DECKBLATT									
	Pr	ojekt	PSP-Element	Obj. Kenn.	Aulgabe	ŲA	Lía. Nr.	, Re	
	N A	AN	<u>N N N N N N N N N N N </u>	N N N N N N	XAAXX	A A	* * *	N	
EU 103		9K			G	RB	0006	0	
Titel der Unterlage: Ergebnisse festig	gkeitsmeck	hani	scher Laboru	ntersuch	ungen	Sei	te:		
an Gesteinsprobe	n aus dem	Sch	achtwiderlag	erbohrun	gen im	Sta	•		
(Archiv-Nr. 9946)	7/1V)					0	2/87		
Ersteller:						Tex	(tnummer:		
BGR						1			
PSP-Element TP9.K./212	82		zu Plan-Ka	apit el : 4.2					

	Revisionsblatt									
 		-181 - 191-		Projekt		PSP-Element	Obj. Kenn.	Aufgabe	UA Lid. Nr. Rev.	
			-	NAAN	NN	<u>N N N N N N N N</u>	<u>N N N N N N</u>	X A A X X	A A N N N N N N	
EU	103			9K				G	RB 0006 00	
an Sc (A	Titel der Unterlage: Ergebnisse festigkeitsmechanischer Laboruntersuchungen an GEsteinsproben aus den Schachtwiderlagerbohrungen im Schacht Konrad 1 (Archiv-Nr. 99467/IV)								II. Stand: 02/87	
Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeichr Name	n. rev. Seite	Kat. *)		Erläuteru	ng der Revisi	on	
) K K K Mind	ategorie R = rec ategorie V = ve ategorie S = su destens bei der	daktionelle rdeutlicher bstantielle Kategorie	Korrektur Ide Verbesser Änderung S müssen Erk	rung äuterunge	en ang	legeben werden.				

BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE

HANNOVER

Ergebnisse festigkeitsmechanischer Laboruntersuchungen an Gesteinsproben aus den Schachtwiderlagerbohrungen im Schacht Konrad 1

- Laborbericht: Ref. B 2.14 -

Sachbearbeiter: Datum: Archiv-Nr.: 99 Tagebuch-Nr.: 10⁴ TK-25: 382

Februar 1987 99 467/IV 10739/86 3828 Lebenstedt Ost

Inhaltsverzeichnis

Zusammenfassung

0.	Veranlassung	1
1.	Herkunft des Probenmaterials	1
2.	Probenvorbereitung	2
3.	Versuchsprogramm	3
	3.1 Maschinen- und technische Versuchsbeschreibung	3
	3.2 Versuchstypen	4
	3.3 Allgemeine Versuchsauswertung	5
4.	Versuchsergebnisse	7
	4.1 Wichten	7
	4.2 Ultraschallmessungen	7
	4.3 Festigkeitsuntersuchungen	8
5.	Vergleich der Ergebnisse aus Schacht 1 und Schacht	2 10

Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anlagenverzeichnis

(Abbildungen, Tabellen, Anlagen)

Zusammenfassung

Für erste Berechnungen sowie für die Technische Planung der Schachtverschlüsse in den Schächten Konrad 1 und 2 mußten speziell für die Schachtwiderlagerbereiche als höher belastete Zonen Angaben über Festigkeitsparameter des Gesteins gemacht werden. An Bohrkernen aus den vorläufig festgelegten Widerlagerbereichen wurden Laboruntersuchungen durchgeführt. In diesem Bericht werden die Ergebnisse der Proben aus Schacht 1 vorgestellt und mit jenen aus Schacht 2 verglichen.

0. Veranlassung

Im Anschluß an die Betriebsphase des geplanten Endlagers Konrad müssen die Schächte Konrad 1 und 2 entsprechend den Anforderungen im Plan Konrad verschlossen werden. Bestandteil des Schachtverschlußsystems soll ein Widerlagerbauwerk in den Schachtröhren sein, dessen Wirksamkeit und Standfestigkeit im Verbund mit dem Gebirge gewährleistet sein muß. In verschiedenen Aufgaben des Projektstrukturplans Konrad wurden und werden dafür Arbeiten vorgesehen (z. B. 9K/331923, Technische Planung Schachtverschluß). Als eine Grundlage mußten erste relevante Gesteins- und Gebirgsparameter zur Verfügung gestellt werden, um eine technische Planung durchführen zu können.

Nachdem in den Schächten mögliche Widerlagerstandorte festgelegt worden waren, wurden u. a. für festigkeitsmechanische Laboruntersuchungen Bohrungen gestoßen. Die BGR führte zunächst für ihre eigenen Berechnungen ein Laborprogramm an Gesteinskernen durch. Mit Schreiben 1.4/9K/331923/Kö./Kr. vom 07.04.1986 der PTB wurde die BGR gebeten, die vorhandenen Versuchsergebnisse zur Verfügung zu stellen. Die Labordaten der Proben aus dem Schacht Konrad 2 wurden bereits in [1] zusammengestellt und bewertet.

In diesem Bericht sind die Untersuchungsergebnisse der Proben aus Schacht Konrad 1 enthalten und werden mit den Resultaten der Proben aus Schacht 2 verglichen.

1. Herkunft des Probenmaterials

Bei den Gesteinsproben handelt es sich um Bohrkerne aus dem Widerlagerbereich des geplanten Schachtverschlusses, die zur Erkundung im Schacht 1 trocken erbohrt wurden. In der Zeit von Ende Mai bis Mitte Juli 1986 wurden 9 Bohrungen durchgeführt, die in 3 Teufenhorizonten angeordnet waren: Horizont A: ca. 699 m unter Rasenhängebank, Horizont B: ca. 719 m unter Rasenhängebank sowie Horizont C: ca. 739 m unter Rasenhängebank.

Je Horizont verteilten sich die 3 Bohrrichtungen wie folgt:

Richtung 1: nach SE, 35^g fallend, Richtung 2: nach NW, 35^g steigend sowie Richtung 3: nach SW, 35^g steigend.

Die teufenmäßigen Ansatzpunkte der Bohrungen im Schacht sind in Abb. 1 dargestellt. Die gewonnene Bohrqualität war aufgrund der primären (geologischen) und sekundären (Bohrtechnik, Transport) Beanspruchung recht unterschiedlich; dennoch konnten alle Bohrungen beprobt werden. In Tab. 1 sind die Kennzeichnungen und Abmessungen der in der Versuchs- und Lagerhalle der BGR ausgesuchten Kerne aufgeführt. Anl. 1 enthält die petrographische Beschreibung und Bruchflächenlage der Einzelprobe. Die Proben bestehen aus Tonstein bis tonigem Mergelstein des Hauterive. Weitergehende Angaben zu den Bohrungen können [2] entnommen werden.

Die Probenauswahl und Versuchsdurchführung fand in zwei Abschnitten statt. Die Proben mit den Nr. 246 - 274 wurden wenige Tage nach dem Bohren ausgewählt und anschließend im Labor untersucht. Die zweite Hälfte der Proben mit den Nr. 395 - 410 wurde Ende August ausgesucht und im November getestet. Alle präparierten Kerne wurden zur Zwischenlagerung in Plastikfolie eingeschweißt.

2. Probenvorbereitung

Zur festigkeitsmechanischen Laboruntersuchung müssen die Prüfzylinder an den Stirnenden planparallel und die Mantelfläche

- 2 -

glatt gedreht werden. Dies erfolgte auf einer Drehbank in der BGR. Bedingt durch in-situ-Versuche in den Bohrlöchern konnten für die vorhandenen Maschinendruckstücke Proben mit einem Durchmesser von ca. 70 mm erstellt werden. Mit einem Durchmesser- zu Längenverhältnis von mindestens 1 : 2 wurden generell die Abmessungen 70 mm : 150 mm gewählt.

Für die Spaltzugversuche ist nach DIN 1048, Teil 1, vom Dez. 1978 ein Durchmesser- zu Längenverhältnis von 1 : 1 erforderlich. Für diese Versuche wurden zur besseren Krafteinleitung auf gegenüberliegenden Mantelflächen hölzerne Lastverteilungsstreifen von 7 mm Breite und ca. 1 mm Dicke aufgeklebt. Die genauen Maße aller Gesteinszylinder sind der Tab. 1 zu entnehmen.

3. Versuchsprogramm

Wie in der Veranlassung bereits erwähnt, wurden zunächst Laborversuche notwendig, um Parameter für die in der BGR durchgeführten gebirgsmechanischen Berechnungen bereitzustellen. Es mußten deshalb solche Versuche gefahren werden, die die Eingangsparameter für das zur Anwendung kommende mechanische Stoffgesetz auch ermitteln konnten. Neben dem Bruchverhalten interessierte vor allem die Nachbruchphase der Laborversuche. Die durch diese Anforderungen notwendigen Versuchstypen waren auf den in der BGR vorhandenen Maschinen durchführbar. Außerdem wurden noch standardmäßig Ultraschallmessungen sowie die Bestimmung der Wichten durch Abmessen und Wiegen der Prüfzylinder vorgenommen.

3.1 <u>Maschinen-und_technische Versuchsbeschreibung</u>

Die Ultraschallmessungen wurden mit der Geräteeinheit USIP12/ DTM12 der Fa. KRAUTKRAMER-BRANSON und den Prüfköpfen B1Y sowie B1S – N der Fa. KRAUTKRAMER durchgeführt.

