

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Langzeitsicherheitsanalysen für das Endlager Konrad

Referenzfall

Grundwassermodellrechnungen mit dem Programm NAMMU

Anlagenband

2. Er)

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Langzeitsicherheitsanalysen für das Endlager Konrad

Referenzfall

Grundwassermodellrechnungen mit dem Programm NAMMU

Anlagenband

April 1993 Auftrags-Nr.: 65 300

Anmerkung:

Dieser Bericht ist von der GRS im Auftrag des TÜV Hannover im Rahmen der Begutachtung Konrad erstellt worden. Der Auftraggeber behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit seiner Zustimmung zitiert, ganz oder teilweise vervielfältigt werden bzw. Dritten zugänglich gemacht werden.

Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wieder und muß nicht mit der Meinung des Auftraggebers übereinstimmen.

GRS - A - 2051

Verzeichnis der Tabellen

Tab. 1:	Standardprofil der Hydrogeologie des Untersuchungsgebietes;	
	Quelle: NLfB	

- Tab. 2: NAMMU-Eingabedatensatz des Referenzfalles
- Tab. 3: Bandbreiten und erster Rechenwert der Schichtdurchlässigkeitsbeiwerte; Quelle: NLfB
- Tab. 4: Bandbreiten und erster Rechenwert der Gebirgsporositäten; Quelle: NLfB
- Tab. 5: Farben und Zeichenerklärung der Modellgitterschnitte
- Tab. 6a: Durchfluß durch den Schnitt y=3500 m im Anstromgebiet des Endlagers
- Tab. 6b: Endlagerbilanzierung
- Tab. 7: Startpunkte, durchlaufende Einheiten, Laufwege, Laufzeiten und Endpunkte der Partikel in den Trajektorienberechnungen zum "Referenzfall"

Verzeichnis der Bilder

Bild 1.1:	Untersuchungsgebiet des Endlagers Konrad; Quelle: NLfB					
Bild 1.2:	NAMMU-Modellgebiet mit Lage der Modellschnitte					
Bild 2.1-2-22:	2D-Modellgitterschnitte nach West-Ost-Schnitten des NLfB					
Bild 3:	3D-NAMMU-Finite-Element-Gitter und Modellgitter Konrad					
Bild 4.1-4.6:	Süd-Nord-Modellgitterschnitte					
Bild 5.1-5.12:	Topographie des Modellgitternetzes der hydraulischen Einheiten					
Bild 6:	Isopotentiallinien auf der Modelloberfläche entspricht Grundwassergleichenplan					
Bild 7.1-7.16:	"Referenzfall": Isopotentiallinien in West-Ost-Gitterschnitten					
Bild 8.1-8.16:	"Referenzfall": Darcy-Geschwindigkeiten in West-Ost Gitterschnitten					
Bild 9.1-9.7:	"Referenzfall": Isopotentiallinien in Süd-Nord-Gitterschnitten					
Bild 10.1-10.7:	"Referenzfall": Darcy-Geschwindigkeiten in Süd-Nord Gitterschnitten					
Bild 11.1-11.3:	Trajektorienberechnungen des "Referenzfalles", Seitenan- sicht und Aufsicht auf das 3D-Modell					

