| PTB Physika                         | lisch-Tech                             | nische Bundes            | sanstalt                |
|-------------------------------------|----------------------------------------|--------------------------|-------------------------|
|                                     | DECK                                   | BLATT                    | <b>_</b>                |
|                                     | Projekt PSF                            | P-Element Obj. Kenn. /   | Aufgebe UA Ltd. Nr. Rev |
| CU 081.1                            | 9K 317                                 | GC                       | C RB 0004 00            |
| Titel der Unterlage:<br>Engehnisse  | der feetigkeiter                       |                          | Seite:                  |
| suchungen an Gesteinsprobe          | en aus dem Hanger                      | nd- und Liegendbereich   | n der Stand:            |
| Grube Konrad<br>Archiv-Nr. 99 467/I |                                        |                          | 04.09.86                |
| Ersteller:                          |                                        |                          | Textnummer:             |
| IGR                                 |                                        |                          |                         |
| Stempelfeld:                        | ······································ |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        | ,                        |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
| PSP-Element TP287.2122414           |                                        | ZU Plan-Kapiter: 5.1.9.7 | <u></u>                 |
|                                     |                                        | PL 08, 12, 86            | PL<br>08 12 86          |
|                                     |                                        |                          | 00.12.00                |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        |                          |                         |
|                                     |                                        | Freigabe für Behörden    | Freigebe im Projekt     |
|                                     |                                        |                          |                         |

# Revisionsblatt

TB

|      |                                   |                             |                          |                   | NN          | PSP-Element                               | Obj. Kenn.<br>N. N. N. N. N. N. |               | UA          | Lfd. Nr. Re | V. |
|------|-----------------------------------|-----------------------------|--------------------------|-------------------|-------------|-------------------------------------------|---------------------------------|---------------|-------------|-------------|----|
|      | 01 1                              |                             |                          | ov                | 247         |                                           |                                 | <u></u>       |             | 0004 00     |    |
| EU I | der Unterlage:                    |                             |                          | 9K                | 517         |                                           |                                 | նե            | KD<br>Seite | 0004 00     |    |
| such | nungen an (                       | Ergebn<br>Gestein           | isse der<br>sproben a    | festig<br>aus dem | keit<br>Han | smechanisch<br>gend- und L                | en Laborun<br>iegendbere        | ter-<br>ich   | II.         |             |    |
| der  | Grube Kon                         | rad                         |                          |                   |             | -                                         | 2                               |               | Stand       | •           |    |
| Arci | 11V-Nr. 99                        | 467/1                       |                          |                   |             |                                           |                                 |               |             |             |    |
| _    |                                   |                             |                          |                   |             | , <u></u>                                 |                                 |               | 0,10        |             |    |
| Rev. | Revisionsst.<br>Datum             | verant.<br>Stelle           | Gegenzeich<br>Name       | in. rev.<br>Seite | Kat.<br>*)  |                                           | Eriāuteru                       | ng der Revisi | ion         |             |    |
|      |                                   |                             |                          |                   |             |                                           | <u> </u>                        |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             | 4                                         |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             | N. C. |                                 |               |             |             |    |
|      |                                   |                             |                          |                   |             |                                           |                                 |               |             |             |    |
| 14   | ategorie P                        | dektionalla                 | Korrektur                |                   |             |                                           |                                 |               |             |             |    |
| ľ k  | ategorie V - ve<br>ategorie S - e | indeutliche<br>ubstantielle | nde Verbessi<br>Anderung | erung             |             |                                           | ÷                               |               |             |             |    |
| Min  | destens bei der                   | Kategorie                   | S müssen E               | rläuterung        | en and      | ageben werden.                            |                                 |               |             |             |    |

### BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE

HANNOVER

## Ergebnisse der festigkeitsmechanischen Laboruntersuchungen an Gesteinsproben aus dem Hangend- und Liegendbereich der Grube KONRAD

Laborbericht: Ref. B 2.14

Sachbearbeiter: Datum: Archiv-Nr.: Tagebuch-Nr.: TK 25:

04.09.1986 99 467/I 11914/86 3627 Lebenstedt W 3628 Lebenstedt O 3727 Ilsede 3728 Braunschweig W

#### Inhaltsverzeichnis

- 0. Veranlassung
- 1. Herkunft des Probenmaterials
  - 1.1 Schachtwandbohrungen
  - 1.2 Schachtwiderlagerbohrungen, Schacht Konrad 2
  - 1.3 Tiefbohrung Konrad 101
  - 1.4 Felsmechanische Untersuchungsbohrungen
- 2. Probenvorbereitung

#### 3. Versuchsprogramm

- 3.1 Maschinen- und technische Versuchsbeschreibung
- 3.2 Versuchstypen und allgemeine Versuchsauswertung
- 4. Versuchsergebnisse
  - 4.1 Wichten
  - 4.2 Ultraschallmessungen
  - 4.3 Festigkeitsuntersuchungen
    - 4.3.1 Bruchfestigkeit
    - 4.3.2 Nachbruchfestigkeit
    - 4.3.3 Elastizitäts- und Verformungsmoduli
- 5. Ergebnisaufbereitung für numerische Berechnungen
- 6. Literaturverzeichnis
- 7. Abbildungsverzeichnis
- 8. Tabellenverzeichnis
- 9. Anlagenverzeichnis

(Abbildungen, Tabellen, Anlagen)

#### 0. Veranlassung

Die Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, hat für die ehemalige Eisenerzgrube Konrad das Planfeststellungsverfahren zur Genehmigung der Errichtung eines Endlagers für gering wärmeentwickelnde radioaktive Abfälle eingeleitet. Zum Nachweis der Standfestigkeit des Grubengebäudes und der Integrität der Barriere Deckgebirge wurden von der BGR u. a. numerische Berechnungen durchgeführt, für die entsprechende gebirgsmechanische Eingangsparameter benötigt wurden. Ab ca. Juni 1984 wurde deshalb mit der systematischen Laboruntersuchung von Gesteinsproben begonnen. Der vorliegende Bericht beinhaltet die Ergebnisse, die bis Ende 1985 erreicht wurden. Weitere Untersuchungen, die das bisherige Datenmaterial bestätigen und ergänzen sollen, sind bereits in Arbeit bzw. geplant.

Entsprechend der modellhaften Betrachtungsweise eines Grubennahfeldes und eines großräumigen Gebirgsausschnittes werden die festigkeitsmechanischen Laborergebnisse zum einen in Probenmaterial aus dem Oxford und Kimmeridge und zum anderen (hier vorliegend) aus dem Deckgebirge und Dogger aufgeteilt.

#### 1. Herkunft des Probenmaterials

Das Deckgebirge sowie die Doggerschichten wurden von folgenden Orten im Grubengebäude bzw. durch folgende Bohrungen aufgeschlossen oder erkundet:

- Schächte Konrad 1 und 2,
- Tiefbohrung Konrad 101 und
- felsmechanische Untersuchungsbohrungen (3/139, 5/95).

Es lag vom Turon der Oberkreide über die Unterkreide und dem Malm bis zum Dogger Gesteinsmaterial vor. Der Erhaltungszustand der Gesteinskerne war je nach Gesteinsart, Bohrweise und mechanischer Vorbeanspruchung recht unterschiedlich, so daß nicht alle Schichten mit der gleichen Intensität untersucht werden konnten.

#### 1.1 Schachtwandbohrungen\_

Die PTB ließ durch die Westfälische Berggewerkschaftskasse (WBK), Bochum, ein Gutachten [1] zur Standfestigkeit der Schächte Konrad 1 und 2 erstellen. Im Rahmen der zu diesen Untersuchungen notwendigen Arbeiten wurden eine Reihe von Bohrungen durch den Schachtausbau in das umliegende Gebirge gestoßen. Die bis zu ca. 2,50 m tiefen Bohrungen enthielten neben dem Schachtausbau noch ca. 1,00 - 1,50 m Gesteinsmaterial des anstehenden Gebirges. Durch das Schachtteufen und die nachfolgenden Bewegungen des Gebirges bzw. durch teilweises Verpressen von Suspensionen und Eindringen von Formationswässern wurde das Gestein in seinem ursprünglichen Zustand z. T. stärker verändert.

Die Petrographie wurde durch die Technische Universität Clausthal erkundet [2].

Die Probennahmen für festigkeitsmechanische Untersuchungen der BGR erfolgten am 27.06.84 und am 10.07.84 auf der Schachtanlage Konrad (Schacht 2) sowie am 16.08.84 und am 23.08.84 in der Versuchs- und Lagerhalle der BGR. Die einzelnen Entnahmepunkte innerhalb der Schachtsäulen sind in den Abb. 1 und 2 zusammen mit der Übersichtsstratigraphie dargestellt.

Die Proben, an denen Versuche durchgeführt werden konnten, sind mit ihrer Kernbezeichnung, den BGR-internen Labor- und Kernnummern sowie der jeweiligen Entnahmetiefe in der Einzelbohrung in Tab. 1 aufgeführt. Die Kernbezeichnung ist wie folgt zusammengesetzt: z. B. KII / 32 - 736: <u>K</u>onrad Schacht <u>I</u> oder <u>II</u> / lfd. Nr. der Bohrung - Teufe unter Rasenhängebank / evtl. Richtungsangabe (vgl. WBK-Gutachten) [1].

Die petrographische Beschreibung der Einzelproben erfolgte zusammen mit der Aufnahme der Bruchflächenlage i. d. R. nach dem Versuch (Anl. 1 a), da speziell die feuchtigkeitsempfindlichen Gesteine in Plastikfolien unter Vakuum eingeschweißt wurden. Eine längere Probenlagerungszeit mußte wegen der Gefahr der Austrocknung vermieden werden.

#### 1.2 <u>Schachtwiderlagerbohrungen</u>, <u>Schacht Konrad\_2</u>

Für die konzeptionelle Planung eines Schachtwiderlagers wurde zunächst für den Schacht Konrad 2 ein vorläufiger Widerlagerstandort (Abb. 2) ausgewählt, der mit 9 bis zu 15 m langen Bohrungen erkundet wurde [3]. Eine Beeinflussung des Gesteinszustands durch den Schacht ist zumindest für die ersten Meter anzunehmen. Die erste Bohrung KII C1 erzielte nur sehr kleinstückige Bohrkerne, da das Bohrgerät noch nicht optimal auf das Gestein eingestellt war. Die anschließenden Bohrungen erbrachten für die Versuchszwecke einen guten Kerngewinn.

Im Sept./Okt. 1985 wurden die Proben in der Versuchs- und Lagerhalle der BGR ausgewählt, wobei pro Bohrung 6 Kerne (außer KII C1) genommen wurden (Tab. 2). Die petrographische Einzelprobenbeschreibung und Bruchlagenaufnahme erfolgt in Anl. 1 b. Es handelt sich durchweg um Gesteine aus dem Hauterive der Unterkreide.

- 3 -

1.3 <u>Tiefbohrung Konrad\_101</u>

Zur Erkundung der gesamten Gesteinsabfolge in der Umgebung der Schachtanlage Konrad wurde in der Zeit vom Dez. 1984 bis Mai 1985 die Tiefbohrung Konrad 101 abgeteuft. Sie erfaßte mit einer Endbohrteufe von 1 001,75 m die Schichten vom Bajocium des Doggers über den Malm, die Unter- und Oberkreide bis zum Quartär [4].

Die Kernqualität in Bezug auf die Verwendbarkeit für Festigkeitsversuche war gering. In Abhängigkeit von der Petrographie machten sich Entspannungsvorgänge, Bohrbeanspruchung, Austrocknung und Transportbeanspruchung bemerkbar. Während aus den milderen Ton- und Tonmergelsteinen nur eine geringe Anzahl von Proben gewonnen werden konnte, war bei den kalkigeren Gesteinen eine größere Probenmenge möglich (Abb. 3). Die Kernauswahl fand zu mehreren Zeitpunkten zwischen dem Februar und Mai 1985 in der Versuchs- und Lagerhalle der BGR statt. In Tab. 3 sind die untersuchten Kerne aufgelistet. Die petrographische Beschreibung und Bruchflächenlageerfassung (Anl. 1 c) erfolgte i. d. R. nach dem Versuch, da die Proben zur kurzzeitigen Zwischenlagerung bis zum eigentlichen Versuch in Plastikfolien eingeschweißt waren, um sie gegen Austrocknung zu schützen.

## 1.4 <u>Felsmechanische Untersuchungsbohrungen [5], [6]</u>

Die felsmechanischen Untersuchungsbohrungen werden hier in soweit mit aufgeführt, als in den Liegendbohrungen 3/139 und 5/95 in den tiefsten Teilen noch das Callovium des Doggers erschlossen wurde. Im Auftrag der PTB wurden im Zeitraum 26.03. - 16.10.1984 von der GSF an drei Lokationen Bohrungen in das Liegende und Hangende des Unteren Lagers durchgeführt. Das Kernmaterial dinnte zur generellen Erfassung und Abgrenzung des zung des mechanischen Verhaltens des Gesteins im Grubennahbereich. Die Bohrkernqualität war aufgrund der petrographischen Ausbildung recht unterschiedlich; dennoch gab es aus fast allen Horizonten die Möglichkeit, Proben zu gewinnen. Die Bohrungen 3/139 und 5/95 erreichten das Callovium, aus dem im Dezember 1984 in der Versuchs- und Lagerhalle der BGR Proben entnommen wurden (Tab. 4). Kernbeschreibung und Lage der Bruchfläche sind in Anl. 1 d erfaßt.

#### 2. Probenvorbereitung

Zur festigkeitsmechanischen Laboruntersuchung müssen die Prüfzylinder an den Stirnenden planparallel und die Mantelfläche glatt gedreht werden. Dies erfolgte auf einer Drehbank in der BGR. Die Ausgangsdurchmesser der Gesteinsproben lagen zwischen 50 und 100 mm, so daß für die vorhandenen Maschinendruckstücke von 50, 70, und 100 mm Durchmesser drei Klassen von Probenabmessungen gebildet werden konnten. Mit einem Durchmesser- zu Längenverhältnis von mindestens 1 : 2 und maximal 1 : 2,5 ergaben sich folgende generelle Abmessungen für die Druckversuche:

| Durchmesser<br>[mm] | ~ 50      | ~ 70      | ~ 100     |  |
|---------------------|-----------|-----------|-----------|--|
| Länge [mm]          | 100 - 125 | 140 - 175 | 200 - 250 |  |

Für die Spaltzugversuche ist nach DIN 1048, Teil 1, vom Dez. 1978 ein Durchmesser- zu Längenverhältnis von 1 : 1 erforderlich. Für diese Versuche wurden zur besseren Krafteinleitung auf gegenüberliegenden Mantelflächen hölzerne Lastverteilungsstreifen von 7 mm Breite und ca. 1 mm Dicke aufgeklebt. Die genauen Maße der Gesteinszylinder sind den Tab. 1 - 4 zu entnehmen.

Bei der Preparierung der Proben gab es speziell bei den Kernen der Schachtwandbohrungen sowie teilweise auch der Tiefbohrung K 101 Verluste, die auf Anbrüche durch Haarrisse oder Unstetigkeiten (Harnische) bzw. Fossilführung zurückzuführen waren.

#### 3. Versuchsprogramm

Wie in der Veranlassung bereits erwähnt, wurden Laborversuche notwendig, um Parameter für die in der BGR durchgeführten gebirgsmechanischen Berechnungen bereitzustellen. Es mußten deshalb solche Versuche gefahren werden, die die Eingangsparameter für das zur Anwendung kommende mechanische Stoffgesetz auch ermitteln konnten. In [7] bzw. [8] ist das Modell und das Materialverhalten für die numerischen Berechnungen dargestellt, das folgende für die versuchstechnische Vorgehensweise wichtige Annahmen und Randbedingungen beinhaltet:

- Bei der numerischen Behandlung des Berechnungsmodells ist davon auszugehen, daß das Gebirge mehr oder weniger geklüftet ist und damit ein intakter Gesteinsverband nur noch auf "Brücken" vorhanden ist. Damit ist die Untersuchung der Nachbruchfestigkeiten erforderlich, die durch das Reibungsverhalten auf einer im Versuch erzwungenen Scherfläche bestimmt werden.
- Wie schon die ersten Versuche zeigten, läßt sich das Nachbruchverhalten des Gesteins gut durch ein linear-elastisch/ ideal-plastisches Stoffgesetz beschreiben. Für den elastischen Teil der Deformation wurde der Restverformungsmodul (s. u.) angesetzt. Die Eingangsgrößen für das Bruchkriterium (Fließbedingung) nach Drucker/Prager können über die Scherparameter (Reibungswinkel) und c (Kohäsion) bestimmt werden.

Die durch diese Anforderungen notwendigen Versuchstypen waren auf den in der BGR vorhandenen Maschinen durchführbar. Daneben wurden noch standardmäßig Ultraschallmessungen sowie die Bestimmung der Wichte durch Abmessen und Wiegen der Prüfzylinder vorgenommen.

#### 3.1 Maschinen und technische Versuchsbeschreibung

Die Ultraschallmessungen wurden mit dem Echoskop MPT 10 der Firma KLN Ultraschall-Gesellschaft und den Prüfköpfen B1Y sowie B1S - N der Firma KRAUTKRÄMER durchgeführt.

Die Durchschallung erfolgte i. d. R. in Probenlängsachse. Aufgrund der Probenbeschaffenheit war bei einer Reihe von Prüflingen kein Signaldurchgang erhältlich, so daß quer zur Längsachse gemessen wurde; diese Ergebnisse sind mit einem q gekennzeichnet. Wie Vergleichsmessungen gezeigt haben, sind bei gutem Signaleinsatz nur geringe Qualitätsverluste aufgrund der schlechteren Ankoppelungsmöglichkeit der Sender- und Empfängerköpfe auf der gekrümmten Mantelfläche zu erwarten.

Alle Druck- und Spaltzugversuche wurden auf einer 2 000 kN-Triaxial-Prüfmaschine (Klasse 1 nach DIN 51 223) der Firma TREBEL (Ratingen) durchgeführt, die nach dem Kármánprinzip aufgebaut ist. Einzelheiten des Maschinenaufbaus, der Steuerungsmöglichkeiten und der Genauigkeiten können [9] entnommen werden.

Bei Triaxialversuchen wurden den Gesteinskernen zum Schutz gegen eindringendes Druckmedium eng anliegende Gummischläuche übergezogen. I. d. R. war es außerdem notwendig, einen weiteren Schutz gegen eine Verletzung des Außenschlauches einzufügen, die wegen der z. T. schärferen Bruchkanten bei den Nachbruchversuchen hervorgerufen wurden.

#### 3.2 Versuchstypen und allgemeine\_Versuchsauswertung

Die durchzuführenden Versuche mußten vor allem den Nachbruchbereich erfassen; daraus ergaben sich im Versuch zwangsläufig vorab die Werte für die Bruchparameter. Es stellte sich heraus, daß aufgrund des z. T. beschränkten Probenmaterials soviel wie möglich Informationen aus einem Versuch an einer Probe gewonnen werden mußte, ohne aber die Versuchsdauer erheblich zu verlängern. Es bot sich deshalb an, die Versuche in Anlehnung an die Empfehlungen der ISRM [10] durchzuführen. Ein vollständiger Druckversuchablauf an einer Probe setzte sich aus folgenden Abschnitten zusammen (Abb. 4):

a) Schaffung eines hydrostatischen Ausgangsspannungsniveaus.

