Langzeitsicherheitsanalysen für das Endlager Konrad

Referenzfall

Nuklidtransportrechnungen

Textband

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Langzeitsicherheitsanalysen für das Endlager Konrad

Referenzfall

Nuklidtransportrechnungen

Textband

April 1993 Auftrags-Nr.: 65 300

Anmerkung:

Dieser Bericht ist von der GRS im Auftrag des TÜV Hannover im Rahmen der Begutachtung Konrad erstellt worden. Der Auftraggeber behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit seiner Zustimmung zitiert, ganz oder teilweise vervielfältigt werden bzw. Dritten zugänglich gemacht werden.

Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wieder und muß nicht mit der Meinung des Auftraggebers übereinstimmen.

Inhaltsverzeichnis

1	Berechnung der Ausbreitung radioaktiver Stoffe	1
1.1	Freisetzung radioaktiver Stoffe	1
1.1.1	Freisetzungs- und Transportrechnungen des Antragstellers	1
1.1.1.1	Vorgänge im Grubengebäude	1
1.1.1.2	Transportrechnungen für die Geosphäre	3
1.1.2	Freisetzungs- und Transportrechnungen im Gutachter-Modell	5
1.1.2.1	Vorgänge im Grubengebäude	5
1.1.2.2	Transportrechnungen für die Geosphäre	6
2	Unterlagen	11
3	Literatur	12

,

ANHANG

1 Berechnung der Ausbreitung radioaktiver Stoffe

1.1 Freisetzung radioaktiver Stoffe

1.1.1 Freisetzungs- und Transportrechnungen des Antragstellers

1.1.1.1 Vorgänge im Grubengebäude

Zur Berechnung der Freisetzungsraten aus dem Endlager geht der Antragsteller von einem Bilanzraum aus, der den Endlagerbereich homogenisiert umfaßt. Die aus diesem Bilanzraum freigesetzten Radionuklide werden für die Transportrechnungen von Radionukliden vom Endlager zur Biosphäre in Quellterme umgesetzt.

Die Freisetzungsraten aus diesem Bilanzraum wurden vom Antragsteller mit Hilfe des Codes EMOS ermittelt /EU 76.1/. Die Bilanzierung erfolgte unter Berücksichtigung

- der Durchströmung des Endlagers,
- des Wasservolumens im Endlager und
- der im Endlager zur Verfügung stehenden Sorbensmasse.

Bei der Ermittlung des Aktivitätsstromes aufgrund der Mobilisierung der Radionuklide wurden die Sorption an Feststoffen, der radioaktive Zerfall und die Ausfällung durch Erreichen der Löslichkeitsgrenzen für chemische Elemente im Bilanzraum berücksichtigt. Ergebnis dieser Berechnungen ist der zeitliche Verlauf der Aktivitätsfreisetzung aus dem Bilanzraum in die Geosphäre.

Zur Festlegung der Quellterme für die Geosphärenrechnung hat der Antragsteller zwei Radionuklidgruppen unterschieden. Für die Spalt- und Aktivierungsprodukte wurde ein zeitlich konstanter Quellterm über eine Zeitspanne von 10 000 Jahren angesetzt. Die Vorgabe der Quellterme für die Aktiniden und deren Zerfallsprodukte erfolgte abschnittsweise in 5 Zeitbereichen in Form mittlerer Freisetzungsraten, die aus den EMOS-Rechnungen ermittelt wurden.

Den Ansatz eines zeitlich konstanten mittleren Quellterms für die Spalt- und Aktivierungsprodukte begründet der Antragsteller mit den Transportrechnungen, die z.B. für Jod keinen Einfluß der Freisetzungszeit auf die Maximalkonzentration in der Biosphäre aufweisen, weil die Freisetzungszeit klein gegenüber der Transportzeit der Radionuklide ist /EU 121.4/.

Bewertung

Der Gutachter hat das Vorgehen des Antragstellers für die Gruppe der Spalt- und Aktivierungsprodukte exemplarisch für die Nuklide Jod, Selen und Zirkon anhand analytischer Lösungen der Transportgleichung überprüft. Sie bestätigen, daß die Variation der Freisetzungszeit von 500 Jahren bis 10 000 Jahren keinen wesentlichen Einfluß auf die Maximalkonzentration der Radionuklide in der Biosphäre ausübt. Gegen den Ansatz einer mittleren Freisetzungsrate über den Zeitbereich von 10 000 Jahren als Quellterm für die Geosphärenrechnung bestehen somit keine Einwände.

Zur Ermittlung der Freisetzungsraten der Aktiniden hat der Antragsteller das Endlager in einem Bilanzraum modelliert. Die verwendeten Bilanzgleichungen sind in der Unterlage (Kap. 7.2 in /EU 76.1) aufgeführt. Der Gutachter hat zur Überprüfung der Freisetzungsraten die Bilanzgleichungen in ein Rechenprogramm umgesetzt. Die Nachrechnungen mit den Daten des Antragstellers ergaben eine gute Übereinstimmung der Rechenergebnisse mit den zeitlichen Verläufen der Freisetzungsraten, die der Antragsteller mit EMOS ermittelt hatte /EU 341/. Die Bewertung der Bilanzgleichungen ergab, daß diese das Freisetzungsverhalten gegenüber einer Beschreibung unter Berücksichtigung des advektiven Transportes und der Gesamtbilanzierung der Aktivitäten in der Flüssigkeit und im Versatz überschätzen.

