DECKBLATT							
	Projekt	PSP-Element	Obj. Kenn.	Aufgabe	ŲA	Ltd. Nr.	R
	NAAN		IN NNNNN	XAAXX	A A		N
EU 032.1	9K	3196	-	НА	R8	001	
Titel der Unterlage:					Se	ite:	
Probenuntersuchung Ermittlung von Gest Bohrung K 101	Tiefbohrung teinsparamete	K 101 rn an Bohrker	nen der		I Sti	• and:	
Ersteiler:					Te	xtnummer:	00
TU CI 7					1		
Stempelfeld:							
			•				
		·					
						•	
				4.0			
PSP-Element TP9K/21223		zu Plar	n-Kapitel: 3.1	1.7			
		PL		PL PL			
	,						

ŕ

۲.

	PTB
--	-----

											I	
					Projekt		PSP-Element	Obj. Kenn.	Aufgabe	UA	Lfd. Nr.	Rev.
		<u> </u>			NAAN	NN	<u>N N N N N N N N</u>	<u> </u>	XAAXX	A A	NNNN	NN
		EU 032.	1		9K	319	6	_	НА	RB	0001	
							-			0		
	litel	aer Unterlage:								Seite	:	
	Pr	robenunters	suchung	Tiefboh	rung K í	101				II.	•	
	Er	mittlung	von Ges	teinspara	amtern a	an B	ohrkernen d	er				
	Вс	bhrung K 10	JI							Stand	3:	
										.ไลกม	ar 1986	
										Juna	<u></u>	
	Rev	Revisionsst.	verant.	Gegenzeich	in. rev.	Kat.		Friäuterun	na der Revisi	ion		
	1101.	Datum	Stelle	Name	Seite	•)		2.14010101				
ų												
											-	
												1
		1										
						-						
\mathcal{K}												
`												
				ł								
							ŧ					
	*) Ka	ategorie R - ree	daktionelle	Korrektur								
	Ka	ntegorie V - ve ntegorie S - su	rdeutliche bstantielle	nde Verbesse Änderung	erung							
	Mind	lestens bei der	Kategorie	S müssen E	rläuterunge	n ang	jegeben werden.					
		<u> </u>	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					

Institut für Geologie und Paläontologie – Abteilung für Erdölgeologie – Technische Universität Clausthal

Abschlußbericht zu TA 2219.26 Probenuntersuchung Tiefbohrung K 101

(Ermittlung von Gesteinsparametern an Bohrkernen der Bohrung K 101)

Clausthal-Zellerfeld, im Jan. 1986

Ċ

(

Sachbearbeiter

Dieser Bericht wurde im Auftrag der PHYSIKALISCH TECHNISCHEN BUNDESANSTALT (PTB) erstellt. Die PTB behält sich alle Rechte vor. Insbesonders darf der Bericht nur mit Zustimmung der PTB zitiert, ganz oder teilweise vervielfältigt bzw. Dritten zugänglich gemacht werden. Er gibt die Meinung und Auffassung des Auftragnehmers wieder und muß nicht in jedem Fall mit der Meinung der PTB übereinstimmen.

Inhaltsverzeichnis

6.

()

Zusammenfassung Seite	1
Einleitung Seite	2
Probenauswahl und Probenbezeichnung Seite	3
Probenpräparation Seite	4
Bestimmung der Effektivporosität Seite	7
Gesamtporosität Seite	10
Permeabilitätsmessungen Seite	12
Bestimmung von CO ₃ ²⁻ - und C _{org} -Gehalt Seite	15
Rasterelektronenmikroskopie Seite	17
Literaturverzeichnis Seite	20
Probenbeschreibungen u. Versuchsergebnisse Seite	21
CO ₃ ²⁻ - und C _{org} -Analysen, Abbildungsverzeichnis . Seite	174
Tabelle zur Beschreibung des Porenraumes Anh	ang

ъ

э

.

179 Seiten
98 Abbildungen im Text
1 Tabelle (Anhang)

Zusammenfassung

C ·

Ermittlung von Gesteinsparametern an Bohrkernen der Bohrung K 101

Bohrung K 101, Karbonatgehalt, C -Gehalt, Luftpermeabilität, Porosität, Porenraumbeschreibung

An 180 Proben aus der Bohrung K 101 wurde der Karbonat- und C_{org}-Gehalt gemessen. An einem Teil dieser Proben wurde zusätzlich die Luftpermeabilität sowie die Effektivporosität bestimmt. Der Probenzustand bei der Messung wurde mit rasterelektronenmikroskopischen Untersuchungen dokumentiert und - soweit möglich – eine Beschreibung des Porenraumes geliefert. Der Bericht enthält neben den Meßergebnissen die Beschreibung der Versuchsbedingungen.

Einleitung

Im Zuge der Untersuchungen über die Schachtanlage Konrad wurde im Dezember 1984 mit dem Abteufen der Bohrung Konrad 101 begonnen. Diese Bohrung sollte frische, möglichst wenig veränderte Proben aus dem Deckgebirge des Erzlagers und seinem Liegenden liefern.

Die Abteilung für Erdölgeologie übernahm von den geplanten Versuchen an den Bohrkernen die Messung von Permeabilität und Porosität sowie die Bestimmung des Karbonatgehaltes. In einer gemeinsamen Besprechung von Vertretern der PHYSIKALISCH-TECHNISCHEN BUNDESANSTALT (Herr

), der Bundesanstalt für Geowissenschaften und Rohstoffe (Herr) und der Abteilung für Erdölgeologie (Herr Herr) wurden folgende Richtlinien festgelegt:

- Die Messung des Karbonatgehaltes erfolgt mit dem Coulomat 701 der Fa. Ströhlein durch Bestimmung von Gesamt-Kohlenstoff und durch anschließende Bestimmung von organischem Kohlenstoff. Die Abt. für Erdölgeologie erkärte sich bereit, die Analysenwerte für organischen Kohlenstoff zusätzlich zu den geforderten Karbonatanalysen abzugeben.
- Die Messung der Permeabilität erfolgt mit Luft. Es werden KLINKENBERG-korrigierte Werte angegeben.
 Auf die Simulation gebirgsähnlicher Druckverhältnisse wird soweit wie möglich verzichtet, da noch nicht genügend Erfahrungswerte über Tonsteine zur Verfügung stehen.

Anstelle dieser Simulation überprüft die Abt. für Erdölgeologie den Zustand jeder Probe im Elektronenmikroskop, um Fehlinterpretationen durch trocknungsbedingt hohe Permeabilität auszuschließen.

 Die Bohrkerne werden so frisch wie möglich zur Untersuchung geliefert. Die Abt. für Erdölgeologie kommt daher in regelmäßigen Abständen zur Bohrstelle K 101 bzw. zum Kernlager der BGR und wählt hier in Absprache mit der BGR die Proben aus.

Probenauswahl und Probenbezeichnung

- Proben zur Karbonatanalyse

f.

Die Proben lieferte die Bundesanstalt für Geowissenschaften und Rohstoffe in gemahlener Form. Sie sind mit einer fortlaufenden Nummer sowie der Bohrteufe in Metern gekennzeichnet.

- Proben zur Permeabilitäts- und Porositätsmessung

Diese Proben wurden von Vertretern der BGR und der TU Clausthal während mehrerer Kernbefahrungen nach folgenden Gesichtspunkten ausgewählt:

- Erhaltungszustand: Es wurden nur solche Kernstücke ausgewählt, bei denen eine Präparation möglich erschien. Dieses Kriterium schränkte die zur Verfügung stehende Probenanzahl, insbesonders in den Tonsteinen, stark ein.
- Makroskopische Gesteinsansprache sowie Bohrlochlogs: Anhand der Bohrlochlogs wurden Bereiche ähnlicher Gesteine definiert, innerhalb derer die Entnahme einer oder mehrerer Proben erfolgte. Wurden aus einem Bereich mehrere Proben ausgewählt, so lag je eine Probe im Kernmeter mit dem oberen/ unteren Extremwert sowie eine Probe in einem mittleren Bereich.

Zusätzlich fand eine Auswahl nach makroskopisch erkennbaren Lithologieunterschieden statt, auch wenn sich diese Lithologien nur wenig oder gar nicht im Bohrlochlog erkennbar machten. Falls kleinräumige Lithologieunterschiede vorhanden waren, konnten von diesen wegen der beschränkten Probenzahl nur die wichtigsten berücksichtigt werden.

Probenpräparation

Die gebirgsfeucht entnommenen Kernabschnitte wurden sofort nach dem Eintreffen in Clausthal bearbeitet. Das Anfertigen von Prüfkörpern (30 mm Länge, 30 mm Durchmesser) erfolgte mit Wasserspülung, weil die trockene Präparation die Proben zu stark mechanisch beanspruchte und die Verlustrate daher zu groß war.

Die Anzahl der angefertigten Prüfkörper richtete sich nach den Bearbeitungsmöglichkeiten und nach dem zu erwartenden Probenzerfall: Insbesondere bei den Tonsteinen und Tonmergeln konnte aus den vorliegenden Kernabschnitten nur ein bis zwei unversehrte Prüfkörper angefertigt werden, weil die Innenkerne beim Bohren zerscherten. Die Ursache hierfür ist der geringe Spülungsdruck, durch den das Bohrklein nicht schnell genug weggeführt wird. Dieser Druck konnte nicht weiter erhöht werden, weil sonst der Außenkern, auf dem im Gegensatz zu Bohrungen im Gebirge kein vollständiger Gegendruck lastet, zerscherte.

Um die Verluste bei der Probentrocknung so gering wie möglich zu halten, verlief diese in mehreren Abschnitten: Zunächst wurden die Proben im Trockenschrank abgedeckt auf 55°C erwärmt, anschließend wurde die Luftfeuchtigkeit über einen Zeitraum von 14 Tagen langsam gesenkt. Erst nach 14 Tagen wurden die Proben ⁱm Feinvakuum bei 55°C 24 Stunden lang nachgetrocknet.

Die Empfindlichkeit und die geringe Permeabilität der Gesteine erlaubte es nicht, die Proben in einer Soxhlet-Apparatur von Salzresten zu befreien.

Aus der Mitte der Probenreste, die beim Absaugen der Prüfkörper anfielen, wurde ein Stück zur rasterelektronenmikroskopischen Untersuchung ausgewählt. Es erschien sinnvoll, dieses Stück ebenfalls nicht weiter zu reinigen, damit an ihm der Zustand des Prüfkörpers zuverlässig zu beobachten war. Ein Verlust an Aussagekraft mußte dabei in Kauf genommen werden.

Die restlichen Probenteile dienten zur Karbonat- und C_{org}-Analyse. Sie wurden in einer Kugelmühle aufgemahlen und homogenisiert.

- 4 -

Nach der Trocknung fand die Auswahl der Prüfkörper nach ihrem Erhaltszustand statt: Soweit möglich erfolgte die Untersuchung nur an makroskopisch ungestörten und repräsentativen Prüfkörpern. In einzelnen Fällen war es nicht umgehbar, auch zweifelhafte Prüfkörper (mit Andeutung von Rissen, aber noch fest zusammenhängend) zu untersuchen, weil sich kein ungestörter Prüfkörper aus der Probe gewinnen ließ. In solchen Fällen mußten die Versuchsbedingungen auf den Probenzustand abgestimmt werden, wie in den Einzelkapiteln näher erläutert.

Bei einigen Kernabschnitten zerfiel das Gestein während der Anfertigung der Prüfkörper bereits vollständig. In diesem Fall konnte keine Messung der Permeabilität stattfinden, soweit möglich wurden Ersatzproben genommen.

In einem Fall (Probe 96/686) war die Größe der Einzelporen so hoch, daß ein Prüfkörper nicht repräsentativ für das Gestein sein konnte. Von diesem Kernabschnitt mußten mehrere Prüfkörper untersucht werden. Abb. 1: Durch Trocknung erweiterte, makroskopisch sichtbare Risse am Kern 58/407

Abb. 2: Durch die übergroßen Poren ist ein Prüfkörper allein nicht repräsentativ für die Gesamtprobe (hier : Kern 96/686)

Bestimmung der Effektivporosität

Grundsätzlich ist die Bestimmung der Effektivporosität an der Abteilung für Erdölgeologie auf verschiedene Arten möglich. Für diese Messung wurde die Tauchmethode angewendet, weil sie bei niedrig permeablen Proben die größte Zuverlässigkeit gewährleistet:

Die Proben wurden trocken auf der Analysenwaage gewogen und anschließend ca. 6 Stunden evakuiert. Während des Evakuierens wurden die Proben durch Zugabe von Flüssigkeit getränkt und anschl. weitere 12 Stunden im Vakuum unter Flüssigkeit aufbewahrt. Als Tauchflüssigkeit mußte Tetrachlorkohlenstoff dienen, weil das ungiftigere und heute daher fast ausschließlich verwendete Isopropanol zu Probenzerstörungen führte (siehe Abbildung). Nach der Tränkung konnte durch eine Tauchwiegung in Tetrachlorkohlenstoff der Auftrieb der Probe sowie durch eine Naßwiegung die aufgenommene Flüssigkeitsmenge ermittelt werden.

Aus diesen Daten berechnet sich die Effektivporosität nach der Formel:

$$\emptyset = \frac{M_{na\beta} - M_{trock}}{M_{na\beta} - M_{get}} \cdot 100$$

mit

ŧ

 $\left(\right)$

$$V_{\text{Fest}} = \frac{M_{\text{tr}} - M_{\text{get}}}{\mathcal{C}_{\text{CCl}_4}} \text{ und } \mathcal{R}_{\text{Fest}} = \frac{M_{\text{tr}}}{V_{\text{Fest}}}$$

und die Bulkdichte $\mathcal{Q}_{\mathrm{Bulk}}$

$$V_{\text{Bulk}} = \frac{M_{\text{naB}} - M_{\text{get}}}{\mathcal{C}_{\text{CCl}_4}} \text{ und } \mathcal{C}_{\text{Bulk}} = \frac{M_{\text{tr}}}{V_{\text{Bulk}}}$$

mit \mathcal{A}_{CCL_A} = Dichte des Tetrachlorkohlenstoffs.

Unter Einhaltung einer ausreichenden Tränkungszeit sowie nach sorgfältiger Trocknung der Proben läßt sich die Porosität mit der Tauchmethode auf ± 0.5 % (absolut) genau bestimmen. (siehe auch C. SCHMID 1953). Als Kontrolle dienten bei den hier vorliegenden Messungen die Reserve-Prüfkörper: Von einem Kernabschnitt wurde jeweils die Hälfte der Kerne in einem Meßgang, die andere Hälfte im darauf folgenden Meßgang gemessen. Zeigten sich hierbei Abweichungen in Porosität und Dichte, die nicht mit makroskopisch sichtbaren Unterschieden erklärt werden konnten, so wurde die Messung wiederholt.

Bei einigen Proben, bei denen sich die Porosität der Prüfkörper unterschied, sind alle Angaben in der Probenbeschreibung vorhanden. Mußten zur Porositätsmessung Kerne mit makroskopisch sichtbaren Rissen herangezogen werden, so wurden diese vor der Messung, soweit möglich, entlang des Risses gebrochen und die Hälften einzeln gemessen, um möglichst wenig Kluftporosität zu messen.

ŧ

Abb. 3 : Auswirkung der Isopropanoltränkung auf die Proben

- 8 -

Durch die nachlassende Leistung der Vakuumpumpe stellte sich mit zunehmender Meßdauer ein systematischer Fehler ein, der anhand der Wiederholungsmessung nach Vorliegen aller Ergebnisse sichtbar wurde. (Auf Grund von Luftdruckschwankungen fiel die nachlassende Pumpenleistung-zunächst nicht auf). Aus Gründen der Genauigkeit fand daher eine Nachmessung an allen Prüfkörpern statt. Um hierbei neben dem Fehler der Vakuumpumpe auch die Auswirkung des schnell verdunsteten Tetrachlorkohlenstoffs feststellen zu können, fand die Wiederholungsmessung mit Kerosin als Tränkungsmittel statt. Um die höhere Viskosität des Kerosins auszugleichen, wurde die Tränkungszeit verlängert. Unter diesen Bedingungen konnte gezeigt werden:

- Bei Einhaltung einer ausreichenden Tränkungszeit sind die gemessenen Werte von der Tetrachlorkohlenstoff- und Kerosintränkung vergleichbar.
- Die Verdunstung des Tetrachlorkohlenstoffs besaß keinen Einfluß auf die Meßergebnisse innerhalb der angegebenen Genauigkeit.
- Soweit sich die einzelnen Prüfkörper einer Probe nicht unterscheiden, lag die Genauigkeit der Messungen bei <u>+</u> 0.6% (absolut).
- Die zuvor berechneten Daten weichen, von wenigen Ausnahmen abgesehen, um weniger als 2% von den gemessenen Werten ab. In den Ausnahmefällen lag die Korndichte durch den Anteil von C_{org}niedriger als erwartet.
- Von der ersten Meßreihe (mit Tetrachlorkohlenstoff) zeigten die Ergebnisse der ersten drei Versuche keinen Fehler durch die nachlassende Leistung der Vakuumpumpe.
- Weitere Fehlerquellen waren nicht feststellbar.

- 9 -

Gesamtporosität

É

Die Bestimmung der Gesamtporosität erfolgte am aufgemahlenen Probenmaterial.

Von einem vorher abgewogenen Probenteil wurde im Beckman-Pyknometer das Volumen bestimmt.