- b) Deviatorische Laststeigerung bis zum Bruch bei konstantem Seitendruck und konstanter Stauchungsgeschwindigkeit. Im oberen Bereich des linearen Erstbelastungsastes wurde ein Ent- und Wiederbelastungszyklus eingeschaltet, der bis auf das hydrostatische Niveau hinabreichte. Bei einigen Versuchen wurde in mehreren Belastungsstufen bis nahe an den Bruch herangefahren und erst mit der letzten Stufe der eigentliche Bruch erzeugt.
- c) Die Nachbruchfestigkeit ist neben der Ausbildung der Bruchfläche i. w. vom Spannungszustand abhängig. Mit der kontinuierlichen Abminderung des Seitendrucks  $\sigma_3$  werden alle Stadien der Restfestigkeiten durchlaufen. Zur Ermittlung des Restverformungsmoduls aus einem Ent- und Wiederbelastungszyklus im Nachbruchbereich wurde der Seitendruck konstant gehalten.

Die beschriebenen Versuchsphasen stellen ein Maximalprogramm dar, das im Laufe der Laboruntersuchungen entwickelt wurde, aber u. a. aus zeitlichen Gründen an einer Reihe von Proben eingeschränkt wurde.

Generell wurden die Versuche verzerrungsgeregelt mit einer Stauchungsrate von 1 x  $10^{-5}$  s<sup>-1</sup> durchgeführt. Vorversuche zeigten, daß unterschiedliche Verformungsgeschwindigkeiten keinen signifikanten Einfluß auf die Festigkeitsergebnisse hatten, die petrographische Ausbildung dagegen sich deutlich auswirkte. Bei einigen Sonderversuchen kamen auch größere sowie kleinere Geschwindigkeiten zur Anwendung. Zur Bestimmung der Mohrschen Hüllgeraden wurden die Seitendrücke innerhalb einer Versuchsserie variiert.

Die allgemeine Versuchsauswertung an einer Einzelprobe umfaßte je nach Versuchsumfang folgende Punkte:

- Berechnung der Wichte  $\gamma$  aus dem Gewicht der Probe und seinem Volumen.
- Aus den Ultraschallaufzeiten ergaben sich mit der Probenlänge bzw. dem Probendurchmesser die Ultraschallgeschwindigkeiten. Über die Beziehungen

$$E_{dyn} = \frac{v_{s^{2}} \cdot \zeta \cdot (3v_{p^{2}} - 4v_{s^{2}})}{v_{p^{2}} - v_{s^{2}}}$$

und

$$v_{dyn} = \frac{v_{p}^{2} - 2v_{s}^{2}}{2(v_{p}^{2} - v_{s}^{2})}$$

| mit | Edvn     | = | dynamischer Elastizitäsmodul    | [MPa]  |
|-----|----------|---|---------------------------------|--------|
|     | v<br>dvn | = | dynamische Poissonzahl          | [-]    |
|     | v        | = | Primär- oder Longitudinalwelle  | [m/s]  |
|     | v        | = | Sekundär- oder Transversalwelle | [m/s]  |
|     | ٢        | = | Gesteinsdichte                  | [t/m³] |

lassen sich die dynamischen Moduli bestimmen.

 Abgreifen der Bruchfestigkeit als maximal erreichter Spannungswert im Pre-failure-Bereich (s. Abb. 4, Pkt. d) sowie Angabe der dazugehörigen Dehnung.

- Abgreifen der Nachbruchfestigkeiten im Post-failure-Bereich. Der Verlauf der Nachbruchfestigkeiten wird i. w. durch die Ausbildung der Scherfläche bestimmt. Wie in Abb. 4 schematisch dargestellt, wird nach dem Bruch in den Versuchen häufig ein Minimum durchlaufen (Abb. 4, Pkt. e), dem ein mehr oder weniger flaches Maximum folgt, bis sich ein horizontaler Verlauf einstellt, dessen Wert dem Minimum i. d. R. entspricht. Das flache Maximum stellt sich vermutlich aufgrund der zunächst noch rauhen Bruchfläche ein, die im Laufe des Aneinandergleitens der beiden Bruchufer mehr und mehr geglättet wird. Als Nachbruchfestigkeit wurde bei deutlich horizontalem Verlauf die zugehörige Spannung (Abb. 4, Pkt. e'), ansonsten aber der Minimalwert benutzt. Bei kontinuierlicher Erniedrigung des Seitendrucks konnte ebenfalls kontinuierlich die Nachbruchfestigkeit angegeben werden (Abb. 4, Pkt. e'). Wie Versuche gezeigt haben, stellte sich die entsprechende Spannung bei dem untersuchten Gestein spontan ein.
- Zur Beschreibung des Verformungs- und Elastizitätsverhaltens wurden 3 Moduli bestimmt (s. Abb. 4):
  - Der Anfangsverformungsmodul E<sub>V</sub>; er wurde i. d. R. bei 50 % der Bruchfestigkeit am Erstbelastungsast als Steigung der Versuchskurve ermittelt; besaß der Prüfkern einen ausgeprägten Bereich zwischen Fließ- und Bruchgrenze, so wurde der lineare Teil der Erstbelastung herangezogen (Abb. 4, Pkt. a/a')<sup>.</sup>.
  - Der Elastizitätsmodul E ergab sich aus der Steigung der Geraden durch die Drittelpunkte (Abb. 4, Pkt. c) des Erstbelastungsastes im Ent- und Wiederbelastungszyklus vor dem Bruch.

3. Der sogenannte Restverformungsmodul RVM zur Beschreibung des Verformungsverhaltens im Nachbruchbereich wurde durch die Steigung der Geraden durch den unteren Wendepunkt (Abb. 4, Pkt. f') und dem oberen Schnittpunkt (Abb. 4, Pkt. f) des Ent- und Wiederbelastungszyklusses bestimmt, wobei der Seitendruck konstant gehalten wurde.

#### 4. Versuchsergebnisse

#### 4.1 Wichten

An Unterlagen flossen neben den eigenen Messungen die Ergebnisse des WBK-Gutachtens [1], der Teilaufgabe 2219.26 des Strukturplans Konrad [2] sowie einer Geologischen Meldearbeit [11] ein.

Die ermittelten Wichten sind vermutlich etwas zu gering, da durch Probenaustrocknung und Probenentspannung gegenüber den natürlichen Bedingungen Veränderungen eingetreten sind.

Die Wichten der einzelnen Probenkörper sind in den Tab. 5 bis 8 wiederzufinden. Eine Gesamtauswertung, gegliedert nach den Schächten 1 und 2 sowie der Bohrung K 101, ist in Abb. 5 durchgeführt worden. Folgende Punkte lassen sich daraus ableiten (vgl. auch [12]):

- mit zunehmender Teufe steigt die Wichte vom Oberalb mit ca.
  22 kN/m<sup>3</sup> auf ca. 25 kN/m<sup>3</sup> im Oxford/Dogger an und
- kalkigere Gesteine wie z. B. im Turon/Cenoman weisen generell eine höhere Wichte von ca. 24 - 26 kN/m<sup>3</sup> auf und sind nicht bzw. nur gering teufenabhängig.

#### 4.2 Ultraschallmessungen\_

Ebenfalls in den Tab. 5 bis 8 sind die Ergebnisse der Ultraschallmessungen sowie deren Auswertung hinsichtlich der dynamischen Parameter E und  $\nu$  zusammengestellt. Aufgrund der Probenbeschaffenheit konnten auch bei einer Durchschallung quer zur Probenlängsachse bei einer Reihe von Kernen keine Meßwerte ermittelt werden.

Die Laufgeschwindigkeiten schwanken von ca. 2 500 m/s bis 4 500 m/s bei der Longitudinalwelle und von ca. 1 200 m/s bis ca. 2 500 m/s bei der Transversalwelle; dabei ist generell eine Zunahme der Geschwindigkeit mit der Teufe festzustellen.

Die aus den Laufzeitmessungen abzuleitenden dynamischen Parameter E<sub>dyn</sub> und  $\nu_{dyn}$  sind in Abb. 6 bis 8 teufenabhängig dargestellt. Die kalkigen Oberkreideschichten liegen mit ca. 24 bis 26,5 GPa beim dynamischen Elastizitätsmodul deutlich höher als die Gesteine der Unterkreide mit ca. 10 – 22 GPa. Kimmeridge und Oxford erreichen die höchsten E<sub>dyn</sub> mit bis zu 50 GPa; der Dogger schwankt dagegen stärker mit Werten von ca. 20 bis 35 GPa. Die dynamischen Poissonzahlen zeigen einen den  $E_{dyn}$ -Moduli gegenläufigen Trend. Der Gesamtschwankungsbereich liegt zwischen ca. 0,15 und 0,35, wobei die tonig-mergeligen Unterkreideschichten die höheren Werte besitzen und die anderen Bereiche niedrigere.

#### 4.3 <u>Festigkeitsuntersuchungen</u>

Die Einzelergebnisse der Festigkeitsuntersuchungen sind in den Tab. 9 bis 13 aufgeführt; die graphische Darstellung erfolgte in den Abb. 9 bis 16. In den Anl. 2 a bis 2 d sind die  $\sigma_1 - \sigma_3/\epsilon$ -Diagramme der Versuche zusammengestellt. Die Bruchfestigkeiten haben gegenüber den Festfestigkeiten generell eine größere Streubreite, deren mögliche Ursache im folgenden näher diskutiert wird. Eine weiterführende Abgrenzung einzelner Festigkeitsbereiche erfolgt in Kap. 5.

#### 4.3.1 Bruchfestigkeit

Die Bruchfestigkeit der untersuchten Gesteine ist von mehreren Faktoren abhängig, deren jeweilige Einflußgrenze sich an der Einzelprobe aber nur schwer fassen läßt. Ein wichtiger Faktor ist die Verkittung der Probe, der i. w. auf dem Kalkgehalt beruht: kalkigere Gesteine (Kalkmergel- bis Kalksteine) besitzen höhere Festigkeiten als Ton- und Tonmergelsteine. Zur Verkittung gehört auch der Diagenesegrad, der i. d. R. von der Teufe abhängig ist. Ausgeprägte Schichtflächen, besonders wenn sie größere Fossilstücke enthielten und im Einfallen der sich ausbildenden Bruchfläche lagen, setzten die Festigkeit z. T. erheblich herab. Gleiche Wirkung zeigten auch verheilte Klüfte und Harnischflächen.

Bei den Untersuchungen der Gesteine aus den Schachtwiderlagerbohrungen des Schachtes Konrad 2 wurden in Anlehnung an die Empfehlungen der ISRM [10] als Test einige Proben im Versuchstyp II der Empfehlung gefahren. Das Ziel ist dabei, mehrere Bruchfestigkeitspunkte mit einer Probe zu erhalten, indem mit einer Laststufe kurz bis vor den Bruch gefahren wird, dann aber eine nächsthöhere Laststufe eingestellt wird, die wiederum bis kurz vor den Bruchpunkt gefahren wird, und so fort. Die Schwierigkeit liegt darin, wirklich den Bereich kurz vor dem Bruch zu erhalten und außerdem nicht über den eigentlichen Bruchpunkt hinaus zu fahren. Wie die Ergebnisse der Proben mit den Nummern 514, 515, 519, 554, 509, 510, 523, 542, 505 und 527 der Anl. 2b im Vergleich zu den entsprechenden Versuch mit direktem "zu Bruch fahren" bei entsprechenden Laststufen zeigen, liegen die Werte i. d. R. deutlich niedriger, so daß trotz intensiver Bemühungen dieses Gestein wegen seines Bruchverhaltens als nicht geeignet für derartige Versuchstypen angesehen werden muß.

#### 4.3.2 Nachbruchfestigkeiten

Die Nachbruchfestigkeit wird hauptsächlich bestimmt vom herrschenden Spannungszustand, der auf der erzwungenen Bruchfläche wirksam ist. Daneben ist vor allem im ersten Teil der Nachbruchphase die Ausbildung der Bruchfläche von Bedeutung, die ein Aufgleiten der Bruchhälften auf die Unebenheiten hervorruft (bei niedrigen Seitendrücken) bzw. es erfolgt ein Abscheren der Erhebungen (bei höheren Seitendrücken). Bei größeren Verformungen in der Nachbruchphase spielt die Partikelrauhigkeit des Gesteins eine Rolle. Da die texturellen Gesteinseigenschaften für die Nachbruchfestigkeiten nur unbedeutend ist, zeigen die Nachbruchfestigkeiten i. a. einen geringeren Streubereich als die Bruchfestigkeiten.

#### 4.3.3 Elastizitäts- und Verformungsmoduli

Wie in Abschn. 3.2 beschrieben, wurden der Anfangsverformungsmodul, der statische Elastizitätsmodul und der Restverformungsmodul bestimmt. In den Tab. 9 und 11 - 13 sind die Einzelwerte aufgefuhrt und in den Abb. 6 - 8 die E<sub>stat</sub> und der RVM aufgetragen worden.

Die Oberkreide hat bei den untersuchten Proben einen E-Modul von ca. 10 – 13 GPa, die Unterkreide zwischen ca. 4 und 10 GPa. Der statische Elastizitätsmodul steigt im Kimmeridge und Oxford auf Werte von 17 – 30 GPa und fällt zum Dogger hin wieder auf stark schwankende Werte von ca. 4 – 19 GPa ab.

Der Restverformungsmodul nimmt eine gleichsinnige Entwicklung über die Teufe, liegt aber um ca. 30 – 50 % niedriger als der Elastizitätsmodul und weist gegenüber letzterem jedoch eine geringere Streubreite aus. Während durch die Typ II-Versuche der ISRM Empfehlung anhand der Versuche aus dem Schachtwiderlagerbereich des Schachtes Konrad 2 gezeigt werden kann, daß der Elastizitätsmodul weitgehend vom herrschenden Belastungszustand unabhängig ist (s. Tab. 11), ist beim Restverformungsmodul eine z. T. deutliche Abhängigkeit vom aktuellen Spannungszustand ersichtlich. Mit steigender Belastung nehmen auch die Werte des RVM zu (s. Tab. 11 und 12).

#### 5. Ergebnisaufbereitung für numerische Berechnungen

Wie am Anfang bereits darauf hingewiesen, wurden die vorliegenden Untersuchungen durchgeführt, um für großnumerische Berechnungen [8] Parameter zu ermitteln. Das zur Anwendung gelangte mechanische Modell benötigte die Werte (innerer Reibungswinkel), c (Kohäsion), E (Elastizitäsmodul) und  $\nu$  (Poisson-Zahl). Soweit möglich sollten aus Gründen der Konservativität diese Parameter aus dem Nachbruchverhalten der Proben ermittelt werden. Als Elastizitätsmodul wurde der über alle Belastungszustände gemittelte Restverformungsmodul angesetzt. Diese Mittelung entspricht einem Spannungszustand von ca. 5 -10 MPa.

Reibungswinkel und Kohäsion lassen sich aus dem  $\tau/\sigma$ - bzw. über eine Umrechnung und einer linearen Regression aus

dem

σ

$$\frac{\sigma_1 - \sigma_3}{2} / \frac{\sigma_1 + \sigma_3}{2} - \text{Diagramm bestimmen.}$$

In den Abb. 9 - 16 ist für die Bruch- und Nachbruchfestigkeit jeweils eine Regression durchgeführt worden, die die entsprechenden Parameter und c lieferte. Während für den Reibungswinkel im Nachbruchbereich als physikalische Erklärung die Reibung auf der Bruchfläche anzusehen ist, bedeutet die Kohäsion

hier lediglich eine rechnerische Größe, da in der Scherfuge keine Kohäsion im eigentlichen Sinn mehr wirksam ist. Abb. 17 macht dies deutlich: Die Nachbruchfestigkeiten der drei Einzelproben sind schwach konkav gekrümmt und fallen mit abnehmendem Spannungszustand zum Nullpunkt hin ab.

Die Abb. 9 bis 17 zeigen, daß die lineare Regression ab einem mittleren Spannungszustand von 5 bis 10 MPa die Werte gut beschreibt bzw. auf der sicheren, d. h. niedrigen Seite liegt. Bereits die ersten Berechnungen zeigten, daß mit mittleren Beanspruchungszuständen von ≤ 5 MPa nur in der obersten Modellschicht (Quartär/Cenoman) zu rechnen ist und der allgemeine Spannungszustand rasch mit der Teufe zunahm, so daß eine Berücksichtigung der rechnerischen Kohäsion gerechtfertigt erscheint. Eine Vernachlässigung von c und damit eine Parallelverschiebung der Regressionsgeraden durch den Ursprung würde eine für die untersuchten Schichten der Unterkreide (Barriere) und des Einlagerungshorizontes ungerechtfertigte Überkonservativität bedeuten, da die Nachbruchparameter schon selbst ein nahe 100 % durchtrenntes Gebirge beschreiben.

Die notwendige Zusammenfassung und Gliederung der Einzelergebnisse erfolgte in Anlehnung an die stratigraphische Einteilung der Rechenmodelle, soweit dies möglich war. Weiterhin wurden petrographische Unterschiede berücksichtigt, sofern diese sich festigkeitsmechanisch auswirkten und eine genügende Anzahl von Messungen vorlagen. Tab. 14 faßt die Ergebnisse zusammen.



BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE

Sachbearbeiter:



- 16 -

#### Literaturverzeichnis

- [1] Westfälische Berggewerkschaftskasse (HÜLSMANN, K. H. & SCHÖNE-WARNEFELD, G.): Gutachten über die Standfestigkeit der Schächte 1 und 2 der Eisenerzgrube Konrad in Salzgitter im Hinblick auf die weitere Verwendung für die Erz- und Materialförderung, Seilfahrt und Wetterführung.- Teilaufgabe 2321.05 im PSP Konrad, Bochum, 1984.
- [2] TU Clausthal, Inst. f. Geologie u. Palaontologie (MULLER, K1.; FOLLE, S. & KREUTZ, H.): Ermittlung von Gesteinsparametern im Rahmen des WBK-Gutachtens über Schacht Konrad I und II.-Teilaufgabe 2219.23 im PSP Konrad, Clausthal-Zellerfeld, 1985.
- [3] BGR-Bericht (LIEDTKE, L.; BRÄUER, V.; SPRADO, K.-H. & MÜLLER,
  D.): Durchströmungsversuche auf der Schachtanlage Konrad im Schacht 2.- BGR, Archiv-Nr. 99 421, Hannover, 1986.
- [4] BGR-Bericht (GERARDI, J.): Bohrung Konrad 101- Geologischer Bericht.- BGR, Archiv-Nr. 99 599, Hannover, 1986.
- [5] GSF-Bericht: Felsmechanische Gesteinsparameter, Teilaufgabe 2219.12 (im PSP Konrad) AP Nr. 1: Probenahme für felsmechanische Laboruntersuchungen.- Braunschweig, 1985.
- [6] GSF-Bericht (HANSEL): Felsmechanische Gesteinsparameter, Teilaufgabe 2219.12 (im PSP Konrad), AP Nr. 3: Auswertung der felsmechanischen Laboruntersuchungen.- Braunschweig, 1985.
- [7] BGR-Bericht (KONIECZNY, R.): Grube Konrad; Berechnungen zur Standsicherheit geplanter untertägiger Hohlräume.- BGR, Archiv-Nr. 98 543, Hannover, 1985.
- [8] BGR-Bericht (KONIECZNY, R., & SCHNIER, H.): Geplantes Endlager Konrad; Berechnungen zum Beanspruchungszustand des Deckgebirges und grubennaher Bereiche.- BGR, Archiv-Nr. 99 341 Hannover, 1986.

