(Pl	B)
	1

Physikalisch-Technische Bundesanstalt

DECKBLA	NTT
---------	------------

DECKBLATI									
· · · · · · · · · · · · · · · · · · ·	Projekt	PSP-Element	Obj. Kenn.	Aufgabe	UA	Lfd. Nr.	Rev		
	NAAN	<u>NNNNNNNNN</u>	NNNNN	XAAXX	<u> </u>	NNNN	N'N		
EU 139.2	9K	352142.30		MR	RB	0009	00		
Titei der Unterlage: Bestimmung des gewählter Radionuklide (U, Th steinen für den Standort Scha II)	Sei Sta 3	Seite: <u>I</u> , Stand: 31,12,85							
Ersteller:					Tex	tnummer:			
Staatliches Forschungsinstitu	ıt für G	eochemie, Bambe	erg		1				
Stempelfeld:									
Jumpanero.									
PSP-Element TP., 9K/2:12854		zu Plan-Ki	apitel: 3,9,4						
······		PL PL		PL					
							7		
) ,						
<u> </u>					an Bab	andlune			
Diese Unterlage unterliegt samt Inhalt den bei Beförderung und Vernichtung und dar gemacht werden. Eine andere Verwendung	n Schutz d f vom Emp g und Weit	Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Driften zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zustimmung der PTB.							

	Revisionsblatt									(PTB
	Projekt PSP-Element Obj. Kenn. Aufgabe										Rev.
				NAAN	NN	N N N N N N N N	NNNNN	X A A X X	A A	NNN	NNN
E	J 139.2			9K	35	2142.30		MR	RB	0009	00
Titel wäh für	der Unterlage: lter RAdior den Stando	Bestim nuklide ort Sch	mung des (U, TH, achtanla <u>c</u>	Sorptic Ra u. a je Konra	ons-, a.) : ad (1	/Desorption an repräsen Untersuchun	sverhalten tatieven G gsprogramm	s ausge– esteinen II)	Seite: Stand 31.	II. : 12.85	
Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeich Name	in. rev. Seite	Kat. *)		Erläuterur	ng der Revisi	оп		
*) Ki	ategorie R - re	daktionelle	Korrektur								
Ki Mino	ategorie S - su Jestens bei der	bstantielle Kategorie	Änderung S müssen Er	rläuterunge	en ang	jegeben werden.					

Staatliches Forschungsinstitut für Geochemie, Bamberg

Bestimmung des Sorptions-/Desorptionsverhaltens ausgewählter Radionuklide (U, Th, Ra u.a.) an repräsentativen Gesteinen für den Standort Schachtanlage Konrad

> Projekt: Endlager für radioaktive Abfälle Untersuchungsprogramm II Schachtanlage Konrad Salzgitter

> > Bamberg, 31. Dezember 1985

Der Bericht wurde im Auftrag der PHYSIKALISCH TECHNI-SCHEN BUNDESANSTALT (PTB) erstellt. Die PTB behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit Zustimmung der PTB zitiert, ganz oder teilweise vervielfältigt bzw. Dritten zugänglich gemacht werden.

Zusammenfassung

Bestimmung des Sorptions-/Desorptionsverhaltens ausgewählter Radionuklide (U, Th, Ra u.a.) an repräsentativen Gesteinen für den Standort Schachtanlage Konrad

Batchversuche, Diffusionsmessungen, Konradendlager, Radionuklidmigration, Sorptionsparameter, Uranreihe.

Der Bericht faßt die Ergebnisse von Untersuchungen zusammen, die zur Klärung des Migrationsverhaltens ausgewählter Radionuklide an den für die Deckgebirgsschichten der Schachtanlage Konrad repräsentativen Gesteinen und Grundwasserproben durchgeführt wurden. Zum einen kommt dabei der Einfluß verschiedener Parameter, wie Fremdionenkonzentration, pH-Wert, Volumen/Massen-Verhältnis, Komplexbildner oder Temperatur auf das mittels Batch-Technik bestimmte Sorptions- und Desorptionsverhalten der untersuchten Radionuklide zur Sprache. Zum anderen enthält der Bericht Sorptions- und Desorptionsdaten für U-233, Th-228, Ra-226, Ac-227, Pb-210, Ni-63, Mo-93 und Se-75, die den Konrad-Deckgebirgsschichten zugrundegelegt werden können. Außerdem wird über die Ergebnisse ergänzender Säulendurchlauf- und Diffusionsversuche berichtet.

Inhaltsverzeichnis

Seite

1.	Einle	eitung		1
2.	Vers	uchsdurchführ	ung	3
	2.1.	Bearbeitete		
	2.2.	Probenvorber	eitung	6
	2.3.	Eingesetzte	Radionuklide und deren	
		Messung		
		2.3.1.	Radionuklidübersicht	
		2.3.2.	Nuklidbestimmung	7
		2.3.2.1.	Strahlungsmessung	
		2.3.2.2.	Kalibrierungen	8
		2.3.2.2.1.	Kalibrierung über die α-	
			bzw. β -Strahlung	
		2.3.2.2.2.	Kalibrierung über die	9
			γ-Strahlung	
		2.3.3.	Analytik	10
		2.3.3.1.	Flüssigszintillations-	
			messung	
		2.3.3.2.	γ-spektroskopische Messung	11
		2.3.4.	Analytische Kenngrößen	12
		2.3.4.1.	Anmerkung zur LSC-Messung	
			einzelner Radionuklide	
		2.3.4.1.1.	U-233, Th-228, Ra-226,	
			Ac-227, Pb-210, Ni-63	
		2.3.4.1.2.	Se-75	
		2.3.4.1.2.1.	Flüssigszintillations-	
			messung	
		2.3.4.1.2.2.	Gammaspektroskopische	15
			Messung	
		2.3.4.1.3.	Mo-93	17
		2.3.4.2.	Nachweisgrenzen	19

			Seite			
2.4.	Versuchsdurchführung bei Batchversuchen					
	2.4.1.	Versuchsauswertung				
	2.4.1.1.	Bestimmungsgleichungen				
	2.4.1.2.	Kontrollmessungen	23			
	2.4.2.	Versuchsablauf				
	2.4.3.	Anmerkungen zu den Einzel-	24			
		schritten des Versuchsab-				
		laufs				
	2.4.3.1.	Markierung der Wasserproben				
	2.4.3.2.	Schütteltechnik	25			
	2.4.3.3.	Probenbehälter				
	2.4.3.4.	Schüttelversuchsbedingungen	26			
	2.4.3.5.	Phasentrennung				
	2.4.3.6.	Kontrollmessungen				
2.5.	Versuchsführung bei Säulendurchlaufmes- 27					
	sungen					
	2.5.1.	Auswertungsgrundlagen				
	2.5.2.	Versuchsablauf	29			
	2.5.2.1.	Apparatur				
	2.5.2.2.	Einbringen der Gesteine				
	2.5.2.3.	Tracerzugabe				
	2.5.2.4.	Versuchsparameter				
	2.5.2.5.	Versuchsauswertung	30			
2.6.	Versuchsfüh	nrung bei Diffusionsmessungen	31			
	2.6.1.	Meßverfahren				
	2.6.2.	Auswertung				
2.7.	Randbeding	ungen der Sorptions-/Desorp-	33			
	tionsexper					
	2.7.1.	Batchversuche				
	2.7.2.	Säulendurchlaufversuche				
	2.7.3.	Diffusionsversuche	34			
Ergebnisse						
3.1. Analytische Bestimmungen						
	2.4. 2.5. 2.5. 2.7. Erget 3.1.	2.4. Versuchsdu 2.4.1. 2.4.1.1. 2.4.1.2. 2.4.2. 2.4.2. 2.4.3. 2.4.3.4. 2.4.3.5. 2.4.3.6. 2.5. Versuchsfü sungen 2.5.1. 2.5.2.1. 2.5.2.1. 2.5.2.3. 2.5.2.4. 2.5.2.5. 2.6. Versuchsfül 2.6.1. 2.6.2. 2.7.1. 2.7.2. 2.7.3. Ergebnisse 3.1. Analytische	 2.4. Versuchsdurchführung bei Batchversuchen 2.4.1. Versuchsauswertung 2.4.1.1. Bestimmungsgleichungen 2.4.1.2. Kontrollmessungen 2.4.2. Versuchsablauf 2.4.3. Anmerkungen zu den Einzel- schritten des Versuchsab- laufs 2.4.3.1. Markierung der Wasserproben 2.4.3.2. Schütteltechnik 2.4.3.3. Probenbehälter 2.4.3.4. Schüttelversuchsbedingungen 2.4.3.5. Phasentrennung 2.4.3.6. Kontrollmessungen 2.5. Versuchsführung bei Säulendurchlaufmessungen 2.5.2. Versuchsablauf 2.5.2.1. Apparatur 2.5.2.2. Einbringen der Gesteine 2.5.2.3. Tracerzugabe 2.5.2.4. Versuchsparameter 2.5.2.5. Versuchsauswertung 2.6. Versuchsführung bei Diffusionsmessungen 2.6.1. Meßverfahren 2.6.2. Auswertung 2.7. Randbedingungen der Sorptions-/Desorptionsexperimente 2.7.1. Batchversuche 2.7.2. Säulendurchlaufversuche 2.7.3. Diffusionsversuche 			

	3.1.1.	Cs- und Sr-Bestimmung	35
	3.1.2.	Bestimmung von Uran, Thorium	36
		und Kalium	
3.2.	Messung de	r spezifischen Oberfläche (BET)	37
3.3.	Batchversu	che	38
	3.3.1.	Parameteruntersuchungen	
	3.3.1.1.	Einfluß der Phasentrennung bzw.	
		des Filtrationsschritts	
	3.3.1.1.1.	U-233	39
	3.3.1.1.2.	Ra-226	
	3.3.1.1.3.	Th-228	40
	3.3.1.1.4.	Ac-227	41
	3.3.1.1.5.	Pb-210	42
	3.3.1.1.6.	Se-75, Ni-63 und Mo	43
	3.3.1.1.7.	Zusammenfassung	
	3.3.1.2.	Abhängigkeit der R _S /R _D -Werte	44
		von der Schüttelzeit	
	3.3.1.3.	Einfluß des Volumen-Massen-	49
		Verhältnisses	
	3.3.1.3.1.	U-233	50
	3.3.1.3.2.	Ra-226	51
	3.3.1.3.3.	Th-228	
	3.3.1.3.4.	Ac-227	52
	3.3.1.3.5.	Pb-210	53
	3.3.1.3.6.	Molybdän	54
	3.3.1.3.7.	Zusammenfassung	55
	3.3.1.4.	Abhängigkeit der R _S /R _D -Werte	
		vom pH-Wert	
	3.3.1.4.1.	U-233	
	3.3.1.4.2.	Ra-226	56
	3.3.1.4.3.	Th-228	57
	3.3.1.4.4.	Ac-227	
	3.3.1.4.5.	Pb-210	58
	3.3.1.4.6.	Ni-63	59

		Seite
3.3.1.4.7.	Zusammenfassung	59
3.3.1.5.	Einfluß der Nuklidkonzentration	
3.3.1.5.1.	Uran	
3.3.1.5.2.	Thorium	60
3.3.1.5.3.	Blei	61
3.3.1.5.4.	Nickel	62
3.3.1.5.5.	Zusammenfassung	63
3.3.1.6.	Einfluß der NaCl-Konzentration	
3.3.1.6.1.	Uran	
3.3.1.6.2.	Radium	64
3.3.1.6.3.	Thorium	65
3.3.1.6.4.	Actinium	66
3.3.1.6.5.	Blei	
3.3.1.6.6.	Nickel	67
3.3.1.6.7.	Zusammenfassung	68
3.3.1.7.	Einfluß eines NaHCO ₃ -Zusatzes	
3.3.1.7.1.	Uran, Thorium, Blei und Nickel	
3.3.1.7.2.	Radium und Actinium	70
3.3.1.8.	Einfluß des Komplexbildners EDTA	71
3.3.1.8.1.	Radium	
3.3.1.8.2.	Uran	
3.3.1.8.3.	Thorium	72
3.3.1.8.4.	Actinium	73
3.3.1.8.5.	Blei	
3.3.1.8.6.	Nickel	74
3.3.1.8.7.	Zusammenfassung	
3.3.1.9.	Einfluß von Detergentien	
3.3.1.10.	Temperatureinfluß	75
3.3.2.	Löslichkeit	77
3.3.2.1.	Vorbemerkung	
3.3.2.2.	Daten	
3.3.2.2.1.	Uran	
3.3.2.2.2.	Thorium	
3.3.2.2.3.	Blei	78
3.3.2.2.4.	Actinium	80

			Seite
	3.3.2.2.5.	Nickel	81
	3.3.2.2.6.	Radium	
	3.3.3.	Prüfung der Möglichkeit einer	82
		Sorptionsbeschreibung mittels	
		Langmuir-Isotherme	
	3.3.3.1.	Grundlagen	
	3.3.3.2.	Auswertungsbeispiel	83
	3.3.3.3.	Anmerkungen	85
	3.3.4.	R _S /R _D -Verteilungsprofile für	88
		das Konrad-Deckgebirge	
	3.3.4.1.	Sorptions-Desorptionsdaten-	
		übersicht	
	3.3.4.1.1.	U-233	89
	3.3.4.1.2.	Th-228	90
	3.3.4.1.3.	Ra-226	91
	3.3.4.1.4.	Ac-227	92
	3.3.4.1.5.	Pb-210	93
	3.3.4.1.6.	Ni-63	94
	3.3.4.1.7.	Selen-75	95
	3.3.4.1.8.	Molybdän	97
	3.3.4.2.	Zusammenfassung	98
	3.3.4.2.1.	Uran	
	3.3.4.2.2.	Thorium	99
	3.3.4.2.3.	Radium	
	3.3.4.2.4.	Actinium	100
	3.3.4.2.5.	Blei	
	3.3.4.2.6.	Nickel	
	3.3.4.2.7.	Selen	101
	3.3.4.2.8.	Molybdän	
3.4.	Säulendurc	hlaufversuche	102
3.5.	Diffusions	versuche	107
	3.5.1.	Diffusionsverhalten von Radio-	
		nuklid/Gestein/Wasser-Systemen	
	3.5.1.1.	Allgemeine Hinweise	
	3.5.1.2.	Migrationssysteme	108

		3.5.1.2.1.	Systeme mit nicht-diffusivem	108
			Radionukliddurchbruch	
		3.5.1.2.2.	Systeme mit verzögertem	
			Durchbruch	
		3.5.1.3.	Auswertung	120
		3.5.1.3.1.	Auswertung nach dem in der	
			Literatur beschriebenen	
			Verfahren	
		3.5.1.3.2.	Auswertung nach einem geän-	121
			derten Verfahren	
		3.5.1.3.2.1.	Berechnungsverfahren	
		3.5.1.3.2.2.	Ergebnisse und Folgerungen	126
4.	Chem	ische und geo	chemische Einordnung der an	128
	Konra	ad-Deckgebirgs	sschichten gemessenen Sorp-	
	tions	s- und Desorp	tionsparameter	
	4.1.	Fehlerbetrack	ntung	
		4.1.1.	Fehlerursachen	
		4.1.2.	Abschätzung der Fehler	
	4.2.	Vergleich der	r R _S /R _D -Daten mit Literatur-	129
		werten		
	4.3.	Geochemische	Einordnung	130
5.	Lite	raturverzeich	nis	133
6.	Tabe	llen- und Abb:	ildungsverzeichnis	137
	6.1.	Tabellen		
	6.2.	Abbildungen		145
7.	Abküı	rzungsverzeich	nnis	149
7.	Abkü	rzungsverzeich	nnis	149

Seite

1. Einleitung

Bei der Migration gelöster Radionuklide durch Gesteinsschichten muß mit dem Zusammenwirken verschiedener Effekte gerechnet werden. Eine entscheidende Rolle spielt dabei vor allem das Sorptions- und Desorptionsverhalten der als Ionen oder in kolloidaler Form vorhandenen Nuklide an den Gesteinsschichten bzw. Mineralbestandteilen, das u.a. von der Art des Sorptionsprozesses, vom chemischen Verhalten der Nuklide, von Fremdionen, von der Kontaktzeit, von der Temperatur und vom pH-Wert beeinflußt wird. Diffusionsprozesse in den mit Wasser gefüllten Zwischenräumen und Kapillaren und die Filterwirkung der Gesteinsschichten auf die als Kolloide oder Partikel in Konvektions- oder Grundwasserströmungen mitgeführten Radionuklide können zusätzlich auf den Transport einwirken.

Trotz der mit hydrothermalen Prozessen und Verwitterungsvorgängen verbundenen Elementmigration ist über die Beweglichkeit von Elementen in wässrigen Lösungen der Geosphäre noch verhältnismäßig wenig bekannt. Es liegen nur allgemeine Aussagen zu den das Migrationsverhalten der Elemente bestimmenden Faktoren, über Beweglichkeitsabstufungen und über den nicht zu vernachlässigenden Transport von Radium und Uran in geologischen Systemen vor [1-8]. Insbesondere fehlen Angaben über Sorptions- und Desorptionsgesetzmäßigkeiten der in wässrigen Lösungen transportierten Radionuklide und über Auswirkungen der vielfältigen chemischen, physikalisch-chemischen und geochemischen Parameter.

Zur Erfassung des Ausbreitungsverhaltens von Radionukliden sind somit systematische Laborversuche notwendig. Wesentlich ist in diesem Zusammenhang, daß die Versuche den komplexen geologischen Systemen und den jeweiligen Bedingungen weitgehend angepaßt werden: Nur eine Simulation der natürlichen Migrationsverhältnisse schafft die Voraussetzungen für realistische Voraussagen und Berechnungen [9-12].

Zur Klärung des für die Deckgebirgsschichten der Schachtanlage Konrad charakteristischen Migrationsverhaltens von Uran, Radium usw. mußten deshalb entsprechende Versuche durchgeführt werden. Die Untersuchungen umfaßten dabei zum einen systematische Messungen mittels Batch-Technik über den Einfluß verschiedener Parameter, wie Fremdionenkonzentration, pH-Wert, Komplexbildner, Volumen/Massen-Verhältnis oder Temperatur, auf das Sorptions- und Desorptionsverhalten von U-233, Th-228, Ra-226, Ac-227, Pb-210, Ni-63, Mo-93 und Se-75. Zum anderen wurden für die genannten Radionuklide an den für den Standort der Schachtanlage Konrad repräsentativen Gesteinen und Wasserproben Sorptionsdaten bestimmt, die den Rechnungen zur Ausbreitung von Uran, Thorium, Radium, Actinium, Blei, Nickel, Molybdän und Selen im Deckgebirge des geplanten Endlagers zugrundegelegt werden können. Außerdem wurden zur Ergänzung der Sorptionsund Desorptionsdaten Säulendurchlauf- und Diffusionsversuche durchgeführt.

Der folgende Bericht faßt die Ergebnisse dieser Untersuchungen zusammen.

2. Versuchsdurchführung

2.1. Bearbeitete Gesteins- und Wasserproben

In Tab. 2-1 sind die verschiedenen Festgesteinsproben zusammengestellt, die aus der Tiefbohrung Konrad 101 für die Untersuchungen zur Verfügung gestellt wurden. Neben Angaben über Entnahmetiefe, Stratigraphie und Sedimenttyp enthält die Tabelle auch Hinweise über vergleichbare Proben des Vorhabens Konrad I [13].

<u>Tab. 2-1</u> Übersicht der zur Bearbeitung vorgelegten Gesteinsproben (nach SE 1.4/9K/2242.17-19/SF. 24.7.1985)

Be	ez.	Teufe [m]	Wasser Stratigraphie Sediment- Abt. Stufe typ		Vergleich Konrad I		
s	1	108,8- 115,8	Söhlde	Ober- kreide	Mittel- Turon	Kalkstein	Lamarcki Pläner, Rotpläner
s	2	202– 205	MWS2	Ober- kreide	Cenoman	Kalkstein	u/m Ceno- man, Rho- tomagen- sis Pläner
S	3	308,5- 310,9	Hils	Unter- kreide	Alb	Mergelton- stein	-
s	4	419,8- 423,6	Hils	Unter- kreide	Unter Alb	Tonstein	-
S	5	455,3- 459,1	Hils	Unter- kreide	Hils- sand- stein	Feinsand- stein	-
S	6	571,1- 573,7	0rt 300	Unter- kreide	Haute- rive	Mergelton- stein	-
S	8	892,5- 694,1	0rt 300	Dogger	o.Corn- brash	toniger Kalksand- stein	Cornbrash
S	7	902,7- 907,1	0rt 300	Dogger	u.Corn- brash	Kalksand- stein	Cornbrash

Bez.	Teufe [m]	Wasser	Stratig Abt.	raphie Stufe	Sediment- typ	Vergleich Konrad I
S 9	935,5- 938,2	0rt 300	Dogger	Ober- s Bajocium	schluffiger Tonstein	-
S 10	1000m Sohle	Ort 300	Malm	Kimme- ridge		Kimme- ridge

Tab. 2-2 enthält analytische Daten über die zu den Gesteinsproben zugeordneten natürlichen Wasserproben sowie über das Modellwasser MW S 2. Bei den Wasserproben Söhlde und MW S 2 handelt es sich hiernach um schwach salinare Proben und bei den Wasserproben vom Ort 300 und aus dem Hils-Horizont um stark mineralisierte Wässer.

Gehalt		Wasserprobe Söhlde MW S 2 Hils			0rt 300	
рH	<u>, , , , , , , , , , , , , , , , , , , </u>	6,5	7,2	5, 4	5,9	
σ	[µS/cm]	860	3280	163000	168000	
Eh	[mV]	+183	+145	+110	-	
\mathtt{Li}^+	[mg/1]	0,02	-	1,5	3, 37	
Na ⁺	[mg/1]	16,9	585	52300	61778,4	
K ⁺	[mg/1]	4,5	8,9	150	285,6	
Rb ⁺	[mg/l]	<0,025	-	<1,0	_	
Cs^+	[mg/1]	-	_	_	-	
${ m Mg}^{2+}$	[mg/l]	12,0	21	1300	2280, 3	

<u>Tab. 2-2</u> Analytische Angaben über die für die Untersuchungen eingesetzten Wasserproben

Gehalt		Söhlde	Wasser MW S 2	-Probe Hils	3 Ort 300	
Ca^{2+}	[mg/l]	142	130	4450	11349	
Sr^{2+}	[mg/1]	4, 3	-	460	486,8	
Ba^{2+}	[mg/1]	-	-	-	0,8	
Feges	[mg/1]	0,03	3,7	18	73, 9	
A1 ³⁺	[mg/1]	-	-	-	3,2	
NH_4^+	[mg/1]	<0,01	-	<1,0	-	
Mn^{2+}	[mg/1]	<0,01	0,3	1,0	-	
NO_3^-	[mg/1]	9,0	3	_	-	
F ⁻	[mg/1]	0,2	-	<1,0	-	
C1 ⁻	[mg/1]	46, 8	888	94500	117326, 5	
Br ⁻	[mg/1]	0,09	-	265	652, 6	
I -	[mg/1]	0,05	-	8,5	63, 5	
so_4^{2-}	[mg/1]	160	85	313	599, 9	
$P0_{4}^{3-}$	[mg/1]	<0,01	-	<0,01	-	
$B0_{3}^{3-}$	[mg/1]	0,8	-	42	53,4	
$HC0_{\overline{3}}^{-}$	[mg/l]	275	473	91	60,4	
$\mathrm{Si0}_2$	[mg/l]	30,0	-	-	5,5	
^{CO} 2fr.	[mg/1]	-	-	-	130,1	
Analys	sendatum	12.3.85	5.3.85	12.3.85	5.2.85	
Gestei	insproben	S 1	S 2	S3 – S5	S6 - S10	

2.2. Probenvorbereitung

Die Lagerung der Gesteins- und Wasserproben erfolgte unter Stickstoff bei 15° C.

Vor den Versuchen wurden zusammengehörige Gesteins- und Wasserproben konditioniert. Zu den wesentlichen Arbeitsschritten, die bei der Konditionierung eingehalten wurden, zählen dabei:

- Die Lagerung der Gesteine mit den zugehörigen Grundwasserproben bei etwa 10° C über einen Mindestzeitraum von 4 Wochen und anschließende Filtration durch ein 0,4 ⊬m Ø Filter (→konditioniertes Grundwasser).
- 2. Nach Zugabe des gelösten Nuklids und Überprüfung bzw. Einstellung des Ausgangs-pH-Werts Lagerung der konditionierten Grundwasserproben über mindestens 4 Wochen, um die Einstellung eines stabilen Gleichgewichts zwischen Wasserbestandteilen und Nuklid zu gewährleisten, und Filtration durch ein 0,4 µm Ø Filter (→äquilibrierte Nuklidlösung).
- J. Lagerung der Gesteine mit konditioniertem Wasser über einen Zeitraum vom 14 Tagen und Abtrennung des Wassers (→ konditionierte Gesteine).
- 4. Durchführung der Sorptions- und Desorptionsexperimente mit äquilibrierten Nuklid-Grundwasserlösungen (Pkt. 2) und konditionierten Gesteinsproben (Pkt. 3).

2.3. Eingesetzte Radionuklide und deren Messung

2.3.1. Radionuklidübersicht

Die für Batch-Experimente, Säulendurchlaufversuche und Diffusionsmessungen eingesetzten Radionuklide sind in Tab. 2-3 angegeben. Für die Auswahl waren Halbwertszeit, Zerfallsart und Verfügbarkeit entscheidend.

Radionuklid		Zerfallsart	Chem. Form
U-233	$1,59 \cdot 10^5$ a	α	UO ₂ Cl ₂
Th-228	1,91 a	α	$\operatorname{Th}(\operatorname{NO}_3)_4$
Ac-227 Pb-210	21,6 a 22 a	β^{-} (40 keV) β^{-} (20,6 keV)	$\frac{\operatorname{AcCl}_{3}}{\operatorname{Pb}(\operatorname{NO}_{3})_{2}}$
Ni-63	100 a	γ (47 keV) ¢ (70 keV)	NiCl ₂
Se-75	120 d	ε, β^+ $\gamma (265, 136, 280, 424, 454)$	$rac{Na_2SeO_3}{Na_2SeO_4}$
Mo-93	$3,5\cdot 10^3$ a	ϵ, β^+	Na_2MoO_4

Tab. 2-3 Zur Verteilungsmessung eingesetzte Radionuklide

2.3.2. Nuklidbestimmung

2.3.2.1. Strahlungsmessung

Zur Messung der Alpha- bzw. Betastrahlung kamen die Flüssigszintillations-Spektrometer BF 5001 (Firma Berthold, Wildbad) und Tricarb (Firma Packard, Frankfurt) zum Einsatz. Beide Geräte ermöglichten eine Messung in ausgewählten Energiebereichen mit jeweils bis zu drei Paar eingestellten Diskriminatorschwellen.

Bei den zur Überprüfung der Sorptions- und Desorptionsdaten durchgeführten gammaspektrometrischen Messungen wurde ein 102 x 102 NaJ(T1)-Bohrlochdetektor (Firma Quarz und Silice) mit angeschlossenem Vielkanalanalysatorsystem Elvira (Firma Kugelfischer) eingesetzt. Die Energieauflösung des Systems betrug 7,5 % bezogen auf die 661 keV Linie des Cs-137.

Zur Absolutbestimmung der Aktivität der γ -emittierenden Radionuklide fand eine kalibrierte Ge(Li)-Spektrometeranlage (gekoppelt mit Analysatorsystem Elvira; Auflösung 2 keV bezogen auf die 661 keV Linie des Cs-137) Anwendung, dessen Wirkungsgrad $\eta(E)$ mit mehreren Nukliden bekannter Aktivität bei Energien von 70 bis 1800 keV ermittelt worden war.

2.3.2.2. Kalibrierungen

2.3.2.2.1. Kalibrierung über die α - bzw. β -Strahlung

Der Wirkungsgrad $\eta(E)$ der Flüssigszintillationsmessung (LSC) hängt bei Batch-, Säulendurchlauf- und Diffusionsversuchen von der Menge der zur Messung gebrachten wässrigen Lösungen, von deren Salzgehalt, der Art des Szintillators und der Energie der β - bzw. α -Strahlung ab. Die Konzentrationsbestimmung der einzelnen Radionuklide setzt deshalb eine die verschiedenen Versuchsbedingungen erfassende Kalibrierung mit Standardlösungen voraus.