Tab. 1: Standardprofil Hydrogeologie; Quelle: NLfB

		Stratigraphie	Nr.	ydrogeologische Einheit Bezeichnung
		Quartar	1	Quartăr
		Tertiär	2	Tertiär
02.1		Santon Emscher-Mergel Coniac	3	Emscher-Mergel
		Turon Cenoman Oberalb Flammen- mergel	4	Flänerkalke bis Flammenmergel
	D	Alb Mittelalb	5	Alb (tonig)
0	t	Hilssand- stein	6	Bilssandstein
	k r i d	Apt Barrême Bauterive	7	Apt bis Basis Unterkreide (tonig
	•	Valangin(tonig)Transgr Eorisont	8	entfällt (vgl. Text)
		Valangin(sandig) Wealden	9	Valangin (sandig) + Wealden
	2 4 1 2	Tithon Kimmeridge	10	Tithoñ Kimmeridge
		Oxford	11	Oxford
		Callovium Bathonium	12	Callovium + Bathonium (tonig)
J	D	Cornbrash- 	13	Cornbrash-Sandstein {Bathonium/Ober-Bajocium
σ	99		14	Bajocium (tonig) + Ob. Aalenium (tonig)
	e T	Ober-A. Dogger beta- Sandstein Aalenium	15	Dogger beta - Sand- stein (Ob. Aslenium)
*	Lia	Unter-A. Toarcium Pliensbachium Sinemurium	-16	Unt. Aslenium bis Sinemurium
-	-	Bettangium Oberer K.	17	Bettangium + Oberer Keuper
			18	Nittlerer Keuper (höherer Teil)
1	P	Hittlerer K.	19	entfällt (vgl. Text)
2	r	Unterer K.	20	Rittlerer Keuper (tieferer Teil) • Unterer Keuper
2		Oberer Ruschelkalk	21	Oberer Muschelkalk

	PERMEABI	_ITAT [m²]		
K TYP	-			EINHEIT
K IYP	E K	ĸ	ĸ	1 mil 1711 mil
			· \2	
1	< 5.E-12	5.E-12	5.E-12 >	/* Quartar
2	< 5.E-12	5.E-12	5.E-12 >	
3	< 5.E-15	5.E-15	5.E-15 >	/* Emscher Mergel
4	< 5.E-14	5.E-14	5.E-14 >	
5	< 1.E-18	1.E-18	1.E-18 >	/* AID
6	< 1.E-12	1.E-12	1.E-12 >	/* Hils-Sandstein
7	< 1.E-17	1.E-17	1.E-17 >	/* Unterkreide
8	< 5.E-15	5.E-15	5.E-15 >	/* Wealden Sudbereich
9	< 1.E-14	1.E-14	1.E-14 >	/* Wealden Nordbereich
10	< 1.E-15	1.E-15	1.E-15 >	/* Kimmeridge
11	< 1.E-15	1.E-15	1.E-15 >	/* Oxford (Korallenoolith)
12	< 1.E-17	1.E-17	1.E-17 >	/* Dogger-Tone (Bathonium)
13	< 1.E-14	1.E-14	1.E-14 >	/* Combrash
14	< 1.E-17	1.E-17	1.E-17 >	/* Dogger-Tone (Bajocium)
15	< 1.E-13	1.E-13	1.E-13 >	/* Dogger Beta Sandstein
16	< 1.E-17	1.E-17	1.E-17 >	/* Lias-Tone
17	< 1.E-13	1.E-13	1.E-16 >	/* Oberer Keuper Aniso Horiz
18	< 5.E-17	5.E-17	5.E-17 >	/* Mittlerer Keuper
19	< 1.E-13	1.E-13	1.E-13 >	/* Oberer Muschelkalk
20	< 1.E-25	1.E-25	1.E-25 >	/* Zechstein
21	< 1.E-16	1.E-13	1.E-13 >	/* Ob. Keuper Aniso Vertikal
22	< 5.E-12	5.E-12	5.E-12 >	/* Tertiär
23	< 5.E-15	5.E-15	5.E-15 >	/* Emscher Mergel
24	< 5.E-13	5.E-13	5.E-13 >	/* ST:Z Oberkreide
25	< 1.E-18	1.E-18	1.E-18 >	/* Alb
26	< 1.E-12	1.E-12	1.E-12 >	/* Hils-Sandstein
27	< 1.E-16	1.E-16	1.E-16 >	/* ST:Z Unterkreide
28	< 5.E-14	5.E-14	5.E-14 >	/* ST:Z Wealden Südbereich
29	< 1.E-13	1.E-13	1.E-13 >	/* ST:Z Wealden Nordbereich
30	< 1.E-14	1.E-14	1.E-14 >	/* ST:Z Kimmeridge
31	< 1.E-14	1.E-14	1.E-14 >	/* ST: Oxford (Korallenoolith)
32	< 1.E-16	1.E-16	1.E-16 >	/* ST: Dogger-Tone (Bathonium)
33	< 1.E-13	1.E-13	1.E-13 >	/* ST:Z Cornbrash
34	< 1.E-16	1.E-16	1.E-16 >	/* Dogger-Tone (Bajocium)
35	< 1.E-13	1.E-13	1.E-13 >	/* Dogger Beta Sandstein
36	< 1.E-16	1.E-16	1.E-16 >	/* ST:Z Lias-Tone
37	< 1.E-13	1.E-13	1.E-16 >	/* Oberer Keuper Vertikalanis
38	< 5.E-16	5.E-16	5.E-16 >	/* ST:Z Mittlerer Keuper
39	< 1.E-12	1.E-12	1.E-12 >	/* ST:Z Ob. Muschelkalk
40	< 1.E-25	1.E-25	1.E-25 >	/* Zechstein

