. Der Übergang vom Carnallitit zum Steinsalz ist mithilfe der Kamerabefahrung näherungsweise zu bestimmen (Abbildungen 9 und 10). Erst mit dem optischen Bohrlochscanner konnte der Übergang bei 6,70 m eindeutig mit einem Einfallen von 83° belegt werden (Anlage 1).

Teufenbereich von 6,70 m bis 34,32 m

Im Teufenbereich von 6,70 m bis 24,84 m wurden weitere Schichtungen bei 8,32 m, 15,05 m, 24,54 m und 24,84 m mit einem Einfallen von ca. 70° bis 85° nachgewiesen (Anlage 1). Spuren an der Bohrlochwand, wie sie vergleichsweise im Teufenbereich von 8,00 m bis 14,00 m und im Winkelbereich von 140° bis 190° zu erkennen sind, entstehen beim Ein- und Ausbau des Bohrstrangs und sind nicht auf gebirgsmechanische Beanspruchungen zurückzuführen (Abbildungen 11 und 12).

Im Teufenbereich von 14,30 m bis 14,50 m wurden helle Steinsalzlagen angetroffen (Abbildungen 13 und 14). Die Erkundung mit dem optischen Bohrlochscanner konnte eine gebirgsmechanische Beanspruchung an dieser Stelle ausschließen. Im weiteren Bohrlochverlauf wurden bis 34,32 m keine Auffälligkeiten an der Bohrlochwand festgestellt. Farbwechsel im Steinsalz können durch das Vorhandensein bzw. Fehlen von geringen Mengen an Eisen oder Mineralen wie z.B. Sylvin oder Tonmineralen hervorgerufen werden. Ab der Bohrteufe von ca. 28,00 m wird das Steinsalz insgesamt heller. Wie bereits in Kapitel 3.1 beschreiben hat auch die verwendete Bohrtechnik einen Einfluss auf die Bohrlochwand. Dieser Einfluss kann zu unterschiedlichen Farbtönen führen, z.B. durch die daraus resultierende unterschiedliche Beschaffenheit des anhaftenden Bohrmehls (Anlage 1).

Teufenbereich von 34,32 m bis 38,89 m

Dieser Teufenbereich besteht aus Steinsalz ohne eindeutig erkennbare Schichtung. Die gebirgsmechanische Beanspruchung nimmt ab 34,32 m deutlich zu und bildet eine Auflockerungszone, wie sie vergleichsweise in der darüber liegenden Erkundungsbohrung B 7/750-B1.2 /3/ im Bereich von 30,10 m bis 34,76 m nachgewiesen wurde. Das dort vorliegende Kluftsystem ist charakterisiert durch zahlreiche offene Klüfte mit einem Einfallen von 25° bis 46°.

In der Erkundungsbohrung B 7/750-B1 wurden anhand des optischen Bohrlochscans im Teufenbereich zwischen 34,32 m und 34,54 m zwei quer zur Bohrlochachse verlaufende Klüfte mit einem Einfallen von 21° und 41° angetroffen. Die Klüfte sind "verheilt" bzw. geschlossen und somit wird dieser Bereich weder durch Risse noch durch Öffnungen gekennzeichnet (Abbildungen 15 und 16). Im Weiteren wurden offene Klüfte bei 35,18 m, 37,70 m, 37,80 m und 38,89 m mit einem Einfallen von 9° bis 24° nachgewiesen (Abbildungen 17 bis 22). Die auffälligste Schädigung der Bohrlochwand beschreibt eine offene Kluft bei der Bohrlochteufe 38,89 m mit einer Gefügeöffnungsweite von einigen Millimetern und einem Einfallen von 16° (Abbildungen 21 und 22 und Anlage 1). Die hier beschriebenen Strukturen im Teufenbereich von 35,18 m bis 38,89 m sind durch eine mechanische Beanspruchung des Gebirges zwischen der ELK 7/750 und dem Abbau 8/725 entstanden.

Teufenbereich von 38,89 m bis 58,00 m

Dieser Teufenbereich besteht aus Steinsalz ohne eindeutig erkennbare Schichtung. Ab der Bohrlochteufe von etwa 39,00 m wird das Steinsalz insgesamt deutlich dunkler mit vornehmlich grauen Farbtönen. Im Teufenbereich zwischen 44,80 m bis 47,80 m sind besonders dunkle Grautöne auffällig. In diesem Bereich wurde eine Flachbohrkrone verwendet (Anlage 3). Somit liegt

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.	1005	
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN	ASSE I	
9A	55110000	SON	HF	BW	0005	00	GMBH	Verantwortlich handeln
Faktene Bohrloc	erhebung Sch hmessungen	ritt 1 - Erku in der Erku	ndungs	bericht bohrur	zu geo ng B 7/7	physi 50-B	kalischen Bla	tt: 14

es nahe, dass die Farbtonänderungen durch die unterschiedlich verwendeten Bohrtechniken hervorgerufen wurden.

In den Bohrlochteufen 52,20 m, 53,32 m, 53,79 m, 54,62 m und 55,69 m wurden "helle" Lagen im Steinsalz aufgeschlossen. Ob es sich hierbei um eine gebirgsmechanische Schädigung/Auflockerung (verfüllte Klüfte) handelt oder um Materialwechsel im Steinsalz (Schichtungen), konnte nicht abschließend geklärt werden, da diese Bereiche zu stark mit Bohrmehl bedeckt waren. Im Bohrlochscan als auch in den Ergebnissen der Kamerabefahrung lassen sich im gesamten Teufenbereich zwischen 38,89 m bis 58,00 m keine Rissbildungen, wie sie oftmals als begleitende Merkmale bei Auflockerungszonen festgestellt werden, erkennen (Abbildungen 23 bis 31). Bei einer Bohrlochteufe von 58,00 m wurde die Erkundungsbohrung B 7/750-B1 planmäßig eingestellt (Abbildungen 32 und 33).

Die Erkundungsergebnisse der Beschaffenheit des Gebirges an der Bohrlochwand sind tabellarisch in Tabelle 3 zusammengestellt.

Tabelle 3: Übersicht der Erkundungsergebnisse, nachgewiesen mit der Bohrlochkamera und dem optischen Bohrlochscanner

Beschaffenheit des Gebirges an der Bohrlochwand													
nachgewiesen mit der Bohrlochkamera und dem optischen Bohrlochscan													
Bohrlochteufe [m]	wahres bezogei Nordri [Gr	Einfallen n auf die chtung rad]	schei Einfaller au Bohrlo [G	inbares n bezogen f die ochachse Grad]	Strukturen an der Bohrlochwand	Darstellung (Erkennbar in:)							
	Azimut	Neigung	Azimut	Neigung									
4,04				Injektionsmörtel / Carnallitit	Abbildungen 5 bis 6, Anlage 1 und Anlage 3								
5,69 352 85 220,499 83													
5,74	177	88	220,449	88	Carnallitit	Abbildungen 7 bis 10, Anlage 1 und Anlage 3							
5,80	355	89	220,449	88									
6,36	352	87	220,449	85	Schichtung	Abbildungen 7 bis 10,							
6,42	170	87	220,449	85	Carnallitit	Anlage 1 und Anlage 3							
6,70	172	83	220,449	80	Carnallitit / Steinsalz	Abbildungen 9 bis 10, Anlage 1 und Anlage 3							
8,32	166	80	220,449	73	Schichtung Steinsalz	Anlage 1 und Anlage 3							
14,30 bis 14,50				helleres Steinsalz	Abbildungen 13 bis 14, Anlage 1								
15,05	179	85	84										
24,54	185	70	220,449	66	Schichtung Steinsalz	Anlage 1 und Anlage 3							
24,84	176	75	220,449	69									