Beim Vorhandensein von Radionuklidlösungen bekannter spezifischer Aktivität A₀ (z.B. in [BQ/µ1] oder [dpm/µ1]) wurden hierzu Standards (n \simeq 15) aus 7 bis 20 µ1 Stammlösung, 1 ml Grundwasser und 15 ml Szintillator hergestellt und im Flüssigszintillations-Spektrometer nach Einstellung der dem Nuklid angepaßten Schwellen vermessen. Mit der aus den Kalibriergeraden mittels Regressionsrechnung abgeleiteten Nachweisempfindlichkeit m bzw. mit dem aus Einzelwerten ermittelten Kalibrierfaktor K konnten dann analytische Parameter (Nachweisgrenze, Standardabweichung der Aktivitätsmessung, Wirkungsgrad) bestimmt und Konzentrationswerte berechnet werden (vgl. [13],[14]). 2.3.2.2.2. Kalibrierung über die Y-Strahlung

Bei den nicht mit bekannter spezifischer Aktivität zu erhaltenden Radionukliden, deren β - bzw. α -Zerfall von γ -Strahlung begleitet wird, wurde die Aktivität auf einem γ -Kalibrierstand über die γ -Strahlung bestimmt. Hierzu wurden dünne Präparate der zu messenden Nuklide auf einer dünnen Polyäthylenfolie durch vorsichtiges Eindampfen hergestellt, die Impulsraten der γ -Strahlung gemessen und die Aktivität A unter Berücksichtigung der γ -Übergangswahrscheinlichkeit w $_{\gamma}$ und des der γ -Energie entsprechenden Wirkungsgrads $\eta(E)$ mittels Gleichung 2-1 bzw. 2-2 berechnet

$$A = \frac{I_{\gamma}}{w_{\gamma} \cdot \eta(E_{\gamma})}$$
(2-1)

$$A = \frac{I_{\gamma}}{0,37 \cdot 60 \cdot w_{\gamma} \cdot \eta(E)} \quad [nCi] \qquad (2-2)$$

 $(I_{\gamma} \text{ in [ipm]}).$

Die zusätzliche Emission von γ -Strahlung ließ sich bei den α - bzw. β -strahlenden Nukliden auch zur Kontrolle des Batchversuchsverlaufs heranziehen. Hierzu wurden Aktivitätsstandards mit Gesteinsproben hergestellt, Kalibriergeraden im NaJ(T1)-Bohrlochdetektor gemessen und Nachweisempfindlichkeiten m $_{\gamma}$ bzw. Kalibrierfaktoren K $_{\gamma}$ mit den Gleichungen 2-3 und 2-4 berechnet (M $_{\rm S}$ = Gesteinsmasse [g]).

$$m_{\gamma} = \frac{I_{\gamma}}{A_{o} \cdot V_{A}/M_{S}} \qquad (2-3)$$

$$K_{\gamma} = \frac{A_{o} \cdot V_{A}/M_{S}}{I_{\gamma}}$$
(2-4)

 $(A_0 = Spezifische Aktivität [dpm/µl bzw. [nCi/µl]. V_A = Volumen der Stammlösung [µl]).$

Zur Umrechnung der gemessenen γ -Impulsraten (bzw. γ -Aktivitäten) eines Radionuklids in LSC-Impulsraten (bzw. β/α -Aktivitäten) wurde der in Kalibrierungsversuchen bestimmte Umrechnungsfaktor F genutzt, für den gilt

$$\overline{F} \stackrel{\circ}{=} \frac{I_{LSC}}{I_{\gamma}} = \frac{m_{LSC} \cdot M_S}{m_{\gamma} \cdot V_G}$$
(2-5)

 $(m_{LSC} = Nachweisempfindlichkeit bei LSC-Messung [ipm · ml/dpm]. V_G = Volumen der Grundwasserlösung).$ $Der Faktor F ermöglicht die Ableitung der LSC-Impulsraten (bzw. <math>\beta/\alpha$ -Aktivitäten) aus γ -Impulsraten (bzw. γ -Aktivitäten) ten und damit die Kontrolle von Verteilungsmessungen mittels Gleichung 2-6:

$$I_{LSC} = \overline{F} \cdot I_{\gamma} . \qquad (2-6)$$

Der am_Th-228 gemessene Umrechnungsfaktor beträgt beispielsweise F = 8,38.

2.3.3. Analytik

2.3.3.1. Flüssigszintillationsmessung

Bei den Batch-, Säulendurchlauf- und Diffusionsversuchen wurden von den Sorptions-, Desorptions- und Fraktionslösungen jeweils 4 Parallelproben zu je 1 ml mit jeweils 15 ml Szintillator gemischt, im LSC-Spektrometer gemessen und die Impulsraten unter Berücksichtigung des Leerwerts und gegebenenfalls auch der Halbwertszeit abgeleitet: Als Szintillatoren kamen bei wenig mineralisierten Grundwässern Optifluor und Monophase und bei stark mineralisierten Wässern Quickscint 401 zur Anwendung. Die Bestimmung der Radionuklidmasse \mathbf{m}_{R} erfolgte durch Einsetzen der nach

$$A = K_{LSC} \cdot I [dpm/ml] \qquad (2-7)$$

berechneten Aktivität A in Gleichung 2-8 bzw. 2-9:

$$m_{\rm R} = \frac{A \cdot M}{6,023 \cdot 10^{23} \cdot \lambda} [g/m1] \qquad (2-8)$$

bzw.
$$m_{R} = 0,888 \cdot 10^{-13} \cdot M \cdot t_{1/2} \cdot A [g/ml].$$
 (2-9)

 $(t_{1/2} = Halbwertszeit [sec]; \lambda = Zerfallskonstante [sec^{-1}]; M = Atomgewicht; K_{LSC} = Kalibrierfaktor der LSC-Messung [dpm/ipm • ml]; A in Gleichung 2-8 [Bq/ml] und in Gleichung 2-9 [Ci/ml].$

2.3.3.2. Y-spektroskopische Messung

Zur Erfassung der nach Desorptions- und Säulendurchlaufversuchen an Gesteinsproben sorbierten Radionuklide wurden γ -Spektren der Gesteinsproben mit dem NaJ(T1)-Bohrlochdetektor registriert und nach Korrektur des Untergrunds und der Zerfallszeit Impulsraten über Gleichung 2-10 mit Hilfe des Kalibrierfaktors K_y in Aktivitäten umgerechnet:

$$A = K_{v} \cdot I [dpm/g] . \qquad (2-10)$$

Die Radionuklidmassen m $_R$ [g] ergaben sich dann analog zu LSC-Messungen aus Gleichung 2-8 bzw. 2-9.

2.3.4.1. Anmerkung zur LSC-Messung einzelner Radionuklide

2.3.4.1.1. U-233, Th-228, Ra-226, Ac-227, Pb-210, Ni-63

Über die zur Bestimmung der analytischen Kenngrößen durchgeführten Grundsatzversuche wird für die Radionuklide Ra-226, Ac-227 und Pb-210 in [15], für U-233 und Ni-63 in [13] und für Th-228 in [14] berichtet. Im Vorhaben wurden in diese Untersuchungen die Radionuklide Se-75 und Mo-93 einbezogen.

2.3.4.1.2. <u>Se-75</u>

2.3.4.1.2.1. Flüssigszintillationsmessung

Abb. 1-2 zeigt das nach Zugabe von 1 ml ⁷⁵Se-haltigem Wasser (102 nCi) zu 15 ml Szintillator gemessene LSC-Spektrum. Da Se-75 in stabiles As-75 übergeht, können die Schwellwertbegrenzungen weit, d.h., von 0 bis 100 keV, gesetzt werden.

Beispiele der mit jeweils 14 Proben zwischen 7 und 21 ¥1 Se-75 (35 bis 100 nCi) unter Berücksichtigung der Halbwertszeit abgeleiteten Kalibriergeraden sind in Abb. 2-2 und Abb. 2-3 für Selenit und Selenat wiedergegeben.

<u>Abb. 2-3</u> Kalibriergerade der LSC-Messung von Se-75 als Selenat. Schwach mineralisiertes Wasser: Messung mit 15 ml Optifluor

Die aus den Kalibrierungen abgeleiteten Daten sind in Tab. 2-4 und Tab. 2-5 zusammengestellt.

<u>Tab. 2-4</u> LSC-Kalibrierdaten von Se-75. Szintillator Optifluor (15 ml) mit 1 ml schwach mineralisiertem Wasser

Kenngröße	Meßwert	
Leerwert N ₀	122 ipm	
Reststreuung R _c	0,91 nCi	
Empfindlichkeit (Regression) m	1703 ipm/nCi	
Kalibrierfaktor (Regression) K = $\frac{1}{m}$	$5,87 \cdot 10^{-4}$ nCi/ipm	
Wirkungsgrad N	0,767 ips/Bq	
Nachweisgrenze (statistisch) C _i	0,03 nCi	
Nachweisgrenze (real: 95 %) C _{real}	2,4 nCi	

<u>Tab. 2-5</u> LSC-Kalibrierdaten von Se-75. Szintillator Quickszint (15 ml) mit 1 ml stark mineralisiertem Wasser

Kenngröße	Meßwert	
Leerwert N _o	122 ipm	
Reststreuung R _c	1,4 nCi	
Empfindlichkeit (Regression) m	1564 ipm/nCi	
Kalibrierfaktor (Regression) K = $\frac{1}{m}$	$6,39 \cdot 10^{-4}$ nCi/ipm	
Wirkungsgrad n	0,705 ips/Bq	
Nachweisgrenze (statistisch) C _i	0,04 nCi	
Nachweisgrenze (real: 95 %) ^C real	3,8 nCi	

Aus den Messungen ist zu entnehmen,

- daß die Kalibrierfaktoren von der Salinität des verwendeten Wassers und damit vom jeweils ausgewählten Szintillator abhängen, jedoch nur um ⁺/₋ 4 % differieren
- daß kein Unterschied zwischen Selenit- und Selenatlösung vorliegt.

2.3.4.1.2.2. Gammaspektroskopische Messung

Die LSC-Messungen wurden auch am Selen durch gammaspektrometrische Messungen ergänzt:

1. Zum einen wurden Gammaspektren zur Prüfung der radioaktiven Reinheit der Selenlösungen in einem Bohrloch-Ge(Li)-Detektor mit angeschlossenem Vielkanalanalysator aufgenommen (vgl. Abb. 2-4).

<u>Abb. 2-4</u> Gammaspektrum von 10 ⊭1 ⁷⁵Selenit-Stammlösung (aufgefüllt auf 6 ml). Bohrloch-Ge(Li)-Detektor (mit Elvira)

Die in den Spektren registrierten Linien können alle dem Se-75 zugeordnet werden.

2. Zum zweiten konnte die radioaktive Reinheit der Proben zusätzlich durch gammaspektrometrische Messung der Halbwertszeit überprüft werden. Hierzu wurde die Aktivität einer 75 Se-Probe in regelmäßigen Abständen über einen Zeitraum von 4 Monaten gemessen. Die aus den Messungen graphisch abgeleitete Halbwertszeit t $_{1/2} \simeq 124$ d stimmt mit dem Literaturwert gut überein und bestätigt die radioaktive Reinheit der Proben.

3. Zum dritten wurde die Gammaspektroskopie zur Absolutbestimmung der Aktivität der Selenlösungen herangezogen. Aus einer Messung der mittleren Impulsrate I_γ [ipm] des intensitätsstärksten 136 keV Peaks mit w_γ = 59 % und η = 0,128 folgt nach Gleichung 2-2 für die spezifische ⁷⁵Se-Aktivität

- der Selenatlösung A = 5,10 nCi/ μ l ($\stackrel{\circ}{=}$ 3,5 \cdot 10⁻¹³ g/ μ l)

- der Selenitlösung A = 4,63 nCi/µl (4 3,19·10⁻¹³ g/µl)

Die Lösungen sind jedoch nicht trägerfrei: Der Selengehalt beträgt nach Angaben der Firma Buchler 2,5 \cdot 10⁻¹⁰ g/µl.

4. Darüber hinaus können Sandproben nach dem Desorptionsschritt gammaspektrometrisch zur Überprüfung der Richtigkeit der mittels LSC im Batchversuch bestimmten Sorptionsund Desorptionsdaten eingesetzt werden. Der durch Vergleichsmessungen von Se-75 im Flüssigszintillationsspektrometer und γ -Spektrometer ermittelte Umrechnungsfaktor (vgl. Gleichung 2-5) beträgt F = 0,905 (s. hierzu Tab. 2-6).

Vs.Nr.	LSC I [ipm]	γ-Messung I [ipm]	F
1	62 081	77 945	0,796
2	60 383	76 488	0,789
3	65 179	77 244	0,844

Tab. 2-6	Faktorbestimmung	F	(=	ILSC/I	: ()	Se-75
----------	------------------	---	-----	--------	------	-------

Vs.Nr.	LSC I [ipm]	γ-Messung I [ipm]	F
4	$6 \ 334$	6 989	0,906
5	66 714	76 884	0,868
6	55 065	57 266	0,962
7	76 205	79 567	0,958
8	54 481	56 706	0,961
9	76 307	78 818	0,968
10	76 630	79 438	0,965
11	74 326	79 629_	0,933
		F =	0,905

2.3.4.1.3. <u>Mo-93</u>

Das im Flüssigszintillationsspektrometer aufgenommene Spektrum zeigt Abb. 2-5.

<u>Abb. 2-5</u> LSC-Spektrum von Mo-93 in schwach mineralisier tem Wasser. Optifluor. Tricarb.

Nach der gemessenen Maximalenergie können die Schwellen für den auszuwertenden Energiebereich auf 0 bis 40 keV festgesetzt werden.

Eine mit 15 Standardproben zwischen O und 20 μ l ⁹³Mo-Lösung nach Zugabe von jeweils 1 ml H₂O und 15 ml Optifluor gemessene Kalibriergerade ist in Abb. 2-6 dargestellt.

<u>Abb. 2-6</u> Kalibriergerade der LSC-Messung von Mo-93. Schwach mineralisiertes Wasser: Messung mit 15 ml Optifluor.

Die 93 Mo-Stammlösung enthält eine Aktivitätskonzentration A = 10,571 Bq • $\mu 1^{-1}$ bzw. nach Gleichung 2-8 eine 93 Mo-Konzentration von C = 2,6 • 10^{-10} g • $\mu 1^{-1}$. Mit diesen Werten ergeben sich aus der Kalibriergeraden die in Tab. 2-7 zusammengestellten LSC-Kalibrierdaten.

<u>Tab. 2-7</u> LSC-Kalibrierdaten von Mo-93. Szintillator Optifluor (15 ml) in 1 ml schwach mineralisiertem Wasser. Meßzeit: 10 min.

Kenngröße	Meßwert	
Leerwert N ₀ (gemessen)	23 ipm	
Leerwert N_{b} (berechnet)	83 ipm	
Reststreuung R _c	33,3 pg (≙ 0,128 ⊭1)	
Empfindlichkeit (Regression) m	415,12 ipm • μl^{-1}	
Kalibrierfaktor (Regression) K = $\frac{1}{m}$	2,4 · 10 ⁻³ µl · ipm ⁻¹ ≙ 0,62 · pg ipm ⁻¹	
Nachweisgrenze (statistisch) C _i	5,4 pg	
Nachweisgrenze (real: 95 %) ^C real	88,8 pg	

Mo-93 sendet keine γ -Strahlung aus. In einer Testmessung wurde dies für die eingesetzte Lösung bestätigt, so daß deren radioaktive Reinheit als sicher angenommen werden kann.

2.3.4.2. Nachweisgrenzen

Tab. 2-8 enthält die aus den LSC-Kalibriergeraden mit Hilfe der Regressionsrechnung ermittelten Nachweisgrenzen der untersuchten Radionuklide. Die γ -spektrometrischen Nachweisgrenzen liegen etwa um den Faktor 10 höher.

Nuklid	C g,real [mol/1]	C _{g,real} [g/ml]
11.077	7 5 • 10 ⁻⁸	° ° • 10 ⁻⁹
0-200	$3,3 \cdot 10$	0,2 10
Th-228	$2,7 \cdot 10^{-13}$	$6,2 \cdot 10^{-14}$
Ra-226	$2,8 \cdot 10^{-11}$	$6,3 \cdot 10^{-11}$
Ac-227	$\sim 1,0 \cdot 10^{-12}$	$\sim 2,3 \cdot 10^{-13}$
Pb-210	$2 \cdot 10^{-12}$	$4,2 \cdot 10^{-13}$
Ni-63	$7,9 \cdot 10^{-7}$	$5,0 \cdot 10^{-8}$
Se-75	$(4,2-4,6) \cdot 10^{-9}$	$(3,2-3,5)$ · 10^{-10}
Mo-93	$9,5 \cdot 10^{-10}$	$8,8 \cdot 10^{-11}$

<u>Tab. 2-8</u> Reale Nachweisgrenzen C der eingesetzten Radionuklide (P = 95 %)

Über die bei den Versuchen eingesetzten Nuklidkonzentrationen informiert Tab. 2-9. Die Werte wurden aus den niedrigsten und höchsten Impulsraten von LSC-Bezugsmessungen abgeleitet, die parallel zu allen Verteilungsversuchen liefen.

<u>Tab. 2-9</u> Bei Batchversuchen meist eingesetzte Konzentrationsbereiche der Radionuklide

Nuklid	Niedrigste Konzentration [mol/1]	Höchste Konzentration [mol/l]
U-233	$8,1 \cdot 10^{-8}$	$8,7 \cdot 10^{-7}$
Th-228	$4,0 \cdot 10^{-11}$	21 · 10^{-4}
Ra-226	$2,5 \cdot 10^{-9}$	$7 \cdot 10^{-9}$

Nuklid	Niedrigste Konzentration [mol/1]	Höchste Konzentration [mol/l]
Ac-227 Pb-210 Ni-63 Se-75 Mo-93	$\sim 3, 3 \cdot 10^{-11}$ $1, 1 \cdot 10^{-10}$ $9 \cdot 10^{-7}$ $8 \cdot 10^{-9}$ $6 \cdot 10^{-9}$	$\sim 8,4 \cdot 10^{-10}$ $4,7 \cdot 10^{-8}$ $2 \cdot 10^{-6}$ $6 \cdot 10^{-8}$ $1 \cdot 10^{-8}$ $(1 \cdot 10^{-5} \text{ AAS})$

2.4. Versuchsdurchführung bei Batchversuchen

2.4.1. Versuchsauswertung

2.4.1.1. Bestimmungsgleichungen

Zur Gewährleistung der aus Sorptions- und Desorptionsversuchen abgeleiteten K_d -Werte ist wesentlich, daß die Gleichgewichtsbedingung

$$K_{d} = \frac{c_{1}}{c_{2}}$$
 (2-11)

erfüllt ist (c₁, c₂ = Gleichgewichtskonzentration der Elemente in den Phasen 1 [fest] und 2 [Lösung]). Es wurde deshalb darauf geächtet,

- daß der Zustand der Komponenten während des Verteilungsprozesses möglichst nicht verändert wird
- daß die Zusammensetzung beider Phasen möglichst konstant bleibt und

- daß die Einstellung des u.a. von Alterungs- und Diffusionsprozessen abhängigen thermodynamischen Gleichgewichts - wenn man von den zur Klärung dieser zeitabhängigen Vorgänge durchgeführten Versuchenabsieht - weitgehend gegeben ist.

Die Bestimmung der Sorptions- R_S -Werte und Desorptions- R_D -Werte erfolgte unter Anwendung der allgemeinen Bestimmungsgleichungen 2-12 bis 2-15:

Sorption:
$$R_{S} = \frac{m_{S}/M}{m_{1}/V} = \left(\frac{m_{S}}{m_{1}}\right) \cdot \frac{V}{M} = q \cdot \frac{V}{M}$$
 (2-12)

bzw.
$$R_{S} = \frac{c_{A}^{S} - c_{E}^{S}}{c_{E}^{S}} \cdot \frac{V}{M} \left[\frac{ml}{g}\right]$$
 (2-13)

Desorption:
$$R_{D} = \frac{m_{s} - m_{1}'}{m_{1}'} \cdot \frac{V}{M} = \left(\frac{m_{s}'}{m_{1}'}\right) \cdot \frac{V}{M}$$
 (2-14)

bzw.
$$R_{D} = \frac{\left(c_{A}^{S} - c_{E}^{S}\right) - c_{E}^{S}}{c_{E}^{d}} \cdot \frac{V}{M} \begin{bmatrix} ml \\ g \end{bmatrix}$$
 (2-15)

In den Gleichungen bedeuten: m_s , m'_s , m_1 , m'_1 = Massen der Nuklide am Feststoff (s) bzw. in Lösung (1) beim Sorptions- bzw. Desorptionsversuch. V = Lösungsvolumen [m1]. M = Masse der Gesteinsprobe [g]. c_A^S , c_E^S , c_E^d = Aktivitätsbzw. Massenkonzentration (nCi/m1; ng/m1 etc.) des Nuklids in der Lösung zu Beginn (c_A) bzw. am Ende (c_E) der Sorptions- bzw. Desorptionsmessung. q = Verteilungskoeffizient.

2.4.1.2. Kontrollmessungen

Zur Überprüfung der Richtigkeit der mittels Flüssigszintillationsmessung im Batchversuch ermittelten Sorptionsund Desorptionswerte wurden Sandproben nach dem Desorptionsschritt bei den hierfür geeigneten Radionukliden gammaspektrometrisch ausgewertet. Durch Messung der am Sand nach der Desorption haftenden Radionuklide können nämlich die mittels LSC erhaltenen Aktivitätskonzentrationen c_A^S , c_E^S und c_E^d im Fall bekannter Umrechnungsfaktoren F (vgl. Gleichung 2-5) überprüft werden, da für den Desorptions-R_D-Wert gilt

$$R_{\rm D} = \frac{c_{\rm Sand}}{c_{\rm E}^{\rm d}}$$
(2-16)

und außerdem für die am Sand sorbierte Radionuklidkonzentration anzusetzen ist:

$$c_{\text{Sand}} = (c_{\text{A}}^{\text{s}} - c_{\text{E}}^{\text{s}}) - c_{\text{E}}^{\text{d}}$$
 (2-17)

Aus der Übereinstimmung der mittels LSC und gammaspektrometrisch ermittelten R_D-Werte ließ sich somit der störungsfreie Ablauf des Batchexperiments feststellen.

2.4.2. Versuchsablauf

Die im Batchverfahren angewandte Versuchstechnik umfaßte im Einklang mit den Richtlinien des US/FRG-Workshops [16] folgende Einzelschritte:

- 1. Herstellung der Nuklidlösungen mit den Grundwasserproben, Äquilibrierung der Lösungen und Filtration
- 2. Einstellung der für die Sorptionsmessungen vorgesehenen Bedingungen (pH-Wert usw.)

- 4. Schütteln der Wasser/Feststoff-Mischungen über einen bestimmten Zeitraum
- 5. Zentrifugieren der Proben, Abziehen der Lösung bzw. eines Lösungsanteils (1 ml) mit einer Kolbenpipette unter Einschaltung eines 0,4 µm Nucleoporefilters
- 6. Bestimmung der Nuklid-Anfangskonzentration c_A in einer ohne Feststoff mitgeschüttelten Blindprobe
- 7. Messung des pH-Werts und der Nuklidkonzentration $c_{\rm E}$
- 8. Zugabe eines nuklid-freien Grundwasser-Volumens V[†] zur beladenen Feststoffprobe für die Durchführung des Desorptionsversuchs über verschiedene Schüttelzeiten
- 9. Zentrifugieren der Probe zur Phasentrennung, Abziehen der Lösung bzw. eines Lösungsanteils (von 1 ml)
- 10. Messung der Konzentration $c_{\rm F}^{\rm d}$ und des pH-Werts
- Berechnung der Sorptions- und Desorptionswerte R_S
 bzw. R_D mit den Gleichungen 2-13 und 2-15.
- 2.4.3. <u>Anmerkungen zu den Einzelschritten des Versuchsab-</u> laufs

2.4.3.1. Markierung der Wasserproben

Für die Batchversuche wurden jeweils 100 ml Grundwasser unter Ausgleich von pH-Änderungen und Filtration eventuell gebildeter Niederschläge (0,4 µm Ø Nucleoporefilter) mit 0,1 - 1 ml Nuklid-Stammlösungen versetzt und 4 Wochen bis zur Gleichgewichtseinstellung belassen (vgl. Abschnitt 2.2.). Zur Kontrolle der Stabilität der Tracerlösungen bzw. zur Feststellung eventueller Konzentrationsänderungen wurde die Radioaktivität ausgewählter Lösungen während dieses Zeitraums wöchentlich einmal gemessen und außerdem die Radionuklidkonzentration der übrigen Proben jeweils nach 4 Wochen bestimmt.

Die Stammlösungen waren hergestellt worden

- durch Verdünnung von 233 UO $_2$ Cl $_2$ -Lösungen
- durch Verdünnung von 5 ml einer 2 n salpetersauren 228 Th $(NO_3)_4$ -Lösung auf 100 ml
- aus 226 RaCl₂-Lösungen (pH = 2,5)
- aus im Verhältnis 1 : 5000 verdünnten, salzsauren $^{227}Ac(III)$ -Lösungen
- durch Verdünnung einer (1 mCi) 210 Pb(NO₃)₂-Lösung
- durch Verdünnung einer 0,1 molaren salzsauren 63 NiCl₂-Lösung
- durch Verdünnung der gelieferten $Na_2^{75}SeO_3$ und $Na_2^{75}SeO_4$ -Lösungen auf jeweils 100 ml
- durch Verdünnung von 1,5 ml einer schwefelsauren MoO_A^{--} -Lösung auf 7 ml.

2.4.3.2. Schütteltechnik

Bei den Batchexperimenten wurde mit jeweils fünf langsamen Umdrehungen (von je 10 sec) in 10 min über Kopf geschüttelt. Es lagen aerobe Versuchsbedingungen vor.

Bei Messung von Temperatureinflüssen erfolgte das Schütteln mit Hilfe einer langsam drehenden Scheibe, die in einem Wärme- bzw. Kühlschrank stand.

2.4.3.3. Probenbehälter

Als Probengehälter wurden Polyäthylenfläschchen (Firma

Zinser) mit einem Durchmesser von 2,5 cm und einem Volumen von 25 ml eingesetzt.

Für die Wahl des Behältermaterials waren Versuche entscheidend, die an konditionierten Lösungen eine von der Art des Gefäßmaterials abhängige zeitliche Abnahme der Nuklidkonzentration erkennen ließen.

2.4.3.4. Schüttelversuchsbedingungen

Bei einem Teil der Schüttelversuche betrug das Lösungsvolumen V = 7 ml und die Gesteinseinwaage M = 4 g. Zur besseren Anpassung an die geologischen Bedingungen wurden die Versuche aber auch mit V = 7 ml und M = 6 g angesetzt.

Als Kontaktzeiten wurden für die Sorption meist 14 Tage und für die Desorption zusätzlich 7 Tage gewählt, da Sorptions(R_S)- und Desorptions(R_D)-Werte der untersuchten Nuklide nach diesen Versuchszeiten weitgehend konstant blieben.

2.4.3.5. Phasentrennung

Die Proben wurden nach Abschluß der Sorptions- bzw. Desorptionsversuche jeweils 20 min bei 3000 U/min zentrifugiert und anschließend durch Nucleoporefilter (0,4 μ m Ø) gesaugt. Spritzen und Filtrationsvorsätze bestanden aus Polycarbonat.

2.4.3.6. Kontrollmessungen

Parallel zum Batchversuch wurden jeweils Grundwasser/ Radionuklid-Proben ohne Sediment zur Feststellung und Korrektur von Wandadsorptionseffekten geschüttelt und vermessen.
2.5. Versuchsführung bei Säulendurchlaufmessungen

2.5.1. Auswertungsgrundlagen

Die Säulendurchlaufversuche wurden mit den in [17-20] beschriebenen Grundsatzgleichungen, die auf allgemeinen säulenchromatographischen Beziehungen aufbauen, ausgewertet. Nach diesen Beziehungen besteht zwischen dem aus mittlerer Abstandsgeschwindigkeit des Grundwassers (v_a) und mittlerer Transportgeschwindigkeit des Radionuklids (v_T) abgeleiteten Verzögerungsfaktor r_D

$$r_{\rm D} = \frac{v_{\rm a}}{v_{\rm T}}$$
(2-18)

und dem Verteilungskoeffizienten K_d der Zusammenhang

$$r_{\rm D} = 1 + \frac{q}{n_{\rm eff}} \cdot K_{\rm d} \qquad (2-19)$$

(n eff = effektiver Porenraum. 9 = Trockenraumdichte
[g/cm³]).