- 3 -

Die Durchschallung sollte i. d. R. in Probenlängsachse erfolgen. Aufgrund der Probenbeschaffenheit war häufig kein Signaldurchgang erhältlich, so daß quer zur Längsachse gemessen wurde; diese Ergebnisse sind mit einem q gekennzeichnet. Wie Vergleichsmessungen gezeigt haben, sind bei gutem Signaleinsatz nur geringe Qualitätsverluste aufgrund der schlechteren Ankoppelungsmöglichkeit der Sender- und Empfängerköpfe auf der gekrümmten Mantelfläche zu erwarten.

Alle Druck- und Spaltzugversuche wurden auf einer 2 000 kN-Triaxial-Prüfmaschine (Klasse 1 nach DIN 51223) der Fa. SCHENCK-TREBEL GmbH (Ratingen) durchgeführt, die nach dem Kármánprinzip aufgebaut ist. Einzelheiten des Maschinenaufbaus, der Steuerungsmöglichkeiten und der Genauigkeiten können [3] entnommen werden.

Bei Triaxialversuchen wurden den Gesteinskernen zum Schutz gegen eindringendes Druckmedium eng anliegende Gummischläuche übergezogen. I. d. R. war es außerdem notwendig, einen weiteren Schutz gegen eine Verletzung des Außenschlauches einzuführen, die wegen der z. T. schärferen Bruchkanten bei den Nachbruchversuchen hervorgerufen wurden.

3.2 <u>Versuchstyp</u>

Aufbauend auf den Erfahrungen an den Proben am Schacht Konrad 2 kam ein einziger Versuchstyp zur Anwendung.

Ein vollständiger Druckversuchablauf an einer Probe setzte sich aus folgenden Abschnitten zusammen (Abb. 2):

- a) Schaffung eines hydrostatischen Ausgangsspannungsniveaus.
- b) Deviatorische Laststeigerung bis zum Bruch bei konstantem Seitendruck und konstanter Stauchungsgeschwindigkeit. Im

- 4 -

oberen Bereich des linearen Erstbelastungsastes wurde ein Ent- und Wiederbelastungszyklus eingeschaltet, der bis auf das hydrostatische Niveau hinabreichte.

c) Die Nachbruchfestigkeit ist neben der Ausbildung der Bruchfläche i. w. vom Spannungszustand abhängig. Mit der kontinuierlichen Abminderung des Seitendrucks σ_3 werden alle Stadien der Restfestigkeiten durchlaufen. Zur Ermittlung des Restverformungsmoduls aus einem Ent- und Wiederbelastungszyklus im Nachbruchbereich wurde der Seitendruck konstant gehalten.

Generell wurden die Versuche verzerrungsgeregelt mit einer Stauchungsrate von 1 x 10^{-5} $[s^{-1}]$ durchgefuhrt. Vorversuche zeigten, daß unterschiedliche Verformungsgeschwindigkeiten keinen signifikanten Einfluß auf die Festigkeitsergebnisse hatten, die petrographische Ausbildung dagegen sich deutlich auswirkte. Zur Bestimmung der Mohrschen Bruchhüllgeraden wurden die Seitendrücke zwischen 0 und 20 MPa variiert. Bei einigen Versuchen wurde der Seitendruck im Nachbruchbereich erhöht, um zusätzliche Restfestigkeitsergebnisse zu erhalten.

3.3 <u>Allgemeine_Versuchsauswertung</u>

Die allgemeine Versuchsauswertung an einer Einzelprobe umfaßte folgende Punkte:

- Berechnung der Wichte γ aus dem Gewicht der Probe und seinem Volumen.
- Bestimmung der dynamischen Moduli aus den Ultraschallgeschwindigkeiten über die Beziehungen

$$E_{dyn} = \frac{v_{s^{2}} \cdot \zeta \cdot (3v_{p^{2}} - 4v_{s^{2}})}{v_{p^{2}} - v_{s^{2}}}$$

und

$$v_{dyn} = \frac{v_p^2 - 2v_s^2}{2 \cdot (v_p^2 - v_s^2)}$$

- mit E_{dyn} = dynamischer Elastizitätsmodul [MPa] v_{dyn} = dynamische Poissonzahl [-] v_p = Primär- oder Longitudinalwelle [m/s] v_s = Sekundär- oder Transversalwelle [m/s] ζ = Gesteinsdichte [t/m³]
- Abgreifen der Bruchfestigkeit als maximal erreichter Spannungswert im Pre-failure-Bereich (s. Abb. 2, Pkt. d) sowie Angabe der dazugehörigen Stauchung.
- Abgreifen der Nachbruchfestigkeiten im Post-failure-Bereich. Der Verlauf der Nachbruchfestigkeiten wird i. w. durch die Ausbildung der Scherfläche bestimmt. Wie in Abb. 2 schematisch dargestellt, wird nach dem Bruch in den Versuchen häufig ein Minimum durchlaufen (Abb. 2, Pkt. e), dem ein mehr oder weniger flaches Maximum folgt, bis sich ein horizontaler Verlauf einstellt, dessen Wert dem Minimum i. d. R. entspricht. Das flache Maximum stellt sich vermutlich aufgrund der zunächst noch rauhen Bruchfläche ein, die im Laufe des Aneinandergleitens der beiden Bruchufer mehr und mehr geglättet wird. Als Nachbruchfestigkeit wurde bei deutlich horizontalem Verlauf die zugehörige Spannung (Abb. 2, Pkt e'), ansonsten aber der Minimalwert benutzt. Bei kontinuierlicher Erniedrigung des Seitendrucks konnte ebenfalls stetig die Nachbruchfestigkeit angegeben werden (Abb. 2, Pkt. e'). Wie Versuche gezeigt haben, stellte sich die entsprechende Spannung bei dem untersuchten Gestein spontan ein.

Zur Beschreibung des Verformungs- und Elastizitätsverhaltens wurden 3 Moduli bestimmt (Abb. 2):

- 1. Der Anfangsverformungsmodul E_V ; er wurde i. d. R. bei 50 % der Bruchfestigkeit am Erstbelastungsast als Steigung der Versuchskurve ermittelt; besaß der Prüfkern einen ausgeprägten Bereich zwischen Fließ- und Bruchgrenze, so wurde der lineare Teil der Erstbelastung herangezogen (Abb. 2, Pkt. a/a').
- Der Elastizitätsmodul E ergab sich aus der Steigung der Geraden durch die Drittelpunkte (Abb. 2, Pkt. c) des Entlastungsastes der vor dem Bruch gefahrenen Ent- und Wiederbelastungsschleife vor dem Bruch.
- 3. Der sogenannte Restverformungsmodul RVM zur Beschreibung des Verformungsverhaltens im Nachbruchbereich wurde durch die Steigung der Geraden durch den unteren Wendepunkt (Abb. 2, Pkt. f') und den oberen Schnittpunkt (Abb. 2, Pkt. f) des Ent- und Wiederbelastungszyklusses bestimmt, wobei der Seitendruck konstant gehalten wurde.

4. Versuchsergebnisse

4.1 <u>Wichten</u>

Die durch Wiegen und Abmessen der Proben bestimmten Wichten liegen zwischen 23,87 und 25,53 kN/m³ bei einem Mittelwert von 24,76 (± 0,345) kN/m³. Geringe Gewichtsverluste durch Entspannungsvorgänge und einsetzende Austrocknung sind gegenüber dem natürlichen Zustand zu vermuten. In Tab. 2 sind die Einzelwerte aufgeführt.

4.2 Ultraschallmessungen_

Ebenfalls in Tab. 2 befinden sich die Ergebnisse der Ultraschallgeschwindigkeiten sowie deren Auswertung bezüglich der dynamischen Parameter E_{dvn} und ν_{dvn} . Aufgrund der stärkeren Energieabsorption konnte bei einer Reihe von Proben nur quer zur Probenlängsachse durchschallt werden. Dies bot aber die Möglichkeit, parallel zur Schichtung und senkrecht zur Schichtungsrichtung zu messen und damit Anisotropien festzustellen.

Die Laufzeitgeschwindigkeiten betragen für die Longitudinalwelle 2 750 bis 3 900 m/s und für die Transversalwelle 1 550 bis 2 100 m/s. In der nachfolgenden Tabelle sind die Ergebnisse der dynamischen Parameter zusammengestellt, aus denen sich die Anisotropie aufgrund der Schichtung ablesen läßt.

	Min.	Max.	Mw ± S	N						
E _{dyn} [MPa]	14 200 14 200¹ 19 200²	27 000 23 300 ¹ 27 000 ²	21 504 ± 3 037 19 678 ± 2 206 ¹ 24 173 ± 2 132 ²	75 27 26						
ν _{dyn} [-]	0,15 0,201 0,15 ²	0,36 0,36 ¹ 0,32 ²	0,284 ± 0,043 0,294 ± 0,042 ¹ 0,260 ± 0,036 ²	75 27 26						
Edyn ^V dyn Mw N 1 2	E _{dyn} = dynamischer Elastizitätsmodul ν _{dyn} = dynamische Poissonzahl Mw = Mittelwert, S = Standardabweichung N = Anzahl der Werte 1 = senkrecht zur Schichtungsrichtung									

4.3 <u>Festigkeitsuntersuchungen</u>

Die Darstellung der Einzelergebnisse bzw. deren Streubreiten erfolgte in Abb. 3; die Einzelwerte sowie die zugehörigen Versuchsbedingungen wurden in Tab. 3 festgehalten. Anl. 2 enthält die σ_1 - σ_3/ϵ - bzw. F/S-Diagramme der Versuche.