Projekt NNAA	PSP-Element NNNNNNNNN	Thema NNAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev. NN			ACCE
9A	55110000	SON	HF	BW	0005	00			GVBHVerantwortlich handeln.
Faktene Bohrloc	erhebung So hmessunge		Blatt: 15						
Bohrlochteufe [m]		wahres I bezoger Nordric [Gr	Einfallen n auf die chtung ad]	E	scheinbares Einfallen bezogen auf die Bohrlochachse [Grad]			rukturen an der hrlochwand	Darstellung (Erkennbar in:)
		Azimut	Neigung	A	zimut	Neigu	ng		
3	34,32	220	21	22	0,449	21	Klut	ft	Abbildungen 15 bis
3	34,54	251	41	22	0,449	37			Anlage 3
3	35,18	198	24	22	0,449	22	Klut Gef	ft mit ügeöffnung	Abbildungen 17 bis 18, Anlage 1 und Anlage 3
3	37,70	199	16	22	0,449	14	Klut	ft mit	Abbildungen 19 bis 20, Anlage 1 und
3	37,80	179	9	22	0,449	7	Gei	ugeonnung	Anlage3
3	38,89	223	16	22	0,449	16	Klut Gef	ft mit ügeöffnung	Abbildungen 21 bis 22, Anlage 1 und Anlage 3
5	52,20	186	74	22	0,449	71			
5	53,32	183	73	22	0,449	69			Abbildungen 24 bis
5	53,79 180 67 220,449 61					hell Stei	e insalzlagen	31, Anlage 1 und Anlage 3	
5	54,61 179 72 220,449 67								
5	55,69 168 60 220,449 47								
58,00 Endteufe der Erkundungsbohrung B)-B1	Abbildungen 32 bis 33, Anlage 1

Abbildung 1: Position des Kamerakopfs bei 0,00 m, Standrohr

Abbildung 2: Position des Kamerakopfs bei 0,00 m, Verunreinigung des Standrohrs durch Salzgrus im Bereich von 170° bis 210° (gelbe Linien)

Abbildung 3: Position des Kamerakopfs bei 1,00 m, Standrohr ohne Verunreinigungen durch Salzgrus

Abbildung 4: Position des Kamerakopfs bei 2,00 m, Standrohr ohne Verunreinigungen durch Salzgrus

Abbildung 5: Position des Kamerakopfs bei 3,00 m, scharfkantiger Übergang vom Standrohr zum Injektionsmörtel

Abbildung 6: Position des Kamerakopfs bei 3,00 m, Übergang Standrohr (braune Pfeile) zum Injektionsmörtel (orange Pfeile) bei 3,26 m (roter Kreis), Übergang vom Injektionsmörtel zum Carnallitit (blauer Kreis) bei 4,04 m und Suspensionsblase (gelbe Pfeile am Übergang vom Injektionsmörtel zum Carnallitit

Abbildung 7: Position des Kamerakopfs bei 4,50 m, Carnallitit

Abbildung 8: Position des Kamerakopfs bei 4,50 m, Carnallitit (blaue Pfeile)

Abbildung 9: Position des Kamerakopfs bei 6,00 m

Abbildung 10: Position des Kamerakopfs bei 6,00 m, Übergang vom Carnallitit (blaue Pfeile) zum Steinsalz (gelbe Pfeile) bei 6,70 m (roter Kreis)

Abbildung 11: Position des Kamerakopfs bei 8,00 m

Abbildung 12: Position des Kamerakopfs bei 8,00 m, Anhaftung von Salzgrus an der Bohrlochwand (blaue Pfeile), im Bereich 140° - 190°, Bewegungsspuren vom Bohrgestänge (roter Pfeil mit roten Begrenzungslinien)

Abbildung 13: Position des Kamerakopfs bei 14,00 m

Abbildung 14: Position des Kamerakopfs bei 14,00 m, helleres Steinsalz (blaue Pfeile) mit optischen Bohrlochscan im Teufenbereich 14,30 m – 14,50 m nachgewiesen

Abbildung 15: Position des Kamerakopfs bei 34,00 m

Abbildung 16: Position des Kamerakopfs bei 34,00 m, Klüfte bei 34,32 m (blauer Pfeil) und bei 34,54 m (oranger Pfeil) angetroffen

Projekt NNAA	PSP-Element NNNNNNNNN	Thema NNAAANN	Aufgabe AA	AA AA	Lfd Nr. NNNN	Rev. NN		ASSE
9A	55110000	SON	HF	BW	0005	00		GVBH Verantwortlich handel
Faktene Bohrloc	erhebung Sch hmessungen	ritt 1 - Erku in der Erku	ndungsl Indungsl	bericht bohrur	zu geo ng B 7/7	physi 50-B	kalischen 1	Blatt: 24
1000	m. 11/2	Kama	-	fhai	25.00	T	A CALLER A LAN	100
1 13	1815	Kame	егакор	T Del	35,00	mI	eure	
7 19		R.A.	1.60					
6220		150					MAN ST. S. N. D.	5/72
8.10	1. 11/1	A. B.						19.4
220	13351.18						White Marker	100
Bohrl links	ochwand 270 Grad		19				Bohrlochwand rechts 90 Grad	1
1.4	ALC ON THE	1.2					Martin	015
Bas	0.131.21			1			Well States	
	ϕ (0)	Lei Par	a.	141				100
26		R:	Boh	orloch	soble			1020
10		10	180	Grad			and has the first	100
all a	1000	199	192	Sec.	15	and a	14 JAN. 10	3
the second		Carlor al	Sec.				10:120	Complete State

Abbildung 17: Position des Kamerakopfs bei 35,00 m

Abbildung 18: Position des Kamerakopfs bei 35,00m, offene Kluft bei 35,18 m erkennbar (brauner Umriss)

Abbildung 19: Position des Kamerakopfs bei 37,60 m

Abbildung 20: Position des Kamerakopfs bei 37,60 m, offene Kluft mit Gefügeöffnung bei 37,70 m (brauner Umriss) und 37,80 m (roter Umriss) aufgeschlossen

Abbildung 21: Position des Kamerakopfs bei 38,50 m

Abbildung 22: Position des Kamerakopfs bei 38,50 m, Kluft mit Gefügeöffnung bei 38,89 m (braune Pfeile)

Abbildung 23: Position des Kamerakopfs bei 39,00 m

Abbildung 24: Position des Kamerakopfs bei 40,00 m

Abbildung 25: Position des Kamerakopfs bei 41,00 m

Abbildung 26: Position des Kamerakopfs bei 42,00 m

Abbildung 27: Position des Kamerakopfs bei 44,00 m

Abbildung 28: Position des Kamerakopfs bei 47,00 m

Abbildung 29: Position des Kamerakopfs bei 50,00 m

Abbildung 30: Position des Kamerakopfs bei 53,00 m

Abbildung 31: Position des Kamerakopfs bei 56,00 m

Abbildung 32: Position des Kamerakopfs bei 57,00 m

Abbildung 33: Position des Kamerakopfs bei 57,80 m, Endteufe der Erkundungsbohrung bei 58,00 m

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.		ACOF
9A	55110000	SON	HF	BW	0005	00		GMBH Verantwortlich handeln
Faktene	erhebung Sch	ritt 1 - Erku in der Erku	ndungs	bericht	zu geo	physi	kalischen	Blatt: 33

3.4 Messergebnisse der Magnetfeldmessung (APS544)

Zur Ermittlung der magnetischen Messwerte innerhalb der Erkundungsbohrung B 7/750-B1 wurden insgesamt 25 Messfahrten mit dem APS544 Magnetik Modul durchgeführt. Beginnend ab einer Bohrlochteufe (Teufe) von 28,50 m bis zu einer Teufe von 37,30 m wurde abschnittsweise, jeweils nach einem Bohrfortschritt von 0,40 m, eine weitere Messfahrt mit der Sonde durchgeführt, um mit dieser Vorgehensweise eine mögliche Annäherung des Bohrvortriebs an ein magnetisch wirksames Einlagerungsgebinde anhand der Veränderung der Messwerte rechtzeitig erkennen zu können (Tabelle 4). Eine Annäherung an ein magnetisch wirksames Einlagerungsgebinde ist, gemäß Versuchsmessungen während der betrieblichen Erprobungsphase auf der 800-m-Sohle, an der Stärke des Anstiegs des magnetischen Totalfeldes, bezogen auf ein Teufenintervall, erkennbar. Ein Anstieg von mehr als 1000 nT/m wird als Kriterium dafür herangezogen, dass ein magnetische Modellierungen haben dieses Kriterium bestätigt. Des Weiteren haben die magnetischen Modellierungen gezeigt, dass der Verlauf des magnetischen Totalfeldes einen Wendepunkt an der Stelle hat, an der die Außengrenze einer Ansammlung von magnetisch wirksamen Einlagerungsgebinden überschritten wird.