Zur Ableitung von ${\rm K}_{\rm d}$ -Werten aus Verzögerungsfaktoren mußten deshalb jeweils bestimmt werden

 die mittlere H₂O-Abstandsgeschwindigkeit v nach Gl. 2-20 bzw. 2-21 aus der Zeit t₅₀, die ^{3H1}HO bis zum 50 %igen Durchlaufen einer Säule der Länge 1 benötigt

$$v_a = \frac{1}{t_{50}}$$
 (2-20)

bzw.
$$v_a = \frac{1}{\frac{H_2 0}{V_{50} / v_t}}$$
 (2-21)

 H_2^0 (V_{50}^2 = Volumen bis zum Durchbruch von 50 % $^3H^1HO$ $\stackrel{\circ}{=}$ Porenvolumen V_w . v_t = Tropfgeschwindigkeit)

- die mittlere Radionuklid-Transportgeschwindigkeit v $_{\rm T}$ nach Gl. 2-22 aus dem in der Zeit t $_{50}^{\rm RN}$ von 50 % des aufgegebenen Radionuklids in der Säule zurückgelegten Weg d

$$v_{\rm T} = \frac{d}{t_{50}^{\rm RN}} = \frac{d}{v_{50}^{\rm RN}/v_{\rm t}}$$
 (2-22)

bzw. nach Gl. 2-23 aus der bis zur Elution von 50 % des Radionuklids aus der Säule der Länge 1 benötigten Zeit $t_{50}^{\rm RN}$

$$v_{\rm T} = \frac{1}{t_{50}^{\rm RN}} = \frac{1}{V_{50}^{\rm RN}/v_{\rm t}}$$
 (2-23)

 $(v_{50}^{RN} = Volumen bis zur Verschiebung von 50 % Radio$ nuklid um d [cm] in der Säule bzw. bis zur 50 %igen $Elution des Radionuklids. <math>v_t$ = Tropfgeschwindigkeit)

- die Trockenraumdichte 9 aus der Lockergesteinsmasse M und dem Säulenvolumen V $_{\rm S}$ (= Sand-Feuchtvolumen)

$$Q = \frac{M}{V_s}$$
(2-24)

- die effektive Porosität n_{eff} des in der Säule eingelagerten Sediments aus dem mit ${}^{3}H^{1}HO$ gemessenen Durchbruchsvolumen $V_{50}^{H_{2}O} = V_{w}$ und dem Säulenvolumen V_{s} nach Gl. 2-25

$$n_{eff} = \frac{V_w}{V_s} . \qquad (2-25)$$

2.5.2. Versuchsablauf

2.5.2.1. Apparatur

Für die Versuche wurden aufgrund der verhältnismäßig großen Verteilungskoeffizienten der untersuchten Nuklide Säulen mit 12 cm Füllhöhe und 2 cm Durchmesser eingesetzt.

Als Materialien wurden benutzt: Polyäthylen für das Rohr, PVC für die Stopfen und Silikonkautschuk für den Zuleitungsschlauch.

2.5.2.2. Einbringen der Gesteine

Die mit dem zugehörigen Grundwasser ins Gleichgewicht gesetzten Gesteine wurden naß in die Säulen eingebracht und durch leichtes Andrücken verdichtet.

2.5.2.3. Tracerzugabe

Die für Säulenversuche eingesetzten Tracerlösungen entsprachen den zu Batchversuchen herangezogenen Lösungen; sie enthielten jedoch meist höhere Radionuklidkonzentrationen.

Von den Lösungen wurden jeweils 3 ml auf das Gestein aufgebracht, bis zum Einziehen der Lösungen in die Lockergesteinsprobe gewartet und dann mit 3 ml Grundwasser mit einer dem Säulendurchlaufversuch entsprechenden Tropfgeschwindigkeit nachgespült.

2.5.2.4. Versuchsparameter

Die bei den Säulendurchlaufversuchen eingestellten Tropfgeschwindigkeiten v_t lagen zwischen 2 - 8 ml/h und entsprachen somit Filtergeschwindigkeiten

$$\mathbf{v}_{\mathbf{f}} = \frac{\mathbf{v}_{\mathbf{t}}}{\mathbf{F}} \tag{2-26}$$

von $8,3 \cdot 10^{-5}$ bis 7,0 $\cdot 10^{-4}$ cm/s (F = Säulenquerschnitt). Für die nach Gl. 2-25 bestimmten effektiven Porositäten n_{eff} wurden Werte zwischen 0,36 und 0,79 erhalten. Das zur Ableitung von n_{eff} notwendige Porenvolumen folgte dabei aus den ³H-Konzentrationsdurchgangskurven von ³H¹HO-Tracerlösungen.

2.5.2.5. Versuchsauswertung

Die Versuchsauswertung mußte danach ausgerichtet werden, ob das aufgegebene Radionuklid in der vorgegebenen Versuchszeit auf der Säule verblieb oder im Säulenauslauf vollständig zur Elution kam.

Beim Verbleib des Radionuklids auf der Säule wurde der Sand in mehreren, meist 5 - 6 Fraktionen aus der Säule herausgedrückt, mit 2 n HNO_3 eluiert und das Nuklid im Eluat bestimmt.

Bei der Elution des Radionuklids wurden am Säulenauslauf mit einem Fraktionssammler Fraktionen von 4 - 8 ml entnommen und die Aktivität in je 1 ml dieser Fraktionen bestimmt. Die Elutionsmaxima ($V_{50}^{\rm RN}$) der auf diese Weise erhaltenen Konzentrationsdurchgangssummen führten mit der Sedimenthöhe 1 und dem eingestellten Säulendurchfluß v_t nach Gl. 2-23 zur Transportgeschwindigkeit v_T.

Die verschieden ermittelten Radionuklid-Transportgeschwindigkeiten v_T ergaben mit den aus den Konzentrationsdurchgangskurven des ³H¹HO abgeleiteten Abstandsgeschwindigkeiten v_a nach Gl. 2-18 die Verzögerungsfaktoren, die mit der effektiven Porosität n_{eff} der beladenen Säule und der Trockenraumdichte Q in K_d-Werte (Gl. 2-19) umgerechnet werden konnten.

2.6. Versuchsführung bei Diffusionsmessungen

2.6.1. Meßverfahren

Für Diffusionsuntersuchungen an Festgesteinsproben (vgl. hierzu [21,22] wurde das in [13] konstruierte und beschriebene Diffusionsgefäß eingesetzt.

In diesem Gefäß trennt ein eingebetteter Gesteinsschnitt (Fläche 20 mm x 20 mm; Dicke 1 > 4,0 mm) die mit einem Radionuklid versetzte Lösung von der nuklidfreien Ausgangslösung. Die Volumina der Teilbehälter betragen dabei jeweils 14,5 ml. Für den Versuchsablauf ist wesentlich, daß durch Analyse der in bestimmten zeitlichen Abständen der nuklidfreien Ausgangslösung entnommenen Proben von 0,01 ml die Radionuklidmigration durch das Gestein aus der zeitlichen Zunahme der Radionuklidkonzentration abgeleitet wird.

Zum Ausgleich der teilweise rasch abnehmenden Ausgangsaktivität wurde bei einigen Radionukliden, insbesondere beim Ni-63 und Ra-226, die Aktivität des aktiven Raumes durch Nachfüllen konstant gehalten. Auch wurden die Proben täglich geschüttelt, um Konzentrationsverarmungen in der Grenzschicht Lösung/Gestein im aktiven Raum bzw. Anreicherungen in der entsprechenden Grenzschicht des inaktiven Raums möglichst gering zu halten.

2.6.2. Auswertung

Zur Berechnung des Verteilungskoeffizienten K_d wurde zunächst nach dem in [21] angegebenen Verfahren vorgegangen und der Diffusionskoeffizient D und der sog. Kapazitätsfaktor α aus den Migrationskurven abgeleitet. Da aus Gl. 2-27

$$r_{\rm D} = 1 + \frac{q}{n} \cdot K_{\rm d}$$
 (2-27)

folgt

$$K_{d} = \frac{r_{D} n - n}{q}$$
, (2-28)

sollte nämlich nach [21] mit

$$\alpha = \mathbf{n} \cdot \mathbf{r}_{\mathrm{D}} \tag{2-29}$$

gelten

$$K_{d} = \frac{\alpha - n}{\varrho} \qquad (2-30)$$

(g = Gesteinsdichte. n = Porosität).

Die zur Berechnung von α bzw. K_d erforderlichen Werte können nach diesem Verfahren aus den Durchbruchs- bzw. Migrationskurven entnommen werden:

1. Der Diffusionskoeffizient D $[cm^2/s]$ ergibt sich aus der Steigung der Durchbruchskurve mittels Gl. 2-31

$$D = \frac{\frac{c_2'}{c_1} \frac{V \cdot 1}{F} - \frac{c_2'}{c_1} \frac{V \cdot 1}{F}}{t'' - t'}$$
(2-31)

In Gl. 2-31 bedeuten:

c2'', c2' = Radionuklidkonzentration auf der inaktiven Versuchsseite nach der Zeit t2'' bzw. t2' in [ipm/ml]

- c₁ = Radionuklidkonzentration zu Versuchsbeginn [ipm/ml]
- F = Gesteinsfläche ($\triangleq 4 [cm^2]$)
- 1 = Gesteinsdicke [cm]
- V = Volumen des Probengefäßes ([±] 14,5 ml).

2. Der Kapazitätsfaktor α folgt mit dem Diffusionskoeffizienten D aus der (extrapolierten) Durchbruchszeit t $_{\rm D}$ [s] nach

$$\alpha = \frac{6 \cdot t_{\rm D} \cdot D}{1^2} \qquad (2-32)$$

2.7. Randbedingungen der Sorptions-/Desorptionsexperimente

2.7.1. Batchversuche

Zur Feststellung der Beeinflußbarkeit des Sorptions- und Desorptionsverhaltens wurden bei den Batchversuchen an einigen ausgewählten Nukliden folgende Randbedingungen festgelegt:

- Korngröße der Gesteinsfraktionen (2 > Fr > 0,2 mm)
- Schüttelzeit (bis 4 Wochen)
- Volumen-Massen-Verhältnis (0,5 7 ml/g)
- pH-Wert (5-9)
- Nuklidkonzentration $(10^{-4} 10^{-8} \text{ mol/l})$
- NaCl-Konzentration (0, 1 4 mol/1)
- NaHCO₃-Konzentration (0,01 1 mol/1)- EDTA-Konzentration $(10^{-4} 10^{-2} \text{ mol}/1)$
- Detergentienzusatz (Maranilsäure 1 mg/ml)
- Temperatur $(5 50^{\circ} C)$.

2.7.2. Säulendurchlaufversuche

Die Säulenversuche waren auf die Messung der Verzögerungsfaktoren r_D der Nuklide U, Th, Ra, Ac, Ni und Se an kleinen Säulen ausgerichtet, um Hinweise über die Schwankungsbreiten verschieden abgeleiteter K_d-Werte auch für stärker sorbierte Radionuklide zu erhalten.

2.7.3. Diffusionsversuche

Für die Diffusionsversuche wurden Radionuklidlösungen eingesetzt, die in gleicher Weise wie bei Batchversuchen konditioniert worden waren. Als Festgesteinsproben kamen Gesteinsschnitte mit einer Dicke von d \rangle 1,4 mm bis 5 mm zur Anwendung.

3. Ergebnisse

3.1. Analytische Bestimmungen

3.1.1. Cs- und Sr-Bestimmung

Cs wurde mit dem Flammenphotometer M 7 DC und Sr mittels AAS (Perkin-Elmer AAS 2380) in den mit 2 n HCl aufgeschlossenen Festgesteinsproben gemessen. Die in Tabelle 3-1 zusammengestellten Meßwerte ergeben sich aus jeweils 6 Folgemessungen.

Angemerkt sei, daß in [13] mittels Flammenphotometer ermittelte Sr-Werte angegeben wurden. Wiederholungsmessungen mittels RFA und AAS legten nahe, die flammenphotometrischen Werte zu korrigieren. Die verbesserten AAS-Werte wurden deshalb in die Tabelle mit aufgeführt.

<u>Tab. 3-1</u>	Sr- und Cs-Gehalte der Konrad-Festgesteinsproben
	in µg/g (bzw. ppm).
	Sr: AAS-Messung. Cs: Flammenphotometrische Be-
	stimmung

Probe	Sr [µg/g]	Cs [µg/g]
Lamarcki Pläner	$377,5^{+\!2},3$	$22,9^+\!\!2,0$
Rotpläner	$250,0 \overset{+}{-} 6,5$	$26,5 \div 2,8$
Rhotomagensis Pläner	$320,0^+5,0$	$24,2^+\!\!2^-\!\!2^-\!\!5$
u/m Cenoman	$350,0^+3,3$	$26,1^+\!$
Erzkalke	325,0-6,8	$29,8 \overset{+}{-} 2,9$
Kimmeridge	$820,0^+14,0$	31, 4 - 4, 3
Hangendes Erz	$155,0^{+}_{-}4,0$	$_{24,2\overset{+}{-}2,2}$
Liegendes Erz	$227,5 \overset{+}{-} 3,0$	$22,2^+\!\!2,1$
Fladentonstein	$360,0^+5,3$	$28,9 \div 3,4$
Heersumer Schichten	$90,0^+4,5$	80, 6 - 9, 7
Quartär sandig	$40,0^+6,0$	5, 1-0, 6

Probe	Sr [¤g/g]	Cs [µg/g]
Quartär bindig Versatzmaterial Sorption 1 Sorption 2 Sorption 3 Sorption 4 Sorption 5 Sorption 6 Sorption 7 Sorption 8	$105,0^{+}3,5$ $187,5^{+}6,0$ $584,5^{+}11,4$ $1063,0^{+}6,3$ $428,5^{+}11,6$ $155,0^{+}6,3$ $52,5^{+}5,0$ $408,5^{+}6,2$ $227,5^{+}4,8$ $140,0^{+}5,5$	$14,2^{\pm}0,3$ $29,8^{\pm}0,3$ $22,2^{\pm}0,1$ $18,7^{\pm}0,9$ $19,2^{\pm}1,0$ $26,4^{\pm}0,4$ $15,2^{\pm}0,3$ $23,7^{\pm}0,4$ $28,3^{\pm}0,9$ $31,4^{\pm}0,3$
Sorption 9	177, 5-5, 0	$30,5^+0,3$
Sorption 10	$290, 5^+7, 3$	$15,2^{+}0,6$

3.1.2. Bestimmung von Uran, Thorium und Kalium

Die U-, Th- und K-Gehalte wurden aus den γ -Spektren der Konrad-Festgesteinsproben bestimmt (102 x 102 Bohrloch-Szintibloc mit Elvira), wobei für den Nachweis

- von Thorium der Y-Peak bei 2860 keV (T1-208)
- von Uran der Y-Peak bei 1760 keV (Bi-214)
- von Kalium der γ-Peak bei 1460 keV (K-40)

zur Auswertung kam. Aufgrund der gegenseitigen Störung der γ -Peaks mußten über eine Kalibrierung mit Standards Korrekturgleichungen für die U-, Th- und K-Gehaltsbestimmung aufgestellt werden. Die dabei erreichten Nachweisgrenzen betragen für Uran C_g = 0,08 ppm, Thorium C_g = 0,3 ppm und K = 0,02 %.

Probe	Uran [µg/g]	Thorium [#g/g]	Kalium [%]
Sorption 1	0,22	0,95	0,53
Sorption 2	1,34	2,44	0,49
Sorption 3	1,84	7,96	1,53
Sorption 4	2,67	10,42	2, 16
Sorption 5	0,53	3,96	0,97
Sorption 6	3,03	10,56	1,86
Sorption 7	2,88	10, 44	1,26
Sorption 8	0,98	4,61	0,50
Sorption 9	3,84	15,47	2,38
Sorption 10	1,91	6,94	0,63
Quartär sandig	1,05	3,78	0,96
Quartär bindig	2,04	8,17	1,42
Cornbrash	2,97	26,53	1,63

Tab. 3-2 U-, Th- und K-Gehalte der Konrad-Festgesteinsproben in µg/g (ppm) bzw. %. Jeweils 3 Einzelbestimmungen.

3.2. Messung der spezifischen Oberfläche (BET)

Zur Feststellung des Einflusses innerer und äußerer Oberflächen auf das Sorptions- und Desorptionsverhalten von Radionukliden wurde mittels Tieftemperatur-Stickstoff-Adsorption in dem auf der Basis der BET-Methode arbeitenden AREA-Meter die spezifische Oberfläche der Proben aus der Tiefbohrung Konrad 101 sowie noch nicht geprüfter Proben des Projekts Konrad I gemessen. Die verschiedenen Fraktionen, von denen nach Entfernung von anhaftendem Staub mittels Aceton und Trocknen bei 150° C jeweils 0,5 - 2 g (bzw. bei geringer spezifischer Oberfläche 4 g) vermessen wurden, ergaben die in Tab. 3-3 zusammengestellten Werte.

Proben- Bezeichnung	Spez. Obe 1. Messung [m ² /g]	erfläche 2. Messung [m ² /g]	Mittelwert [m ² /g]
		n an	
Sorption 1	4, 17	3,79	$3,98 \pm 0,27$
Sorption 2	8,10	8,51	8,31 - 0,29
Sorption 3	30,39	31,65	$31,02 \pm 0,89$
Sorption 4	35,24	37,74	$36,49^+1,77$
Sorption 5	6,92	7,39	7, 16 - 0, 33
Sorption 6	22,06	21,64	$21,85 \overset{+}{-} 0,30$
Sorption 7	12,82	12,84	$12,83 \pm 0,01$
Sorption 8	2,34	2,33	$2,34 \stackrel{+}{-} 0,01$
Sorption 9	31,51	31,37	$31,44 \overset{+}{-} 0,10$
Sorption 10	13,86	13,60	$13,73 \overset{+}{-} 0,18$
Quartär sandig	0,518/ 0,792	0,677	$0,662 \overset{+}{-} 0,14$
Quartär bindig	6,77	6, 48	6,63 - 0,21
Cornbrash	6,75	6,87	$6,81 \overset{+}{-} 0,09$
Versatzmaterial	19,51	20,31	$19,91 \overset{+}{-} 0,57$

<u>Tab. 3-3</u> Spezifische Oberflächen der Konrad-Festgesteinsproben. Messung im AERA-Meter (BET)

3.3. Batchversuche

3.3.1. Parameteruntersuchungen

3.3.1.1. <u>Einfluß der Phasentrennung bzw. des Filtra-</u> tionsschritts

Zur Klärung der Auswirkung der Phasentrennung bzw. des Filtrationsschritts auf Sorptions- und Desorptionsmessungen wurde das Verhalten der in schwach bzw. stark mineralisierten Wasserproben gelösten Radionuklide bei längerer Lagerung durch zeitlichen Aktivitätsvergleich der unfiltrierten und der durch 0,4 µm Nucleoporefilter filtrierten Lösungen untersucht. Die Auswertung der Versuche erfolgte mittels Gl. 3-1

$$S = \left(\frac{I_{o,a} - I_{o,t}}{I_{o,a}}\right) \cdot 100 \quad [\%] \tag{3-1}$$

(I bzw. I = spez. Impulsraten zu Beginn der Lagerung bzw. nach der Lagerzeit t).

Durch diese Untersuchungen konnten nicht nur die auf eine Adsorption der Radionuklide an Probengefäßen zurückgehenden Störungen erkannt werden. Vor allem wurden auch Aussagen über die Neigung der Nuklide zur Bildung schwerlöslicher Hydrolyseprodukte bzw. Kolloide und über deren Beeinflussung der Sorptions- und Desorptionsmessungen möglich.

3.3.1.1.1. <u>U-233</u>

Bei der Lagerung von U-233 in dem mit dem Gestein "Sorption 1" konditionierten schwach mineralisierten Söhldewasser sowie in dem mit "Sorption 4" konditionierten salinen Hilswasser wurde keine meßtechnisch faßbare Aktivitätsabnahme beobachtet (S \approx 0 %).

3.3.1.1.2. <u>Ra-226</u>

In dem mit dem Gestein "Sorption 1" konditionierten schwach mineralisierten Söhldewasser wird an unfiltrierten Proben bei einer Lagerung von 4 Wochen keine Aktivitätsabnahme registriert. Nach Filtration durch 0,4 µm Ø erreicht die Abnahme etwa S = 3 - 8 %.

Im System Sorption 4/Hils (salin) wurde ohne Filtration S = 0 % und mit 0,4 μ m Ø Filtration S \simeq 2 % gemessen.

Die Neigung zum Übergang in schwerlösliche, polymere Hydrolyseprodukte bestimmt auch das Lagerungsverhalten in den mit Konradgesteinen konditionierten Wasserproben: Im schwach mineralisierten Söhldewasser (konditioniert mit "Sorption 1") liegt die Aktivitätsabnahme nach einer Lagerzeit von 4 Wochen ohne Filtration bei S \simeq 75 % und mit Filtration (0,4 µm Ø) bei S \simeq 95 %. Im stark mineralisierten Hilswasser (konditioniert mit "Sorption 4") nimmt die Aktivität nach einer Lagerzeit von 4 Wochen ohne Filtration auf S \simeq 45 % und mit Filtration (0,4 µm Ø) auf S \simeq 90 % ab. Vgl. hierzu Abb. 3-1.

3.3.1.1.4. Ac-227

Aus den in Abb. 3-2 wiedergegebenen Konditionierungskurven von Ac-227 ist zu ersehen, daß die Aktivitätsabnahme S in dem mit dem Gestein "Sorption 4" konditionierten stark mineralisierten Hilswasser unter 10 % liegt. Im schwach mineralisierten Söhldewasser (konditioniert mit "Sorption 1") nimmt dagegen die Aktivität ohne Filtration um 70 % und mit Filtration (0,4 μ m Ø) auf über 90 % ab. Wahrscheinlich ist dieses Lagerungsverhalten darauf zurückzuführen, daß die Hydrolyseprodukte AcOH²⁺ und Ac(OH)⁺₂ im schwach mineralisierten Grundwasser an Fremdkolloiden und damit an Gefäßwänden stark adsorbiert werden.

 <u>Abb. 3-2</u> Lagerungsverhalten von Ac-227 in Wasserproben.
 (A) Schwach mineralisiertes Söhldewasser (konditioniert mit Gestein "Sorption 1")
 (B) Stark mineralisiertes Hilswasser (konditio3.3.1.1.5. Pb-210

Blei zeigt in dem mit der Gesteinsprobe "Sorption 4" konditionierten stark mineralisierten Hilswasser nur eine unter 10 % liegende Aktivitätsabnahme. Im schwach mineralisierten Söhldewasser (konditioniert mit dem Gestein "Sorption 1") nimmt jedoch sowohl in den unfiltrierten als auch filtrierten Proben die Aktivität bei einer Lagerzeit von rd. 4 Wochen um 95 % bis 98 % ab. Nach diesen Messungen scheint das Lagerverhalten der 210 Pb-Lösungen im schwach salinen Grundwasser von der Sorption der Pb $^{2+}$ - und PbOH⁺-Ionen sowie stabiler polymerer Hydrolyseprodukte, wie Pb $_{2}$ OH³⁺, Pb $_{4}$ (OH) $^{4+}_{4}$ etc. bestimmt zu werden (vgl. Abb. 3-3).

 <u>Abb. 3-3</u> Lagerungsverhalten von Pb-210 in Wasserproben.
 A Schwach mineralisiertes Söhldewasser (konditioniert mit Gestein "Sorption 1")
 O Stack einer bisit et en Wille einer (her bitting)

(B) Stark mineralisiertes Hilswasser (konditioniert mit Gestein "Sorption 4").

3.3.1.1.6. Se-75, Ni-63 und Mo

Im schwach mineralisierten Söhldewasser (konditioniert mit dem Gestein "Sorption 1") und im stark mineralisierten Hilswasser (konditioniert mit dem Gestein "Sorption 4") wird über eine Lagerzeit von 4 Wochen keine Abnahme der Aktivität bzw. Konzentration von Selenit oder Selenat, Ni-63 und Molybdän beobachtet. Dies gilt sowohl für unfiltrierte als auch filtrierte Proben.

3.3.1.1.7. Zusammenfassung

Tab. 3-4 stellt die mit der Lagerung bzw. Äquilibrierung der Radionuklidlösungen verbundene Aktivitätsabnahme in einer Übersicht zusammen. Auch auf die Ionen bzw. Hydrolyseprodukte, die möglicherweise bei der direkten Adsorption an den Gefäßwänden oder bei einer Pseudokolloidbildung beteiligt sind, wird hingewiesen. In diesem Zusammenhang darf nicht übersehen werden, daß diese Ionen bzw. Hydrolyseprodukte auch bei der Sorption bzw. Desorption an den Gesteinen eine wichtige Rolle spielen können.

<u>Tab. 3-4</u> Zusammenstellung der Ergebnisse der Lagerungsversuche im

- A) schwach mineralisierten Söhldewasser (konditioniert mit Gestein "Sorption 1")
- (B) stark mineralisierten Hilswasser (konditioniert mit Gestein "Sorption 4")

Nuklid	Aktiv (unfil	itätsab im S . fil.	unfil	S [%] B . fil.	Pseudo- kolloid- bildung	Ionenart bzw. Hydro- lyseprodukt
U-233	0	0	0	0	_	$U0_2^{2+}, U0_2^{0H^+}$
Ra-226	0	3-8	0	2	-	$Ra(aq)^{2_+}$ u.a.

Nuklid	Aktivi unfil.	tätsab im Sy) fil.	onahme s vstem unfil	s [%] B . fil.	Pseudo- kolloid- bildung	Ionenart bzw. Hydro- lyseprodukt
Th-228	75	95	45	90	-	$Th(OH)_{4}^{0},$ $Th_{2}(OH)_{2}^{6+},$
Ac-227	70	90	〈 10	〈 10	+	Th $0_2 \cdot x H_2 0$ Ac $^{3+}$, Ac $0H^{2+}$
Pb-210	95	98	〈 10	〈 10	+	u.a. PbOH ⁺ , Pb ₂ OH ³⁺
Se-75	0	0	0	0	-	$Se0_{-}^{2-}$, $Se0_{-}^{2-}$
Mo	0	0	0	0	-	MoO_A^{3}
Ni-63	0	0	0	0	-	$Ni(H_2^+ 0)_6^{2+},$ NiOH ⁺ , Ni(OH) ₃

3.3.1.2. Abhängigkeit der R_S/R_D -Werte von der Schüttelzeit

Messungen der Zeitabhängigkeit des Sorptions- und Desorptionsverhaltens ließen erkennen, daß die in die Versuche einbezogenen Radionuklide an den untersuchten Gesteins-Wasser-Systemen bereits nach ein bis zwei Wochen konstante R_S - und R_D -Werte annehmen. Aufgrund dieses Ergebnisses ist somit eine Schüttel- bzw. Kontaktzeit von 14 Tagen für die Sorptionsbestimmungen im allgemeinen ausreichend. Vgl. hierzu die Tabellen 3-5 bis 3-13.