In einer weiteren Gegenrechnung hat der Gutachter seinen Rechencode MARNIE /GRS 89/, der zur Beschreibung von Nuklidtransportvorgängen in einem laugengefüllten Endlager entwickelt wurde, eingesetzt. MARNIE behandelt neben dem advektiven Transport alle Barriereneffekte eines Endlagers. Das Endlager wurde zur Behandlung durch MARNIE in einem Bilanzraum diskretisiert. Folgende Daten wurden vom Antragsteller übernommen:

- Eine Sorbensmasse von 3.43 10⁹ kg
- die Durchströmungsrate von 1 620 m³/a,

- eine Mobilisierungszeit der Aktiniden von 600 Jahren f
 ür zementierte Abf
 älle, die Zerfallsketten und Halbwertzeiten der Aktiniden,
- die Verteilungskoeffizienten für die Aktiniden.

Die Ergebnisse lagen unterhalb der Werte, die der Antragsteller ermittelte.

Gegen die Vorgehensweise des Antragstellers zur Ermittlung der Freisetzungsraten bestehen keine Einwände.

1.1.1.2 Transportrechnungen für die Geosphäre

Die Ermittlung der Radionuklidkonzentration im oberflächennahen Grundwasser erfolgt mit Hilfe von Transportrechnungen für die Geosphäre des Modellgebietes.

Der Antragsteller hat aus den Grundwasserrechnungen (Kap. 3.1 in /EU 341/) mit Hilfe von Trajektorienberechnungen Laufwege von Partikeln (Tracer) identifiziert und als Freisetzungswege für Radionuklide interpretiert. Das Transportverhalten der Radionuklide entlang dreier isolierter Wege wurde in eindimensionalen Rechnungen mit dem Code SWIFT simuliert. Die in den Trajektorienrechnungen von den Tracern durchlaufenen Schichtenfolgen und Lauflängen in diesen Schichten wurden zu einer eindimensionalen Stromröhre zusammengesetzt und für die Transportrechnungen diskretisiert. Den diskreten Bereichen sind die Materialien der jeweiligen Schichten zugeordnet worden. Der eindimensionalen Berechnung des Nuklidtransportes lag eine in der gesamten Stromröhre konstante Darcy-Geschwindigkeit zugrunde, während entlang der Trajektorien je nach hydrogeologischer Schicht unterschiedliche Darcy-Geschwindigkeiten auftreten. Der Antragsteller hat in seinen Rechnungen eine einheitliche Darcy-Geschwindigkeit in Ansatz gebracht, wobei über eine Korrektur der K_D-Werte die unterschiedlichen Darcy-Geschwindigkeiten beim Übergang zur nächsten geologischen Einheit berücksichtigt wurden /EU 121.1/. Aus der Durchströmungsrate des Endlagers und der Darcy-Geschwindigkeit in der Stromröhre errechnete sich der zu modellierende Querschnitt der Stromröhre. Der Quellterm (Kap.1.1.1.1) wurde als Randbedingung der Rechnung vorgegeben. Die Transportrechnung berücksichtigte Sorptionsvorgänge am Feststoff nach dem K_D-Konzept, die longitudinale Dispersion, die Diffusion sowie die Abhängigkeit von den Porositäten der Materialien und den radioaktiven Zerfall. Die Behandlung der Zerfallsketten erfolgte nur in den

Hauptzerfallswegen, die relevante Beiträge zur Strahlenexposition lieferten. Ergebnis der Rechnungen war der zeitliche Verlauf der Radionuklidkonzentration an jedem diskreten Ort des Modelles.

Zur Ermittlung der Radionuklidkonzentration im quartären Grundwasser für das Oxfordszenario hat der Antragsteller Verdünnungsfaktoren aufgrund der Zumischung von Grundwässern aus tieferen Aquiferen entlang des Transportweges (Faktor 7) sowie aufgrund des Grundwasserangebotes im quartären Grundwasserleiter (Faktor 10) in Ansatz gebracht. Die mit SWIFT ermittelten Konzentrationen im Quartär wurden somit um den Faktor 70 reduziert. Diese Konzentration ist Ausgangsgröße für die radiologischen Rechnungen in der Biosphäre.

Bewertung

Gegen die Vorgehensweise des Antragstellers bei den numerischen Transportrechnungen mit dem Code SWIFT und gegen die Herausstellung von drei Hauptausbreitungsszenarien im Schichtenmodell bestehen keine Einwände seitens der Gutachter. Die eindimensionalen Transportrechnungen stellen im Vergleich zu mehrdimensionalen Rechnungen eine konservative Behandlung dar, da die transversale advektive und dispersive Transportkomponente außer Betracht bleibt. Diese Vorgehensweise führt zu einer Überschätzung der Radionuklidkonzentration am Aufpunkt in der Biosphäre.

Der Code SWIFT wurde in Benchmark-Rechnungen für den eindimensionalen Radionuklidtransport verifiziert. Gegen eine eindimensionale Anwendung auf den Standort Konrad bestehen keine Einwände. Die eindimensionalen Transportrechnungen wurden vom Gutachter mit dem Rechencode SWIFT für die Zerfallsketten 4n und 4n+2 für die beiden repräsentativen Szenarien, das Oxford- und das Unterkreideszenarium, nachvollzogen. Die Ergebnisse entsprechen denen des Antragstellers.

Das Transportverhalten der Spaltprodukte im Oxfordszenarium ist vom Gutachter exemplarisch für die Radionuklide Jod, Technetium und Selen mit Hilfe analytischer Methoden auf der Basis der Unterlagen /EU 76.1; EU 396/ überprüft worden. Dazu wurde von einer mittleren Darcy-Geschwindigkeit entlang der Trajektorie ausgegangen. Die errechneten Maximalkonzentrationen am Aufpunkt im Quartär entsprechen den vorgelegten Werten. Das gleiche gilt für die Transportzeiten dieser Maxima im oberflächennahen Grundwasserleiter.