	Messbereich	Bohrlochteufe bei		
Datum	von (m) bis (m)	[m]		
05.11.2014	0,00 – 12,00	12,00		
13.11.2014	0,00 – 28,50	28,50		
18.11.2014	24,90 – 28,90	28,90		
20.11.2014	25,30 – 29,30	29,30		
21.11.2014	9,00 – 29,70	29,70		
25.11.2014	26,10 - 30,10	30,10		
26.11.2014	26,50 – 30,50	30,50		
27 11 2014	26,90 – 30,90	30,90		
27.11.2014	27,30 – 31,30	31,30		
01.12.2014	27,70 – 31,70	31,70		
	12,00 – 32,10	32,10		
03.12.2014	12,00 – 32,50	32,50		
	12,00 – 32,90	32,90		
04 10 0014	12,00 – 33,30	33,30		
04.12.2014	12,00 - 33,70	33,70		
09 10 0014	12,00 – 34,10	34,10		
00.12.2014	12,00 – 34,50	34,50		

Tabelle 4: Übersicht der Bohrlochmessungen mit dem APS544 Magnetik Modul

Desistet		T b	Aufaaha		L C-L NI-	Davi				
NNAA	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNAAANN	Aufgabe	AA	NNNN	NN			ASSE	
9A	55110000	SON	HF	BW	0005			GMBH Verantwortlich handeln		
Faktene Bohrloo	Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischen Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1									Blatt: 34
	hat un		Mes	sbere	eich			Во	hrlocht	eufe bei
	alum		von	(m) bis	s (m)				[m]	
00.4	10 0014		12,0	0 – 34	4,90			34,90		
09.	12.2014 -	12,00 – 35,30						35,30		
10.1	12.2014		12,0	0 – 3	5,70			35,7	70	
	12 2014		12,0	0 – 36	6,10			36,1	0	
	12.2014		12,0	0 – 30	6,50		36,50			
12.1	12.2014		12,0	0 – 36	6,90		36,90			
18.1	12.2014		12,0	0 – 3	7,30		37,30			
14.0	01.2015		0,00) – 58	5,00		58.00			

Die Messungen am 14.01.2015 erstreckten sich über die komplette Bohrlochlänge und beinhalten somit die magnetischen Werte entlang des gesamten Bohrlochpfades. Die Änderung des magnetischen Totalfeldes in Bohrlochrichtung ("X-Gradient") wurde über Einzelmessungen im Teufenabstand von 0,20 m berechnet (rechnerischer Bauabstand). In den nachfolgenden Abbildungenen 34 und 35 sind der Verlauf des magnetischen Totalfeldes (TMAG) und dessen "X-Gradient" dargestellt.

Abbildung 34: Magnetisches Totalfeld (TMAG)

Der Verlauf der Messkurven lässt sich in fünf Teufenbereiche (bezeichnet als "Bohrlochtiefe" in den Abbildungen) untergliedern:

- 1. Bohrlochtiefe 0,00 m bis 10,00 m:
 - In diesem Bereich zeigt der Kurvenverlauf der magnetischen Messwerte eine verstärkte Variation (Abbildung 34) in den Messwerten. Das Magnetfeld ist durch metallische Teile wie z.B. Verrohrung, Preventer, Bohrmaschine etc. stark gestört bzw. beeinflusst.

2. Bohrlochtiefe 10,00 m bis 22,00 m:

Ein Abklingen des Einflusses der magnetisch wirksamen Objekte am Bohrlochbeginn auf die Magnetfeldstärke ist bis zu einer Bohrlochtiefe von ca. 12,00 m erkennbar.

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.	
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN	ASSE
9A	55110000	SON	HF	BW	0005	00	GWBH Verantwortlich handeln
Foktope	rhohung Soh	ritt 1 Erku	kaliaahan				

Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischenBlatt: 35Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1Blatt: 35

Anschließend zeigen das magnetische Totalfeld (Abbildung 34) und die Änderung des magnetischen Totalfeldes in Bohrlochrichtung (Abbildung 35) geringere Variationen. Eine Abnahme der magnetischen Feldstärke um etwa 1.000 nT über eine Länge von 10 Bohrmetern ist typisch für eine Annäherung an eine weiter entfernte Magnetfeldanomalie. Bohrlochtiefe 22,00 m bis 28,50 m:

- 3. Bohrlochtiefe 22,00 m bis 28,50 m: In diesem Bereich steigen die Messwerte für das magnetische Totalfeld deutlich an (Abbildung 34). Als Folge zeigen auch die Änderungen des magnetischen Totalfeldes in Bohrlochrichtung ("X-Gradient") erhöhte Messwerte (Abbildung 35). Der Anstieg der Messwerte wird durch die Annäherung des Bohrlochverlaufes an magnetisch wirksame Einlagerungen in der Einlagerungskammer hervorgerufen. Der Gradient in Bohrlochrichtung liegt in diesem Teufenbereich unterhalb von 1000 nT/m (Differenz der herangezogenen Messpunkte: 0,20 m). Damit wird das o.a. Kriterium für eine mögliche Annäherung an ein magnetisch wirksames Einlagerungsgebinde nicht erreicht. Darüber hinaus ist ein Wendepunkt im Verlauf des Totalfeldes nicht erkennbar. Aufgrund dieser Messwerte waren in diesem Teufenbereich keine Änderungen bei der Ausführung des Bohrvortriebs erforderlich.
- 4. Bohrlochtiefe 28,50 m bis 31,00 m:

Der Verlauf des magnetischen Totalfeldes zeigt bei einer Bohrlochteufe von 29,80 m einen Wendepunkt, im weiteren Verlauf werden Werte von über 50.000 nT erreicht (Abbildung 34). Der X-Gradient des Totalfeldes erreicht Werte von mehr als 1.000 nT/m (Abbildung 35) und erreicht damit das o.a. Kriterium für eine Annäherung an ein magnetisch wirksames Einlagerungsgebinde. Gemäß Ausführungsplanung bestand ab 28,80 m Bohrlochlänge die Möglichkeit, dass sich der Bohrlochverlauf an eine vermutete Aufwölbung der Firstkontur der ELK 7/750 annähert. Deshalb wurde in diesem Bohrlochabschnitt eine detaillierte Erkundung auf eine mögliche Annäherung an ein magnetisch wirksames Einlagerungsgebinde bohrbegleitend durchgeführt. In diesem Teufenbereich wurden Messungen mit der empfindlicheren Vallon-Sonde (Elektromagnetik) in 0,20 m Abständen durchgeführt. Die Ergebnisse der Elektromagnetikmessungen sind in Kapitel 3.7 beschrieben.

5. Bohrlochtiefe 31,00 m bis 58,00 m (Bohrlochende):

Die Werte des magnetischen Totalfeldes (Abbildung 34) haben ab der Bohrlochtiefe von 31,00 m das Maximum überschritten und werden mit zunehmender Bohrlochtiefe "allmählich" geringer. Als Folge liegen für den X-Gradienten betragsmäßig relativ niedrige Werte vor (Abbildung 35). Der weitere Kurvenverlauf bestätigte somit eine Vergrößerung des Bohrlochabstandes von den magnetisch wirksamen Einlagerungen mit zunehmender Bohrlochtiefe.

Abbildung 35: Änderung des magnetischen Totalfeldes in Bohrlochrichtung (X-Gradient)

Die Messungen des Magnetfeldes wurden entsprechend der Ausführungsplanung durchgeführt. Für den Teufenbereich 28,50 m bis 31,00 m zeigen die Ergebnisse an, dass entsprechend des

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.	
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN	ASSE I
9A	55110000	SON	HF	BW	0005	00	GMBH Verantwortlich handeln
E a lata a a	haliashan						

Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischen	Blatt: 36
Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1	Diatt. 50

Messwerteverlaufs, ermittelt während der betrieblichen Erprobungsphase auf der 800-m-Sohle, eine Annäherung während des Bohrvortriebs der Erkundungsbohrung B 7/750-B1 an ein magnetisch wirksames Einlagerungsgebinde nicht ausgeschlossen werden konnte. Der Ausschluss einer unmittelbaren Annäherung an ein Einlagerungsgebinde konnte durch die zusätzlichen Induktionsmessungen erbracht werden.

3.5 Messungen der Schwankungen des Magnetfeldes (Basismessung)

Bei der Interpretation der Magnetfeldmessungen in der Erkundungsbohrung B 7/750-B1 war zu beachten, dass das in der Bohrung gemessene Magnetfeld den folgenden zusätzlichen Einwirkungen ausgesetzt ist:

1. Das natürliche Erdmagnetfeld:

Die Messwerte für das Erdmagnetfeld sind abhängig von der geographischen Position der Messgeräte. Für den Standort Remlingen liegen sie in einer Größenordnung von etwa 49.000 nT. Variationen von bis zu 50 nT innerhalb eines Tages sind unter anderem durch die Veränderungen der Konstellation "Erde-Sonne" begründet. Selten treten auch sogenannte "magnetische Stürme" auf, bei denen sich der Betrag des Erdmagnetfeldes an einem Ort um bis zu 400 nT innerhalb weniger Stunden ändern kann.