Die Spaltzugfestigkeiten liegen zwischen 1,78 und 2,22 MPa. Eine Abhängigkeit der Festigkeit von der Lasteintragsrichtung zur Schichtung zeigen die Versuche nicht. Der Mittelwert liegt bei 1,99 ± 0,17 MPa. Die Bruchfestigkeiten streuen für die Anzahl der Versuche in einem üblichen Bereich. Eine systematische deutliche Abweichung der Ergebnisse einer einzelnen Bohrung ist nicht erkennbar; dagegen lieferten die Proben aus den Bohrungen KI A2 und KI A3 häufiger die höchsten und die KI C3 die niedrigsten Werte. Die geringeren Bruchfestigkeiten der Proben mit den Kern-Nr. 266 und 267 werden durch die Existenz von präexistenten Harnischflächen verursacht, auf denen sich der Bruch vollzog. Die Scherparameter, ermittelt durch eine lineare Regression (s. Abb. 3), betragen für den inneren Reibungswinkel 30,4° und für die Kohäsion 4,14 MPa.

Die Nachbruchfestigkeiten besitzen mit zunehmendem Seitendruck ein größeres Streuspektrum. Eine systematische Abweichung einzelner Bohrungen von den übrigen Ergebnissen ist nicht festzustellen. Die lineare Regression ergibt einen inneren Reibungswinkel von 27,4° und eine rechnerische Kohäsion von 1,36 MPa (Abb. 3). Wie in [4] ausführlicher erläutert, ist diese Kohäsion fiktiv und darf nur in begründeten Fällen angewandt werden.

An elastizitäts- und verformungsbeschreibenden Moduli wurden der Anfangsverformungsmodul E_v , der statische Elastizitätsmodul E und der Restverformungsmodul RVM bestimmt. Sie sind in Tab. 3 aufgeführt. Der Anfangsverformungsmodul schwankt zwischen 3 100 und 10 400 MPa mit einem Mittelwert von 6 890 (± 1 892) MPa. Eine Spannungsabhängigkeit ist nicht ersichtlich (Tab. 4). Ebenso ist der Elastizitätsmodul spannungsunabhängig mit einem Streubereich von 8 200 bis 14 150 MPa und einem Mittelwert von 10 750 ± 1 383 MPa. Der Restverformungsmodul wird vom herrschenden Spannungszustand beeinflußt, wobei mit zunehmendem Seitendruck die Moduli i. d. R. steigen. Dies ist bei den Einzelversuchen deutlicher erkennbar als bei Mittelwerten der einzelnen Spannungsstufen (Tab. 4), da durch die Gesamtschwankungsbreite der Trend verschleiert wird. Der über die Seitendrücke gewichtete Mittelwert beträgt 5 520 ± 340 MPa.

- 9 -

5. Vergleich der Ergebnisse aus Schacht 1 und Schacht 2

In Tab. 5 sind die wichtigsten Untersuchungsergebnisse der Proben aus den Schächten Konrad 1 denen des Schachtes Konrad 2 gegenübergestellt. Die Proben aus Schacht 1 haben über einen geologisch längeren Zeitraum eine um ca. 100 m höhere Gesteinssäule als Auflast ertragen als in Schacht 2. Daraus kann neben anderen Faktoren die etwas höhere mittlere Wichte der Schacht 1-Proben abgeleitet werden, möglicherweise auch die etwas höheren Werte der dynamischen Laboruntersuchungen.

Auffallend gute Übereinstimmungen zeigen die Scherparameter sowohl im Bruch- als auch im Nachbruchverhalten.

Die beschreibenden Parameter des elastischen Verhaltens (E)und des Verformungsverhaltens (E_V, RVM) sind bei Schacht 1 wiederum geringfügig höher als bei Schacht 2.

Insgesamt betrachtet liegen die Laborergebnisse der Proben aus Schacht 1 tendenziell etwas höher. Als signifikant ist dieser Unterschied aber nicht zu betrachten, so daß für beide geplanten Schachtwiderlagerbereiche von einem gleichen mechanischen Gesteinsverhalten auszugehen ist.

BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE

Im Auftrag:

Sachbearbeiter:

Literaturverzeichnis

- BGR-Bericht (SCHNIER, H., 1986): Ergebnisse der festigkeitsmechanischen Laboruntersuchungen an Proben aus den Schachtwiderlagerbohrungen im Schacht Konrad 2. Laborbericht Ref. B 2.14.- BGR, Archiv-Nr. 99 467/II; Hannover.
- [2] BGR-Bericht (Bräuer, V. & LIEDTKE, L., in Vorber.): Durchströmungsversuche auf der Schachtanlage Konrad im Schacht 1 und Ort 300. Versuchsbericht Ref. B 2.11.- BGR, Archiv-Nr. 100 295; Hannover.
- [3] MEISTER, D., HEIDRICH, D. & RIEGER, H. (1984): Triaxialprüfanlage für Festigkeits- und Verformungsuntersuchungen an Gesteinsprüfkörpern.- Fortschr.-Ber. VDI-Z., Reihe 5, Nr. 79, 50 S., 21 Abb., 4 Tab.; Düsseldorf.
- [4] BGR-Bericht (SCHNIER, H., 1986): Ergebnisse von festigkeitsmechanischen Laboruntersuchungen an Gesteinsproben aus dem Oxford und Kimmeridge des Nahbereichs der Grube Konrad. Laborbericht B 2.14.- BGR, Archiv-Nr. 99 467/III; Hannover.

Abbildungsverzeichnis

- Abb. 1: Stratigraphisch/petrographische Übersicht des Schachtes Konrad 1
- Abb. 2: Schematische Gesamtversuchskurve
- Abb. 3: Festigkeitsergebnisse der Proben aus den Schachtwiderlagerbohrungen, Schacht Konrad 1

Tabellenverzeichnis

- Tab. 1: Kernbezeichnungen, Entnahmetiefe und Abmessungen der Proben aus den Widerlagerbohrungen, Schacht Konrad 1
- Tab. 2: Wichten und Ergebnisse der Ultraschallmessungen der Proben aus den Widerlagerbohrungen, Schacht Konrad 1
- Tab. 3: Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben der Widerlagerbohrungen, Schacht Konrad 1
- Tab. 4: Steife- und Verformungsmoduli in Abhängigkeit vom Spannungszustand
- Tab. 5: Ergebnisgegenüberstellung von Laboruntersuchungen an Proben aus den Schachtwiderlagerbohrungen der Schächte Konrad 1 und Konrad 2

Anlagenverzeichnis

- Anl. 1: Gesteins- und Bruchbeschreibung der Proben aus den Widerlagerbohrungen, Schacht Konrad 1
- Anl. 2: Spannungs-Dehnungs-Diagramm der Proben aus den Widerlagerbohrungen, Schacht Konrad 1

Teufe Proben- [m] punkte	Stratigraphie	Petrographie
- 100	Turon	- Lehm
- 200	Cenoman	Kalkstein
- 300	Alb gi	Topmergelstein
- 400		Tonstein (Sciensedabaia)
- 500	Δnt	(reinsandstein)
600	a	
Ť	Barrême 🗲 🗠	lonstein
- 700 ≺ ≺ ≺	Hauterive	Tonmergelstein
- 800	" Münder-Mergel "	Tonmergelstein
- 900		Tonmergel-,
	Kimmeridge	Kalkmergelstein
- 1000	ື ສ ະ	Anhydrit
- 1100		an a
- 1200	Oxford	Ionmergel-, Kalkstein, Eisenoolith
- 1232,5	andar oʻndan — Şanın Şanın (A. 2-nin oyun 1-man (A. 2-nin oyun 1-man)	Endteufe

Abb. 1: Stratigraphisch/petrographische Übersicht des Schachtes Konrad 1 (nach Aktenunterlagen, Stand 6.86)

