						•					
DECKBLATT											
<u> </u>	Projekt	PSP-Element	Obj. Kenn.	Aufgabe	UA	Lfdl, Nr.	Rev				
EU 052 A	NAAN	<u>NNNNNNNNN</u>	NNNNNN	XAAXX	_A	NNNN	NN				
	9K	3172	-	G	RB	0003	00				
Titel der Unterlage: Spannungsr	Sei	Seite:									
1 200 m Sohle Süd/1985	-		je	-/	I.	ad:					
					22	07 AS					
Ersteller:		<u>.</u>		<u></u>	Te>	tnummer:					
BGR											
Stempelfeld:	······································						<u> </u>				
PSP-Element TP. 9K/2122414		zu Plan-Ka	pitel: 3.1.9	9.7							
		PL		PL			<u> </u>				
		10.07.8	16	10.07	7.86						
		-									
		Freigabe	für Behörden		Freigabe	im Projekt					

Revisionsblatt

					·						
				Projekt		PSP-Element	Obj. Kenn.	Aufgabe	UA	Lfd. Nr.	Rev.
	FU 052 4			NAAN	NNI	<u> </u>	<u> </u>	<u> </u>	A A	NNNN	NN
	EU U72.4			9K	31	72	-	G	RΒ	0003	00
Titel	der Unterlage:			L	L		L		Seite	:	
Spa	nnungsmess	ungen a	uf der S	chachta	nlag	e Konrad/ 1	200 in Sot	nle Süd/	II.		
198	5/Archiv-N	r.: 982	92								
									Stand	ł:	
									22.	07.85	
Rev.	Revisionsst.	verant.	Gegenzeich	in. rev.	Kat.		Erläuterur	na der Revis	ion		
	Datum	Stelle	Name	Seite	-)						
											:
*) Ka Ka Ka Mind	ategorie R — rec ategorie V — vei ategorie S — sul lestens bei der	laktionelle rdeutlicher bstantielle Kategorie	Korrektur Ide Verbesse Ånderung S müssen Er	erung	en ang	egeben werden.					

BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE HANNOVER

Ref. B 2.11 Versuchsbericht

Spannungsmessungen auf der Schachtanlage Konrad <u>1200 m Schle Süd</u>

Sachbearbeiter:

Datum: Archiv-Nr.: Tgb.Nr.: 22.07.1985 98292 11454/85

Inhaltsverzeichnis

Anlagenverzeichnis

1.	Allgemeines	1
2.	Geräte- und Versuchsbeschreibung	1
2.1	Bohrlochaufweitungsversuche mit dem BGR-Dilatometer	1
2.2	Spannungsmessungen mit dem BGR-Überbohrweggeber	3
3.	Versuchsergebnisse	3
3.1	Dilatometermessungen	3
3.2	Überbohrversuche	5

Literaturverzeichnis

Anlagen

Anlagenverzeichnis

1. Grubenriß 2. Lageplan des Versuchsortes 3. Darstellung der Untersuchungsbohrungen 4. Versuchsübersicht B 1 und B 2 5. Tabellarische Zusammenstellung der Versuche 6. Dilatometerversuch Ko-Di1-B1 (Meßricht. 1) 7. Dilatometerversuch Ko-Di1-B1 (Meßricht. 2) 8. Dilatometerversuch Ko-Di1-B1 (Meßricht. 3) 9. Ergebnisprotokoll zu Ko-Di1-B1 10. Überbohrversuch Ko-BS7-B1 11. Überbohrversuch Ko-BS12-B1 12. Überbohrversuch Ko-BS4-B2 13. Überbohrversuch Ko-BS5-B2 14. Ergebnisprotokoll zu Ko-BS7-B1 15. Ergebnisprotokoll zu Ko-BS4-B2 16. Spannungsellipsen zu Ko-BS7-B1 17. Spannungsellipsen zu Ko-BS4-B2 18. Gebirgsspannungen in Bohrung B1 (5/99) 19. Orientierung der max. Spannung in B1 20. Gebirgsspannungen in Bohrung B2 (5/100) 21. Orientierung der max. Spannung in B2

1. Allgemeines

Zur Beurteilung der Standsicherheit unterirdischer Hohlräume, insbesondere bei der Standorterkundung von Endlagern, ist eine umfassende Kenntnis der Gebirgsparameter für theoretische Sicherheitsberechnungen erforderlich. Dazu müssen u.a. in-situ Messungen zur Ermittlung des Gebirgsverformungsverhaltens sowie des Gebirgsspannungszustandes durchgeführt werden.