- Durch den Grubenbetrieb verursachte Magnetfelder: Es ist anzunehmen, dass durch den Grubenbetrieb (Einsatz von Transformatoren, Motoren, Fahrzeuge) zusätzliche Magnetfelder erzeugt werden, die ebenfalls einen Einfluss auf die in der Erkundungsbohrung gemessenen Werte besitzen können.
- 3. Durch lokale Objekte induzierte Magnetfelder: Insbesondere metallische Objekte in der "näheren Umgebung" zum Messsensor verursachen ein zusätzliches Magnetfeld und somit eine magnetische Anomalie.

Mit Hilfe einer sogenannten "Basismessung" des Magnetfeldes sollten Tagesschwankungen des Erdmagnetfeldes (Punkt 1) sowie Schwankungen, hervorgerufen durch den Grubenbetrieb (Punkt 2) ermittelt werden. Mit dem Protonenpräzessionsmagnetometer G-856 der Firma Geometrics wurde ein Messwert pro Minute über einen Zeitraum von 43,50 Stunden aufgezeichnet (Abbildung 36 bis 38). Darüber hinaus wurde am 18.12.2015 im Zeitraum von 12:35 Uhr bis 12:53 Uhr das Erdmagnetfeld mit einer Basisstation an einem von der Projektsteuerung zugewiesenen Ort auf der 553-m-Sohle aufgezeichnet (Abbildung 39).

Abbildung 36: Basismessung des Magnetfeldes am 13.12.2014

Abbildung 37: Basismessung des Magnetfeldes am 14.12.2014

KQM_Textblatt_REV09_Stand-2016-02-01

Blatt: 38

Abbildung 38: Basismessung des Magnetfeldes am 15.12.2014

Abbildung 39: Basismessung des Magnetfeldes am 18.12.2014 auf der 553-m-Sohle

NNAA	NNNNNNNNNN	NNAAANN	Aufgabe AA	AA	NNNN	NN	ACCE	
9A	55110000	SON	HF	BW	0005	00	GVBH Verantwortich hand	lein.
Faktene	erhebuna Sch	ritt 1 - Erku	ndunas	berich	t zu aec	physi	sikalischen	

Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1

Die Werte der Basismessungen für das Totalfeld liegen zwischen 49.340 nT und 49.375 nT und entsprechen damit der Erwartung für die Stärke des natürlichen Erdmagnetfeldes in der Region Remlingen. Die Streuungen der Messwerte liegen bei \pm 5 nT. Die Schwankungen des Magnetfeldes umfassen Werte von \pm 15 nT im Verlauf weniger Stunden.

Vom Betrag her sind die gemessenen zeitlichen Schwankungen des Magnetfeldes von wenigen zehner Nanotesla klein im Verhältnis zu den in der Erkundungsbohrung B 7/750-B1 gemessenen Anomalien mit Werteänderungen von mehreren tausend Nanotesla. Die Berücksichtigung der zeitlichen Schwankungen des Magnetfeldes während der Messungen in der Erkundungsbohrung B 7/750-B1 am 18.12.2014 hat somit die generelle Beurteilung der Messergebnisse nicht verändert. Ein möglicher Einfluss des Grubenbetriebs auf die in der Erkundungsbohrung B 7/750-B1 gemessenen Magnetfeldwerte konnte mit der Basismessung auf der 553-m-Sohle abschließend nicht vollständig geklärt werden. Allerdings sind die bislang aufgezeichneten Schwankungen so gering, dass auch diese keinen Einfluss auf die Interpretation der Messwerte innerhalb der Erkundungsbohrung B 7/750-B1 hatten.

3.6 Erfahrungsgewinn im Einsatz der Magnetfeldmessungen

Die Rahmenbedingungen, unter denen die Magnetfeldmessungen in der Erkundungsbohrung B 7/750-B1 ausgeführt wurden, haben zu besonderen Maßnahmen bei der Ausführung der Messungen geführt. Das Schutzrohr, in dem die Sonde im Bohrloch geführt wird, hat magnetische Eigenschaften, die bei der Beurteilung der Messergebnisse berücksichtigt werden müssen. Bei der Wahl des Materials für das Schutzrohr wurde bereits darauf geachtet, Werkstoffe mit möglichst geringen paramagnetischen Eigenschaften zu verwenden. Eine geringfügige remanente Magnetisierung des Rohres lässt sich nicht vollständig vermeiden und führt zu einer zusätzlichen Beeinflussung der Messwerte, die vom Schutzrohr und seinen metallischen Verschraubungen induziert werden. Tests haben gezeigt, dass es einen Einfluss auf das Messergebnis gibt, wenn der magnetische Einfluss des Schutzrohres nicht vermieden wird oder unberücksichtigt bleibt. Insbesondere tritt eine Änderung des gemessenen Magnetfeldes auf, wenn sich das Schutzrohr samt Sonde im Bohrloch dreht, zum Beispiel beim Anfügen weiterer Gestänge an der Bohrmaschine. Die remanente Magnetisierung (und somit das induzierte Magnetfeld) verändert nach einer Rotation des Rohres ihre Richtung. Daher ändert sich auch der gemessene Wert des magnetischen Totalfeldes bei der Rotation des Rohres, da dieser sich durch eine Vektoraddition berechnet und die geänderte Richtung der Permanentmagnetisierung des Schutzrohres in der Wertedarstellung der Messsonde hierbei nicht berücksichtigt wird.

Die folgenden Maßnahmen minimieren den Einfluss des Schutzrohres auf das Messergebnis:

- 1. Das Schutzrohr sollte regelmäßig entmagnetisiert werden oder aus einem nicht magnetischem Werkstoff (amagnetischer Spezialstahl wie z.B. Magnadur, aus Titan oder Kunststoff) gefertigt werden.
- 2. Das Schutzrohr sollte bei jeder Messung im gleichen Rollwinkel stehen. Dazu wurden am Schutzrohr Markierungen angebracht, an denen sich vor Beginn der Messungen der Messtechniker orientieren kann.
- 3. Die Sonde sollte immer im gleichen Winkel zum Schutzrohr eingesetzt werden.
- 4. Die Gravitationssensoren des APS544-Sensors sollten mit aufgezeichnet und der so ermittelte Gravitations-Rollwinkel gemeinsam mit den Ergebnissen dargestellt werden. Auf diese Weise lässt sich im Rahmen der Qualitätssicherung feststellen, ob es während der Messungen zu einer Änderung des Rollwinkels gekommen ist und diese bei der Interpretation der Ergebnisse zu berücksichtigen ist.
- 5. Es sollte immer ein Rollwinkeltest direkt vor oder nach der Aufzeichnung der Magnetikmesswerte durchgeführt werden. In Verbindung mit den Aufzeichnungen der Gravitationssensoren kann der Einfluss des Schutzrohres im Rahmen der Datenbearbeitung und Interpretation der Ergebnisse korrigiert werden.

Darüber hinaus bieten die Magnetfeldmessungen weitere Informationen, die im Zuge der Faktenerhebung genutzt werden können. Mit dem APS544-Sensor werden die drei

Faktene	erhebuna Sch	ikalischen					
9A	55110000	SON	HF	BW	0005	00	GWBH Verantwortlich handelin
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN	ASSE
Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.	

Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1

Richtungskomponenten des Magnetfeldes separat gemessen. Analysen der Richtungskomponenten, zum Beispiel die X-Komponente (in Bohrlochrichtung) des Magnetfeldes oder die Vektorsumme der Y- und Z-Komponente (Komponente senkrecht zur Bohrlochrichtung, Horizontalkomponente, Abbildung 40 und 41) können in Verbindung mit einer magnetischen Modellrechnung weitere Informationen zu magnetischen Anomalien im Bohrlochverlauf liefern.

Abbildung 40: X-Komponente des Magnetfeldes

Abbildung 41: Vektorsumme der Magnetfeldkomponenten senkrecht zur Bohrlochrichtung

3.7 Messergebnisse der elektromagnetischen Messungen (Vallon-Sonde)

Es wurden 11 Messungen der elektromagnetischen Induktion mit der Vallon-Sonde (VMXB2) durchgeführt, um Hinweise auf eine mögliche Annäherung des Bohrvortriebs an einen metallischen (magnetischen) Körper, wie zum Beispiel einem Einlagerungsgebinde, zu erhalten. Angepasst auf die Entfernungen, innerhalb derer metallische Gegenstände sicher geortet werden können, wurden die Messungen in Abständen von 0,20 m durchgeführt (Tabelle 5).