Abb. 3: Festigkeitsergebnisse der Proben aus den Schachtwiderlagerbohrungen, Schacht Konrad 1

bezeichnung Nr. (m) 10 [mm] d0 [mm] d0 [mm] KI A1 86013 246 10,00 - 10,07 70,0 70,0 """ "247 10,08 - 10,23 150,0 70,1 """ "248 10,50 - 10,65 150,0 70,1 """ "249 10,66 - 10,81 150,0 70,2 """ "250 10,82 - 10,97 150,0 70,2 """ "251 12,31 - 12,46 150,0 70,2 """ "253 4,59 - 4,74 150,0 70,2 """ "254 7,62 - 7,77 150,0 70,2 """ "255 7,97 - 8,03 70,0 70,2 """ "255 10,31 - 10,46 150,0 70,2 """ "257 10,31 - 10,46 150,0 70,0 """ "259 10,85 - 10,92 70,0 70,0 """ "260 12,55 - 12,70 150,0 70,0 """ "261	K	ern-	Labor-	Kern-	Teufe	Abmess	ungen	Bemerkungen
KI A1 86013 246 10,00 10,07 70,0 70,0 """"""" 247 10,08 10,23 150,0 70,0 """""" 248 10,50 10,65 150,0 70,1 """"""" 249 10,66 10,81 150,0 70,1 """"""" 250 10,82 10,97 150,0 70,2 """""""" 251 12,31 12,46 150,0 70,2 """""""" 252 4,43 4,58 150,0 70,2 """""""" 255 7,97 8,03 70,0 70,2 """"""""" 256 10,15 10,30 150,0 70,2 """"""""" 256 10,85 10,92 70,0 70,0 """"""""" 258 4,05 4,12 70,0 70,0 """"""""""""""""" 258 4,05 4,12 70,0 70,0 """"""""""""""""""""""""""""""""""""	beze	ichnung	Nr.	Nr.	(m)	10	do	
KI A1 86013 246 10,00 - 10,07 70,0 70,0 """ " 247 10,08 - 10,23 150,0 70,1 """ " 248 10,50 - 10,65 150,0 70,1 """ " 249 10,66 - 10,81 150,0 70,2 """ "" 250 10,82 - 10,97 150,0 70,2 """ " 251 12,31 - 12,46 150,0 70,2 """ " 253 4,59 - 4,74 150,0 70,2 """ " 254 7,62 - 7,77 150,0 70,2 """ " 256 10,15 - 10,30 150,0 70,2 """ " 256 10,15 - 10,30 150,0 70,0 """ " 256 10,85 - 10,92 70,0 70,0 """ " 260 12,55 - 12,70 150,0 70,0 """ " 261 14,77 - 14,92						[mm]	[mm]	
" " 247 10,08 - 10,23 150,0 70,0 " " 248 10,50 - 10,65 150,0 70,1 " " 249 10,66 - 10,81 150,0 70,1 " " 249 10,66 - 10,81 150,0 70,2 " " 250 10,82 - 10,97 150,0 70,2 " " 251 12,31 - 12,46 150,0 70,2 " " 252 4,43 - 4,58 150,0 70,2 " " 255 7,97 - 8,03 70,0 70,2 " " 255 10,31 - 10,46 150,0 70,2 " " 255 10,31 - 10,46 150,0 70,0 " " 260 12,55 - 10,92 70,0 70,0 " " 261 14,77 - 14,92 150,0 70,0 <td>KI</td> <td>A1</td> <td>86013</td> <td>246</td> <td>10,00 - 10,07</td> <td>70,0</td> <td>70,0</td> <td></td>	KI	A1	86013	246	10,00 - 10,07	70,0	70,0	
" " 248 10,50 - 10,65 150,0 70,1 " " 249 10,66 - 10,81 150,0 70,1 " " 250 10,82 - 10,97 150,0 70,2 " " 251 12,31 - 12,46 150,0 70,2 " " 252 4,43 - 4,58 150,0 70,2 " " 253 4,59 - 4,74 150,0 70,2 " " 255 7,97 - 8,03 70,0 70,2 " " 255 7,97 - 8,03 70,0 70,2 " " 256 10,15 - 10,30 150,0 70,2 " " 258 4,05 - 4,12 70,0 70,0 " " 258 4,05 - 4,12 70,0 70,0 " " 260 12,55 - 12,70 150,0 70,0 " " 261 14,77 - 14,92 150,0 70,0 " " <th< td=""><td>11</td><td>11</td><td>11</td><td>247</td><td>10,08 - 10,23</td><td>150,0</td><td>70,0</td><td></td></th<>	11	11	11	247	10,08 - 10,23	150,0	70,0	
" " 249 10,66 - 10,81 150,0 70,1 " " 250 10,82 - 10,97 150,0 70,2 " " 251 12,31 - 12,46 150,0 70,2 " " 252 4,43 - 4,58 150,0 70,2 " " 253 4,59 - 4,74 150,0 70,2 " " 255 7,97 - 8,03 70,0 70,2 " " 255 7,97 - 8,03 70,0 70,2 " " 255 7,97 - 8,03 70,0 70,2 " " 256 10,15 - 10,30 150,0 70,2 " " 257 10,31 - 10,46 150,0 70,0 " " 259 10,85 - 10,92 70,0 70,0 " " 260 12,55 - 12,70 150,0 70,0 " " 261 14,77 - 14,92 150,0 70,0 " " <	. 11	11	11	248	10,50 - 10,65	150,0	70,1	
" " 250 10,82 - 10,97 150,0 70,2 " " 251 12,31 - 12,46 150,0 70,2 KI B1 " 252 4,43 - 4,58 150,0 70,2 " " 253 4,59 - 4,74 150,0 70,2 " " 254 7,62 - 7,77 150,0 70,2 " " 255 7,97 - 8,03 70,0 70,2 " " 255 10,31 - 10,46 150,0 70,2 " " 257 10,31 - 10,46 150,0 70,2 " " 259 10,85 - 10,92 70,0 70,0 " " 260 12,55 - 12,70 150,0 70,0 " " 261 14,93 - 15,08 150,0 70,0 " " 262 14,93 - 15,08 150,0 70,0 " " 262 14,93 - 9,08 150,0 70,0 "	11	11	11	249	10,66 - 10,81	150,0	70,1	
" " 251 12,31 - 12,46 150,0 70,2 KI B1 " 252 4,43 - 4,58 150,0 70,2 " " 253 4,59 - 4,74 150,0 70,2 " " 255 7,97 - 8,03 70,0 70,2 " " 256 10,15 - 10,30 150,0 70,2 " " 256 10,15 - 10,30 150,0 70,2 " " 256 10,15 - 10,30 150,0 70,2 " " 257 10,31 10,46 150,0 70,0 " " 259 10,85 - 10,92 70,0 70,0 " " 260 12,55 - 12,70 150,0 70,0 " " 261 14,77 - 14,92 150,0 70	It	11	11	250	10,82 - 10,97	150,0	70,2	
KI B1 " 252 4,43 - 4,58 150,0 70,2 "" " 253 4,59 - 4,74 150,0 70,2 "" " 255 7,97 - 8,03 70,0 70,2 "" " 255 7,97 - 8,03 70,0 70,2 "" " 255 10,31 - 10,30 150,0 70,2 "" " 256 10,15 - 10,30 150,0 70,2 "" " 256 10,31 - 10,46 150,0 70,2 "" " 259 10,85 - 10,92 70,0 70,0 "" " 260 12,55 12,70 150,0 70,0 "" " 261 14,77 - 14,92 150,0 70,0 "" " 262 14,93 - 50,0 70,0 70,0 "" " 396 8,85 8,92 69,5 70,2	11	11	11	251	12,31 - 12,46	150,0	70,2	
""""""""""""""""""""""""""""""""""""	KI	81	tī	252	4,43 - 4,58	150,0	70,2	
""""""""""""""""""""""""""""""""""""	11	11	11	253	4,59 - 4,74	150,0	70,2	
""""""""""""""""""""""""""""""""""""	11	11	11	254	7,62 - 7,77	150,0	70,2	
""""""""""""""""""""""""""""""""""""	11	11	11	255	7,97 - 8,03	70,0	70,2	
""""""" 257 10,31 - 10,46 150,0 70,2 KI C1 "258 4,05 - 4,12 70,0 70,0 """"""" 259 10,85 - 10,92 70,0 70,0 """""""" 260 12,55 - 12,70 150,0 70,0 """"""""""""""""""""""""""""""""""""	11	11	71	256	10,15 - 10,30	150,0	70,2	
KI C1 " 258 4,05 - 4,12 70,0 70,0 "" " 259 10,85 - 10,92 70,0 70,0 "" " 260 12,55 - 12,70 150,0 70,0 "" " 261 14,77 - 14,92 150,0 70,0 "" " 262 14,93 - 15,08 150,0 70,0 "" " 262 14,93 - 15,08 150,0 70,0 "" " 262 14,93 - 15,08 150,0 70,0 "" " 262 14,93 - 9,08 150,0 70,0 "" " 396 8,93 - 9,08 150,0 70,0 "" " 397 9,09 - 9,24 150,0 70,0 "" " 397 9,09 - 9,24 150,0 70,0 "" " 397 9,09 - 9,24 150,0 70,0 "" " 398 9,25 - 9,40 150,0 70,0 "" " 270 3,46 - 3,61 150,0 70,0 ""	11	11	11	257	10,31 - 10,46	150,0	70,2	
"""""" 259 10,85 - 10,92 70,0 70,0 """""" 260 12,55 - 12,70 150,0 70,0 """""" 261 14,77 - 14,92 150,0 70,0 """"""" 262 14,93 - 15,08 150,0 70,0 """"""" 262 14,93 - 15,08 150,0 70,0 """""""" 396 8,93 - 9,08 150,0 70,0 """"""""" 397 9,09 - 9,24 150,0 70,0 """""""""" 398 9,25 - 9,40 150,2 70,0 """"""""""""""""""""""""""""""""""""	KI	C1	11	258	4,05 - 4,12	70,0	70,0	
""""""" 260 12,55 - 12,70 150,0 70,0 """""""" 261 14,77 - 14,92 150,0 70,0 """"""""" 262 14,93 - 15,08 150,0 70,0 """"""""""""""""""""""""""""""""""""	11	11	11	259	10,85 - 10,92	70,0	70,0	
""""""""""""""""""""""""""""""""""""	11	11	11	260	12,55 - 12,70	150,0	70,0	
""" " 262 14,93 - 15,08 150,0 70,0 KI A2 86017 395 8,85 - 8,92 69,5 70,2 """ """ 396 8,93 - 9,08 150,0 70,0 """ """ 397 9,09 - 9,24 150,0 70,0 """ "" 398 9,25 - 9,40 150,2 70,0 """ "" 398 9,25 - 9,40 150,0 70,0 """ "" 398 9,25 - 9,40 150,0 70,0 KI B2 86013 269 3,30 - 3,45 150,0 70,0 """ " 270 3,46 - 3,61 150,0 70,0 """ " 271 3,63 - 3,70 70,0 70,0 """ " 272 7,89 - 8,04 150,0 70,0 """ " 273 8,05 - 8,20 150,0 70,0 """ " 274 8,21 - 8,36 150,0 70,0 KI C2 " 263 2,16 - 2,31 150,0	11	11	11	261	14,77 - 14,92	150,0	70,0	
KI A2 86017 395 8,85 - 8,92 69,5 70,2 """"""""""""""""""""""""""""""""""""	11	£1	11	262	14,93 - 15,08	150,0	70,0	
KI A2 86017 395 8,85 - 8,92 69,5 70,2 """"""""""""""""""""""""""""""""""""					energinis and design and second star of supervision			
""""""""""""""""""""""""""""""""""""	KI	A2	86017	395	8,85 - 8,92	69,5	70,2	
""""""""""""""""""""""""""""""""""""	11	11	11	396	8,93 - 9,08	150,0	70,0	
""""""""""""""""""""""""""""""""""""	11	11	11	397	9,09 - 9,24	150,0	70,0	
KI B2 86013 269 3,30 - 3,45 150,0 70,0 """"""""""""""""""""""""""""""""""""	11	11	11	398	9,25 - 9,40	150,2	70,0	
""" 270 3,46 - 3,61 150,0 70,0 """ 271 3,63 - 3,70 70,0 70,0 """ "272 7,89 - 8,04 150,0 70,0 """ "273 8,05 - 8,20 150,0 70,0 """ "274 8,21 - 8,36 150,0 70,0 KI C2 "263 2,16 - 2,31 150,0 70,0 """ "264 2,32 - 2,47 150,0 70,0 """ "265 2,48 - 2,55 70,0 70,0	KI	B2	86013	269	3,30 - 3,45	150,0	70,0	
""""""""""""""""""""""""""""""""""""	11	11	11	270	3,46 - 3,61	150.0	70,0	
""" 272 7,89 - 8,04 150,0 70,0 """ 273 8,05 - 8,20 150,0 70,0 """ "274 8,21 - 8,36 150,0 70,0 KI C2 "263 2,16 - 2,31 150,0 70,0 """ "264 2,32 - 2,47 150,0 70,0 """ "265 2,48 - 2,55 70,0 70,0	11	11	11	271	3,63 - 3,70	70,0	70,0	
""" 273 8,05 - 8,20 150,0 70,0 """ 274 8,21 - 8,36 150,0 70,0 KI C2 " 263 2,16 - 2,31 150,0 70,0 Kantenaus- bruch """ 264 2,32 - 2,47 150,0 70,0 Kantenaus- bruch """ 265 2,48 - 2,55 70,0 70,0 Kantenaus- bruch	11	18	11	272	7,89 - 8,04	150,0	70,0	
""" 274 8,21 - 8,36 150,0 70,0 KI C2 " 263 2,16 - 2,31 150,0 70,0 Kantenaus- bruch """ " 264 2,32 - 2,47 150,0 70,0 """ " 265 2,48 - 2,55 70,0 70,0 """ " 265 12,12 - 12,27 150,0 70,0 Kantenaus- bruch	11	11	tt	273	8.05 - 8.20	150,0	70,0	
KI C2 " 263 2,16 - 2,31 150,0 70,0 Kantenaus- bruch " " 264 2,32 - 2,47 150,0 70,0 " " 265 2,48 - 2,55 70,0 70,0 " " 265 12,12 - 12,27 150,0 70,0	11	11	11	274	8,21 - 8,36	150,0	70.0	
""" 264 2,32 - 2,47 150,0 70,0 """ "265 2,48 - 2,55 70,0 70,0	KI	C2	11	263	2.16 - 2.31	150.0	70.0	Kantenaus-
""" 264 2,32 - 2,47 150,0 70,0 """ "265 2,48 - 2,55 70,0 70,0 """ "265 12,12 - 12,27 150,0 70,0					-,			bruch
" " <u>265</u> 2,48 - 2,55 70,0 70,0 " " <u>265</u> 12 12 - 12 27 150 0 70 0 kloine Kan-	-11	11	11	264	2,32 - 2,47	150.0	70.0	
" " " 266 12 12 - 12 27 150 0 70 0 kloine Kan-	11	11	11	265	2,48 - 2,55	70.0	70.0	
	-11	11	11	266	12.12 - 12.27	150.0	70,0	kleine Kan-
tenausbrüche					/			tenausbrüche
" " 267 12.35 - 12.50 150.0 70.0	11	11	11	267	12.35 - 12.50	150.0	70.0	
	11	11	11	268	12.51 - 12.66	150.0	70.0	