Anhand der aus Masse und Volumen berechneten Feststoffdichte und der Bulkdichte (Tauchmethode) berechnet sich die Gesamtporosität nach der Formel

Dieser Teil der Porositätsmessung ist als besonders kritisch anzusehen, weil einerseits die Fehler von zwei Meßreihen (Tauchmethode und Pyknometer) in die Ergebnisse eingehen und andererseits die Volumenmessung an pulverförmigen Substanzen mit hoher Oberfläche (Tone) zu Fehlern in der Messung führen. Eine Wiederholungsmessung mit Helium zeigte, daß erst nach ca. 9facher Evakuierung und Spülung die Luft aus der Meßkammer soweit verdrängt war, daß Adsorption von Luft-Stickstoff keinen Einfluß auf die Meßergebnisse besitzt. Dies entspricht einer Evakuierungszeit von ca. 6 bis 8 Stunden, da durch schnellere Spülung mit größerem Druck die Membrane des Gerätes zerstört wird.

Es handelt sich bei den hier aufgeführten Problemen einerseits um einen gerätetypischen konstruktionsbedingten Fehler, andererseits aber um eine probenspezifische Schwierigkeit (hohe spezifische Oberfläche, die durch die Pulverform verstärkt wird). Bei zuvor im anderen Zusammenhang gemessenen Proben trat diese Schwierigkeit nicht auf.

Die ermittelten Meßergebnisse wurden aus folgenden Gründen nicht in den Bericht aufgenommen:

- Die ermittelten Dichtewerte hingen von der Einwaage der Probe ab (Adsorptionseffekt)
- Die Dichtewerte lagen in vielen Fällen so deutlich über den Dichtewerten, die sich aus der Bestimmung der Effektivporo-

10 -

sität ergaben, daß sie als unwahrscheinlich abzulehnen sind. Die aus ihnen berechnete Totporosität betrug bis zu 9,1 %, die Dichte war insbesonders für die Tone zu hoch (bis 2,86 g/cm^3).

Die im Bericht angegebene Korndichte ist daher der Messung der Effektivporosität entnommen und bezieht sich auf die Dichte der Feststoffe inklusive Totporen.

So weit im Rasterelektronenmikroskop Totporen zu sehen waren, findet sich in der Probenbeschreibung ein entsprechender Hinweis. Betroffen hiervon sind vor allem die karbonatischen Proben unterhalb von 700 Meter Teufe.

6

Permeabilitätsmessungen

Die Permeabilität der Proben wurde in einem von der Abteilung für Erdölgeologie gebauten Gerät mit Luft gemessen:

Das Gerät besteht aus

- einer Steuereinheit für den Fließdruck, die für einen maximalen Fließdruck von 40 bar ausgelegt ist,
- einer Probenhalterung ähnlich einer Hasslerzelle, in der Kerne mit variablem Durchmesser (bis 10 cm) und variabler Länge (bis 14 cm) bei einem annähernd triaxialen Druck von bis zu 1400 bar (Manteldruck)gemessen werden können,

oder alternativ

- einer Probenhalterung (Hersteller Haux Support) für Kerne bis zur Größe d = 200 mm und l = 300 mm, die Manteldrucke bis 100 bar erlaubt,
- und einem Durchflußmesser nach dem Seifenblasenprinzip für Durchflußmengen von 0,2 bis 100 cm³.

Vereinbarungsgemäß wurde zunächst unter Standard-Laborbedingungen, d. h. bei einem Manteldruck von 20 bar gemessen. Die hierbei ermittelten Werte zeigten jedoch bei einem großen Teil der Proben (Tonsteinen, Tonmergelsteinen und teilweise auch Mergelsteinen), daß die Permeabilität durch Rißbildung wesentlich zu hoch und für die Proben untypisch war.

Aus diesem Grunde wurden alle Proben, bei denen der Verdacht auf Rißbildung nahe lag, der aufwendigen Messung unter gebirgsähnlichen Druckverhältnissen unterzogen. Die jeweilige Meßart ist in der Probenbeschreibung angegeben.

Als Versuchsbedingungen wurden dabei die Werte

lithostatischer Druck = Teufe x 0,25
hydrostatischer Druck = Teufe x 0,1
effektiver Druck = Teufe x 0,15

angenommen.

Die Proben wurden, um Neuverformung durch übermässigen Druck zu vermeiden, bei einem maximalen Fließdruck p₁ am Probeneintritt entsprechend dem hydrostatischen Druck gemessen. Der Manteldruck wurde mit der Summe von Fließdruck und Effektivdruck, d. h. maximal mit dem lithostatischen Druck festgelegt. Um nicht nach jeder Fließdruckänderung den Manteldruck erhöhen zu müssen, was zu einer Verformung der Probe geführt hätte, wurden die Fließdruckstufen bei Beginn der Messung festgelegt und der Manteldruck P_M nach der Faustregel

$$P_{M} = \overline{P_{1}} + \text{Teufe x 0,15}$$

mit P_M < lithostatischer Druck

 $\overline{P_1}$ > hydrostatischer Druck eingestellt.

Wie in der Einleitung erwähnt, ist diese Simulation gebirgsähnlicher Druckverhältnisse kritisch, sie erwies sich nach den anfangs gemachten Erfahrungen jedoch als die einzige Möglichkeit, die Porenpermeabilität der tonhaltigen Proben zu ermitteln.

Da noch keine ausreichenden Erfahrungswerte über das Verhalten von trockenen,tonigen Proben bei Belastung mit Druck vorliegen, muß dieses Meßverhalten vorläufig als das zuverlässigste angesehen werden. Trotzdem sind Abweichungen von im Gebirge ermittelten Permeabilitäten nicht nur möglich, sondern sogar sehr wahrscheinlich. In jedem Fall erlaubt dieses Verfahren eine weitaus bessere Differenzierung zwischen niedrig-permeablen Proben, da bei den oben erwähnten Standardbedinungen keine KLINKENBERG-Korrektur unterhalb von 10⁻² mD und keine weitere Differenzierung unter 10⁻³ mD möglich ist (Durchfluß zu gering).

Mit dem hier angewendeten Meßverfahren ist eine brauchbare KLINKEN-BERG-Korrektur bis zu Permeabilitäten von 10^{-5} mD und eine Abschätzung der Permeabilität bis zu 10^{-6} mD möglich. Unterhalb dieser Werte ist in der Probenbeschreibung ein Vermerk zu finden.

Die Berechnung der Luftpermeabilität erfolgte nach dem Gesetz von d'ARCY:

$$K = \frac{1000 \cdot 4 \cdot \gamma \cdot 1}{1 \cdot d^2} \cdot \frac{Q/t \cdot P_{L}}{(P_{L} + \Delta_{P}) \cdot \Delta_{P}}$$

- 13 -

mit

- K : Luftpermeabilität (mD)
- ν: Viskosität des Fließmediums (cP)
 hier: Luft (20°C): 0,01799 cP
- 1 : Probenlänge (cm)
- d : Probendurchmesser (cm)
- Q : Durchflußmenge (cm³)
- t : Durchflußmeßzeit (sec)
- P_L: athmosphärischer Luftdruck (bar) entsprechend dem Druck an der Probenauslaßseite (P₂)
- Δ_{p} : Differenzdruck (bar) $P_1 P_2$

Die Messung erfolgte je nach Permeabilität der Probe bei 3 bis 7 verschiedenen Differenzdrücken. Mit den hierbei ermittelten unterschiedlichen Permeabilitäten wurde eine graphische KLINKEN-BERG-Korrektur durchgeführt, in dem in einem Diagramm die Luftpermeabilität (y-Achse) gegen den mittleren Porendruck $(P_1+P_2/2)$ aufgetragen und die Meßwerte mit einer Geraden verbunden wurden. Der Durchstoßpunkt der Geraden durch die y-Achse ist als K_w oder KLINKENBERG-korrigierte Permeabilität angegeben.

Die Steigung der Geraden (=KLINKENBERG-Konstante) lag je nach Permeabilität zwischen 0,2 und ca. 20. Da bisher noch viel zu wenig Vergleichswerte von Tonsteinen aus der Literatur bekannt sind, wurde zusätzlich zu der so ermittelten Permeabilität bei einigen Proben eine zweite Permeabilität berechnet, für die die von MIESSNER veröffentlichten KLINKENBERG-Konstanten angenommen wurden. Hierdurch erhöht sich die Permeabilität der undurchlässigsten Proben bis maximal um den Faktor 2. Bis zum Vorliegen einer ausreichenden Anzahl von Meßdaten muß jeweils die höhere Permeabilität als wahrscheinlich angenommen werden.

Bestimmung des Karbonat- und Corg-Gehaltes

Die Bestimmung dieser Anteile erfolgte im Coulomat 701 der Firma STRÖHLEIN Labortechnik.

Zunächst wurden jeweils 50mg der getrockneten Probensubstanz im Heizofen unter Sauerstoff verglüht (900^OC). Hierbei verbrennt der gesamte Kohlenstoff zu CO₂. Die sich ebenfalls gebildeten Schwefeldioxide und Halogene , die das Analysenergebnis beeinflussen, werden durch Chemisorption in einem mit Silberwolle beladenen Ofen bei einer Temperatur von 500^OC entfernt.

Am Ausgang der Ofenkombination befindet sich eine Wasserfalle, die den Wasserdampf kondensiert.

Mit Hilfe des Sauerstoffträgergasstromes wird das Verbrennungsgas CO₂ von einer Förder- und Dosierpumpe in ein mit basischer Bariumperchloratlösung gefülltes Gefäß gefördert und dort adsorbiert, wodurch die Alkalität der Lösung sinkt. Durch elektrolytisch erzeugtes Bariumhydroxid wird automatisch auf den pH-Ausgangswert zurücktitriert. Ein mehrstelliger elektronischer Zähler summiert die zur Rücktitration verbrauchte Elektrizitätsmenge. Diese wird an einer sechsstelligen Anzeige digital abgelesen. Sie ist aufgrund der Faraday'schen Gesetze eine absolute Meßgröße für den Kohlenstoffgehalt der Probe. Ein Zählerimpuls entspricht dabei 2 x 10⁻⁷ g Kohlenstoff.

Ein Zeitglied gewährleistet einen gleichmäßigen Arbeitsrhythmus und eine eindeutige Berücksichtigung des Blindwertanteils.

Es ist möglich, 0,5 mg/l bis in die höchsten Konzentrationen Kohlenstoff zu bestimmen. Die Genauigkeit des Gerätes wird vor jeder Meßreihe mit Standardproben überprüft. Vor jeder Meßreihe (5 Proben) findet eine Blindmessung statt.

Die so bestimmte Kohlenstoffmenge entspricht dem C-Gesamtgehalt.

Um den Anteil an C_{org} zu bestimmen, wurden aus Gründen der Genauigkeit die Karbonate chemisch entfernt und nicht – wie von STRÖHLEIN vorgeschlagen – durch Vorheizen ermittelt.

Weitere 50 mg der Probe wurden mit konzentrierter HCl bei über 120 °C mehrfach behandelt, um durch $\rm CO_2$ -Entwicklung den karbonatischen Kohlenstoff zu vertreiben. Eine erneute Analyse im Coulomaten ergibt den C_{org}-Anteil. Durch Abzug dieses Anteiles vom C_{gesamt} -Gehalt und Multiplikation mit den Atomgewichten ergibt sich der CO₃ - Gehalt.

Für jede Probe wurde die Messung dreimal wiederholt.

f

Bei anfänglichen Versuchen mit einer Karbonatentfernung durch 10 prozentige Salzsäure blieben Restkarbonate in der Probe, die das C_{org}/C_{karb}-Verhältnis verfälschten. Wir danken Herrn RÖSCH /BGR nochmals für den Hinweis auf diese Fehlerquelle. Alle Messungen wurden nach der oben beschriebenen Methode wiederholt.

Rasterelektronenmikroskopie (REM)

Bei dem REM der Abteilung für Erdölgeologie handelt es sich um ein Leitz-ISI Super III a. An dieses Gerät sind ein BSD-Halbleiter-Ringdetektor sowie über einen PGT -Röntgendetektor ein EDX-Gerät, Marke Nuclear Data ND 60, zur energiedispersiven Röntgenspektralanalytik (EDX) gekoppelt. Vom EDX-Gerät ist eine Schreiberausgabe auf einen Commodore-Drucker möglich. Das EDX-Gerät diente zur Identifizierung der im REM-Bild sichtbaren Minerale (qualitative Auswertung), nicht aber zur quantitativen Analytik. In vielen Fällen wurde daher auf eine mineralogische Beschreibung verzichtet, um Fehlinterpretationen zu vermeiden.

Die Vorbereitung der Proben erfolgte analog zu den Prüf körpern für Permeabilitäts- und Porositätsmessungen, weil in erster Linie mit den REM-Untersuchungen der Probenzu stand dokumentiert werden sollte. Vorwiegend auf Grund dieser Untersuchungen fiel die Entscheidung, die Permeabilitäts messungen unter gebirgsähnlichen Druckverhältnissen durchzuführen, weil zu viele Proben präparative Auflockerungserscheinungen erkennen ließen.

Leider bedingte die Präparation, daß die REM-Untersuchungen nur wenig Aufschluß über die diagenetische Entwicklung des Porenraumes erbrachten. Hierzu wäre eine vollständige Reinigung der Proben von Salzrückständen notwendig gewesen, die REM-Untersuchungen hätten dann aber keine Rückschlüsse auf den Probenzustand bei der Permeabilitätsmessung erlaubt.

In einigen Fällen wurde dennoch versucht, soweit es die Probe ermöglichte, die Porenstruktur zu beschreiben.

Diese Beschreibungen sind mangels RDA-Analytik, Dünnschliffen und Vitrinitreflexion ausdrücklich als Interpretationsversuch zu bewerten. Insbesonders genetische Rückschlüsse auf die Entstehung des Porenraumes sind bei Mergeln und Tonsteinen sehr gewagt, weil die Erfahrungen auf diesem Gebiet gering sind.

So mußte z. B. für die Porenraumbeschreibung die Karbonatklassifizierung von CHOQUETTE & PRAY sowie die Sandsteinbeschreibung von SCHMIDT, McDONALD & PLATT verwendet werden. Beide Beschreibungen befinden sich zum Vergleich mit den Bildern auf einer Ausklappseite im Anhang. Die Porenraumansprache in Kurzform fand ebenfalls nach der, von CHOQUETTE & PRAY entwickelten Methode statt. Sie setzt sich aus einer Buchstabenfolge zusammen, die in folgender Reihenfolge Informationen zum Porenraum gibt:

- Ursache der Porenentwicklung (Lösung, Zementation)

- Wirkung (erweitert, verkleinert)

- Zeit der Porenentstehung (primär, sekundär) mit den genaueren Einstufungen (prä-, syn-, eo-, meso-,telo-)

- Größe der Poren (mega-, meso-, mikro-)

- Porentyp

£

Auf die Verwendung folgender Begriffe wurde verzichtet, weil sie entweder im REM nicht sicher identifizierbar oder über ihre Ausbildung in Tonen zu wenig bekannt ist:

fenestral, growth-framework, boring, burrow, filled

Hierzu ist anzumerken, daß in vielen Fällen fensterartig (fenestral) angeordnete Poren in den Tonen zu sehen waren, die aber von der Größe her nicht mit demselben Porentyp in Karbonatgesteinen zu vergleichen sind. Hier wurde auf die allgemeine Beschreibung "interpartikulär" zurückgegriffen.

Um innerhalb der Größe differenzieren zu können, wurden die von CHOQUETTE & PRAY vorgeschlagenen Begriffe modifiziert angewendet. In den vorliegenden Untersuchungen bedeutet :

-	mc (Mi	.kropore)	Durchmesser	kl	. 2	μm
-	sms(k	leine Mesopore)	2	-	20	μm
	lms(g	große Mesopore)	20	-	63	μm
	smg(k	leine Megapore)	63	-	125	μm
-	lmg(g	proße Megapore)	gı	.	125	μm

Die Bezeichnung "intrakristallin", die bei CHOQUETTE & PRAY nicht zu finden ist, wurde nur angewendet, wenn sich innerhalb eines Kristalles Poren zeigten und die Form des Kristalles andeutete, daß es durch die Präparation aufgebrochen war (Schnittfläche freigelegt).

Die Untersuchungen an den Proben wurden in jedem Fall mit einer Abbildung je Probe dokumentiert. Leider weist ein Teil der Abbildungen nicht die wünschenswerte Qualität auf, weil im Laufe der Untersuchungen durch einen Defekt am REM (Öl aus der Diffusionspumpe zieht in die Probenkammer) die Auflösung zurückging. In jedem Fall reicht aber die Auflösung zur Beurteilung des Probenzustandes aus.

Von sekundärer Porosität wurde in diesem Bericht nur gesprochen, wenn mindestens zwei der acht Kennzeichen von SCHMIDT zutrafen. In der Regel handelte es sich bei einem dieser Kennzeichen um übergroße (oversized) Poren. Dieser Begriff trat dann zu, wenn die Probenstruktur auch gegenüber einer Koagulatsedimentation zu große Poren zeigte. Es wird nicht ausgesagt, ob diese Porosität an die Tone selber gebunden ist oder organogene bzw. karbonatische Anteile der Probe.