NNAA NNNNNNNN NNAAANN AA AA NNNN NN ASSE	Projekt PS	PSP-Element	Projekt	Thema	PSP-Element Thema	Aufgabe UA	Lfd Nr.	Rev.
	NNAA NNN	JNNNNNNNN	NNAA	NNAAANN	NNNNNNNNN NNAAANN	AA AA	NNNN	NN
9A SSTT0000 SON HF BW 0005 00 GM8HVerantworld	9A 55	55110000	9A	SON	55110000 SON	HF BW	0005	00

Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischen Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1

Blatt: 41

Tabelle 5: Übersich	nt der elektromagnetischen M	lessungen VMXB2

Datum	Messbereich von (m) bis (m)	Bohrteufe [m]	Messwert bei Bohrteufe [µV]
14.11.2014	24,70-28,70	28,70	0
18.11.2014	24,90 - 28,90	28,90	0
20 11 2014	25,10 – 29,10	29,10	0
20.11.2014	25,30 – 29,30	29,30	0
21.11.2014	25,50 – 29,50	29,50	0
24.11.2014	25,70 - 29,70	29,70	0
	25,90 – 29,90	29,90	0
25.11.2014	26,10 - 30,10	30,10	0
	26,30 - 30,30	30,30	0
26.11.2014	26,50 - 30,50	30,50	0
	26,70 - 30,70	30,70	0

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.	
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN	ASSE
9A	55110000	SON	HF	BW	0005	00	GWBH Verantwortlich handeln

Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischen Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1

Blatt: 42

Nachfolgend sind die Ergebnisse der Einzelmessungen dargestellt (Abbildung 42 bis 52). Sie zeigen Kompensationsspannungen an, die Änderungen der elektrischen Leitfähigkeit im direkten Umfeld der Sonde beschreiben.

Abbildung 42: Messung mit der Vallon-Sonde vom 14.11.2014 im Teufenbereich von 24,70 m bis 28,70 m

Abbildung 43: Messung mit der Vallon-Sonde vom 18.11.2014 im Teufenbereich von 24,90 m bis 28,90 m

Abbildung 44: Messung mit der Vallon-Sonde vom 20.11.2014 im Teufenbereich von 25,10 m bis 29,10 m

Abbildung 45: Messung mit der Vallon-Sonde vom 20.11.2014 im Teufenbereich von 25,30 m bis 29,30 m

Abbildung 46: Messung mit der Vallon-Sonde vom 21.11.2014 im Teufenbereich von 25,50 m bis 29,50 m

Abbildung 47: Messung mit der Vallon-Sonde vom 24.11.2014 im Teufenbereich von 25,70 m bis 29,70 m

Abbildung 48: Messung mit der Vallon-Sonde vom 25.11.2014 im Teufenbereich von 25,90 m bis 29,90 m

Abbildung 49: Messung mit der Vallon-Sonde vom 25.11.2014 im Teufenbereich von 26,10 m bis 30,10 m

Abbildung 50: Messung mit der Vallon-Sonde vom 25.11.2014 im Teufenbereich von 26,30 m bis 30,30 m

Abbildung 51: Messung mit der Vallon-Sonde vom 26.11.2014 im Teufenbereich von 26,50 m bis 30,50 m

Abbildung 52: Messung mit der Vallon-Sonde vom 26.11.2014 im Teufenbereich von 26,70 m bis 30,70 m

Sämtliche gemessene Werte der Kompensationsspannungen (Abbildung 42 bis 52) liefern keine Hinweise auf das Vorhandensein von metallischen Objekten im Nahbereich (0,20 m – 0,50 m Entfernung) der Erkundungsbohrung B 7/750-B1.

3.8 Messergebnisse Bohrlochverlaufsmessung

05.11.2014 Im Zeitraum vom bis zum 14.01.2015 wurden insgesamt vier Bohrlochverlaufsmessungen in unterschiedlichen Bohrtiefen durchgeführt (Tabelle 6). So wurde der Bohrlochverlauf kontinuierlich mit dem Bohrvortrieb überwacht, um im Bedarfsfall den Verlauf der Bohrung gezielt korrigieren zu können. Die Anfangskoordinaten und die Startrichtung wurden von der Asse-GmbH zur Verfügung gestellt und dienten den nachfolgenden Verlaufsmessungen als Ausgangs- bzw. Sollwerte. Alle Messungen, zu denen Teufenangaben erfolgten, starteten bei 0,00 m (= Ansatzpunkt, siehe Kapitel 2) und endeten jeweils einen Meter vor dem Bohrlochtiefsten. Der Messpunktabstand von 1,50 m wurde über die gesamte Bohrlochlänge eingehalten. Die Koordinate am Bohrlochende bei 58,00 m wurde vom letzten aufgezeichneten Messwert bei 57.00 m mathematisch extrapoliert. Grundlage dieser Berechnung ist die Annahme, dass sich der Bohrlochverlauf auf dem letzten 1,00 m nicht mehr verändert hat.

Datum	Messbereich von (m)	Messbereich bis (m)		
05.11.2014	0,00	7,50		
13.11.2014	0,00	24,00		
11.12.2014	0,00	42,00		
14.01.2015	0,00	58,00		

Tabelle 6: Übersicht der Bohrlochverlaufsmessungen

Die Auswertung der Messwerte erfolgte unmittelbar nach jeder Bohrlochmessung und ergab, dass die Bohrlochachse über die gesamte Bohrstrecke gradlinig, ohne relevante Richtungsvariationen verläuft. In der Endbohrtiefe von 58,00 m beträgt die Abweichung der tatsächlichen Koordinaten

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.	
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN	ASSE I
9A	55110000	SON	HF	BW	0005	00	GVBHVerantwortlich handeln

Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischenBlatt: 48Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1Blatt: 48

zu den geplanten Koordinaten bezogen auf die gesamte Bohrlochlänge 0,02%. Das Bohrlochende befindet sich 0,06 m westlich, 0,11 m südlich und 0,09 m unterhalb des geplanten Bohrlochverlaufs. In der nachfolgenden Tabelle 7 sind die Ergebnisse der Bohrlochverlaufsmessung zusammengefasst.

Tabelle 7:	Messeraebnisse	e der Bohrlocl	hverlaufsmessung
rabelle r.	meddergebriidde		richausinessung

Bohrlochverlauf B 7/750-B1									
Bohrlochteufe [m]	Rechtswert	Hochwert	NN-Höhe [m]	Azimut [Grad]	Neigung [Grad]				
0,00	44 09 205,190	57 77 991,180	-541,292	220,448	6,5				
1,50	44 09 204,223	57 77 990,048	-541,127	220,524	6,5				
3,00	44 09 203,255	57 77 988,916	-540,965	220,559	6,4				
4,50	44 09 202,287	57 77 987,786	-540,800	220,592	6,6				
6,00	44 09 201,318	57 77 986,656	-540,630	220,676	6,5				
7,50	44 09 200,347	57 77 985,529	-540,457	220,801	6,5				
9,00	44 09 199,375	57 77 984,403	-540,284	220,793	6,5				
10,50	44 09 198,402	57 77 983,278	-540,112	220,918	6,5				
12,00	44 09 197,428	57 77 982,153	-539,941	220,872	6,5				
13,50	44 09 196,454	57 77 981,028	-539,769	220,866	6,5				
15,00	44 09 195,481	57 77 979,902	-539,597	220,880	6,5				
16,50	44 09 194,506	57 77 978,778	-539,425	220,970	6,5				
18,00	44 09 193,530	57 77 977,655	-539,255	220,981	6,5				
19,50	44 09 192,555	57 77 976,531	-539,084	220,950	6,5				
21,00	44 09 191,580	57 77 975,407	-538,912	220,948	6,5				
22,50	44 09 190,605	57 77 974,283	-538,739	220,930	6,5				
24,00	44 09 189,629	57 77 973,160	-538,566	220,963	6,5				
25,50	44 09 188,654	57 77 972,036	-538,394	221,011	6,5				
27,00	44 09 187,677	57 77 970,914	-538,222	221,068	6,5				
28,50	44 09 186,699	57 77 969,792	-538,050	221,045	6,5				
30,00	44 09 185,724	57 77 968,664	-537,879	220,855	6,5				
31,50	44 09 184,749	57 77 967,538	-537,710	220,890	6,5				
3,00	44 09 183,774	57 77 966,412	-537,542	220,862	6,6				