Tab. 1: Kernbezeichnungen, Entnahmetiefe und Abmessungen der Proben aus den Widerlagerbohrungen, Schacht Konrad 1

Tab. 1: Fortsetzung

К	lern-	Labor-	Kern-	Teufe		Abmess	ungen	Bemerkungen
beze	ichnung	Nr.	Nr.	(m)		1 ₀ [mm]	d ₀ [mm]	
KI	A3	86017	399	6,91 - 6,	98	70,0	70,1	
11	11	17	400	7,07 - 7,	22	150,0	70,2	
11	11	. tt	401	7,23 - 7,	38	150,0	70,0	
11	11	11	402	7,39 - 7,	44	150,0	70,0	
KI	B3	11	403	8,86 - 9,	01	150,0	70,1	Kantenaus-
								brüche
11	11	tt	404	9,15 - 9,	22	70,1	70,1	
11	11	11	405	9,23 - 9,	38	150,1	70,1	
11	11	11	406	9,39 - 9,	54	150,0	70,2	
KI	C3	11	407	6,62 - 6,	77	150,1	70,2	
ii	11	11	408	6,84 - 6,	99	150,0	70,2	
Tť	11	11	409	7,00 - 7,	15	150,2	70,3	
11	11	11	410	9,23 - 9,	30	70,1	70,1	

Kern-	Yd	Ultrascha	llmessung	E.	I	Bemerkungen
Nr.	[kN/m ³]	P-Welle	S-Welle	Edyn	dyn	j
		[m/s]	[m/s]	[MPa]		
246	24.89	3 450	1 850 a	22 200	0,30	
247	25,53	3 600	1 900 a	23 900	0.31	
248	24,79	3 400	1 800 a	21 400	0,29	
249	24.92	3 450	1 650 a	18 800	0.34	
250	24,85	3 450	1 950 a	24 000	0,26	
251	25,14	3 500	1 750 a	20 000	0,34	
252	24,43	3 200	1 800 a	20 200	0,27	
253	24,73	3 250	1 550 g	16 000	0,35	
254	24,82	3 500	1 750 g	20 100	0,34	
255	24,66	3 450	1 650 a	18 200	0,35	
256	24,99	3 650	1 850 g	23 000	0,32	
257	24,88	3 600	2 050 a	26 100	0,26	
258	24,84	3 350	1 650	18 100	0,34	
259	24,80	3 350	1 800	20 500	0,30	
260	25,16	3 250	1 700	19 400	0,31	
261	24,70	3 250	1 950 q	22 900	0,22	
262	24,69	3 150	1 650	17 600	0,31	
		3 350	1 950	23 100	0,24	
395	24,55	3 150 q	1 850 q	20 400	0,24	1
		3 500 q	2 050 q	25 400	0,24	1
306	24 01	3 250 q	1 800 q	21 400	0,27	1
390	24,91	3 600 q	2 000 q	26 000	0,27	
207	25.26	3 400 q	1 900 q	23 200	0,28	1
531	25,50	3 550 q	2 000 q	26 300	0,27	1
308	25 26	3 600 q	1 900 q	23 300	0,32	1
090	25,20	3 400 q	2 000 q	24 500	0,24	1
269	24,59	3 400	1 600 q	17 100	0,36	
270	24,62	3 250 q	1 650 q	17 500	0,33	1
		3 250 q	<u>1 750 q</u>	19 200	0,30	
271	24,70	3 250 q	1 700 q	18 300	0,32	1
		3 350 g	1 900 q	22 100	0,27	
272	25,14	3 400	1 750 q	20 500	0,32	11
			2 000 q	25 000	0,24	<u> .</u>
273	25,48	3 650	1 800 q	22 000	0,34	1
			2 000 q	26 600	0,28	
274	25,21	3 450	1 700 q	19 800	0,33	
263	24,81	3 600	1 800 q	21 100	0,34	
			2 000 q	25 500	0,28	
264	25,03	3 500 q	1 800 q	21 000	0,33	
		3 900 a	2 000 a	26 300	0,32	1

Tab. 2: Wichten und Ergebnisse der Ultraschallmessungen der Proben aus den Widerlagerbohrungen, Schacht Konrad 1