£

Literaturverzeichnis

SCHOLLE: Carbonate rock constituents, CHOQUETTE & PRAY in: textures, cements and porosities, AAPG Memoir, 27, Tulsa 1978 Skript zum Unteruniversiäten Kurs Diagenese klastischer Sedimente, München 1985 Methoden der Sedimentuntersuchung, MÜLLER, G.: Teil 1, Stuttgart 1964 SCHMID, C.: Ringversuche zur Überprüfung der Zuverlässigkeit von Porositäts- und Permeabilitätsmessungen an Gesteinsproben, Erdöl und Kohle, 6, S. 442 - 446, Hamburg 1953 SCHOLLE: Constituents, textures, cements SCHMIDT, McDONALD & and porosities of sandstones and PLATT in: associated rocks, AAPG Memoir, 28, Tulsa 1979 SEM petrology atlas, AAPG methods in WELTON, J. E.: exploration series, Tulsa 1984

BOHRUNG K 101

Probe:	Kernm	arsch	27		Kiste	2	148	
Teufe:	von	154,34			bis	15	54 , 49	m
Stratigre	aphie :	Oberkre	eide,	Untertur	on			
Karbona	tgeha	lt[%CC	$\binom{2^{-}}{3}$			5	53.5	
C _{org} -Get	nalt[%	5]					0.2	
Porositä	t(effel	(tiv) [%]				ø	8.4	
Bulkdicht	te (g/cr	n ³]					2.48	
scheinb.	Korndi	chte[g/	′cm³]				2.71	
Luftperr	neabili	tät (mD]			5	x 10 ⁻	- 3

Porenraum:

Die Porosität besteht aus Mikroporen in Zwickeln der karbonatischen Matrix, deren Durchmesser zum Teil durch Kalzitneubildungen verringert ist. Die Porosität der Prüfkörper wich um maximal 0,4 % vom Mittelwert ab.

Bemerkungen:

Die Permeabilität wurde unter Laborbedingungen gemessen. Die Werte von fünf Vergleichsprüfkörpern schwanken nur gering.

PORENRAUMBES	CHREIBUNG	
PROBE: 154,34 - 154,49 m	BOHRUNG:	K 101
Abbildung Nr: 5 Vergrößerung: 1800 x Beschreibung der Abbildung: Fossilrest (Calcisphere ?) m Kalzitsaum. Der Zement beste morphem Kalzit. Rechts im ra intrakristalliner Porenraum In der Matrix besteht die Po Zwickeln zwischen den Kalzit	(Negativ) it radialstrahlig ht weitgehend aus dialstrahligen Ka (fluid inclusion) rosität vorwieger kristallen.	g gewachsenem s hypidio- alzit ist zu sehen. nd aus offenen
Porenraumklassifizierung: 100 % c r Pd mc BC c r Pd mc intrakrista	llin	

.

£

(

BOHRUNG K 101

Probe:	Kernmo	arsch	34	К	iste	212	
Teufe:	von	214,76		Ь	is	214,95	m
Stratigre	aphie :	Oberkre	eide,	Unterceno	man		
Karbonatgehalt[%CO3 ²⁻]						40.7	
Cora-Gehalt [%]						0.1	
Porositä	t(effek	tiv)[%]			ø	12.9	
Bulkdichte[g/cm³]						2.34	
scheinb.	Korndic	:hte[g/c	:m³]			2.70	
Luftperr	neabilit	ät[mD]			<	(1 x 10	,-2

Porenraum:

In der kalzitischen Matrix sind Mikroporen zu finden, deren Ränder Anlösungen zeigen. Für Lösungsvorgänge während der Diagenese spricht ebenfalls, daß Fossilreste gerundete Säume und Zwickel besitzen.

Die Einzelprüfkörper zeigten Abweichungen in der Porosität von maximal 1,4 %. Anzeichen für Rißbildung waren jedoch • optisch nicht zu erkennen.

Bemerkungen:

Die Permeabilität ist unter Laborbedingungen gemessen.

PORENRAUMBES	SCHREIBUNG	
OBE: 214,76 - 214,95 m	BOHRUNG:	K 101
Abbildung Nr: 7 Vergrößerung: 1300 x Beschreibung der Abbildung: Im überwiegend kalkigen Zemer bis 2 µm Größe, deren scheink Salzkrusten verursacht werder im Bild bestehen ebenfalls au örtlich, wie z. B. 1. m., sch löst zu sein.	(Negativ) nt befinden sich P par gerundete Form n. Die sehr hellen ns Salz. neint der Kalzitze	Aikroporen men durch n Aggregate ement ange-
Porenraumklassifizierung: Pd mc BC (durch Sal	züberzug keine gen	naue Ein-
sturung mo	JGITCU.)	
	PORENRAUMBES OBE: 214,76 - 214,95 m Abbildung Nr: 7 Vergrößerung: 1300 x Beschreibung der Abbildung: Im überwiegend kalkigen Zemer bis 2 µm Größe, deren scheink Salzkrusten verursacht werder im Bild bestehen ebenfalls au Örtlich, wie z. B. 1. m., sch löst zu sein. Porenraumklassifizierung: Pd mc BC (durch Salis stufung mi	PORENRAUMBESCHREIBUNG OBE: 214,76 - 214,95 m BOHRUNG: Abbildung Nr: 7 Vergrößerung: 1300 x (Negafiv) Beschreibung der Abbildung: Im überwiegend kalkigen Zement befinden sich P bis 2 µm Größe, deren scheinbar gerundete Forr Salzkrusten verursacht werden. Die sehr heller im Bild bestehen ebenfalls aus Salz. Örtlich, wie z. B. 1. m., scheint der Kalzitze löst zu sein. Porenraumklassifizierung: Pd mc BC (durch Salzüberzug keine gen stufung möglich.) ? s x Pd mc BC

ŧ

(

PORENRAUMBES	CHREIBUNG	
ROBE: 214,76 - 214,95 m	BOHRUNG:	K 101
Г		
	a	
		x
Abbildung Nr: ³		
Vergrößerung: 350/1650 x (Negativ)	
Rogenpyrit in mehreren Genera	ationen.	
In der Übersicht links ist e	in kugelförmiges	Aggregat
könnte. Der Porenraum im Bild	lausschnitt ist n	nicht
repräsentativ für die Probe, zergliedert wird	da er weitgehend	l vom Pyrit
Sergricaere wird.		
Porenraumklassifizierung:	vicebon don Burit	krictallon
50 % Pd sms BC (in	n kalkigen Bereic	hen)

f

(

BOHRUNG K 101

Probe:	Kernmarsch 36 k	(iste	238	
Teufe:	von 238,42 b	ois	238,58	m
Stratigre	aphie: Oberkreide, Untercenc	oman		
Karbona	tgehalt[%C03 ²⁻]		28.7	
C _{org} -Get	nalt[%]		0.3	
Porositä	t(effektiv)[%]	ø	15.0	
Bulkdich	te[g/cm³]		2.29	
scheinb.	Korndichte[g/cm³]		2.71	
Luftpern	neabilität [mD]	8.1	$\times 10^{-4}$	

Porenraum:

Auch hier scheinen Lösungsvorgänge zu Veränderungen im Porenraum zu führen. Da ein Großteil der Probe von Salz bedeckt war, können keine genaueren Einstufungen vorgenommen werden.

Durch zunehmenden Tongehalt wächst die Porosität gegenüber den darunterliegenden Kalken an. Obwohl an einem Prüfkörper makroskopisch Risse zu sehen waren, wich die Porosität nur um 0,2 % vom Mittelwert ab.

Bemerkungen:

Permeabilität unter Laborbedingungen gemessen. Der Wert kann mit Fehlern behaftet sein.

PORENRAUMBESCHREIBUNG						
PROBE:	238,42 - 238,53 m	BOHRUNG:	K 101			
Abbildung Nr: 9 Vergrößerung: 1000 x (Negatív) Beschreibung der Abbildung: Obwohl im Bildausschnitt Salzkrusten und -beläge zu sehen sind (helle Kristalle), die die optische Bewertung erschweren,scheinen die gerundeten Kanten der hypidio- morphen Kalzitkristalle auf Anlösung des Kalzites zurück- zuführen zu sein. Die Poren müssen daher als sekundär erweitert eingestuft werden.						
Porenra	umklassifizierung: s x P sms BC P mc BC					

(

BOHRUNG K 101

Probe:	Kernmarsch 40		Kiste	270	
Teufe:	von	267,84	bis	268,00	m
Stratigraphie: Unterkreide,			Oberalb		
Karbonatgehalt[%C03 ²⁻]				3.5	
Cora-Gehalt [%]				1.0	
Porosität(effektiv)[%]			minimal	17.1	
Bulkdichte[g/cm³]				2.07	
scheinb.Korndichte[g/cm³]				2.58	
Luftpermeabilität [mD]			1.9×10^{-3}		

Porenraum:

Rißbildung äußert sich in den schwankenden Porositätswerten (17,1 bis 22,4 %, Durchschnitt 19,7 5), weshalb in der Tabelle der Minimalwert als am meisten glaubwürdig angenommen wurde.

Bemerkungen:

Das Gestein neigt zur Rißbildung. An einem Prüfkörper wurden unter Laborbedingungen 2 mD gemessen. Der oben angegebene Wert ist unter simulierten Gebirgsbedingungen gemessen.

Probe:	Kernmars	ch	41	Kis	te	2	273	}
Teufe:	von	270,7	71	bis	27	70 , 8	6	m
Stratigr	aphie:	Unter	ckreide,	Oberalb				
Karbona	tgehalt [% C 0 ₃ 2	-]			1	1.	1
C _{ora} -Geł	nalt[%]	-					0.	. 5
Porositä	t(effektiv)[%]		min	imal	L 1	7.	4
Bulkdich	te[g/cm ³]				2.07	7 —	2.	. 15
scheinb.	Korndicht	e[g/ci	³]				2.	. 57
Luftperr	neabilität	[mD]			2.1	x 1	0	-4

Porenraum:

Die Porosität besteht aus Mikroporen im Ton und ist daher für die Permeabilität nur wenig nutzbar. Durch den hohen Tongehalt neigt die Probe zur Rißbildung, so daß der minimal gemessene Wert eventuell noch über der wirklichen Porosität liegt. Abweichung bei 7 Prüfkörpern: bis 1,5 % vom Minimalwert (18,6 %)

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen. Die Porosität zeigt Schwankungen, deren Ursache Rißbildung sein dürfte.

	PORENRAUMBES	CHREIBUNG	
PROBE:	270,71 - 270,36 m	BOHRUNG:	K 101
			-
Abbildu	ng Nr: 12		1
Vergröß	Berung: 2500 x (Negativ)	
Die Auf	nahme zeigt eine Schie	chtoberfläche.Gege	enüber
den pla die eve	ttigen Tonen fällt die entuell durch sekundäre	e runde Porenform e Prozesse entsta	auf, nden ist
Bei der	hellen Kristallen har	ndelt es sich um :	Salz.
Deces	umklassifizierung:		
Porenra			
Porenra 100 %	mc BP		

Probe:	Kernmarsch	41	Kis	te 282
Teufe:	von 273,04		bis	278,18 m
Stratigro	lphie: Unterk	reide,	Oberalb	
Karbona	tgehalt [% CO	²⁻]		18.0
C _{org} -Geh	ialt [%]			0.1
Porositä	t(effektiv)[%]			16.4
Bulkdicht	e[g/cm ³]			2.17
scheinb. I	Korndichte[g/d	cm ³]		2.60
Luftpern	neabilität (mD]		./.

Porenraum:

Die Probe besitzt neben primär einzustufenden Tonporen Anzeichen für sekundäre Porosität. Es ist nicht erkennbar, ob die sekundären Lösungsvorgänge an karbonatischen Bestandteilen der Matrix beginnen oder direkt an die Tone gebunden sind. Die feine Schichtung führte zu schichtparalleler Auflockerung.

Bemerkungen:

Die Permeabilität war nicht meßbar, weil die Probe während des Trocknungsvorganges zerbrach.

PORENRAUMBESCHREIBUNG PROBE: 278,04 - 278,13 m BOHRUNG: K 101 Abbildung Nr: 13 (Negativ) Vergrößerung: 500 x Beschreibung der Abbildung: Aufnahme senkrecht zur Schichtung. Die Schichtung ist an den eingeregelten Tonplättchen gut erkennbar. Neben Ton zeigt die Aufnahme Siltkörner, von denen ein Teil karbonatisch ist. Während die große Pore 1. u. präparativ entstanden ist, (Kornausbruch), müssen die anderen übergroßen Poren (r. o., m. o.) als echte Poren und somit auf Grund ihrer Größe als sekundär eingestuft werden. Daneben liegen Poren in "normaler" Größe eingeregelt in der Schicht vor. Porenraumklassifizierung: 5 % x S sms BP 95 % P sms-mc BP

Probe:	Kernm	arsch	48		Kiste		333	
Teufe:	von	325,88			bis	32	6,01	m
Stratigro	aphie :	Unterkre	eide,	Oberalb				
Karbona	tgeha	l†[%C0₃²	-]				14.0	
C _{org} -Get	nalt[%	6]					0.4	
Porositä	t(effel	ktiv)[%]			minima	al	14.9	
Bulkdicht	te[g/cr	n ³]			·		2.2	3
scheinb.	Korndi	chte[g/c	m³]				2.6	5
Luftperr	neabili	tät [mD]			< 1	x	10-3	

Porenraum:

Die Probe liefert mehrere, gute Anzeichen für sekundäre Porosität in Tonen. U. a. ist der Porendurchmesser für primäre Tonporen erheblich groß und auch durch eine Kartenhausstruktur nicht zu erklären. Die Porosität schwankt von 14.9 bis 17.1 %, die Probe ist wahrscheinlich präparativ aufgelockert.

Bemerkungen:

Permeabilität unter Laborbedingungen gemessen, daher keine KLINKENBERG-Korrektur möglich.

PORENRAUMBESCHREIBUNG	
PROBE: 325,88 - 326,01 m BOHRUNG: K 1	101
· · ·	
Abbildung No. 14	
Verarößerung: 600 v (Negativ)	
Beschreibung der Abbildung: In der tonigen Matrix, in der einzelne Siltkörner z	u sehen
sind, fallen mehrere Porenarten auf:	
 Bei den kleineren, rundlichen Poren (bis ca. 1 μm es sich vermutlich um primäre Porosität.) handelt
 Die großen, rundlichen bis länglichen Poren (6 – können nicht primär entstanden sein, weil sie um faches größer als die sedimentierten Einzelkörner und somit zumindest sekundär vergrößert sein müss 	15 μm) ein mehr- sind een.
 Die langgestreckten, überwiegend schichtparallel ordneten Poren können durch Druckentlastung oder Präparation vergrößert sein. 	ange-
Porenraumklassifizieruna:	
40 % Pd mc BP	
40 % s x S sms BP	
20 % Präparation (?)	

E

 C°

	PORENRAUMBES	SCHREIBUNG		
PR	OBE: 325,88 - 326,01 m	BOHRUNG:	K 10′	1
	Abbildung Nr: ¹⁵			
	Vergrößerung: 1300 x	(Negativ)		
	Beschreibung der Abbildung: Sekundär erweiterte Poren im	Ton. Überträgt ma	n die v	on
	SCHMIDT entwickelten acht Anz	eichen für sekund	äre Por	osität
	auf Tonsteine, so treffen hie	er folgende Kriter	ia zu:	
	- Pfeiler und Gewölbebau (inh	omogenity of pack	ing)	
	- überlange Poren.			
	Da es sich bei den hellen, fa	serartigen Tonen	in der	Mitte
	um eine jüngere Tongeneration	diagenetisch ni	edriger	, ver-
ж.	mutlich größerer mixed layes	Anteil) handelt,	kann di	e ur-
	sprüngliche Pore noch größer Die kleineren Poren werden al Porenraumklassifizierung :	gewesen sein. .s primär eingestu	ft.	
	90 % s x S sms BP			
	10 % Pd mc BP			

Ĺ

Probe: Kernmarsch Kiste 51 354 Teufe: von 346,05 bis 346,26 m Stratigraphie: Unterkreide, Oberalb Karbonatgehalt [$\% CO_3^{2-}$] 14.4 Corg-Gehalt [%] 0.4 ·Porosität(effektiv)[%] 16.6 Bulkdichte[g/cm³] 2.22 scheinb. Korndichte[q/cm³] 2.70 $< 1 \times 10^{-4}$ Luftpermeabilität [mD]

Porenraum:

Durch die Salzkruste kann keine Aussage über die Art des Porenraumes gemacht werden. Die Porositäten der Einzelproben stimmten sehr gut überein (maximale Abweichung vom Mittelwert 0.1 % absolut).

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

Probe:	Kernm	arsch	55		Kiste		386	
Teufe:	von	375,70			bis	37	5,89	m
Stratigro	aphie :	Unter	kreide,	Mittela	alb			
Karbona	tgehal	+[%CO	²⁻]				17.2	:
C _{ora} -Get	nalt[%]					0.3	
Porositä	t(effek	tiv)[%]		I	ninima	11	14.5	
Bulkdicht	te l g/cm	³]				•	2.2	2
scheinb.	Korndia	:hte[g/i	cm ³]				2.6	9
Luftpern	neabilit	tät (mD]		<	2	x 10	-4

Porenraum:

Auch in dieser Probe finden sich Hinweise für eine sekundäre Porosität in den Tonen. Die Probe ist stark schichtparallel aufgelockert, wofür unter anderem die schwankende Porosität spricht (14.5 bis 17.9 %, Ø: 17.5 %).

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen. Eine exakte Angabe der Permeabilität kann nicht gemacht werden, da anhand der Messungen eine plastische Verformung der Probe zu beobachten war. KLINKENBERG-Konstante nach MIESSNER.