Gegen die Verwendung eines Verdünnungsfaktors bei eindimensionalen Transportrechnungen hat der Gutachter keine Einwände. Der Verdünnungsfaktor 70 wird vom geologischen Gutachter als konservativ eingeschätzt /NLfB 91/.

Die Konzentrationszeitverläufe auf der Basis des Antragstellermodells und seiner Daten konnten vom Gutachter verifiziert werden.

1.1.2 Freisetzungs- und Transportrechnungen im Gutachter-Modell

1.1.2.1 Vorgänge im Grubengebäude

Zur Ermittlung der Freisetzungsraten der Spaltprodukte und Aktivierungsprodukte aus dem Grubengebäude in die Geosphäre wurde analog zum Vorgehen des Antragstellers von einer konstanten Freisetzung der Radionuklide über einen Zeitraum von 10 000 a ausgegangen. Den Rechnungen wurden - nach Überprüfung durch den Gutachter /TÜV 90a/- die Angaben des Antragstellers über endgelagerte Aktivitäten /EU 341/ zugrundegelegt und die in /TÜV 90/ aufgeführten relevanten Radionuklide behandelt. Diese so ermittelten Freisetzungsraten gehen als Quellterme der Spalt- und Aktivierungsprodukte in die Transportrechnungen der Geosphäre ein.

Zur Ermittlung der Quellterme der Radionuklidketten hat der Gutachter seinen Rechencode MARNIE, der zur Ermittlung der Transportvorgänge in einem laugengefüllten Endlager entwickelt wurde, eingesetzt. Zu diesem Zweck wurde das Endlager in einem Bilanzraum diskretisiert und die aus den NAMMU-Rechnungen des Referenzfalles /GRS 92/ ermittelte Durchströmungsrate für das Endlager von 2 030 m³/a eingesetzt. Das freie Hohlraumvolumen des versetzten Grubengebäudes sowie die im Endlager befindliche Sorbensmasse ist gemäß den Angaben des Antragstellers /EU 76.1/ als Randbedingung vorgegeben worden. Die Rechnungen wurden nach /TÜV 90/ für die Zerfallsketten

- Cm248-Pu244-Pu240-U236-Th232-U232,
- Cm245-Am241-Np237-U233-Th229,

- Cm246-Pu242-Am242-U238-Pu238-U234-Th230-Ra226 und
- Cm247-Am243-Pu239-U235-Pa231

durchgeführt. Die Aktivitätsinventare der Kettenglieder zum Startzeitpunkt der Rechnungen sind der Unterlage /EU 341/ entnommen. Für die Freisetzungsrechnungen wurde konservativ eine Mobilisierungsdauer der Aktiniden von 200 a unterstellt. Der Rechencode MARNIE berücksichtigt neben dem advektiven Transport der Radionuklide durch das Grubengebäude auch deren radioaktiven Zerfall und die Retardation auf ihrem Transportweg. Das Endlager wird als versetzer Hohlraum behandelt. Daher sind zur Ermittlung des Retardationsverhaltens der Aktiniden bei ihrem Transport im Grubengebäude die Verteilungskoeffizienten gemäß der Unterlage /TÜV 90b/ gewählt worden. Die K_D-Werte des Antragstellers unterscheiden sich für die Elemente Ni, Mo, Sn, Np und Pb von denen des Gutachters. Ergebnis der Rechnungen sind die Freisetzungsverläufe der oben aufgeführten Aktiniden über die Zeit. Für die Transportrechnungen in der Geosphäre sind aus diesen Verläufen abschnittsweise konstante Quellstärken ermittelt worden (Tab. 1).

1.1.2.2 Transportrechnungen für die Geosphäre

Grundlage der Berechnungen der Transportvorgänge von Radionukliden in der Geosphäre sind Grundwassertransportrechnungen des Referenzfalles, die die GRS mit dem Programm NAMMU am gutachterlichen Modeli durchgeführt hat /GRS 90, GRS 92/.

Aus den Trajektorienberechnungen des Referenzfalles wurde der Freisetzungsverlauf von Tracern mit der kürzesten Laufzeit vom Endlager zur Biossphäre ermittelt. Dabei ist ein Transportweg vom Endlager bis zur Oberfläche extrahiert worden, der die Schichten des Oxford, Dogger, Dogger-β-Sandstein, Dogger, Combrash, Dogger, Oxford, Kimmeridge und Wealden durchläuft.

Für die Radionuklidtransportrechnungen wurde daraus eine repräsentative eindimensionale Stromröhre entwickelt, die zur Berechnung des eindimensionalen Nuklidtransportes mit dem Programm SWIFT Verwendung findet. Größe und Breite der Stromröhre wurden aus der Durchströmungsrate und der Darcy-Geschwindigkeit im Teilabschnitt Oxford ermittelt. Quellterme zur Freisetzung der Radionuklide in die Geosphäre wurden gemäß Kapitel 1.1.2.1 angesetzt. Relevante Radionuklide und Nuklidketten wurden nach Vorgaben des TÜV Hannover berücksichtigt /TÜV 90/.