Tab. 2: Fortsetzung

Kern-	γd	Ultrascha	llmessung	E.L.	12 - 1	Bemerkungen		
Nr.	[KN/m³]	P-Welle	S-Welle	-ayn	ayn r			
		[m/s]	[m/s]	[MPa]				
265	24,69	3 450 q	1 800 q	20 700	0,32	1		
		3 800 q	2 000 q	26 000	0,31	1		
266	24,65	3 300	1 600 q	17 400	0,34	L		
			1 900 q	22 200	0,26	11		
267	24,68	3 500	1 650 q	18 100	0,36	1		
			1 850 q	22 100	0,30			
268	24,65	3 400	1 600 q	17 500	0,36	1		
			1 900 q	22 600	0,28			
		3 250	1 900	22 200	0,23			
399	24,33	3 250 q	1 800 q	20 500	0,28	1		
		3 500 q	2 100 q	25 800	0,23	11		
400	24 35	2 900 q	1 800 q	19 000	0,20	1		
400	24,00	3 500 q	2 000 q	24 700	0,25	1		
401	24.65	3 350 q	1 900 q	22 300	0,27	1		
401	24,00	3 450 a	1 950 q	24 300	0,26			
402	24.59	3 300 q	1 800 q	21 200	0,28			
	,	<u>3 450 q</u>	2 000 q	24 700	0,25			
403	24,29	2 900 q	1 750 q	17 900	0,23	1		
		<u>3 300 q</u>	2 050 q	24 100	0,19			
		3 300	1 850	21 200	0,27			
404	24,55	3 100 q	1 800 q	19 900	0,25			
······		<u>3 500 q</u>	2 050 q	25 800	0,24			
405	24,86	3 200 a	1 850 q	21 600	0,24			
		<u>3 600 q</u>	2 100 q	27 000	0,24			
406	24,70	3 150 q	1 800 q	20 300	0,25			
	and internet and an and the	<u>3 200 a</u>	2 050 q	24 300	0,15			
407	24,37	3 150 q	1 750 q	19 000	0,28			
		<u> </u>	2 000 q	24 700	0,21	1		
408	24,26	3 050 q	1 050 q	11 100	0,29			
		<u>3 350 q</u>	1 950 q	16 100	0,20			
409	24,04	3 250 g	1 750 g	10 100	0,30			
	i	3 000	1 650 U	17 000	0,29	- 11		
410	23 87	2 750 g	1 550 a	1/ 200	0,20	1		
-10	20,01	3 300 g	1 850 g	21 100	0,26			
Legende: q = Durchschallung quer zur Probenlängsachse; I = Durchschallung Schichtung I = Durchschallung quer zur Probenlängsachse; I = Durchschallung senkrecht zur Schichtungsrichtung								

Kern- Nr.	ė [s 1]	σ ₃ [MPa]	σ ₁ - σ ₃ Bruch [MPa]	€ _{Bruch}	σ ₁ - σ ₃ Rest [MPa]	EV (AVM) [MPa]	E [MPa]	RVM [MPa]	Bemerkungen
246	s = 0,042 [mm/min]		$\sigma_{SZ} = 1,91$	-	-	-	-	-	Belastung parallel zur Schichtung
247	1 x 10 ⁻⁵	0	13,8	0,005	_	3 110	9 210	-	
248	н	2,5	17,7	0,004	8,6	6 010	9 120	8 390	
240		1,0	-	-	4,8		-	-	
		5,0	26,2	0,007	12,6	5 920	8 310	5 710	
249	"	2,5	-	-	7,4	-	-	7 210	
		1,0	-		4,2	-	-	-	
		15,0	44,8	0,011	26,4	6 450	10 920	6 080	
		12,5	-	-	22,1	-	-	-	
		10,0	-	.	19,0	_	-	-	
251		7,5	-	-	14,3	-	-	6 890	
		5,0	-	-	11,4	-	-	-	
		2,5	-	-	6,3	-	-	6 120	
		1,0	_	-	3,7	-		-	
252	11	0	7,4	0,002	_	3 550			
253	11	2,5	20,9	0,004	8,7	7 330	10 590	5 300	
200		1,0	-	-	5,2	-	-	-	
		10,0	37,6	0,010	20,8	6 980	10 560	5 070	
	ļ	7,5	-	-	18,0	-	-	-	
254		5,0	-	-	12,3	-	-	3 480	
		2,5	-	-	8,0	-	-	-	
L		1,0	_	-	4,4	-	-	-	
255	s = 0,042	-	$\sigma_{SZ} = 1,78$	-	-	-	-	-	Belastung senkrecht zur Schichtung

Tab. 3: Versuchsbedingungen und Ergebnisse der Festigkeitsuntersuchungen an Proben der Widerlagerbohrungen, Schacht Konrad 1

Tab.	3:	Fortsetzung	1

Kern- Nr.	ė [s 1]	σ ₃ [MPa]	$\sigma_1 - \sigma_3$ Bruch [MPa]	[€] Bruch	$\sigma_1 - \sigma_3_{\text{Rest}}$ [MPa]	EV (AVM) [MPa]	E [MPa]	RVM [MPa]	Bemerkungen
		15,0	47,11	0,012	32,3	6 800	11 100	5 150	
		12,5	-	-	29,8	-	-	-	
		10,0	-	-	25,9	-	-	-	
256	1 × 10 ⁻⁵	7,5	-	-	19,0	-	· _	4 850	
		5,0	-	-	15,3	-	-	-	
		2,5	-	-	10,0	-		-	
		1,0	÷	-	5,6	-	-		
		20,0	52,4	0,016	39,5	6 340	12 050	5 460	
		15,0	- . :	-	33,7	-	-	-	
		12,5	-	-	30,0	-		1 300	
257	n	19:g	-	=	28;5	Ξ	-	4 5 5 0	
		5,0	-	- 1	15,8	· _	-	· _	
		2,5	_	- 1	10,0	-	_	-	
		1,0	-	-	5,3	-		_	
258	s = 0,042 [mm/min]	-	$\sigma_{SZ} = 1,79$	-	-	-	-	-	Belastung parallel zur Schichtung
259	s = 0,042 [mm/min]	-	$\sigma_{SZ} = 1,79$	-	-	-	-	-	Belastung senkrecht zur Schichtung
260	1 1 10-5	2,5	28,5	0,004	11,3	8 070	12 860	5 760	
260	1 X 10 %	1,0	-		6,3	-		-	
		5,0	29,0	0,005	13,5	7 170	9 770	5 030	
261	- 11	2,5	-	-	8,8	-	-	-	
		1,0	-	-	4,9	-	-	-	

Tab.	3	:	F	or	ts	et	z	ung	2
and the second s								-	

Kern- Nr.	[s 1]	σ ₃ [MPa]	$\sigma_1 - \sigma_3$ Bruch [MPa]	[€] Bruch	$\sigma_1 - \sigma_{3_{Rest}}$	EV (AVM) [MPa]	E [MPa]	RVM [MPa]	Bemerkungen
		15,0	43,3	0,013	28,8	5 230	9 700	-	
		12,5	-	-	26,2	-	-	-	
		10,0	-	-	22,8	-	-	-	
262	1 × 10 ⁻⁵	7,5	-	-	17,8	-	-	3 250	
		5,0	_	-	14,0	-	-	-	
		2,5	-	-	7,9	-	-	3 370	
		1,0		-	4,5	_		-	
395	s = 0,042 [mm/min]	-	$\sigma_{SZ} = 2,14$	-	-	-	-	-	Belastung parallel zur Schichtung
396	1×10^{-5}	0	24,3	0,003	-	9 500	12 300	-	
		20,0	-	-	45,5	. –	-	7 400	
1		17,5	-	-	42,4	· _	` -	-	
		15,0	-	-	38,1	-	-	-	
		12,5	-	-	34,1	-	-	-	
397	"	10,0	-	-	29,3	-	-	-	
		7,5	-	-	24,1	-	-	-	
		5,0*	38,2	0,006	17,7	9 000	12 000	6 800	
ţ		2,5	-	-	10,7	-	-	-	
		1,0	-	-	5,4	-	-	-	
		15,0	51,3	0,014	36,2	7 000	12 000	5 100	
		12,5	-	-	31,6	-	-	-	
1		10,0	-	-	26,6	-	-	-	
398	51	7,5	-	-	21,5	-	-	4 800	
		5,0	-	-	15,0	-	-	-	
		2,5	-	-	9,0	-	-	-	
		1,0	-	-	4,9	_	-	- 1	

* Erläuterung im Text

Tab.	3:	Fortsetzung	3
		•	

Kern- Nr.	ė [s 1]	σ ₃ [MPa]	σ ₁ - σ ₃ Bruch [MPa]	[€] Bruch	σ ₁ - σ ₃ Rest [MPa]	EV (AVM) [MPa]	E [MPa]	RVM [MPa]	Bemerkungen
269	1×10^{-5}	0	17,7	0,002	-	10 000	-	1	
270	"	2,5	21,3	0,005	8,5	8 450 -	10 725	5 010 -	
		5,0	29,1	0,005	13,3	8 130	10 950	6 620	
272	n	2,5	-	-	8,2	_	· _	-	
		1,0	-	-	4,5	-	-	-	
		15,0	42,2	0,010	29,7	7 800	11 850	5 610	
		12,5	-		27,0	-	-	-	
		10,0	-	-	23,3	-	-	-	
273	"	7,5	-	-	17,5	-	-	3 970	
		5,0	-	-	13,7	-	-	-	
		2,5	-	-	8,4	-	-	-	
		1,0	-	-	4,1	-	-	-	
		7,5	33,1	0,005	16,7	8 970	11 520	7 180	
274		5,0	-	-	12,8	-	-	-	
		2,5	-	-	7,4	-	-	6 840	
		1,0	-	-	4,4	-	-	-	
263	11	0	21,7	0,003	-	9 970	12 200	-	
264	n	2,5	27,4	0,003	9,9	10 380	14 160	6 680	
		1,0	-	-	5,6		-		
265	\$ = 0,042 [mm/min]	-	$\sigma_{SZ} = 2,05$	-	-	-	-	-	Belastung parallel zur Schichtung
		10,0	32,6	0,007	14,4	6 600	8 790	5 560	
		7,5	-	-	12,1	- 1	-	-	
266	1×10^{-5}	5,0	-	-	8,9	-	-	4 535	
		2,5	-	-	5,4	-	-	4 560	
		1,0	-	-	3,1	-	-	-	