Im Zuge felsmechanischer Untersuchungen auf der Schachtanlage Konrad bei Salzgitter-Bleckenstedt wurden von Januar bis Mai 1985 Überbohrversuche sowie Bohrlochaufweitungsversuche unter Verwendung folgender Geräte durchgeführt:

- BGR-Weggebersonde mit 4 Meßrichtungen
- BGR-Dilatometer.

Als Versuchsort war die ehemalige Revierkammer der 1200 m-Sohle bestimmt worden (Anl. 1, 2 und 3). Die Auffahrung dieses Streckenabschnittes war bereits im November 1973 beendet worden. Die Messungen wurden in 2 Bohrungen B 1 (5/99) und B 2 (5/100) durchgeführt (Anlage 3):

- Bohrung B 1 in Streichrichtung des Erzlagers mit ca. 6° Einfallen,
- Bohrung B 2 im Einfallen des Erzlagers mit ca. 23° Steigung.

2. Geräte- und Versuchsbeschreibung

2.1 Bohrlochaufweitungsversuche mit dem BGR-Dilatometer

Die Belastung des zu prüfenden Bohrlochabschnittes erfolgt durch stufenweise Steigerung des Dilatometerdrucks bis zum gewählten Höchstdruck bei gleichzeitiger Messung der radialen Bohrloch-

- 1 -

deformationen mit induktiven Weggebern. Durch Ent- und Belasten können die Deformationen als Funktion der Druckstufen in Arbeitslinien dargestellt werden und daraus Gebirgskenngrößen wie Verformungs- und Elastizitätsmodul ermittelt werden.

Die wesentlichen Bauteile des Dilatometers sind in /1/ und /2/ detailliert beschrieben. Der maximale Betriebsdruck des Dilatometers liegt bei 400 bar, der Meßbereich der Weggeber beträgt 2 mm, die Meßauflösung 0,01 mm. Der hydraulische Öldruck im Dilatometer wird mit einer Handpumpe erzeugt und an einem Manometer abgelesen. Die Meßwerte der einzelnen Weggeber werden über ein Meßkabel dem Empfangsgerät zugeführt, dort angezeigt und registriert.

Die für die Versuchsdurchführung erforderlichen Arbeitsgänge können folgendermaßen beschrieben werden:

- Nach Beendigung eines Überbohrversuches Weiterbohren mit einem Durchmesser von 86 mm auf eine Länge von ca. 2.00 m, sowie gründliche Säuberung der Bohrung.
- Richtungs- und teufenorientierter Einbau des Dilatometers mit Hydraulikschlauch und Meßkabel an einem torsionssteifen Setz- und Orientierungsgestänge.
- Erzeugung eines hydraulischen Initialdruckes von 5 bar, um ein gleichmäßiges Anliegen des Druckschlauches an der Bohrlochwand zu gewährleisten.
- Durchführung der Nullmessung sowie Registrierung der Durchmesseränderung bei den anschließenden Be- und Entlastungszyklen von 5 bar bis z.B. 50, 100, 200, 300 und maximal 400 bar.
 - Ausbau des Dilatometers.

2.2 Spannungsmessungen mit dem BGR-Überbohrweggeber

Der BGR-Überbohrweggeber (im folgenden als BGR-Sonde bezeichnet) besteht aus einem Grundkörper, in dem vier induktive Wegaufnehmer radial um 45° versetzt angeordnet sind. Eine detaillierte Beschreibung der Sonde ist in /1/ und /3/ dargestellt.