<u>Tab. 3-5</u> Einfluß der Kontakt- bzw. Schüttelzeit auf R_S - und R_D -Werte von Uran(VI). Doppelbestimmungen. System: Gestein "Sorption 4"/ Hilswasser. V/M \simeq 1,1

Schüttelzeit [Wochen]	R _S [ml/g]	R _D [ml/g]
1	24,5	33,3 ⁺ 0,2
2	$27,1^{+}0,2$	$38,9^+0,01$
3	$29,5^+1,5$	$40, 6^+1, 9$
4	$32, 1^+0, 5$	$49,6^+1,2$

<u>Tab. 3-6</u> Einfluß der Kontakt- bzw. Schüttelzeit auf R_S - und R_D -Werte von Radium. Doppelbestimmungen. System: Gestein "Sorption 4"/Hilswasser. V/M \simeq 1,1

Schüttelzeit [Wochen]	R _S [ml/g]	R _D [ml/g]
1	$2,83^{+}_{-}0,04$	$3,23^{+}0,11$
2	$2,90 \overset{+}{-}0,04$	3,50 - 0,11
3	$3,06 \overset{+}{-} 0,02$	$3,80^+0,06$
4	$3,09^+0,11$	$3,80^{+}0,01$

<u>Tab. 3-7</u> Einfluß der Kontakt- bzw. Schüttelzeit auf R_S - und R_D -Werte von Thorium. Doppelbestimmungen. System: Gestein "Sorption 4"/Hilswasser. V/M \simeq 1,1

Schüttelzeit [Wochen]	R _S [ml/g]	R _D [ml/g]
1	$5,20 \cdot 10^{3}$	(5,89 ⁺ 0,36)·10 ⁵
2	$(9,06^+0,86) \cdot 10^3$	$(1,53^+0,24)\cdot 10^4$
3	$(6, 45 \stackrel{+}{-} 0, 22) \cdot 10^3$	$(1,33 - 0,51) \cdot 10^4$
4	$(9,88^+2,02) \cdot 10^3$	$(1,33 - 0,51) \cdot 10^4$

Tab. 3-8Einfluß der Kontakt- bzw. Schüttelzeit auf
 R_S - und R_D -Werte von Actinium. Doppelbe-
stimmungen. V/M \cong 1,1.
System: Gestein "Sorption 4"/Hilswasser

Schüttelzeit [Wochen]	R _S [ml/g]	R _D [ml/g]
1	$639^{+}246$	3,2·10 ³
2	3,2·10 ³	$(2,41^+1,14) \cdot 10^3$
3	$(2,3^+1,1) \cdot 10^3$	3,1·10 ³

<u>Tab. 3-9</u>	Einfluß	der Kontakt- bzw. Schüttelzeit auf
	R_{S}^{-} und	R _D -Werte von Blei. Doppelbestim-
	mungen.	$V/M \simeq 1, 1.$
	System:	Gestein "Sorption 4"/Hilswasser

Schüttelzeit [Wochen]	R _S [ml/g]	R _D [ml/g]
1	785	906 ⁺ 28
2	926 + 30	1,1•10 ³
3	1•10 ³	$(1, 38 - 0, 07) \cdot 10^3$
4	$(1,02^+0,07) \cdot 1$	$10^3(1,28^+0,11)\cdot 10^3$

Tab. 3-10Einfluß der Kontakt- bzw. Schüttelzeit
auf R_S - und R_D -Werte von Nickel.
Doppelbestimmungen. V/M \simeq 1,1.
System: Gestein "Sorption 4"/Hilswasser

Schüttelzeit [Wochen]	R _S [ml/g]	R _D [ml/g]
1	$41,4^{+}_{-2},3$	$50,2^+2,3$
2	$55,2^+0,3$	$70,2^+0,8$
3	60,1 ⁺ 0,8	$79,4^{+2},6$
4	$75,0^{+}2,7$	$90, 1^{+2}, 5$

Tab. 3-11Einfluß der Kontakt- bzw. Schüttelzeit auf
 R_S - und R_D -Werte von Selenit.
Doppelbestimmungen. V/M \cong 1,1.
System: Gestein "Sorption 4"/Hilswasser

Schüttelzeit [Wochen]	R _S [ml/g]	R _D [ml/g]
1	$10,5^+0,1$	$19,9^+0,1$
2	9,61-0,13	16, 2 - 0, 1
3	$8,51^+\!0,58$	15, 6-0, 1
4	$8,08^+0,04$	$14,0^+1,4$

Tab. 3-12Einfluß der Kontakt- bzw. Schüttelzeit auf
 R_S^- und R_D^- Werte von Selenat.
Doppelbestimmungen. V/M $\stackrel{\sim}{\sim}$ 1,1.
System: Gestein "Sorption 4"/Hilswasser

Schüttelzeit [Wochen]	R _S [ml/g]	R _D [ml/g]
1	$0,48 \overset{+}{-} 0,03$	$0,48 \overset{+}{-} 0,06$
2	0,50 - 0,08	$0,49^+0,16$
3	0,59 - 0,02	$0,89 \overset{+}{-} 0,13$
4	0,44 - 0,03	$0,38^+0,03$

System	Schüttelzeit [Wochen]	R _S [ml/g]	R _D [m1/g]
"Sorption 1"/	1	0,56	0,73 ⁺ 0,07
Söhldewasser	2	0,65 - 0,02	$1,36^+0,16$
	3	0,64	2,33
	4	$0,57 \pm 0,06$	$2,07 \pm 0,30$
"Sorption 3"/	1	0,43	4,40-0,71
Hilswasser	2	$0,63 \overset{+}{-} 0,10$	$0,79^+0,21$
	3	0,58	0,70
	4	0,75 - 0,11	1,01 - 0,21

Tab. 3-13Einfluß der Kontakt- bzw. Schüttelzeit auf
 R_S^- und R_D^- Werte von Molybdän. AAS-Auswer-
tung. Doppelbestimmungen. V/M \simeq 1,1

3.3.1.3. Einfluß des Volumen-Massen-Verhältnisses

Für den in Gl. 3-2 definierten Verteilungskoeffizienten q

$$q = \frac{m_s}{m_1}$$
(3-2)

folgt aus Gl. 2-12

$$q = R_{S} \cdot \frac{M}{V} \quad . \tag{3-3}$$

Da außerdem gilt

$$\frac{m_{\rm s}}{M} = R_{\rm S} \cdot \frac{m_{\rm l}}{V} \stackrel{\bullet}{=} R_{\rm S} \cdot c_{\rm Me} , \qquad (3-4)$$

sollte der Sorptions-R_S-Wert somit vom Massen-Volumenverhältnis M/V unabhängig sein, solange die Metallionen-Konzentration c_{Me} unter einem zur Sättigungs-Sorption führenden Wert liegt.

Im Gegensatz zur Theorie wurde jedoch sowohl bei der Sorption als auch bei der Desorption an einigen Nukliden ein deutlicher Einfluß des V/M- bzw. M/V-Verhältnisses auf die R_S- und R_D-Werte festgestellt [23]: Die R_S- und R_D-Werte werden mit abnehmendem V/M-Verhältnis kleiner. Insbesondere liegen unter den den geologischen Bedingungen entsprechenden V/M-Verhältnissen, d.h., bei V/M \langle 1 ml/g, die niedrigsten R_S- und R_D-Werte vor (zur Deutung s. [24]). Die in den Tabellen 3-14 bis 3-20 zusammengestellten Meßwerte informieren über den Einfluß des V/M-Verhältnisses auf die R_S- und R_D-Werte von U-233, Ra-226, Th-228, Ac-227, Pb-210, Ni-63 und Molybdän.

3.3.1.3.1. <u>U-233</u>

<u>Tab. 3-14</u> V/M-Einfluß beim U-233 auf R_S/R_D-Werte. System "Sorption 3"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml

V/M	R _S [ml/g]	R _D [ml/g]
7	82 + 2	77-8
2,33	$126^{+}_{-}11$	207-32
1,17	$114^{+}9$	188 - 74
0,78	118 + 5	$173^{+}74$
0,58	$117\frac{1}{2}6$	$190^{+}17$

Nach den Meßwerten wird die Sorption und Desorption des U-233 im untersuchten System "Sorption 3"/Hils-wasser vom V/M-Verhältnis (ab V/M $\langle 2,33 \rangle$ nicht beeinflußt.

3.3.1.3.2. <u>Ra-226</u>

<u>Tab. 3-15</u>	V/M-Einfluß beim Ra-226 auf R_S/R_D -Werte.
	System "Sorption 3"/Hilswasser. Doppel-
	bestimmungen. Versuchsdauer: 21 Tage.
	Lösungsvolumen: 7 ml

 V/M	R _S [ml/g]	R _D [ml/g]	
7	3,83 - 0,10	7,71-0,96	
2,33	3, 14 - 0, 04	4,17 - 0,11	
1,17	2,96	3,47 - 0,01	
0,78	$2,83 \pm 0,02$	$3,27^{+}0,09$	
0,58	$2,69^+0,01$	3,10	
,	. ,	·	

Die R_S/R_D -Werte des Ra-226 nehmen im System "Sorption 3"/Hilswasser mit abnehmendem V/M-Verhältnis gering-fügig ab.

3.3.1.3.3. <u>Th-228</u>

<u>Tab. 3-16</u> V/M-Einfluß beim Th-228 auf R_S/R_D-Werte. System "Sorption 3"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml

V/M	R _S [ml/g]	R _D [ml/g]	
7	$(1,22^+0,08) \cdot 10^4$	$(1,29^+0,08) \cdot 10^4$	

V/M	R _S [ml/g]	R _D [ml/g]
2,33 1,17 0,78 0,58	$(1, 17^{+}0, 18) \cdot 10^{4}$ $(1, 38^{+}0, 17) \cdot 10^{4}$ $1, 25 \cdot 10^{4}$ $(1, 10^{+}0, 21) \cdot 10^{4}$	$(1,26^{+}0,07) \cdot 10^{4}$ $1 \cdot 10^{4}$ $(7,2^{+}0,7) \cdot 10^{3}$ $(5,8^{+}0,6) \cdot 10^{3}$

Beim stark sorbierten Th-228 ist kein eindeutiger Einfluß des V/M-Verhältnisses auf $\rm R_S^-$ und $\rm R_D^-Werte feststellbar.$

- 3.3.1.3.4. Ac-227
- <u>Tab. 3-17</u> V/M-Einfluß beim Ac-227 auf R_S/R_D-Werte. System "Sorption 3"/Hilswasser. Doppelbestimmungen.Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml

V/M	R _S [m1/g]	R _D [ml/g]
7	$(1,09^+0,08) \cdot 10^3$	$(1,27^+0,26) \cdot 10^3$
2,33	4,72.10 ³	\rightarrow 10 ³
1,17	$3,54 \cdot 10^3$	> 10 ³
0,78	$(1,97^+0,06) \cdot 10^3$	> 10 ³
0,58	1,77 • 10 ³	\rightarrow 10 ³

Nach diesen Messungen ist das Sorptionsverhalten des Ac-227 im untersuchten System vom V/M-Verhältnis unabhängig.

3.3.1.3.5. <u>Pb-210</u>

<u>Tab. 3-18</u>	V/M-Einfluß beim Pb-210 auf R_S/R_D -Werte.
	System "Sorption 3"/Hilswasser. Doppelbe-
	stimmungen. Versuchsdauer: 21 Tage.
	Lösungsvolumen: 7 ml

V/M	R _S [ml/g]	R _D [ml/g]
72,33	375^+14 592^+26	458^+12 743 ⁺ 78
1,17	737 974 ⁺ 77	$(1,53^+0,6) \cdot 10^3$ $(1,05^+0,12) \cdot 10^3$
0,78	928 ⁺ 76	$(1,03=0,12) \cdot 10^{-10}$ $(1,13=0,11) \cdot 10^{-3}$

Im Gegensatz zu dem an GoHy Gesteins/Wasser-Systemen beobachteten V/M-Effekt deutet sich am Blei im System "Sorption 3"/Hilswasser eine Zunahme der R_S^- und R_D^- Werte mit abnehmendem V/M-Verhältnis an. Möglicherweise wirkt sich hier eine Verschiebung des pH-Werts aus.

3.3.1.3.6. <u>Molybdän</u>

<u>Tab. 3-19</u> V/M-Einfluß beim Molybdän auf R_S/R_D-Werte. System "Sorption 1"/Söhldewasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml

V/M	R _S	R _D
	[ml/g]	[ml/g]
7	$0,41^{+}0,07$	1,58 - 0,25
2,33	0,33	0,78
1,17	0,36	0,75
0,58	0,35 ⁺ 0,01	0,57±0,07

<u>Tab. 3-20</u> V/M-Einfluß beim Molybdän auf R_S/R_D-Werte. System "Sorption 5"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml

V/M	R _S [ml/g]	R _D [ml/g]
7	0,35+0,1	1,87 ⁺ 0,65
2,33	$0,64 \stackrel{+}{-} 0,23$	$1,71^+1,1$
1,17	0,54	0,86
0,78	$0,67 \pm 0,13$	1,15 - 0,13
0,58	0,71-0,06	1,33-0,01

Molybdän zeigt an den geprüften Gesteins/Wassersystemen keinen V/M-Effekt.

3.3.1.3.7. Zusammenfassung

Zusammenfassend ist festzuhalten, daß an den untersuchten Konrad-Gesteinen im Einklang mit den Gesteinen des Vorhabens Konrad I [13] die Auswirkungen des V/M-Einflusses auf R_S - und R_D -Werte geringer sind als an Gorleben Sandproben (vgl. [14]).

3.3.1.4. Abhängigkeit der R_S/R_D-Werte vom pH-Wert

Die pH-Abhängigkeit des Sorptions- und Desorptionsverhaltens der verschiedenen Radionuklide wurde am System Gestein "Sorption 4"/Hilswasser untersucht. Hierzu wurden jeweils 6 g Gestein mit 7 ml konditionierter Nuklid-Grundwasserlösung (V/M \simeq 1,1) 14 Tage zur Ableitung des R_S-Werts und 7 Tage zur Ableitung des R_D-Werts geschüttelt. Das Gestein war mit Wasser der bei den Versuchen vorgegebenen pH-Werte konditioniert worden.

3.3.1.4.1. <u>U-233</u>

Tab. 3-21 informiert über den pH-Einfluß der Sorption und Desorption von U-233.

<u>Tab. 3-21</u> pH-Abhängigkeit der R_S/R_D-Werte von U-233. System "Sorption 4"/Hilswasser. V/M ~ 1,1. Doppelbestimmungen

рH	c_A^s [ng/ml]	c_E^s [ng/ml]	R _S [ml/g]	R _D [ml/g]
5	288	4,6	$71,4^+1,5$	81,8 <mark>-</mark> 1,2
7	281	3, 4	$94,4^+\!2,7$	103 - 31

рН	c_A^S [ng/m1]	c_{E}^{s} [ng/ml]	R _S [ml/g]	R _D . [ml/g]
~7,5*	238	3 3	114^+9 81 5 ⁺ 3 4	$188^{+}_{-}50$ $147^{+}_{-}3$
Anm.:	*) Wasserpro	be	51,5-5,4	147-5

Die mit dem pH-Wert zunächst zunehmenden R_S/R_D -Werte scheinen ab pH > 7,5 wieder abzunehmen. Möglicherweise könnte dies darauf zurückzuführen sein, daß mit zunehmendem pH-Wert verschieden geladene Hydrolyseprodukte bzw. Ionen entstehen (vgl. Tab. 3-4).

3.3.1.4.2. <u>Ra-226</u>

Tab. 3-22 enthält die bei verschiedenen pH-Werten gemessenen $\rm R_S/R_D$ -Werte des Ra-226.

<u>Tab. 3–22</u>	pH-Abhängigkeit der R _S /R _D -Werte	von	Ra-226.
	System "Sorption 4"/Hilswasser.	V/M	~ 1,1.
	Doppelbestimmungen.		

pН	c_A^S [pg/ml]	c_E^S [pg/ml]	R _S [ml/g]	R _D [m1/g]
5	1365	393	$2,88^+_{-}0,10$	$3,45^+0,06$
7	1365	396	$2,85 \overset{+}{-} 0,01$	$3,36 \overset{+}{-}0,06$
9	1365	382	2,99 - 0,06	$3,49 \overset{+}{-} 0,06$

Nach diesen Ergebnissen bleiben pH-Änderungen im stark salinen Hilswasser ohne Einfluß auf R_S^- und R_D^- Werte von Radium. Wahrscheinlich ist dies darauf zurückzuführen, daß die durch Ra²⁺-Ionen austauschbaren H_s^+ -Ionen von Na⁺-Ionen des Hilswassers weitgehend verdrängt wurden.

3.3.1.4.3. <u>Th-228</u>

Die Abhängigkeit der R_S/R_D -Werte des Th-228 vom pH-Wert zeigt Tab. 3-23.

<u>Tab. 3-23</u> pH-Abhängigkeit der R_S/R_D -Werte von Th-228. System "Sorption 4"/Hilswasser. V/M $\stackrel{\sim}{\sim}$ 1,1. Doppelbestimmungen

рH	c_A^S [ipm/ml]	$\begin{array}{c} c_{E}^{S} \\ [\texttt{ipm/ml}] \end{array}$	R _S [ml/g]	R _D [ml/g]
5	110968	12,5	$(1,04^+0,06) \cdot 10^4$	$(1,74^+0,16) \cdot 10^4$
7	117178	13,5	$(1,03^+0,16) \cdot 10^4$	$(1,61^+0,13) \cdot 10^4$
9	111542	4, 5	$(2,94 \stackrel{+}{-} 0,46) \cdot 10^4$	$(2,71^+0,76) \cdot 10^4$

Die bei pH = 9 beobachteten größeren R_S - und R_D -Werte dürften auf die in diesem pH-Bereich zunehmend gebildeten polynuklearen Hydrolyseprodukte $(Th_2(OH)_2^{6+} u.a.)$ zurückgehen.

3.3.1.4.4. <u>Ac-227</u>

Aus den Meßwerten der Tab. 3-24 ist zu entnehmen, daß sich Änderungen des pH-Werts im Bereich von pH $\stackrel{\sim}{-}$ 5 - 7 im stark salinen Hilswasser auf die großen R_S- und R_D-Werte des Actiniums kaum auswirken.

<u>Tab. 3-24</u>	pH-Einfluß auf die R _S - und R _D -Werte von
	Ac-227. System "Sorption 4"/Hilswasser.
	V/M ≃ 1,1. Doppelbestimmungen

рH	R _S [ml/g]	R _D [ml/g]
5	$(4, 47 \stackrel{+}{-} 2, 11) \cdot 10^3$	$(3,98 + 2,81) \cdot 10^3$
7	$(3, 38^+1, 0) \cdot 10^3$	$(3, 38 - 0, 95) \cdot 10^3$
9	$(3,00^+1,41) \cdot 10^3$	$(5,00^+1,41) \cdot 10^3$

3.3.1.4.5. <u>Pb-210</u>

In Tab. 3-25 sind die bei verschiedenen pH-Werten gemessenen $\rm R_S-$ und $\rm R_D-Werte$ von Blei wiedergegeben.

Tab. 3-25 pH-Abhängigkeit der R_S/R_D -Werte von Pb-210. System "Sorption 4"/Hilswasser. V/M \simeq 1,1. Doppelbestimmungen

рH	$\begin{array}{c} c^{\mathbf{S}}_{\mathbf{A}} \\ [\texttt{pg/ml}] \end{array}$	cE [pg/ml]	R _S [ml/g]	R _D [m1/g]
5	230	0,315	852 ⁺ 17	$(1, 18^+0, 02) \cdot 10^3$
7	232	0,339	797 - 20	$(1,04^+0,01)\cdot 10^3$
9	126	0,246	$576^{+}24$	860 ⁺ 22

Möglicherweise geht die mit zunehmendem pH-Wert beobachtete Abnahme der R_S - und R_D -Werte auf ein pHabhängiges Zusammenwirken von Pb⁺⁺-, PbOH⁺- und PbCl⁺-Ionen beim Sorptions- und Desorptionsprozeß zurück.

3.3.1.4.6. <u>Ni-63</u>

Tab. 3-26 informiert über die pH-Abhängigkeit der Sorption und Desorption von Ni-63.

<u>Tab. 3-26</u> pH-Abhängigkeit der R_S/R_D-Werte von Ni-63. System "Sorption 4"/Hilswasser. V/M ≃ 1,1. Doppelbestimmungen

рH	c_A^s [ipm/ml]	c ^S E [ipm/ml]	R _S [ml/g]	R _D [ml/g]
5	76041	1040	84 ⁺ 0,7	93-4
7 9	76435 67521	1019 546	86-2 143-8	91-2 179-6

Die mit dem pH-Wert zunehmende Sorption dürfte auf eine mit der Abnahme der H_S^+ -Belegungsdichte verbundene Konzentrationszunahme der Hydrolyseprodukte (wie NiOH⁺) zurückzuführen sein.

3.3.1.4.7. Zusammenfassung

Den Messungen können bei einigen Nukliden mehr oder weniger ausgeprägte Änderungen der R_S - und R_D -Werte mit zunehmendem pH-Wert entnommen werden, die auf ein pH-abhängiges Zusammenwirken von unterschiedlichen Hydrolyseprodukten und Änderungen der H_S^+ -Belegungsdichte zurückgehen dürften.

3.3.1.5. Einfluß der Nuklidkonzentration

3.3.1.5.1. <u>Uran</u>

Die in Tab. 3-27 angeführten Meßwerte informieren über

- 60 -

den Einfluß der Urankonzentration (U-238 + U-233) auf die am System "Sorption 3"/Hilswasser gemessenen $\rm R_S^-$ und $\rm R_D^-Werte.$

<u>Tab. 3-27</u> Konzentrationsabhängigkeit der R_S/R_D -Werte von Uran (markiert mit U-233). System "Sorption 3"/Hilswasser. V/M \simeq 1,1. Doppelbestimmungen. T = 15° C.

Konzentration [mol/l]	c _A ^S [ng/ml]	233 c ^E [ng/m1]	R _S [ml/g]	R _D [ml/g]
$2 \cdot 10^{-7}$ 10^{-6} 10^{-5}	54 256 258	1,38 7,75 8,65	$42,8^{+}2,3$ 37,3^{+}0,1 33,6^{+}2,1	$51, 1^+1, 5$ $40, 7^+0, 08$ $36, 0^+1, 5$
10 ⁻⁴	237	10,9	23,9+2,0	24,1-2,0

Die Messungen deuten an, daß R_S- und R_D-Werte von Uran bereits ab einer Konzentration c_____ > 10^{-7} mol/l abnehmen.

3.3.1.5.2. Thorium

Aus Tab. 3-28 kann der Einfluß der Thoriumkonzentration (Th-228 + Th-232) auf die am System "Sorption 3"/Hils-wasser gemessenen R_S - und R_D -Werte ersehen werden.

Tab. 3-28 Konzentrationsabhängigkeit der R_S/R_D-Werte von Thorium (markiert mit Th-228). System "Sorption 3"/Hilswasser. V/M ~ 1,1. Doppelbestimmungen.

	Th-228				
Konzen- tration [mol/l]	c^{S}_{A} [ipm/ml]	c_A^E [ipm/ml]	R _S [ml/g]	R _D [ml/g]	
$4 \cdot 10^{-11}$	106935	38	$(3, 28^+0, 12) \cdot 10^3$	$5,67 \cdot 10^{3}$	
10 ⁻⁶	124906	51	$(2,86^+0,08) \cdot 10^3$	$(5,25^+1,53) \cdot 10^3$	
10 ⁻⁵	126357	52	$(2,84^+0,15) \cdot 10^3$	$(4,83 - 0,11) \cdot 10^3$	
10^{-4}	125916	52	2,82.10 ³	$(2,98^+0,35) \cdot 10^3$	

Nach den Messungen ist der Übergang zu höheren Th-Konzentrationen ($c_{Th} > 10^{-10}$) nur mit einer geringen Abnahme der R_S/R_D -Werte verbunden, da wahrscheinlich bereits bei dieser Konzentration die für die Sorption entscheidenden Hydrolyseprodukte entstehen.

3.3.1.5.3. <u>Blei</u>

Tab. 3-29 zeigt den Einfluß der Bleikonzentration (Pb-210 + Blei) auf dessen R_S^- und R_D^- Werte im System "Sorption 3"/Hilswasser.

<u>Tab. 3-29</u>	Konzentrationsabhängigkeit der R _S /R _D -Werte		
	von Blei (markiert mit Pb-210). System		
	"Sorption 3"/Hilswasser. V/M = 1,1.		
	Doppelbestimmungen. T = 15 ⁰ C		

Pb-210							
Konzentration [mol/1]	c^{S}_{A} [pg/ml]	c^{E}_{A} [pg/ml]	R _S [ml/g]	R _D [m1/g]			
	<u></u>						
$7 \cdot 10^{-10}$	181,6	1271, 2	335 - 15	$369^{+}_{-}9$			
10 ⁻⁸	189, 3	1325, 1	$263 \overset{+}{-}2, 2$	$313^{+}12$			
10 ⁻⁷	189,1	1323,7	260 - 10	306 - 9			
10 ⁻⁶	188, 4	1318,8	$245 \dot{-} 3,9$	279 - 15			

Innerhalb der Meßfehler bleiben die $\rm R_S^-$ und $\rm R_D^-Werte$ von Blei im untersuchten Konzentrationsbereich weitgehend konstant.

3.3.1.5.4. <u>Nickel</u>

Aus den Meßwerten der Tab. 3-30 kann der Einfluß der Nickelkonzentration (N-63 + Nickel) auf die am System "Sorption 3"/Hilswasser gemessenen R_S^- und R_D^- Werte abgelesen werden.
Tab. 3-30 Konzentrationsabhängigkeit der R_S/R_D -Werte von Nickel (markiert mit Ni-63). System "Sorption 3"/Hilswasser. V/M \approx 1,1. Doppelbestimmungen. T = 15° C

Ni-63					
c^{S}_{A} [ipm/ml]	c^{E}_{A} [ipm/ml]	R _S [ml/g]	R _D [ml/g]		
147055	8175	$19,8^+_{-}0,8$	$22,6^+-0,8$		
147240	10434	15, 3 - 0, 3	$17,2^{+}0,3$		
147476	12782	$12, 3 \div 0, 2$	$14, 4 \stackrel{+}{-} 0, 1$		
147519	22933	6,34	8,6-0,08		
	Ni c ^S _A [ipm/ml] 147055 147240 147476 147519	Ni-63 c _A ^S c _A ^E [ipm/ml] [ipm/ml] 147055 8175 147240 10434 147476 12782 147519 22933	$\begin{array}{c ccccc} & \text{Ni-63} & & \text{R}_{\text{S}} & \\ & c_{\text{A}}^{\text{S}} & c_{\text{A}}^{\text{E}} & & \text{R}_{\text{S}} \\ & [\text{ipm/ml}] & [\text{ipm/ml}] & & [\text{ml/g}] \end{array}$ $\begin{array}{c} 147055 & 8175 & 19,8^{\pm}0,8 \\ 147240 & 10434 & 15,3^{\pm}0,3 \\ 147476 & 12782 & 12,3^{\pm}0,2 \\ 147519 & 22933 & 6,34 \end{array}$		

Nach den Messungen nehmen die R_S- und R_D-Werte von Nickel etwa ab $\rm c_{Ni}~>~10^{-4}~mol/l~ab.$

3.3.1.5.5. Zusammenfassung

Zusammenfassend ist festzustellen, daß die $\rm R_S^-$ und $\rm R_D^-$ Werte von Uran ab c $>10^{-7}$ mol/l und von Nickel ab c $>10^{-4}$ mol/l abnehmen. Die $\rm R_S/R_D^-$ Werte von Blei sind zwischen 7 \cdot 10⁻¹⁰ und 1 \cdot 10⁻⁶ mol/l und die Werte von Thorium zwischen 4 \cdot 10⁻¹¹ und 1 \cdot 10⁻⁴ mol/l konstant (vgl. hierzu Abschnitt 3.3.3.).

3.3.1.6. Einfluß der NaCl-Konzentration

3.3.1.6.1. Uran

Das Sorptions- und Desorptionsverhalten von Uran wird durch NaCl deutlich beeinflußt, wie die in Tab. 3-31 zusammengestellten Meßwerte zeigen: Die R_S - und R_D -Werte nehmen eventuell aufgrund von Verdrängungseffekten oder Bildung von Chlorokomplexen ab.

NaCl-Konzen- tration [mol/1]	R _S [ml/g]	R _D [ml/g]
_	23,2	$24,8^{+}0,2$
0,1	$16,9^+0,3$	$16,9^+0,4$
0,5	10, 4 - 0, 1	$10, 3^+0, 6$
1,0	6,73	$6,03^+0,9$
4	3,59	3,84
1,0 4	6,73 3,59	$6,03^{+}0,9$ 3,84

<u>Tab. 3-31</u> Einfluß von NaCl auf R_S - und R_D -Werte von Uran-233 am System Sorption 1/Söhldewasser. Doppelbestimmungen. V/M \simeq 1.

3.3.1.6.2. Radium

Beim Radium nehmen die R_S - und R_D -Werte mit zunehmendem NaCl-Gehalt der Wasserprobe ebenfalls merklich ab (vgl. Tab. 3-32). Dieses Ergebnis deutet an, daß bei der Sorption und Desorption der Ra⁺⁺-Ionen im untersuchten Wasser/Gesteins-System ein Ionenaustausch eine Rolle spielen kann.

Tab. 3-32Einfluß von NaCl auf R_S - und R_D -Werte von
Radium-226 am System Sorption 1/Söhldewasser.
Doppelbestimmungen. V/M \simeq 1.