Tab.	3:	Fortsetzung	4

Kern- Nr.	é [s 1]	σ ₃ [MPa]	σ ₁ - σ ₃ Bruch [MPa]	[€] Bruch	σ ₁ - σ ₃ Rest [MPa]	EV (AVM) [MPa]	E [MPa]	RVM [MPa]	Bemerkungen
		20,0	42,8	0,011	27,6	6 280	10 150	5 770	
		17,5	-	-	25,8	-	-	-	
		15,0	-	-	22,9	-	-	5 600	
		12,5	-	-	20,9	-	-	-	
267	1×10^{-5}	10,0	-	- 1	18,1	_	_	-	
		7,5	-	_	14,1	-	-	4 620	
		5,0	-	-	10,9	- 1	_	-	
		2,5	-	-	7,2	-	-		
		1,0	-	-	4,0	_	-	-	
		7,5	32,9	0,007	14,8	7 110	10 970	6 490	
260		5,0	-	- 1	11,2		-	-	
200		2,5	-	- 1	6,8	-	-	3 700	
		1,0	-	-	4,9	-		-	
399	s = 0,042 [mm/min]	-	$\sigma_{SZ} = 2,22$	-	-	-	-	-	Belastung senkrecht zur Schich- tungsrichtung
400	1 × 10-5	2,5	17,6	0,003	11,7	7 500		6 000	
400	1 X 10 V	1,0	-	-	6,9	-	-	-	
		7,5	40,1	0,009	22,1	4 400	9 900	6 000	
401	u	5,0	-	-	15,1	-	-	-	
401		2,5	-	-	8,1	-	- 1	5 000	
		1,0	-	_	4,4	_	-	-	·
		10,0	39,0	0,010	26,6	6 000	10 300	4 700	
		7,5	-	-	21,0	- 1	-	-	
402	11	5,0	-	-	14,3	-	-	2 700	
		2,5	-	-	8,8	-	-	-	
		1,0	-	-	4,3	- 1	-	-	

Tab.	3:	For	tset	zung	5
------	----	-----	------	------	---

Kern- Nr.	÷ [s ⁻ 1]	σ ₃ [MPa]	σ ₁ - σ ₃ Bruch [MPa]	[€] Bruch	σ ₁ - σ ₃ Rest [MPa]	E _V (AVM) [MPa]	E [MPa]	RVM [MPa]	Bemerkungen
403	1 × 10 ⁻⁵	0	(6,4 - 7,3)	(0,002 -0,003)		3 400	-	-	Mehrfachbruch
404	s = 0,042 [mm/min]		$\sigma_{SZ} = 2,09$	-	-	-	-	-	Belastung senkrecht zur Schich- tungsrichtung
		10,0	-	-	23,3	-	-	7 400	
1		7,5	-	-	19,3	-	-		
405	1 × 10 ⁻⁵	5,0*	33,8	0,006	14,3	7 700	11 500	6 600	
		2,5	-	-	8,4	-	-	-	
ŀ		1,0	-	-	4,3	-	-	-	
		20,0	49,7	0,014	36,8	5 700	11 200	6 400	
		17,5	-	-	33,5	-	-	-	
		15,0	-	-	29,8	- 1	-	-	
1		12,5	-	-	26,3	-	-	-	
406		10,0		—	20,7	-	-	5 100	
		7,5	-	-	17,4	- 1	-	-	
		5,0	-	-	12,7	-	-	-	
1		2,5	-	- 1	7,4	-	-	- 1	
		1,0	-	-	4,3	-	-	-	
407	11	2,5	-	-	-	7 700	10 300	-	Öl im Schlauch
		7,5	31,1	0,007	18,7	6 200	9 200	4 500	
100		5,0	-	-	12,8	-	-	-	
408		2,5	-	-	7,2	-	-	4 200	
		1,0	-	-	4,0	-	-	-	

* Erläuterung im Text

Kern- Nr.	ė [s 1]	σ ₃ [MPa]	$\sigma_1 - \sigma_3$ Bruch	eBruch	$\sigma_1 - \sigma_{3_{\text{Rest}}}$	E _V (AVM) [MPa]	E [MPa]	RVM [MPa]	Bemerkungen
		15.0	35.1	0.011	24 4	3 600	8 200	5 700	
		12,5	-	-	21,3	-	-	-	
		10,0	-	-	17,3		· _	5 200	
409	1 x 10 ⁵	7,5	-	-	14,5	-	-	-	
		5,0	-	-	10,4	- 1	-	4 700	
		2,5	-	-	6,5	-	-	-	
		1,0	-	<u> </u>	3,6	-	-	-	
 410	s = 0,042 [mm/min]	_	$\sigma_{SZ} = 2,14$	-	-		-	-	Belastung parallel zur Schichtungs- richtung

Tab. 3: Fortsetzung 6

σ3	Anfang	sverform	ungsmodul E _V [M	Pa	stat.	Elastiz	itätsmodul E [MP	a	Restv	erformu	ngsmodul RVM [MP	a]
MPa	Min	Max	Mw ± S	N	Min	Max	Mw ± S	N	Min	Max	Mw ± S	N
0	3 110	10 000	6 580 + 3 558	6	9 210	12 300	11 240 + 1 756	3	-	_	_	_
2,5	6 010	10 380	7 910 ± 1 329	7	9 120	14 150	$\frac{11}{11} \frac{240}{290} \pm \frac{1}{1} \frac{100}{852}$	6	3 370	8 390	5 580 ± 1 413	14
5,0	5 920	9 000	7580 ± 1146	5	8 310	12 000	$10\ 510\ \pm\ 1\ 482$	5	2 700	6 800	5 130 ± 1 444	9
7,5	4 400	8 970	6 670 ± 1 902	4	9 200	11 520	$10 \ 400 \ \pm \ 1 \ 044$	4	3 250	7 180	5 260 ± 1 311	10
10,0	6 000	6 980	6 530 ± 494	3	8 790	10 560	9 880 ± 956	3	4 390	7 400	5 380 ± 911	8
15,0	3 600	7 800	6 150 ± 1 504	6	8 200	12 000	$10 \ 630 \ \pm \ 1 \ 445$	6	5 100	6 080	5 530 ± 408	5
20,0	5 700	6 340	6 110 ± 353	3	10 150	12 050	11 130 ± 952	3	5.460	7 400	6 260 ± 856	4
Alle	3 110	10 380	6 890 ± 1 892	34	8 200	14 150	10 750 ± 1 383	30	2 700	8 390	5 520 ± 340*	6*
Legend	Legende: σ_3 = SeitendruckS = Standardabweichung* = über σ_3 gewichtet M_W = MittelwertN = Anzahl der Werte											