Die Versuchsdurchführung erfordert folgende Arbeitsgänge:

- Erstellen einer Kernbohrung mit einem Durchmesser von 146 mm unter Verwendung von Luftspülung bis zum vorgesehenen Meßhorizont.
- Herstellen einer zentrierten Pilotbohrung mit einem Durchmesser von 46 mm und einer Länge von ca. 0,50 m.
- Ausbau des Bohrgestänges und Reinigung (Ausblasen) des Bohrloches vom Bohrstaub.
- Teufen- und richtungsorientierte Installation der BGR-Sonde mittels Einbaugestänge und Fixierung durch Packer, Ausbau des Gestänges.
- Durchfädeln des Meßkabels durch Kernrohr, Bohrgestänge und einen speziell angefertigten Spülkopf.
- Durchführung des Überbohrvorganges bei gleichzeitiger kontinuierlicher Aufzeichnung der Meßwerte.
- Ziehen des überbohrten Kerns mit Sonde und anschließendes weiteres Abteufen der Bohrung bis zum nächsten Meßhorizont.

3. Versuchsergebnisse

3.1 Dilatometermessungen

Die im Bohrlochaufweitungsversuch KO-Di1-B1 ermittelten radialen Verformungswege sind in Abhängigkeit von den einzelnen Be- und Entlastungsstufen in Anlage 6-8 graphisch dargestellt. Aus den Arbeitslinien im Entlastungsbereich läßt sich der Elastitzitätsmodul (E) des Gebirges als Sekantenmodul ermitteln

$$E = \frac{\Delta p_{i} + D_{a} \cdot (1 + v)}{- D_{a} + \sqrt{D_{a}^{2} + 2 \cdot D_{i} \cdot \Delta D_{i} + \Delta D_{i}^{2}}}$$
(1)

mit Δ p_i = Dilatometerdruckänderung D_a = Bohrlochdurchmesser (86 mm) D_i = Innendurchmesser des Dilatometerschlauchs (76 mm) Δ D_i = gemessene Durchmesseränderung ν = Querdehnungszahl des Gebirges

In Gl. (1) ist der Einfluß der Dilatometerschlauchverformung bei Annahme der Inkompressibilität des Schlauchmaterials berücksichtigt, da die Verformungsmessung bei dem hier verwendeten Dilatometer auf der Schlauchinnenseite erfolgt und eine Änderung des Bohrlochdurchmessers infolge der Volumenkonstanz des Schlauches auch eine zusätzliche Änderung der Schlauchdicke bewirkt. Diese Änderung erfordert eine Korrektur der Meßwerte. Gl. (1) führt gegenüber der z.B. in /1/ und /2/ beschriebenen Auswertung zu um ca. 10 % größeren E-Moduli.

In Anlage 9 sind die aus Gl. (1) ermittelten Verformungsmoduli (aus Belastung) und Elastizitätsmoduli (aus Entlastung) für verschiedene Laststufen unter Annahme mehrerer Querdehnungszahlen zusammengestellt. Beispielsweise ergibt sich E im Mittel für v = 0,25 zu 11250 MPa. Dieser Wert liegt deutlich unter den im Labor (E \approx 15000 MPa) sowie unter den aus früheren Dilatometermessungen (E \approx 14000 MPa) auf der Schachtanlage Konrad (s. dazu /4/) ermittelten Werten. Für die Auswertung der Spannungsmessungen wird der Elastizitätsmodul mit E = 12000 MPa angenommen.

3.2 Überbohrversuche

Die in Überbohrversuchen nach der BGR-Methode ermittelten radialen Entspannungsdeformationen des Pilotbohrlochs sind exemplarisch für vier Versuche in Anlage 10 bis 13 graphisch dargestellt. Die Meßkurven zeigen weitgehend einen für Überbohrversuche in elastisch reagierendem Gestein typischen Verlauf, der sich auch mit Hilfe numerischer Berechnungen simulieren läßt (s. dazu /1/).

Die Ermittlung der Gebirgsspannungen erfolgt aus den während des Überbohrens auftretenden Durchmesseränderungen Δ D des Pilotbohrlochs. Der Auswertung wird das Modell der gelochten Scheibe im unendlich ausgedehnten Kontinuum (ebener Verzerrungszustand) zugrunde gelegt. Die Hauptspannungen σ_1 und σ_2 in der Ebene senkrecht zur Bohrlochachse können dann nach Gl. (2) berechnet werden:

$$\sigma_{1,2} = \frac{E}{4 \cdot (1 - v^2)} \cdot (2A + \sqrt{B^2 + c^2})$$
(2)