Stromröhrendefinition

Die aus den Rechnungen zum gutachtlichen Modell /GRS 92/ zum Grundwassertransport mit NAMMU auf der Basis der Trajektorienverläufe entwickelte Stromröhre und deren Abmessungen zeigt Bild 1. Laufzeiten und Laufwege wurden im Einklang mit den in NAMMU berechneten Durchströmungsraten (2 030 m³/a) durch das Endlager und den Darcy-Geschwindigkeiten in den einzelnen durchlaufenden Formationen konservativ dem 1D-Modell SWIFT angepaßt. Für die Stromröhre wurde die Gesamtlauflänge der Partikel von 28 066 m in 386 Blöcke unterschiedlicher Länge diskretisiert. Folgende Diskretisierung wurde vorgenommen (Bild 1):

Material	Einheit	Maschenanzahl	Maschenweite (m)
Oxford (gestört)	31	3	78
Doggerton (gestört)	32	3	48
Doggerton (gestört)	34	3	40
Dogger-B-Sandstein	15	254	75
Doggerton	14	6	50
Cornbrash	13	12	70
Doggerton	12	3	96
Oxford	11	10	69
Kimmeridge	10	14	60
Wealden	9	46	68
Wealden (gestört)	29	32	76

Eingangsdaten für die Transportrechnung

Aus der Grundwasserrechnung mit dem Programm NAMMU läßt sich eine Wasserdurchflußmenge durch das Endlager von 2 030 m³/a bilanzieren. Als Randbedingung für die Nuklidtransportrechnung wurde der gesamte Durchfluß durch das Endlager von 2 030 m³/a der Durchströmung der Stromröhre gleichgesetzt. Mit der Porosität des ersten Materialabschnittes der Stromröhre, dem gestörten Oxford, ist aus den Trajektorienrechnungen die für die eindimensionale Transportrechnung repräsentative Darcy-Geschwindigkeit errechnet worden. Aus dieser wiederum läßt sich der Stromröhrenquerschnit errechnen, der für die Rechnung mit 1 000 x 1 270 m² angesetzt wurde.

Die reine Laufzeit und der Laufweg für das Durchlaufen eines idealen Tracers durch die obengenannten Formationen wurde den Trajektorienberechnungen entnommen und daraus abschnittsweise eine mittlere Abstandsgeschwindigkeit berechnet. Für den ersten Materialabschnitt wurde mit der gesamten Durchströmungsrate eine Darcy-Geschwindigkeit ermittelt, die als Basis in die SWIFT-Rechnung einfloß. Aus dieser und den ermittlelten abschnittsweisen Abstandsgeschwindigkeiten wurden die äquivalenten effektiven Porositäten der Materialien berechnet, um in der SWIFT-Rechnung die aus den Trajektorienrechnungen erhaltenen Abstandsgeschwindigkeiten einzustellen. Mit dieser Vorgehensweise wird gewährleistet, daß die Abstandsgeschwindigkeiten und damit die Wasserlaufzeiten in den einzelnen Materialabschnitten denen der Trajektorienberechnung entsprechen.

In die Radionuklid-Transport-Rechnungen gehen die absoluten Porositäten der einzelnen Formationen bei der Behandlung der Retardation mit ein. Daher müssen zur Einstellung der Retardation Umrechnungsfaktoren für den Modell-K_D-Wert aus den absoluten und den effektiven Gebirgsporosität der Formationen ermittelt werden (Tab.2). Die Stammdaten der Gebirgsporositäten sind der Unterlage des geologischen Gutachters /NLfB 90/ entnommen. Der Umrechnungsfaktor bestimmt mit den aus der NLfB-Unterlage /NLfB 90/ entnommenen nuklidspezifischen K_D-Werten die nuklidspezifischen Modell-K_D-Werte (Tab. 2,3 u. 5). Weitere Eingangsdaten sind neben den Nukliden, die Zerfallszeiten und bei Zerfallsketten die Angabe der Mutter/Tochternuklide (Tab. 3 u. 5). Für die Quellstärke wurde für Einzelnuklide eine Freisetzung des Gesamtinventars über 10 000 Jahre angenommen (Tab. 3). Für die Zerfallsketten ist die Freisetzung zu bestimmten Zeitpunkten berechnet und als Quellstärke (Kap. 1.1.2.1) für das vorgegebene Zeitintervall angeben worden (Tab. 1).

Die Tabelle 1, 2, 3 und 5 zeigen die in den Transportrechnungen benutzten Modellparameter, ihren Ursprung und das Berechnungsverfahren.

Ergebnisse der eindimensionalen Radionuklidtransportrechnungen

Für die eindimensionalen Transportrechnungen kam die SWIFT-Version zur Anwendung, die der Antragsteller in das Verfahren eingebracht hat, und die von der GRS zu den Nachrechnungen der Antragsunterlagen benutzt wurde /GRS-88/.

In einem ersten Schritt wurde der Transport der vom TÜV Hannover /TÜV 90/ angeführten relevanten Einzelnuklide J 129, C 14, Ni 59, Tc 99, Sn 126, Cs 135, Zr 93, Se 79, Cl 36 und Ca 41 berechnet. Im zweiten Schritt ist der Transport der im Kapitel 1.1.2.1 beschriebenen Zerfallsreihen modelliert worden.

Konzentrationsverdünnungen durch zutretende Grundwässer und beim Übertritt in die einzelnen Aquifere (Cornbrash, Dogger-ß-Sandstein, Combrash, Oxford, Wealden) wurden konservativ auf dem Transportweg nicht berücksichtigt. Es wurde mit konstanten K_D-Werten entlang des Strömungsweges gerechnet. Diese Vorgehensweise ist konservativ gegenüber den Rechnungen des Antragstellers, der eine Zunahme der K_D-Werte mit zunehmender Verdünnung und damit eine zunehmende Retardation der Radionuklide in Ansatz gebracht hat. Die aufgeführten Ergebnisse enthalten nicht die Verdünnung durch den Übertritt ins Quartär.