Projekt NNAA	PSP-Element NNNNNNNNN	Thema NNAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev. NN	ASSE					
9A	55110000 SON HF BW 0005 00								GMBH Verantwortlich handeln			
Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischen Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1									Blatt: 49			
Bohr	lochteufe	Rechtsw	vert	Но	ochwert		NN-Höhe	Azimut	Neigung			
	[m]						[m]	[Grad]	[Grad]			
3	34,50	44 09 182	,798	57 7	7 965,2	86	-537,377	220,972	6,5			
3	36,00	44 09 181	,821	57 7	7 964,1	60	-537,213	220,974	6,5			
3	37,50	44 09 180	,864	57 7	7 963,0	18	-537,051	220,220	6,2			
3	39,00	44 09 179	,900	57 7	7 961,8	82	220,243	6,2				
4	40,50 44 09 178,937				7 960,7	6,2						
2	12,00	44 09 177	,974	57 7	7 959,6	06	-536,562	220,211	6,2			
2	13,50	44 09 177	,012	57 7	7 958,4	68	-536,400	220,197	6,2			
2	15,00	44 09 176	,050	57 7	7 957,3	30	-536,238	220,107	6,2			
2	46,50	44 09 175	,088	57 7	7 956,1	91	-536,075	220,043	6,3			
2	18,00	44 09 174	,129	57 7	7 955,0	50	-535,912	220,002	6,2			
4	18,00	44 09 174	,129	57 7	7 955,0	50	-535,912	220,002	6,2			
2	19,50	44 09 173	,170	57 7	7 953,9	09	-535,750	219,935	6,2			
5	51,00	44 09 172	,213	57 7	7 952,7	66	-535,587	219,949	6,3			
5	52,50	44 09 171	,256	57 7	7 951,6	24	-535,423	219,924	6,3			
5	54,00	44 09 170	,299	57 77 950,481			-535,259	219,935	6,3			
5	55,50	44 09 169	,343	57 7	7 949,3	38	-535,095	219,935	6,3			
5	57,00	44 09 168	,386	57 7	7 948,1	96	-534,929	219,979	6,4			
5	58,00	44 09 167	,748	57 7	7 947,4	34	-534,818	219,927	6,4			
			Soll	werte	bei End	teufe	der B 7/750-B	1				
5	58,00	44 09 167	,810	57 7	7 947,3	20	-534,730					
			Differe	enz der	Sollwe	erte zu	u den Istwerten	[m]				
5	58,00 -0,062 0,114						0,088					

KQM_Textblatt_REV09_Stand-2016-02-01

Projekt NNAA	PSP-Element NNNNNNNNN	Thema NNAAANN	Aufgabe AA	UA AA	Lfd Nr. NNNN	Rev. NN		ASSE
9A	55110000	SON	HF	BW	0005	00		GMBH Verantwortlich handeln
Faktene Bohrloc	Blatt: 50							

4 Zusammenfassung und Empfehlungen

Mit der Durchführung der geplanten geophysikalischen Messkampagnen in der Bohrung B 7/750-B1 konnten die vordefinierten Erkundungsziele erreicht werden.

Die Inspektion des technischen Zustands der Erkundungsbohrung B 7/750-B1 sowie die Erkundung der geologischen Beschaffenheit des Gebirges entlang der Bohrlochwand erfolgten mit den optischen Bohrlochmessungen. Hiermit konnte ein Kluftsystem im Teufenbereich von 34,42 m bis 39,02 m nachgewiesen werden. Die Anhaftung von Salzgrus an der Bohrlochwand erschwerte in einigen Teufenbereichen die Auswertung der optischen Bohrlocherkundungen. Es wäre daher vorteilhaft, die Bohrlochwand vor jeder optischer Bohrlocherkundung mit Druckluft zu reinigen. Falls bereits beim Bohrvortrieb Hinweise auf Gebirgsauflockerungen erkennbar werden, sollten diese Bereiche umgehend durch optische Bohrlocherkundungen, auch in kürzeren Teufenbeschnitten, untersucht werden.

Zur Erkennung der möglichen Annäherung des Bohrvortriebs an ein Einlagerungsgebinde, beziehungsweise an die Einlagerungskammer, wurden Messungen der Magnetik und der Elektromagnetik begleitend zu den Bohrarbeiten durchgeführt. Mit Hilfe der Magnetfeldmessungen entlang des Bohrlochverlaufs konnte eine magnetische Anomalie dokumentiert werden, die typisch für die Annäherung und Überquerung eines magnetisch sehr aktiven Objektes ist. Insbesondere metallische "Körper" innerhalb der ELK 7/750 spiegeln sich in dem gemessenen Verlauf der Magnetfeldkurven als Anomalie wieder. Eine horizontale Annäherung an ein magnetisch aktives Objekt zeigt der Gradient des magnetischen Totalfeldes in Bohrlochrichtung sehr deutlich an. Der für eine Annäherung an ein magnetisch wirksames Einlagerungsgebinde kritische Wert für den Gradienten des magnetischen Totalfeldes in Bohrlochrichtung von 1000 nT/m, der durch Messungen während der betrieblichen Erprobungsphase auf der 800-m-Sohle ermittelt wurde, konnte durch Modellrechnungen bestätigt werden. Um bohrbegleitend eine mögliche Annäherung an ein magnetischen Sensoren (Referenzsensor und Gradientensensor) möglichst nah an der Spitze der Sonde verbaut werden.

Zur Einschätzung des vertikalen Abstandes des Bohrlochs zu magnetisch aktiven Einlagerungen trägt weniger der Gradient in Bohrlochrichtung, sondern mehr das magnetische Totalfeld beziehungsweise die Richtungskomponenten des Magnetfeldes bei.

Zusätzlich zu den Magnetfeldmessungen in der Erkundungsbohrung B 7/750-B1 wurden magnetische "Basismessungen" durchgeführt, um zeitliche Schwankungen des Erdmagnetfeldes zu erfassen und mögliche Fehlinterpretationen der Messwerte innerhalb der Bohrung zu minimieren. Derartige Basismessungen sollten auch zukünftig die Messungen innerhalb der Bohrungen begleiten.

Die eingesetzte magnetische Messsonde liefert zusätzlich zu den während der betrieblichen Erprobungsphase interpretierten Messwerten "Totalfeld" und "Gradient" auch die drei Richtungskomponenten des Magnetfeldes, die in Verbindung mit Modellrechnungen zusätzliche Informationen zum Aufbau der Einlagerungskammer liefern können. Eine Erprobung dieses Ansatzes wird für das weitere Vorgehen, nach der Durchführung von Modellrechnungen und der Bewertung der Ergebnisse, empfohlen.

Im Nahbereich (0,20 m – 0,50 m Umgebung) der Erkundungsbohrung B 7/750-B1 wurden beim Einsatz der Vallon-Sonde (Elektromagnetik) keine elektrisch leitfähige Materialien (zum Beispiel metallische Einlagerungsgebinde) nachgewiesen. Mit Hilfe der Kombination der Messverfahren Magnetik und Elektromagnetik konnte eine unzulässige Annäherung an Gebinde im gesamten Bohrlochverlauf ausgeschlossen werden.

Projekt	PSP-Element	Thema	Aufgabe	UA	Lfd Nr.	Rev.	
NNAA	NNNNNNNNN	NNAAANN	AA	AA	NNNN	NN	ASSEL
9A	55110000	SON	HF	BW	0005	00	GWBH Verantwortlich handeln

Faktenerhebung Schritt 1 - Erkundungsbericht zu geophysikalischen	Plott: 51
Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1	Diall. 51

Der Verlauf der Erkundungsbohrung B 7/750-B1 wurde regelmäßig während des Bohrvortriebs mit Hilfe von Bohrlochverlaufsmessungen untersucht. Die Bohrlochachse verläuft über den gesamten Bohrlochverlauf geradlinig. Die Abweichung bezogen auf die gesamte Bohrlochlänge beträgt 0,02%. Die Bohrung wurde bei einer Endteufe von 58,00 m planmäßig eingestellt.