NaCl-Konzen- tration [mol/l]	R _S [ml/g]	R _D [ml/g]
-	$113^{+}0,6$	$127 \frac{+}{-}3$
0,1	30,2 ⁺ 1,1	30,0 $\frac{+}{-}0$,6
0,5	7,83 ⁺ 0,10	9,21 $\frac{+}{-}0$,61

NaCl-Konzen- tration [mol/l]	R _S [ml/g]	R _D [ml/g]
1,0	$4,42^{+}0,11$	$5,85 \pm 0,11$
4,0	$1,94^{+}0,30$	2,88 \pm 0,76

3.3.1.6.3. Thorium

Auch beim Thorium wird am untersuchten Wasser/Gesteins-System eine geringe Abnahme der R_S - und R_D -Werte mit zunehmender NaCl-Konzentration beobachtet, wie die Meßwerte der Tab. 3-33 zeigen.

Tab. 3-33Einfluß von NaCl auf R_S^- und R_D^- Werte von
Thorium-228 am System Sorption 1/Söhldewasser.
Doppelbestimmungen. V/M \simeq 1

NaCl-Konzen- tration [mol/l]	R _S [ml/g]	R _D [ml/g]
-	547	679
0,1	465	590 - 9
0,5	295 ± 5	352^{+}_{-7}
1,0	227-7	268 - 9
4,0	$157^{+}_{-}6$	200-1

3.3.1.6.4. Actinium

Am Actinium scheint sich ein zunehmender NaCl-Gehalt der Grundwasserlösung nur bei Konzentrationen von 0,1 - 0,5 mol/l auf das Sorptionsverhalten auszuwirken (vgl. Tab. 3-34).

<u>Tab. 3-34</u> Einfluß von NaCl auf R_S - und R_D -Werte von Actinium am System Sorption 1/Söhldewasser. Doppelbestimmungen. V/M \approx 1

NaCl-Konzen- tration [mol/l]	R _S [ml/g]	R _D [ml/g]
_	$363^{+}_{-}119$	$651^{+}_{-}132$
0,1	187 - 22	437^+168
0,5	187 - 22	324 - 66
1,0	213	371
4, 0	326 - 66	278

3.3.1.6.5. <u>Blei</u>

Die R_{S}^{-} und R_{D}^{-} Werte von Blei nehmen ab einer NaCl-Konzentration von 4 mol/l ab (vgl. Tab. 3-35). Diese Abnahme der R_{S}^{-}/R_{D}^{-} Werte könnte eventuell auf die Bildung von PbCl₃⁻- oder PbCl⁺-Komplexen zurückgehen, die am Gestein schwächer als Pb(aq)²⁺ oder PbOH⁺ sorbiert werden.

NaCl-Konzen- tration [mol/1]	R _S [m1/g]	R _D [ml/g]
_	$(2, 1^+0, 1) \cdot 10^3$	$(5,7^+1,0) \cdot 10^3$
0,1	$3,27 \cdot 10^{3}$	$6,55 \cdot 10^{3}$
0,5	6,55·10 ³	$6,55 \cdot 10^{3}$
1,0	$(4,9^+\!\!2,3) \cdot 10^3$	$(4,9^+2,3) \cdot 10^3$
4,0	166 - 6	220-28

<u>Tab. 3-35</u> Einfluß von NaCl auf R_S - und R_D -Werte von Blei-210 am System Sorption 1/Söhldewasser. Doppelbestimmungen. V/M \simeq 1

3.3.1.6.6. <u>Nickel</u>

NaCl bewirkt am Nickel nur eine geringe Abnahme der R_{S} - und R_{D} -Werte (vgl. Tab. 3-36).

<u>Tab. 3-36</u> Einfluß von NaCl auf R_S - und R_D -Werte von Nickel-63 am System Sorption 1/Söhldewasser. Doppelbestimmungen. V/M \simeq 1

NaCl-Konzen- tration [mol/l]	R _S [ml/g]	R _D [ml/g]
- 0,1 0,5 1,0 4,0	$22,27^{+}0,01$ $18,39^{+}0,60$ $14,80^{+}0,01$ $14,12^{+}0,02$ $11,93^{+}0,13$	$53, 43^{+}1, 97$ $42, 01^{+}1, 15$ $37, 01^{+}0, 17$ $34, 63^{+}1, 18$ $29, 23^{+}0, 02$

3.3.1.6.7. Zusammenfassung

Zusammenfassend kann den Ergebnissen entnommen werden, daß die R_S- und R_D-Werte von Uran, Radium, Thorium, Blei und Nickel mit zunehmendem NaCl-Gehalt der Grundwasserlösungen abnehmen. Mit ähnlichen Auswirkungen ist auch beim Übergang von schwach salinaren zu stark salinaren Grundwasserlösungen zu rechnen. Wahrscheinlich wirken Verdrängungseffekte und Komplexbildungsvorgänge beim Zustandekommen des NaCl-Effekts zusammen.

3.3.1.7. Einfluß eines NaHCO3-Zusatzes

3.3.1.7.1. Uran, Thorium, Blei und Nickel

Messungen über den Einfluß eines zunehmenden NaHCO₃-Gehalts der Grundwasserlösungen ließen am Uran, Thorium, Blei und Nickel eine Abnahme der R_S- und R_D-Werte erkennen (vgl. hierzu die Tab. 3-37 bis 3-40). Wahrscheinlich dürften diese Änderungen auf die Bildung schwach sorbierter Karbonatkomplexe (wie z.B. $UO_2(CO_3)_2^{2-}$) bzw. auf Verdrängungseffekte zurückgehen.

<u>Tab. 3-37</u>	Einfluß von NaHCO ₃ auf R_S^- und R_D^- Werte von
	Uran-233 am System Sorption 1/Söhldewasser.
	V/M ≃ 1,1. Doppelbestimmungen

 NaHCO ₃ [mol/l]	R _S [ml/g]	R _D [ml/g]
_	23,2	$24,8^{+}_{-}0,2$
0,01	$19, 1^+\!$	$17, 6^+1, 5$
0,1	$0,50\pm0,11$	$0,30^+0,15$
0,5	$0,22^{\pm}0,01$	nicht meßbar
1,0	0,22±0,01	nicht meßbar

Tab. 3-38Einfluß von NaHCO3 auf RS- und RD-Werte
von Thorium-228 am System Sorption 1/
Söhldewasser. V/M \simeq 1,1. Doppelbestim-
mungen.

NaHCO ₃	R _S	R _D
[mol/l]	[ml/g]	[ml/g]
-	547	679 707 ⁺ 14
0,01	489-20 55,2 ⁺ 1,1	$137 \div 1$
0,5	38,3-1,5	174-3
1,0	23,1+1,7	55,4 \pm 0,9

<u>Tab. 3-39</u> Einfluß von NaHCO₃ auf R_S - und R_D -Werte von Blei-210 am System Sorption 1/Söhldewasser. V/M \simeq 1,1. Doppelbestimmungen

NaHC [mol	0 ₃ /1]	R _S [ml/g]	R _D [ml/g]
_	(2	$,1^{+}0,1) \cdot 10^{3}$	$(5,7^+1,0) \cdot 10^3$
0,0	1 (2	$,7^{+}0,7) \cdot 10^{3}$	$6,55 \cdot 10^3$
0,1	(1	$,3^{+}0,1) \cdot 10^{3}$	6,55·10 ³
0,5		$624^{+}42$	1,09·10 ³
1,0		$317^{+}64$	$435^{+}40$

von Nickel-63 am System Sorption 1/ Söhldewasser. V/M ≃ 1,1. Doppelbestim- mungen			
NaHCO ₃ [mol/l]	R _S [ml/g]	R _D [ml/g]	
_	22,27 ⁺ 0,01	$53,43^+_{-1},97$	
0,01	$24,06\pm0,52$	79,7 - 4,2	
0,1	21,77=0,63 18,38=0,57	44,9 + 1,0	
1	$14,62^+0,21$	$27,21^{+}0,23$	

Finfluß von NaHCO auf P und P Wanta T - 1-7 40

3.3.1.7.2. Radium und Actinium

Wie die Ergebnisse der Tab. 3-41 und 3-42 zeigen, werden die ${\rm R}_{\rm S}$ - und ${\rm R}_{\rm D}$ -Werte von Radium und Actinium durch NaHCO₃ nicht beeinflußt.

Einfluß von NaHCO $_3$ auf R $_{
m S}$ - und R $_{
m D}$ -Werte von <u>Tab. 3-41</u> Radium-226 am System Sorption 1/Söhldewasser. $V/M \simeq 1, 1.$ Doppelbestimmungen

NaHCO ₃	R _S	R _D
[mol/1]	[ml/g]	[ml/g]
- 0,01 0,1 0,5 1,0	$113^{+}0,6$ $168^{+}2$ $258^{+}12$ 209 $134^{+}10$	127 + 3 $185 + 3$ $257 + 33$ $205 + 11$ $130 + 8$

<u>Tab. 3-42</u> Einfluß von NaHCO₃ auf R_S - und R_D -Werte von Actinium-227 am System Sorption 1/ Söhldewasser. V/M \simeq 1,1. Doppelbestimmungen

NaHCO ₃	R _S	R _D
[mol/1]	[ml/g]	[ml/g]
0,01 0,1 0,5 1,0	$368^{+}119$ $410^{+}53$ 373 $251^{+}39$ $179^{+}10$	$651^{+}132$ 745 $595^{+}211$ $464^{+}9$ $407^{+}52$

3.3.1.8. Einfluß des Komplexbildners EDTA

3.3.1.8.1. Radium

Die in [13] besprochenen Ergebnisse ließen erkennen, daß Komplexbildner, wie Äthylendiamintetraacetat (EDTA), das Sorptions- und Desorptionsverhalten von Radium nicht beeinflussen.

3.3.1.8.2. Uran

Die in Tab. 3-43 wiedergegebenen Meßwerte zeigen, daß die R_S^- und R_D^- Werte von Uran ab einer EDTA-Konzentration von 10⁻³ mol/l etwas kleiner werden.

EDTA	R _S	R _D
[mol/l]	[ml/g]	[ml/g]
10^{-4} 10^{-3} 10^{-2}	$35,3^{+}0,4$ 32,2 $19,6^{+}0,2$ $16,1^{+}0,4$	$38,4^{+}0,01$ $34,0^{+}0,4$ $20,2^{+}0,4$ $21,2^{+}0,7$

Tab. 3-43 EDTA-Einfluß auf R_S - und R_D -Werte von U-233. V/M \simeq 1. System Sorption 1/Söhldewasser. Doppelbestimmungen

3.3.1.8.3. Thorium

Über die Auswirkungen eines EDTA-Zusatzes auf das Sorptions- und Desorptionsverhalten von Th-228 informieren die Meßwerte der Tab. 3-44.

EDTA	R _S	R _D
[mol/l]	[ml/g]	[ml/g]
10^{-4} 10^{-3} 10^{-2}	793 578 326 165^+4	$(1,06^+0,04) \cdot 10^3$ 878^+42 471 183

Aus den Ergebnissen ist zu ersehen, daß die R_S^- und R_D^- Werte von Thorium im Einklang mit der Neigung des Th(IV) zur Bildung stabiler EDTA-Komplexe ab einer EDTA-Konzentration von 10⁻⁴ mol/l abnehmen.

3.3.1.8.4. Actinium

Die in Tab. 3-45 zusammengestellten R_S - und R_D -Werte bestätigen frühere Ergebnisse [13], die eine Abnahme der R_S/R_D -Werte von Ac-227 mit zunehmender EDTA-Kon-zentration (ab 10⁻⁴ mol/1) ergaben.

V/M ≃ 1. Doppelbe	System Sorptionstimmungen	on 1/Söhldewasser.
EDTA [mol/l]	R _S [ml/g]	R _D [ml/g]
-10^{-5} 10^{-4} 10^{-3}	$1,3 \cdot 10^{3}$ $558^{+}158$ $419^{+}84$ $192^{+}54$	$\begin{array}{r} & & \\ & & \\ & & \\ (1,0^{+}0,4) \cdot 10^{3} \\ & & \\$

<u>Tab. 3-45</u>	EDTA-Einfluß auf R_{S} - und R_{D} -Werte von Ac-227.
	V/M - 1. System Sorption 1/Söhldewasser.
	Doppelbestimmungen

3.3.1.8.5. <u>Blei</u>

Nach den Ergebnissen der Tab. 3-46 kann Pb(II) durch EDTA (schon ab c $\langle 10^{-5} \text{ mol/l} \rangle$ sehr beweglich werden.

EDTA-Einfluß auf $\rm R_{S}^{-}$ und $\rm R_{D}^{-Werte}$ von Tab. 3-46 Pb-210. V/M ~ 1. System Sorption 1/Söhldewasser. Doppelbestimmungen

EDTA	R _S	R _D
[mol/l]	[ml/g]	[ml/g]
10^{-5} 10^{-4} 10^{-3}	$4,4\cdot 10^{3}$ 12,17 ⁺ 0,14 1,58 0,94 ⁺ 0,02	$(1,4^+1) \cdot 10^3$ 12,23 ⁺ 0,16 2,23 ⁺ 0,1 1,54 ⁺ 0,1

Der Einfluß von EDTA auf das Sorptions- und Desorptionsverhalten von Ni-63 kann den Meßwerten der Tab. 3-47 entnommen werden.

Tab. 3-47 EDTA-Einfluß auf R_S - und R_D -Werte von Ni-63. V/M \simeq 1,1. System Sorption 1/Söhldewasser. Doppelbestimmungen

EDTA	R _S	R _D
[mol/l]	[ml/g]	[ml/g]
10^{-5} 10^{-4} 10^{-3}	$44,9^{+}0,524,5^{+}0,25,15^{+}0,121,47^{+}0,19$	$91,9^{+}1,3$ $40,1^{+}0,5$ $8,0^{+}0,03$ $2,72^{+}0,12$

Nach diesen Ergebnissen muß für Nickel mit einer starken Abnahme der $\rm R_S^-$ und $\rm R_D^-Werte$ durch EDTA gerechnet werden.

3.3.1.8.7. Zusammenfassung

Zusammenfassend ist festzustellen, daß EDTA eine Abnahme der R_S - und R_D -Werte von Blei, Nickel, Actinium, Thorium und Uran bewirkt. Beim Blei und Nickel sind die Einflüsse eines EDTA-Einflusses bereits ab einer EDTA-Konzentration von 10⁻⁵ mol/l zu erkennen.

3.3.1.9. Einfluß von Detergentien

Im Nachtrag zum Bericht [13] informieren die Meßwerte der Tab. 3-48 über den Einfluß des als Modellsubstanz gewählten Tensids 1-Alkylbenzolsulfonat (LAS/Maranilsäure) auf die R_S/R_D -Werte von Thorium.

<u>Tab. 3-48</u>	Maranilsäure-Einfluß auf die R _S - und R _D -
	Werte von Th-228.
	Gestein u/m Cenoman. Doppelbestimmungen.
	M = 6 g. V = 7 ml. Maranilgehalt: 1 mg/ml

Wasser		Maranil- säure- Zusatz	R _S [ml/g]	R _D [ml/g]
Söhlde		_	\rightarrow 10 ³	× 10 ³
		+	$(1,78 \stackrel{+}{-} 0,04) \cdot 10^3$	$(2,05^+0,06) \cdot 10^3$
Strecke	670	_	$(2, 1 - 0, 1) \cdot 10^3$	$(2,5-0,1) \cdot 10^3$
		+	$(1,67^+0,52) \cdot 10^3$	$(2,98 - 0,41) \cdot 10^3$

Nach diesen Messungen werden die ${\rm R}_{\rm S}^-$ und ${\rm R}_{\rm D}^-$ Werte von Thorium durch Maranilsäure nicht beeinflußt.

3.3.1.10. Temperatureinfluß

Im Vorhaben Konrad I [13] durchgeführte Messungen der Temperaturabhängigkeit der Nuklide U-233, Ra-226, Ac-227, Pb-210 und Ni-63 ließen u.a. erkennen,

- daß am System Erzkalke/Wasser Strecke 670 (stark mineralisiert) die R_S- und R_D-Werte mit zunehmender Temperatur mehr oder weniger stark zunehmen
- daß am System Rhotomagensis Pläner/Söhldewasser,
 d.h. im schwach mineralisiertem Grundwasser, die
 R_S- und R_D-Werte von Ni-63 mit zunehmender Temperatur abnehmen.

Zur Klärung einer eventuellen kinetischen Ursache dieses Temperatureffekts schien es notwendig, den zeitlichen Verlauf der R_S - und R_D -Werte bei verschiedenen Temperaturen zu messen. Die mit Ni-63 am System Fladentonstein/Wasser Strecke 670 erhaltenen Ergebnisse, d.h., die bei verschiedenen Temperaturen gemessenen Auftragungen von R_S gegen die Schüttelzeit, sind in Abb. 3-4 dargestellt. Die entsprechenden Auftragungen des Desorptionskoeffizienten R_D ergeben den gleichen Zusammenhang.

<u>Abb. 3-4</u> Einfluß der Schüttelzeit auf den Temperaturverlauf des Sorptionskoeffizienten von Ni-63 im System Fladentonstein/Wasser Strecke 670. $V/M \cong 1,1.$

Die Messungen zeigen somit, daß die Zunahme der Sorptionsund Desorptionskoeffizienten mit der Temperatur von der Schüttelzeit unabhängig ist. Eine kinetische Deutung des Temperatureffekts scheidet deshalb aus. Es muß jedoch offen bleiben, welcher endotherme Prozeß für die Temperatur-

3.3.2. Löslichkeit

3.3.2.1. Vorbemerkung

In Verbindung mit den maximal erwarteten Massenkonzentrationen und den von Gesteinsproben sorbierbaren Sättigungskonzentrationen kommt der Löslichkeit der untersuchten Radioelemente große Bedeutung zu. Durch zum Teil fehlende bzw. ungenaue Angaben sind bei einigen Nukliden die Aussagen über deren Löslichkeit jedoch noch unsicher. Diese Einschränkung sollte bei den im folgenden wiedergegebenen Daten berücksichtigt werden.

3.3.2.2. Daten

3.3.2.2.1. <u>Uran</u>

Für Uran kann nach ALLARD [25] als löslichkeitslimitierende Phase $UO_2(OH)_2$ (s) angenommen werden. Mit dem für pH = 6 - 7 abgeschätzten Löslichkeitsprodukt pK_L $\stackrel{\sim}{=} 21$ folgt deshalb für die maximal als $UO_2(OH)_2^0$ gelöste Urankonzentration ein Wert von etwa 10^{-5} mol/l.

3.3.2.2.2. Thorium

Für Thorium kann nach SCHWEINGRUBER [26] als löslichkeitslimitierende Phase ThO_2 (s) und als wichtigste gelöste Th-Spezies $\text{Th(OH)}_4^{\text{O}}$ angenommen werden. Die löslichkeitsbestimmende Reaktion

$$ThO_{2}(s) + 2 H_{2}0 \implies Th(OH)_{4}^{0}$$
(3-5)

ist dabei unabhängig vom pH-Wert. Für die Bildung von $Th(OH)_4^0$ gilt jedoch trotz eines komplizierten Reaktions-

verlaufs

$$Th^{4+} + 4 OH^{-} \longrightarrow Th(OH)_{4}^{0}$$
, (3-6)

so daß mit dem von ALLARD [25] angegebenen Löslichkeitsprodukt pK_L > 47 Abschätzungen der maximal gelösten Th-Konzentrationen mittels Gleichung 3-7 möglich werden.

$$\log c_{\text{Th}}^{4+} = 4 (14 - pH) - pK_{\text{L}}$$
 (3-7)

Beispielsweise folgt nach Gleichung 3-7 bei pH = 3 eine maximal gelöste Th-Konzentration von c $\simeq 1\cdot 10^{-3}$ mol/l und bei pH = 4,5 c $\simeq 1\cdot 10^{-9}$ mol/l, so daß beispielsweise die mit Erhöhung des pH-Werts beobachtete sprunghafte Zunahme der R_S-Werte in [15] verständlich wird. Eine Löslichkeit von 5·10⁻⁷ mol/l kann als oberer Grenzwert diskutiert werden.

3.3.2.2.3. <u>Blei</u>

Beim Blei dürfte die mit $Pb(OH)_2^0$ im Gleichgewicht stehende löslichkeitslimitierende Phase PbO (s) diskutierbar sein. Da für das Löslichkeitsprodukt des Hydroxids ein Wert von $pK_L = 15,6$ diskutiert wird, folgt für die vom pH-Wert abhängige gelöste Blei-Konzentration

$$\log c_{Pb}^{2+} = 2 (14 - pH) - 15,6$$
. (3-8)

In Abb. 3-5 ist dieser Zusammenhang wiedergegeben.

<u>Abb. 3-5</u> Diagramm zur $Pb(OH)_2^{O}$ -Bildung und Hydroxokomplexbildung (mit $pK_L = 15,6$).

Man erkennt aus dem Diagramm, daß die bei den Batchversuchen eingesetzte 210 Pb-Konzentration von c $\langle 10^{-10}$ mol/l bei pH = 6-8 zur Bildung von Pb(OH) ${}_{2}^{0}$ nicht ausreicht. Beim Sorptionsprozeß dürfte somit nicht die Pb(OH) ${}_{2}^{0}$ -Spezies eine Rolle spielen. Hydrolyseprodukte, wie PbOH⁺, Pb(OH) ${}^{3+}$ usw., dürften entscheidend sein. Da mit zunehmendem pH-Wert eine Hydroxokomplexbildung beim Blei möglich ist,

$$Pb(OH)_{2}^{O} + 2 H_{2}O \implies Pb(OH)_{3} + H_{3}O^{+}, (3-9)$$

für die die Gleichgewichtskonstante $pK_s \approx 15,7$ gilt, wurden die bei gegebenen pH-Werten eingestellten Komplexkonzentrationen in das Diagramm mit eingetragen. Zur Berechnung wurde dabei Gleichung 3-10 herangezogen.

$$\log c_{Pb(OH)_{3}} = pH - pK_{s}$$
 (3-10)

3.3.2.2.4. Actinium

Nach dem für $Ac(OH)_3$ in [27] angegebenen Löslichkeitsprodukt L = $5,2 \cdot 10^{-19}$ [mol⁴/1⁴] folgt nach Gl. 3-11 und 3-12

$$L = [Ac^{3+}] [OH^{-}]^{3} = 9 \cdot C^{4}$$
 (3-11)

$$[Ac^{3+}] \simeq C \text{ und } C = \sqrt[4]{L/9}$$
 (3-12)

eine Löslichkeit von $[Ac^{3+}] = 1,3 \cdot 10^{-5}$ mol/l. Unter Berücksichtigung der pH-Abhängigkeit wird das in Abb. 3-6 wiedergegebene Löslichkeitsdiagramm mittels Gl. 3-13 erhalten:

$$\log c_{AC}^{3+} = 3 (14 - pH) - 18,49 \qquad (3-13)$$

<u>Abb. 3-6</u> Diagramm zur $Ac(OH)_3$ -Bildung (mit $pK_L = 18,49$).

Das Löslichkeitsdiagramm zeigt, daß analog zum Blei die bei den Versuchen eingesetzte ²²⁷Ac-Konzentration von $C \approx 10^{-10}$ mol/l zur Bildung von Ac(OH)₃ nicht ausreicht. Bei den Sorptionsprozessen dürften somit Hydrolyseprodukte, wie AcOH²⁺ oder Ac(OH)₂⁺, an Stelle von Ac(OH)₃ die entscheidende Rolle spielen.

3.3.2.2.5. <u>Nickel</u>

Für Ni(OH)₂ wird ein Löslichkeitsprodukt von L = $1,5 \cdot 10^{-14}$ (pK_L = 13,8) diskutiert. Die bei bestimmten pH-Werten eingestellten Löslichkeiten können somit nach Gl. 3-14 berechnet werden:

$$\log c_{N_1}^2 = 2 (14 - pH) - 13,8$$
 (3-14)

Beispielsweise folgt für pH = 8 eine Löslichkeit von $c_{Ni}^{2+} = 1,58 \cdot 10^{-2} \text{ mol/l.}$ Bei der eingesetzten Nickelkonzentration von c $\approx 10^{-6} - 10^{-7} \text{ mol/l}$ bedeutet dies, daß Ni-63 nicht in Form von Ni(OH)₂ sondern in Form von Hydrolyseprodukten, wie z.B. NiOH⁺, sorbiert werden dürfte. Außerdem liegt die für Nickel diskutierte Massenkonzentration (6,5 $\cdot 10^{-7} \text{ mol/l}$) nach Gl. 3-15

$$pH = \frac{2 \cdot 14 - 13,8 - \log (6,5 \cdot 10^{-7})}{2}$$
(3-15)

bis pH = 10 unter der Löslichkeitsgrenze.

3.3.2.2.6. Radium

Für Radium dürfte in den vorliegenden Wasserproben nach [28] eine Löslichkeit von etwa 1 x 10^{-7} mol/l anzunehmen sein.

3.3.3.1. Grundlagen

Im Fall der Anwendbarkeit des Langmuir-Konzepts auf das Sorptionsverhalten von Nukliden in Sediment/Wasser-Systemen sollte erwartet werden, daß Auftragungen der Sorptionskonzentrationen c_{ad} [mol/g] gegen die Gleichgewichtskonzentrationen c_{L} [mol/ml] einen der Isothermengleichung (Gl. 3-16) entsprechenden Verlauf zeigen.

$$c_{ad} = \frac{k_1 \cdot b_{max} \cdot c_L}{1 + k_1 \cdot c_L}$$
(3-16)

In Gl. 3-16 entsprechen:

b _{max}	=	Adsorptionskapazität	[mol/g]
cL	=	Gleichgewichtskonzentration	[mol/ml]
cad	=	Adsorptionsmenge pro g	[mol/g]
k ₁	=	Konstante (rel Maß der Bin	dungsstärke)

Die Bedeutung der Gleichung 3-16 liegt darin,

 daß sich für bestimmte Konzentrationsbereiche als Näherungen ergeben

$$c_{ad} \simeq b_{max}$$
 bei $c_{ad} > b_{max}$ (3-17)

$$c_{ad} = (k_1 \cdot b_{max}) \cdot c_L$$
 bei $c_{ad} \langle \langle b_{max} \rangle \langle (3-18) \rangle$

(d.h., Freundlichsche Isotherme)

• daß sich aus Auftragungen von c_L/c_{ad} gegen c_L in dem von den Grenzbedingungen der Gl. 3-17 und 3-18 entfernt liegenden Bereich gemäß Gl. 3-19

$$\frac{c_{L}}{c_{ad}} = \frac{1}{k_{1} \cdot b_{max}} + \frac{1}{b_{max}} \cdot c_{L} \qquad (3-19)$$

die Kenngrößen b_{max} und k_1 ableiten lassen sollten.

3.3.3.2. Auswertungsbeispiel

Obwohl im Rahmen der Untersuchungen bisher nur wenige Messungen vorliegen, die eine Prüfung des Langmuir-Konzepts erlauben, wurden einige Versuche hinsichtlich einer Langmuirschen Anpassung getestet. Als Auswertungsbeispiel sei auf die in Tab. 3-49 zusammengestellten Meßwerte der ⁶³Ni-Sorption am System Cenoman/Söhldewasser verwiesen.

<u>Tab. 3-49</u> Sorption von Ni-63 im System Cenoman/Söhldewasser. V/M \simeq 1,1. BET = 14 m²/g

c _L [mol/ml]	c _{ad} [mol/g]	R _S [ml/g]	Anmerkung
7,24 \cdot 10 ⁻¹⁰ 6,87 \cdot 10 ⁻⁹ 7,24 \cdot 10 ⁻⁸ 1,54 \cdot 10 ⁻⁷ 1,69 \cdot 10 ⁻⁶	$4,99 \cdot 10^{-8} 4,93 \cdot 10^{-7} 5,87 \cdot 10^{-6} 1,15 \cdot 10^{-5} 1,15 \cdot 10^{-4}$	$70^{\pm}10$ $71^{\pm}1$ $81^{\pm}2$ $74^{\pm}1$ $67^{\pm}0,5$	für c _L /c _{ad} -Ausw. für c _L /c _{ad} -Ausw. für c _L /c _{ad} -Ausw.

Die zur Berechnung der Kenngrößen ${\rm b}_{\rm max}$ und ${\rm k}_1$ aus einigen Meßwerten abgeleitete Auftragung von ${\rm c}_{\rm L}/{\rm c}_{\rm ad}$ gegen ${\rm c}_{\rm L}$ stellt Abb. 3-7 dar.

Abb. 3-7 Auftragung von
$$c_L/c_{ad}$$
 gegen c_L für die Ni-
Adsorption im System Cenoman/Söhldewasser.