Tab. 2: NAMMU - Eingabedatensatz des Referenzfalles

Tab. 2: NAMMU - Eingabedatensatz des Referenzfalles (Fortsetzung)

EFFEKTIVE POROSITĂT			
R TYPE.	PHI		
1	0.200		
2	0.200		
3	0.050		
4	0.100		
5	0.050		
6	0.150		
7	0.050		
8	0.075		
9	0.075		
10	0.010		
11	0.010		
12	0.020		
13	0.030		
14	0.020		
15	0.100		
16	0.020		
17	0.100		
18	0.050		
19	0.050		
20	0.100		
21	0.100		
22	0.200		
23	0.050		
24	0.150		
25	0.075		
26	0.150		
27	0.075		
28	0.100		
29	0.100		
30	0.020		
31	0.020		
32	0.030		
33	0.045		
34	0.030		
35	0.100		
36	0.030		
37	0.100		
38	0.075		
39	0.075		
40	0.100		

Tab. 3: Bandbreiten und erster Rechenwert der Schichtdurchlässigkeitsbeiwerte;

Quelle: NLfB

Durchlässigkeitsbeiwerte kf (m/s) für Modellrechnungen zur Langzeitsicherheit (Modellgebiet Grube Konrad)

Erläuterung zur kf-Bandbreite und zum vorgeschlagenen Rechenwert: a) = kf-Bandbreite aus vorliegenden Untersuchungen /11/, /15/, /16/ und /17/

- b) = kf-Bandbreite der Gebirgsdurchlässigkeit (eingeschätzte Werte)
- c) = Rechenwert für intaktes Gebirge (Vorschlag für 1. Rechenwert)
- d) = Rechenwert bei stärkerer tektonischer Beanspruchung (Vorschlag für1. Rechenwert)

Hydı	rogeol. Einheit	kf-Ba	andbreite	(m/s)	Rechenwert	(m/s)
		a)	von	bis		
Nr.	Bezeichnung	b)	von	bis	c)	d)
1	Quartär	a)	8E-5	2E-2		
		b)	1E-6	1E-3	5E-5	-
2	Tertiär	a)	<1E-11	7E-5		
		b)	1E-7	1E-4	5E-5	-
3	Emscher-Mergel	a)	8E-8	5E-6		
•		b)	1E-9	1E-7	5E-8	-
4	Plänerkalke bis Flam-	a)	<1E-11	1E-7		
	menmergel	b)	1E-10	1E-5	5E-7	5E-6
5	Alb (tonig)	a)		<1E-9		
		b)	1E-13	1E-10	1E-11	-
6	Hilssandstein	a)	1E-8	1E-5		
Ū		b)	1E-6	1E-5	1E-5	1

Tab. 3: Bandbreiten und erster Rechenwert der Schichtdurchlässigkeitsbeiwerte;

Quelle: NLfB (1. Fortsetzung)