5 Mitgeltende Dokumente

- /1/ Ergebnisbericht zu geophysikalischen Bohrlochmessungen in der Erkundungsbohrung B 7/750-A1 auf der 750-m-Sohle in Richtung Einlagerungskammer (ELK) 7/750
 BfS-KZL: 9A/23400000/GHB/RZ/0023/xx
 Asse-KZL: 9A/55110000/SON/HF/BW/0001/xx
- /2/ Ergebnisbericht zu geophysikalischen Bohrlochmessungen in der Erkundungsbohrung B 7/750-A3 auf der 750-m-Sohle in Richtung Einlagerungskammer (ELK) 7/750 Asse-KZL: 9A/55110000/SON/HF/BW/0002/xx
- /3/ Ergebnisbericht zu geophysikalischen Bohrlochmessungen in der Erkundungsbohrung B 7/750-B1.2 auf der 750-m-Sohle zwischen Einlagerungskammer 7/750 und Abbau 8/750 Asse-KZL: 9A/55110000/SON/HF/BW/0004/xx

Projekt	PSP - Ele	ement	Thema	Aufgabe	UA	Lfd. I	Nr.∣ R€	ev.		_	
9A	551100	000	GEO	HF	TC	004	2 00	0	ASSE		
	Asse-GmbH Gesellschaft für Betriebsführung und Schließung der Schachtanlage Asse II Am Walde 2, 38319 Remlingen								GMBH Verantwortlich hande	In.	
DMT GmbH & Co. KG Geschäftssegment Exploration & Hydrogeologie Am Technologiepark 1, 45307 Essen						Geophysikalische Erkundung der Erkundungsbohrung B 7/750-B1 - zu geophysikalischen Bohrlochmessungen					
Erläuteru	Erläuterung der Revision Asse - GmbH bzw. Fremdfirma			Datum	Nar	me	Untersch	nrift	optischer Bohrlochscan		
			Bearbeiter	03.03.2017					mit Auswertung des Kluftsystems		
			Zeichner	03.03.2017					und Totalmagnetfeldmessung		
			Prüfer	07.03.2017							
		Asse - GmbH	Freigabe						Blatt		
			Dateiname	Bericht B1_op	ot.ScAn	I1_BI-2_	_Rev.00.p	df	Anlage 1	-	
			Blattgröße						von 2	2	
			Maßstab	1:10					Basisunterlage:		
									Bohrlochansicht in		

Bohrrichtung 0° Bohrlochfirste 90° hrlochwa rechts 270° \odot

180° Bohrloche

Teufe (m)	Struktur	ren (wahres	s Einfaller	n) 	Optischer Bohrloch	nscan 14.0	1.2015	Ор	tischer Bohrl	ochscan (roh)		TMAG 0,00 - 5	58,00 m
	0		9	0	Strukturen (schein	nbares Einf	allen)	0° 9	0° 180	³ 270° 0°		35000 nT	55000
Maßstab 1:10)				0° 90° 180)° 27	0° 0°						
00.0					South States					The set			
					20-1-2	1.1	1. A. S. S.	and a	1 4 4 M				-
30.2				-				AND ADDRESS					_
				_									
20.4							and the						
30.4													
				-									
30.6				-		1				lu, a			_
				_			1. 200						
30.8													
30.8													
				-					1				
31.0				-		201							
				_			1						
24.0													
31.2						and a state							
					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- Alika		A STATE		THE REAL PR			
31.4	$\left \cdot \right + \left \cdot \right $			-			A HA	and and a		100 100 100 100 100 100 100 100 100 100			
				_									
21.6							4			1 - 35			
01.0					and the second s		No. Contract						
				-		1							+
31.8	$\left \cdot \right + \left \cdot \right $			-									+
				_		1 100	A MAR			uper Mi			_
32 0							P. C. SAL	a find	1. 3.				
JE.U						1-5	All starting			Y State			
						k	1.28						
32.2				-			4		A A A A A A A A A A A A A A A A A A A				_
				_			and the second						
32.4				_						and the second			
						in the second				the second states			
32.6				-					- CAL	And the second s			
				_									
32.8				_			1.18 (H) T	- Sandar					
									- Ale				
						1 Andrew	1						
33.0							CON SM			1 An			
				-			1	and the second					_
33.2				_		P Contraint	a Addition of the	- Carecon-		Contraction of the			
					E the state		****			and the state			
33.4				1	2007-04			- State					
	$\left + \right $			-					1 20 OF				+
33.6	$\left - \right + \left - \right $			-			T T T						
				_	the second		1 6 3L	terre .					
22.0					Lange Color	Eng.	and the second second	-tere		Pro-			
ురి.ర						1.50							
				1	1000	1.100	1	Re- State State					
34.0	$\left + \right $			-									+
				-	The second second	All and a second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		-				_
34.2					1004654E	1	pres 1955			NE A			
				_	- And	in the second	1	tre i	THE REAL	and the second			
				220/21		/	2 7		S. T. Martin	- 200			
34.4				1		C that			* 6 -				-
	$\left \cdot \right + \left \cdot \right $			251/44	100 No. 100					The state			
34.6		+++		∠J1/41			1 Parts			12 12			
							A DESCRIPTION OF A DESC			Mary Strength			
							Contraction of the second						
34.8				1		1.2	1			11 11 11 11			
	$\left + \right $		+	-		No.			100 100 100 100 100 100 100 100 100 100	No. The	6 70 - 50 00		
35.0	$\left \cdot \right + \left \cdot \right $			-		C.	10 100		- Cal	de la ser	o,/o m - 58,00 m Steinsalz		_
				_		STATE.							
05.0				198/24		Phase -	10th			The state			
35.2						1	A Sur						
			+	-	A		1 10 3	TESTING ST	The state	1 1 1 10 3			
35.4	$\left \cdot \right + \left \cdot \right $			-				Sector Sec.	× + 3				-
				_									
35.6					A Dia A			3.00					

 т. т. т	
e ^{-77 980}	
e 77 990 e 77 9	
* 77 980 * 77 980 * 77 980 * 77 980 * 77 980	
 пл der Firste тт 980 тт 980 тт 980 тт 980 	\times
57 77 980 in der Firste T7 970 ELK 6 F17 970 ** 77 960 ** 77 960	
* 77 970 Firste 5' 77 960 *' 77 950 *' 77 950	
Firste ELK 6 877 960 877 960 877 950	
57 77 950	
57 77 960 57 77 950 57 77 950	
57 77 960 57 77 950	$\left \right\rangle$
57 77 950	
57 77 950	
57 77 950	
57 77 940	
⁵⁷ 77 930	

Erkundungsbohrung B 7/750-A1							
Bohrlochansatzpnkt (Flansch Standrohr) Rechtswert: 44 09 205,543 m Hochwert: 57 77 991,035 m Höhe NN: -541,920 m							
Messpunkt bei 35,00 m							
Rechtswert:44 09 189,14 mHochwert:57 77 960,20 mHöhe NN:-537,73 m							
Richtung am Bohrlochansatzpunkt							
Azimut in gon: 231,343							
Neigung in gon: 6,8							
Azimut in grad: 208,209							
Bohrlochlänge Länge: 35,00 m							
Standrohr Länge: 3,42 m Flansch - Ortsbrust: 0,20 m							

Erkundungsbohr	ung B 7/750-A3
Bohrlochansatzpnkt (F Rechtswert: 44 09 20 Hochwert: 57 77 99 Höhe NN: -54	⁻ lansch Standrohr))4,647 m 91,403 m 43,069 m
Messpunkt bei 23,20 rRechtswert:44 09 2Hochwert:57 77 2Höhe NN:-5	n 189,72 m 973,71 m 544,55 m
Richtung am Bohrloch Azimut (in gon): Neigung (in gon): Azimut (in grad): Neigung (in grad):	ansatzpunkt 245,112 -4,0 220,600 -3,6
Bohrlochlänge Länge:	23,20 m
Standrohr Länge: Flansch - Ortsbrust:	3,25 m 0,25 m

Erkundungsbohrung B 7/750-B1.2
Bohrlochansatzpnkt (Flansch Standrohr) Rechtswert: 44 09 206,222 m Hochwert: 57 77 990,726 m Höhe NN: -540,927 m
Endteufe bei 58,00 m
Rechtswert: 44 09 168,92 m Hochwert: 57 77 948,05 m Höhe NN: -528,67 m
Richtung am Bohrlochansatzpunkt
Azimut (in gon): 244,391 Neigung (in gon): 13,6 Azimut (in grad): 219,952
Neigung (in grad): 12,2
Bohrlochlänge Länge: 58,00 m
Standrohr
Länge: 3,26 m Flansch - Ortsbrust: 0,26 m