- [9] MEISTER, D.; HEIDRICH, D. & RIEGER, H.: Triaxialprüfanlage für Festigkeits- und Verformungsuntersuchungen an Gesteinsprüfkörpern.- Fortschr.-Ber. VDI-Z, Reihe 5, Nr. 79, 50 S., 21 Abb., 4 Tab., Düsseldorf, 1984.
- [10] ISRM: Suggested Methods for Triaxial Compression Testing -Suggested Methods for Determining the Strength of Rock Materials in Triaxial Compression: Revised Version.-Int. J. Rock Mech. Min. Sci. & Geomech. Abst., Vol. 20, Nr. 6, S. 285 - 290, 7 Abb., Pergamon Press, 1983.
- [11] WU, M.: Geologische und petrographische Charakterisierung des bisherigen Schachtprofils von Schacht Konrad (1) bei Salzgitter-Bleckenstedt.- Geologische Meldearbeit, 1959.
- [12] MATTHESIUS, G.: Vertikale Dichte-, Porenanteil- und Druckdifferenzprofile an Sedimentgesteinen des Nordwestrandes des Gifhorner Troges.- Dissertation TU Braunschweig, 46 Abb., 12 Tab., 149 S., Braunschweig, 1974.

#### Abbildungsverzeichnis

- Abb. 1: Stratigraphisch/petrographische Übersicht sowie Probenahmepunkte im Schacht Konrad 1
- Abb. 2: Stratigraphisch/petrographische Übersicht sowie Probenahmepunkte im Schacht Konrad 2
- Abb. 3: Stratigraphisch/petrographische Übersicht sowie Probenahmepunkte aus der Bohrung K 101
- Abb. 4: Schematische Gesamtversuchskurve
- Abb. 5: Gesteinsdichteverteilung in den Schächten Konrad 1 und 2 sowie der Bohrung K 101
- Abb. 6: Elastische Gesteinskennzifferverteilung im Schacht Konrad 1
- Abb. 7: Elastische Gesteinskennzifferverteilung im Schacht Konrad 2
- Abb. 8: Elastische Gesteinskennzifferverteilung der Bohrung K 101
- Abb. 9: Festigkeitsergebnisse der Cenoman-Proben
- Abb. 10: Festigkeitsergebnisse der Oberalb-Proben
- Abb. 11: Festigkeitsergebnisse der Mittel-/Unteralb- und Apt-Proben
- Abb. 12: Festigkeitsergebnisse der Barrême-Proben
- Abb. 13: Festigkeitsergebnisse der Hauterive-Proben
- Abb. 14: Festigkeitsergebnisse der Callovium-Proben
- Abb. 15: Festigkeitsergebnisse der Bathonium-Proben
- Abb. 16: Festigkeitsergebnisse der Bajocium-Proben

Abb. 17: Verhalten der Nachbruchfestigkeiten von drei Einzelproben

#### Tabellenverzeichnis

- Tab. 1: Kernbezeichnungen, Entnahmeteufe und Abmessungen der Proben aus den Schachtwandbohrungen
- Tab. 2: Kernbezeichnungen, Entnahmeteufe und Abmessungen der Proben aus den Schachtwiderlagerbohrungen Schacht Konrad 2
- Tab. 3: Kernbezeichnungen, Entnahmeteufe und Abmessungen der Proben aus der Bohrung K 101
- Tab. 4: Kernbezeichnungen, Entnahmeteufe und Abmessungen der Proben aus den felsmechanischen Untersuchungsbohrungen
- Tab. 5: Wichten und Ergebnisse der Ultraschallmessungen der Proben aus den Schachtwandbohrungen
- Tab. 6: Wichten und Ergebnisse der Ultraschallmessungen der Proben aus den Schachtwiderlagerbohrungen Schacht Konrad 2
- Tab. 7: Wichten und Ergebnisse der Ultraschallmessungen der Proben aus der Bohrung K 101
- Tab. 8: Wichten und Ergebnisse der Ultraschallmessungen der Proben aus den felsmechanischen Untersuchungsbohrungen
- Tab. 9: Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben der Schachtwandbohrungen
- Tab. 10: Ergebnisse der einaxialen Festigkeitsuntersuchungen an Proben der Schachtwandbohrungen des WBK-Gutachtens
- Tab. 11: Versuchbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben der Schachtwiderlagerbohrungen Schacht Konrad 2

- Tab. 12: Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben aus der Bohrung K 101
- Tab. 13: Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben aus den felsmechanischen Untersuchungsbohrungen
- Tab. 14: Festigkeitsparameter, nach Stratigraphie und Petrographie geordnet

#### Anlagenverzeichnis

- Anl. 1 a: Gesteins- und Bruchbeschreibung der Proben aus den Schachtwandbohrungen der Schächte Konrad 1 und 2
- Anl. 1 b: Gesteins- und Bruchbeschreibung der Proben aus dem geplanten Schachtwiderlager Schacht Konrad 2
- Anl. 1 c: Gesteins- und Bruchbeschreibung der Proben aus der Tiefbohrung Konrad 101
- Anl. 1 d: Gesteins- und Bruchbeschreibung der Proben aus den felsmechanischen Untersuchungsbohrungen der Grube Konrad (Doggerproben)
- Anl. 2 a: Spannungs-Dehnungs-Diagramme der Proben aus den Schachtwandbohrungen
- Anl. 2 b: Spannungs-Dehnungs-Diagramme der Proben aus den Schachtwiderlagerbohrungen
- Anl. 2 c: Spannungs-Dehnungs-Diagramme der Proben aus der Bohrung K 101
- Anl. 2 d: Spannungs-Dehnungs-Diagramme der Proben aus den felsmechanischen Untersuchungsbohrungen



| Teufe<br>[m] | Proben-<br>punkte                         | Stratigraphie                                                                                                   |                                         | Petrographie                                        |
|--------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|
|              | • ·                                       | Quartär                                                                                                         |                                         | Sand / Kies                                         |
| - 100        | -<br>-<br>-                               | Mittel - c<br>c<br>c                                                                                            |                                         | Kalkstein                                           |
|              | -                                         | Unter -                                                                                                         |                                         | Kalkmergeistein                                     |
|              | -                                         | Ober - g                                                                                                        |                                         | Kaikstein                                           |
| - 200        | -                                         | Mittel -                                                                                                        |                                         | Tonmerget - /                                       |
|              |                                           | Unter- a                                                                                                        | a                                       | Kalkmergelstein                                     |
|              |                                           | Ober -                                                                                                          |                                         | Mergelstein                                         |
| - 300        | -                                         | Aittel -                                                                                                        | р                                       | Tonmergeistein                                      |
| - 400        |                                           | <                                                                                                               |                                         |                                                     |
|              | -                                         | Unter -                                                                                                         | e<br>B                                  | ian - bis<br>Tonmergelstein                         |
| - 500        |                                           | Apt                                                                                                             | <u> </u>                                |                                                     |
|              |                                           | Barrême                                                                                                         | ¥                                       | Mergelstein                                         |
| - 600        | -                                         | Obar ·                                                                                                          |                                         | Tonmergeistein                                      |
|              |                                           | Unter ·                                                                                                         |                                         | Kalkmergelstein                                     |
| - 700        | -                                         | -Mittel · eg<br><u>b</u><br>Unter ·                                                                             | 4                                       | Tonmergel – bis<br>Kalkmergelstein<br>z.T. Anhydrit |
|              |                                           | ab. Ka.                                                                                                         | -                                       | colirh. Kalksrein /<br>Tonmergelstein               |
| - 300        | -                                         |                                                                                                                 | , <b>.</b>                              | Tanmergei -/ Kalkstein                              |
|              | -                                         |                                                                                                                 | т <u>~</u>                              | Mergelstein                                         |
| - 900        | <b>L</b> .                                | - on en                                                                                                         |                                         |                                                     |
|              |                                           |                                                                                                                 | logger<br>J                             | Tonmergelstein                                      |
| F1000        |                                           |                                                                                                                 |                                         | -Endreufe 999.0 m                                   |
|              | Legende: ob<br>m.<br>u.<br>a.<br>u.<br>z. | . Ko. = oberer Kor<br>Ko. = mittlerer<br>Ko. = unterer<br>L. = oberes Log<br>L. = unteres Log<br>w. = Zwischenm | allenoolitt<br><br>ger<br>Iger<br>ittel | ∎ limonifisches Eisenerz<br>■                       |
|              | (nach Akter                               | nunterlagen, Stand                                                                                              | 1983)                                   | 3GR, 06.36                                          |
| Abb.         | 2: Strati<br>sowie                        | .graphisch/pe<br>Probenahmepu                                                                                   | trogra<br>nkte i                        | phische Übersicht<br>m Schacht Konrad 2             |

| Teufe<br>[m] | Proben-<br>punkte | Stratigra                          | ohie                                         |                 | Petrographie                                    |
|--------------|-------------------|------------------------------------|----------------------------------------------|-----------------|-------------------------------------------------|
|              |                   | -Judrtar -                         |                                              |                 | -Sand / Kies                                    |
|              |                   | Ober ·                             | -                                            |                 | Kalk - /                                        |
| - 100        |                   | Mittel -                           | 1 0 J N                                      |                 | Kalkmergeistein                                 |
|              |                   |                                    |                                              |                 | Kalkstein ,<br>Mergelsteinlagen                 |
| 200          |                   | Mittel                             | UDU                                          |                 | Kalkmergeistein                                 |
| 200          |                   | linter .                           | UOU                                          |                 | Tonstein bis                                    |
|              |                   |                                    | Le<br>L                                      | е               | Kalkmergelstein                                 |
| - 300        | 1                 | Ober –                             | -                                            | q               | Tonmergelstein                                  |
|              | -                 |                                    | -                                            |                 |                                                 |
|              |                   | Mittel -                           | -                                            |                 |                                                 |
| - 400        | 1                 |                                    | ~                                            | e               | Tan : /                                         |
|              |                   | Unter                              |                                              | ,               | Tanmergelstein                                  |
|              | -                 | Obecant                            |                                              | -               | [nestain                                        |
| 500          | -                 | Ober -                             | e.                                           | ¥               | Ton-bis Kalkmergelstein                         |
| r 500        |                   | Mittai -                           | rê li                                        | _               | Tonstein                                        |
|              | 1                 | Unter -                            | Bur                                          |                 | ( Blätterton )                                  |
|              |                   |                                    | -                                            |                 | Taga /                                          |
| - 600        |                   | Cber-                              | ve                                           |                 | Tonmergelstein                                  |
|              |                   | Unrer -                            | <u></u>                                      |                 |                                                 |
|              | -                 |                                    |                                              |                 | Kalk - / Jonmergeigestein                       |
|              | •                 | 56. AU.                            |                                              | 9               | oolirn. Kalkstein                               |
| - 700        | •                 |                                    | r d                                          | -               | fonmergeistein                                  |
|              |                   |                                    | f o                                          | U               | Tonmergelstein /                                |
|              |                   | u. Ka.                             | Ň                                            | Σ               | oolith. Kalkstein                               |
|              |                   | Cher - /                           |                                              | - u             |                                                 |
| - 800        |                   |                                    |                                              |                 | Tan -/                                          |
|              |                   | mirrel -                           | llov                                         | <u>ب</u>        | Tonmergelstein                                  |
|              | -                 | -Unter                             | <u> </u>                                     | -<br>-          |                                                 |
| 000          | • .               | Ober ·                             |                                              |                 | Tonstein                                        |
| F 300        | -                 | Unter 4                            | <u>ā                                    </u> | 5               |                                                 |
|              |                   | Ober -                             | jocium                                       | ° []            | Tonstein                                        |
| - 1000       | -                 | -Mittel                            | Bo                                           |                 | -Endteufe 1001.75 m                             |
| 1.000        |                   |                                    |                                              |                 |                                                 |
|              | Legende: o        | b. Ko. = oberer<br>1. Ko. = mittle | . Kau                                        | ailenooli†<br>" | th • Limonitisches Eisenerz<br>•• Brauneisenerz |
|              | u                 | . Ko. = unter                      | er j                                         |                 |                                                 |
|              | 0                 | . L. = 30ere                       | s La                                         | ger             | (mach [+])                                      |
|              |                   | = unreri<br>                       | es Lí<br>han <i>c</i>                        | uger<br>hittal  |                                                 |
|              |                   |                                    | nerin                                        |                 | 3GR. 06.36                                      |
|              |                   |                                    | ,                                            |                 |                                                 |
| . dah        | : Strat<br>sowie  | lgrapnisch<br>Probenahm            | /pe<br>epu                                   | nkte a          | aphische Übersicht<br>aus der Bohrung K 101     |



Abb. 4: Schematische Gesamtversuchskurve





.

| Teufe<br>v GOK | Strationaphie  | Esiat (GPa) | Edyn 16Pal  | RVM [GPa] | Vayn ( - )      | Patro    |
|----------------|----------------|-------------|-------------|-----------|-----------------|----------|
| [m]            |                | 0 10 20 30  | 20 30 40 50 | 0 10 20   | 0.0 0.2 0.4     | graphie  |
| 100            | Turon          |             |             |           |                 |          |
| 200            | Cenoman        | +*          | ••          | :         | * •             | K        |
| 300            | Oberalb        | +           |             | •         |                 | M        |
| 400            | Mittelalb      |             |             |           |                 |          |
| 500            | Unteralb       | •           |             | t         |                 | <u> </u> |
| 600 B          | Apt<br>Barrême |             | <u>+</u>    |           |                 |          |
| 700 ±          |                |             |             |           |                 | ··       |
| 2008<br>2018   | Hauterive      | ~~~~~       |             |           | ~~~~~           | ~~~~     |
| 900            |                |             | ·           |           |                 |          |
| 1000           | Kimmeridge     |             |             | •         |                 | кн       |
| 1100           |                |             |             |           |                 |          |
| 1200           | Oxford         |             |             |           |                 |          |
| 1300           |                | 1           |             |           | BGR, B 2 14, 05 | . 86     |

Vayn = dynamische Poissonzahl

ŕ



K = Kalkstein



Abb. 7: Elastische Gesteinskennzifferverteilung im Schacht Konrad 2



Abb. 8: Elastische Gesteinskennzifferverteilung der Bohrung K 101



Abb. 9: Festigkeitsergebnisse der Cenoman-Proben



Abb. 10: Festigkeitsergebnisse der Oberalb-Proben



Abb. 11: Festigkeitsergebnisse der Mittel-/Unteralb- und Apt-Proben


Abb. 12: Festigkeitsergebnisse der Barrême-Proben



Abb. 13: Festigkeitsergebnisse der Hauterive-Proben



Abb. 14: Festigkeitsergebnisse der Callovium-Proben



Abb. 15: Festigkeitsergebnisse der Bathonium-Proben



Abb. 16: Festigkeitsergebnisse der Bajocium-Proben



Abb. 17: Verhalten der Nachbruchfestigkeiten von drei Einzelproben

| Kern-       | Labor- | Kern- | Tiefe     | iefe Abmessungen |            |                        |
|-------------|--------|-------|-----------|------------------|------------|------------------------|
| bezeichnung | Nr.    | Nr.   | [m]       | 10<br>[mm]       | d0<br>[mm] | Bemerkungen            |
| KI/9-160/1  | 84015  | 243   | 1,52-1,63 | 104,0            | 52,0       |                        |
| KI/9-160/1  | 17     | 244   | 1,40-1,51 | 104,0            | 52,0       |                        |
| KI/9-160/1  | 11     | 245   | 1,27-1,38 | 104,0            | 52,0       |                        |
| KI/10-180/1 | 11     | 246   | 0,81-0,92 | 104,2            | 52,2       |                        |
| KI/10+180/1 | 11     | 247   | 0,93-1,04 | 104,2            | 52,2       |                        |
| KI/12-244/1 | 11     | 250   | 1,68-1,79 | 104,0            | 52.0       | kleine Ecke abgeplatzt |
| KI/19-500   | 84012  | 176   | -         | 104,0            | 52,0       | ein Längsriß           |
| KI/19-500   | 17     | 177   | -         | 104,0            | 52,0       | Längsrisse a. d. Enden |
| KI/20-530   |        | 175   | -         | 104,0            | 52,0       |                        |
| KI/32-980   | 84015  | 257   | 1,48-1,59 | 104,0            | 52,0       |                        |
| KII/8-192   | 11     | 252   | 2,25-2,36 | 104,0            | 52,0       |                        |
| KII/8-192   | 11     | 253   | 2,13-2,24 | 104,0            | 52,0       |                        |
| KII/26-600  | 11     | 242   | 1,51-1,61 | 104,1            | 52,1       |                        |
| KII/32-736  | 11     | 249   | 1,69-1,79 | 104.2            | 52,2       |                        |
| KII/32-736  | 11     | 248   | 1,80-1,90 | 104,0            | 52,1       |                        |
| KII/35-805  | 11     | 254   | 1,51-1,61 | 104,1            | 52,1       |                        |
| KII/35-805  | 11 .   | 251   | 1,62-1,72 | 104,0            | 52,1       |                        |
| KII/37-865  | 11     | 255   | 1,42-1,52 | 104,0            | 52,1       |                        |
| KII/37-865  | **     | 256   | 1,53-1,63 | 104,2            | 52,1       |                        |
| KII/39-895  | 11     | 259   | 1,33-1,43 | 104.2            | 52,1       |                        |
| KII/39-895  | 17     | 258   | 1,44-1,54 | 104,0            | 52,1       |                        |