Hydrogeol. Einheit		kf-Bandbreite		(m/s)	Rechenwert	(m/s)
Nr.	Bezeichnung	a) b)	von von	bis bis	c)	d)
7	Apt bis Basis	a)	<1E-11	5E-6		
	Unterkreide (tonig)	b)	1E-12	1E-9	1E-10	1E-9
8	Transgressions- Horizont	en	tfällt (vg	l. Text)		
9	Valangin (sandig) +	a)	1E-10	2E-4		
	Wealden	b)	1E-9	1E-5	S:5E-8	S:5E-7 *)
					N:1E-7	N:1E-6
10	Tithon + Kim-	a)	2E-11	5E-9		
	meridge	b)	1E-10	1E-7	1E-8	1E-7
11	Oxford	a)	<1E-11	>1E-4		
		b)	1E-10	1E-7	1E-8	1E-7
12	Callovium +	a)	<1E-11	6E-9		
	Bathonium (tonig)	b)	1E-12	1E-9	1E-10	1E-9
13	Cornbrash-Sandstein (Ba-	• a)	4E-13	2E-6	•	
	thonium/Ober-Bajocium)	b)	1E-10	1E-6	1E-7	1E-6
14	Bajocium (tonig) +	a)	<1E-11	6E-9		
	Ob. Aalenium (tonig)	b)	1E-12	1E-9	1E-10	1E-9
15	Dogger beta - Sand-	a)	<1E-11	1E-4		
	stein (Ob. Aalenium)	b)	1E-9	1E-5	1E-6	-

Tab. 3: Bandbreiten und erster Rechenwert der Schichtdurchlässigkeitsbeiwerte;

Quelle: NLfB (2. Fortsetzung)

Hyd	rogeol. Einheit	kf-Bandbre	eite (m/s)	Rechenwert	(m/s)
		a) von	bis		
Nr.	Bezeichnung	b) von	bis	c)	d)
16	Unt. Aalenium bis	a) -	~		
	Sinemurium	b) 1E-12	1E-9	1E-10	1E-9
17	Hettangium +	a)<1E-11	7E-5		
	Oberer Keuper	b) 1E-9	1E-5 1) 1E-6	- **)
			2)) 1E-9	-
18	Mittlerer Keuper	a) -	-		
	(höherer Teil)	b) 1E-11	1E-8	5E-10	5E-9
19	Schilfsandstein	entfällt	(vgl. Text)		
20	Mittlerer Keuper (tief.	a) -	-		
	Teil) + Unterer Keuper	b) 1E-11	1E-8	5E-10	5E-9
21	Oberer Muschelkalk	a) 5E-7	1E-3		
		b) 1E-8	1E-5	1E-6	1E-5

*) S = kf-Wert für S-Gebiet
N = kf-Wert für N-Gebiet

**) 1) = kf-Wert in Streichrichtung2) = kf-Wert senkrecht zum Streichen

Tab. 4: Bandbreiten und erster Rechenwert der Gebirgsporositäten; Quelle: NLfB

Effektive Gebirgsporosität P* (%) für Modellrechnungen zur Langzeitsicherheit

(Modellgebiet Grube Konrad)

Erläuterung zu Bandbreiten und zum vorgeschlagenen Rechenwert:

a) = Effektive Gebirgsporosität P* (eff. Kluftvolumen + eff. Matrixporosität); eingeschätzter Wert (Untersuchungsergebnisse des Antragstellers liegen dazu nicht vor)

- b) = Rechenwert P* für intaktes Gebirge (Vorschlag für 1. Rechenwert)
- c) = Rechenwert P* bei stärkerer tektonischer Beanspruchung (Vorschlag für 1. Rechenwert)

Hydr	ogeol. Einheit	Ban	dbreiten	P* (%)	Rechenwe	rt P* (%)
Nr.	Bezeichnung	a)	von	bis	b)	c)
1	Quartär		10	40	20	-
2	Tertiär		10	30	20	-
3	Emscher-Mergel		2	15	5	-
4	Plänerkalke bis Flam- menmergel		5	20	10	15
5	Alb (tonig)		2	15	5	7,5
6	Hilssandstein		10	25	15	-
7	Apt bis Basis Unterkreide (tonig)		2	15	5	7,5
8	Transgressions- Horizont		entfäl	lt (vgl.	Text)	