PORENRAUMBESCHREIBUNG
PROBE: 375,70 - 375,89 m BOHRUNG: K 101
Abbildung Nr: 18
Vergrößerung: 1200 x (Negativ)
Beschreibung der Abbildung:
Die Abbildung zeigt die von oben nach unten verlaufende
Schichtung des Tonsteins mit gut eingeregelten Tonmineralen.
- längliche, entsprechend den Tonmineralen schichtparallel
angeordnete Poren, die durch Entlastung der Probe bei der Entnahme aus dem Gebirge erweitert sein können.
 rundliche, größere Poren (bis 10 µm), von denen einzelne durch Kornausbruch (r. m.) bei der Präparation, andere wiederum deutlich nicht präparativ entstanden sind (sekundärer Porenraum ?)
Porenraumklassifizierung:
70% Pd mc BP
30 % ? s x S sms BP

•

ł

Probe: Kernmarsch 5	6 Kiste	391
Teufe: von 379,91	bis	380,10 m
Stratigraphie: Unterkre	ide, Mittelalb	
Karbonatgehalt [$\% CO_3^{2-}$]	8.8
C _{ora} -Gehalt [%]		0.3
Porosität(effektiv)[%]	Ø	20.4
Bulkdichte[g/cm³]		2.12
scheinb. Korndichte[g/cm	3]	2.67
Luftpermeabilität[mD]		$< 2 \times 10^{-4}$

Porenraum:

Sekundäre Veränderungen in den Tonporen erkennbar. Die durch organogene Bestandteile sekundär entstandenen Poren sind zum Teil durch Tonneubildungen verkleinert.

Die Porositätswerte schwanken nur wenig (± 0,5 %).

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen. Keine KLINKENBERG-Korrektur anhand der Daten möglich, da der Kern plastische Verformung zeigt. KLINKENBERG-Konstante nach MIESSNER.

.

Probe:	Kernm	arsch	57	Kiste	401	
Teufe:	von	388,68		bis :	388,85 m	
Stratigr	aphie:	Unterkre	eide, Mittela	lb		
Karbona	itgeha	l†[%C03	-]		8.1	
C _{ora} -Gel	nalt[%	6]			0.2	
Porositä	t(effel	ktiv)[%]			18.5	
Bulkdich	te (g/ci	m ³]		-	2.20	
scheinb.	Korndi	chte[g/c	m³]		2.69	
Luftper	neabili	tät [mD]			1.1 x 10 ⁻	3

Porenraum:

(

Durch Lösung organogener Bestandteile entsteht zusätzlicher Porenraum.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

.

•

Probe:	Kernmo	ırsch	58	Kiste	407	
Teufe:	von	394,10		bis	394,2	7 m
Stratigr	aphie :	Unterkre	eide, Untera	lb		
Karbona	Itgehal	+[%C0₃²-	1		7.9	1
Cora-Geł	nalt [%]			0.3	•
Porositä	t(effek	tiv)[%]			20.8	
Bulkdich	te[g/cm	3]			2.1	1
scheinb.	Korndic	hte[g/cm	1 ³]		2.6	6
Luftper	neabilit	ät[mD]			5.1 x	10^{-4}

Porenraum:

Anzeichen für sekundäre Porosität in den Tonen (übergroße Poren, die stellenweise die Schichtung durchschlagen). Jüngere Tone in den Poren zeigen, daß diese nicht präparativ beeinflußt sind.

Bemerkungen:

Permeabilität unter gebirgsähnlichen Bedingungen gemessen.

Ę

PORENRAUMBESCHREIBUNG
PROBE: 394,10 - 394,27 m BOHRUNG: K 101
Abbildung Nr: 24 Vergrößerung: 300 × (Negativ)
Beschreibung der Abbildung: Detailaufnahme einer sehr großen Pore
Bei den Neubildungen im Porenraum handelt es sich um Tone
dehnung und der Rand der Pore lassen darauf schließen, daß
es sich um einen herausgelosten organogenen Rest handelt. Daneben treten kleinere Poren, die primärer Porosität zuzu-
ordnen sind, auf.
Porenraumklassifizierung:
große Pore sxS mg MO kleine Pore Pd mc - sms BP

(

Probe:	Kernma	rsch 58	Kiste	1	412	
Teufe:	von	399,24	bis		399,38	m
Stratigr	aphie :	Unterkreide,	Unteralb			
Karbona		3.9				
Corg-Gehalt [%]					0.5	
Porosität(effektiv)[%]					18.4	
Bulkdichte[g/cm³]					2.16	
scheinb.	Korndich	nte[g/cm³]			2.65	
Luftperi	meabilită	it[mD]			./.	

Porenraum:

Neben offensichtlich primären Tonporen treten sekundäre Poren durch herausgelöste organogene Bestandteile auf. Die Porositätswerte schwanken kaum (± 0.4 % absolut).

Bemerkungen:

Die Permeabilität war nicht meßbar, weil die Prüfkörper beim Trocknen zerfielen.

	PORENRAUMBES	CHREIBUNG	
PROBE:	399,24 - 399,33 m	BOHRUNG:	K 101
L			
Abbildur	ng Nr: 26	Negetiv	
Reschrei	bung der Abbildung.	negativ)	
Schräg	(1. u r. o.) laufe	nde Schichtung, we	elliq, Silt-
und Sand	dkörner,organogene Res	ste	,
Porenart	ten:		
- schich primär weiter	htorientiert längsges rer Herkunft, die durc rt sind.	reckte Mesoporen ch Trocknung der 1	vermutlich Probe er-
- durch Megapo	Herauslösung organoge oren (m., r. o.)	ener Reste sekunda	är entstandene
		·	
		•	
Porenra	umklassifizierung:		
80 %	Pd sms BP (präj	parativ erweitert))
20 %	sxS mg MO		

•

ĺ

Probe:	Kernmar	sch 58	Kiste	413
Teufe:	von	399,38	bis	399,45 m
Stratigr	aphie:	Unterkreide, Unte	ralb	
Karbona	6.7			
C _{ora} -Geł		0.3		
Porositä		18.9		
Bulkdich		2.15		
scheinb.	2.65			
Luftperr	neabilitä	t [mD]		n.b.

Porenraum:

Neben primärer Porosität (Tone) sekundäre Poren durch Herauslösen organogener Substanzen.

Bemerkungen:

Der Prüfkörper zerbrach während der Permeabilitätsmessung.

PORENRAUMBESCHREIBUNG					
PROBE: 399,33 - 399,45 m BOHRUNG: K 101					
Abbildung Nr: 28 Vergrößerung: 300 x (Negativ) Beschreibung der Abbildung: Die Aufnahme zeigt eine, von oben nach unten verlaufende, wellige Schichtung der Tone. Auf Grund des Schichtgefüges müssen einige Vertiefungen (l. m., l.) als Ausbruchstellen gedeutet werden, an denen sich Siltkörner befunden haben. Zumindest bei der großen "Vertiefung" r. m. ist an den konkaven Rändern zu erkennen, daß ein Teil dieser "Vertie- fung" nicht durch Präparation entstanden ist. Die kleinen, schichtorientierten Poren sind vermutlich primär entstanden.					
Porenraumklassifizierung: große Poren: Kornausbruch? und Pd Bp (Rand) kleine Poren: Pd mc - sms BP (FE)					

ĺ

Probe:	Kernm	arsch	64		Kiste	45	5
Teufe:	von	437,54			bis	437,65	m
Stratigr	aphie :	Unter	creide,	Untera	lb		
Karbona	Karbonatgehalt [$\% CO_3^{2-}$] 1.3						
Corn-Gehalt [%] 0.7							
Porosität(effektiv)[%] 14.7							
Bulkdichte[g/cm ³] 2.28						3	
scheinb.	Korndi	chte[g/	′cm³]			2.6	7
Luftpern	neabili	tät (mD]		6.	1 x 10	-5

Porenraum:

Nicht erkennbar, da die Probe mit Salzkrusten bedeckt ist. Die Probe zeigt Risse, deren Ursprung nicht in der Präparation liegt (eventuell sedimentäre Schrumpfungsrisse, da makroskopisch bereits Füllungen erkennbar sind).

Bemerkungen:

Die Permeabilität scheint niedriger als erwartet zu sein, weil im REM sichtbare Klüfte durch den Manteldruck geschlossen wurden.

		POREN	RAUMBE	SCH	REIBUN	6	
PROB	E:	437,54 -	437,65 m		BOHRUN	IG:	K 101
[<u>_</u> ,,,,						
	bildupe	Nr. 20			<u></u>		
Ve	ergröße	rung: 60/	600 x	(Neg	gativ)		
Be Ub	eschreib Dersicht	ung der Al mit Rißp	bbildung: porosität				
Di an	ie Tonbi ngelegt	rücken bel und nicht	.egen, daß ausschli	der eßlic	Riß berei ch präpara	ts im tiven	Gebirge Ursprungs
is kö	st. Da v önnen di	veite Teil Le Mikropo	e der Pro bren nicht	be mi eing	t Salzkru Jestuft we	sten k rden.	pedeckt sind,
Po	orenrau	mklassifiz	ierung:				
	Riß: I	d mg SK	(crS)				

•

	PORENRAUMBES	SCHREIBUNG	
PROBE:	437,54 - 437,65 m	BOHRUNG:	K 101
Abbildı Vergrö	ung Nr: 30 Berung: 1100 x	(Negativ)	
Beschro	eibung der Abbildung:		
Organc Kalzit	ogener Bestandteil mit	radialstrahlig ge	wachsenem
Durch werder	die Salzkrusten kann d n.	er Porenraum nich.	t eingestuft
		•	
Porenr	aumklassifizierung:		

(

Probe:	Kernmarsch 68	Kiste	462			
Teufe:	von 450,18	bis	450,31 m			
Stratigro	aphie: Unterkreide, Unter	alb				
Karbonatgehalt [$\% CO_3^{2-}$] 0.6						
Corg-Gehalt [%] 0.9						
Porositä	Porosität(effektiv)[%]					
Bulkdich		2.11				
scheinb.	Korndichte[g/cm³]		2.61			
Luftperr	neabilität [mD]		3×10^{-4}			

Porenraum:

Da große Teile der Probe von Salz bedeckt waren, kann die Art des Porenraumes nur örtlich eingestuft werden. Anzeichen für präparative Auflockerung sind nicht zu sehen.

Bemerkungen:

Die Permeabilität wurde unter simulierten Gebirgsbedingungen gemessen.

	PORENRAUMBES	CHREIBUNG	
ROBE:	450,18 - 450,31 m	BOHRUNG:	K 101
L			
Abbildu	ng Nr: 31		
Abbildu Vergrö Beschre	ng Nr: 31 Berung: 2000 x (ibung der Abbildung:	Negativ)	
Abbildu Vergrö Beschre ^{Großer} zu sehe	ng Nr: 31 Berung: 2000 x (Ibung der Abbildung: Poreneintritt in Toner n.	Negativ) .Daneben sind Hil	croporen
Abbildu Vergrö Beschre ^{Großer} zu sehe	ng Nr: 31 Berung: 2000 x (Ibung der Abbildung: Poreneintritt in Toner n.	Negativ) 1.Daneben sind Hil	croporen
Abbildu Vergrö Beschre ^{Großer} zu sehe	ng Nr: 31 Berung: 2000 x (ibung der Abbildung: Poreneintritt in Toner n.	Negativ) 1.Daneben sind Mil	croporen
Abbildu Vergrö Beschre ^{Großer} zu sehe	ng Nr: 31 Berung: 2000 x (Ibung der Abbildung: Poreneintritt in Toner n.	Negativ) 1.Daneben sind Hil	croporen
Abbildu Vergrö Beschre Großer zu sehe	ng Nr: 31 Berung: 2000 x (ibung der Abbildung: Poreneintritt in Toner n.	Negativ) 1.Daneben sind Hil	croporen
Abbildu Vergrö Beschre Großer zu sehe	ng Nr: 31 Berung: 2000 x (Ibung der Abbildung: Poreneintritt in Toner n.	Negativ) 1.Daneben sind Hil	roporer
Abbildu Vergrö Beschre ^{Großer} zu sehe	ng Nr: 31 Berung: 2000 x (ibung der Abbildung: Poreneintritt in Toner n.	Negativ) 1.Daneben sind Hil	croporer
Abbildu Vergrö Beschre ^{Großer} zu sehe	ng Nr: 31 Berung: 2000 x (ibung der Abbildung: Poreneintritt in Toner n. n. n. umklassifizierung: Pd mc-sms BP	Negativ) 1.Daneben sind Hil	roporer

.

(

Probe:	Kernmo	ırsch	69	Kiste	467		
Teufe:	von	455 , 36		bis	455,46	m	
Stratigr	aphie :	Unte	rkreide,	Unteralb			
Karbonatgehalt [$\% CO_3^{2-}$] 1.9							
C _{ora} -Gel	Cora-Gehalt [%] 0.6						
Porositä	Porosität(effektiv)[%] Ø 18.1						
Bulkdich	Bulkdichte[g/cm³] 2.11						
scheinb.	Korndic	hte[g/c	m³]		2.58		
Luftperi	meabilit	ät[mD]			3.3×10^{-4}	ł	

Porenraum:

Tonporosität und eventuell Kluftporosität. Die Porositätswerte schwanken nicht (< 0.1 %).

Bemerkungen:

 $\left(\right)$

Permeabilität unter simuliertem Gebirgsdruck gemessen.

PORENRAUMBESCHREIBUNG					
PRC)BE: 455,36 - 455.46 m	BOHRUNG:	K 101		
	Abbildung Nr: 32				
	Vergroßerung: 1250 x Beschreibung der Abbildung: Rißporosität Die vollständigen Tonbrück Präparation nicht erweiter Kalzit zu sehen. Neben dem poren in Tonmineralen mit mutlich handelt es sich be reich, in den die Tone nich probe sind (Einfluß des Ri	(Negailv) en zeigen, daß der t wurde. Im Riß ist Riß zeigt das Bild hohem mixed layers i dem Bildausschnit ht repräsent ativ f sses).	Riß durch die neugebildeter typische Ton- Anteil. Ver- t um einen Be- ür die Gesamt-		
	Porenraumklassifizierung: Riß: S ms FR Tonporen: Pd mc BP				

.

(

والمراجع والمراجع					
		PORENRAUMBE	SCHREIBUN	G	
Ρ	ROBE:	455,36 - 455,46	BOHRUN	NG: K	101
	[
			-		
	Abbildung	J Nr: 33			
	Vergröße Beschreib	rung: 200 x	(Negativ)		
	Übersich	t			
	Die groß bruch vo	en Vertiefungen 1. o n Siltkorn entstande	o. und l. u. s en.	ind dur	ch Aus-
	Unter di etwa den	esen Ausbruchstelle gleichen Durchmesse	n liegen Porer er wie die Tor	neintrit nporen r	te, die . o. be-
	sitzen (In der 1	$1 - 5 \mu m$).	les Bildes ist	sekund	ärer
	durch Lö	sung entstandener Po	orenraum anged	leutet.	arcı,
			•		
	Porenrau	mklassifizierung:			
	Pd s x Sm	sms BP sms PB WP			

(

Probe:	Kernmar	sch 69	Kist	e 469
Teufe:	von	457,07	bis	457,19 m
Stratigr	aphie :	Unterkreide,	Unteralb,	Hilssandstein
Karbonatgehalt[%CO3 ²⁻]				0.7
C _{org} -Gehalt [%]				< 0.1
Porosität(effektiv)[%]				35.2
Bulkdichte[g/cm³]				1.72
scheinb. Korndichte[g/cm³]				2.65
Luftpermeabilität [mD]				1400

Porenraum:

Wenig verheilter, intergranularer Porenraum. Die Größe der Einzelporen läßt keine Übersicht im REM zu.

Bemerkungen:

(

Permeabilität unter Laborbedingungen gemessen. Die im Verhältnis zur Porosität niedrige Permeabilität ist durch eine hohe spezifische Oberfläche erklärbar (Glaukonit und eventuell Spülung).
PORENRAUMBESCHREIBUNG	
PROBE: 457,07 - 457,19 m BOHRUNG: K 10	1
Abbildung Nr: 34 Vergrößerung: 130 x (Negativ)	
Beschreibung der Abbildung: Auf den Quarzkörnern ist eine dicke Kruste zu sehen die in der EDX-Analyse kein charakteristisches Ele- ment anzeigt. Es wird vermutet, daß die Kruste zu- mindest zum Teil aus CMC besteht. In der Probe be- findliche Erze sowie ein Teil des Glaukonits zeigen gegenüber dem Quarz nur wenig Belag. In der Mitte des Bildes befindet sich ein herausge- brochener Feldspat.	,

Der Porenraum der Probe ist kaum verheilt.

.

Porenraumklassifizierung:

Pd mg BP

Probe: Kernmarsch 69	Kiste 473
Teufe: von 461,67	bis 461,76 m
Stratigraphie: Unterkreide, C)berapt
Karbona†gehal†[%C03 ²⁻]	13.5
C _{ora} -Gehalt [%]	0.7
Porosität(effektiv)[%]	Ø 16.9
Bulkdichte[g/cm³]	2.24
scheinb.Korndichte[g/cm³]	2.70
Luftpermeabilität [mD]	< 2 x 10 ⁻⁵

Porenraum:

Die Form und Anordnung der Tonporen ist nicht charakteristisch für eine Bildungsart. Die Porositätswerte der Prüfkörper schwankten nur um ± 0.1 % (absolut).