# <u>Tab. 1:</u> Kernbezeichnungen, Entnahmeteufe und Abmessungen der Proben aus den Schachtwandbohrungen

| Kern-       | Labor- | Kern- | Teufe         | Abmess     | ungen                  | Bemerkungen |
|-------------|--------|-------|---------------|------------|------------------------|-------------|
| bezeichnung | Nr.    | Nr.   | (m)           | 10<br>[mm] | d <sub>0</sub><br>[mm] |             |
| KII A1/01   | 85026  | 511   | 4.90 - 5,05   | 150        | 70                     |             |
| " " /02     | .1     | 512   | 5,06 - 5,21   | 150        | 70                     |             |
| " " /03     | 11     | 513   | 5.22 - 5,37   | 150        | 70                     |             |
| " " /04     | n      | 514   | 11,54 - 11,69 | 150        | 70                     |             |
| " " /05     | 11     | 515   | 11,70 - 11,85 | 150        | 70                     |             |
|             | 11     | 529   | 14,73 - 14,80 | 69,8       | 70,1                   |             |
| KII A2/     | 11     | 535   | 7,05 - 7,20   | 150        | 70                     |             |
| " " /01     | 11     | 516   | 8,83 - 8,98   | 150        | 70                     |             |
| " " /02     | 11     | 517   | 8.99 - 9.14   | 150        | 70                     |             |
| " " /       | 11     | 530   | 10,37 - 10,44 | 70         | 70                     |             |
| " " /03     | 11     | 518   | 14,92 - 15,07 | 150,1      | 70,1                   |             |
| " " /04     | "      | 519   | 15,42 - 15,57 | 150        | 70                     |             |
| KII A3/     | 11     | 552   | 5,41 - 5.56   | 150        | 70                     |             |
|             | 11     | 553   | 5,58 - 5,73   | 150        | 70                     |             |
| 17 11 /     | 11     | 554   | 5,75 - 5,90   | 150        | 70                     |             |
| 17 11 /     | 11     | 547   | 10,90 - 10,97 | 59,7       | 70                     |             |
| 11 11 /     | 11     | 548   | 12,75 - 12,90 | 149,7      | 70                     |             |
| 11 H /      | 11     | 549   | 12,92 - 13,07 | 150        | 70                     |             |
| KII 81/01   | 11     | 506   | 4,82 - 4,97   | 150        | 70                     |             |
| " " /02     | 11     | 507   | 5,01 - 5,16   | 150,1      | 70                     |             |
| " " /03     | 11     | 508   | 10.99 - 11.14 | 150        | 70                     |             |
| " " /04     | 11     | 509   | 11,15 - 11,30 | 150        | 70                     |             |
| " " /05     | 11     | 510   | 11,31 - 11,46 | 150        | 70                     |             |
| 11 11       | 11     | 531   | 13,67 - 13.74 | 70         | 70                     |             |
| KII 82/01   | (1     | 520   | 8,82 - 8,97   | 150        | 70                     |             |
| " " /02     | 11     | 521   | 8,97 - 9,12   | 150        | 70                     |             |
| II II /     | 11     | 532   | 11,22 - 11,29 | 70         | 70                     |             |
| " " /       | 11     | 536   | 11,90 - 12,05 | 150        | 70                     |             |
| " " /03     | 11     | 522   | 13,10 - 13,25 | 150        | 70                     |             |
| " " /04     | 11     | 523   | 13,26 - 13,41 | 150        | 70                     |             |
| KII B3/     | 11     | 537   | 3,75 - 3,90   | 150        | 69,2                   |             |
| ""/         | tt     | 538   | 3,91 - 4,06   | 150        | 70                     |             |
|             | 11     | 539   | 4,17 - 4,32   | 150        | 70                     |             |
| " " /       | 11     | 540   | 4,33 - 4,48   | 150        | 70                     |             |
|             | 11     | 541   | 13.93 - 14,00 | 70         | 70                     |             |
| " " /       | 11     | 542   | 14,01 - 14,16 | 150        | 70                     |             |
| " " /       | 11     | 543   | 14,17 - 14,32 | 150        | 70                     |             |

| Tab. 2: | Kernbezeichnungen, Entnahmeteufe und Abmessungen der Proben |
|---------|-------------------------------------------------------------|
|         | aus den Schachtwiderlagerbohrungen Schacht Konrad II        |
|         |                                                             |
|         |                                                             |

•

<u>Tab. 2:</u> Fortsetzung

| Kern-       | Labor- | Kern- | Teufe         | Abmessungen |            | Bemerkungen                               |
|-------------|--------|-------|---------------|-------------|------------|-------------------------------------------|
| bezeichnung | Nr.    | Nr.   | (m)           | 10.<br>[mm] | d0<br>[mm] |                                           |
| KII C1/     | 85026  | 533   | 6,80 - 6,87   | 69,5        | 70         | Längsriß vor<br>Vers. schon<br>angedeutet |
| " " /01     | 11     | 503   | 13,55 - 13,70 | 150         | 70         |                                           |
| " " /02     | 11     | 504   | 13,89 - 14,04 | 150         | 70         |                                           |
| " " /03     | 11     | 505   | 14,05 - 14,20 | 150         | 70         |                                           |
| KII C2/     |        | 534   | 7,40 - 7,47   | 66          | 70         |                                           |
| " " /01     | 11     | 524   | 9,07 - 9,22   | 150         | 70         |                                           |
| " " /02     | 17     | 525   | 9,23 - 9,38   | 150         | 70         |                                           |
| " " /03     | 11     | 525   | 9,39 - 9,46   | 150,1       | 70,1       |                                           |
| " " /04     | 11     | 527   | 12,30 - 12,45 | 150         | 70         |                                           |
| " " /05     |        | 528   | 12,46 - 12,61 | 150         | 70         |                                           |
| KII C3/     | 11     | 550   | 3,65 - 3,80   | 150         | 70         |                                           |
| 11 11 /     | 11     | 551   | 3,82 - 3,97   | 150         | 69         |                                           |
| " " /       | 71     | 544   | 10,52 - 10,59 | 70          | 59,2       |                                           |
|             | 11     | 545   | 10,63 - 10,78 | 150         | 69         |                                           |
|             | 11     | 546   | 10,79 - 10,94 | 150         | 69,2       |                                           |

.

| Kenne           |        | Kana  | Tiefe         | Abmess | ungen |             |
|-----------------|--------|-------|---------------|--------|-------|-------------|
| Kern-           | Labor- | Kern- |               | 10     | do    | Bemerkungen |
| bezeichnung     | Nr.    | Nr.   | ſш]           | [mm]   | [mm]  |             |
| K101/ 0/262/01  | 85002  | 10    | 259,18-259,93 | 250    | 99    |             |
| K101/ 0/262/02  | 85002  | 11    | 259,44-259,69 | 250    | 99    |             |
| K101/ 0/263/01  | 85002  | 6     | 260,12-260,37 | 250    | 99    |             |
| K101/ 0/263/02  | 85002  | 7     | 260,41-260,66 | 250    | 99    |             |
| K101/ 0/264/01  | 85002  | 8     | 261,10-261,35 | 250    | 98    |             |
| K101/ 0/264/02  | 85002  | 9     | 261,36-261,61 | 250    | 97    |             |
| K101/ 0/265/01  | 85002  | 12    | 261,98-262,23 | 250    | 97    |             |
| K101/ 0/266/01  | 85002  | 13    | 262,94-263,19 | 250    | 98    |             |
| K101/ 0/266/02  | 85002  | 14    | 263,20-263.45 | 250    | 98    |             |
| K101/ 0/267/01  | 85002  | 15    | 263,90-264,15 | 250    | 99    |             |
| K101/ 0/267/02  | 85002  | 16    | 264,16-264,41 | 250    | 98    |             |
| K101/ 0/268/01  | 85002  | 17    | 265,68-265,93 | 250    | 98    |             |
| K101/ 0/269/01  | 85002  | 18    | 266,73-266,98 | 250    | 99    |             |
| K101/ 0/270/01  | 85002  | 19    | 267,30-267,55 | 250    | 99    |             |
| K101/ 0/271/01  | 85002  | 20    | 268,30-268.55 | 250    | 100   |             |
| K101/ 0/272/01  | 85002  | 21    | 269,28-269,53 | 250    | 100   |             |
| K101/ 0/273/01  | 85002  | 22    | 270,02-270,27 | 250    | 98    |             |
| K101/ 0/276/01  | 85002  | 23    | 273,38-273,63 | 250    | 98    |             |
| K101/047/319/01 | 85007  | 143   | 313,13-313,38 | 250    | 99,2  |             |
| K101/047/320/01 | 85007  | 144   | 313,86-314,11 | 250    | 100   |             |
| K101/047/320/02 | 85007  | 146   | 314,30-314,55 | 250    | 100   |             |
| K101/052/363/02 | 85007  | 151   | 354,56-354,81 | 250    | 98,1  |             |
| K101/058/408/01 | 85007  | 145   | 394,71-394,96 | 250    | 100   |             |
| K101/058/409/01 | 85007  | 141   | 395,30-395,55 | 250    | 100   |             |
| K101/058/409/02 | 85007  | 142   | 395,56-395,81 | 250    | 100   |             |
| K101/069/467/01 | 85008  | 154   | 455,07-455,30 | 235    | 94,2  |             |
| K101/069/468/01 | 85008  | 156   | 455,56-455,81 | 250    | 98    |             |
| K101/071/ /01   | 85008  | 155   | 472,80-473,05 | 249,6  | 96    |             |
| K101/080/538/01 | 85008  | 158   | 526,95-527,20 | 249.7  | 98    |             |
| K101/080/541/01 | 85008  | 160   | 529,62-529,87 | 250,2  | 95    |             |
| K101/081/546/01 | 85008  | 161   | 533,61-533,86 | 250    | 96,2  |             |
| K101/095/675/01 | 85008  | 177   | 651,62-651,87 | 250    | 99    |             |
| K101/095/676/01 | 85008  | 174   | 652,43-652,68 | 250    | 99    |             |
| K101/096/577/01 | 35008  | 173   | 653,39-653,69 | 250    | 97    |             |
| K101/096/678/01 | 85008  | 168   | 654,20-654,45 | 249    | 100   |             |
| K101/096/685/01 | 85008  | 170   | 660,73-660,98 | 249,8  | 100   |             |
| K101/097 687/01 | 85008  | 171   | 662,04-662,29 | 250    | 99    |             |
| K101/097/587/02 | 85008  | 172   | 662,31-662,50 | 250    | 99    |             |
| K101/097 688/01 | 85008  | 175   | 663,22-663,47 | 250    | 100   |             |

# <u>Tab. 3:</u> Kernbezeichnungen, Entnahmeteufe und Abmessungen der Proben aus der Bohrung K 101

#### Tab. 3: Fortsetzung

.

| Kana             | Labor | Kann | Tiofo         | Abmess | ungen |             |
|------------------|-------|------|---------------|--------|-------|-------------|
| bezeichnung      | Nr.   | Nr.  | [m]           |        | do    | Bemerkungen |
| K101/007/ 680/01 | 95009 | 176  | 664 12-664 37 | 250    | 00    |             |
| K101/097/ 083/01 | 85008 | 170  | 676 55-676 80 | 250 3  | 100   |             |
| K101/098/ 704/01 | 85008 | 180  | 677 46-677 77 | 250 1  | 100   |             |
| K101/098/ 705/01 | 85008 | 162  | 677 75-678 05 | 250 1  | 100   |             |
| K101/038/ 705/01 | 85008 | 163  | 678 25-678 60 | 250    | 100   |             |
| K101/098/ 706/01 | 85008 | 164  | 678 65-678 90 | 250.3  | 100   |             |
| K101/100/ 718/02 | 85008 | 167  | 689 64-689 89 | 250    | 99.9  |             |
| K101/100/ 719/01 | 85008 | 165  | 690,53-690,78 | 250    | 100   |             |
| K101/100/ 719/02 | 85008 | 166  | 690,85-691,10 | 250.2  | 100   |             |
| K101/100/ 720/01 | 85008 | 169  | 691.57-691.82 | 250.4  | 94    |             |
| K101/057/ 404/01 | 85014 | 334  | 391,72-391,82 | 104    | 51    |             |
| K101/057/ 405/01 | 85014 | 333  | 392,45-392,70 | 249.9  | 100   |             |
| K101/058/ 407/02 | 85014 | 337  | 393,25-393,69 | 245    | 98,1  |             |
| K101/058/ 407/01 | 85014 | 336  | 393,71-393,96 | 250    | 100   |             |
| K101/058/ 408/01 | 85014 | 335  | 394,30-394,40 | 104    | 51    |             |
| K101/058/ 411/01 | 85014 | 332  | 397,16-397,26 | 104.1  | 51,1  |             |
| K101/058/ 413/02 | 85014 | 331  | 398,93-399,03 | 103,8  | 51    |             |
| K101/058/ 413/01 | 85014 | 330  | 399.06-399.16 | 104.1  | 51,1  |             |
| K101/080/ 536/02 | 85014 | 327  | 524,62-524,72 | 104,1  | 51,1  |             |
| K101/080/ 536/01 | 85014 | 326  | 525,25-525,35 | 103,8  | 51    |             |
| K101/081/ 548/01 | 85014 | 329  | 535,26-535,36 | 104,2  | 51,1  |             |
| K101/125 896/01  | 85014 | 339  | 863,83-864,07 | 250    | 100   |             |
| K101/125/ 897/01 | 85014 | 338  | 864,68-869,93 | 245    | 98    |             |
| K101/129/ 931/01 | 85014 | 340  | 893,77-894,02 | 245,1  | 98,1  |             |
| K101/129/ 933/01 | 85014 | 341  | 895,72-895,97 | 245,1  | 98,2  |             |
| K101/129/ 939/01 | 85014 | 344  | 901,17-901,42 | 250    | 99,9  |             |
| K101/129/ 939/02 | 85014 | 345  | 901,48-901,73 | 245    | 98,1  |             |
| K101/131/ 951/01 | 85014 | 342  | 911,90-912,15 | 250    | 100   |             |
| K101/131/ 951/02 | 85014 | 343  | 912,22-912,47 | 250    | 100,1 |             |
| K101/131/ 952/01 | 85014 | 346  | 912,84-913,09 | 250    | 100   |             |
| K101/132/ 958/01 | 85014 | 347  | 922,36-922,46 | 103,9  | 51    |             |
| K101/141/1024/01 | 85014 | 348  | 982,47-982,87 | 104,1  | 51,1  |             |
|                  |       |      |               |        |       |             |

| Kern-         | Labor- | Kern- | Teufe         | Abmess | ungen          | Bemerkungen |
|---------------|--------|-------|---------------|--------|----------------|-------------|
| bezeichnung   | Nr.    | Nr.   | (m)           | 10.    | d <sub>0</sub> |             |
|               |        |       |               | mm     | mm             |             |
| K3/139/0/18/0 | 85003  | 29    | 58,67 - 58,78 | 104,1  | 49,1           |             |
| K3/139/0/18/0 | 85003  | 26    | 59,03 - 59,14 | 104,1  | 49,1           |             |
| K3/139/0/18/0 | 85003  | 42    | 59,21 - 59,32 | 104,1  | 49,0           |             |
| K3/139/0/18/0 | 85003  | 46    | 59,69 - 59,79 | 104,1  | 49,0           |             |
| K5/ 95/0/17/0 | 85003  | 45    | 55,23 - 55,34 | 101,1  | 50,1           |             |
| K5/ 95/0/17/0 | 35003  | 39    | 55,59 - 55,70 | 104,0  | 50,0           |             |
| K5/ 95/0/17/0 | 85003  | 36    | 55,71 - 55,82 | 104,0  | 50,1           |             |

Tab. 4: Kernbezeichnungen, Entnahmeteufe und Abmessungen der Proben aus den felsmechanischen Untersuchungsbohrungen

| <u>Tab. 5:</u> | Wichten  | und  | Ergebnisse | der | Ultraschal | lmessungen | der | Proben | aus | den |
|----------------|----------|------|------------|-----|------------|------------|-----|--------|-----|-----|
|                | Schachty | vand | ohrungen   |     |            |            |     |        |     |     |

|       | Ultrascha | 11messung |         |       |         |                      |
|-------|-----------|-----------|---------|-------|---------|----------------------|
| Kern- | P-Welle   | S-Welle   | γ       | Edvn  | Vdvn    | Poporkungon          |
| Nr.   | [m/s]     | [m/s]     | [kN/m³] | [MPa] | [-]     | beiller kungen       |
|       |           |           |         |       |         |                      |
| 243   | 3470      | 2080      | 23,9    | 25220 | 0,22    |                      |
| 244   | 3470      | 2040      | 24,0    | 24690 | 0,24    |                      |
| 245   | 3410      | 2040      | 23,6    | 23990 | 0,22    |                      |
| 246   | 3720      | 2040      | 24,9    | 26630 | 0,28    | schwacher Durchgang  |
| 247   | 3720      | 2040      | 24,8    | 25520 | 0,28    | sehr schw. Durchgang |
| 250   | 3060      | 2120      | -       | -     | 0,04(?) |                      |
| 175   | -         | -         | 24,0    | -     | -       |                      |
| 177   | -         | -         | 24,0    | -     | -       |                      |
| 175   | 3060      | 2210      | 24,2    | 22570 | -       |                      |
| 257   | 4730      | 2740      | 26,7    | 50010 | 0,25    |                      |
| 252   | 3360      | 2260      | 24,2    | 26870 | 0,09    |                      |
| 253   | 3360      | 2140      | 24,2    | 25680 | 0,16    |                      |
| 242   | 3200      | 1930      | 24,0    | 21730 | 0,22    |                      |
| 249   | 3590      | 2170      | 25,7    | 29380 | 0,21    |                      |
| 248   | 3710      | 2170      | 25,8    | 30040 | 0,24    |                      |
| 254   | 3250      | 2000      | 25,4    | 24410 | 0,20    |                      |
| 251   | 2970      | 1860      | 25,8    | 21020 | 0,18    |                      |
| 255   | 3300      | 2080      | 24,9    | 25230 | 0,17    |                      |
| 256   | -         | 1930      | 25,0    | -     | -       |                      |
| 259   | 3160      | 2040      | 25,0    | 23760 | 0,14    |                      |
| 258   | 3470      | 1960      | 24,9    | 24240 | 0,26    |                      |

| Kern- | Yd      | Ultraschallmessung |           | Edup        | Vava      | Bemerkungen |
|-------|---------|--------------------|-----------|-------------|-----------|-------------|
| Nr.   | [kN/m³] | P-Welle            | S-Welle   | [Mpa]       | 1 1/1     |             |
|       |         | [m/s]              | [m/s]     |             |           |             |
| 511   | 24,03   | -                  | 1 370     | -           | -         | a*          |
| 512   | 24,08   | 2 920              | 1 840     | 19 100      | 0,17      | a           |
| 513   | 24,16   | 2 410              | 1 520     | 13 100      | 0,17      | q           |
| 514   | 24,41   | 2 800              | 1 790     | 18 100      | 0,15      | q           |
| 515   | 24,36   | 3 130              | 2 030     | 22 800      | 0,14      |             |
|       |         | 3040/2800          | 1940/1750 | 21200/18600 | 0,16/0,18 | a           |
| 529   | 24,14   | 3 050              | 1 800     | 19 300      | 0,23      | q           |
| 535   | 24,21   | 2 590              | 1 710     | 15 800      | 0,12      | q           |
| 516   | 24,19   | 2 920              | 1 670     | 17 000      | 0,26      | a           |
| 517   | 24,20   | 3180/2690          | 1750/1630 | 19000/15600 | 0,28/0,21 | q           |
| 530   | 24,05   | 3 180              | 1 710     | 18 200      | 0,30      | a           |
| 518   | 24,13   | 2 700              | 1 710     | 16 400      | 0,17      | q           |
| 519   | 24;77   | 2 800              | 1 710     | 17 400      | 0,20      | q           |
| 552   | 24,42   | 2 800              | 1 800     | 18 100      | 0,15      | a           |
| 553   | 24,31   | 2 920              | 1 670     | 17 000      | 0,26      | q           |
| 554   | 24,24   | 2 800              | 1 710     | 17 000      | 0,20      | q           |
| 547   | 24,25   | 2 900              | 1 790     | 18 000      | 0,20      |             |
| 548   | 24,16   | 2 920              | 1 800     | 18 600      | 0,20      | q           |
| 549   | 24,11   | 3 040              | 1940-1670 | 21100-17200 | 0,16-0,29 | q           |
| 506   | 24,65   | 3 330              | 1 590     | 16 900      | 0,35      | q           |
| 507   | 24,66   | 2 690              | 1 590     | 15 400      | 0,23      | a           |
| 508   | 24,09   | 3 130              | 1 950     | 21 700      | 0,18      |             |
|       |         | 3180/2590          | 2000/1590 | 22600/14600 | 0,17/0,20 | q           |
| 509   | 24,14   | 3 040              | 1 840     | 19 800      | 0,21      | q           |
| 510   | 24,13   | 2 690              | 1 590     | 15 000      | 0,23      | q           |
| 531   | 24,14   | 3 180              | 1 750     | 19 000      | 0,28      | a           |
| 520   | 24,30   | 3180/2690          | 1940/1710 | 22000/16500 | 0,20/0,16 | a           |
| 521   | 24,17   | 2 920              | 1 590     | 15 800      | 0,29      | a           |
| 532   | 24,28   | 2 800              | 1750/1590 | 17500/15500 | 0,18/0,26 | q           |
| 536   | 24,17   | 3040-2690          | 1940-1750 | 21100-16800 | 0,15-0,13 | q           |
| 522   | 24,42   | 2 920              | 1 750     | 18 200      | 0,22      | q           |
| 523   | 24,42   | 2 920              | 1 840     | 19 400      | 0,17      | q           |
| 537   | 24,52   | 2 880              | 1 920     | 19 900      | 0,10      | q           |
| 538   | 24,73   | 2 800              | 1 750     | 18 000      | 0,18      | q           |
| 539   | 24,60   | 3 040              | 1 710     | 18 200      | 0,27      | q           |
| 540   | 24,47   | 2 690              | 1 630     | 15 700      | 0,21      | q           |
| 541   | 24,22   | 3 040              | 1 590     | 16 100      | 0,31      |             |

| Tab. | 6: | Wichten  | und   | Ergebnisse  | der  | Ultrasc | nallmess | sungen | der | Proben | aus | den |
|------|----|----------|-------|-------------|------|---------|----------|--------|-----|--------|-----|-----|
|      |    | Schachty | vider | lagerbohrum | ngen | Schacht | Konrad   | II     |     |        |     |     |