Tab. 4: Bandbreiten und erster Rechenwert der Gebirgsporositäten; Quelle: NLfB

(1. Fortsetzung)

Hydrogeol. Einheit		Bandbreite	n P* (%)	Rechenw	Rechenwert P* (%)	
Nr	. Bezeichnung	a) von	bis	b)	c)	
9	Valangin (sandig) + Wealden	5	20	7,5	10	
10	Tithon + Kimmeridge	0,1	20	1	2	
11	Oxford	0,1	20	1	2	
12	Callovium + Bathonium (tonig)	0,5	15	2	3	
13	Cornbrash-Sandstein (Ba- thonium/Ober-Bajocium)	0,1	20	3	4,5	
14	Bajocium (tonig) + Ob. Aalenium (tonig)	0,5	15	2	3	
15	Dogger beta - Sand- stein (Ob. Aalenium)	5	25	10	-	
16	Unt. Aalenium bis Sinemurium	0,5	15	2	3	
17	Hettangium + Oberer Keuper	5	25	10	-	
18	Mittlerer Keuper (höherer Teil)	1	15	5	7,5	
19	Schilfsandstein	entfäl	lt (vgl. 1	Text)		

Tab. 4: Bandbreiten und erster Rechenwert der Gebirgsporositäten; Quelle: NLfB

(2. Fortsetzung)

Hydro Nr.	Bezeichnung	Bandbreiten a) von	P* (%) bis	Rechenwert b)	P* (%) c)
20 M	Mittlerer Keuper (tief. Teil) + Unterer Keuper	1	15	5	7,5
21 (Oberer Muschelkalk	0,1	20	5	7,5

Tab. 5: Farben und Zeichenerklärung der Modellgitterschnitte

Hydrogeologische Modellarbeitsschnitte fuer das Endlager Konrad (NLFB- Daten)

Farbbelegung

Materialbelegung:

Hydrogeologische Modelleinheit

NR.	Bezeichnung:	
1	Quartaer/Tertiaer	
2	(Verkarstungshorizont Oxford)	
3	Emscher Mergel	
4	Oberkreide	
5	Alb (Tonsteine)	
6	Hilssandstein	
7	Unterkreide	
8	Wealden (Suedgebiet)	
9	Wealden (Nordgebiet)	
10	Kimmeridge	
11	Oxford	
12	Callovium + Bathonium (Tonsteine)	
13	Cornbrash-Sandstein	
14	Bajocium + Ob.Aalenium (Tonsteine)	

Tab. 5: Farben und Zeichenerklärung der Modellgitterschnitte (Fortsetzung)

Zu den jeweiligen Materialbelegungen einer hydrogeologischen

Einheit sind fuer die Stoerzonen zusaetzliche Belegungen in drei Stufen moeglich, wobei von maessig zerruettet ueber stark zerruettet zu sehr stark zerruettet, die den Farben uebergelegte Rasterung intensiver wird.

- 1.Stufe maessig zerrruettet
- 2.Stufe stark zerruettet
- 3.Stufe sehr stark zerruettet

				2.5	
	1.4				
PERSONAL A	.2.		2	1.11	e*.
New Contraction					
	1.4	512	6.25	1.1	2
	Sec.	12323	1.2.4.1.4	2.45.2	8 P

Hydrogeologische Einheit	Durchflußmenge in m³/a (Referenzfall)
1	9,61 x 10 ⁶
3	5,01 x 10 ⁴
4	3,30 x 10⁵
5	1,27 x 10 ¹
6	7,18 x 10⁵
7	2,03 x 10 ¹
14	-2,07 x 10 ¹
15	7,47 x 10 ³
16	2,80 x 10 ¹
17	5,81 x 10⁴
18	4,10 x 10 ²
19	1,20 x 10⁵

Tab. 6a: Durchfluß durch den Schnitt y = 3500 m im Anstromgebiet des Endlagers

Tab. 6b: Endlagerbilanzierung

EL - Durchfluß	Einstrom	1,81 x 10 ³
in m³/a	Ausstrom	2,03 x 10 ³

Tab. 7: Startpunkte, durchlaufene Einheiten, Laufwege, Laufzeiten und Endpunkte der Partikel in den Trajektorienberechnungen zum Referenzfall (Trajektorienstartpunkte: P1 - P6 = nordwestl. Endlager (Y9B3-Y10B2); P7 - P10 = südl. Endlager;
P11 - P15 = nordöstl. Endlager (Y9L4B4-Y10B3L4).