mit

$$A = \frac{1}{2D} \cdot (\Delta D_a + \Delta D_a)$$
(3a)

$$B = \frac{1}{2D} \cdot (\Delta D_a - \Delta D_c)$$
(3b)

$$C = \frac{1}{D} \cdot \Delta D_{b} - \frac{1}{2} \cdot (\Delta D_{a} + \Delta D_{c}) \qquad (3c)$$

und

- D = Pilotbohrlochdurchmesser
- E = Elastizitätsmodul
- v = Querdehnungszahl

sowie ΔD_a , ΔD_b und ΔD_c als Durchmesseränderungen von jeweils drei um 45° gegen den Uhrzeigersinn versetzten Meßrichtungen.

- 5 -

Der Winkel & zwischen der Richtung der größeren Hauptspannung _{O1} und dem lokalen Koordinatensystem wird mit

$$\alpha = \arctan \frac{C}{B}$$
 (4)

ermittelt.

Exemplarisch sind in den Anlagen 14 und 15 die in der Meßebene auftretenden größeren und kleineren Hauptspannungen und deren Richtungen und in den Anlagen 16 und 17 die für die Versuche KO-BS7-B1 und KO-BS4-B2 dargestellt. Die einzelnen Ellipsen ergeben sich aus der oben beschriebenen Kombination von jeweils drei Meßrichtungen. Die Konsistenz der Meßwerte kann anhand dieser Ergebnisse überprüft werden. So zeigt sich in den dargestellten Beispielen eine weitgehende Übereinstimmung der Spannungsgrößen und ihrer Orientierung.

Eine vollständige Übersicht der in den Bohrungen B1 (5/99) und B2 (5/100) ermittelten Gebirgsspannungen ist in Anlage 18 bis 21 gegeben. Anlage 18 zeigt zunächst für die nahezu horizontal verlaufende Bohrung B1 die größeren und kleineren Hauptspannungen in der Meßebene 1 (🚔 Vertikalebene). Die Spannungswerte zeigen einen weitgehend einheitlichen Verlauf, wobei sie mit zunehmender Bohrlochteufe eine geringfügig abnehmende Tendenz aufweisen. Im Mittel ergibt sich die größere Hauptspannung zu σ_1 = 15 MPa und die kleinere Hauptspannung zu σ_2 = 10 MPa. Die Orientierung der größeren Hauptspannung ist aus Anlage 19 ersichtlich. Danach weichen die einzelnen Richtungen i.a. um maximal + 30° von der Vertikalen ab. Im Mittel ergibt sich eine nahezu vertikale Orientierung von σ_1 . Anlage 20 zeigt ebenfalls eine einheitliche Tendenz der Spannungswerte in Abhängigkeit von der Bohrlochteufe, wobei hier jedoch die Spannungen einen weitgehend konstanten Verlauf aufweisen. Im Mittel ergeben sich die Hauptspannungen zu σ_1 = 19 MPa und σ_2 = 13 MPa.

- 6 -

Die Orientierung der größeren Hauptspannung σ_1 weicht nach Anlage 21 i.a. um ca. +30° von der Fallinie der Meßebene ab. Diese Fallinie entspricht der Senkrechten zur Schichtung ($\stackrel{\circ}{=}$ Bankrechte).

Gegenüber dem theoretischen Überlagerungsdruck (ca. 25 MPa) weisen die hier dargestellten größeren Hauptspannungen deutlich kleinere Werte auf. Wird jedoch für die Auswertung ein Elastizitätsmodul E = 15000 MPa (im Labor ermittelt) berücksichtigt, so erhöhen sich die einzelnen Spannungskomponenten um 25 %, z.B. für Bohrung B1 auf $\sigma_1 = 19$ MPa und $\sigma_2 = 12,5$ MPa sowie für Bohrung B2 auf $\sigma_1 = 24$ MPa und $\sigma_2 = 16$ MPa. Damit ergibt sich zumindest im letzten Fall eine annähernde Übereinstimmung zwischen dem theoretischen Überlagerungsdruck in vertikaler Richtung sowie der - allerdings nicht vertikal orientierten - Hauptspannung σ_1 .

BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE

Im Auftrage:

Sachbearbeiter:

- 7 -

Literatur

- /1/ PAHL, A.; S. HEUSERMANN; W. GLÖGGLER; D.W. MÜLLER & K.-H. SPRADO: "In-situ-Meßtechnik im Salz". Schlußbericht zum BMFT-Forschungsvorhaben KWA 51030, BGR, Hannover, 1985
- /2/ PAHL, A.: "Empfehlung Nr. 8 des Arbeitskreises 19 Versuchstechnik Fels - der Deutschen Gesellschaft für Erd- und Grundbau e.V., Dilatometerversuche in Felsbohrungen". Bautechnik, Heft 4, April 1984
- /3/ PAHL, A. & S. HEUSERMANN: "Stress Measurements at the Grimsel Rock Laboratory". Geologisches Jahrbuch, Hannover, 1985 (in Vorbereitung).
- /4/ PAHL, A; W. GLÖGGLER & K.-H. SPRADO: "Erprobung einer Schlitzentlastungs- und Druckkissenbelastungsapparatur zur Ermittlung von Spannungen und Verformungsverhalten auf der 1200 m - Sohle der Grube Konrad". BGR, Hannover, 1981

Zusammenstellung der Spannungs- und Verformungsmessungen in der Schachtanlage Konrad (1200 m - Sohle)

VersBezeichnung	Versuchsart	Versuchsteufe	Bohrlochorientierung	Bemerkungen
KO-BS1-B1	BGR-Sonde	9,46 m	Süd 6° ↓	Kernbruch
KO-BS2-B1	11	9,87 m	17	12
KO-BS3-B1	18	13,13 m	11	TŦ
KO-BS4-B1	18	13,44 m	tf	
KO-BS5-B1	**	17,25 m	11	
KO-BS6-B1	18	18,22 m	f 8	
KO-BS7-B1	11	19,75 m	18	
KO-BS8-B1	18	21,18 m	11	
KO-BS9-B1	t t	23,15 m	11	
KO-BS10-B1	18	24,27 m	·	
KO-BS11-B1	f T	25,73 m	11	
KO-BS12-B1	13	26,06 m	17	
KO-BS13-B1	18	29,29 m	18	
KO-BS1-B2	BGR-Sonde	9,82 m	E 23°↑	
KO-BS2-B2	11	14,90 m	17	
KO-BS3-B2	t i	16,27 m	it.	
KO-BS4-B2	18	17,51 m	r r	
KO-BS5-B2	17	19,09 m	14	
KO-BS6-B2	18	20,52 m	11	Kabel abgerissen
KO-BS7-B2	17	21,76 m	18	Kernbruch
қо-BS8-B2	11	22,37 m	17	
KO-BS9-B2	11	24,89 m	19	Kernbruch
KO-BS10-B2	18	26,27 m	18	17
KO-BS11-B2	tf	26,44 m	11	
KO-BS12-B2	11	27,16 m	17	
KO-BS13-B2	18	28,68 m	11	Kernbruch
KO-BS14-B2	18	29,57 m	18	
KO-BS15-B2	11	30,15 m	18	
KO-BS16-B2	18	30,64 m	18	
KO-DI1-B1	Dilatometer	10,52/11,55	Süd 6°↓	
KO-DI2-B1	18	15,45/16,77	11	

BGR Hannover Ref B 2 11 Juli 1985 Anlage 5

DILATOMETERAUSWERTUNG SCHACHT KONRAD 1200 M SOHLE

VERSUCH KO-DI1-B1

(MIT SCHLAUCHVERFORMUNG)

DATUM 30.1. 1985 TEUFE 11.50 M

VERFORMUNGSMODULI (MN/M^2)

BELAST	FUNG 1^2 -	1	1ESS-S	TELLE	1	1	1ESS-91	FELLE	2	M	ESS-ST	ELLE	3		NESS-ST	ELLE	4
		(JUERKO I	NTRAKT	ION	t.	IUERKON	TRAKT	LON	a	UERKON	TRAKTI	UN		NERKON	TRAKT1	ON
		0.20	0.25	0.30	0.40	0.20	0.25	0.30	0.40	0.20	0.25	0.30	0.40	0.20	0.25	0.30	0.40
1.0	5.0	11400	11900	12300	13300	4600	4700	4900	5300	3300	3400	3500	3800				•
1.0	10.0	10200	10700	11100	11900	10200	10700	11100	11900	6400	6700	6900	2500				
1.0	15.0	10000	10400	10800	11600	9400	9800	10200	10900	7600	7900	8200	8800				
1.0	20.0	7500	7800	8100	8200	10800	11300	11700	12600	8000	8300	8700	9300				