\* q = Messung quer zur Probenlängsachse

#### Tab. 6: Fortsetzung

| Kern- | γd      | Ultrascha | llmessung | Edvn        | Vdvn      | Bemerkungen |
|-------|---------|-----------|-----------|-------------|-----------|-------------|
| Nr.   | [kN/m³] | P-Welle   | S-Welle   | [Mpa]       | [7]       | _           |
|       |         | [m/s]     | [m/s]     |             |           |             |
| 542   | 24,24   | 2 630     | 1 680     | 16 000      | 0,19      | q*          |
| 543   | 24,16   | 2 690     | 1 630     | 15 500      | 0,21      | a           |
| 533   | 24,17   | 2920/2410 | 1840/1560 | 19200/13400 | 0,17/0,14 | q           |
| 503   | 24,26   | 2 690     | 1 490     | 13 800      | 0,28      | q           |
| 504   | 24,75   | 3 330     | 2 050     | 24 900      | 0,19      |             |
| 505   | 24,78   | 3 180     | 2 000     | 23 200      | 0,17      | q           |
| 534   | -       | 2 800     | 1 630     | -           | 0,24      | q           |
| 524   | 24,55   | 2 800     | 1 750     | 17 700      | 0,18      | a           |
| 525   | 24,36   | 2 800     | 1 670     | 16 600      | 0,22      | q           |
| 526   | 24,23   | 2 920     | 1 670     | 17 000      | 0,25      | a           |
| 527   | 24,23   | 3 040     | 1 670     | 17 400      | 0,28      | q           |
| 528   | 24,26   | 2 690     | 1 670     | 16 100      | 0,19      | a           |
| 550   | 24,30   | 2 690     | 1 630     | 15 600      | 0,21      | q           |
| 551   | 24,31   | 3 000     | 1820-1610 | 19400-16300 | 0,21-0,30 | q           |
| 544   | 24,12   | 2 920     | 1 890     | 19 600      | 0,14      |             |
| 545   | 24,30   | 2 760     | 1 840     | 18 100      | 0,11      | q           |
| 546   | 24,30   | 2 800     | 1 750     | 17 600      | 0,18      | a           |

\* q = Messung quer zur Probenlängsachse

.

|       |               | Ultrascha | llmessung | -      |                    |             |
|-------|---------------|-----------|-----------|--------|--------------------|-------------|
| Kern- | Yd<br>[KN/m3] | P-Welle   | S-Welle   | L Edyn | l <sup>V</sup> dyn | Bemerkungen |
|       |               | m/s       | m/s       | fubal  | [/]                |             |
| 10    | -             | -         | -         | -      | -                  |             |
| 11    | 23,2          | 3 190     | 1 770     | 18 650 | 0,28               | a           |
| 6     | -             | -         | -         | -      | -                  |             |
| 7     | -             | -         | -         | -      | -                  |             |
| 8     | -             | -         | -         | -      | -                  |             |
| 9     | -             | -         | -         | -      | -                  |             |
| 12    | 22,4          | 3 230     | 1 700     | 17 600 | 0,31               | q           |
| 13    | 22,1          | 3 160     | 1 630     | 15 550 | 0,32               | q           |
| 14    | 22,2          | 2 970     | 1 510     | 13 350 | 0,33               | q schwacher |
|       |               |           |           |        |                    | Durchgang   |
| 15    | 23,2          | 3 470     | 1 710     | 18 150 | 0,34               | q           |
| 16    | 23,0          | 3 270     | 1 820     | 19 550 | 0,28               | q           |
| 17    | 22,6          | 3 160     | 1 630     | 15 900 | 0,32               | q           |
| 18    | 22,2          | 3 000     | 1 570     | 14 350 | 0,31               | q           |
| 19    | 22,7          | 3 090     | 1 650     | 16 100 | 0,30               | q           |
| 20    | 22,0          | 2 940     | 1 540     | 13 700 | 0,31               | a           |
| 21    | 22,8          | 3 330     | 1 850     | 19 950 | 0,28               | q           |
| 22    | 22,0          | 3 270     | 1 780     | 18 000 | 0,29               | q           |
| 23    | 21,7          | 2 810     | 1 420     | 11 650 | 0,33               | a           |
| 143   | 22,8          | 3 100     | -         | -      | -                  | q           |
| 144   | 22,0          | 2 940     | -         | -      | -                  | q           |
| 146   | 22,5          | 2 940     | -         | -      | -                  | q           |
| 151   | 22,5          | 2 800     | -         | -      | -                  | q           |
| 145   | 23,7          | 3 330     | -         | -      | -                  | q           |
| 141   | 22,7          | 2 860     | -         | -      | -                  | q           |
| 142   | 22,6          | 2 869     | -         | -      | -                  | a           |
| 154   | 22,6          | -         | -         | -      | -                  |             |
| 156   | 23,3          | -         | -         | -      | -                  |             |
| 155   | 25,3          | -         | -         | -      | -                  |             |
| 158   | 24,1          | -         | -         | -      | -                  |             |
| 160   | 23,8          | -         |           | -      | -                  |             |
| 161   | 24,6          | -         | -         | -      | -                  |             |

Tab. 7: Wichten und Ergebnisse der Ultraschallmessungen der Proben aus der Bohrung K 101

# Tab. 7: Fortsetzung

|       |                      | Ultrascha | llmessung |        |                    |             |
|-------|----------------------|-----------|-----------|--------|--------------------|-------------|
| Kern- | γ <sub>d</sub>       | P-Welle   | S-Welle   | Edyn,  | l <sup>2</sup> dyn | Bemerkungen |
| Nr.   | [KN/m <sup>3</sup> ] | [m/s]     | [m/s]     | [mpa]  |                    |             |
| 177   | 24.9                 | 3 670     | 2 060     | 26 850 | 0,27               | a           |
| 174   | 25.1                 | 3 670     | 2 020     | 26 250 | 0,28               | a           |
| 173   | 24.9                 | 2 940     | 1 830     | 19 700 | 0.18               | a           |
| 158   | 24.0                 | 3 330     | 2 000     | 23 350 | 0.22               | a           |
| 170   | 24.0                 | 3 570     | 2 000     | 24 400 | 0.27               | a           |
| 171   | 24 1                 | 4 300     | 2 250     | 32 000 | 0.31               | schwacher   |
| 111   | 24,1                 | 4 000     | 2 200     | 02 000 | 0,01               | Durchgang   |
| 172   | 24 0                 | -         | -         | -      | _                  |             |
| 175   | 25.0                 | 4 000     | 2 150     | 29 900 | 0.30               | a           |
| 176   | 25.8                 | 4 500     | 2 480     | 40 600 | 0.28               |             |
| 170   | 25.8                 | 4 260     | 2 440     | 38 500 | 0.26               |             |
| 190   | 25,0                 | 4 200     | 2 440     | 38 550 | 0.24               | d.          |
| 160   | 25,1                 | 4 170     | 2 440     | 22 000 | 0,24               | , c         |
| 162   | 20,0                 | 4 000     | 2 270     | 33 900 | 0,20               | 4           |
| 164   | 20,1                 | 4 000     | 2 220     | 32 850 | 0,20               |             |
| 104   | 20,0                 | 4 170     | 2 380     | 37 050 | 0,20               |             |
| 107   | 27,1                 | 3 330     | 1 890     | 24 400 | 0.20               | q           |
| 165   | 27,2                 | 3 570     | 2 280     | 32 650 | 0,16               | q           |
| 155   | 26,8                 | -         | -         | -      | -                  | schwacher   |
|       |                      |           |           |        |                    | Durchgang   |
| 169   | 25,7                 | -         | -         | -      | -                  | schwacher   |
|       |                      |           |           |        |                    | Durchgang   |
| 334   | 23,2                 | 2 670     | 1 240     | 9 700  | 0,36               |             |
| 333   | 22,8                 | -         | -         | -      | -                  |             |
| 337   | 22,5                 | -         | -         | -      | -                  |             |
| 336   | 23,3                 | -         | -         | -      | -                  | q           |
| 335   | 23,0                 | 2 670     | 1 240     | 9 650  | 0,36               |             |
| 332   | 23,2                 | 2 670     | 1 300     | 10 550 | 0,36               |             |
| 331   | 22,7                 | 2 680     | 1 420     | 11 950 | 0,30               | d           |
| 330   | 23,1                 | 2 600     | 1 240     | 9 600  | 0,35               |             |
| 327   | 23,9                 | 2 740     | 1 300     | 10 950 | 0,35               |             |
| 326   | 24,4                 | 2 880     | 1 300     | 11 300 | 0,37               |             |
| 329   | 24,0                 | 2 980     | 1 490     | 14 200 | 0,38               |             |
| 339   | 24,5                 | -         | -         | -      | -                  | a           |
| 338   | 24,5                 |           | -         | -      | -                  | q           |
| 340   | 24,6                 | -         | -         | -      | -                  |             |
| 341   | 24,0                 | - 1       | -         | -      | -                  |             |
| 344   | 25,5                 | 3 840     | 2 080     | 28 500 | 0,29               | q           |
| 345   | 25,8                 | 4 460     | 2 580     | 42 900 | 0,25               | a           |
| 342   | 25,1                 | -         | -         | -      | -                  | a           |
| 343   | 25,8                 | 4 170     | 2 330     | 35 650 | 0,27               | a           |
| 346   | 25.7                 | 4 170     | 2 330     | 35 500 | 0,27               | a           |
| 347   | 25,2                 | 3 250     | 1 760     | 20 200 | 0,29               |             |
| 348   | 25,1                 | 3 360     | 1 800     | 21 100 | 0,30               |             |

| Kern- V |               | Ultrascha                                      | llmessung | 5.     |             |   |
|---------|---------------|------------------------------------------------|-----------|--------|-------------|---|
| Nr.     | γd<br>[kN/m³] | d<br>/m³] P-Welle S-Welle [Mpa]<br>[m/s] [m/s] |           | [/]    | Bemerkungen |   |
| 29      | 24,9          | 3 270                                          | -         | -      | -           | q |
| 26      | 25,1          | 3 270                                          | 2 130     | 25 750 | 0,13        | q |
| 42      | 25,1          | 3 270                                          | 2 130     | 25 750 | 0,13        | a |
| 46      | 25.4          | 3 020                                          | 2 000     | 22 550 | 0,11        |   |
| 40      | 25,4          | 3 270                                          | 2 230     | 26 900 | 0,06        | g |
| 45      | 25,6          | 3 580                                          | 2 180     | 29 350 | 0,21        | q |
| 39      | 25,6          | 3 570                                          | 2 170     | 29 100 | 0,21        | q |
| 36      | 25,8          | 3 580                                          | -         | -      | -           | q |

Tab. 8: Wichten und Ergebnisse der Ultraschallmessungen der Proben aus den felsmechanischen Untersuchungsbohrungen

| Kern-<br>Nr. | ذ<br>[s <sup></sup> 1] | σ <sub>3</sub><br>[MPa] | σ <sub>1</sub> -σ <sub>3Bruch</sub><br>[MPa] | <sup>€</sup> Bruch<br>[%] | σ <sub>1</sub> -σ <sub>3Rest</sub><br>[MPa] | E <sub>υ</sub><br>[MPa] | E<br>[MPa] | RVM<br>[MPa] | Bemerkungen |
|--------------|------------------------|-------------------------|----------------------------------------------|---------------------------|---------------------------------------------|-------------------------|------------|--------------|-------------|
| 243          | 1.10-5                 | 2,5                     | 42,0                                         | 0,54                      | 19,6                                        | 9325                    | 12150      | 6180         |             |
| 244          | 61                     | 5,0                     | 50,1                                         | 0,73                      | 33,4                                        | 10065                   | 13342      | 6464         |             |
| 245          | 11                     | 7,5                     | 60,8                                         | 0,93                      | 36,7                                        | 10236                   | 13857      | 7135         |             |
| 246          | £1                     | 10,0                    | 58,3                                         | 1,22                      | 40,9                                        | 7666                    | 10140      | 6236         |             |
| 247          | "                      | 15,0                    | 68,9                                         | 1,43                      | 45,9                                        | 8426                    | 11517      | 6274         |             |
| 250          | - H                    | 7,5                     | 72,3                                         | 0,86                      | 41,6                                        | 10597                   | 12118      | 8082         |             |
| 176          |                        | 2,5                     | 11,7                                         | 0,81                      | 6,1                                         | 1836                    | -          | 2101         |             |
| 177          | "                      | 7,5                     | 20,7                                         | 1,13                      | 10,3                                        | 2592                    | 3985       | 1846         |             |
| 175          | 11                     | 2,5                     | 14,9                                         | 0,40                      | 7,8                                         | 4408                    | _          | 2778         |             |
| 257          |                        | 5,0                     | 92,8                                         | 0,46                      | 45,7                                        | 27182                   | 30253      | 17344        |             |
| 252          |                        | 15,0                    | 50,5                                         | 1,04                      | 45,9                                        | 7134                    | 9969       | 7143         |             |
| 253          |                        | -                       | 21,2                                         | 0,33                      | (2,7)                                       | -                       | -          |              |             |
| 242          | 11                     | 7,5                     | 44,0                                         | 1,14                      | 22,2                                        | 9201                    | 10287      | 5893         |             |
| 249          |                        | 10,0                    | 56,4                                         | 0,65                      | 40,1                                        | 11363                   | 17076      | 12619        |             |
| 248          |                        | 5,0                     | 48,7                                         | 0,57                      | 27,0                                        | 11873                   | -          | 11618        |             |
| 254          | н                      | 7,5                     | 76,3                                         | 0,90                      | 41,0                                        | 14201                   | 21787      | 12598        |             |
| 251          | 11                     | 2,5                     | 49,7                                         | 0,67                      | 16,9                                        | 10675                   | 17753      | 13849        |             |
| 255          | 11                     | 2,5                     | 50,0                                         | 0,49                      | 22,1                                        | 14598                   | 20426      | 11234        |             |
| 256          | 11                     | 7,5                     | 66,9                                         | 0,85                      | 58,4                                        | 14439                   | 21637      | 14344        |             |
| 259          | - 11                   | 15,0                    | 47,0                                         | 1,20                      | 30,2                                        | 6373                    | 18372      | 10017        |             |
| 258          | "                      | 5,0                     | 32,9                                         | 0,75                      | 17,9                                        | 4857                    | -          | 8463         |             |

Tab. 9: Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben der Schachtwandbohrungen

•

| Kern-<br>bezeichnung | Tiefe<br>[m] | $\sigma_{1\ { m Bruch}}$ | Petrographie                         |  |  |  |  |
|----------------------|--------------|--------------------------|--------------------------------------|--|--|--|--|
| KI/2-35              | 1,3-1,6      | 14,9                     | Kalkstein, flaserige Tonlagen        |  |  |  |  |
| KI/5-80              | 1,6-1,8      | 25,2                     | Kalkstein, Tonschlieren              |  |  |  |  |
| KI/7-120             | 1,8-2,1      | 14,4                     | Kalkstein, Tonschlieren              |  |  |  |  |
| KI/9-160             | 1,6-1,8      | 19,6                     | Kalkmergelstein, Tonschlieren        |  |  |  |  |
| KI/10-180            | 1,1-1,4      | 23,4                     | Mergelstein                          |  |  |  |  |
| KI/11-220            | 1,5-1,8      | 4,1                      | Tonmergelstein                       |  |  |  |  |
| KI/12-244            | 1,7-2,0      | 9,9                      | Mergelstein                          |  |  |  |  |
| KI/13-282            | 1,8-1,9      | 7,4                      | Tonmergelstein                       |  |  |  |  |
| KI/14-335            | 1,1-1,3      | 4,8                      | Tonmergelstein                       |  |  |  |  |
| KI/15-380            | 1,8-(1,2?)   | 6,5                      | Tonstein, mergelig                   |  |  |  |  |
| KI/21-570            | 1,8-2,0      | 9,3                      | Tonstein, mild                       |  |  |  |  |
| KI/29-890            | 1,3-1,4      | 6,1                      | Tonmergelstein                       |  |  |  |  |
| KI/30-920            | 1,0-1,2      | 48,4                     | Mergelkalkstein, feste Tonschlieren  |  |  |  |  |
| KI/31-951            | 1,0-1,2      | 45,1                     | Kalkstein                            |  |  |  |  |
| KI/32-980            | 1,0-1,3      | 43,0                     | Kalkmergelstein                      |  |  |  |  |
| KI/34-1045           | 1,6-1,8      | 23,4                     | Tonmergelstein                       |  |  |  |  |
| KII/2-50             | 1,6-1,8      | 12,0                     | Kalkstein, Tonschlieren              |  |  |  |  |
| KII/3-70             | 1,6-1,8      | 27,7                     | Kalkstein, Tonlagen                  |  |  |  |  |
| KII/4-80             | 1,5-1,7      | 30,8                     | Kalkstein                            |  |  |  |  |
| KII/5-110            | 0,7-0,9      | 10,2                     | Kalkstein, Tonschlieren              |  |  |  |  |
| KII/6-135            | 1,3-1,5      | 32,6                     | Kalkstein, Tonschlieren              |  |  |  |  |
| KII/7-160            | 1,3-1,5      | 21,8                     | Kalkstein, Tonschlieren              |  |  |  |  |
| KII/12-335           | 1,8-2,0      | 21,5                     | Tonmergelstein                       |  |  |  |  |
| KII/17-455           | 1,2-1,5      | 17,1                     | Tonstein, mild                       |  |  |  |  |
| KII/32-736           | ?            | 14,0                     | Kalkmergelstein                      |  |  |  |  |
| KII/34-785           | 1,35-1,5     | 13,5                     | Kalkstein                            |  |  |  |  |
| KII/35-805           | 1,1-1,2      | 31,0                     | Kalkstein                            |  |  |  |  |
| KII/37-865           | 1,05-1,25    | 19,7                     | oolithischer Kalkstein, Tonschlieren |  |  |  |  |