Bemerkungen:

KLINKENBERG-Korrektur unsicher, da der Kern unter Einfluß des Manteldrucks verformt wird.

.

ţ

Probe:	Kernmar	sch 71		Kiste	488
Teufe:	von	474,52		bis 47	4,72 m
Stratigr	aphie :	Unterkreide,	Obera	pt	
Karbona	ıtgehalt	[% C 0 ₃ ²⁻]			20.1
C _{ora} -Gel	halt[%]	-			0.4
Porosität(effektiv)[%]					13.0
Bulkdich	te[g/cm ³]			-	2.37
scheinb.	Korndich	te[g/cm³]			2.73
Luftperi	meabilitä	t[mD]			1 x 10 ⁻⁴

Porenraum:

Überwiegend Tonporosität.

Bemerkungen:

Die Probe zeigte unter Laborbedingungen eine Permeabilität von 1 x 10^{-2} mD (Rißbildung). Der oben angegebene Wert ist bei simulierten Gebirgsbedingungen gemessen.

c r Pd mc BP

Probe:	Kernmar	sch 72		Kiste	495	
Teufe:	von	483,66		bis	483,76	m
Stratigr	aphie :	Unterkrei	de, Oberb	arrême		
Karbonatgehalt [% CO3 ²⁻]				1.5		
Cora-Geł	nalt[%]	-			1.7	
Porositä	t(effekti	v)[%]			10.1	
Bulkdichte[g/cm³]					2.33	
scheinb. Korndichte[g/cm³]					2.59	
Luftpermeabilität [mD]				7.	3 x 10 ⁻	4

Porenraum:

(

Durch eine Salzkruste ist eine Einstufung des Porenraumes nicht möglich. Die sichtbaren Ausschnitte zeigen Anzeichen für sekundäre Porosität (Herauslösung organogener Substanzen). Daneben ist autigener Quarz zu sehen, der den Porenraum reduziert.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

	PORENRAUMBES	CHREIBUNG	
PROBE:	483,66 - 433,76 m	BOHRUNG:	K 101
Abbildu Vergröf Beschre	ng Nr: 37 <mark>Jerung:</mark> 50/250 x (ibung der Abbildung:	Negativ)	
Unter d zu erke	der dicken Salzkruste s ennen, bei denen die gr	sind nur stellenwo roßen Poren überdi	eise Poren urchschnitt-
zu hand stander Porenra	leln, die durch Heraus n sind. In der Übersich num in einem Fossilres	lösung organogene: ht r. u. liegt in t vor.	r Anteile ent- trapratikulärer
Porenro	umklassifizierung:		
Fossi] Detai]	lrest: PpmsWP L: ?sxSmsMO		

Probe:	Kernmar	sch 74	Kiste	504
Teufe:	von	493,26	bis	493,34 m
Stratigr	aphie :	Unterkreide,	Oberbarrême	
Karbona	ıtgehalt	[%C0 ₃ ²⁻]		1.5
Cora-Gehalt [%]				1.9
Porositä	t(effekti	v)[%]		12.5
Bulkdichte[g/cm³]				2.29
scheinb. Korndichte[g/cm³]				2.61
Luftpermeabilität [mD]				1×10^{-2}

Porenraum:

Die Probe war von einer Salzkruste bedeckt. Anzeichen für eine (vermutliche schichtparallele) Auflockerung sind vorhanden (Vertiefungen in der Salzkruste).

Bemerkungen:

Permeabilität unter Laborbedingungen gemessen, weil die Probe zu stark aufgelockert war und bei Druckbelastung zerfallen wäre.

77

	}	PORENRA	UMBESC	HREIBUNG	
PROE	3E :	493,26 - 4	93,34 m	BOHRUNG:	K 101
Γ	÷.p.,=** ,,,				
	bhildung	Nr. 39			
Ve	ergrößer: eschreibur	ung: 1500 x ng der Abbi	(N Idung:	egativ)	
Sa Ei	alzkrusten ne Besch	n. reibung des	Porenraum	nes ist nicht mö	balich.
					5
Po	orenraum	klassifizieru	Jng:		
-					

.

(

Probe:	Kernmarsch 75	Kiste	514
Teufe:	von 501,15	bis	501,26 m
Stratigr	aphie: Unterkreide, Oberb	arrême	
Karbona	.tgehalt[%C03 ²⁻]		7.6
C _{ora} -Geł	nalt[%]		0.9
Porositä	t(effektiv)[%]		15.3
Bulkdich	te[g/cm³]	10	2.24
scheinb.	Korndichte[g/cm³]		2.65
Luftperr	neabilität [mD]		6 x 10 ⁻⁶

Porenraum:

Salzkruste, keine Einschätzung des Porenraumes möglich.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen messen.

.

	PORENRAUMBES	HREIBUNG	
PROBE:	501,15 - 501,26 m	BOHRUNG:	K 101
Abbildun Vergröße	g Nr: 40 erung: 500 x (N	legativ)	
Übersicht	oung der Abbildung: :		
Durch die Probe erk	e Salzkruste sind keine ennbar.	e Einzelheiten de	er
Porenrau	mklassifizierung:		

ĺ

Ć

PORENRAUMBESCHREIBUNG
PROBE: 501,15 - 501,26 m BOHRUNG: K 101
Abbildung Nr. 41
Vergrößerung: 1000 x (Negativ) Beschreibung der Abbildung:
Framboidaler Pyrit Der Pyrit nimmt in fast allen Fällen keinen Salzbelag an.
ber fyffe fillade in fabe affen faffen keinen barskerag anv
Porenraumklassifizierung:

Probe:	Kernm	arsch ⁷⁶	Kiste	518
Teufe:	von	509 , 97	bis	510,08 m
Stratigr	aphie :	Unterkreide,	Mittelbarrên	ne
Karbona	itgehal	t[%C03 ²⁻]		3.0
C _{ora} -Gel	nalt[%]		2.9
Porositä	t(effek	:tiv)[%]		17.0
Bulkdich	te (g/cm	1 ³]		2.17
scheinb.	Korndia	chte[g∕cm³]		2.62
Luftperi	meabili	tät (mD)		6.2×10^{-4}

Porenraum:

Salzkruste, keine Einschätzung möglich. Die Korndichte fällt auf Grund des hohen C_{org}-Gehaltes sehr niedrig aus.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

Probe: Kernm	arsch 79	Kiste	531
Teufe: von	520,84	bis	520,92 m
Stratigraphie:	Unterkreide,	Mittelbarrên	ne
Karbonatgeha	l†[%C03 ²⁻]		2.0
Cora-Gehalt [%	5]		4.0
Porosität(effel	(tiv)[%]		17.5
Bulkdichte[g/cm	n ³]	ب ب	2.17
scheinb. Korndi	chte[g∕cm³]		2.63
Luftpermeabili	1.6		

Porenraum:

Unter der Salzkruste ist keine Einschätzung des Porenraumes möglich. Übergroße Poren im Ton sind aber angedeutet.

Bemerkungen:

Die Permeabilität kann durch Risse beeinflußt sein, obwohl unter simulierten Gebirgsbedingungen gemessen wurde. Der Prüfkörper zerfiel nach der Permeabilitätsmessung vollständig.

		PORENRAL	JMBESC	HREIBUNG	
PR	OBE:	520,84 - 52	0,92 m	BOHRUNG:	K 101
				······································	
	Abbildung Vergröße] Nr: 44 rung: 1500 x	(N	egativ)	
	Unter ein	ung der Abbilo ner dicken Sal	j ung: .zkruste s	sind Tonbrücken	zu sehen.
	Die Verti große Pom	iefungen sowie cendurchmesser	e die Brüc hin.	cken weisen auf	relativ
	Porenrau	mklassitizierui	ıg:		

Ć

Probe:	Kernmo	Irsch 81	Kiste	551	
Teufe:	von	532,68	bis	532,79	m
Stratigr	aphie :	Unterkreide, N	Mittelbarrême	è	
Karbona	itgehal [.]	+[%CO ₃ ^{2−}]		1.5	
C _{ora} -Gehalt [%]				2.1	
Porosität(effektiv)[%]				13.4	
Bulkdich	te[g/cm	3]		2.28	
scheinb.	Korndic	hte[g∕cm³]		2.63	
Luftpermeabilität [mD]				5.0	

Porenraum:

Kein Porenraum erkennbar (Salzkruste).

Bemerkungen: Riß

Der Prüfkörper zerfiel nach der Permeabilitätsmessung. Es ist daher Rißbildung als Ursache für die hohe Permeabilität wahrscheinlich.

87

PORENRAUMBESCHREIBUNG	
PROBE: 532,68 - 532,79 m BOHRUNG: K 101	
Abbildung Nr: 45 Vergrößerung: 1000/3000 x (Negativ)	
Beschreibung der Abbildung:	`
Framboidaler Pyrit und Salzkruste.	
Porenraumklassifizierung:	

.

ĺ

Probe:	Kernm	arsch	82	Kiste	557	
Teufe:	von	543,57		bis	543,67 1	m
Stratigro	aphie:	Unter	kreide,	Unterbarrême		
Karbona	tgehal	l†[%C0) ²⁻]		10.1	
Coro-Gehalt [%]			2.9			
Porosität(effektiv)[%]					14.1	
Bulkdicht	e[g/cn	n ³]			2.20	
scheinb. H	Korndi	chte[g/	cm ³]		2.56	
Luftperm	neabili	tät (mD]		./.	

Porenraum:

Unter der Salzkruste sind stellenweise Tonporen zu sehen. Eine vollständige Beschreibung ist nicht möglich. Durch den hohen C_{org}-Gehalt ist die Korndichte sehr niedrig.

Bemerkungen:

Der Prüfkörper zerfiel bei der Trocknung, daher keine Permeabilitätsmessung möglich.

89

	PORENRAUMBESCHREIBUNG
PROBE:	543,57 - 543,67 m BOHRUNG: K 101
Abbildun	g Nr: 46
Vergröße Beschreit	erung: 125 x (Negativ) bung der Abbildung:
Unter de bar. Die	er dicken Salzkruste ist kein Porenraum beschreib- e Salzkruste deutet die Schichtung an (präparative
Auflocke	erung ?)
Porenrau	mklassifizierung:
	······································

.

(

PORENRAUMBESCHREIBUNG
PROBE: 543,57 - 543,67 m BOHRUNG: K 101
-
Abbildung Nr: 47 Vergrößerung: 400 x (Negativ)
Beschreibung der Abbildung:
Poreneintritt in Tonen (l., u., o.) Der große Porenkanal in der Mitte ist von Salzkrusten
überzogen. In den Tonen links sind schichtparallel ange- ordnete Mikroporen sichtbar.
·
Porenraumklassifizieruna:
Mikroporen links: Pd mc BP

Ć

Probe:	Kernmar	sch	84		Kiste	5	570
Teufe:	von	554 , 98	}	İ	bis	555	5,09 m
Stratigre	aphie :	Unterk	reide,	Unterb	arrên	ne	
Karbona	tgehalt	[%C03 ^{2.}	-]				2.2
C _{ora} -Gehalt [%]							0.8
Porosität(effektiv)[%]					ý	ý -	14.1
Bulkdicht	te[g/cm ³]						2.30
scheinb.	Korndich	te[g/cr	л ³]				2.68
Luftpermeabilität [mD]							./.

Porenraum:

Die Salzkruste ermöglicht keine Deutung des Porenraumes. Die Porosität der Prüfkörper zeigt Schwankungen von bis zu ± 0.4 % (absolut).

Bemerkungen:

Die Prüfkörper zerfielen während der Trocknung. Keine Permeabilitätsmessung möglich.

92

PORENRAUMBESCHREIBUNG

PROBE:

554,98 - 555,09m BOHRUNG: K 101

Abbildung Nr: 48 Vergrößerung: 750 x (Negativ) Beschreibung der Abbildung:

Während weite Teile der Probe von Salz bedeckt sind, tritt der framboidale Pyrit deutlich hervor. Anhand von Größe und Ausbildung der Aggregate sowie der Einzelkörner kann eine unterschiedliche zeitliche Entstehung abgeleitet werden. Der Pyrit reduziert den Porenraum und teilt ihn in mehrere Einzelporen auf, deren Durchmesser aber mit großer Sicherheit nicht repräsentativ für die Probe ist.

Porenraumklassifizierung:

c r Sm ms BP (zwischen den Pyriten)

Probe: Kernmarsch 89 Kiste 613 bis 597,01 m Teufe: von 596,86 Stratigraphie: Unterkreide, Oberhauterive Karbonatgehalt [$\% CO_3^{2-}$] 9.3 C_{org}-Gehalt [%] 0.7 Porosität(effektiv)[%] 13.6 Bulkdichte[g/cm³] 2.31 2.68 scheinb. Korndichte[g/cm³] 5.4 x 10^{-4} Luftpermeabilität [mD]

Porenraum:

Keine genaue Einstufung möglich (Salzkruste).

Bemerkungen:

Permeabilität unter Gebirgsdruck gemessen.

	PORE	INRAUMBESC	HREIBUNG	
F	ROBE: 596,36- 597,01 m	parallel zur Schicht	BOHRUNG:	K 101
	Abbildung Nr: Vergrößerung: 1 Beschreibung der Schichtoberfläc	49 50 x (N r Abbildung: che	legativ)	
	Auch hier erlau des Porenraumes	ıbt die Salzkrus 5.	te keine Einstu:	īung
	Porenraumklass	ifizierung:		

PORENRAUMBESCHREIBUNG

PROBE: 596,86- senkrecht zur BOHRUNG: K 101 597,01 m Schicht

Abbildung Nr: 50 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: Im oberen rechten Bildabschnitt ist unter der Salzkruste die Probenstruktur erkennbar. In diesem Abschnitt liegen Mikroporen im Ton vor.

Aufnahme senkrecht zur Schicht.

Porenraumklassifizierung:

mc BP

Probe:	Kernm	arsch	91	Kist	5	629	
Teufe:	von	611,02		bis	e	511,1	3 m
Stratigr	aphie:	Unterk	reide,	Unterhauter	cive	9	
Karbona	tgehal	.†[%C03	-]			35.2	
Cora-Geł	nalt[%	5]				0.3	
Porositä	t(effek	(tiv)[%]		minima	al	5.4	
Bulkdich	te (g/cn	n ³]			ø	2.5	1
scheinb.	Korndia	chte[g/ci	п ³]			2.7	1
Luftperr	neabili	tät [mD]			<	5 x	10-3

Porenraum:

Neben Tonporen tritt sekundäre Porosität im Karbonat auf. Die REM-Untersuchung zeigt schichtparallele Auflockerung, die sich auch in den Porositätswerten bestätigt $(5.4 - 10.6 \%, \emptyset 7.4 \%).$

Bemerkungen:

Die stark schwankenden Porositäten zeigen Rißbildung an. Hierfür spricht auch die, bei der Permeabilitätsmessung beobachtete Verformung der Probe.

Sie ist die Ursache dafür, daß die KLINKENBERG-Korrektur nicht möglich war.

PROBE: 611,02 - 611,13 m BOHRUNG: K 101	PROBE: 611,02 - 611,13 m BOHRUNG: K 101 BOHRUNG: K 101 BOHRUNG: K 101 Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenaten auf: Die großen Vertiefungen r. o. und r. u. sind vermutlice Ausbruchstellen von sparitischem Kalvit Die kleineren Poren (bis ca. 4 µm) sind vor allem auf torientiert. Die kleineren Poren (bis ca. 4 µm) sind vor allem auf torientiert. Rund von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP		PORENRAUMBES	CHREIBUNG	
Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP	Abbildung Nr: 51 Vergrößerung: 500 × (Negafiv) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: Die großen Vertiefungen r. o. und r. u. sind vermutlio Ausbruchstellen von sparitischem Kalzit Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. Die kleineren Doren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP	PROBE:	611,02 - 611,13 m	BOHRUNG:	K 101
Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP	Abbildung Nr: 51 Vergrößerung: 500 × (Negafiv) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischen Kalzit Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. Die kleineren Foren finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. 70 % Pd mc - sms BP 30 % sx S mc BP				
Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP	Abbildung Nr: 51 Yergrößerung: 500 × (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % sx S mc BP				
<pre>Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar.</pre>	Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP				
Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x 5 mc BP	Abbildung Nr: 51 Vergrößerung: 500 x (Negafiv) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: • Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit • Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. • Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP				
Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP	Abbildung Nr: 51 Vergrößerung: 500 × (Negafiv) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: • Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit • Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. • Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % sx S mc BP				
<pre>Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar.</pre>	<pre>Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar.</pre>				
Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP	<pre>Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. 70 % Pd mc - sms BP 30 % s x S mc BP</pre>				
<pre>Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar.</pre>	<pre>Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. 70 % Pd mc - sms BP 30 % s x S mc BP</pre>				
<pre>Abbildung Nr: 51 Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>	<pre>Abbildung Nr: 51 Vergrößerung: 500 x (Negafiv) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>				
<pre>Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>	<pre>Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>	Abbildun	u Nr : 51		
<pre>Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>	<pre>Beschreibung der Abbildung: In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>	Vergröße	erung: ⁵⁰⁰ x (Negativ)	
<pre>In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: Die großen Vertiefungen r. o. und r. u. sind vermutlice Ausbruchstellen von sparitischem Kalzit Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>	<pre>In einer tonig-karbonatischen Matrix fallen mehrere Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>	Beschreib	ung der Abbildung:	-	
 Porenarten auf: Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP 	<pre>Porenarten auf: - Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit - Die kleineren Poren (bis ca. 4 µm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. - Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP</pre>	In einer	tonig-karbonatischer	n Matrix fallen m	ehrere
 Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit Die kleineren Poren (bis ca. 4 μm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP 	 Die großen Vertiefungen r. o. und r. u. sind vermutlic Ausbruchstellen von sparitischem Kalzit Die kleineren Poren (bis ca. 4 μm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schicht- orientiert. Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP 	Porenart	en auf:		
 Die kleineren Poren (bis ca. 4 μm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schichtorientiert. Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP 	 Die kleineren Poren (bis ca. 4 μm) sind vor allem auf tonige Abschnitte beschränkt und deutlich schichtorientiert. Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP 	- Die gr Ausbru	oßen Vertiefungen r. Chstellen von spariti	o. und r. u. sind schem Kalzit	d vermutlic
 Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP 	 Am Rand von Karbonatkörnern finden sich Mikroporen, di auf Unkristallisationen des Karbonates hinweisen. R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP 	- Die kl tonige orient	eineren Poren (bis ca Abschnitte beschränk iert.	1. 4 μ m) sind vor at und deutlich so	allem auf chicht-
R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP	R. u. im Bild ist Pyrit erkennbar. Porenraumklassifizierung: 70 % Pd mc - sms BP 30 % s x S mc BP	- Am Ran auf Un	d von Karbonatkörnerr kristallisationen des	n finden sich Mik: 5 Karbonates hinwe	roporen, die eisen.
Porenraumklassifizierung: 70% Pdmc - sms BP 30% s.x.S.mc BP	Porenraumklassifizierung: 70% Pdmc-smsBP 30%sxSmc BP	R. u. im	Bild ist Pyrit erker	nbar.	
70% Pdmc-sms BP 30% sxSmc BP	70 % Pd mc - sms BP 30 % s x S mc BP	Porenrau	mklassifizierung:		
30% sxSmc BP	30% sxS mc BP	70 %	Pd mc - sms BP		
		30 %	sxSmc BP		

ſ

C

Probe: Kernmarsch 91 Teufe: von 613,05 m (Bruchstück) bis Stratigraphie: Unterkreide, Unterhauterive Karbonatgehalt [% CO₃²⁻] C_{org}-Gehalt [%] Porosität(effektiv)[%] Bulkdichte[g/cm³] nicht gemessen scheinb. Korndichte[g/cm³] Luftpermeabilität[mD]

Porenraum:

Sekundäre Porosität (übergroße Poren, mit Lösungssäumen) in karbonatischen Bestandteilen.