Aus der Auftragung folgen als Kenngrößen

$$-b_{max} = 7,4 \cdot 10^{-4} [mol/g]$$

 $-k_1 = 1,03 \cdot 10^5.$

D.h., für die Adsorptionsisotherme des Systems Ni/Cenoman/Söhldewasser gilt

$$c_{ad} = \frac{76,22 \cdot c_L}{1 + 1,03 \cdot 10^5 \cdot c_L}$$
 (3-20)

Abbildung 3-8 zeigt die nach Gleichung 3-20 berechnete Adsorptionsisotherme. Man erkennt,

- daß die Meßwerte gut mit den Rechenwerten übereinstimmen und
- daß ab einer Nickel-Gleichgewichtskonzentration von etwa c_L $\stackrel{\prime}{\sim}$ 10⁻⁴ mol/ml mit einer Sättigung der Sedimentprobe Cenoman an Nickel im Söhldewasser gerechnet werden kann.

3.3.3.3. Anmerkungen

Im Zusammenhang mit der Ableitung der Langmuir-Kenngrößen darf nicht übersehen werden, daß aus den Sorptions- bzw. Desorptionsmessungen bisher nur wenige c_L/c_{ad} -Meßdaten zur Verfügung stehen. Eine genaue Bestimmung der Langmuir-Koeffizienten setzt aber eine größere Anzahl von c_L - und c_{ad} -Meßwerten in einem <u>zwi-</u> schen den Grenzbedingungen der Gleichungen 3-17 und 3-18 liegenden Bereich voraus. D.h., die Aussagekraft der bisherigen Beispiele ist sehr eingeschränkt. Trotzdem scheinen die für die Ni-Sorption an Konrad-Gesteinen ableitbaren b_{max} - und k_1 -Werte für die Sorptionsbeschreibung brauchbar zu sein: Nach den Kenngrößen ist erst ab einer Ni-Konzentration von c $> 10^{-4}$ mol/1 mit einer Sorptionssättigung der Konrad-Gesteine zu rechnen, so daß R_S- und R_D-Werte bis zu dieser Konzentration konstant bleiben sollten. Vgl. hierzu Tab. 3-30 und das weitere, im folgenden angegebene Berechnungsbeispiel für das System Nickel/Heersumer Schichten/Wasser Strecke 670.

Tab. 3-50Sorption von Ni-63 im System Heersumer Schichten/Wasser Strecke 670. V/M \simeq 1,1.BET = 32,9 m²/g.Anmerkung: c_L und c_{ad} sind Mittelwerte aus Sorptions-/Desorptionsmessungen

c _L	c _{ad}	R _S /R _D	Anmerkung
[mol/ml]	[mol/g]	[m1/g]	
$2,14 \cdot 10^{-8}$ 1,75 \cdot 10^{-7} 2,28 \cdot 10^{-7} 3,12 \cdot 10^{-6}	$9,5 \cdot 10^{-7}$ $8,5 \cdot 10^{-6}$ $1,1 \cdot 10^{-5}$ $1,1 \cdot 10^{-4}$	40/53 42/57 42/58 31/42	für c _L /c _{ad} -Ausw. für c _L /c _{ad} -Ausw. für c _L /c _{ad} -Ausw.

<u>Abb. 3-9</u> Auftragung von c_L/c_{ad} gegen c_L für die Ni-Adsorption im System Heersumer Schichten/ Wasser Strecke 670.

Aus der Auftragung deuten sich als Kenngrößen an:

$$-b_{max} = 3,5 \cdot 10^{-4} [mol/g]$$

 $-k_1 = 1,28 \cdot 10^5.$

Für die Adsorptionsisotherme des Systems Ni/Heersumer Schichten/Wasser Strecke 670 gilt somit näherungsweise

$$c_{ad} = \frac{44,80 \cdot c_L}{1 + 1,28 \cdot 10^5 \cdot c_L}$$
 (3-21)

Abb. 3-10 zeigt die aus den Rechen- und Meßwerten ableitbare Adsorptionsisotherme, die zu einer Sättigungskonzentration von etwa c_L $\simeq 10^{-4}$ mol/ml führt.

3.3.4. R_S/R_D-Verteilungsprofile für das Konrad-Deckgebirge

3.3.4.1. Sorptions-Desorptionsdatenübersicht

Die mit den Radionukliden U-233, Ra-226, Th-228, Ac-227, Pb-210, Ni-63, Mo-93 und Se-75 unter gleichen Bedingungen gemessenen Sorptions (R_S) - und Desorptions (R_D) -Werte der Sediment-Grundwasser-Systeme des Konrad-Deckgebirges sind in den Tab. 3-51 bis 3-60 zusammengestellt. Zum Vergleich mit den Ergebnissen des Projekts Konrad I [13] wurden in

einigen Tabellen auch Angaben über die R_S^- und R_D^- Werte dieses Projekts mit aufgenommen, soweit eine Probenzuordnung möglich war (vgl. hierzu auch Tab. 2-1).

3.3.4.1.1. <u>U-233</u>

<u>Tab. 3-51</u> R_S/R_D -Verteilungsprofil für U-233. V/M \simeq 1,1. Doppelbestimmungen

Gesteins- probe	Wasser- probe	R _S R _D [ml/g] ml/g]	Vergleich Konrad I R _S /R _D [ml/g]
S 1	Söhlde	$29,7 \overset{+}{-} 5,5 32,5 \overset{+}{-} 5,7$	8,6-9,6
S 2	MWS2	$9,84^{+}0,18$ 11,1 $^{+}0,28$	19, 2-24, 2
S 3	Hils	$115^{+}_{-3}, 5$ $188^{+}_{-}50$	
S 4	Hils	$27,1^+0,2$ $33,4^+0,9$	
S 5	Hils	1,37 - 0,04 $1,31 - 0,35$	
S 6	Ort 300	$11,7^+0,16$ $11,1^+0,04$	
S 8	Ort 300	$1,91^+0,04$ $2,46^+0,04$	
S 7	0rt 300	$5,43^{+}0,1$ $6,71^{+}0,28$	15, 2-14, 6
S 9	0rt 300	$6,50 \overset{+}{-}0,13$ $8,86 \overset{+}{-}0,17$	
S 10	Ort 300	$3,32^{+}0,04$ $3,87^{+}0,05$	6,1-8,3

Tab.	3 - 52	R_{S}/R_{D} -Vert	eilungsprofile	für	Th-228.
		$V/M \approx 1,1.$	Doppelbestimm	ungei	ı

Gestein probe	us- Wasser- probe	R _S [ml/g]	R _D [m1/g]	Vergleich Konrad I R _S /R _D [ml/g]
S 1	Söhlde	638 - 196	$852^{+}249$	> 10 ³
S 2	MW S 2	195 - 5	253 ± 5	> 10 ³
S 3	Hils	$(1, 38 - 0, 17) \cdot 10^3$	1,00•10 ⁴	
S 4	Hils	$(9,06^+0,86) \cdot 10^3$	$(1,52 \pm 0,24) \cdot 10^4$	-
S 5	Hils	245 + 3	$415^{+}_{-}7$	
S 6	0rt 300	$(2,23 - 0,15) \cdot 10^3$	$(2, 16^+0, 01) \cdot 10^3$	5
S 8	Ort 300	$760^{+}6$	938 ± 277	
S 7	Ort 300	$(1,23 - 0,04) \cdot 10^3$	$(1,50^+0,20) \cdot 10^3$	5
S 9	0rt 300	$(1,76^+0,07) \cdot 10^3$	$(2,23^+0,10) \cdot 10^3$;
S 10	0rt 300	749-161	$(1,35 - 0,02) \cdot 10^3$	(1,2-3,7) $\cdot 10^3$

 $\begin{array}{ccc} \underline{\text{Tab. 3-53}} & \text{R}_{\text{S}}/\text{R}_{\text{D}}\text{-} \text{Verteilungsprofile für Ra-226.} \\ & \text{V/M} \stackrel{\checkmark}{\simeq} 1,1. \text{ Doppelbestimmungen} \end{array}$

Gesteins- probe	Wasser- probe	R _S [ml/g]	R _D [ml/g]	Vergleich Konrad I R _S /R _D [ml/g]
			<u></u>	
S 1	Söhlde	$114^{+}_{-}5$	$141^{+}_{-}5$	313 - 380
S 2	MWS2	442 - 36	637 <mark>-</mark> 193	420 - 522
S 3	Hils	2,96	3,47 - 0,01	
S 4	Hils	2,90 - 0,04	3,50-0,11	
S 5	Hils	1, 11 - 0, 04	1,53-0,05	
S 6	Ort 300	2,91 - 1,15	4,78 - 0,16	
S 8	Ort 300	1,04 - 0,01	1,77-0,05	
S 7	Ort 300	1,69 - 0,05	2,40 - 0,11	3,4-4,9
S 9	Ort 300	2,16 - 0,08	3,30-0,06	
S 10	Ort 300	5,98-0,11	$13,9^+0,23$	2, 5 - 5, 1

<u>Tab. 3–54</u>	R_S/R_D -Verteilungsprofile für Ac-227.	
	V/M ~ 1,1. Doppelbestimmungen	

Gesteins- probe	Wasser- probe	R _S [ml/g]	R _D [ml/g]	Vergleich Konrad I R _S /R _D [ml/g]
		·····		
S 1	Söhlde	363 ⁺ 119	$651^{+}_{-}132$	$594 - 1, 8 \cdot 10^3$
S 2	MW S 2	826-388	$1, 10 \cdot 10^{3}$	$621 - 3, 6 \cdot 10^3$
S 3	Hils	$3,54 \cdot 10^3$	$>3,54 \cdot 10^{3}$	
S 4	Hils	$3,21 \cdot 10^3$	$3,25 \cdot 10^3$	
S 5	Hils	54, 3-0, 7	$62,9^+0,3$	
S 6	Ort 300	165 - 10	$179 \stackrel{+}{-} 0, 1$	
S 8	Ort 300	426-11	371-8	
S 7	Ort 300	75,7-3,3	$91, 6^+, 1, 3$	81-111
S 9	Ort 300	371 - 50	$389^{+}_{-}55$	
S 10	Ort 300	$25,1^+\!$	32,3-0,3	104-150

<u>Tab. 3-55</u> R_S/R_D -Verteilungsprofile für Pb-210. V/M \approx 1,1. Doppelbestimmungen

Geste: prol	ins- be	Wasser- probe	R _S [ml/g]	R _D [ml/g]	Vergleich Konrad I R _S /R _D [m1/g]
				/ /	······································
S	1	Söhlde	$(1,60^+0,56) \cdot 10^3$	$(3,81^+2,20) \cdot 10^3$	$(3-8) \cdot 10^3$
S 2	2	MW S 2	$(5,96^+1,70) \cdot 10^3$	$(8,83^+0,24) \cdot 10^3$	6 • 10 ³ - 1 • 10
S (3	Hils	737	$(1,53^+0,6) \cdot 10^3$	
S 4	4	Hils	926-30	907 - 28	
SS	5	Hils	160^+32	$204^{+}53$	
S (6	Ort 300	88,5	$122^{+}2$	
S 8	8	Ort 300	$124^{+}0,9$	300 - 0, 1	
S	7	Ort 300	$182^{+}4$	219 - 3	110-123
s s	9	0rt 300	788^+_{-92}	$(1,70^+0,06)$ · 10^3	
S	10	0rt 300	133-10	208-14	84-126

<u>Tab. 3-56</u> R_S/R_D -Verteilungsprofil für Ni-63. V/M \simeq 1,1. Doppelbestimmungen

Gesteins- probe	Wasser- probe	R _S [ml/g]	R _D [ml/g]	Vergleich Konrad I R _S /R _D [ml/g]
		L.		
S 1	Söhlde	56,4-0,4	89,6-0,6	50-71
S 2	MW S 2	99, 3 - 2, 4	203 - 4	74-144
S 3	Hils	86,0-1,3	$83,2^{+}_{-}0,3$	
S 4	Hils	$55,2^+0,3$	77, 3-0, 8	
S 5	Hils	$1,83 \pm 0,01$	$2,71^{+}0,03$	
S 6	0rt 300	$10,7^+0,19$	$13,2^+0,01$	
S 8	0rt 300	2,40 - 0,05	4,53 - 0,29	
S 7	0rt 300	$11,6^+0,26$	15, 3-0, 5	8,6-10,1
S 9	0rt 300	9,55 - 0,12	15, 3-0, 15	
S 10	0rt 300	$2,7^+0,04$	3,95	2,8-3,8

3.3.4.1.7. <u>Selen-75</u>

<u>Tab. 3-57</u> R_S/R_D -Verteilungsprofil für Na $2^{75}SeO_4$. V/M \simeq 1,1. Doppelbestimmungen

Gesteins- probe	Wasser- probe	R _S [ml/g]	R _D [ml/g]	Vergleich Konrad I [29] R _S /R _D [m1/g]
S 1	Söhlde	0,53 - 0,07	1,75 - 0,81	0,6-0,54
S 2	MWS2	0,40 - 0,01	$0,34 \overset{+}{-} 0,04$	0
S 3	Hils	$0,50 \dot{-} 0,02$	$0,32 \overset{+}{-} 0,04$	
S 4	Hils	0,50 - 0,08	$0,49\overset{+}{-}0,16$	
S 5	Hils	$0,39 \overset{+}{-} 0,03$	0,44 - 0,06	
S 6	Ort 300	$0,47 \dot{-} 0,02$	0,33 - 0,07	
S 8	Ort 300	$0,26 \overset{+}{-} 0,01$	0,02	
S 7	Ort 300	0,37 - 0,01	0,20 - 0,01	1, 18-5, 85
S 9	Ort 300	0,41	0,32 - 0,04	
S 10	Ort 300	0,38	0,20 - 0,01	0,08-3,28

Gesteins- probe	Wasser- probe	$\frac{R_{S}}{[ml/g]}$	R _D [ml/g]
S 1	Söhlde	$8,55^+0,06$	22,40 - 0,16
S 2	MW S 2	2,41 - 0,26	6,57-0,87
S 3	Hils	8,58-0,01	$19, 10^+0, 06$
S 4	Hils	$9,61^{+}0,13$	$16,28 \pm 0,14$
S 5	Hils	$6,91 \overset{+}{-}0,21$	$15,67 \overset{+}{-} 0,62$
S 6	0rt 300	$7,98 \overset{+}{-} 0,13$	$19,38 \overset{+}{-}0,01$
S 8	0rt 300	$1,94 \overset{+}{-} 0,01$	7, 18 - 0, 16
S 7	0rt 300	$2,02^{+}0,01$	$6,03 \pm 0,03$
S 9	0rt 300	1,80	$5, 16 \overset{+}{-} 0, 04$
S 10	0rt 300	5,64 - 0,06	$11,43 \overset{+}{-}0,03$

<u>Tab. 3-58</u>	R _S /R _D -Verteilungsprofil für Na ₂ ⁷⁵ SeO ₃ . V/M ≃ 1,1. Doppelbestimmungen

3.3.4.1.8. <u>Molybdän</u>

<u>Tab. 3-59</u> R_S/R_D -Verteilungsprofil für Mo-93. V/M \approx 1,1. Doppelbestimmungen. LSC-Messung (c \approx 7 \cdot 10⁻⁸ mol/1)

Gesteins- probe	Wasser- probe	R _S [m1/g]	R _D [ml/g]
S 1	Söhlde	0,41-0,01	0,60 - 0,02
S 2	MW S 2	0,40 - 0,01	$0,45 \overset{+}{-} 0,12$
S 3	Hils	$1,03^{+}0,12$	1,28 - 0,25
S 4	Hils	$2,81^{+}0,03$	$3,79 \overset{+}{-}0,11$
S 5	Hils	$0,78 \pm 0,05$	$0,97 \dot{-} 0,04$
S 6	0rt 300	$22,4^+0,05$	$35,8^+\!\!-\!\!0,28$
S 8	0rt 300	$21,9^+1,0$	$34,1^+\!$
S 7	Ort 300	$12,5^+\!$	$17,5^+1,5$
S 9	0rt 300	318,5	$586,7^+\!\!69$
S 10	0rt 300	$17,8^+0,22$	$34,5^+\!$

Gesteins- probe	Wasser- probe	R _S [ml/g]	R_{D} [ml/g]
<u> </u>			
S 1	Söhlde	$0,65 \overset{+}{-} 0,02$	1,36 - 0,17
S 2	MW S 2	0,50 - 0,06	$0,98 \pm 0,16$
S 3	Hils	$0,63^+0,10$	$0,79^+0,21$
S 4	Hils	$2,28 \pm 0,07$	3,95 - 0,31
S 5	Hils	0,39	0,31
S 6	Ort 300	$24, 6\dot{-}4, 1$	$35,2^{+}0,28$
S 8	Ort 300	$10,9^+0,9$	$13,6^+-0,1$
S 7	Ort 300	27,4	35, 4
S 9	Ort 300	>100	>100
S 10	Ort 300	17,9	23,0

<u>Tab. 3-60</u> R_S/R_D -Verteilungsprofil für Molybdän. V/M \simeq 1,1. Doppelbestimmungen. AAS-Messung (c \simeq 1.10⁻⁵ mol/1)

3.3.4.2. Zusammenfassung

Zusammenfassend ist zu den Sorptionsdaten folgendes festzustellen:

3.3.4.2.1. Uran

- Die Sorptions- und Desorptionswerte zeigen keinen eindeutigen Zusammenhang mit dem Salzgehalt des Grundwassers; es überwiegt der Sorptionscharakter der Sedimentproben
- Die R_S- und R_D-Werte sind etwas größer bzw. kleiner als die an Gesteinen des Projekts Konrad I gemessenen Sorptionswerte
- An der Feinsandsteinprobe S 5 (Hils) wird Uran am wenigsten sorbiert; die stärkste Sorption zeigt die Mergeltonsteinprobe S 3
- Das Sorptionsverhalten wird durch R_S -Werte zwischen 1,37 und 115 ml/g und das Desorptionsverhalten durch R_D -Werte zwischen 1,3 und 188 ml/g bestimmt.

3.3.4.2.2. Thorium

- Die Sorptions- und Desorptionswerte zeigen keinen eindeutigen Zusammenhang mit dem Salzgehalt des Grundwassers
- Das Sorptionsverhalten wird durch R_S -Werte zwischen 195 und 9·10³ und das Desorptionsverhalten durch R_D -Werte zwischen 253 und 1,5·10⁴ bestimmt.

3.3.4.2.3. <u>Radium</u>

- Die Sorptions- und Desorptionswerte sind im stark salinen Grundwasser kleiner als im wenig mineralisierten Wasser
- Die R_S- und R_D-Werte stimmen teilweise gut mit den an Gesteinen des Projekts Konrad I gemessenen Werten überein
- An der Feinsandprobe S 5 (Hils) wird Radium ähnlich wie Uran am wenigsten sorbiert; die stärkste Sorption zeigt die Kalksteinprobe S 2
- Das Sorptionsverhalten wird durch R_S -Werte zwischen 1,04 und 442 ml/g und das Desorptionsverhalten durch R_D -Werte zwischen 1,53 und 637 ml/g bestimmt.

3.3.4.2.4. Actinium

- Die Sorptions- und Desorptionswerte zeigen keinen eindeutigen Zusammenhang mit dem Salzgehalt des Grundwassers
- Die ${\rm R}_{\rm S}$ und ${\rm R}_{\rm D}$ -Werte stimmen teilweise gut mit den an Gesteinen des Projekts Konrad I gemessenen Werten überein
- Das Sorptionsverhalten wird durch R_S -Werte zwischen 25,1 und 3,5 · 10³ ml/g und das Desorptionsverhalten durch R_D -Werte zwischen 32 und 3,5 · 10³ ml/g bestimmt.

3.3.4.2.5. <u>Blei</u>

- Die Sorptions- und Desorptionsdaten deuten an, daß die R_S und R_D -Werte im stark salinen Grundwasser kleiner werden können als im schwach salinen Wasser
- Die R_S- und R_D-Werte stimmen größenordnungsmäßig mit den an Gesteinen des Projekts Konrad I gemessenen Werten überein
- Das Sorptionsverhalten wird durch R_S^2 -Werte zwischen 88,5 und 5,9 · 10³ ml/g und das Desorptionsverhalten durch R_D^- Werte zwischen 122 und 8,8 · 10³ ml/g festgelegt.

3.3.4.2.6. <u>Nickel</u>

- Die Sorptions- und Desorptionswerte zeigen keinen eindeutigen Zusammenhang mit dem Salzgehalt des Grundwassers
- An der Feinsandprobe S 5 (Hils) wird Nickel am wenigsten sorbiert
- Die $\rm R_S^-$ und $\rm R_D^-Werte$ stimmen gut mit den an Gesteinen des Projekts Konrad I gemessenen Werten überein

- Das Sorptionsverhalten wird durch $\rm R_S-Werte$ zwischen 1,8 und 99 ml/g und das Desorptionsverhalten durch $\rm R_D-Werte$ zwischen 2,7 und 203 ml/g bestimmt.

3.3.4.2.7. <u>Selen</u>

- Die Sorptions- und Desorptionswerte sind vom Salzgehalt des Grundwassers unabhängig
- Na_2SeO_3 wird stärker sorbiert als Na_2SeO_4
- Für das Sorptionsverhalten sind Sorptionswerte zwischen 0,26 und 0,53 ml/g für Na_2SeO_4 bzw. zwischen 1,8 und 9,6 ml/g für Na_2SeO_3 charakteristisch. Die R_D -Werte liegen für Na_2SeO_4 zwischen 0,2 und 1,75 ml/g und für Na_2SeO_3 zwischen 5,1 und 22 ml/g.

3.3.4.2.8. Molybdän

- Die Sorptions- und Desorptionswerte sind vom Salzgehalt des Grundwassers unabhängig
- Die bei einer Konzentration von 10^{-5} mol/l und 10^{-8} mol/l mittels AAS bzw. LSC gemessenen R_S/R_D -Werte stimmen weitgehend überein
- Die R_S und R_D -Werte für die schluffige Tonsteinprobe S 9 sind im Vergleich zu den übrigen Proben um den Faktor 10-100 größer
- Abgesehen von der Probe S 9 liegen die R_S -Werte im Bereich von 0,41 bis 22 ml/g und die R_D -Werte zwischen 0,45 und 35,8 ml/g.

Die gemessenen Sorptions- und Desorptionskoeffizienten lassen nach diesen Ergebnissen zum einen eine deutliche Abhängigkeit des Sorptionsmechanismus von der Nuklidart erkennen. Zum anderen hängen die R_S- und R_D-Werte bei einigen Nukliden von der Art des Gesteins bzw. Grundwassers ab, wobei spezielle, für einzelne Systeme charakteristische Verdrängungs-, Komplexbildungs-, Fällungs- und Hydrolysereaktionen eine Rolle spielen dürften. Die Kenntnisse reichen bisher jedoch noch nicht aus, die bei den einzelnen Nuklid/Wasser/Gesteins-Systemen jeweils ablaufenden Vorgänge theoretisch zu erfassen.

3.4. Säulendurchlaufversuche

Zur Absicherung der im Batchversuch ermittelten R_S^- und R_D^- Werte wurden auch Säulendurchlaufversuche durchgeführt. Aufgrund der verhältnismäßig großen R_S^- und R_D^- Werte mußten dabei speziell dimensionierte Säulen eingesetzt und die Filtergeschwindigkeiten dem Sorptionssystem angepaßt werden.

Beispiele der bei diesen Versuchen erhaltenen Konzentrationsdurchgangskurven sind in den Abb. 3-11 bis 3-15 wiedergegeben.

<u>Abb. 3-11</u> Konzentrationsdurchgangskurven für U-233 und ${}^{3}\text{H}^{1}\text{HO}$ am System Sorption 10/Wasser Ort 300. Säule 2 cm Ø. 12 cm Füllhöhe. Tropfgeschwindigkeit v_t = 1 ml/h

<u>Abb. 3-12</u> Konzentrationsdurchgangskurven für Ra-226 und ³H¹HO am System Sorption 5/Hilswasser. Säule 2 cm Ø. 12 cm Füllhöhe. Tropfgeschwindigkeit $v_t = 0,95$ ml/h

<u>Abb. 3-13</u> Konzentrationsdurchgangskurven für Ni-63 und ${}^{3}\text{H}^{1}\text{HO}$ am System Sorption 5/Hilswasser. Säule 2 cm Ø. 12 cm Füllhöhe. Tropfgeschwindigkeit $v_{\tilde{f}}$ = 0,9 ml/h

- 103 -

<u>Abb. 3.15</u> Konzentrationsdurchgangskurven für $Na_2^{75}SeO_4$ und ³H¹HO am System Sorption 10/Wasser Ort 300. Säule: 2 cm Ø. 12 cm Füllhöhe. Tropfgeschwindigkeit v₊ = 0,95 ml/h

In Tab. 3-61 sind die aus den Elutionskurven berechneten Verzögerungsfaktoren für U-233, Ra-226, Ni-63, Na 2^{75} SeO $_3$ und Na 2^{75} SeO $_4$ sowie die zugehörigen Säulenparameter zusammengestellt.

<u>Tab. 3-61</u>	Säulenparameter und Verzögerungsfaktoren r
	für U-233, Ra-226, Ni-63, $Na_2^{75}SeO_3$ und
	$Na_{2}^{75}SeO_{4}$

Ele- ment	Gestein/ Wasser	Säu Ø [cm]	lle Höhe [cm]	^v t [ml/h]	V _w [ml]	ⁿ eff	9 [g/cm ³] ^r D
U	S 10/ Ort 300	2	12	1	22, 5	0,59	2,25	26,53
Ra	S 5/ Hils	2	12	0,95	27,5	0,73	1,95	1,89
Ni	S 5/ Hils	2	12	0,9	28,5	0,75	2,03	2,72
$\operatorname{Se0}_3^{2-}$	S 7/ Ort 300	2	12	0,95	16	0,42	2, 14	1,15
$\operatorname{Se0}_4^{2-}$	S 10/ Ort 300	2	12	0,95	22	0,58	2,36	1,18

Tab. 3-62 informiert außerdem noch über die mit stark sorbiertem Th-228 und Ac-227 erhaltenen Verzögerungsfaktoren.

für Th-228 und Ac-227. Säulendurchmesser: 2 cm. Füllhöhe: 12 cm							
Ele- ment	Gestein/ Wasser	Weg d in Säule [cm]	^v t. [ml/h]	V _w [ml]	ⁿ eff	9 [g∕cm ³] ^r D
Th	Hangen- des Erz/ Str. 670	≃ 0,1	5	27,5	0,73	2,40	2•10 ⁴
Ac	Hangen- des Erz/ Str. 670	4	5,8	25	0,66	2,28	564

Tab. 3-62 Säulenparameter und Verzögerungsfaktoren r

Tab. 3-63 gibt noch einen Vergleich zwischen den aus r_D -Werten abgeleiteten dynamischen K_d -Werten und statischen R_{S} - und R_{D} -Werten. Die Umrechnung von r_{D} -Werten in K_{d} -Werte erfolgte mit Gl. 3-22:

$$K_{d} = (r_{D} - 1) \cdot \frac{n_{eff}}{9}$$
 (3-22)

Tab. 3-63 Vergleich zwischen Säulen- und Batchversuchen. Säulenparameter s. Tab. 3-61 und 3-62. (Anm.: Adsorption auf der Säule $\stackrel{4}{=}$ S [%]).

			Säulenversuch			Batchversuch $(V/M \simeq 1, 1)$	
Nuklid	Gestein	Wasser	rD	[%]	[ml/g]	R _S [ml/g]	R _D [ml/g]
U-233	S 10	Ort 300	26,5	52	6,7	3,3	3,8
Ra-226	S 5	Hils	1,89	1	0,33	1, 11	1,53
Th-228	Hang.Erz	str.670	2•10 ⁴	100 ¹	6•10 ³	$2 \cdot 10^{3}$	$4 \cdot 10^{3}$
Ac-227	Hang.Erz	str.670	564	100	163	142	209

Nuklid	Gestein	Wasser	Säi r _D	s [%]	ersuch K _d [ml/g]	Batchv (V/M ≃ ^R S [ml/g]	ersuch 1,1) R _D [ml/g]
Ni-63	S 5	Hils	2,77	2,7	1,03	1,83	2,71
$Na_2^{75}SeO_3$	s 7	0rt 300	1,15	68,8	0,23	2,02	6,03
$Na_2^{75}SeO_4$	S 10	0rt 300	1,18	2	0,04	0,38	0,20
$\mathrm{Na}_2^{75}\mathrm{SeO}_4$	s 7	0rt 300	1,17	2,7	0,04	0,37	0,20

Den Versuchen ist zu entnehmen,

- daß statisch und dynamisch ermittelte K_d und R_S/R_D -Werte bei Anwendung optimierter Säulenparameter weitgehend übereinstimmen
- daß im Fall von Ra-226, Ni-63 und Na 2^{75} SeO₄ eine fast vollständige Elution des Nuklids von der Säule möglich ist.