Einzelnuklide:

Als ein Ergebnis der Transportrechnungen werden im letzten Block des Wealden (Block 386- Übergang zum Quartär) zu verschiedenen Zeitpunkten die Konzentrationen der einzelnen Nuklide angegeben. Tabelle 4 gibt für die Radionuklide die Zeitpunkte und die Nuklidkonzentrationen bis mindestens zum Auftreten ihrer Maxima am Übergang zum Quartär wieder. Konzentrationen kleiner als 10⁻⁸ Bq/I wurden nicht aufgelistet.

Bild 2 zeigt den zeitlichen Verlauf der Nuklidkonzentration am Übergang zum Quartär.

Ergebnisinterpretation:

Wie die Tabelle 4 und das Bild 2 zeigen besitzt J129 sowohl die höchste Nuklidkonzentration am Aufpunkt Block 386 als auch aufgrund der fehlenden Retardation eine Transportzeit des Maximalwertes entsprechend der Wasserlaufzeit. Das Maximum wird mit ca. 1,8 Bq/l bei einer Transportzeit von 300 000 Jahre erreicht. Die Nuklide Cl 36, Ca 41 und Sn126 weisen eine um etwa eine Größenordnung kleinere Maximalkonzentration auf. In der Größenordnung ähnliche Konzentrationen wie Ca 41 und Cl 36 - jedoch zu späteren Zeiten verschoben - erreicht das Nuklid Ni 59. Tc 99 weist wiederum eine geringere maximale Konzentration auf und ist zu späteren Zeiten hin verschoben. Aufgrund ihrer geringen Konzentration wurden das kurzlebige Radionuklid C 14 bzw. die retardierten Nuklide Zr 93 und Cs 135 nicht dargestellt.

Die nichtretardierenden Radionuklide mit langen Halbwertszeiten sollten Transportzeiten ihrer Maxima aufweisen wie die Wasserlaufzeiten (ca. 330 000a). Aufgrund des heterogenen Stromröhrenaufbaues und der daraus resultierenden numerischen Dispersion eilt das Maximum der Konzentrationsverteilung -unter Abschwächung- der Wasserbewegung vor. Vergleichsrechnungen mit homogenen Bedingungen zeigen auf, daß im inhomogenen Fall eine Abschwächung des Maximums auf ca. 80% des homogen ermittelten zu erwarten ist. Dieser Fehler liegt in der Bandbreite der zu erwartenden Genauigkeit der Rechencodes.

Nuklidketten:

Für die Transportrechnungen der Zerfallsketten wurden, wie bereits beschrieben, über definierte Zeitintervalle von 10 000, 100 000, 300 000 und ca. 1 000 000 Jahren die Quellterme berechnet und in das Modell eingebracht (Tab. 1). Für Zeiträume größer als eine Million Jahre ist der jeweilige Quellterm des letzten Zeitintervalls angesetzt worden. Gleichzeitig wurden die Mutter- und Tochternuklide für die einzelnen Zerfallsreihen definiert, wobei Tochternuklide mit einer Halbwertszeit von weniger als 100 Jahren keine Berücksichtigung fanden bzw. ihre Freisetzungsraten den folgenden Tochternukliden zuaddiert wurden. Als Ergebnis der Rechnung zeigen die Bilder 3 - 5 und die Tabelle 6 die zeitlichen Verläufe der Radionuklidkonzentration am Aufpunkt, dem Übergang ins Quartär. Dargestellt wurden jene Radionuklide, die aufgrund ihrer Konzentrationshöhe eine radiologische Relevanz besitzen können. Nicht dargestellt wurden Nuklide, deren Radionuklidtransportfronten den Aufpunkt nach einer Transportzeit von mehr als 10 000 000 Jahren erreichen.

Ergebnisinterpretation:

Wie aus den Bildern 3 bis 5 und der Tabelle 6 zu entnehmen ist, erreichen die Tochternuklide U 238, U 236, U 234 und Ra 226 nach mehreren Millionen Jahren ihr Konzentrationsmaximum von ca. 0,11 Bq/l im Aufpunkt zum Quartär.

Die Konzentrationen der Nuklide U 235 und Th 230 liegen bei vergleichbaren Transportzeiten um ca. eine Größenordnung niedriger. Die Konzentration von Th 232 liegt um weitere 4 Größenordnungen niedriger, die von Pa 231 um zwei Größenordnungen. Alle anderen Mutter- und Tochternuklide sind radiologisch nicht relevant und haben am Aufpunkt Werte unterhalb einer Konzentrationsschwelle von 10⁻⁸ Bq/I bzw. ihr Maximum tritt nach 10 000 000 Jahren auf.

Für die Maxima und deren Ankunftszeiten gilt das oben bereits Ausgeführte.

Alle Nuklide der Kette II weisen am Aufpunkt Konzentrationen kleiner 10⁻⁸ Bq/I auf. Daher wurde auf die Darstellung der Konzentrationsverläufe verzichtet.

2 Unterlagen

- /EU 76.1/ Physikalisch-Technische Bundesanstalt Braunschweig Langzeitsicherheitsanalyse des Endlagers Konrad: Radionuklidausbreitung in der Nachbetriebsphase TA 2242.03, 9K/21285/-/-/-/ED/-/Rev. 0
- /EU 121.1/ Physikalisch-Technische Bundesanstalt Braunschweig Erläuterung zur Anwendung von Retardationsfaktoren zur Beschreibung von 1-dimensionalen Ausbreitungsrechnungen bei veränderlichen Darcy-Geschwindigkeiten 9K/21285/-/-/D/ED/-/Rev. 0, 13.4.1989
- /EU 121.4/ Physikalisch-Technische Bundesanstalt Braunschweig Erläuterung der Variationsrechnungen zur Freisetzungsdauer von J 129 TA 2242.03, 9K/21284/D/ED, 13.4.1989
- /EU 341/ Physikalisch-Technische Bundesanstalt Braunschweig Radionuklidfreisetzung aus dem Grubengebäude, Schichtenmodell Konrad
 Plan 3/89, ET-IB-20, Januar 1990
 9K/21284/-/-/-/EGB/Rev. 0
- /EU 396/ Physikalisch-Technische Bundesanstalt Braunschweig
 Radionuklidfreisetzung im Deckgebirge für das Schichtenmodell Konrad
 Plan 3/89, ET-IB-41, Februar 1991
 9K/EGG/RB/005/00