Bemerkungen:

Sonderprobe

99

	PORENRAUMB	ESCHREIBUNG	
PROBE:	613,05 m	BOHRUNG:	K 101
			
	<u></u>		
Abbildun Vergröße Beschreit Sekundär große Po durch Ko In der u Durchmes eindeuti	g Nr: 52 erung: 1000 x oung der Abbildung: se Porosität in ein ore in der Bildmitt ornausbruch entstan anteren Bildhälfte sser zu sehen, dere og festlegbar ist.	(Negativ) em tonigen Probenab e kann ihrer Form n den sein. sind Tonporen mit g n genetische Entste	schnitt. Die ach nicht eringerem hung nicht
Porenra l große	I mklassifizierung: Pore S ms BP P (?)sms BP		

Probe:	Kernmars	ch	92	Kiste	641	
Teufe:	von 621	,61		bis	621,69	m
Stratigraphie: Unterkreide, Unterhauterive						
Karbonatgehalt[%C03 ²⁻]				13.1		
Cora-Get	nalt[%]				0.4	
Porosität(effektiv)[%]			minimal	8.6		
Bulkdichte[g/cm³]			ø	2.39		
scheinb. Korndichte[g/cm³]				2.72		
Luftpermeabilität [mD]					./.	

Porenraum:

Aus den REM-Aufnahmen ist nicht zu erkennen, daß die Probe bei der Untersuchung stark aufgelockert war. Weitere Schlüsse läßt die dicke Salzkruste auf der Probe nicht zu.

Die Porositätswerte liegen zwischen 8.6 und 13.8 % mit einem Mittelwert von 12.0 %.

Bemerkungen: schwankende Porositätswerte Die Probe zerfiel bei der Trocknung vollständig! Hierdurch war keine Permeabilitätsmessung möglich. Auch die Porositätswerte zeigen Rißbildung an.

101

PORENRAUMBESCHREIBUNG						
PROBE:	621,61 - 621,69	m BOHRUN	G: K 101			
Abbildur	ng Nr: 53					
Vergroß Beschrei	erung: 200 x bung der Abbildung:	(Negativ)				
Die Sal:	zkruste zeichnet deut	tlich die Schic	ntung nach			
(l. u paralle	- r. o.). Es ist anzu l zur Schichtung aufg	unehmen, daß die gelockert ist.	e Probe			
		-				
Porenra	umklassifizierung:					

Probe:	Kernmarsch 94		94	Kiste	659	
Teufe:	von	637,04		bis	637 , 13	m
Stratigre	aphie :	Malm,	Oberer	Korallenooli	th	
Karbonatgehalt[%C03 ²⁻]					54.9	
Cora-Gehalt [%]					0.1	
Porosität(effektiv)[%]			minimal	15.6		
Bulkdichte (g/cm³)				ø	2.26	
scheinb. Korndichte[g∕cm³]					2.71	
Luftpermeabilität (mD]					5.0	

Porenraum:

Die schon makroskopisch sichtbare Porosität ist im REM wegen der Größe der Einzelporen nicht vollständig zu erfassen. Unterschiedliche Porositätswerte bei den Prüfkörpern sind mit den Befunden gut zu korrelieren, weil die großen Poren auf einzelne Lagen beschränkt sind. Die vielen idiomorphen Neubildungen im Porenraum sind ebenfalls Anzeichen für eine gute Porosität.

Streubreite: 15.6 - 17.4 % Mittelwert: 16.5 %

Bemerkungen:

Die Permeabilität von 5 mD wurde am Prüfkörper mit 17.4 % Porosität unter gebirgsähnlichen Druckverhältnissen gemessen.

Probe:	Kernm	arsch	96	Kiste	677
Teufe:	von	653 , 83		bis	653,90 m
Stratigr	aphie:	Malm,	Oberer	Korallenool	lith
Karbona	ıtgeha	lt[%CO	²⁻]		52.5
C _{ora} -Geł	nalt[%	5]			0.1
Porositä	t(effel	(tiv)[%]		minimal	12.1
Bulkdich	te (g/cr	n ³]		ø	2.37
scheinb.	Korndi	chte[g/a	:m³]		2.74
Luftperr	neabili	tät [mD]]		4.9×10^{-3}

Porenraum:

Sehr unregelmäßig verteilt. Während die Eisenkarbonate offensichtlich für die Porosität verantwortlich sind, besitzt die aus Kalzit gebildete, sparitische Matrix keinen sichtbaren Porenraum.

Die minimale Porosität muß als wahrscheinlich angenommen werden, da die Poren im Verhältnis zum Probenkörper zu groß sind. Porosität der Einzelprüfkörper: 12.1 - 14.5 % Mittelwert: 13.5 %

Bemerkungen:

P	PORENRAUMBES	CHREIBUNG	
PROBE:	653,83 - 653,90 m	BOHRUNG:	K 101
Abbildung N	Nr: 58	N	
Vergroßeru Beschreibun	ng: 50/150 x (a der Abbilduna:	Negativ)	
Ooidrand u Bildabschn	und dichte, kalzitis nitt ist die Zunahme	sche Matrix. Im u e des Porenraumes	interen s im ton-

Ooidrand und dichte, kalzitische Matrix. Im unteren Bildabschnitt ist die Zunahme des Porenraumes im tonhaltigen Bereich zu sehen. Der Anteil eisenschüssiger Minerale ist im REM-Bild nicht erkennbar. Die EDAX-Analyse zeigt in fast jedem Analysenbereich Eisen an.

Porenraumklassifizierung:

(

c r Pd ms BP/BC

PORENRAUMBESCHREIBUNG

PROBE: 653,83 - 653,90 m BOHRUNG: K 101

Abbildung Nr: ⁶⁰ Vergrößerung: _{600 x} (Negativ) Beschreibung der Abbildung:

Porenraum in einem Zwickel zwischen toniger und karbonatischer Matrix. In der linken Bildhälfte ist neben Chlorit und Siderit ein framboidaler Pyrit zu sehen. Der Porendurchmesser beträgt mehr als 50 µm.

Porenraumklassifizierung:

c r Pd mg - ms BP/BC

Probe:	Kernmarsch	96	Kiste	680
Teufe:	von 655,99		bis	656,06 m
Stratigr	aphie: Malm,	Oberer	Korallenooli	th
Karbona	itgehalt [% CO	²⁻]		34.7
C _{ora} -Gel	nalt[%]	-		0.5
Porositä	t(effektiv)[%]			7.3
Bulkdich	te[g/cm³]			2.51
scheinb.	Korndichte[g/i	cm ³]		2.71
Luftperi	neabilität (mD]		./.

Porenraum:

Unter einer dicken Salzkruste sind Struktur und Größe der Poren nicht zu ermitteln. Anzeichen für eine präparative Auflockerung der Probe sind nicht erkennbar.

Bemerkungen:

Der Kern zerfiel nach dem Einbau in das Permeameter unter Druckwirkung.

	PORENRAUMBES	CHREIBUNG	
PROBE:	655,99 - 656,06 m	BOHRUNG:	K 101
	,,,,,,,		
			-
Abbildur Veraröß	ng Nr: 61	Nenativ)	
Beschrei	bung der Abbildung:	neguni į	
In der messer Eine ge	Salzkruste liegen Pore dem wahren Porendurchm enetische Einstufung de	eneintritte, dere nesser nahe komme es Porenraumes is	en Durch- en dürfte. st nicht
möglich	1.		
Porenrai	umklassifizierung:		
	mc - sms		

.

(

Probe: Kernmarsch Kiste 96 686 Teufe: von 661,66 bis 661,80 m Stratigraphie: Malm, Oberer Korallenoolith Karbonatgehalt [$\% CO_3^{2-}$] 53.0 Corg-Gehalt [%] 0.3 Porosität(effektiv)[%] 12.9 / 17.8 / 19.1 Bulkdichte(g/cm³) 2.30 / 2.20 / 2.20 scheinb. Korndichte[g/cm³] 2.71 (2.69) 1.2 x 10⁻¹/115/130 Luftpermeabilität [mD]

Porenraum:

Die Einzelporen sind für eine Beschreibung im Elektronenmikroskop zu groß.

Bemerkungen:

Auf Grund der Porengröße zeigten alle drei Prüfkörper unterschiedliche Porositäten und Permeabilitäten (s. Abb. im Text). Die Permeabilität ist bei simulierten Gebirgsbedingungen gemessen.

	PORENRAUMBES	CHREIBUNG	
PROBE:	661,66 - 661,80 m	BOHRUNG:	K 101
Abbildun	g Nr: 62		
Vergröße Bassbraib	erung: 100/300 x (Negativ)	
Detail e	iner Großpore		
Um den k Kalzitge	arbonatischen Zement	ist eine jüngere	
Anhand d	er Aufnahmen läßt sic	h nicht erkennen	, ob sich
die Pore	n unterhalb der Bilde	bene verjüngern.	
Porenrau	ımklassifizierung:		
с	r Pd mg BP		

Ć

	PORENRAUMBESC	HREIBUNG	
PROBE:	661,66 - 661,80 m	BOHRUNG:	K 101
Abbildun Vergröße Beschreib	g Nr: ⁶³ erung: ^{30 x} (N bung der Abbildung:	legativ)	
Übersich	t		
In der k befinden 200 μm)v Karbonat	arbonatischen Matrix z sich neben einer Anza iele kleinere Einzelpo ist sehr unvollständi	wischen den Ooio hl von Großpore oren. Die Zement	den n (bis zu ation mit
Poren üb im REM n	er 200 µm liegen in de icht gemessen werden.	r Probe vor, kö	nnen aber
Porenrau	mklassifizierung:		
60 % 40 %	c r Pd mg BP c r Pd ms BP		

Probe: Kernmarsch 98	Kiste 703
Teufe: von 676,25	bis 676,38 m
Stratigraphie: Malm, Ober	er Korallenoolith
Karbonatgehalt[%CO3 ²⁻]	37.5
C _{ora} -Gehalt [%]	0.2
Porosität(effektiv)[%]	minimal 5.3
Bulkdichte[g/cm³]	2.53
scheinb. Korndichte[g/cm³]	2.72
Luftpermeabilität [mD]	3.5×10^{-4}

Porenraum:

Die Probe ist von einer dicken Salzkruste überzogen, deren Struktur schichtparallele Auflockerung andeutet. Die Porosität schwankt zwischen 5.3 und 7.9 % mit einem Mittelwert von 7.0 %.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

117

	PORENRAUMBE	SCHREIBUN	16
PROBE:	676,25 - 676,38 m	BOHRU	NG: K 101
Abbildur	חם אר : 64		
Vergröß	Serung: 1500 x	(Negativ)	
Beschrei	bung der Abbildung:		
Poreneir	ntritt unter der Salz	kruste.	
		-	
Porenra	umklassifizierung:		
Porenra	umklassifizierung:		

(

(

Probe:	Kernmar	sch 99	Kiste	711
Teufe:	von	683,70	bis	683,77 m
Stratigr	aphie:	Malm, Oberer	Korallenooli	ith
Karbona	ıtgehalt ([% C 0 ₃ ²⁻]		26.8
C _{ora} -Geł	nalt[%]			0.3
Porositä	t(effekti	v)[%]		8.9
Bulkdichte[g/cm³]			·	2.47
scheinb.	Korndich	te[g/cm³]		2.71
Luftperi	meabilitä	t[mD]	9	9.3×10^{-3}

Porenraum:

Salzkruste, keine Auflockerung feststellbar.

Bemerkungen:

,	ومحمد أوروي بهرج بالمتباع مشتر فتراف والأكاف كالمتحدث الأباب		
	PORENRAUMBES	CHREIBUNG	
PROBE:	633,70 - 683,77 m	BOHRUNG:	K 101
Abbildun Vergröße Beschreit	g Nr: 65 erung: 1000 x (N	Vegativ)	
Vermutli	ch präparativ entstand	lener Riß in eine	r
Schichtf über den	Euge. Die Salzkruste lä n Porenraum zu.	ißt keine Aussage	n
Porenrau	ımklassifizierung:		

C

(

Probe:	Kernm	arsch	100	Kiste	718
Teufe:	von	690,23		bis 6	90,35 m
Stratigr	aphie:	Malm,	Mittlerer	Koralleno	olith
Karbona	itgeha	l†[%C03	-]		22.4
C _{ora} -Gel	nalt[%	6]			0.2
Porositä	t(effe	ktiv)[%]		ø	13.9
Bulkdich	te (g/ci	т ³]		ø	2.54
scheinb.	Korndi	chte[g/c	m³]	ø	2.95
Luftperr	neabili	tät [mD]		2	1.3×10^{-2}

Porenraum:

Durch Karbonateinschaltungen konnten keine Prüfkörper innerhalb einer Schicht genommen werden. Die Einzelwerte lauten:

1.	14.4	00	Korndichte:	2.93
2.	12.8	90		2.90
3.	13.5	00		3.01

Bemerkungen:

PORENRAUMBESCHREIBUNG
PROBE: 690,23 - 690,35 m BOHRUNG: K 101

Abbildung Nr: 66 Vergrößerung: 1000 x (Negativ)
Beschreibung der Abbildung:
Mikroporen in der Matrix
Außerhalb der Salzkruste (rechts) sind auffallend runde Poren in der tonigen Matrix zu sehen
(Durchmesser 1 - 6 μ m).
Porenraumklassifizierung:
P (?) sms BP

 (\cdot)

	PORENF	AUMBESC	HREIBUNG	
PROBE	: 690,23 -	690,35 m	BOHRUNG:	K 101
[
L				
Abb Ver	ildung Nr: 67 größerung: 60	/300 x (N	legativ)	
Besc Prä _l	hreibung der Al	bildung: kerung der P	robe am Rand ein	nes Ooides
und "Poi	in der Matrix. ren" Längen von	Während die bis zu 400	präparativ erwo µm zeigen, liego	eiterten en in der
Mati	rix lediglich k	leinere Pore	n vor (bis 20 μι	n).
Por	enraumklassifizi	erung:		
aı	ıßer präparativ	erweiterten	Poren:	
	P (?) m	s BP		

(

(

Probe:	Kernmo	ırsch	100	Kiste	722	
Teufe:	von	693,34	1	bis	693,48	m
Stratigraphie: Malm, Mittlerer Korallenool						
Karbonatgehalt [% CO ₃ ²⁻]					21.4	
Corg-Gehalt [%]					0.5	
Porosität(effektiv)[%]					11.5	
Bulkdichte[g/cm³]					2.41	
scheinb. Korndichte[g/cm³]					2.72	
Luftperi	meabilit	ät (mD]	2.5 x	10 ⁻²	

Porenraum:

ŧ

Zwickelporen im Karbonat, stark reduzierte Tonporosität.

Bemerkungen:

Probe:	Kernm	arsch	102	Kiste	738
Teufe:	von	707,24		bis	707,30 m
Stratigraphie: Malm, Mittlerer Korallenoolith					
Karbonatgehalt[%C03 ²⁻]				15.2	
Cora-Gehalt [%]					0.1
Porosität(effektiv)[%]				ø	19.3
Bulkdichte[g/cm³]			ø	2.40	
scheinb. Korndichte[g/cm³]			2.88 -	- 3.09	
Luftpermeabilität [mD]				2.0	$x 10^{-1}$

Porenraum:

Durch unvollständiges Quarzwachstum (stellenweise durch Chlorit gestoppt) liegt die Porosität sehr hoch. Auch hier waren die Prüfkörper nicht repräsentativ, bei annähernd gleichbleibender Porosität schwankt die Korndichte stark.