| <u>Tab. 10:</u> | Ergebnisse der einaxialen Festigkeitsuntersuchungen | an | Proben | der |
|-----------------|-----------------------------------------------------|----|--------|-----|
|                 | Schachtwandbohrungen des WBK-Gutachtens [1]         |    |        |     |
|                 |                                                     |    |        |     |

| Kern-<br>Nr. \ | ė<br>[s <sup></sup> 1] | σ <sub>3</sub><br>[MPa]           | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | <sup>€</sup> Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa]                            | Ev<br>(AVM)<br>[MPa] | E<br>[MPa]                 | RVM<br>[MPa]            | Bemerkungen                    |
|----------------|------------------------|-----------------------------------|---------------------------------------------------|--------------------|-----------------------------------------------------------------------------|----------------------|----------------------------|-------------------------|--------------------------------|
| 511            | 1 × 10 <sup>5</sup>    | 2,5                               | 24,7                                              | 0,006              | 7,6<br>4,0                                                                  | 4 790                | 9 040                      | _                       |                                |
| 513            | u                      | 15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 43,8                                              | 0,018              | 26,4<br>19,0<br>10,8<br>6,0<br>3,0                                          | 4 770                | 8 510                      | -                       |                                |
| 514            |                        | 15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 47,9                                              | 0,018              | 33,1<br>23,4<br>13,6<br>8,5<br>4,8                                          | 5 020                | 11 880<br>11 480<br>11 260 | 5 190<br>4 220<br>3 010 | Versuchstyp II                 |
| 515            | 11                     | 15,0<br>10,0<br>5,0               | 49,3                                              | 0,020              | 35,9<br>23,3<br>14,1                                                        | 7 210                | 10 480<br>11 790<br>11 190 | 4 930<br>5 070<br>4 540 | Versuchstyp II                 |
| 529            | s = 0,042<br>[mm/min]  | -                                 | $\sigma_{SZ} = 1,41$                              | -                  | -                                                                           | -                    | -                          | -                       | Druck parallel zur Schichtung  |
| 535            | 1 × 10 <sup>-5</sup>   | 0                                 | 10,2                                              | 0,002              | a a stagen ann an de Agente stagente stagente state a success and a success | 5 970                |                            | -                       |                                |
| 516            | 61                     | 5,0<br>2,5<br>1,0                 | 23,5                                              | 0,007              | 17,6<br>11,4<br>6,8                                                         | 5 130                | 8 810                      | -                       |                                |
| 517            | 1)                     | 10,0<br>5,0<br>2,5<br>1,0         | 36,0                                              | 0,012              | 20,5<br>11,3<br>6,2<br>3,1                                                  | 5 610                | 8 270                      |                         |                                |
| 530            | s = 0,042<br>[mm/min]  | -                                 | $\sigma_{SZ} = 2,28$                              | -                  | -                                                                           | -                    | -                          | -                       | Druck senkrecht zur Schichtung |

.

Tab. 11: Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben der Schachtwiderlagerbohrungen Schacht Konrad II

| Tab. 11: | Fortsetzung | 1 |  |
|----------|-------------|---|--|
|          |             |   |  |

| Kern<br>Nr. | - ا ذ<br>[s <sup>-</sup> י] | σ <sub>3</sub><br>[MPa]                  | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | €<br>Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa]                 | RVM<br>[MPa]            | Bemerkungen                   |
|-------------|-----------------------------|------------------------------------------|---------------------------------------------------|------------|--------------------------------------------------|----------------------------------|----------------------------|-------------------------|-------------------------------|
| 518         | 1 × 10 <sup>-5</sup>        | 20,0<br>15,0<br>10,0<br>5,0<br>2,5       | 36,6                                              | 0,013      | 26,5<br>22,0<br>15,6<br>9,1<br>5,2               | 3 610                            | 8 570                      | -                       |                               |
| 519         | u                           | 1,0<br>15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 44,3                                              | 0,011      | 2,8<br>27,3<br>21,5<br>11,8<br>7,0<br>3,5        | 7 740                            | 11 650<br>11 190<br>11 520 | 5 990<br>4 940<br>4 070 | Versuchstyp II                |
| 552         | n                           | 10,0<br>5,0<br>2,5<br>1,0                | 37,1                                              | 0,011      | 23,6<br>13,6<br>7,7<br>4.0                       | 5 370                            | 9 520                      | -                       |                               |
| 553         | u                           | 15,0<br>10,0<br>5,0<br>2,5<br>1,0        | 43,4                                              | 0,016      | 29,1<br>22,6<br>13,4<br>7,1<br>4,1               | 5 960                            | 10 230                     | -                       |                               |
| 554         | 11                          | 15,0<br>10,0<br>5,0<br>2,5<br>1,0        | 41,0                                              | 0,011      | 28,8<br>21,6<br>13,1<br>8,3<br>4,3               | 6 760                            | 10 770<br>10 020<br>11 050 | 5 670<br>4 680<br>3 510 | Versuchstyp II                |
| 547         | s = 0,042                   | -                                        | $\sigma_{SZ} = 1,35$                              |            |                                                  | -                                | -                          | -                       | Druck parallel zur Schichtung |
| 548         | $1 \times 10^{-5}$          | 5,0<br>2,5<br>1,0                        | 26,4                                              | 0,006      | 13,6<br>8,5<br>4,5                               | 5 570                            | 8 120                      | -                       |                               |

•

| Tab. 11: | Fortsetzung | 2 |
|----------|-------------|---|
|          |             |   |

| Kern-<br>Nr. | [s <sup>-</sup> 1]    | σ <sub>3</sub><br>[MPa]           | $\begin{bmatrix} \sigma_1 & \sigma_3 \\ & Bruch \\ [MPa] \end{bmatrix}$ | <sup>€</sup> Bruch | $\sigma_1 - \sigma_3$<br>Rest<br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa]                 | RVM<br>[MPa]            | Bemerkungen                    |
|--------------|-----------------------|-----------------------------------|-------------------------------------------------------------------------|--------------------|----------------------------------------|----------------------------------|----------------------------|-------------------------|--------------------------------|
| 549          | $1 \times 10^{-5}$    | 0                                 | 14,2                                                                    | 0,003              | -                                      | 5 360                            | 6 990                      | -                       |                                |
| 506          | 11                    | 2,5                               | 22,4                                                                    | 0,006              | 10,5                                   | 4 760                            | 10 110                     | -                       |                                |
| 507          | 11                    | 10,0<br>5,0<br>2,5                | 40,8                                                                    | 0,009              | 20,3<br>15,9<br>6,0                    | -                                | -                          | -                       |                                |
| 508          |                       | 15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 46,2                                                                    | 0,013              | 27,6<br>19,3<br>10,7<br>5,9<br>2,9     | 4 890                            | 9 150                      | -                       |                                |
| 509          |                       | 15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 44,7                                                                    | 0,013              | 27,1<br>20,1<br>11,0<br>6,7<br>3,2     | 7 944                            | 11 120<br>11 760<br>10 700 | 6 470<br>4 630<br>4 040 | Versuchstyp II                 |
| 510          |                       | 15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 43,4                                                                    | 0,015              | 27,7<br>20,1<br>11,3<br>7,1<br>3,7     | 6 810                            | 10 020<br>10 760<br>11 900 | 4 800<br>3 880<br>3 550 | Versuchstyp II                 |
| 531          | s = 0,042<br>[mm/min] | -                                 | $\sigma_{SZ} = 2,51$                                                    | -                  | -                                      | -                                | -                          | -                       | Druck senkrecht zur Schichtung |
| 520          | $1 \times 10^{-5}$    | 5,0<br>2,5<br>1,0                 | 17,8                                                                    | 0,008              | 12,6<br>9,3<br>6,4                     | 3 420                            | 8 260                      | -                       |                                |
| 521          | 11                    | 10,0<br>5,0<br>2,5<br>1,0         | -                                                                       | -                  | 20,0<br>11,5<br>6,5<br>3,3             | 3 920                            | 7 590                      | _                       |                                |

| Kern-<br>Nr. | [s <sup></sup> 1]      | σ <sub>3</sub><br>[MPa]                   | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | €<br>Bruch | $\sigma_1 - \sigma_3$<br>Rest<br>[MPa]     | E <sub>V</sub> (AVM)<br>[MPa] | E<br>[MPa]                 | RVM<br>[MPa]            | Bemerkungen                   |
|--------------|------------------------|-------------------------------------------|---------------------------------------------------|------------|--------------------------------------------|-------------------------------|----------------------------|-------------------------|-------------------------------|
| 532          | s = 0,042<br>[mm/min]  | -                                         | $\sigma_{SZ} = 1,59$                              | -          | _                                          | -                             | -                          | -                       | Druck parallel zur Schichtung |
| 536          | $1 \times 10^{-5}$     | 0                                         | 15,9                                              | 0,003      | -                                          | 6 550                         | 8 910                      | -                       |                               |
| 522          | "                      | 20,0<br>15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 50,4                                              | 0,020      | 37,0<br>30,2<br>21,2<br>11,5<br>6,5<br>3,4 | 4 590                         | 10 230                     | -                       |                               |
| 523          |                        | 15,0<br>10,0<br>5,0<br>2,5<br>1,0         | 43,0                                              | 0,013      | 30,3<br>21,8<br>12,5<br>8,0<br>4,1         | 8 050                         | 10 960<br>11 950<br>10 100 | 5 030<br>4 610<br>4 600 | Versuchstyp II                |
| 537          | 11                     | 7,5<br>2,5<br>1,0                         | 34,8                                              | 0,006      | 17,9<br>7,6<br>4,2                         | 6 460                         | 9 310                      | -                       |                               |
| 538          | 11                     | 2,5<br>1,0                                | 27,3                                              | 0,004      | 8,5<br>5,0                                 | 7 840                         | 10 360                     | -                       |                               |
| 539          | 0                      | 0                                         | 14,0                                              | 0,003      | -                                          | 5 610                         | 7 250                      | -                       |                               |
| 540          |                        | 15,0<br>10,0<br>5,0<br>2,5<br>1,0         | 35,0                                              | 0,009      | 22,2<br>16,4<br>9,1<br>5,5<br>2,8          | 5 530                         | 8 320                      | -                       |                               |
| 541          | \$ = 0,042<br>[mm/min] | -                                         | $\sigma_{SZ} = 1,30$                              | _          | -                                          | -                             | -                          | -                       | Druck parallel zur Schichtung |

#### Tab. 11: Fortsetzung 3

| Tab. 11: | Fortsetzung | 4 |
|----------|-------------|---|
|          |             |   |

| Kern-<br>Nr. | é<br>[s <sup></sup> 1] | σ <sub>3</sub><br>[MPa]                   | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | €<br>Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa]                              | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa]                 | RVM<br>[MPa]            | Bemerkungen                    |
|--------------|------------------------|-------------------------------------------|---------------------------------------------------|------------|-------------------------------------------------------------------------------|----------------------------------|----------------------------|-------------------------|--------------------------------|
| 542          | 1 × 10 <sup>-5</sup>   | 15,0<br>10,0<br>5,0<br>2,5<br>1,0         | <del>-</del> .                                    | -          | 21,0<br>12,7<br>8,1<br>4,2                                                    | 6 170                            | 10 040<br>10 230<br>9 490  | -<br>5 700<br>5 610     | Versuchstyp II                 |
| 543          |                        | 20,0<br>15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 47,4                                              | 0,018      | 32,6<br>28,2<br>20,1<br>11,8<br>6,6<br>3,4                                    | 4 260                            | 9 840                      | -                       |                                |
| 533          | s = 0,042<br>[mm/min]  | -                                         | $\sigma_{SZ} = 1,04$                              | -          | -                                                                             | _                                | -                          | -                       | Druck parallel zur Schichtung  |
| 504          | 1 × 10 <sup>-5</sup>   | 15,0<br>10,0<br>5,0<br>2,5                | 53,0                                              | 0,011      | 39,5<br>28,1<br>15,8                                                          | 6 800                            | 10 460                     | -                       |                                |
| 505          | 10                     | 15,0<br>10,0<br>5,0<br>2,5                | 57,7                                              | 0,014      | 41,5<br>29,8<br>17,1<br>11,0                                                  | 7 930                            | 12 580<br>13 100<br>12 810 | 5 480<br>6 800<br>6 650 | Versuchstyp II                 |
| 534          | s = 0,042<br>[mm/min]  | -                                         | $\sigma_{SZ} = 2,20$                              | _          | n en false in anno even des mille señecedas pañas e concerna en astrono paños | -                                | -                          | -                       | Druck senkrecht zur Schichtung |
| 524          | 1 × 10 <sup>-5</sup>   | 2,5<br>1,0                                | 25,7                                              | 0,004      | 8,8<br>4,7                                                                    | 6 570                            | 10 130                     | -                       |                                |
| 525          | 11                     | 10,0<br>5,0<br>2,5<br>1,0                 | 32,4                                              | 0,008      | 20,3<br>11,9<br>7,0<br>3,8                                                    | 5 650                            |                            | -                       |                                |

| Kern-<br>Nr. | ė<br>[s <sup>-</sup> 1] | σ <sub>3</sub><br>[MPa]           | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | €<br>Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa]              | RVM<br>[MPa]            | Bemerkungen                    |
|--------------|-------------------------|-----------------------------------|---------------------------------------------------|------------|--------------------------------------------------|----------------------------------|-------------------------|-------------------------|--------------------------------|
| 526          | 1 × 10 <sup>-5</sup>    | 15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 40,7                                              | 0,012      | 25,1<br>18,4<br>10,4<br>6,0<br>3,2               | 4 420                            | _                       | -                       |                                |
| 527          |                         | 15,0<br>10,0<br>5,0<br>2,5<br>1,0 | 39,2                                              | 0,016      | 28,2<br>20,3<br>11,5<br>7,5<br>3,7               | 5 370                            | 9 150<br>8 410<br>7 770 | 3 290<br>3 270<br>3 290 | Versuchstyp II                 |
| 528          |                         | 0                                 | 14,8                                              | 0,003      | -                                                | 5 620                            | 7 750                   | _                       |                                |
| 551          |                         | 0                                 | 8,4                                               | 0,003      | _                                                | 2 910                            | 5 220                   | _                       |                                |
| 544          | s = 0,042<br>[mm/min]   | -                                 | $\sigma_{SZ} = 1,82$                              | -          | -                                                | -                                | -                       | -                       | Druck senkrecht zur Schichtung |
| 545          | 1 × 10 <sup>−</sup> ⁵   | 7,5<br>2,5<br>1,0                 | 26,2                                              | 0,007      | 18,8<br>7,9<br>4,3                               | 5 690                            | 9 510                   | -                       |                                |

#### Tab. 11: Fortsetzung 5

| Kern-<br>Nr. | ė<br>[s <sup>-</sup> 1] | σ <sub>3</sub><br>[MPa] | $\sigma_1 - \sigma_3$<br>Bruch<br>[MPa] | <sup>€</sup> Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa] | RVM<br>[MPa] | Be-<br>mer-<br>kun- |
|--------------|-------------------------|-------------------------|-----------------------------------------|--------------------|--------------------------------------------------|----------------------------------|------------|--------------|---------------------|
| 10           | 10-1                    | 17.5                    | <u> </u>                                | 0.015              |                                                  |                                  | 0.000      |              | gen                 |
| 10           | 10 *                    | 11,5                    | 53,8                                    | 0,017              | 35,6                                             | 4 630                            | 8 330      | 4 550        |                     |
| 11           | 10 \$                   | 5,0                     | 41,6                                    | 0,011              | 19,0                                             | 6 580                            | -          |              |                     |
| 6            | 10-5                    | 2,5                     | 30,8                                    | 0,009              | 12,7                                             | 4 950                            | 4 900      | 3 310        |                     |
| 7            | 10-5                    | 5,0                     | 29,0                                    | 0,009              | 19,2                                             | 4 610                            | 6 000      | 4 130        |                     |
| 8            | 10-5                    | 5,0                     | 32,4                                    | 0,009              | 22,7                                             | 5 230                            |            | -            |                     |
| 9            | 10-5                    | 7,5                     | 35,9                                    | 0,011              | 27,5                                             | 5 260                            | 6 760      | 4 750        |                     |
| 10           | 1075                    | 10 5                    | 40.0                                    | 0.016              | 20.2                                             | 4 290                            | 8 080      | -            |                     |
| 12           | 10 -                    | 12,5                    | 40,0                                    | 0,010              | 30,3                                             | 7 630                            | -          | -            |                     |
| 13           | 10-5                    | 2,5                     | 27,1                                    | 0,008              | 10,8                                             | 4 920                            | 5 540      | 3 010        |                     |
| 14           | 10-5                    | 5,0                     | 29,0                                    | 0,009              | 19,0                                             | 5 100                            | 5 520      | 3 560        |                     |
| 15           | 10-5                    | 7,5                     | 46,6                                    | 0,010              | 25,3                                             | 6 480                            | 8 870      | 4 330        |                     |
| 16           | 10-5                    | 12,5                    | 44,4                                    | 0,011              | 29,4                                             | 7 030                            | 8 680      | 5 050        |                     |
| 17           | 10-5                    | 17,5                    | 37,3                                    | 0,013              | 25,2                                             | 6 220                            | 7 040      | 3 500        |                     |
| 18           | 10-5                    | 2,5                     | 30,4                                    | 0,007              | 13,4                                             | 5 840                            | 6 360      | 3 430        |                     |
| 10           | 10-5                    | 5.0                     | 25 6                                    | 0.000              | 17 0                                             | 5 780                            | 7 090      | -            |                     |
| 19           | 10 .                    | 5,0                     | 35,6                                    | 0,009              | 11,3                                             | 6 770                            |            | -            |                     |
| 20           | 10-5                    | 7,5                     | 26,7                                    | 0,007              | 18,6                                             | 5 270                            | 5 860      | 3 850        |                     |
| 21           | 10-5                    | 12,5                    | 57,3                                    | 0,019              | 36,3                                             | 6 090                            | 9 590      | 3 290        |                     |
| 22           | 10-5                    | 17,5                    | 34,7                                    | 0,010              | 28,1                                             | 5 720                            | 8 560      | 5 310        |                     |
|              |                         | 12,5                    | 42,9                                    | 0,027              | 29,3                                             | 4 080                            | 5 800      | 2 340        |                     |
| 0.0          | 10-5                    | 7,5                     | -                                       | -                  | 19,4                                             | -                                |            | 1 920        |                     |
| 23           | 10 3                    | 5,0                     | -                                       | -                  | 14,4                                             | -                                | -          | 1 900        |                     |
|              |                         | 2,5                     | -                                       | -                  | 8,6                                              | - 1                              | -          | 1 390        |                     |