3 Literatur

/GRS 88/ Gesellschaft für Reaktorsicherheit (GRS) mbH Stand der Arbeiten der GRS zur Begutachtung der Langzeitsicherheit des Endlagers Konrad GRS-A-1499, November 1988

- /GRS 89/ Gesellschaft für Reaktorsicherheit(GRS) mbH Beschreibung von Nuklidtransportvorgängen in einem Endlagerbergwerk - Rechencode MARNIE -GRS-A-1612, Juli 1989
- /GRS 90/ Gesellschaft für Reaktorsicherheit (GRS) mbH Zwischenbericht zur Begutachtung des Endlagers für radioaktive Abfälle, Schachtanlage Konrad, Salzgitter Beiträge der GRS zum Teil 3: Langzeitsicherheit (GK-LSG) GRS-A-1730, November 1990
- /GRS 92/ Gesellschaft für Reaktorsicherheit (GRS) mbH Langzeitsicherheitsanalysen für das Endlager Konrad Grundwassermodellrechnungen mit dem Programm NAMMU zum gutachterlichen Modell Konrad : Referenzfall GRS-A-Bericht, Dezember 1992
- /NLfB 90/ Niedersächsisches Landesamt für Bodenforschung Transportdaten für Modellrechnungen zur Langzeitsicherheit Archivnummer 107478, 05.10.1990
- /NLfB 91/ Niedersächsisches Landesamt für Bodenforschung Der Nordrand des Modellgebietes Konrad und Abschätzung der Verdünnung im Quartär bei Calberlah Archivnummer 108 091, 25.1.1991

- /TÜV 90/ Technischer Überwachungsverein Hannover Endlager Konrad Langzeitsicherheit: Bestimmung relevanter Radionuklide für verschiedene Betrachtungszeiträume Aktenvermerk, 6.2.1990
- /TÜV 90a/ Technischer Überwachungsverein Hannover Endlager Konrad Langzeitsicherheit: Vergleich der Fortschreibung der Vorgaben zur Radionuklidfreisetzung aus dem Grubengebäude Aktenvermerk, 17.12.1990

/TÜV 90b/ Technischer Überwachungsverein Hannover Grube Konrad: Vorgaben für die Transportrechnungen zu Langzeitsicherheit Stand: 14.11.1990 Aktenvermerk: 10.1.1990

ANHANG

Bilder und Tabellen

* extrapoliert

Zeitintervall in Jahren	Cm 248	Pu 244	Pu 240	U 236	Th 232		
0 - 10 000	0.416E-19	0.288E-20	0.199E-11	0.364E-11	0.147E-08		
10 000 - 100.000	0.374E-19	0.655E-20	0.118E-12	0.174E-09	0.140E-08		Kette I
100 000 - 300 000	0.270E-19	0.147E-19	0.370E₊17	0.940E-11	0.121E-08		
300 000 - 792520	0.128E-19	0.238E-19	0.185E-20	0.246E-13	0.856E-09		
792 520 - 4 000 000*	0.128E-19	0.238E-19	0.185E-20	0.246E-13	0.856E-09		
	Cm 245	Np 237	U 233	Th 229			
0 - 10 000	0.967 E-16	0.423 E-11	0.665 E-13	0.307 E-16			
10 000 - 100 000	0.856 E-17	0.394 E-11	0.474 E-12	0.607 E-15			Kette II
100 000 - 300 000	0.384 E-20	0.275 E-11	0.369 E-12	0.698 E-15			
300 000 -792 520	0.186 E-20	0.120 E-11	0.164 E-12	0.311 E-15			
792 520 - 1 300 000	0.186E-20	0.120E-11					
	Cm 246	Pu 242	U 238	U 234	Th 230	Ra 226	
0 - 10 000	0.157E-16	0.394E-12	0.105E-06	0.170E-10	0.106E-13	0.863E-13	
10 000 - 100 000	0.550E-18	0.356E-12	0.368E-07	0.567E-11	0.416E-13	o.757E-13	Kette III
100 000 - 300 000	0.186E-20	0.260E-12	0.190E-08	0.246E-12	0.196E-13	0.366E-13	
300 000 - 792 520	0.186E-20	0.126E-12	0.558E-11	0.516E-15	0.133E-14	0.250E-14	
792 520 - 1 000 000	0.186E-20	0.126E-12	0.558E-11	0.516E-15	0.133E-14	0.250E-14	
	Cm 247	Am 243	Pu 239	U 235	Pa 231		
0 - 10 000	0.412E-18	0.108E-17	0.969E-11	0.184E-08	0.126E-15		
10 000 - 100 000	0.405E-18	0.784E-19	0.297E-11	0.832E-09	0.286E-15		Kette IV
100 000 - 300 000	0.380E-18	0.184E-20	0.104E-12	0.648E-10	0.755E-16		
300 000 - 792 520	0.325E-18	0.185E-20	0.123E-15	0.237E-12	0.935E-18		
792 520 - 1 000 000*	0.325E-18	0.185E-20	0.123E-15	0.237E-12	0.935E-18		