Bemerkungen:

30 % c r Pd mg BP 70 % c r Pd ms BP

		PORENRAUMBE	SCHREIBUNG	
P	ROBE:	707,24 - 707,30 m	BOHRUNG:	K 101
			,	
	Abbildu Veraröl	ng Nr: 70 Jerung: ^{800 x}	(Negativ)	
	Beschre	ibung der Abbildung:		
	Chlori Auch i	t und Quarz n diesem Beispiel ist	das Quarzwachstum	n durch
	Chlori des Ch	tbildung gehemmt. Wäh loritüberzuges ohne S	rend der Quarz auf törung weiter gewa	Serhalb Achsen ist,
	reichte aus, u	en an anderen Stellen m das Quarzwachstum z	schon wenige Chlor u stoppen.	it-"Blätter",
	2			
	Porenro	iumklassifizierung:		

(

(

ł

		PORENRAUMBES	CHREIBUNG	
PR	OBE:	707,24 - 707,30 m	BOHRUNG:	K 101
	Abbildun	a Nr: 72		
	Vergröße Beschreit	erung: 1000 x (buna der Abbilduna:	Negativ)	
	Chlorita hat sich	nggregat auf autigenem 1 ein Eisensulfid (Pyr	Quarz. Auf dem (Chlorit) ge-
	bildet.			
	Porenrau	mklassifizierung:	•	

.

(

(

130

Probe:	Kernma	ırsch	102	Kiste		740	
Teufe:	von	708,77	7	bis	7	708,91	m
Stratigr	aphie :	Malm,	Mittlerer	Korallen	00]	lith	
Karbonatgehalt[%C03 ²⁻]						17.4	
Cora-Gehalt [%]						0.1	
Porosität(effektiv)[%]					ø	15.6	
Bulkdichte[g/cm³]					2.47	7	
scheinb. Korndichte[g/cm³]						2.92	2
Luftpermeabilität [mD]					1	.3 x 1	0-2

Porenraum:

Unvollständige Zementation durch Chloritwachstum. Die Porosität der Prüfkörper zeigte nur geringe Schwankungen (± 0.2 %).

Bemerkungen:

(

Probe:	Kernmarsch	102	Kiste	7	746	
Teufe:	von 714,33		bis	714	4,41	m
Stratigr	aphie: Malm,	Unterer	Korallenoo	olti	Lh	
Karbona	tgehalt [% C O_3^2	-]		4	41.7	7
Cora-Gel	nalt[%]			0.1		
Porositä	t(effektiv)[%]		ø	12.8	3	
Bulkdich	te[g/cm³]				2.4	19
scheinb.	Korndichte[g/c	m³]			2.8	36
Luftperr	neabilität [mD]			3.2	x	10-2

Porenraum:

In der karbonatischen Matrix ist gegenüber den vorhergehenden Proben die Porosität stark reduziert. Die Einzelwerte für die Porosität wichen nur gering vom Mittelwert ab (± 0.6 % absolut).

Bemerkungen:

Porenraumklassifizierung:

Probe:	Kernmarsch	105	Kiste	774
Teufe:	von 739,5	7	bis	739,62 m
Stratigraphie: Malm, Unterer Korallenoolith				
Karbona		13.8		
C _{ora} -Geł	nalt [%]		1.5	
Porositä	t(effektiv) [%		17.6	
Bulkdichte[g/cm³]				2.17
scheinb.	Korndichte[g		2.64	
Luftperr		./.		

Porenraum:

Salzkruste, Porenraum nicht sichtbar. Die Probe zeigte Rißbildung.

Bemerkungen:

Die Permeabilität konnte nicht gemessen werden, weil die Prüfkörper bei Erhöhung des Manteldruckes zerfielen. Vorher war bereits Rißbildung zu sehen.

Abbildung Nr: 76 Vergrößerung: 200 x (Negativ) Beschreibung der Abbildung:

Unter der dicken Salzkruste ist Porosität in Form von schichtparallelen Rissen angedeutet. Ob die Öffnung der Risse erst während der Präparation stattfand, läßt sich in diesem Bild nicht sicher festlegen.

Vereinzelt sind unter der Salzkruste Poreneintritte zu sehen (r. u.).

Porenraumklassifizierung:

Probe:	Kernmarsch	106	Kiste	781	
Teufe:	von 744,83		bis	744,89 m	
Stratigr	aphie: Malm, M	Unterer	Korallenool	ith	
Karbonatgehalt [$\% CO_3^{2-}$] 15.5					
Cora-Gehalt [%]					
Porosität(effektiv)[%] 15.7					
Bulkdichte[g/cm ³] 2.28					
scheinb. Korndichte[g/cm ³] 2.7					
Luftperr	neabilität [mD]			./.	

Porenraum:

(

()

In der dicken Salzkruste ist gut die schichtparallele Auflockerung der Probe zu sehen.

Bemerkungen:

Kein Prüfkörper erbohrbar.

Probe:	Kernman	rsch	109	Kiste	810	
Teufe:	von	771,52	:	bis	771,	62 m
Stratigre	aphie :	Malm,	Unterer Ko	rallenoo	olith	
Karbona		52.	9			
Cora-Gehalt [%]				0.1		
Porosität(effektiv)[%]				ø	13.	4
Bulkdichte[g/cm³]				ø	2.	40
scheinb. Korndichte[g/cm³]			m³]	ø	2.	76
Luftpermeabilität [mD]				1	.0 x	10 ⁻³

Porenraum:

Der Porenraum besteht aus Zwickelporen in der karbonatischen Matrix sowie aus Totporen im sparitischen Kalzit. Maximale Abweichung vom Mittelwert: 0.6 % (absolut).

Bemerkungen:

(

		PORENR	AUMBES	CHREIBUNG	
PROE	BE:	771,52 -	771,62 m	BOHRUNG:	K 101
	hhilduna	Nr. 79	<u></u>		
Ve Be	ergrößer eschreibu	ung: 800 na der Ab	x () bilduna :	Negativ)	
Т	otporosi	tät in de	r karbonati	schen Matrix.	
			<i></i>		
Þr	חווהסטכ	klassifizi	2 רוו חת י		
	c	r Sm sms	intrakrista	llin	

.

ı

ſ

Probe:	Kernmo	irsch	110		Kiste	815	
Teufe:	von	775,8	9		bis	776,07 m	
Stratigr	aphie :	Dog	ger,	Mittelcall	Lovium	n	
Karbona	tgehal	t[%C	0_3^{2-}]			30.0	
C _{ora} -Get	nalt[%]				0.4	
Porositä	t(effek	tiv)[%]		ø	5.9	
Bulkdich	te[g/cm	3]			ø	2.47	
scheinb.	Korndic	hte[g/	∕cm³]			2.62	
Luftperr	neabilit	ät[m[)]			< 1 x 10 ⁻	-5

Porenraum:

Zur gemessenen Effektivporosität muß eine nicht unerhebliche Totporosität in der karbonatischen Matrix hinzukommen, durch die auch die Korndichte herabgesetzt wird.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen. Keine KLINKENBERG-Korrektur möglich, da die Durchflußrate zu klein war.

	PORENRAUMBES	CHREIBUNG	
PROBE:	775,89 - 776,07 m	BOHRUNG:	K 101
· · · · · · · · · · · · · · · · · · ·		,,,,,,,,_,,_,_,,_,	
		<u></u>	
Abbildun Vergröße	g Nr: 81 erung: 50/500 x (1	Negativ)	
Beschreit In der k	oung der Abbildung: arbonatischen Matrix s	sind nur wenige H	Poren zu
sehen, b oder Tot	ei denen es sich zumir poren handelt. Die eir	ndest zum Teil ur ngelagerten Ooide	n Sack- e und
Fossilre saum.	ste zeigen einen dicht	ten, sparitischer	n Anwachs-
Porenrau	mklassifizierung:		
	c r Pd ms BC		

(

Probe:	Kernmo	arsch	111	Kiste	826
Teufe:	von	787 , 21		bis	787,31 m
Stratigro	aphie:	Dogger	, Mittelcallo	vium	
Karbona	tgehal	†[%C0	²⁻]		8.2
C _{ora} -Get	nalt[%]			0.8
Porositä	t(effek	tiv)[%]			13.2
Bulkdicht	te (g/cm	l ³]			2.39
scheinb.	Korndia	:hte[g/c	m³]		2.69
Luftpermeabilität [mD]					4×10^{-5}

Porenraum:

Die Porosität besteht aus schichtparallel angeordneten Tonporen. Die Probe neigt auf Grund dieser Struktur zu Auflockerung.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

.

F	ORENRAUMBESC	HREIBUNG	
PROBE:	737,21 - 787,31 m	BOHRUNG:	K 101
Abbildung I	Nr: 82		
Vergrößeru Beschreibun	ıng: 1000 x (N g der Abbildung:	legativ)	
Auch hier :	ist die Auflockerung	der Probe sowie	e die Ein-
z. B. l. u.	. treten größere Por	en, die nicht p	rimär ent-
Stunden se.	in mussen, aur.		
Porenraumk	(lassifizierung:		
FIAPALO	Pd mc BP		

.

(

PORENRAUMBES	CHREIBUNG	
787,21 - 787,31 m	BOHRUNG:	K 101
		-
ng Nr: ⁸³		
bung: 100 (bung der Abbildung:	Negativ)	
be zeigt eine schicht	parallele Auflock	erung, die
nders an den Rändern v h wird. Die Porosität	von gröberen Best besteht aus Mikr	andteilen oporen in
igen Matrix, die auf (Grund ihrer schic	htparallelen
lung als primär anzuse	ehen sind.	
umklassifizionung		
tive Auflockerung		
d mc - sms BP		
	PORENRAUMBES 787,21 - 787,31 m 787,21 - 787,31 m 9 Nr: 83 9 Perung: 100 (bung der Abbildung: be zeigt eine schichty nders an den Rändern vo h wird. Die Porosität igen Matrix, die auf (lung als primär anzuse umklassifizierung: tive Auflockerung d mc - sms BP	PORENRAUMBESCHREIBUNG 787,21 - 787,31 m BOHRUNG: ng Nr: ⁸³ Herung: 100 (Negativ) bung der Abbildung: be zeigt eine schichtparallele Auflock nders an den Rändern von gröberen Best h wird. Die Porosität besteht aus Mikr igen Matrix, die auf Grund ihrer schic lung als primär anzusehen sind. umklassifizierung: tive Auflockerung d mc - sms BP

Probe:	Kernmarsch 117	Kiste	838
Teufe:	von 806,73	bis	806,35 m
Stratigro	aphie: Dogger, Mittelcall	ovium.	
Karbona	tgehalt[%C03²-]		13.8
C _{oro} -Get	nalt [%]		0.7
Porositä	t(effektiv)[%]		Ø 11.0
Bulkdicht	te[g/cm ³]		2.39
scheinb.	Korndichte[g∕cm³]		2.69
Luftperr	neabilität [mD]		7 x 10 ⁻⁵

Porenraum:

Die Schichtung verläuft nicht so eben wie in der vorhergehenden Probe, die Poren liegen ungleichmäßig verteilt in Zwickeln.

Bei mikroskopisch sichtbaren Klüften handelt es sich wahrscheinlich nicht um Präparationsrisse.

Die Porositätswerte schwanken nicht (Abweichung vom Mittelwert < 0.1 %), da die Prüfkörper vor der Messung auf Kluftflächen gespalten waren.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

·
PORENRAUMBESCHREIBUNG
PROBE: 306,73 - 806,85 m BOHRUNG: K 101
Abbildung Nr: 84
Vergrößerung: 500 x (Negativ) Beschreibung der Abbildung:
Schichtparallele Risse und Tonporen. Bei dem Riß ist anzunehmen, daß er während der Präparation
entstanden ist. Die Füllung im oberen Abschnitt besteht aus Salzen.
Bei den Tonporen fällt auf, daß sie ebenfalls schicht- parallel gelängt sind. Auch hier kann die Öffnungsweite
präparativ vergrößert sein. Rechts ist Pyrit zu sehen.
Porenraumklassifizierung:
Präparativer Einfluß Pd sms BP (präparativ geweitet)

Ć

Probe: Kernmar	sch 119	Kiste	853
Teufe: von 82	20,71	bis	820,78 m
Stratigraphie: 1	Dogger, Mittelcallo	vium	
Karbonatgehalt	[%C0 ₃ ²⁻]		6.2
Corg-Gehalt [%]			0.8
Porosität(effekti	iv)[%]		12.1
Bulkdichte[g/cm ³]			2.35
scheinb. Korndich	te[g/cm³]		2.67
Luftpermeabilitä	t[mD]		4×10^{-4}

Porenraum:

Die Oberfläche der Probe war von einer Salzkruste bedeckt. Die Probe weist Anzeichen für schichtparallele Rißbildung auf.

Bemerkungen:

Permeabilität unter simulierton Gebirgsbedingungen gemessen.

ł

Probe:	Kernm	arsch	121		Kiste	867
Teufe:	von	835,93			bis	836,02 m
Stratigr	aphie :	Dog	ger,	Mittelcal	lovium	ı
Karbona	itgeha	l†[%C	0 ²⁻]			6.0
C _{ora} -Get	nalt[%	6]	-			1.0
Porositä	t(effe	ktiv)[%]]			13.3
Bulkdich	te (g/ci	m ³]				2.32
scheinb.	Korndi	chte[g/	∕cm³]			2.68
Luftperr	neabili	tät (mC]]			1×10^{-2}

Porenraum:

Salzkruste, ausschnittsweise sind Tonporen zu sehen. An einigen Stellen sind unregelmäßig verlaufende, kleine Trocknungsrisse zu sehen.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

			ويستعدن الأبرا ببعدان والمحربين فكالخط
	PORENRAUMBES	CHREIBUNG	
PROBE:	835,93 - 836,02 m	BOHRUNG:	K 101
Abbildur	חם Nr: 87		
Vergröß Beschrei	lerung: 2000 x (bung der Abbildung:	Negativ)	
Kalzit,	Ton und Salzkruste	on Durchmoscor W	- n
ca. 1 μ	m und sind vermutlich	Reste primärer Po	oro-
Daneben die sek	treten größere Poren undär entstanden sein	(bis ca. 4 µm) an	uf,
Deecee			
s	x Sm sms BP		
с	r Pd mc BP		

Probe:	Kernmarsch 122	Kiste	881
Teufe:	VON 848,41	bis	848,47 m
Stratigr	aphie: Dogger, Mittelcall	ovium	
Karbona	tgehalt [% CO_3^{2-}]		6.0
C _{org} -Get	nalt [%]		0.9
Porositä	t(effektiv)[%]		9.6
Bulkdich	te (g/cm³]		2.39
scheinb.	Korndichte[g∕cm³]		2.64
Luftperr	neabilität [mD]		n.b.

Porenraum:

Schichtparallele Risse in der Salzkruste zeigen Auflockerung an. Die Probe zerfiel während der Porositätsmessung in mehrere Einzelstücke.

Bemerkungen:

Kern zerfiel bei der Trocknung.

PORENRAUMBESCHREIBUNG	
PROBE: 848,41 - 848,47 m BOHRUNG:	K 101
· · ·	
Abbildung Nr. 88	
Vergrößerung: 200 x (Negativ) Beschreibung den Abbildung:	
Die Salzkruste zeichnet die Schichtung nach un	d
weist daher auf eine Auflockerung der Probe hi	n.
Porenraumklassifizierung:	

•

(i)

893
861,26 m
4.0
1.9
11.1
2.34
2.63
$< 4 \times 10^{-5}$

Porenraum:

Unter einer dicken Salzkruste sind stellenweise Tone mit einem hohen Porenanteil zu sehen, die aber nach dem Porositätswert für den Gesamtporenraum untypisch sind.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

Probe:	Kernm	arsch	126	Kiste	907	
Teufe:	von	873,03		bis	873,11	m
Stratigr	aphie:	Dogger,	Oberbathoni	um		
Karbona	itgeha	l†[%C03	-]		2.6	
C _{ora} -Gel	halt[%	6]			1.3	
Porositä	t(effel	ktiv)[%]			11.5	
Bulkdich	te (g/cr	m ³]			2.35	5
scheinb.	Korndi	chte[g/c	m³]		2.66	5
Luftperi	meabili	tät[mD]			1.7 x	10 ⁻²

Porenraum:

Der Porenraum besteht aus Poren in Ton.

Die Probe ist von einer Salzkruste mit sichtbaren Rissen überzogen.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen. Die Probe zeigte aber bereits vor der Messung Risse.

.

Porenraumklassifizierung:

	PORENRAUMBES	CHREIBUNG	
PROBE: ≀	73,03 - 873,11 m	BOHRUNG:	K 101
Abbildung	Nr: 93		
Vergrößer Beschreibu	ung: 1000 × (ng der Abbildung:	Negativ)	
Salzkruste Form des l	e und Poreneintritt Poreneintritts zeigt	in Tonen. Die lä schichtparallel	ngliche e Auf-
lockerung	an.		
Doconcoum	klassifizionuna		
r or enraum -	אנעסטווצופו טווט:		

ſ

(

	PORENRAUMBES	CHREIBUNG	
PROBE:	873,03 - 873,11 m	BOHRUNG:	K 101
			-
Abbildu	na Nr: 93		
Vergröl Beschro	Berung: 1000 x	(Negativ)	
Salakri	ibung der Abbitdung:	in Tonen Die lär	aliche
Form de	es Poreneintritts zeig	t schichtparallele	e Auf-
lockeru	ing an.		
Porenro	umklassifizierung:		

(

Salzkruste und Poreneintritt in Tonen. Die längliche Form des Poreneintritts zeigt schichtparallele Auflockerung an.