Startpunkt: Koordinate	Durchlaufene Einheiten	Lautweg [m]	Lautzeit [a]	Endpunkt
P1: 6089/11050/-1053	11/31, 16/36, 14/34, 15/35, 13/33, 12/32, 10/30, 9/29	29897	520260	12249/42274/-301
P2: 5410/12000/-1346	11/31, 16/36, 17/37, 14/34, 13/33, 12/32, 10/30, 9/29	32237	808280	12146/42264/-302
P3: 6098/12000/-1200	11/31, 16/36, 17/37, 15/35, 14/34, 13/33, 12/32, 10/30, 9/29	18149	834990	12262/42274/-301
P4: 6800/12000/- 952	11/31, 12/32, 14/34, 15/35, 13/33, 10/30, 9/29	29121	344940	12272/42279/-300
P5: 6165/12000/-1080	11/31, 16/36, 14/34, 15/35, 13/33, 12/32, 10/30, 9/29	29723	1298478	12168/42271/-301
P6: 6132/12000/-1150	11/31, 16/36, 15/35, 14/34, 13/33, 12/32, 10/30, 9/29	29305	1138598	12166/42275/-302
P7: 7850/10500/- 540	11/31, 12/32, 16/36, 7/27, 5/25	2765	12282590	11249/10583/64
P8: 7320/10500/- 710	11/31, 12/32, 13/33, 14/34, 15/35, 10/30, 9/29	24283	504310	12224/42248/-299
P9: 7320/10750/- 710	11/31, 12/32, 13/33, 15/35 ,14/34, 10/30, 9/29	23664	455220	12237/42250/-298
P10: 7320/10250/-710	11/31, 12/32, 13/33, 14/34, 15/35, 10/30, 9/29, 7/27	22566	946970	11000/40192/-19
P11: 6870/12000/-952	11/31, 12/32, 14/34, 15/35, 13/33, 10/30, 9/29	27722	336240	12280/42265/-301
P12: 7550/12000/-794	11/31, 12/32, 14/34, 15/35, 13/33, 10/30, 9/29	28010	331970	12289/42266/-301
P13: 7600/12000/-726	11/31, 12/32, 13/33, 7/27, 5/25	6416	2195510	10378/27184/50
P14: 7446/11050/-710	11/31, 12/32, 13/33, 14/34, 15/35, 16/36, 10/30, 9/29	24388	498030	12225/42251/-299
P15: 7945/12000/-696	11/31, 14/34, 15/35, 13/33, 16/36, 12/32, 7/27, 5/25	14171	3033520	10786/30049/25

Bild 1.1: Untersuchungsgebiet des Endlagers Konrad; Quelle: NLfB

Bild 1.2: NAMMU - Modellgebiet mit Lage der Modellschnitte

Bild 2.1: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.2: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.3: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.4: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.5: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.6: 2D - Modellgitterschnitt nach West - Ost- Schnitt des NLfB

Bild 2.7: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.8: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.10: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.11: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.12: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.13: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.15: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.16: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.18: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.20: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 2.21: 2D - Modellgitterschnitt nach West - Ost - Schnitt des NLfB