Porositäten und Umrechnungsfaktor für den Modell-K 'p-Wert										
Geologische Schicht	n _{eff} *	nabs*	k *1)							
(Transportweg)										
Oxford (31)	0.02	0.15	0.116							
Ton (32)	0.03	0.1	0.504							
Ton (34)	0.03	0.1	0.783							
Dogger-B-Sandstein (15)	0.1	0.2	0.0189							
Ton (14)	0.02	0.1	6.517							
Cornbrash (13)	0.03	0.1	0.1							
Ton (12)	0.02	0.1	6.517							
Oxford (11)	0.01	0.15	0.317							
Kimmeridge (10)	0.01	0.1	0.375							
Wealden (9)	0.075	0.2	0.111							
Wealden (29)	0.1	0.2	0.014							

*1)
$$k = \frac{(n_{ef}^* - 1)/n_{ef}^*}{(n_{eff}^* - 1)/n_{eff}^*}$$

			NUK	LIDSPEZ	IFISCHE	VORGEBI	ENE KEN	NWERTE					
Nuklid**	HWZ [a] **	Quellstärke	$K_{D'} [mg/l] = k \cdot K_{D}^{***}$ Schichteinheit										
		[Bq/s]											
		für 10 000 a	31	32	34	15	14	13	12	11	10	9	29
J 129	1.57E+07	2.220E+00	0	0	0	0	0	0	0	0	0	0	0
C 14	5.73E+03	1.268E+03	0.58	5.04	7.83	0.15	65	0.8	65	1.6	2.25	0.1	0.01
Ni 59	7.50E+04	1.411E+03	0.116	0	0	0	0	0	0	0.32	0.38	0	0
Tc 99	2.13E+05	8.244E+01	0.08	0.2	0.31	0.0113	2.6	0.06	2.6	0.22	0.1	0.02	0.0028
Sn 126	1.00E+05	1.129E+00	0	0	0	0	0	0	0	0	0	0	0
Cs 135	2.30E+06	1.189E+00	3.48	20.2	31.3	0.3	261	1.3	261	9.5	11.3	1.1	0.14
Zr 93	1.53E+06	3.171E+00	9.28	20	31.3	0.38	261	2	261	25.4	30	2.2	0.28
Se 79	6.50E+04	3.805E-01	0.012	0.2	0.3	0.0038	2.6	0.02	2.6	0.032	0.038	0.045	0.0056
CI 36	3.01E+05	3.456E-01	0	0	0	0	0	0	0	0	0	0	0
Ca 41	1.03E+05	4.820E-01	0	0	0	0	0	0	0	0	0	0	0

ι

Tab. 3: Eingabedaten für das SWIFT-1D-Modell "Einzelnuklide", nach Unterlagen des TÜV** und NLfB***

ZEITPUNKT		RADIONUKLIDKONZENTRATIONEN in Bq/I					
IN JAHREN	CI 36	Ca 41	J 129	Ni 59	Sn 126	Tc 99	
140 000	3.667000E-005	2.780000E-005	3.216000E-006		6.332000E-005	×	
160 000	9.98000E-004	6.962000E-004	9.131000E-003		1.58000E-003		
180 000	8.286000E-003	5.307000E-003	7.919000E-002		1.20000E-002		
200 000	3.143000E-002	1.846000E-002	3.139000E-001		4.155000E-002		
220 000	7.078000E-002	3.809000E-002	7.393000E-001	1.458000E-009	8.540000E-002		
240 000	1.124000E-001	5.540000E-002	1.228	3.076000E-008	1.237000E-001		
260 000	1.411000E-001	6.366000E-002	1.612	3.834000E-007	1.416000E-001		
280 000	1.510000E-001	6.236000E-002	1.805	3.139000E-006	1.382000E-001		
300 000	1.449000E-001	5.480000E-002	1.812	1.831000E-005	1.209000E-001		
320 000	1.291000E-001	4.468000E-002	1.688	8.097000E-005	9.819000E-002		
340 000	1.091000E-001	3.457000E-002	1.493	2.849000E-004	7.567000E-002		
360 000	8.887000E-002	2.577000E-002	1.272	8.285000E-004	5.618000E-002		
380 000	7.043000E-002	1.87000E-002	1.055	2.054000E-003	4.059000E-002		
400 000	5.469000E-002	1.329000E002	8.570000E-001	4.447000E-003	2.873000E-002		
420 000	4.179000E-002	9.294000E-003	6.852000E-001	8.580000E-003	2.002000E-002		
440 000	3.154000E-002	6.420000E-003	5.410000E-001	1.500000E-002	1.377000E-002		
460 000	2.357000E-002	4.390000E-003	4.229000E-001	2.408000E-002	9.379000E-003		
480 000	1.746000E-002	2.977000E-003	3.278000E-001	3.591000E-002	6.335000E-003		
500 000	1.285000E-002	2.005000E-003	2.523000E-001	5.020000E-002	4.249000E-003		
520 000	9.395000E-003	1.342000E-003	1.930000E-001	6.634000E-002	2.833000E-003		
540 000	6.836000E-003	8.938000E-004	1.470000E-001	8.343000E-002	1.879000E-003		

Tab. 4: Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/I am Übergang zum Quartär (Block 386 im SWIFT-1D-Modell)