Rechtswert: 44 09 167,75 m Hochwert: 57 77 947,43 m Höhe NN: -534,82 m Richtung am Bohrlochansatzpunkt Azimut (in gon): 244,943 Neigung (in gon): 7,2

Azimut (in grad): 220,449 Neigung (in grad): 6,5 Bohrlochlänge 58,00 m Standrohr

Länge:

Länge: 3,26 m Flansch - Ortsbrust: 0,26 m

gepl. Bohrlochansatzpnkt (Flansch Standrohr) Rechtswert: 44 09 207,07 m Hochwert: 57 77 989,93 m Höhe NN: -540,86 m gepl. Endteufe

Rechtswert: 44 09 186,58 m Hochwert: 57 77 943,91 m Höhe NN: -532,88 m gepl. Richtung am Bohrlochansatzpunkt

Azimut (in gon): 226,67 Neigung (in gon): 10,0 Azimut (in grad): 204,00 Neigung (in grad): 9,0

gepl. Bohrlochlänge 51,00 m Länge: Standrohr

Länge: Flansch - Ortsbrust:

gepl. Erkundungsbohrung B 7/750-B2 gepl. Erkundungsbohrung B 7/750-B3 gepl. Erkundungsbohrung B 7/750-B4 gepl. Bohrlochansatzpnkt (Flansch Standrohr) Rechtswert: 44 09 206,00 m Hochwert: 57 77 990,47 m Höhe NN: -542,06 m

> gepl. Endteufe Rechtswert: 44 09 151,14 m Hochwert: 57 77 947,61 m Höhe NN: -534,74 m

gepl. Richtung am Bohrlochansatzpunkt Azimut (in gon): 257,78 Neigung (in gon): 6,7 Azimut (in grad): 232,00 Neigung (in grad): 6,0 gepl. Bohrlochlänge

 \searrow

Standrohr Länge:

70,00 m Länge: Flansch - Ortsbrust:

Bohrlochansatzpnkt (Flansch Standrohr) Rechtswert: 44 09 208,01 m Hochwert: 57 77 989,89 m Höhe NN: -541,81 m

gepl. Endteufe Rechtswert: 44 09 203,56 m Hochwert: 57 77 943,58 m Höhe NN: -535,11 m Richtung am Bohrlochansatzpunkt

Azimut (in gon): 206,09 Neigung (in gon): 9,1 Azimut (in grad): 185,49 Neigung (in grad): 8,2

gepl. Bohrlochlänge , 47,00 m Länge:

Standrohr Länge: Flansch - Ortsbrust:

			Schnitt A - A'
gepl. Erkundungsbohrung B 7/750-B5	gepl. Erkundungsbohrung B 7/750-BA5 abgelenkt aus der Erkundungsbohrung B 7/750-B5		1:100 Schnittspur 131 gon
Bohrlochansatzpnkt (Flansch Standrohr) Rechtswert: 44 09 204,13 m Hochwert: 57 77 992,28 m Höhe NN: -542,08 m	gepl. Bohrlochansatzpnkt (Flansch Standrohr) Rechtswert: 44 09 204,13 m Hochwert: 57 77 992,28 m Höhe NN: -542,08 m	SO Teufe	Darstellung des Verschlussbauwerk nach Angabe der Markscheiderei Asse
Rechtswert: 44 09 128,66 m Hochwert: 57 77 950,10 m Höhe NN: -532,38 m Richtung am Bohrlochansatzpunkt Azimut (in gon): 267,55	gopi: Endoard Rechtswert: Hochwert: Höhe NN: gepl. Richtung am Bohrlochansatzpunkt Azimut (in gon): 267,55 Naizung (in gon): 7.1	-535,0 7	Bunnhodag
Azimut (in grad): 240,79 Neigung (in grad): 6,4 gepl. Bohrlochlänge Länge: 87,00 m	Azimut (in grad): 240,79 Neigung (in grad): 6,4 gepl. Bohrlochlänge Länge:	-540,0	Dirupper Handler H
Standrohr Länge: Flansch - Ortsbrust:	Standrohr Länge: Flansch - Ortsbrust:	-545,0	Sohle Verschlussbauwerk -544,4 mNN

Legende:

geplante Bohrungen (Bohrungsverlauf) erstellte Bohrungen (Bohrlochverlauf) Standrohr mit Flansch

vermuteter Lageplatz der VBA in der ELK 7/750

Verschlussbauwerk vor der ELK 7/750

Teilversatz

Sturzversatz Blasversatz

>------

Einlagerungskammer mit Versatz
Einlagerungskammer verschlossen
vorgesetzte Schalwand (Teil des Verschlussbauwerk zur ELK 7/750)
Vtong

Einlagerungskammer ohne Versatz

Ytong (Teil des Verschlussbauwerk zur ELK 7/750)
Asphaltplatten (Teil des Verschlussbazwerk zur ELK 7/750)
Bitumfuge

(Teil des Verschlussbauwerk zur ELK 7/750)

Schnitt durch die ELK 7/750 und dem Abbau 8/725 mit angrenzenden Grubengebäuden von der Markscheiderei Asse zur Verfügung gestellt Höhen- und Längenangaben bezüglich der Einlagerungskammern sind nur Näherungswerte

PT030190

								P1039183	1	
ojekt	PSP-Ele	ment	Thema	Aufgabe	UA	Lfd. Nr.	Rev.			
9A 55110000 GE		GEO	HF	TC	0043	00	ACCE			
Asse-GmbH Gesellschaft für Betriebsführung und Schließung der Schachtanlage Asse II Am Walde 2, 38319 Remlingen						GMBH Verantwortlich	handeln.			
DMT GmbH & Co. KG Geschäftssegment Exploration & Hydrogeologie Am Technologieperk 1 45307 Essen						Geophysikalische Erkundung der Erkundungsbohrung B 7/750-B1 - zu geophysikalischen Bohrlochmessunge	'n			
läuterung der Revision Asse-GmbH bzw. Fremdfirma Datum Name Unterschrift Grundrissaussch		Grundrissausschnit	t							
Y-			Bearbeiter	03.03.2017				der 750-m-Sohle		
			Zeichner	03.03.2017				Erkundungsbohrung B 7/75	0-B1	
			Prüfer	07.03.2017				, ,		
		Asse-GmbH	Freigabe	24.04.17					Blatt	
			Dateiname	Bericht B1_Grundriss_Anl-2_Rev.00.dwg			00.dwg	Anlage 2	1	
			Blattgröße	A0					von: 1	
		Maßstab	1:200				Basisunterlage :			

SW Teufe (in Meter NN) -515 -520 -525 Endteufe B 7/750-B1.2 bei 58,00 m = -528,67 m NN -530 Endteufe der B 7/750-B1 bei 58,00 m = -543,73 m NN -535 Magnetikn im Fernber 0,00m - 58, Kamerabefa 0,00m - 58,(-540 -545 -550 -555 $\overline{}$ B 7/750-Teufenanga söhliger Abstand (in Meter) 50,00 Boh (in 58,0 Bohrbetrieb mit der Dreiflügelkrone 20

47,

Legende:

-555

	Sturzversatz		E
	Blasversatz		Ę
\bowtie	Einlagerungskammer verschlossen	/	E
	vorgesetzte Schalwand		r c t
	Ytong		E
	vorderer Teil des Verschlussbauwerks vor der ELK 7		r

Schnitt durch die ELK 7/750 und dem Abbau 8/725 mit angrenzenden Grubengebäuden von der Markscheiderei Asse zur Verfügung gestellt Höhen- und Längenangaben bezüglich der Einlagerungskammern sind nur Näherungswerte

PT039184

ASSE					
GMBH Verantwortlich	handelr				
physikalische Erkundung der Indungsbohrung B 7/750-B1 - eophysikalischen Bohrlochmessungen					
Schnitt D - D'					
Erkundungsbohrung B 7/750-B1					
Bohrungsverlauf					
	Blatt				
age 3	von:				
	1				
sunterlage :					

Erkundung sedimentärer Strukturen an der Bohrlochwand mittels optischen Bohrlochscan . dargestellt im scheinbaren Einfallen bezogen auf die Bohrlochachse

Standrohr mit Flansch Erkundung gebirgsmechanischer Beanspruchungen an der Bohrlochwand mittels optischen Bohrlochscan dargestellt im scheinbaren Einfallen bezogen auf die Bohrlochachse

Bohrlochverlauf B 7/750-B1.2 Bohrlochverlauf B 7/750-B1