Porenraumklassifizierung:

Probe:	Kernmarsch 130	Kiste	949
Teufe:	von 909,98	bis 🤉	910,03 m
Stratigr	aphie: Dogger, Oberbajoci	um	
Karbona	tgehalt [% CO_3^{2-}]		3.6
C _{ora} -Geł	nalt [%]		1.0
Porositä	t(effektiv)[%]		10.3
Bulkdicht	te[g/cm ³]		2.37
scheinb.	Korndichte[g∕cm³]		2.64
Luftperr	neabilität [mD]		1.0×10^{-4}

Porenraum:

Während die tonigen Anteile der Probe unter einer Salzkruste lagen, zeigte freiliegendes Karbonat sekundäre Porosität.)

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

Probe:	Kernma	953					
Teufe:	von	913,85	bis	91	3,98	m	
Stratigr	aphie :	Dogger, Oberbajoci	um				
Karbonatgehalt [$\% CO_3^{2-}$] 19.7							
C _{ora} -Geł			0.3				
Porositä	Ģ	ø	5.9				
Bulkdichte[g/cm³]					2.51		
scheinb.			2.67				
Luftperr	neabiliti	it[mD]		1.2	x 10	o ⁻⁴	

Porenraum:

Im sparitischen Karbonat waren Poreneinschlüsse zu sehen, die bei der Rekristallisation umschlossen werden. Ein Teil dieser Poren muß als Totporosität gewertet werden. Die Einzelmessung der Porosität wich um maximal 0.6 % (absolut) vom Mittelwert ab.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen.

r								
	PR	OBE:	POREN 913,85	NRAUM - 913,98	BESCI	HREIBUNG BOHRUNI	5: K	101
						<u></u>		
		L		UNIT IN THE PLACE TO A	<u></u>			
		Abbildur Vergröß	ng Nr: 9! Ierung:135	5 50 x	(Ne	egativ)		
		Beschrei	bung der i	Abbildun	g:			
		Karbonat	: mit seku	ındärer H	Porosit	ät		
			-					
		Porenra	umklassifi	izierung:				
		s x	Sm sms BI	2				

•

Ŋ

Probe:	Kernma	`sch 137		Kiste	9	98		
Teufe:	von	958 , 93		bis	95	9,00 m		
Stratigraphie: Dogger, Oberbajocium								
Karbonatgehalt [$\% CO_3^{2-}$] 5.6								
C _{ora} -Gel		0.8						
Porosität(effektiv)[%]						12.9		
Bulkdich		2.39						
scheinb.	Korndich	te[g/cm³]				2.74		
Luftperi	meabilitä	t[mD]			< 5	x 10 ⁻⁵		

Porenraum:

Neben Tonporen liegen sekundär (durch Lösung erweiterte) Poren im Karbonat vor.

Die Probe zeigt deutlich Rißbildung (schichtparallel).

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen. Keine KLINKENBERG-Korrektur möglich.

Probe:	Kernmar	sch	140	Kiste	1	017		
Teufe:	von	975,76	5	bis	975	,84	m	
Stratigr	aphie :	Dogger	., Oberbajoci	um				
Karbona	Karbonatgehalt[%CO3 ²⁻] 3.8							
C _{ora} -Gehalt [%]								
Porositä		10.0						
Bulkdichte[g/cm ³] 2.33							Э	
scheinb.	scheinb. Korndichte[g/cm³]						5	
Luftperi	neabilitäi	t[mD]		•	〈 3	x 10	ე - 5	

Porenraum:

Sekundäre Porosität im Karbonat, hauptsächlich jedoch Tonporosität, die unter Salzüberzügen nur in Ausschnitten zu sehen ist.

Bemerkungen:

Permeabilität unter simulierten Gebirgsbedingungen gemessen. Keine KLINKENBERG-Korrektur möglich.

TEUFE		KEF	NMAR	sсн/	KISTE	ABBILDUNG	CO3-GEHALT	Corg-GEHALT
von/bis in m		nur t	ei K	ernal	oschnitte	en Nr. / Seite	in %	in %
	т	11	D	0	N			
	1	U	N	U	N			
18.94/ 19.04							46.3	0.1
23.76/ 23.83							45.0	0.2
33.60/ 33.91							41.7	0.2
44.80/ 44.88							50.1	0.1
54.86/ 54.94							56.5	0.1
66.30/ 66.40							55.5	0.1
81.19/ 81.25							38.0	0.3
99.65/ 99.75							54.1	0.1
114.80/144.90							53.0	0.1
124.74/124.82							57.1	0.1
129.60/129.70							56.0	0.1
136.04/136.12							31.3	< 0.1
138.85/139.00							57.9	0.2
144.00/144.14							51.1	0.1
144.82/144.93							56.7	< 0.1
154.34/154.48		KM	27	Ki	148	4-5/22-23	53.5	0.2
159.02/159.17							52.8	< 0.1
	С	Е	N	0	ΜA	N		
165.34/165.58							57.1	0.1
174.67/174.81	I						56.6	0.1
174.67/174.81	II						30.6	0.4
183.83/184.01							56.3	< 0.1
195.01/195.10							51.0	0.2
201.59/201.65							52.1	0.1
209.81/209.90							46.8	0.2
214.76/214.95		KM	34	Ki	212	6-8/25-27	40.7	0.1
216.60/217.69							34.5	0.2
230.46/230.54							32.8	. 0.3
238.42/238.58		КM	36	Ki	238	9/29	28.7	0.3
239.48/239.55			-				31.0	0.2
247.72/247.80							18.4	0.3
•								

.

.

C

(

•

TEUFE		KER	NMARS	сн/кі	STE	ABBILDUNG	CO3-GEHALT	C _{org} -GEHALT
von/bis in m		nur b	ei Ke	rnabs	schnitten	,Nr. / Seite	in %	in %
	A	L	В					
255.68/255.75							15.1	0.3
257.25/257.35							15.8	0.3
265.00/265.20							11.0	0.4
267.84/268.00		KM	40	Ki	270	10-11/31-32	3.5	1.0
270.71/270.86		KM	41	Ki	273	12/34	11.1	0.5
274.22/274.25							10.1	0.4
278.04/278.18		KM	41	Ki	282	13/36	18.0	0.1
279.28/279.35							18.0	0.4
284.98/285.04							19.8	0.3
289.88/290.04						-	17.7	0.3
293.97/294.05							19.2	0.3
300.88/300.97							17.1	0.3
313.60/313.75							14.8	0.3
324.48/324.58							12.5	0.4
325.88/326.01		KM	48	Ki	333	14-16/38-40	14.0	0.4
326.01/326.08							12.6	0.5
335.11/335.19							13.8	0.5
345.96/346.05							16.0	0.4
346.05/346.26		KM	51	Ki	354	17/42	14.4	0.4
351.49/351.55							7.9	0.4
353.33/358.40							7.9	0.4
362.90/362.98							8.8	0.5
375.70/375.89		KM	55	Ki	386	18/44	17.2	0.3
375.89/375.95							14.6	0.4
379.91/380.10		KM	56	Ki	391	19-20/46-47	8.8	0.3
380.10/380.18							11.7	0.4
388.58/388.68							8.0	0.2
388.68/388.85		KM	57	Ki	401	21-22/49-50	8.1	0.2
394.03/394.10							9.5	0.3
394.10/394.27		KM	58	Ki	407	23-25/52-54	7.9	0.3
398.36/398.46							4.1	0.4
399.24/399.38		KM	58	Ki	412	26/56	3.9	0.5
399.38/399.45	I	KM	58	Ki	413	27-28/58-59	6.7	0.3
399.38/399.45	TT						5.9	0.3

(⁻⁻--

(·

TEUFE		KERNMARSCH/KISTE			ABBILDUNG	CO3-GEHALT	Corg-GEHALT			
von/bis in m	nı	nur bei Kernabschnitten			Nr. / Seite	in %	in %			
	А	L B								
408.12/408.18						2.9	0.3			
415.16/415.76						2.5	0.4			
424.27/424.37						3.0	0.7			
431.89/431.96						0.5	0.7			
437.54/437.65	X	KM 6	4 Ki	. 455	29-30/61-62	1.3	0.7			
437.65/437.74						0.7	0.7			
450.18/450.31	k	СМ 6	8 Ki	462	31/64	0.6	0.9			
450.31/450.41						0.5	0.8			
455.36/455.46	k	СМ б	9 Ki	. 467	32-33/66-67	1.9	0.6			
456.96/457.07						0.9	< 0.1			
457.07/457.19	F	KM 6	9 Ki	. 469	34/69	0.7	< 0.1			
458.08/458.18						0.8	< 0.1			
	٥	D T								
	А	ΡI								
461.62/461.67						11.5	0.8			
461.67/461.76	F	СМ 6	9 Ki	. 473	35/71	13.5	0.7			
474.52/474.72	K	(M 7	1 Ki	488	36/73	20.1	0.4			
474.72/474.77						13.2	0.5			
	В	AR	R	ÊМ	E					
483.66/473.76	F	KM 7	2 Ki	. 495	37-38/75-76	1.5	1.7			
433.77/488.83				•		< 0.1	4.5			
493.26/493.34	F	(M 7	4 Ki	. 504	39/78	1.5	1.9			
501.15/501.26	F	KM 7	5 Ki	. 514	40-42/80-82	7.6	0.9			
501.26/501.31						1.5	1.7			
509.93/509.97						1.6	3.0			
509.97/510.08	F	KM 7	6 Ki	. 518	43/84	3.0	2.9			
511.71/511.75						1.9	1.0			
517.35/517.41						3.8	1.0			
520.79/520.84						3.5	4.0			
520.84/520.92	ŀ	KM 7	9 Ki	. 531	44/86	2.0	4.0			
522.14/522.19						3.0	1.9			
530.32/530.37						3.3	3.0			

(

(

TEUFE		KE	RNMARS	≲сн∕кі	STE	ABBILDUNG	CO3-GEHALT	Corg-GEHALT
von/bis in m		nur	bei Ke	ernabs	chnitt	en Nr. / Seite	in %	in %
	R	Δ	R	R Ê	м	F		
	2							
532.68/532.79		KM	81	Ki	551	45/88	1.5	2.1
532.74/532.78							0.6	1.6
543.57/543.67		KM	82	Ki	557	46-47/90-91	10.1	0.6
543.67/543.71							8.6	3.0
549.51/549.59							8.2	3.5
554.98/555.09		KM	84	Ki	570	48/93	2.2	0.8
555.065/555.12							1.0	2.4
560.685/560.73							5.5	0.6
		٨			P			
	Н	А	U	ΙĿ	К	IVE		
576.67/576.695							13.1	0.8
580.67/580.73							13.1	0.8
596.76/596.86							12.6	0.6
596.86/597.01		KM	89	Ki	613	49-50/95-96	9.3	0.7
602.75/602.82							4.4	0.8
611.02/611.13		KM	91	Ki	629	51/98	35.2	0.3
611.13/611.18						,	48.9	0.1
613.05		КМ	91	Ki	632	52/100	22.2	0.5
620.34/620.39						,	5.7	0.9
621.56/621.61							10.7	0.7
621.61/621.69		КM	92	Ki	641	53/102	13.1	0.4
	0	Х	F	0 R	D	IUM		
636.99/637.04						/	56.1	0.1
637.04/637.13		KM	94	Ki	659	54-57/104-107	54.9	0.1
653.78/653.83							54.1	0.2
653.83/653.90		KM	96	Ki	677	58-60/109-111	52.5	0.1
655.935/655.98							32.4	0.4
655.99/656.06		KM	96	Ki	680	61/113	34.7	0.5
661.625/661.66							55.1	0.1
661.66/661.80		KM	96	Ki	686	62-63/115-116	53.0	0.3
676.25/676.38		КM	98	Ki	703	64/118	37.5	0.2
676.38/676.445							46.3	0.2

(

(⁻⁻⁻)

TEUFE von/bis in m	n	KERNMARSCH/KISTE nur bei Kernabschnitten			ABI	BILD	UNG Seite	CO3-GEHALT	C _{org} -GEHALT in %		
	0	Х	F	0	R	D	I	U	M		
683.645/683.70										21.4	0.3
683.70/683.77		КM	99	Ki	7	71		65	/120	26.8	0.3
690.18/690.23				`					-	22.3	0.3
690.23/690.35		KМ	100	Ki	7	18	66	5-67	/122-12	23 22.4	0.2
693.28/693.34										26.8	0.4
693.34/693.48		КM	100	Ki	7	22		68	/125	21.4	0.5
707.24/707.30		KM	102	Ki	7	38	69) -72	/127-1	30 15.2	0.1
708.77/708.91		KM	102	Ki	7	40		73	/132	17.4	0.1
708.91/708.94										20.5	0.1
714.33/714.41		KM	102	Ki	7	46	74	1– 75	/134-1	35 41.7	0.1
714.41/714.44							·			43.0	0.1
739.46/739.51										8.9	1.5
739.57/739.62		KM	105	Ki	7	74		76	/137	13.8	1.5
744.78/744.83										17.6	0.9
744.83/744.89		KM	106	Ki	7	781		77/139		15.5	1.0
771.52/771.62		KМ	109	Ki	8	10	78	8-80	/141-14	13 52.9	0.1
771.62/771.70										51.4	0.1
	С	А	L	L	0	۷	I	U	М		
775.89/776.07		КM	110	Ki	8	15		81	/145	30.0	0.4
776.07/776.16										36.4	0.3
784.72/784.78										7.2	0.8
787.15/787.21										13.4	0.7
787.21/787.31		КM	111	Ki	8	26	82	2-83	/147-14	8.2	0.8
806.73/806.85		KM	117	Ki	8	38		84/150		13.8	0.7
806.85/806.91										9.3	0.9
820.71/820.78		KM	119	Ki	8	53		85	/152	6.2	0.8
820.78/820.85										5.8	0.8
835.93/836.02		KM	121	Ki	8	67	86	-87	/154-15	55 6.0	1.0
836.02/836.09										5.8	1.0
848.41/848.47		KM	122	Ki	8	81	88	-89	/157-15	58 6.0	0.9
848.47/848.55										5.4	1.1
861.16/861.26		KM	124	Кi	8	93	90	-92	/160-16	52 4.0	1.9
861.26/861.32										4.4	2.0

(

(

TEUFE von/bis in m	KERNMARSCH/KISTE nur bei Kernabschnitter BATHON KM 126 Ki 907 BAJOCI					ABE n Ni	BILDU	JNG Seite	CO e i	3-GEHALT n %	C _{org} -GEHALT in %	
	В	А	Т	H	0	N	Ι	U	М			
872.96/873.03											3.8	1.2
873.03/873.11		KM	126	Ki	90	07		93	/164	1	2.6	1.3
877.55/877.62											2.2	1.4
	В	А	J	0	С	Ι	U	Μ				
909.98/910.03		КM	130	Ki	94	19		94	/166	5	3.6	1.0
910.03/910.10											3.9	0.9
913.28/913.85											9.4	0.2
913.85/913.98		KM	131	Ki	95	53		95	/168	3	19.7	0.3
939.50/939.59											8.3	0.4
949.47/949.55											4.4	1.0
958.87/958.93											5.5	0.6
958.93/959.00		KM	137	Ki	99	98	96	5-97	/170	-171	5.6	0.8
963.69/968.77											4.4	0.7
975.71/975.76											3.5	0.7
975.76/975.84		KM	140	Ki	101	17		98	/173	3	3.8	0.8
991.64/991.75											4.7	1.2
994.83/994.90											5.4	0.6
998.22/998.29											5.4	0.6

()

(

ERLÄUTERUNG DER VERWENDETEN ABKÜRZUNGEN IN DER POREN-RAUMBESCHREIBUNG, GRÖßEN DER DEUTSCHEN NORM ANGEPABT

ť

t

	M	ODIFYI	NG TE	RMS			
GEN	ETIC MODIF	ERS		SIZE	MODIFIE	RS	
PROCESS	DIR	ECTION OR	STAGE	CLA	SSES		um
	s E!	ARGED		MEGAPORE m	g lorge small	lmg smg	125
INTERNAL SEDIMENT	i Fi	LLED	t	MESOPORE m	large small	1ms sms	20
TIM	E OF FORMA	TION		MICROPORE m	:		1 4
PRIMAF pre de; SECONO e oç me tele	Y -depositional iositional iARY anatic iogenetic iogenetic	Use site prefixes with basic parosity types mesowuq msVUG small mesomold smsMO microinterparticle mcBP * For regular isnaped pares smaller than covern size theoswes refer to overage pare diameter of a single pare or the range in size of a pare assembla For tubular pares use overage cross section. For ploty pares use with and note shape					
Genetic modif	iers are combined	as fallows		ABUND	ANCE MOD	DIFIER	S
EXAMPLES	solution enlarged			ratio of p	or arasity types or	(1	21
	sediment filled i	egenetic d'S	e	ratio and	percent (1	21 115	5 }

Classification of Polosity Types (Choquette and Pray, 1970).