٠

<u>Tob. 12:</u> Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben aus der Bohrung K 101

| Kern-<br>Nr. | ذ<br>[s <sup>-1</sup> ] | σ <sub>3</sub><br>[MPa] | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | <sup>€</sup> Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa] | RVM<br>[MPa]            | Be-<br>mer-<br>kun-<br>gen |
|--------------|-------------------------|-------------------------|---------------------------------------------------|--------------------|--------------------------------------------------|----------------------------------|------------|-------------------------|----------------------------|
| 143          | 10-5                    | 25,0<br>15,0<br>7,5     | 26,0                                              | 0,012              | 17,8<br>16,0<br>14,8                             | 5 820                            | 5 750      | 3 130<br>2 700<br>2 490 |                            |
| 144          | 10 <sup>-5</sup>        | 12,5<br>7,5<br>5,0      | 16,8                                              | 0,011              | 13,1<br>19,3<br>10,9                             | 3 990                            | 4 650      | 2 760<br>2 520<br>2 070 |                            |
| 146          | 10-5                    | 7,5<br>5,0<br>2,5       | 22,8                                              | 0,011              | 13,8<br>10,3<br>8,9                              | 4 200                            | 4 140      | 2 540<br>2 190<br>760   |                            |
| 151          | 10-5                    | 12,5                    | 18,0                                              | 0,010              | 8,3                                              | 3 490                            | 3 360      | 2 940<br>-<br>-         |                            |
| 145          | 10-5                    | 2,5                     | 23,1                                              | 0,007              | 9,3                                              | 6 050                            | 6 030      | 4 360<br>-<br>-         |                            |
| 141          | 10-5                    | 7,5                     | 17,2                                              | 0,009              | 8,4                                              | 3 800                            | 4 380      | 3 920<br>-<br>-         |                            |
| 142          | 10-5                    | 12,5<br>7,5<br>5,0      | 26,9                                              | 0,011              | 10,7<br>9,2<br>7,2                               | 3 020                            | 3 620      | 3 700<br>2 940<br>3 360 |                            |
| 154          | 10-5                    | 7,5                     | 10,3                                              | 0,012              | 7,2                                              | 1 560                            | 2 180      | 1 790                   |                            |
| 156          | 10-5                    | 12,5<br>7,5<br>5,0      | 9,9                                               | 0,011              | 7,5<br>7,1<br>6,4                                | 1 590                            | -          | 1 820<br>-<br>1 770     |                            |
| 155          | 10-5                    | 2,5                     | 20,0                                              | 0,008              | 8,5                                              | 4 200                            | 5 140      | 2 280                   |                            |

Tab. 12: Fortsetzung 1

| Kern-<br>Nr. | ė<br>[s <sup>-1</sup> ] | σ <sub>3</sub><br>[MPa] | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | <sup>€</sup> Bruch | σ <sub>1</sub> - σ <sub>3<br/>Rest</sub><br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa] | RVM<br>[MPa] | Be-<br>mer-<br>kun-<br>gen |
|--------------|-------------------------|-------------------------|---------------------------------------------------|--------------------|---------------------------------------------------|----------------------------------|------------|--------------|----------------------------|
|              |                         | 2,5                     | 17,6                                              | 0,007              | 5,2                                               | 4 720                            | 5 370      | 2 000        |                            |
| 158          | 10 •                    |                         |                                                   |                    |                                                   |                                  |            | 3 770        |                            |
|              |                         | 12,5                    | 31,7                                              | 0,018              | 16,9                                              | 4 090                            | 5 520      | 2 290        |                            |
| 160          | 10-5                    | 7,5                     |                                                   |                    | 11,1                                              |                                  | 5 480      | 2 410        |                            |
|              |                         | 5,0                     |                                                   |                    | 8,0                                               |                                  |            | 2 820        |                            |
| 161          | 10-5                    | 5,0                     | 16,8                                              | 0,010              | 7,1                                               | 2 480                            | 3 940      | 2 850        |                            |
| 177          | 10-5                    | 2,5                     | 39,4                                              | 0,005              | 19,2                                              | 13 840                           | -          | -            |                            |
|              |                         | 12,5                    | 56,9                                              | 0,021              | 56,4                                              | 15 980                           | 22 500     | 11 250       |                            |
| 174          | 10-5                    | 7,5                     |                                                   | 1                  | 37,3                                              |                                  | ]          | 7 440        |                            |
| 1/4          | 10 -                    | 5,0                     |                                                   |                    | 26,2                                              |                                  |            | 6 470        |                            |
|              |                         | 2,5                     |                                                   |                    | 15,7                                              |                                  |            | 4 810        |                            |
|              |                         | 17,5                    | 62,2                                              | 0,033              | 61,4                                              | 13 790                           | -          | -            |                            |
| 173          | 10-5                    | 12,5                    |                                                   | 1                  | 51,4                                              |                                  | •          |              |                            |
| 115          | 10                      | 5,0                     |                                                   | 1                  | 27,6                                              |                                  | 1          |              | l                          |
|              |                         | 2,5                     |                                                   |                    | 14,5                                              |                                  |            |              |                            |
| 168          | 10-5                    | 5,0                     | 51,9                                              | 0,007              | 33,1                                              | 14 130                           | -          | -            |                            |
| 100          | 10                      | 2,5                     |                                                   |                    | 20,5                                              |                                  |            |              |                            |
|              | 1                       | 17,5                    | 54,4                                              | 0,019              | 54,0                                              | 18 490                           | -          | -            |                            |
| 170          | 10-5                    | 12,5                    |                                                   | 1                  | 47,1                                              | 1                                | 1          |              |                            |
| 110          | 10                      | 5,0                     |                                                   |                    | 26,3                                              |                                  | 1          |              |                            |
|              |                         | 2,5                     |                                                   |                    | 13,3                                              |                                  |            |              |                            |
| 171          | 10-5                    | 2,5                     | 38,1                                              | 0,004              | 18,5                                              | 18 380                           | -          | -            |                            |
|              |                         | 7,5                     | 46,5                                              | 0,006              | 39,3                                              | 18 340                           | -          | -            |                            |
| 172          | 10-5                    | 5,0                     |                                                   |                    | 30,9                                              |                                  |            |              |                            |
|              | <u> </u>                | 2,5                     |                                                   |                    | 20,5                                              |                                  |            |              |                            |

# <u>Tab. 12:</u> Fortsetzung 2

| Kern-<br>Nr. | [s <sup>-</sup> י] | σ <sub>3</sub><br>[MPa] | $\sigma_1 - \sigma_3$ Bruch<br>[MPa] | €<br>Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa] | RVM<br>[MPa] | Be-<br>mer-<br>kun-<br>gen |
|--------------|--------------------|-------------------------|--------------------------------------|------------|--------------------------------------------------|----------------------------------|------------|--------------|----------------------------|
|              |                    | 12,5                    | 79,8                                 | 0,008      | 62,9                                             | 23 070                           | 29 210     | 16 220       | 3=                         |
| 175          | 10-5               | 7,5                     |                                      |            | 43,3                                             |                                  |            | 9 360        |                            |
| 115          | 10 -               | 5,0                     |                                      | ł          | 30,3                                             |                                  |            | 8 540        |                            |
|              |                    | 2,5                     |                                      |            | 17,2                                             |                                  |            | 5 680        |                            |
| 176          | 10-5               | 2,5                     | 42,7                                 | 0,007      | 22,9                                             | 8 560                            | -          | -            |                            |
| 170          | 10-5               | 5,0                     | 43,0                                 | 0,007      | 31,2                                             | 11 280                           | _          | -            |                            |
| 119          | 10 -               | 2,5                     |                                      |            | 17,3                                             |                                  |            |              | -                          |
|              |                    | 7,5                     | 50,8                                 | 0,006      | 28,8                                             | 17 420                           | -          | -            |                            |
| 180          | 10-5               | 5,0                     |                                      |            | 21,4                                             |                                  |            |              |                            |
|              |                    | 2,5                     |                                      |            | 12,6                                             |                                  |            |              |                            |
| 162          | 10-5               | 2,5                     | 23,4                                 | 0,009      | 17,9                                             | 8 430                            | -          |              |                            |
|              |                    | 12,5                    | 58,1                                 | 0,009      | 36,9                                             | 13 190                           | 19 660     | 12 280       |                            |
| 163          | 10-5               | 7,5                     |                                      |            | 23,7                                             |                                  |            | 8 880        | Í                          |
|              |                    | 5,0                     |                                      |            | 11,5                                             |                                  |            |              |                            |
|              |                    | 17,5                    | 62,0                                 | 0,011      | 57,6                                             | 12 230                           | -          | -            |                            |
| 164          | 10-5               | 12,5                    |                                      |            | 40,2                                             | ]                                |            | 1            | 1                          |
|              | 10                 | 5,0                     |                                      | [          | 20,4                                             |                                  |            |              | ł                          |
|              |                    | 2,5                     |                                      |            | 0                                                |                                  |            |              |                            |
| 167          | 10-5               | 2,5                     | 37,1                                 | 0,005      | 16,7                                             | 13 810                           |            | -            |                            |
|              |                    | 7,5                     | 45,9                                 | 0,007      | 25,2                                             | 13 980                           | -          | - 1          |                            |
| 165          | 10 <sup>-5</sup>   | 5,0                     |                                      | ł          | 18,0                                             | ſ                                |            |              | ļ                          |
|              |                    | 2,5                     |                                      |            | 10,4                                             |                                  |            |              |                            |
|              |                    | 12,5                    | 44,5                                 | 0,011      | 42,3                                             | 7 130                            | 13 910     | 8 580        | 1                          |
| 166          | 10-5               | 7,5                     |                                      |            | 28,7                                             |                                  |            | 6 280        |                            |
|              |                    | 2.5                     |                                      | 1          | 11.6                                             |                                  |            | 3 940        | 1                          |

#### Tab. 12: Fortsetzung 3

| Kern-<br>Nr. | é<br>[s <sup></sup> 1] | σ <sub>3</sub><br>[MPa]    | $\sigma_1 - \sigma_3$ Bruch<br>[MPa] | <sup>€</sup> Bruch | $\sigma_1 - \sigma_{3 \text{Rest}}$ | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa] | RVM<br>[MPa]            | Be-<br>mer-<br>kun-<br>gen |
|--------------|------------------------|----------------------------|--------------------------------------|--------------------|-------------------------------------|----------------------------------|------------|-------------------------|----------------------------|
| 169          | 10-5                   | 17,5<br>12,5<br>5,0<br>2,5 | 34,3                                 | 0,011              | 29,2<br>25,2<br>15,0<br>7,7         | 8 450                            | -          | -                       |                            |
| 334          | 10-5                   | 2,5<br>5,0<br>7,5<br>12,5  | 17,3                                 | 0,084              | 11,5<br>13,0<br>13,4<br>17,1        | 3 520                            | -          | -                       |                            |
| 333          | 10-5                   | 7,5<br>5,0<br>2,5          | 21,2                                 | 0,010              | 10,8<br>8,2<br>4,9                  | 3 540                            | 2 830      | 1 270<br>1 230<br>1 190 |                            |
| 337          | 10-5                   | 12,5<br>7,5<br>5,0<br>2,5  | 23,7                                 | 0,010              | 18,6<br>13,7<br>10,6<br>6,6         | 2 890                            | -          | -                       |                            |
| 336          | 10 <sup>-5</sup>       | 17,5<br>12,5<br>7,5<br>2,5 | 17,5                                 | 0,014              | 32,8<br>26,9<br>19,0<br>9,2         | 5 610                            | -          | -                       |                            |
| 335          | 10-5                   | 17;5<br>5,0<br>2,5         | 22,9                                 | 0,016              | 11;5<br>8,9<br>5,7                  | 3 090                            | -          | -                       |                            |
| 332          | 10 <sup>6</sup>        | 7,5<br>5,0<br>2,5          | 26,0                                 | 0,017              | 16,0<br>11,1<br>7,7                 | 2 570                            | 4 470      | 1 950<br>1 840<br>1 710 |                            |

Tab. 12: Fortsetzung 4

| Tab. 12: | Fortsetzung | 5 |
|----------|-------------|---|
|----------|-------------|---|

-

| Kern-<br>Nr. | ÷<br>[s <sup></sup> 1] | σ <sub>3</sub><br>[MPa]    | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | €<br>Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | Ė<br>[MPa] | RVM<br>[MPa]            | Be-<br>mer-<br>kun-<br>gen |
|--------------|------------------------|----------------------------|---------------------------------------------------|------------|--------------------------------------------------|----------------------------------|------------|-------------------------|----------------------------|
| 331          | 10-5                   | 2,5<br>5,0<br>7,5          | 19,4                                              | 0,007      | 7,4<br>9,1<br>11,1                               | 3 720                            | _          | _                       |                            |
| 330          | 10-5                   | 17,5<br>12,5<br>7,5<br>2,5 | 25,8                                              | 0,027      | 19,0<br>16,7<br>12,8<br>5,6                      | 2 590                            | -          | -                       |                            |
| 327          | 10 <sup></sup> \$      | 7,5<br>5,0<br>2,5          | 25,9                                              | 0,018      | 12,9<br>9,2<br>5,9                               | 2 770                            | 4 740      | 2 130<br>1 960<br>1 470 |                            |
| 326          | 10-5                   | 2,5<br>5,0<br>7,5<br>12,5  | 22,0                                              | 0,065      | 9,6<br>13,6<br>15,8<br>26,6                      | 3 340                            | -          | -                       |                            |
| 329          | 10 <sup>-5</sup>       | 7,5<br>5,0<br>2,5          | 32,5                                              | 0,019      | 17,1<br>11,8<br>6,7                              | 3 100                            | -          | -                       |                            |
| 339          | 10 <sup>-5</sup>       | 12,5<br>7,5<br>5,0<br>2,5  | 25,8                                              | 0,008      | 19,1<br>14,2<br>16,4<br>5,9                      | 6 040                            | 4 460      | -                       |                            |
| 338          | 10 <sup>-5</sup>       | 2,5<br>5,0<br>7,5<br>12,5  | 15,8                                              | 0,007      | 6,3<br>                                          | 3 890                            | -          |                         |                            |

# Tab. 12: Fortsetzung 6

| Kern-<br>Nr. | [s <sup>-1</sup> ] | σ <sub>3</sub><br>[MPa] | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | €<br>Bruch | σ <sub>1</sub> - σ <sub>3</sub><br>Rest<br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa] | RVM<br>[MPa] | Be-<br>mer-<br>kun-<br>gen |
|--------------|--------------------|-------------------------|---------------------------------------------------|------------|--------------------------------------------------|----------------------------------|------------|--------------|----------------------------|
|              |                    | 2,5                     | 25,6                                              | 0,006      | 10,2                                             | 6 760                            | -          | -            |                            |
| 340          | 10-5               | 5,0                     |                                                   |            | 16,4                                             |                                  |            |              |                            |
|              |                    | 7,5                     |                                                   |            | 22,1                                             |                                  |            |              |                            |
|              |                    | 12,5                    |                                                   |            | 32,3                                             |                                  |            |              |                            |
|              |                    | 12,5                    | 12,4                                              | 0,012      | 30,5                                             | 7 270                            | -          | -            |                            |
| 341          | 10-5               | 7,5                     |                                                   |            | 22,2                                             |                                  |            |              |                            |
| •••          |                    | 5,0                     |                                                   |            | 16,6                                             |                                  |            |              |                            |
|              |                    | 2,5                     |                                                   |            | 10,4                                             |                                  |            |              |                            |
|              |                    | 7,5                     | 41,4                                              | 0,006      | 27,7                                             | 12 750                           | -          | -            |                            |
| 344          | 10-5               | 5,0                     |                                                   |            | 20,2                                             |                                  |            |              |                            |
|              |                    | 2,5                     |                                                   |            | 11,4                                             |                                  |            |              |                            |
|              |                    | 17,5                    | 55,9                                              | 0,008      | 40,7                                             | 13 490                           | -          | -            |                            |
| 345          | 10-5               | 12,5                    |                                                   |            | 36,8                                             |                                  |            |              |                            |
|              | 10                 | 7,5                     |                                                   |            | 27,4                                             |                                  |            |              |                            |
|              |                    | 2,5                     |                                                   |            | 13,5                                             |                                  |            |              |                            |
|              |                    | 2,5                     | 26,6                                              | 0,007      | 12,1                                             | 6 420                            |            |              |                            |
| 342          | 10-5               | 5,0                     |                                                   |            | 18,3                                             |                                  |            |              |                            |
|              |                    | 7,5                     |                                                   |            | 23,1                                             |                                  |            |              |                            |
|              |                    | 12,5                    | 74,2                                              | 0,009      | 46,3                                             | 15 080                           | 18 870     | 9 390        |                            |
| 343          | 10-5               | 7,5                     |                                                   |            | 33,7                                             |                                  |            |              |                            |
| 040          | 10                 | 5,0                     |                                                   |            | 18,3                                             |                                  |            |              |                            |
|              |                    | 2,5                     |                                                   |            | 11,3                                             |                                  |            |              |                            |
|              |                    | 25,0                    | 91,1                                              | 0,013      | 64,1                                             | 13 210                           | -          | -            |                            |
| 346          | 10-5               | 12,5                    |                                                   |            | 42,0                                             |                                  |            |              |                            |
| 040          | 10                 | 7,0                     |                                                   |            | 29,0                                             |                                  |            |              |                            |
|              |                    | 2,5                     |                                                   |            | -                                                |                                  |            |              |                            |

| Kern-<br>Nr. | é<br>[s <sup></sup> 1] | σ <sub>3</sub><br>[MPa] | σ <sub>1</sub> - σ <sub>3</sub><br>Bruch<br>[MPa] | € <sub>Bruch</sub> | σ <sub>1</sub> - σ <sub>3<br/>Rest</sub><br>[MPa] | E <sub>V</sub><br>(AVM)<br>[MPa] | E<br>[MPa] | RVM<br>[MPa] | Be-<br>mer-<br>kun-<br>gen |
|--------------|------------------------|-------------------------|---------------------------------------------------|--------------------|---------------------------------------------------|----------------------------------|------------|--------------|----------------------------|
| 29           | 10-5                   | 17,5                    | 66 4                                              | 0,017              | 39,1                                              | 3 540                            | -          | 7 410        |                            |
| 26           | 10-5                   | 12,5                    | 47,9                                              | 0,016              | 29,5                                              | 3 270                            | -          | 9 340        |                            |
| 42           | 10-5                   | 2,5                     | 56,1                                              | 0,010              | 16,6                                              | 6 600                            | -          | 5 240        |                            |
| 46           | 10-5                   | 7,5                     | 66,5                                              | 0,012              | 31,4                                              | 6 180                            | -          | 7 860        |                            |
| 45           | 10-5                   | 25,0                    | 56,7                                              | 0,018              | 41,5                                              | 3 650                            | -          | 7 990        |                            |
| 39           | 10-5                   | 17,5                    | 57,2                                              | 0,014              | 36,9                                              | 3 890                            | -          | 8 390        |                            |
| 36           | 10-5                   | 7,5                     | 73,4                                              | 0,011              | 29,1                                              | 8 330                            | -          | 6 510        |                            |

Tab. 13: Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben aus den felsmechanischen Untersuchungsbohrungen

| Stratigraphie                | Petrographie                                                      | Bruchparameter |         | Nachbruchparameter |         |
|------------------------------|-------------------------------------------------------------------|----------------|---------|--------------------|---------|
|                              |                                                                   | ץ [•]          | c [MPa] | ۴ [•]              | c [MPa] |
| Cenoman                      | mergel. Kalk-<br>bis Mergel-<br>stein                             | 36,3           | 7,44    | 30,7               | 5,33    |
| Oberalb                      | Mergelstein                                                       | 31,0           | 5,20    | 23,6               | 3,52    |
|                              | Tonmergel-<br>bis toniger<br>Mergelstein                          | -              | -       | 9,1                | 3,92    |
| Mittel-,<br>Unteralb,<br>Apt | Tonmergel-<br>bis Mergel-<br>stein                                | 19,1           | 4,70    | 22,0               | 1,24    |
| Barrême                      | Ton- bis Mer-<br>gelstein                                         | 29,3           | 3,20    | 25,4               | 0,93    |
| Hauterive                    | Ton- bis Ton-<br>mergelstein                                      | 30,6           | 3,74    | 25,8               | 1,38    |
| Callovium                    | Ton- bis Mer-<br>gelstein                                         | 29,7           | 8,03    | 25,7               | 2,17    |
| Bathonium                    | toniger Kalk-<br>sand- bis<br>Kalkmergel-<br>stein                | 30,7           | 5,66    | 29,6               | 2,85    |
| Bajocium                     | Tonmergel-,<br>toniger Kalk-<br>sand- bis<br>Kalkmergel-<br>stein | 36,7           | 6,29    | 33,6               | 1,66    |
| Legende:                     |                                                                   |                |         |                    |         |

Tab. 14: Festigkeitsparameter nach Stratigraphie und Petrographie geordnet

- Anlage 1 a -

<u>Gesteins- und Bruchbeschreibung der Proben</u> <u>aus den Schachtwandbohrungen</u> <u>der Schächte Konrad 1 und 2</u>

.