Bild 3: 3D - NAMMU - Modellgitter Konrad

Bild 4.3: Süd - Nord - Modellgitterschnitt

Bild 5.1: Topographie des Modellgitternetzes der hydraulischen Einheiten

Bild 5.4: Topographie des Modellgitternetzes der hydraulischen Einheiten

Bild 5.7: Topographie des Modellgitternetzes der hydraulischen Einheiten

Bild 5.8: Topographie des Modellgitternetzes der hydraulischen Einheiten

Bild 5.9: Topographie des Modellgitternetzes der hydraulischen Einheiten

Bild 5.11: Topographie des Modellgitternetzes der hydraulischen Einheiten

plan

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=750 M

 5.000E+01
 5.500E+01
 6.000E+01
 6.500E+01
 7.000E+01
 7.500E+01
 8.000E+01

 8.500E+01
 9.000E+01
 9.500E+01
 1.000E+02
 1.100E+02
 1.200E+02
 1.300E+02

 1.400E+02
 1.500E+02
 1.600E+02
 1.600E+02
 1.900E+02
 2.000E+02

POTENTIALVERTEILUNG FUER Y=9250 M

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=11000 M

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=13000 M

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 6.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=15250 M

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=17750 M

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=20250 M

 5.000E+01
 5.500E+01
 6.000E+01
 6.500E+01
 7.000E+01
 7.500E+01
 8.000E+01

 8.500E+01
 9.000E+01
 9.500E+01
 1.000E+02
 1.100E+02
 1.200E+02
 1.300E+02

 1.400E+02
 1.500E+02
 1.600E+02
 1.600E+02
 1.900E+02
 2.000E+02

POTENTIALVERTEILUNG FUER Y=25250 M

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=27600 M

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=31850 M

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=33760 M
HYDROGEOLOGISCHES MODELL#U2 KONRAD (Referenzfall)

5.000E+01 5.500E+01 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.600E+02 1.900E+02 2.000E+02

POTENTIALVERTEILUNG FUER Y=35260 M

 5.000E+01
 5.500E+01
 6.000E+01
 6.500E+01
 7.000E+01
 7.500E+01
 8.000E+01

 8.500E+01
 9.000E+01
 9.500E+01
 1.000E+02
 1.100E+02
 1.200E+02
 1.300E+02

 1.400E+02
 1.500E+02
 1.600E+02
 1.600E+02
 1.900E+02
 2.000E+02

Bild 7.13: Referenzfall: Isopotentiallinien in West - Ost - Gitterschnitten

Bild 7.14: Referenzfall: Isopotentiallinien in West - Ost - Gitterschnitten

Bild 7.15: Referenzfall: Isopotentiallinien in West - Ost - Gitterschnitten

Bild 7.16: Referenzfall: Isopotentiallinien in West - Ost - Gitterschnitten

Bild 8.1: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.3 Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.4: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.5: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.6: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.7: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.8 Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.9 Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.10: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.11: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.12: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 8.13: Referenzfall: Darcy - Geschwindigkeiten in West - Ost - Gitterschnitten

Bild 9.1: Referenzfall: Isopotentiallinien in Süd - Nord - Gitterschnitten

Bild 9 N Referenzfall: Isopotentiallinien in Süd - Nord - Gitterschnitten

Bild 9 ω Referenzfall: Isopotentiallinien in Süd - Nord - Gitterschnitten

Bild 9.7: Referenzfall: Isopotentiallinien in Süd - Nord - Gitterschnitten

HYDROGEOLOGISCHES MODELL KONRAD (REFERENZFALL)

TRAJEKTORIENSTARTPUNKT: Y9L4/B4 - Y10B3/L4

Bild 11.1: Trajektorienberechnungen des Referenzfalles: Seitenansicht des 3D-Modells

TRAJEKTORIENSTARTPUNKT: SÜDLICHES ENDLAGER

Bild 11.2: Trajektorienberechnungen des Referenzfalles: Seitenansicht des 3D -Modells

HYDROGEOLOGISCHES MODELL KONRAD (REFERENZFALL)

Bild 11.3: Trajektorienberechnungen des Referenzfalles: Seitenansicht des 3D -Modells

Verteiler

TÜV-Hannover

GRS

Geschäftsführer Bereichsleiter Projektbetreuung Abteilung 604 Autoren

Gesamtauflage: 27 x