3.5. Diffusionsversuche

3.5.1. <u>Diffusionsverhalten von Radionuklid/Gestein/Wasser-</u> <u>Systemen</u>

3.5.1.1. Allgemeine Hinweise

Das Ziel der Diffusionsversuche ist vor allem darin zu sehen, Sorptions- und Desorptionsdaten von Radionukliden an Konradgesteinen mit einer zusätzlichen Methode abzusichern.

Unter Einsatz der in [13] entwickelten Versuchszelle wurden deshalb Diffusionsversuche an verschiedenen Festgesteinsproben mit den Radionukliden U-233, Ra-226, Ac-227, Ni-63 und Se-75 neu angesetzt bzw. weitergeführt. Ein Teil der Bohrkerne, insbesondere S 3 und S 4, konnten jedoch nicht in die Versuche einbezogen werden, da sie sich nicht präparieren ließen.

Die im Berichtszeitraum durchgeführten Versuche bestätigen, daß die Radionuklidmigration an den Gesteinsschliffen

- durch einen nicht mit Diffusionsgesetzen beschreibbaren Durchbruch
- oder durch einen verzögerten Durchbruch

gekennzeichnet ist.

3.5.1.2. Migrationssysteme

3.5.1.2.1. <u>Systeme mit nicht-diffusivem Radionukliddurch-</u> bruch

Auch im Fortsetzungsvorhaben wurde bestätigt, daß bei einigen Systemen Radionuklide sehr schnell durch den Gesteinsschliff wandern. Der zeitliche Konzentrationsanstieg im inaktiven Teil des Diffusionsgefäßes ist somit durch Diffusionsgesetze nicht faßbar (vgl. hierzu Beispiele in [13]).

Sehr wahrscheinlich wandern bei diesen Systemen Radionuklide weitgehend ungehindert durch Risse und Spalten der Gesteinsproben von der aktiven zur inaktiven Seite. Sorptive Wechselwirkungen zwischen Gestein und Radionuklid entfallen hierdurch, so daß deren Einflüsse in den Migrationskurven nicht nachweisbar werden. Sorptionsdaten lassen sich deshalb aus diesem Kurventyp nicht ableiten.

3.5.1.2.2. Systeme mit verzögertem Durchbruch

Für die durch einen verzögerten Durchbruch gekennzeichneten Systeme ist ein durch Diffusionsgesetze faßbarer, nach einer bestimmten Zeit einsetzender zeitlicher Konzentrationsanstieg im inaktiven Teil des Diffusionsgefäßes charakteristisch.

Die Abb. 3-16 bis 3-26 zeigen neu gemessene bzw. durch Zusatzmessungen ergänzte Migrationskurven, die zu diesem Migrationstyp zählen.

<u>Abb. 3-16</u> Migrationskurve für U-233 im System Erzkalke-Wasser Strecke 670 (U KZ 16a). d = 5,0 mm. Durchbruchszeit $t_D = 1730$ Std.

<u>Abb. 3-17</u> Migrationskurve für U-233 im System Rotpläner-Söhldewasser (U KZ 20). d = 5,0 mm. Durchbruchszeit $t_D = 2611$ Std.

<u>Abb. 3-18</u> Migrationskurve für U-233 im System Lamarcki Pläner-Söhldewasser (U KZ 23). d = 5,0 mm. Durchbruchszeit t_D = 1991 Std.

<u>Abb. 3-19</u> Migrationskurve für U-233 im System Rhotomagensis Pläner-Söhldewasser (U KZ 24). d = 5,0 mm. Durchbruchszeit t_D = 1564 Std.

<u>Abb. 3-20</u> Migrationskurve für U-233 im System Sorption 1a-Söhldewasser (U KZ 27). d = 6 mm. Durchbruchszeit $t_D = 2339$ Std.

<u>Abb. 3-22</u> Migrationskurve für Ra-226 im System Sorption 1a-Söhldewasser (Ra KZ 29). d = 6,4 mm. Durchbruchszeit $t_D = 704$ Std.

<u>Abb. 3-24</u> Migrationskurve für Ni-63 im System Sorption 2a-MW S 2 (Ni KZ 31). d = 6 mm. Durchbruchszeit $t_D = 1972$ Std.

<u>Abb. 3-25</u> Migrationskurve für Ni-63 im System Sorption 1a-Söhldewasser (Ni KZ 28). d = 6,2 mm. Durchbruchszeit t_D = 2036 Std.

<u>Abb. 3-26</u> Migrationskurve für $Na_2^{75}SeO_4$ im System Sorption 8a-Wasser Ort 300 (Se II KZ 34). d = 5,2 mm. Durchbruchszeit t_D = 764 Std.

3.5.1.3. Auswertung

3.5.1.3.1. <u>Auswertung nach dem in der Literatur beschrie-</u> benen Verfahren

Nach dem in der Literatur [21] beschriebenen Verfahren sollten aus den Steigungen der Durchbruchskurven und den extrapolierten Durchbruchszeiten t_D Verteilungskoeffizienten K_d mittels Gl. 2-30 bis 2-32 ableitbar sein.

Tab. 3-64 informiert über die aus Durchbruchskurven mit diesem Verfahren abgeleiteten Migrations- und Verteilungsparameter.

Tab. 3-64 Aus Diffusionsmessungen abgeleitete Migrationsund Verteilungsparameter (vgl. Abb. 3-16 bis 3-26)

Nuklid	Vers. Bez.	Gestein	Wasser	^t D [h]	D [cm ² /s]	α [r	K _d nl/g]	R _S /R _D [ml/g]
U-233	U 16a	Erzkalke	Str.670	1730	$5,64 \cdot 10^{-9}$	0,84	0,29	5, 1/7, 5
U-233	U 20	Rotpl.	Söhlde	2611	$4,06 \cdot 10^{-9}$	0,92	0,31	9,9/11,2
U-233	U 23	Lamar.Pl.	Söhlde	1991	$2,24 \cdot 10^{-8}$	4,09	1,43	8,6/9,6
U-233	U 24 1	Rhotom.Pl.	Söhlde	1564	$4,93 \cdot 10^{-8}$	6,66	2,40	15/17
U-233	U 27	S 1a	Söhlde	2339	$4,17 \cdot 10^{-8}$	5,85	2,09	2 9/32
Ra-226	Ra 29	S 1a	Söhlde	704	$7,53 \cdot 10^{-8}$	2,79	0,96	114/141
Ni-63	Ni 42	Rhotam.Pl.	Söhlde	447	$5,5 \cdot 10^{-9}$	0,21	0,02	92/147
Ni-63	Ni 31	S 2a	MWS2	1972	$2,63 \cdot 10^{-9}$	0,31	0,09	99/203
Ni-63	Ni 28	S 1a	Söhlde	2036	1,02.10 ⁻⁸	1,17	0,45	56/89
$^{75}\text{Se0}_4^{2-}$	SeII 3	4 S 8 0	Ort 300	764	4,81.10-8	2,94	0,98	0,26/0,02

Den Daten ist zu entnehmen, daß die mit dem in [21] angegebenen Auswerteverfahren abgeleiteten K_d -Werte meist kleiner sind als die im Batchversuch bestimmten R_S/R_D -Werte. Nur die am Na $_2^{75}$ SeO $_4$ ermittelten K_d - und R_S/R_D -Werte stimmen gut überein.

3.5.1.3.2. Auswertung nach einem geänderten Verfahren

3.5.1.3.2.1. Berechnungsverfahren

Eine Überprüfung des in [21] angegebenen Auswerteverfahrens ergab, daß die gemessenen Unterschiede der K_d - und R_S/R_D -Werte nicht in der experimentellen Technik sondern im rechnerischen Ansatz begründet sein dürften. Bei der Auswertung sollten deshalb folgende Zusammenhänge beachtet werden:

1. Nach [30] kann die in der Zeit t [s] durch eine dünne ebene Platte der Dicke L [cm] diffundierte Substanzmenge Q_{+} mit Hilfe von Gl. 3-23 berechnet werden:

$$\frac{Q_{t}}{L \cdot c_{1}} = \frac{D \cdot t}{L^{2}} - \frac{1}{6} - \frac{2}{\pi^{2}} \frac{\varepsilon}{1} \frac{(-1)^{n}}{n^{2}} \exp(-Dn^{2}\pi^{2}t/L^{2}) (3-23)$$

(D = Diffusionskoeffizient [cm²/s]. c₁ = Konzentrationder diffundierenden Substanz). Für lange Diffusionszeiten $<math>(t \rightarrow \infty)$ gilt somit näherungsweise

$$Q_t = \frac{Dc_1}{L} \left(t - \frac{L^2}{6D}\right)$$
 (3-24)

Durch Auftragung von Q_t gegen t werden deshalb Gerade erhalten, die die Zeitachse bei

$$t_{\rm D} = \frac{L^2}{6 \rm D}$$
 (3-25)

schneiden (t_D = Durchbruchszeit [s]). Nach Umformung folgt außerdem aus Gleichung 3-24 mit den Meßzellenparametern V (= Volumen der inaktiven Probenseite bei t = 0) und F (= Fläche des Gesteinsschnitts)

$$\frac{c_2}{c_1} \cdot \frac{V \cdot L}{F} = D (t - t_D) , \qquad (3-26)$$

wobei $c_2 \cdot V = Q_t$ in der Diffusionszeit t.

2. Nach Gleichung 3-26 kann der Diffusionskoeffizient D eines durch eine Gesteinsprobe diffundierenden Radionuklids aus der Steigung des geraden Teils der $(c_2 - t)$ -Durchbruchskurve abgeleitet werden:

$$D = \frac{\frac{c_2'}{c_1} \frac{V \cdot L}{F} - \frac{c_2'}{c_1} \frac{V \cdot L}{F}}{t'' - t'}$$
(3-27)

In Gleichung 3-27 bedeuten:

$c_2^{\prime\prime}$, c	2'	= Radionuklidkonzentration auf der inaktiven
	_	Versuchsseite nach der Zeit ${ m t_2}^{\prime}$ ' bzw. ${ m t_2}^{\prime}$
		in [ipm/ml]
°1	:	= Radionuklidkonzentration zu Versuchsbeginn
-		[ipm/ml]
F	:	= Gesteinsfläche (≙ 4 [cm ²])
L	:	= Gesteinsdicke [cm]
V	-	= Volumen des Probengefäßes auf der zu Ver-

suchsbeginn inaktiven Seite.

Dieser Diffusionskoeffizient ergibt sich auch aus der durch Extrapolation des geraden Teils der Durchbruchkurve ableitbaren Durchbruchszeit t_D , wie es das Schema der Abb. 3-27 andeutet.

<u>Abb. 3-27</u> Schema der Durchbruchskurve zur Ableitung der Diffusionskoeffizienten D

3. Da für den in [21] zur Berechnung eingeführten Kapazitätsfaktor gilt

$$\alpha = \frac{6 \cdot t_{\rm D} \cdot D}{L^2} , \qquad (3-28)$$

ist nach Einsetzen der Gleichung 3-25 in Gleichung 3-24 zu erwarten: $\alpha \cong 1$. Es erscheint deshalb problematisch, den aus dem linearen Abschnitt der Durchbruchskurve abgeleiteten Diffusionskoeffizienten D mit der nach Gleichung 3-24 verknüpften Durchbruchszeit t_D zu kombinieren.

Zwischen dem durch Sorptionseffekte <u>beeinflußten</u> Diffusionskoeffizienten D (dem sog. scheinbaren Diffusionskoeffizienten D_a) und dem von Sorptionseffekten <u>unbeein-</u> <u>flußten</u> Diffusionskoeffizienten D_p der Porenlösung läßt sich jedoch ein für die Berechnungen wichtiger Zusammenhang ableiten. Zum einen gilt allgemein für den Verzögerungsfaktor

$$r_{\rm D} \stackrel{\wedge}{=} \frac{v_{\rm p}}{v_{\rm T}} = 1 + Q \cdot \frac{(1 - \epsilon)}{\epsilon} \cdot K_{\rm d}$$
, (3-29)

so daß für die Transportgeschwindigkeit $\mathbf{v}_{\rm T}$ eines Nuklids unter der Wirkung von Sorptionseinflüssen angesetzt werden kann:

$$\mathbf{v}_{\mathrm{T}} = \frac{\mathbf{v}_{\mathrm{p}}}{1 + \mathbf{Q} \cdot \frac{(1 - \epsilon)}{\epsilon} \cdot \mathbf{K}_{\mathrm{d}}}$$
(3-30)

 $(v_p = Nuklidgeschwindigkeit in der von Sorptionseinflüs$ sen unbeeinflußten Lösung).

Zum anderen ergibt sich näherungsweise Proportionalität zwischen v_T und D_a einerseits und v_p und D_p andererseits, wenn der Transport der Nuklide näherungsweise nur durch Diffusion erfolgt.

D.h., in den Diffusionszellen kann mit dem Zusammenhang [31] gerechnet werden

$$D_{a} = \frac{D_{p}}{1 + K_{d} \cdot Q \cdot \frac{(1 - \epsilon)}{\epsilon}}$$
(3-31)

 $(q = \text{Dichte. } \epsilon = \text{Porosität des Gesteins}).$

Darüber hinaus entspricht der aus den Durchbruchskurven ableitbare Diffusionskoeffizient D dem scheinbaren Diffusionskoeffizienten D_a , so daß gilt:

$$t_{\rm D} = \frac{L^2}{6 D_{\rm a}}$$
 (3-32)

Durch Einsetzen von Gleichung 3-31 in Gleichung 3-32 wird somit eine Grundsatzgleichung erhalten, die die gemessene Durchbruchszeit t_D u.a. mit dem Verteilungskoeffizienten K_d , dem von der Sorption unbeeinflußten Diffusionskoeffizienten D_p , der Dichte q und der Porosität ϵ verbindet:

$$t_{\rm D} = \frac{L^2 \left(1 + K_{\rm d} \cdot \boldsymbol{\varrho} \cdot \frac{(1 - \epsilon)}{\epsilon}\right)}{6 \cdot D_{\rm p}}$$
(3-33)

4. Gleichung 3-33 bildet die Grundlage zur Berechnung von K_d -Werten aus den bei Diffusionsversuchen bestimmten Durchbruchszeiten t_D . Aus Gleichung 3-33 folgt nämlich:

$$K_{d} = \frac{t_{D} \cdot 6 \cdot D_{p}}{Q \cdot \left(\frac{1-\epsilon}{\epsilon}\right) \cdot L^{2}} - 1 \qquad (3-34)$$

Die <u>Problematik</u> der K_d -Bestimmung liegt nun jedoch vor allem darin, daß der Diffusionskoeffizient D_p <u>nicht</u> dem geraden Teil der Durchbruchskurve entnommen werden kann ($\stackrel{\circ}{=} D_a$). D_p muß entweder Literaturangaben (näherungsweise) entnommen oder in speziellen Messungen bestimmt werden.

In diesem Zusammenhang darf nicht übersehen werden, daß einige Kationen in Porenlösungen größere Diffusionskoeffizienten aufweisen können als in ungestörten wässrigen Lösungen ($\stackrel{\circ}{=} D_w$). Beispielsweise werden in [22] für die Diffusionskoeffizienten von Sr²⁺ angegeben: $D_p \approx 3 \cdot 10^{-4}$ cm²/s und $D_w \approx 1,3 \cdot 10^{-5}$ cm²/s. D.h., die Übernahme von Literaturwerten in Gleichung 3-32 kann problematisch werden. Zur Kontrolle der Richtigkeit der verwendeten D_p -Werte erscheint es deshalb angebracht, die aus dem linearen Teil der Durchbruchskurven mittels Gleichung 3-27 bestimmten Diffusionskoeffizienten D mit rechnerisch ermittelten D_a -Werten (Gleichung 3-31) zu vergleichen.

3,5,1,3,2,2, Ergebnisse und Folgerungen

Tab. 3-65 stellt einige der nach der neuen Auswertemethode erhaltenen Ergebnisse zusammen. Es handelt sich bei den Ergebnissen jedoch nur um vorläufige Daten, da die in Gleichung 3-34 eingesetzten Diffusionskoeffizienten D_D bisher nur geschätzt werden konnten.

Tab.	3-65	Zusammenstellung einiger nach Gl. 3-34 aus
		Diffusionsmessungen abgeleiteter (vorläufiger)
		K _d -Werte.

Probe	System	D p [cm ² /s]	t _D [h]	$rac{K_d}{aus \alpha}$ [m1/g]	K _d neu [ml/g]	R _S /R _D [ml/g]
Ni KZ 11	Lamar- cki Pl./ Söhlde	1,2·10 ⁻⁵	92	0,01	7,3	50/71
U KZ 16a	Erzkalke/ Strecke 670	1,2.10 ⁻⁵	1730	0,27	15	5,1/7,5
U KZ 20	Rotplä- ner/ Söhlde	2,5.10 ⁻⁶	2611	0,31	16	9/11
U KZ 23	Lamar- cki Pl./ Söhlde	2,5.10 ⁻⁶	1991	1,43	36	8,6/ 9,6
U KZ 24	Rhoto- magensis Pl./Söhlde	2,5.10 ⁻⁶	1564	2, 4	19	15,8/ 17,5
Ra KZ 10	Rotpläner, Söhlde	$2 \cdot 10^{-4}$	315	0,22	726	886
Ra KZ 25	Rhotomager sis Pl./Schl	$1 - 2 \cdot 10^{-4}$	504	0,48	541	264/ 274

Trotz der genannten Einschränkungen erkennt man, daß im allgemeinen eine verhältnismäßig gute Übereinstimmung zwischen den aus Diffusionsmessungen abgeleiteten K_d -Werten und den aus Batchversuchen ermittelten R_S/R_D -Werten besteht. Diffusionsmessungen könnten somit durchaus von Bedeutung für die Absicherung von Batch- und Säulenversuchen werden. 4. <u>Chemische und geochemische Einordnung der an Konrad-</u> <u>Deckgebirgsschichten gemessenen Sorptions- und De-</u> sorptionsparameter

4.1. Fehlerbetrachtung

4.1.1. Fehlerursachen

Die Messungen von Sorptions(R_S)- und Desorptions(R_D)-Werten können u.a. beeinflußt werden

- durch Nachbildung von Eisenhydroxid
- durch eine oberflächliche Oxidation der Gesteinsproben
- durch Veränderungen des pH- und Eh-Wertes der Grundwässer
- durch fehlerhafte Einwaagen bzw. Vorgaben der Wasservolumina
- durch Veränderungen der Grundwässer bei der pH-Einstellung mit NaOH oder HCl nach der Nuklidzugabe
- durch abweichende irreversible Kolloidbildungen aufgrund einer geringen Über- bzw. Unterschreitung des pH-Werts bei der pH-Einstellung
- durch Verstopfen der Filterporen durch größere Teilchen (d > 0,40 µm Ø), wie Kieselsäure etc.
- durch fehlerhafte Filter
- durch Fehler der Radionuklidbestimmung.

4.1.2. Abschätzung der Fehler

Für die auf zufällige Gerätefehler (z.B. auf die Elektronikdrift, Störimpulse usw.), auf Fehler der Impulszählung und auf die Probenvorbereitung zurückgehende prozentuale Standardabweichung kann ein Bereich von 1 - 4 % angenommen werden. Die Berechnung der Standardabweichung aus gemessenen R_S- und R_D-Werten ergibt jedoch für das Gesamtverfahren weit über 1 - 4 % liegende Werte, so daß mit einem verhältnismäßig hohen Anteil der radiochemischen Versuchsführung am Gesamtfehler gerechnet werden muß. Für die Standardabweichung der Batchversuche ist dabei ohne Radionuklidmessung ein von der Art der Radionuklide und der Größe der R_S- und R_D-Werte abhängiger Bereich von 3 - 25 % anzunehmen.

4.2. Vergleich der R_S/R_D -Daten mit Literaturwerten

Die an den Konrad-Systemen (Gesteins-Wasserproben der Tab. 2-1) bestimmten R_S - und R_D -Werte der geprüften Radionuklide können nur eingeschränkt mit Literaturdaten verglichen werden, da

- nur wenige Werte vorliegen
- die Versuchsbedingungen von den Konrad-Systemen abweichen
- für die Nuklide Ac, Ni und Mo keine Verteilungskoeffizienten geologischer Systeme verfügbar sind.

Der in Tab. 4-1 gegebene Vergleich stellt deshalb nur eine vereinfachende Näherung dar.

<u>Tab. 4-1</u> Vergleich der an Gesteins-Wasser-Systemen des Konrad-Deckgebirges gemessenen R_S/R_D-Werte mit Literaturangaben (vgl. [32]).

Nuklid	R _S /R _D -Bereich (Konrad) [ml/g]	K _d (nach [32]) [ml/g]
U	1,3 - 188	2 - 20
Th	$195 - 1,5 \cdot 10^4$	100 - 500

Nuklid	R _S /R _D -Bereich (Konrad) [m1/g]	K _d (nach [32]) [ml/g]
Ra	1.0 - 637	5 - 50
Pb	$88 - 8 \cdot 10^3$	2 - 5
Ac	$25 - 3, 5 \cdot 10^3$	100 - 200*
Se	0,26 - 22	5 - 20
Ni	1,8 - 203	-
Мо	0,7 - 586	-
Anmerkung:	*Vergleich mit Cm	

4.3. Geochemische Einordnung

Eine Einordnung der mittels Batchtechnik gemessenen $R_S^$ und R_D^- Werte in das für Böden und Oberflächenwässer ableitbare geochemische Beweglichkeitsfeld (vgl. [1]) kann ebenfalls nur mit Vorbehalt erfolgen. Bemerkenswert erscheint jedoch, daß Radium, Uran, Molybdän, Selen und Nickel nach dem aus Ionenladung und Ionenradius festgelegten Beweglichkeitsfeld im Einklang mit R_S^- und R_D^- Messungen (vgl. Übersicht in Tab. 4-2) zu den "beweglichen" Ionen und Thorium und Protactinium zu den "unbeweglichen" Nukliden zählen. Blei scheint jedoch aufgrund der nicht zu vernachlässigenden Neigung zur Bildung polymerer Hydrolyseprodukte, wie Pb_2OH^{3+} , $Pb_4(OH)_4^{4+}$ etc., in Abweichung vom geochemischen Migrationsfeld, zu den wenig beweglichen Elementen zu gehören.

Nuklid	R _S -Bereich [ml/g]	R _D -Bereich [ml/g]	Normale Geochemische Beweglichkeit
Мо	0.4 - 318	0.4 - 586	beweglich
Se	0,2 - 9,6	0,2 - 22	beweglich
U	1,3 - 115	1,3 - 188	beweglich
Ra	1,0 - 442	1,5 - 637	beweglich
Ni	1,8 - 99	2,7 - 203	beweglich
Ac	$25 - 3, 5 \cdot 10^3$	$32 - 3,5 \cdot 10^3$	mäßig be- weglich
Pb	$88 - 5,9 \cdot 10^3$	$122 - 8,8 \cdot 10^3$	wenig be- weglich
Pa	$692 - 2 \cdot 10^4$ 1	,6·10 ³ - 1·10 ⁴	unbeweglich
Th	$195 - 9 \cdot 10^3$	235 - 1,5 \cdot 10 ⁴	unbeweglich
Anmerkung:	Pa-Werte aus	[13]	

 $\begin{array}{c} \underline{Tab.\ 4-2} \\ der \ gemessenen \ R_S^- \ und \ R_D^-Bereiche \end{array}$

Nach Tab. 4-2 kann somit eine Migrationstendenz in der Reihenfolge

Se \rangle Mo \rangle U \rangle Ra \rangle Ni \rangle Ac \rangle Pb \rangle Th \rangle Pa

angenommen werden. In Abb. 4-1 wird abschließend noch versucht, diese Zuordnung im geochemischen Beweglichkeitsfeld anzudeuten.

<u>Abb. 4-1</u> Einordnung von U, Ra, Ac, Pb, Pa, Th, Ni, Mo und Se in das geochemische Beweglichkeitsfeld (Beweglichkeitsgrenzen nach [1]).

5. Literaturverzeichnis

- [1] Rose, A.W., Hawkes, E.E. and Webb, J.S.: Geochemistry in Mineral Exploration. Second Edition. Academic Press, London-New York, 1979
- [2] Andreyev, M.I. and Chernyayev: Migration capacity of metals in the supergene zone of sulfide deposits. Geochemistry International 12 (6), 84 (1975)
- [3] Tsunogai, S., Yonemaru, I. and Kusakabe, M.: Post depositional migration of Cu, Zn, Ni, Co, Pb and Ba in deep sea sediments. Geochemical Journal 13, 239 (1979)
- [4] Titayeva, N.A., Taskayev, A.I., Ovchenkov, V.Ya., Aleksakhin, R.M. and Shuktomova, I.I.: U, Th, and Ra isotope compositions in soils in prolonged contact with radioactive stratal waters. Geochemistry International 14 (5), 57 (1977)
- [5] Meier, H. and Hecker, W.: Radioactive halos as possible indicators for geochemical processes in magmatites. Geochemical Journal 10, 185 (1976)
- [6] Dall'Aglio, M.: A study of the circulation of uranium in the supergene environment in the Italian Alpine Range. Geochim. Cosmochim. Acta 35, 47 (1971)
- [7] Beneš, P.: Physicochemical forms and migration in continental waters of radium from uranium mining and milling. IAEA-SM-257/84. Symposium Knoxville, Tennessee, USA, 27-31 July 1981
- [8] Brookins, D.C.: Geochemical Aspects of Radioactive Waste Disposal. Springer-Verlag. New York-Berlin-Heidelberg-Tokyo. 1984
- [9] Andersson, K., Torstenfeldt, B. and Allard, B.: Sorption of Radionuclides in Geologic Systems. KBS Technical Report 15.06.1983

- [10] Barney, G.S.: Evaluation of Methods for Measurement of Radionuclide Distribution in Groundwater/ Rock Systems, RHO-BWI-LD-47. Informal Report. August 1981
- [11] Erdal, B.R., Bayhurst, B.P., Crowe, B.M., Daniels, W.R., Hoffman, D.C., Lawrence, F.O., Smyth, J.R., Thompson, J.L., and Wolfsberg, K.: Laboratory studies of radionuclide transport in geologic media. IAEA-SM-243/37. Symposium Helsinki 2. - 6. Juli 1979
- [12] RWMC/OECD: Geological Disposal of Radioactive Waste. Nuclear Energy Acency, Paris, 1982
- [13] Meier, H., Zimmerhackl, E., Zeitler, G., Menge, P. und Hecker, W.: Abschlußbericht Konrad I für PTB, 31.12.1984
- [14] Staatliches Forschungsinstitut für Geochemie, Bamberg. Zwischenbericht "Endlager Gorleben" vom 31.12.1984
- [15] Meier, H., Zimmerhackl, E., Zeitler, G., Menge, P. und Hecker, W.: Abschlußbericht für das Vorhaben Nuklidmigration im Deckgebirge des Endlagerorts Gorleben, 30.6.1984
- [16] Maass, K.E. and Huf, A. (eds): Standardization of methods for measuring migration of radionuclides in Geomedia. Proceedings of the U.S./FRG Bilateral Workshop, held in Berlin and Munich, October 25-29, 1982, published Juli 1983
- [17] Klotz, D. und Hirth, H.: Vergleich verschiedener Verfahren zur Bestimmung der Sorption wäßriger Radionuklid-Lösungen an Lockergesteinen. Deutsche Gewässerkundliche Mitt. 26, 128 (1982)
- [18] Relyea, J.F.: Status Report: Column Method for Determining Retardation Factors. PNL-4031 UC-70. November 1981
- [19] Albertsen, M. und Mattheß, G.: Ausbreitung von Radionukliden im oberflächennahen Boden. PSE-Nr. 80/13. November 1979
- [20] Wolter, R., Mühlenweg, U., Gehler, S., Barke, G., Sammler, H., und Brühl, H.: Ausbreitung von Radionukliden (Zr, Nb, Tc, Ru, J) im oberflächennahen Boden und in Lockergesteinen. PSE-Nr. 80/16. November 1979
- [21] Bradbury, M.H., Lever, D. and Kinsey, D.: Aqueous Phase Diffusion in Crystalline Rock: In Scientific Basis for Radioactive Waste Management V (W. Lutze, ed.), 1982, Elsevier Science Publ., pp. 569
- [22] Eriksen, T.E. and Jacobsson, A.: Diffusion in Clay-Experimental Techniques and Theoretical Models. SKBF/KBS. 1984-06-28
- [23] Meier, H., Zimmerhackl, E., Zeitler, G. und Menge, P.: The static or batch method for testing the sorptive and desorptive characteristics of geologic media. In Proceedings of the U.S./FRG Bilateral Workshop, 25. - 29.10.1982, pp. 37
- [24] Meier, H., Zimmerhackl, E., Zeitler, G., Menge, P. and Hecker, W.: The dependence of distribution coefficients on solution-to-solid ratios. International Conference on Nuclear and Radiochemistry, Lindau, October 8 - 12, 1984
- [25] Allard, B.: "Solubilities of Actinides in Neutral or Basic Solutions" (Ed. Edelstein, N.) Proc. of Actinides-81 Conf., p. 553-580, Pergamon Press, Oxford, 1982
- [26] Schweingruber, M.: Löslichkeits- und Speziationsberechnungen für U, Pu, Np und Th in natürlichen Grundwässern. EIR-Bericht Nr. 449, Würenlingen, November 1981

- [27] Baes, C.F. and Mesmer, R.E.: The Hydrolysis of Cations. J. Wiley & Sons, New York - London-Sidney, 1974, pp. 136
- [28] Kerrisk, J.F.:Solubility limits on Radionuclide Dissolution at a Yucca Mountain Repository. LA-9995-MS. May 1984
- [29] Brühl, H.: Ergebnisbericht für das Projekt "Endlager radioaktiver Abfälle in der Schachtanlage Konrad". Institut für Angewandte Geologie der FUB. 31.12.1984, Seite 4 und 8
- [30] J. Crank: The Mathematics of Diffusion. Clarendon Press, Oxford, 1975
- [31] B. Torstenfelt, H. Kipatsi, K. Andersson, B. Allard and U. Olofsson: Transport of Actinides through a Bentonite Backfill. In Scientific Basis for Radioactive Waste Management V (W. Lutze, ed.), 1982, Elsevier Science Publ., pp. 659
- [32] Krauskopf, K.B. (Board on Radioactive Waste Management) in: A Study of the isolation System for Geologic Disposal of Radioactive Wastes. National Academy Press. Washington, D.C. 1983, pp. 147.