ELASTIZIIAEISMODULI (MN/M^2)

			MESS-	STELLE	1	MESS-STELLE 2		MESS-STELLE J					MESS-STELLE 4				
1117 11	-	0.20	QUERKO 0.25	NTRAKTI 0.30	10N 0.40	0.20	QUERKON 0.25	ITRAKTI 0.30	0.40	0.20	QUERKON 0.25	NTRAKT 0.30	ION 0.40	0.20	UEKKON 0.25	11RAKT) 0.30	ION 0.40
5.0 10.0 15.0 20.0	1.0 1.0 1.0 1.0	15200 10200 10000	15800 10700 10400	16400 11100 10800	17700 11500 11600	12800 10600 11400	13300 11100 11900	13900 11500 12300	14900 12400 13300	11400 9300 8400 8600	11900 9700 8700 9000	12300 10100 9100 5400	13300 10900 9800 10100				

BGR Hannover Ref. B 2 11 Juli 1985 Anlage 9

BGR-UEBERBOHRMETHODE

B G R REF. 2.11

DURCHMESSERAENDERUNG IN MESSRICHTUNG 1 : 74 [1/1000 MM] DURCHMESSERAENDERUNG IN MESSRICHTUNG 2 : 114 [1/1000 MM] DURCHMESSERAENDERUNG IN MESSRICHTUNG 3 : 126 [1/1000 MM] DURCHMESSERAENDERUNG IN MESSRICHTUNG 4 : 99 [1/1000 MM]

GEBIRGSKENNWERTE

ELASTIZITAETSMODUL E = 12000 MPA

QUERDEHNUNGSZAHL NUE = .25

HAUPTSPANNUNGEN

OHNE AXIALE MESSRICHTUNG

MESS-	1	SIGMAH1	SIGMAH2	ALPHA	ALPHST
RICHTUNGEN	1	(MPA)	[MPA]	[GRAD]	(GRAD]
1,2,3	1	15.97	11.86	165.84	14.16
2,3,4	1	16.27	13.37	169.48	10.52
3,4,1	I	15.72	12.10	178.92	1.08
4,1,2	I	17.14	12.50	173.51	6.49

ALPHA = WINKEL ZWISCHEN VERTIKALACHSE UND GR. HAUPTACHSE (POSITIV DEFINIERT GEGEN UHRZEIGERSINN) ALPHST = WINKEL ZWISCHEN VERTIKALACHSE UND GR. HAUPTACHSE

Anlage 14

BGR-UEBERBOHRMETHODE

B G R REF. 2.11

MESSWERTE

DURCHMESSERAENDERUNG IN MESSRICHTUNG 1 : 97 [1/1000 MM] DURCHMESSERAENDERUNG IN MESSRICHTUNG 2 : 158 [1/1000 MM] DURCHMESSERAENDERUNG IN MESSRICHTUNG 3 : 131 [1/1000 MM] DURCHMESSERAENDERUNG IN MESSRICHTUNG 4 : 60 [1/1000 MM]

GEBIRGSKENNWERTE

OHNE AXIALE MESSRICHTUNG

	MESS-	I	SIGMAH1	SIGMAH2	ALPHA	ALPHST
RI	CHTUNGEN	I	[MPA]	[MPA]	[GRAD]	(GRAD]
	1,2,3	1	19.15	12.59	145.57	34.43
	2,3,4	1	18.91	11.43	147.12	32.88
	3,4,1	1	19.82	11.93	143.72	36.28
	4,1,2	I	18.67	11.66	141.84	38.16

ALPHA = WINKEL ZWISCHEN VERTIKALACHSE UND GR. HAUPTACHSE (POSITIV DEFINIERT GEGEN UHRZEIGERSINN) ALPHST = WINKEL ZWISCHEN VERTIKALACHSE UND GR. HAUPTACHSE