.

- 243 Kalkstein, milde, mergelig, hellgrau, graue Mergellinsen und Schlieren sowie feine (~ 0,2 mm) Mergelkörner, Einfallen 90°; 2 Hauptbrüche unter 60 und 75°. - 244 Wie 243; Vielkörperbruch. - 245 Wie 243; Vielkörperbruch. - 246 Kalkstein, mergelig, grau, wenige Schalenreste; 1 Hauptbruch unter 65°, 1 kongruenter Nebenbruch unter 60°. - 247 Wie 246; 1 Bruch unter 60°. - 250 Mergelstein, grau, von 5 Calzitbändchen (0,1 - 0,5 mm) unter 20° durchzogen; 1 Hauptbruch unter 60°, 1 undeutlicher kongruenter Bruch. - 176 Mergelstein, milde, tonig, grau, etwas Fossilinhalt; 1 Bruch unter 55°. - 177 Wie 176; 1 Bruch unter 60°. - 175 Tonmergelstein, milde, dunkelgrau, etwas Fossilinhalt; 1 Bruch unter 60°. - 257 Kalkmergelstein, grau, schlierig, Feinschalendetritus; 1 Bruch unter 60°.

- I -
- 252 Kalkstein, milde, mergelig, hellgrau-grau, graue Mergelflocken und feingeschichtete breitere Mergelbänder, Einfallen 90°; 1 Hauptbruch unter 70°, 1 kongruenter Nebenbruch unter 65°. - 253 Kalk- bis Mergelstein, etwas Fossilinhalt, sonst wie 252; Vielkörperbruch. - 242 Ton- bis Mergelstein, schwach karbonatisch, grau; 1 Hauptbruch randlich durch die Stirnflächen unter 70°. - 249 Kalkstein, stark mergelig, grau, feinschlierig bis flaserig, oolithisch, Schill; 1 Bruch unter 50°. - 248 Wie 249; 1 Bruch unter 65°. - 254 Kalkoolith, hellockerfarben, feinoolithisch, vereinzelt limonitisch, dünne Mergelschlieren, Einfallen 80°; 1 Bruch unter 60°. - 251 Wie 254, Einfallen 90°; 1 Bruch unter 65°. - 255 Kalkoolith, ockerfarben, Mergelschlieren, limonitische Ooide, Einfallen 65°; 1 Bruch unter 70°. - 256 Wie 255, Einfallen 80 - 85°; schichtparalleler Bruchbeginn.

- II -

- 259 Mergelstein, tonig, grau; 1 Bruch unter 60°.

.

- 258

Tonmergelstein, schwach karbonatisch, grau; 1 Bruch unter 50°.

- Anlage 1 b -

<u>Gesteins- und Bruchbeschreibung der Proben</u> <u>aus dem geplanten Schachtwiderlager</u> <u>Schacht Konrad 2</u>

- 511: Tonstein, grau, kalkig, etwas Fossilinhalt, flaserig, m. F.
  \* schwach r. , Schichtung unter 90°, ein unregelmäßiger Hauptbruch ca. 65°.
- 512: wie 511, Flaserschichtung unter 90°, mehrere ±-vertikale
  Brüche z. T. entlang von größeren Muschelschalen.
- 513: wie 511, grobe Flaserschichtung unter 90°, ein Bruch 55°.
- 514: Tonstein, grau, kalkig, etwas Fossilgehalt z. T. pyritisiert, Flaserschichtung, m. F. schwach r., ein Bruch 60°.
- 515: wie 511, ein asymmetrischer x-Bruch unter 55° und 60°.
- 529: wie 513.
- 535: Tonstein, grau, kalkig, etwas Pyrit, wenige größere Muschelschalen, gröbere Flaserschichtung unter 60°, m. F. kaum r., ein Bruch 60°.
- 516: Tonstein, grau, kalkig, Fossildetritus und teilweise große Muschelschalen z. T. pyritisiert, Flaserschichtung unter 60°, m. F. schwach r., ein Bruch entlang von großen Muschelschalen durch die obere Stirnfläche unter 60°.
- 517: Tonstein, dunkelgrau, kalkig, undeutliche Schichtung, m.
  F. schwach r., ein Bruch unter 65°.
- 530: wie 517, z. T. große Muschelschalen, Schichtung unter 50°.
- 518: Tonstein, grau, etwas Fossilinhalt z. T. pyritisiert,
  Schichtung unter 65°, m. F. schwach r., zwei schichtparallele Brüche.

m. F. .... r. = mit Fingernagel .... ritzbar

- 519: wie 511, gelegentlich gröbere dunklere Flasern, Schichtung unter 70°, ein Bruch 65°.
- 552: Tonstein, grau, kalkig, etwas Fossilinhalt, m. F. schwach
  r., ein Bruch 70°.
- 553: wie 552, Flaserschichtung unter 60°, ein Bruch 60°.
- 554: wie 553, ein Bruch 60°.
- 547: Tonstein, dunkelgrau, schwach kalkig, etwas Fossilinhalt, grobe Flaserschichtung unter 65°.
- 548: Tonstein, grau, wenig Fossilinhalt, feinflaserige Schichtung unter 65°, m. F. schwach r., ein Bruch 65°.
- 549: Tonstein, grau, schwach kalkig, schluffig, schwach ausgeprägte feinflaserige Schichtung unter 45°, m. F. schwach r., ein beginnender Bruch 65°.
- 506: wie 552, ein Bruch 70°.
- 507: Tonmergelstein, hellgrau bis grau, etwas Fossilinhalt, undeutliche Schichtung, m. F. schwach r., ein Bruch 65°.
- 508: Tonmergelstein, hellgrau bis grau, feinflaserige Schichtung unter 75°, m. F. schwach r., ein Bruch 65°.
- 509: wie 552, gelegentlich gröbere dunkle Flasern, Schichtung unter 70°, ein Bruch 65°.
- 510: wie 509, ein Bruch 65°.
- 531: wie 511, mit z. T. größeren Muschelschalen. Flaserschichtung unter 65°.

- 520: wie 511, Flaserschichtung unter 60°, x-Bruch im oberen Probendrittel unter 50°.
- 521: wie 520, Schichtung unter 70°, ein Bruch 65°.
- 532: Tonstein, grau-bräunlich, schwach kalkig, etwas z. T. pyritisierter Fossilinhalt, undeutliche feinflaserige Schichtung unter ca. 65°, m. F. schwach r.
- 536: Tonstein, grau, kalkig, etwas Pyrit, einige größere Muschelschalen, m. F. kaum r., Vielkörperbruch.
- 522: Tonstein, grau, kalkig, wenig Fossilinhalt, feinflaserige Schichtung unter 55°, m. F. schwach r., ein Bruch 55°.
- 523: wie 522, feinflaserige Schichtung unter 70°, ein Bruch 65°.
- 537: wie 511, schlierige bis flaserige Schichtung unter 75°, ein Hauptbruch 70°.
- 538: Tonstein, hellgrau-grau, kalkig, etwas Fossilinhalt, undeutliche gröbere Flaserschichtung unter ca. 70°, m. F. schwach r., ein Hauptbruch 65°.
- 539: wie 535, ein beginnender unregelmäßiger Bruch ca. 60°.
- 540: wie 517, etwas Fossilinhalt, undeutliche Schichtung unter ca. 70°, ein Bruch 65°.
- 541: wie 547, Schichtung unter 70°.
- 542: Tonstein, dunkelgrau, schwach kalkig, etwas Pyrit, wenige große Muschelschalen, m. F. kaum r., ein Bruch 60°.
- 543: wie 511, Schichtung unter 65°, ein Bruch 65°.

- 503: wie 508, undeutliche feine flaserige Schichtung unter ca. 75°, stark zerbrochene Probe.
- 504: Tonmergelstein, grau, etwas Fossilinhalt, undeutliche grobe Flaserschichtung unter 60°, ein Bruch 55°.
- 505: wie 523, Schichtung unter 60°, ein Bruch 60°.
- 534: wie 517, etwas Fossilinhalt.
- 524: wie 511, grobe Flaserschichtung unter 60°, ein Bruch 65°.
- 525: wie 524, Schichtung unter 55°, ein Bruch 65°.
- 526: wie 522, Flaserschichtung unter 60°, ein Bruch 60°.
- 527: wie 511, undeutliche Flaserschichtung unter 45°, ein Bruch 55°.
- 528: Tonstein, dunkelgrau, kalkig, etwas Pyrit, einige große
  Muschelschalen, m. F. schwach r., undeutliche Schichtung
  unter ca. 55°, ein unregelmäßiger Hauptbruch 55 75°.
- 550: Tonmergelstein, dunkelgrau-grau, etwas Fossilinhalt, m. F.
  kaum r., stark zerbrochene Probe.
- 551: wie 536.
- 544: Tonstein, dunkelgrau, kalkig, etwas Fossilinhalt, Flaserschichtung unter 65°, m F. schwach r.

- 545: wie 544, Schichtung unter 60°, ein Bruch 60°.

.

- 546: wie 552, Schichtung unter 65°, x-Bruch unter 55° in oberer Probenhälfte. - Anlage 1 c -

Gesteins- und Bruchbeschreibung der Proben aus der Tiefbohrung Konrad 101

- 10 Mergelstein, grau, tonig, etwas Fossildetritus, lagige Flaserschichtung, m. F. schwach r.\*, x-Bruch 60°. - 11 Mergelstein, grau, etwas Fossildetritus, lagige Flaserschichtung, m. F. schwach r., ein Bruch 60°. - 6 Wie 11, schwach feinsandig, ein Bruch 60°. - 7 Wie 6, x-Bruch 45 und 55°. - 8 Mergelstein, grau, schwach feinsandig, lagige Flaserschichtung, ein Bruch 50°. - 9 Wie 8, ein Bruch ca. 60°. - 12 Wie 8, ein Bruch 50°. - 13 Wie 8, x-Bruch 60°. - 14 Wie 8, ein Hauptbruch 50°, ein beginnender Nebenbruch 70°. - 15 Wie 8, ein Hauptbruch 65°, mehrere Nebenbrüche.

\* m. F. ... r. = mit Fingernagel ... ritzbar

- II -

- 16 Wie 8, ein Bruch 60°. - 17 Wie 8, subhorizontale Schichtung, 1 Bruch 60°. - 18 Wie 8, x-Bruch 55 und 60°. - 19 Wie 8, ein Hauptbruch 70°. - 20 Wie 8, Tonschmitzen, ein Bruch 60°. - 21 Wie 8, horizontale Schichtung, ein Bruch 60°. - 22 Wie 8, ein Bruch 55°. - 23 Wie 8, subhorizontale Schichtung, ein Bruch 60°. - 143 Mergelstein, grau, etwas Fossildetritus, feinflaserige bis lagige Textur, subhorizontale Schichtung, x-Bruch 55°. - 144 Wie 143, etwas gröberer Fossildetritus, ein Bruch 60°. - 145 Mergelstein, grau bis grünlich, feinsandig, tonig, Pyrit, feinflaserige Schichtung, m. F. schwach r., ein Bruch 55°.

- III -

- 146 Wie 143, m. F. schwach r., ein Bruch 60°. - 151 Mergelstein, dunkelgrau, schluffig, etwas Fossildetritus, ein Bruch 55°. - 141 Mergelstein, grüngrau bis gelblich, feinsandig, Tonschmitzen, etwas Pyrit, etwas Fossildetritus, Flasertextur, m. F. schwach r., ein Bruch 50°. - 142 Wie 141, ein Bruch 55°. - 154 Tonstein, dunkelgrau, stark sandig (sandig gefüllte Grabgänge), m. F. schwach r., ein Bruch 50°. - 156 Wie 154, ein Bruch 60°. - 155 Tonmergelstein, grau, schwach feinsandig, etwas Fossildetritus, z. T. pyritisiert, ein Bruch 55°. - 158 Tonmergelstein, grau, kalkig, etwas Fossilinhalt, m. F. schwach r., ein Bruch 50°. - 160 Tonmergelstein, dunkelgrau, etwas Fossilinhalt, m. F. schwach r., ein Bruch 55°.

- 161 Wie 160, ein Bruch 60°. - 334 Mergelstein, grau bis hellgrünlich, tonig-mergelige bis feinsandige Flaserschichtung, undeutliche Schichtung 20 - 30°, x-Bruch 45 und 60°. - 333 Wie 334, x-Bruch 50 und 60°. - 337 Wie 334, feinsandig, etwas Fossilinhalt, m. F. r., subhorizontale Schichtung, y-Bruch 60°. - 336 Wie 337, x-Bruch 45 und 50°. - 335 Mergelstein, grau-grünlich, schwach feinsandig, selten Schalendetritus, Flaserschichtung, m. F. r., ein x-Bruch 50°, mehere Nebenbrüche. - 332 Wie 335, undeutliche Flaserschichtung, 30°, x-Bruch 50°. - 331 Wie 335, undeutliche Flaserschichtung, 30°, Vielkörperbruch. - 330 Mergelstein, dunkelgrau, tonig, schwach feinsandig, schwach glimmerhaltig, m. F. r., x-Bruch. - 327 Tonmergelstein, grau, homogen, Muschelschalen, m. F. schwach r., ein Bruch 55°, neigt zu horizontalem Aufblättern auf mit Muscheln besetzten Flächen.

- 326 Wie 327, x-Bruch 50 und 60°. - 329 Mergelstein, grau, wenig kleiner Schalendetritus, m. F. r., ein Hauptbruch 60° und ein beginnender Nebenbruch. - 339 Mergelstein, dunkelgrau, tonig, Muschelschalen, Schichtung unter 25°, m. F. schwach r., ein Bruch 60°. - 338 Wie 339, ein Bruch 70°. - 340 Kalksandstein, grau bis hellgrau, tonig, Fossildetritus, Schichtung unter 45°, m. F. schwach r., y-Bruch 60 und 65°. - 341 Kalkmergelstein, grau, viel Schill, m. F. schwach r., ein Bruch 55°. - 344 Wie 340, Schichtung unter 35°, ein Bruch 60°. - 345 Mergelstein, grau bis hellgrau, kalkig, stark feinsandig, etwas Schalendetritus, feinflaserige Schichtung, m. F. schwach r., ein Bruch 50°. - 342 Wie 340, Schichtung unter 25°, ein Bruch 70°. - 343 Wie 345, Grabgänge, undeutliche Schichtung ca. 30°, m. F. kaum r., x-Bruch 55 und 60°.

- V -

- 346 Wie 343, x-Bruch 50 und 60°.

.

- 347

Mergelstein, dunkelgrau, kalkig, feinsandig, etwas Schalendetritus, feinflaserige Schichtung unter 20°, m. F. schwach r., ein Bruch 70°.

- 348

Tonmergelstein, grau, schluffig bis feinsandig, glimmerhaltig, feinflaserige Schichtung unter 30°, m. F. r., ein Bruch 60°.

- Anlage 1 d -

<u>Gesteins- und Bruchbeschreibung der Proben</u> <u>aus den felsmechanischen Untersuchungsbohrungen</u> <u>der Grube Konrad (Doggerproben)</u>

- 29 Tonstein, dunkelgrau, schluffig, schwach kalkig, etwas Schalendetritus, ein Bruch 60°. - 26 Wie 29, ein Bruch 65°. - 45 Wie 29, grau, kalkig, ein Bruch 60°. - 39 Wie 29, ein Bruch 65°. - 36 Wie 29, ein Bruch 55°. - 42 Wie 29, ein Bruch ca. 60°. , - 46 Wie 29, ein Bruch ca. 65°.

.

- I -

- Anlage 2 a -

<u>Spannungs-Dehnungs-Diagramme</u> <u>der Proben</u> <u>aus den Schachtwandbohrungen</u>





















----

S






















- Anlage 2 b -

<u>Spannungs-Dehnungs-Diagramme</u> <u>der Proben</u> aus den Schachtwiderlagerbohrungen

.







.




























































## 









.







**S**I







## EP8 [X]

- Anlage 2 c -

<u>Spannungs-Dehnungs-Diagramme</u> <u>der Proben</u> <u>aus der Bohrung K 101</u>

.

4×,






























































SIG1-SIG3  $(SIG1 - SIG3) \rightarrow f(EPS)$ 5Ø \_



ហ





Ø1



## SIGI-SIG3 (SIG1-SIG3)=f(EPS)

## [MPa]

| 90 T | KUNRAD#170<br>TEUFE [m]#660.73-660.98<br>K101/096/685/01<br>"ANHYDRIT_= SERIE" |
|------|--------------------------------------------------------------------------------|
| 8Ø 1 | Pi[bar]+175<br>DEHNUNGSGER, Ø.00001 1/SEC                                      |

70 1

6ø 🕹



ທ







SIGI-SIG3 100 - (SIG1-SIG3) - F(EPS)

## [MPa]

- MPai
   KONRAD\*176

   90
   TEUFE [m]\*664.12-664.37

   K 101/097/669/01

   "ANHYDRIT-SERIE"

   P1[bar]\*25

   DEHNUNGSGER. 0.00001 1/SEC
  - 70 1
  - 6Ø 🕹
  - 5Ø 🕹





## SIGI-SIG3 100 - (SIG1-SIG3) - F(EPS)

[MPa]

 KONRAD\*180

 90 1
 TEUFE [m]\*677.46-677.77

 K101/098/704/01

 MERGELIGER.00LITHISCHER KALKSTEIN

 P1[bar]\*75

 DEHNUNGSGER.0.0001 1/SEC



6Ø 🕹









.


































эø +



٠









S







.





- Anlage 2 d -

<u>Spannungs-Dehnungs-Diagramme</u> <u>der Proben</u> aus den felsmechanischen Untersuchungsbohrungen

.