6. <u>Tabellen- und Abbildungsverzeichnis</u>

6.1.	Tabe	llen	Seite
Tab.	2-1	Übersicht der zur Bearbeitung vorgeleg- ten Gesteinsproben (nach SE 1.4/9K/2242, 17-19/SF. 24.7.1985)	3
Tab.	2-2	Analytische Angaben über die für die Untersuchungen eingesetzten Wasserproben	4
Tab.	2-3	Zur Verteilungsmessung eingesetzte Ra- dionuklide	7
Tab.	2-4	LSC-Kalibrierdaten von Se-75. Szintilla- tor Optifluor (15 ml) mit 1 ml schwach mineralisiertem Wasser	14
Tab.	2-5	LSC-Kalibrierdaten von Se-75. Szintilla- tor Quickszint (15 ml) mit 1 ml stark mineralisiertem Wasser	14
Tab.	2-6	Faktorbestimmung \overline{F} (= I_{LSC}/I_{γ}) : Se-75	16
Tab.	2-7	LSC-Kalibrierdaten von Mo-93. Szintilla- tor Optifluor (15 ml) in 1 ml schwach mineralisiertem Wasser. Meßzeit: 10 min.	19
Tab.	2-8	Reale Nachweisgrenzen C $_{g,real}$ (P = 95 %) der eingesetzten Radionuklide	20
Tab.	2-9	Bei Batchversuchen meist eingesetzte Konzentrationsbereiche der Radionuklide	20
Tab.	3-1	<pre>Sr- und Cs-Gehalte der Konrad-Festge- steinsproben in ⊭g/g (bzw. ppm). Sr: AAS-Messung. Cs: Flammenphotome- trische Bestimmung</pre>	35
Tab.	3-2	U-, Th- und K-Gehalte der Konrad-Fest- gesteinsproben in µg/g (ppm) bzw. %. Jeweils 3 Einzelbestimmungen	37

		Seite
Tab. 3-3	Spezifische Oberflächen der Konrad- Festgesteinsproben. Messung im AERA- Meter (BET)	38
Tab. 3-4	<pre>Zusammenstellung der Ergebnisse der Lagerungsversuche im A schwach mineralisierten Söhlde- wasser (konditioniert mit Gestein "Sorption 1") B stark mineralisierten Hilswasser (konditioniert mit Gestein "Sorp- tion 4")</pre>	43
Tab. 3-5	Einfluß der Kontakt- bzw. Schüttel- zeit auf R _S - und R _D -Werte von Uran(VI). Doppelbestimmungen. System: Gestein "Sorption 4"/Hilswasser. V/M ≃ 1,1	45
Tab. 3-6	Einfluß der Kontakt- bzw. Schüttelzeit auf R _S - und R _D -Werte von Radium. Dop- pelbestimmungen. System: Gestein "Sorption 4"/Hilswasser. V/M ~ 1,1	45
Tab. 3-7	Einfluß der Kontakt- bzw. Schüttel- zeit auf R _S - und R _D -Werte von Thorium. Doppelbestimmungen. System: Gestein "Sorption 4"/Hilswasser. V/M ≃ 1,1	46
Tab. 3-8	Einfluß der Kontakt- bzw. Schüttel- zeit auf R _S - und R _D -Werte von Actinium. Doppelbestimmungen. V/M ≃ 1,1. System: Gestein "Sorption 4"/Hilswasser	46
Tab. 3-9	Einfluß der Kontakt- bzw. Schüttelzeit auf R _S - und R _D -Werte von Blei. Doppel- bestimmungen. V/M ~ 1,1. System: Gestein "Sorption 4"/Hilswasser	47
Tab. 3-10	Einfluß der Kontakt- bzw. Schüttelzeit auf R _S - und R _D -Werte von Nickel. Dop- pelbestimmungen. V/M ≃ 1,1. System: Gestein "Sorption 4"/Hilswasser	47

- Tab. 3-11 Einfluß der Kontakt- bzw. Schüttel-48zeit auf R_{S} - und R_{D} -Werte von Selenit. Doppelbestimmungen. $V/M \simeq 1, 1$. System: Gestein "Sorption 4"/Hilswasser Tab. 3-12 Einfluß der Kontakt- bzw. Schüttel-48zeit auf $\rm R_{S}-$ und $\rm R_{D}-Werte$ von Selenat. Doppelbestimmungen. $V/M \simeq 1, 1$. System: Gestein "Sorption 4"/Hilswasser Tab. 3-13 Einfluß der Kontakt- bzw. Schüttelzeit auf 49 R_S- und R_D-Werte von Molybdän. AAS-Auswertung. Doppelbestimmungen. V/M 2 1,1 Tab. 3-14 V/M-Einfluß beim U-233 auf R_S/R_D -Werte 50 System "Sorption 3"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml Tab. 3-15 V/M-Einfluß beim Ra-226 auf R_S/R_D-Werte. 51 System "Sorption 3"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml Tab. 3-16 V/M-Einfluß beim Th-228 auf R_S/R_D -Werte. 51 System "Sorption 3"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml Tab. 3-17 V/M-Einfluß beim Ac-227 auf R_S/R_D-Werte. 52 System "Sorption 3"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml V/M-Einfluß beim Pb-210 auf R_S/R_D -Werte. Tab. 3-18 53 System "Sorption 3"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage.
 - Lösungsvolumen: 7 ml

- Tab. 3-19 V/M-Einfluß beim Molybdän auf R_S/R_D-Werte. 54 System "Sorption 1"/Söhldewasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml
- Tab. 3-20 V/M-Einfluß beim Molybdän auf R_S/R_D-Werte 54 System "Sorption 5"/Hilswasser. Doppelbestimmungen. Versuchsdauer: 21 Tage. Lösungsvolumen: 7 ml
- Tab. 3-21 pH-Abhängigkeit der R_S/R_D-Werte von U-233. 55 System "Sorption 4"/Hilswasser. V/M ~ 1,1. Doppelbestimmungen
- Tab. 3-22 pH-Abhängigkeit der R_S/R_D-Werte von Ra-226. 56 System "Sorption 4"/Hilswasser. V/M ~ 1,1. Doppelbestimmungen
- Tab. 3-23 pH-Abhängigkeit der R_S/R_D -Werte von Th-228. 57 System "Sorption 4"/Hilswasser. V/M \simeq 1,1. Doppelbestimmungen
- Tab. 3-24 pH-Einfluß auf die R_S^- und R_D^- Werte von 58 Ac-227. System "Sorption 4"/Hilswasser. V/M \simeq 1,1. Doppelbestimmungen
- Tab. 3-25 pH-Abhängigkeit der R_S/R_D -Werte von 58 Pb-210. System "Sorption 4"/Hilswasser. V/M \simeq 1,1. Doppelbestimmungen
- Tab. 3-26 pH-Abhängigkeit der R_S/R_D-Werte von Ni-63. 59 System "Sorption 4"/Hilswasser. V/M ≃ 1,1. Doppelbestimmungen
- Tab. 3-27 Konzentrationsabhängigkeit der R_S/R_D -Werte 60 von Uran (markiert mit U-233). System "Sorption 3"/Hilswasser. V/M \simeq 1,1. Doppelbestimmungen. T = 15[°] C.

		Sert
Tab. 3-28	Konzentrationsabhängigkeit der R _S /R _D - Werte von Thorium (markiert mit Th-228). System "Sorption 3"/Hilswasser. V/M ≆ 1,1. Doppelbestimmungen	61
Tab. 3-29	Konzentrationsabhängigkeit der R_S/R_D - Werte von Blei (markiert mit Pb-210). System "Sorption 3"/Hilswasser. V/M \simeq 1,1. Doppelbestimmungen. T = 15° C	62
Tab. 3-30	Konzentrationsabhängigkeit der R_S/R_D^- Werte von Nickel (markiert mit Ni-63). System "Sorption 3"/Hilswasser. V/M \simeq 1,1. Doppelbestimmungen. T = 15° C	63
Tab. 3-31	Einfluß von NaCl auf R_S^- und R_D^- Werte von Uran-233 am System Sorption 1/Söhldewas-ser. Doppelbestimmungen. V/M $\simeq 1$	64
Tab. 3-32	Einfluß von NaCl auf R _S - und R _D -Werte von Radium-226 am System Sorption 1/Söhlde- wasser. Doppelbestimmungen. V/M ≃ 1	64
Tab. 3-33	Einfluß von NaCl auf R _S - und R _D -Werte von Thorium-228 am System Sorption 1/Söhlde- wasser. Doppelbestimmungen. V/M = 1	65
Tab. 3-34	Einfluß von NaCl auf R_S^- und R_D^- Werte von Actinium am System Sorption 1/Söhldewasser Doppelbestimmungen. V/M \simeq 1	66 •
Tab. 3-35	Einfluß von NaCl auf R _S - und R _D -Werte von Blei-210 am System Sorption 1/Söhlde- wasser. Doppelbestimmungen. V/M ~ 1	67
Tab. 3-36	Einfluß von NaCl auf R _S - und R _D -Werte von Nickel-63 am System Sorption 1/Söhlde- wasser. Doppelbestimmungen. V/M ~ 1	67

Tab. 3-37	Einfluß von NaHCO ₃ auf R _S - und R _D - Werte von Uran-233 am System Sorp- tion 1/Söhldewasser. V/M ≃ 1,1. Dop- pelbestimmungen	68
Tab. 3-38	Einfluß von NaHCO ₃ auf R _S - und R _D - Werte von Thorium-228 am System Sorp- tion 1/Söhldewasser. V/M ≃ 1,1. Dop- pelbestimmungen	69
Tab. 3-39	Einfluß von NaHCO ₃ auf R_S^- und R_D^- Werte von Blei-210 am System Sorp- tion 1/Söhldewasser. V/M \simeq 1,1. Dop- pelbestimmungen	69
Tab. 3-40	Einfluß von NaHCO ₃ auf R _S - und R _D - Werte von Nickel-63 am System Sorp- tion 1/Söhldewasser. V/M ≃ 1,1. Dop- pelbestimmungen	70
Tab. 3-41	Einfluß von NaHCO ₃ auf R _S - und R _D - Werte von Radium-226 am System Sorp- tion 1/Söhldewasser. V/M ≃ 1,1. Dop- pelbestimmungen	70
Tab. 3-42	Einfluß von NaHCO ₃ auf R_S - und R_D - Werte von Actinium-227 am System Sorption 1/Söhldewasser. V/M \approx 1,1. Doppelbestimmungen	71
Tab. 3-43	EDTA-Einfluß auf R _S - und R _D -Werte von U-233. V/M ≃ 1. System Sorption 1/ Söhldewasser. Doppelbestimmungen	72
Tab. 3-44	EDTA-Einfluß auf R _S - und R _D -Werte von Th-228. V/M ≃ 1. System Sorption 1/ Söhldewasser. Doppelbestimmungen	72
Tab. 3-45	EDTA-Einfluß auf R _S - und R _D -Werte von Ac-227. V/M ≃ 1. System Sorption 1/ Söhldewasser. Doppelbestimmungen	73

Tab. 3-46	EDTA-Einfluß auf R _S - und R _D -Werte von Pb-210. V/M ~ 1. System Sorption 1/ Söhldewasser. Doppelbestimmungen	73
Tab. 3-47	EDTA-Einfluß auf R _S - und R _D -Werte von Ni-63. V/M ~ 1,1. System Sorption 1/ Söhldewasser. Doppelbestimmungen	74
Tab. 3-48	Maranilsäure-Einfluß auf die R_S - und R_D -Werte von Th-228. Gestein u/m Ceno- man. Doppelbestimmungen. M = 6 g. V = 7 ml. Maranilgehalt: 1 mg/ml	75
Tab. 3-49	Sorption von Ni-63 im System Cenoman∕ Söhldewasser. V/M ≃ 1,1. BET = 14 m ² /g	83
Tab. 3-50	Sorption von Ni-63 im System Heer- sumer Schichten/Wasser Strecke 670. V/M \simeq 1,1. BET = 32,9 m ² /g. Anmerkung: c _L und c _{ad} sind Mittel- werte aus Sorptions-/Desorptionsmes- sungen	86
Tab. 3-51	R _S /R _D -Verteilungsprofil für U-233. V/M ≃ 1,1. Doppelbestimmungen	89
Tab. 3-52	R _S /R _D -Verteilungsprofile für Th-228. V/M ≃ 1,1. Doppelbestimmungen	90
Tab. 3-53	R _S /R _D -Verteilungsprofile für Ra-226. V/M ≃ 1,1. Doppelbestimmungen	91
Tab. 3-54	R _S /R _D -Verteilungsprofile für Ac-227. V/M ≃ 1,1. Doppelbestimmungen	92
Tab. 3-55	R _S /R _D -Verteilungsprofile für Pb-210. V/M ≃ 1,1. Doppelbestimmungen	93
Tab. 3-56	R _S /R _D -Verteilungsprofil für Ni-63 V/M ≃ 1,1. Doppelbestimmungen	94
Tab. 3-57	R _S /R _D -Verteilungsprofil für Na ₂ ⁷⁵ Se0 ₄ . V/M ≃ 1,1. Doppelbestimmungen	95

		Seite
Tab. 3-58	R _S /R _D -Verteilungsprofil für Na ₂ ⁷⁵ SeO ₃ . V/M ≃ 1,1. Doppelbestimmungen	96
Tab. 3-59	R_S/R_D -Verteilungsprofil für Mo-93. V/M \simeq 1,1. Doppelbestimmungen. LSC- Messung (c \simeq 7 · 10 ⁻⁸ mol/l)	97
Tab. 3-60	R_S/R_D -Verteilungsprofil für Molybdän. V/M \approx 1,1. Doppelbestimmungen. AAS- Messung (c \approx 1 · 10 ⁻⁵ mol/l)	98
Tab. 3-61	Säulenparameter und Verzögerungsfakto- ren r _D für U-233, Ra-226, Ni-63, Na ₂ ⁷⁵ SeO ₃ und Na ₂ ⁷⁵ SeO ₄	105
Tab. 3-62	Säulenparameter und Verzögerungsfakto- ren r _D für Th-228 und Ac-227. Säulendurchmesser: 2 cm. Füllhöhe: 12 cm	106
Tab. 3-63	Vergleich zwischen Säulen- und Batch- versuchen. Säulenparameter s. Tab. 3-61 und 3-62. (Anm.: Adsorption auf der Säule = S [%])	106
Tab. 3-64	Aus Diffutionsmessungen abgeleitete Migrations- und Verteilungsparameter (vgl. Abb. 3-16 bis 3-26)	120
Tab. 3-65	Zusammenstellung einiger nach Gl. 3-34 aus Diffusionsmessungen abgeleiteter (vorläufiger) K _d -Werte	126
Tab. 4-1	Vergleich der an Gesteins-Wasser-Syste- men des Konrad-Deckgebirges gemessenen R _S /R _D -Werte mit Literaturangaben (vgl. [32])	129
Tab. 4-2	Abstufung der Migrationsfähigkeit auf- grund der gemessenen R _S - und R _D -Bereiche	131

6.2. Abbildungen

- Abb. 2-1 LSC-Spektrum von Se-75 in schwach mineralisiertem Söhldewasser. Optifluor. Tricarb
- Abb. 2-2 Kalibriergerade der LSC-Messung von Se-75 13 als Selenit. Schwach mineralisiertes Wasser: Messung mit 15 ml Optifluor
- Abb. 2-3 Kalibriergerade der LSC-Messung von Se-75 13 als Selenat. Schwach mineralisiertes Wasser: Messung mit 15 ml Optifluor
- Abb. 2-4 Gammaspektrum von 10 ⊭1 ⁷⁵Selenit-Stammlösung (aufgefüllt auf 6 ml). Bohrloch-Ge(Li)-Detektor (mit Elvira)
- Abb. 2-5 LSC-Spektrum von Mo-93 in schwach minera- 17 lisiertem Wasser. Optifluor. Tricarb
- Abb. 2-6 Kalibriergerade der LSC-Messung von Mo-93. 18 Schwach mineralisiertes Wasser: Messung mit 15 ml Optifluor
- Abb. 3-1 Lagerungsverhalten von Th-228 in Wasser- 40 proben.
 - (A) Schwach mineralisiertes Söhldewasser
 (konditioniert mit Gestein "Sorption 1")
 - (B) Stark mineralisiertes Hilswasser (konditioniert mit Gestein "Sorption 4")
- Abb. 3-2 Lagerungsverhalten von Ac-227 in Wasserpro- 41 ben.
 - (A) Schwach mineralisiertes Söhldewasser (konditioniert mit Gestein "Sorption 1")
 - (B) Stark mineralisiertes Hilswasser (konditioniert mit Gestein "Sorption 4")
- Abb. 3-3 Lagerungsverhalten von Pb-210 in Wasser- 42 proben.
 - (A) Schwach mineralisiertes Söhldewasser (konditioniert mit Gestein "Sorption 1")
 - (B) Stark mineralisiertes Hilswasser (konditioniert mit Gestein "Sorption 4")

Abb. 3	3-4	Einfluß der Schüttelzeit auf den Tempe- raturverlauf des Sorptionskoeffizienten von Ni-63 im System Fladentonstein∕ Wasser Strecke 670. V/M ≃ 1,1	76
Abb. 3	3-5	Diagramm zur $Pb(OH)_2^{O}$ -Bildung und Hydroxokomplexbildung (mit $pK_L = 15,6$)	79
Abb. 3	3-6	Diagramm zur $Ac(OH)_3$ -Bildung (mit $pK_L = 18,49$)	80
Abb. 3	3-7	Auftragung von c _L /c _{ad} gegen c _L für die Ni-Adsorption im System Cenoman/Söhlde- wasser	84
Abb. 3	3-8	Adsorptionsisotherme für Nickel im System Cenoman/Söhldewasser. Kenngrößen: $b_{max} = 7,4 \cdot 10^{-4} \text{[mol/g]}$ $k_1 = 1,03 \cdot 10^5$ • Meßwerte O Rechenwerte (Gl. 3-20)	85
Abb. 3	3-9	Auftragung von c _L /c _{ad} gegen c _L für die Ni-Adsorption im System Heersumer Schich- ten/Wasser Strecke 670	87
Abb. 3	3-10	Adsorptionsisotherme für Nickel im System Heersumer Schichten/Wasser Strecke 670. Kenngrößen: $b_{max} = 3,5 \cdot 10^{-4} \text{[mol/g]}$ und $k_1 = 1,28 \cdot 10^{5}$ • Meßwerte o Rechenwerte (Gl. 3-20)	88
Abb. 3	3-11	Konzentrationsdurchgangskurven für U-233 und ³ H ¹ HO am System Sorption 10/Wasser Ort 300. Säule 2 cm Ø. 12 cm Füllhöhe. Tropfgeschwindigkeit v _t = 1 ml/h	102
Abb. 3	5-12	Konzentrationsdurchgangskurven für Ra-226 und ${}^{3}\text{H}^{1}\text{HO}$ am System Sorption 5/Hilswasser. Säule 2 cm Ø. 12 cm Füllhöhe. Tropfgeschwin- digkeit v ₊ = 0,95 ml/h	103

Abb. 3-13	Konzentrationsdurchgangskurven für Ni-63 und ³ H ¹ HO am System Sorption 5/Hilswas- ser. Säule 2 cm Ø. 12 cm Füllhöhe. Tropf- geschwindigkeit v _t = 0,9 ml/h	103
Abb. 3-14	Konzentrationsdurchgangskurven für Na ₂ ⁷⁵ SeO ₃ und ³ H ¹ HO am System Sorption 7/ Wasser Ort 300. Säule: 2 cm Ø. 12 cm Füllhöhe. Tropfgeschwindigkeit v _t = 0,95 ml/h	104
Abb. 3-15	Konzentrationsdurchgangskurven für Na ₂ ⁷⁵ SeO ₄ und ³ H ¹ HO am System Sorption 10/ Wasser Ort 300. Säule: 2 cm Ø. 12 cm Füll- höhe. Tropfgeschwindigkeit v _t = 0,95 ml/h	104
Abb. 3-16	Migrationskurve für U-233 im System Erz- kalke-Wasser Strecke 670 (U KZ 16a). d = 5,0 mm. Durchbruchszeit t _D = 1730 Std.	109
Abb. 3-17	Migrationskurve für U-233 im System Rot- pläner-Söhldewasser (U KZ 20). d = 5,0 mm. Durchbruchszeit t _D = 2611 Std.	110
Abb. 3-18	Migrationskurve für U-233 im System Lamarcki Pläner-Söhldewasser (U KZ 23). d = 5,0 mm. Durchbruchszeit t _D = 1991 Std.	111
Abb. 3-19	Migrationskurve für U-233 im System Rhotomagensis Pläner.Söhldewasser (U KZ 24). d = 5,0 mm. Durchbruchszeit t _D = 1564 Std.	112
Abb. 3-20	Migrationskurve für U-233 im System Sorption 1a-Söhldewasser (U KZ 27). d = 6 mm. Durchbruchszeit t _D = 2339 Std.	113
Abb. 3-21	Migrationskurve für U-233 im System Sorption 8a-Wasser Ort 300 (U KZ 38). d = 5,1 mm. Durchbruchszeit $t_D = 1646$ Std.	114

Abb. 3-22	Migrationskurve für Ra-226 im System	115
	Sorption 1a-Söhldewasser (Ra KZ 29).	
	d = 6,4 mm. Durchbruchszeit t_D =	
	704 Std.	

- Abb. 3-23 Migrationskurve für Ni-63 im System 116 Rhotomagensis Pläner – Söhldewasser (Ni KZ 42). d = 5 mm. Durchbruchszeit $t_D = 447$ Std.
- Abb. 3-24 Migrationskurve für Ni-63 im System 117 Sorption 2a-MW S 2 (Ni KZ 31). d = 6 mm. Durchbruchszeit $t_D = 1972$ Std.
- Abb. 3-25 Migrationskurve für Ni-63 im System 118 Sorption 1a-Söhldewasser (Ni KZ 28). d = 6,2 mm. Durchbruchszeit $t_D =$ 2036 Std.
- Abb. 3-26 Migrationskurve für $Na_2^{75}SeO_4$ im 119 System Sorption 8a-Wasser Ort 300 (Se II KZ 34). d = 5,2 mm. Durchbruchszeit $t_D = 764$ Std.
- Abb. 3-27 Schema der Durchbruchskurve zur Ableitung der Diffusionskoeffizienten D
- Abb. 4-1 Einordnung von U, Ra, Ac, Pb, Pa, Th, 132 Ni, Mo und Se in das geochemische Beweglichkeitsfeld (Beweglichkeitsgrenzen nach [1]).

7. Abkürzungsverzeichnis

α	Kapazitätsfaktor
A	spezifische Aktivität
b _{max}	Adsorptionskapazität [mol/g]
c _{ad}	Adsorptionsmenge pro g [mol/g]
cL	Gleichgewichtskonzentration [mol/ml]
c_A^s	Aktivitäts- bzw. Massenkonzentration zu Beginn
3	der Sorptionsmessung
c ^a E	Aktivitäts- bzw. Massenkonzentration am Ende
	der Desorptionsmessung
c_{E}^{S}	Aktivitäts- bzw. Massenkonzentration am Ende
1	der Sorptionsmessung
C _i	statistische Nachweisgrenze
Creal	reale Nachweisgrenze (95 %) aus Eichgerade
d	Radionuklidweg in der Säule
D	Diffusionskoeffizient [cm ² /s]
D	scheinbarer Diffusionskoeffizient (mit Sorp-
a	tionseinfluß)
D	Diffusionskoeffizient der Porenlösung
D _w	Diffusionskoeffizient der wässrigen Lösung
e	Porosität
ח(E)	Wirkungsgrad der Aktivitätsmessung
f	Gesamtausbeute der LSC-Messung
F	Säulenquerschnitt; Gesteinsfläche bei Diffu-
	sionsversuchen
F	Umrechnungsfaktor (LSC/ γ -Messung)
I	Impulsrate
I	spez. Impulsraten zu Beginn der Lagerung
I _{o,t}	spez. Impulsraten nach Lagerzeit t
k ₁	Langmuir-Konstante
K	Kalibrierfaktor [dpm/ipm • ml]
Kd	Verteilungskoeffizient [ml/g]
1	Säulen- bzw. Sandlänge; Gesteinsdicke

L	Löslichkeitsprodukt
λ	Zerfallskonstante [s ⁻¹]
m	Nachweisempfindlichkeit [ipm • ml/dpm]
^m 1	Massen der Nuklide in Lösung bei Sorption
mj	Massen der Nuklide in Lösung bei Desorption
ms	Massen der Nuklide am Feststoff bei Sorption
m's	Massen der Nuklide am Feststoff bei Desorption
M	Masse der Gesteinsprobe
n _{eff}	effektiver Porenraum (Porosität)
q	Verteilungskoeffizient
r _D	Verzögerungsfaktor
R _D	Desorptionskoeffizient [ml/g]
R _S	Sorptionskoeffizient [ml/g]
9	Trockenraumdichte
S	Aktivitätsänderung bei Lagerungsversuchen [%]
^t 1/2	Halbwertszeit [s]
t _D	Durchbruchszeit [s]
t_{50}	Zeit zum 50 %igen Durchlauf
t_{50}^{RN}	Zeit zur 50 %igen Verschiebung des Radionuklids
v _a	mittlere Abstandsgeschwindigkeit des Grundwassers
v _f	Filtergeschwindigkeit
vp	Nuklidgeschwindigkeit ohne Sorptionseinflüsse
P V.	Tropfgeschwindigkeit
t Vm	mittlere Transportgeschwindigkeit des Radio-
· T	nuklids
v	Lösungsvolumen
V _A	Volumen der Stammlösung
VG	Volumen der Grundwasserlösung
$v_{50}^{\mathrm{H_2O}}$	Volumen bis 50 % Durchbruch von ${}^{3}\text{H}^{1}\text{HO}$ (\triangleq V _w)
v ^{RN} ₅₀	Volumen zur 50 %igen Elution bzw. Verschiebung
V	Sand-Feuchtvolumen (🍨 Säulenvolumen)
V w	Porenvolumen
w _Y	Übergangswahrscheinlichkeit