Tab. 4: Steife- und Verformungsmoduli in Abhängigkeit vom Spannungszustand

	T	Schacht	Konrad 1	Schacht Konrad 2						
meter	Min	Max	Mw ± S	Min	Max	Mw ± S				
[m]	699	739	-	585	610	-				
[kN/m³]	23,87	25,53	24,76 ± 0,35	24,03	24,78	24,31 ± 0,20				
[MPa]	14 200	27 000	21 500 ± 3 037	13 100	24 900	17 900 ± 2 440				
[-]	0,15	0,36	0,28 ± 0,043	0,10	0,35	0,21 ± 0,054				
[°]	-	-	30,4	-	-	30,6				
[MPa]	-	-	4,1	-	-	3,7				
[•]	-	-	27,4	-	-	25,8				
[MPa]	-	-	1,4	-	-	1,4				
[MPa]	3 100	10 400	6 890 ± 1 892	2 900	8 050	5 760 ± 1 370				
[MPa]	8 200	14 150	10 750 ± 1 383	5 200	13 100	9 950 ± 1 630				
[MPa]	2 700	7 400	5 350*	3 010	6 800	4 800*				
lwert der	gemitte	lten RVM	's mit $\sigma_3 = 5 /$	10 / 15	MPa					
Mittelwert der gemittelten RVM's mit $\sigma_3 = 5 / 10 / 15$ MPa Legende: γ = Wichte Edyn = dynamischer Elastizitätsmodul ν_{dyn} = dynamische Poissonzahl φ_{Bruch} = innerer Reibungswinkel der Maximalfestigkeiten c_{Bruch} = Kohäsion der Maximalfestigkeiten φ_{Rest} = innerer Reibungswinkel der Restscherfestigkeiten c_{Rest} = Kohäsion der Restscherfestigkeiten E_V = Anfangsverformungsmodul E = statischer Elastizitätsmodul RVM = Restverformungsmodul Mu = Mittelwent										
	<pre>Imeter [m] [kN/m³] [kN/m³] [MPa] [-] [0] [MPa] [0] [MPa] [MPa</pre>	ImmeterMin[m]699[kN/m³]23,87[MPa]14 200[-]0,15[•]-[MPa]-[MPa]-[MPa]-[MPa]-[MPa]3 100[MPa]8 200[MPa]8 200[MPa]2 700Iwert der gemitte: γ Edyndynami \mathcal{P} BruchinnereiCRestKohäsieCRestinnereiCRestKohäsieEstatiseRVMRestvelMw= Mittell	SchachtImeterMinMax[m]699739[kN/m³]23,8725,53[MPa]14 20027 000[-]0,150,36[°][MPa][MPa][MPa][MPa][MPa]3 10010 400[MPa]8 20014 150[MPa]2 7007 400Iwert der gemittelten RVM:: γ = WichteEdyn= dynamischer Eli·/ QBruch= innerer ReibungCBruchKohäsion der Mig@ Rest= innerer ReibungCRest= Kohäsion der MigWest= innerer ReibungCRest= Kohäsion der MigWM= RestverformungMW= Mittelwert	Schacht Konrad 1 Immeter Min Max Mw ± S [m] 699 739 - [kN/m³] 23,87 25,53 24,76 ± 0,35 [MPa] 14 200 27 000 21 500 ± 3 037 [-] 0,15 0,36 0,28 ± 0,043 [°] - - 30,4 [MPa] - - 4,1 [°] - - 27,4 [MPa] - - 1,4 [MPa] - - 1,4 [MPa] - - 1,4 [MPa] 3 100 10 400 6 890 ± 1 892 [MPa] 8 200 14 150 10 750 ± 1 383 [MPa] 2 700 7 400 5 350* Iwert der gemittelten RVM's mit $\sigma_3 = 5 /$: : : γ = Wichte Edyn = dynamischer Elastizitätsmodul Udyn dynamischer Sisonzahl @ @ Udyn dynamischer Poissonzahl @	Schacht Konrad 1ImeterMinMaxMw ± SMin[m]699739-585[kN/m³]23,8725,5324,76 ± 0,3524,03[MPa]14 20027 00021 500 ± 3 03713 100[-]0,150,360,28 ± 0,0430,10[•]30,4-[MPa]4,1-[MPa]1,4-[MPa]1,4-[MPa]3 10010 4006 890 ± 1 8922 900[MPa]8 20014 15010 750 ± 1 3835 200[MPa]2 7007 4005 350*3 010Iwert der gemittelten RVM's mit $\sigma_3 = 5 / 10 / 15$ ± γ = WichteEdynedynamischer Elastizitätsmodul ν dynamische Poissonzahl φ Rust= innerer Reibungswinkel der Maximalfest φ Rest= innerer Reibungswinkel der Restscherfest $QRest= kohäsion der Restscherfestigkeiten\varphi_V= AnfangsverformungsmodulE= statischer ElastizitätsmodulRVM= RestverformungsmodulE= statischer ElastizitätsmodulRVM= RestverformungsmodulMw= Mittelwert$	Schacht Konrad 1 Schacht Imeter Min Max Mw ± S Min Max [m] 699 739 - 585 610 [kN/m ³] 23,87 25,53 24,76 ± 0,35 24,03 24,78 [MPa] 14 200 27 000 21 500 ± 3 037 13 100 24 900 [-] 0,15 0,36 0,28 ± 0,043 0,10 0,35 [°] - - 30,4 - - [MPa] - - 4,1 - - [MPa] - - 27,4 - - [MPa] - - 1,4 - - [MPa] 3 100 10 400 6 890 ± 1 892 2 900 8 050 [MPa] 3 2 700 7 400 5 350* 3 010 6 800 [MPa] 2 700 7 400 5 350* 3 010 6 800 [MPa] 2 700 7 400 5 350* 3 010 <t< td=""></t<>				

<u>Tab. 5:</u> Ergebnisgegenüberstellung von Laboruntersuchungen an Proben aus den Schachtwiderlagerbohrungen der Schächte Konrad 1 und 2 - Anlage 1 -

Gesteins- und Bruchbeschreibung der Proben aus den Schachtwiderlagerbohrungen, Schacht Konrad 1

- 246 Tonmergelstein, grau, undeutliche feine bis feinflaserige Schichtung unter 50°, wenig Bioklasten, z. T. pyritisiert, m. F. r.*. - 247 Mergelstein, grau, tonig, feine bis flaserige Schichtung unter 60°, wenige, z. T. größere Muschelschalen, m. F. r., Vielkörperbruch. - 248 Tonmergelstein, dunkelgrau, feine bis flaserige Schichtung unter 60°, wenige, z. T. größere Muschelschalen, m. F. r., Bruch 65°. - 249 Tonstein, dunkelgrau, schwach kalkig, schluffig, undeutliche Feinschichtung unter 65°, wenige, z. T. größere Muschelschalen, etwas Pyrit, m. F. schwach r., Hauptbruch 70°, beginnende schichtparallele Nebenbrüche. - 250 Wie 247, Vielkörperbruch. - 251 Wie 247, Bruch 60°. - 252 Wie 249, Schichtung unter 60°, unregelmäßiger Bruch 70°. - 253 Wie 249, Schichtung unter 60°, Bruch 65°. - 254 Wie 246, feine Flaserschichtung unter 60°, Bruch 60°. *m. F. r. = mit Fingernagel ritzbar

- I -

- 255 Tonstein, dunkelgrau, kalkig, Feinschichtung unter 55°, wenig Feinschill, m. F. r. - 256 Wie 248, Schichtung unter 60°, ein Hauptbruch 60° und mehrere schichtparallele beginnende Brüche. - 257 Wie 249, etwas Pyrit, ein Hauptbruch 55° und mehrere beginnende schichtparallele Brüche. - 258 Wie 255, feine Flaserschichtung unter 60°. - 259 Wie 258, Schichtung unter 60°. - 260 Tonmergelstein, dunkelgrau bis grau, feine Flaserschichtung unter 60°, wenig Feinschill, m. F. schwach r., unregelmäßiger Bruch ca. 65°. - 261 Wie 260, wenige, z. T. größere Muschelschalen, Schichtung unter 65°, Bruch 60°. - 262 Tonstein, dunkelgrün, kalkig, Feinschichtung, z. T. schlierig, unter 60°, m. F. r., wenige, z. T. größere Muschelschalen, zwei Parallelbrüche 60°. - 395 Wie 258, Schichtung unter 55°, m. F. schwach r., wenige größere Muschelschalen.
- 396 Wie 260, Muschelschalen, Schichtung 55°, ein unregelmäßiger Hauptbruch 70°. - 397 Wie 246, Schichtung unter 55°, ein Bruch 65°. - 398 Wie 260, Schichtung unter 50°, ein Hauptbruch 55°, mehrere beginnende schichtparallele Nebenbrüche. - 269 Wie 255, etwas Pyrit, Schichtung unter 65°, ein Bruch 70°. - 270 Wie 262, ein Bruch 65°. - 271 Wie 262. - 272 Tonmergelstein, grau bis dunkelgrau, undeutliche Feinschichtung unter 60°, größere Muschelschalen und Muschelschill, z. T. in Lagen angereichert, m. F. schwach r., ein Bruch 60°. - 273 Wie 272, Schichtung 55°, ein Bruch 60°. - 274 Wie 272, Schichtung unter ca. 50°, Bruch 55°. - 263 Tonmergelstein, grau- bis dunkelgrau, Flaserschichtung unter ca. 60° aus deutlich begrenzten Ton- und Mergelflasern, m. F. kaum r., steiler Bruchbeginn mit Radialrissen.

- 264 Tonmergelstein, dunkelgrau, Feinschichtung unter 55°, m. F. schwach r., unregelmäßiger Bruch ca. 65°. - 265 Wie 264, mit Flaserschichtung unter 60°. - 266 Wie 264, lagenweise mit Muschelschill angereichert, Bruch auf Harnisch 55°. - 267 Wie 266, Schichtung unter 55°, Bruch auf Harnisch 65°. - 268 Wie 266, tonig, Schichtung unter 60°, Bruch 60°. - 399 Wie 263, etwas Muschelschill. - 400 Wie 249, Schichtung unter 55°, ein Bruch 60°. - 401 Tonmergelstein, grau- bis dunkelgrau, Feinschichtung unter 50°, wenig Muschelschill, etwas Pyrit, m. F. schwach r., ein Bruch 70°. - 402 Wie 262, Schichtung unter 45°, ein Hauptbruch 55° und beginnende schichtparallele Nebenbrüche. - 403 Wie 249, Vielkörperbruch. - 404 Wie 255, mit Muschelschill und z. T. größeren Muschelschalen,

Schichtung unter 50°.

405
Wie 266, undeutliche Schichtung unter 55°, ein Bruch 65°.
406
Wie 266, Schichtung unter 50°, z. T. größere Muschelschalen, ein Bruch 55°.
407
407
Wie 247, m. F. kaum r., Vielkörperbruch.
408
Wie 248, m. F. schwach r., Schichtung unter 60°, ein Bruch 60°.
409
Wie 408, ein Bruch 65°.
410
Wie 255, schwarz- bis dunkelgrau, Schichtung unter 55°.

- Anlage 2 -

<u>Spannungs-Dehnungs-Diagramme der Proben</u> aus den Widerlagerbohrungen, Schacht Konrad 1

-