ZEITPUNKT		RADIONUKLIDKONZENTRATIONEN in Bq/I						
IN JAHREN	CI 36	Ca 41	J 129	Ni 59	Sn 126	Tc 99		
560 000	4.952000E-003	5.927000E-004	1.114000E-001	1.004000E-001	1.241000E-003			
580 000	3.574000E-003	3.915000E-004	8.409000E-002	1.163000E-001	8.163000E-004			
600 000	2.570000E-003	2.577000E-004	6.327000E-002	1.301000E-001	5.351000E-004			
620 000	1.843000E-003	1.691000E-004	4.746000E-002	1.411000E-001	3.498000E-004			
640 000	1.318000E-003	1.107000E-004	3.550000E-002	1.488000E-001	2.280000E-004			
660 000	9.398000E-004	7.255000E-005	2.649000E-002	1.532000E-001	1.482000E-004			
680 000	6.689000E-004	4.706000E-005	1.973000E-002	1.542000E-001	9.618000E-005			
700 000	4.751000E-004	3.060000E-005	1.466000E-002	1.521000E-001	6.227000E-005			
720 000	3.368000E-004	1.985000E-005	1.087000E-002	1.473000E-001	4.023000E-005			
740 000	2.384000E-004	1.286000E-005	8.051000E-003	1.403000E-001	2.597000E-005			
760 000	1.685000E-004	8.320000E-006	5.952000E-003	1.316000E-001	1.673000E-005			
780 000	1.189000E-004	5.374000E-006	4.395000E-003	1.218000E-001	1.076000E-005			
800 000	8.380000E-005	3.467000E-006	3.241000E-003	1.113000E-001	6.915000E-006	3.184000E-007		
820 000	5.89900E-005	2.234000E-006	2.387000E-003	1.005000E-001	4.437000E-006			
840 000	4.148000E-005	1.437000E-006	1.756000E-003	8.988000E-002	2.844000E-006			
860 000	2.914000E-005	9.242000E-007	1.290000E-003	7.957000E-002	1.821000E-006	~		
880 000	2.045000E-005	5.936000E-007	9.472000E-004	6.981000E-002	1.165000E-006			
900 000	1.433000E-005	3.809000E-007	6.948000E-004	6.076000E-002	7.446000E-007	1.170000E-005		
920 000	1.004000E-005	2.442000E-007	5.092000E-004	5.248000E-002	4.755000E-007			
940 000	7.029000E-006	1.565000E-007	3.729000E-004	4.501000E-002	3.034000E-007			
960 000	4.916000E-006	1.002000E-007	2.728000E-004	3.835000E-002	1.934000E-007			
980 000	3.436000E-006	6.408000E-008	1.995000E-004	3.249000E-002	1.239000E-007			
1 000 000	2.400000E-006	4.097000E-008	1.458000E-004	2.737000E-002	7.848000E-008	1.411000E-004		

Tab. 4: Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/I am Übergang zum Quartär (Block 386 im SWIFT-1D-Modell) (Fortsetzung)

ZEITPUNKT		RADIONUKLIDKONZENTRATIONEN in Bq/I						
IN JAHREN	CI 36	Ca 41	J 129	Ni 59	Sn 126	Tc 99		
1 100 000						7.871000E-004		
1 200 000						2,548000E-003		
1 300 000						5.581000E-003		
1 400 000						9.196000E-003		
1 500 000						1.228000E-002		
1 600 000						1.400000E-002		
1 700 000						1.416000E-002		
1 800 000						1.307000E-002		
1 900 000						1.124000E-002		
2 000 000						9.147000E-003		
2 100 000						7.126000E-003		
2 200 000						5.362000E-003		
2 300 000						3.925000E-003		
2 400 000						2.810000E-003		
2 500 000						1.975000E-003		
2 600 000						1.368000E-003		
2 700 000						9.337000E-004		
2 800 000						6.335000E-004		
2 900 000						4 252000E-004		
3 000 000						2 833000E-004		
3 100 000						1.876000E-004		
3 200 000						1 235000E-004		
3 300 000						8.092000E-005		

<u>Tab. 4:</u>	Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/I am Übergang zum Quartär (Block 386 im SWIFT-1D-Modell) (Fortsetzung)
----------------	--

-

ZEITPUNKT	RADIONUKLIDKONZENTRATIONEN in Bq/I									
	CI 36	Ca 41	J 129	Ni 59	Sn 126	Tc 99				
3 400 000						5.281000E-005				
3 500 000						3.433000E-005				
3 600 000						2.225000E-005				
3 700 000						1.437000E-005				
3 800 000						9.263000E-006				
3 900 000						5.955000E-006				
4 000 000						3.820000E-006				
4 100 000						2.445000E-006				
4 200 000						1.563000E-006				
4 300 000						9.969000E-007				
4 400 000						6.350000E-007				
4 500 000						4.039000E-007				
4 600 000					-	2.566000E-007				
4 700 000						1.628000E-007				
4 800 000						1.032000E-007				
4 900 000						6.531000E-008				
5 000 000						4.131000E-008				
5 100 000						2.610000E-008				
5 200 000						1.648000E-008				
5 300 000			<u>.</u> *			1.039000E-008				
5 400 000						6.550000E-009				
5 500 000						4.125000E-009				
5 600 000						2.596000E-009				

<u>Tab. 4.</u>	Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/I am Übergang zum Quartär (Block 386 im SWIFT-1D-Modell) (Fortse	tzung)

- **1**

•

ZEITPUNKT		RADIONUKLIDKONZENTRATIONEN in Bq/I						
IN JAHREN	Cl 36	Ca 41	J 129	Ni 59	Sn 126	Tc 99		
5 700 000						1.633000E-009		
5 800 000						1.026000E-009		
5 900 000						6.448000E-010		
6 000 000						4.048000E-010		
6 100 000						2.540000E-010		
6 200 000						1.593000E-010		

Tab. 4: Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/I am Übergang zum Quartär (Block 386 im SWIFT-1D-Modell) (Fortsetzung)

			NUKI	IDSPEZIF	ISCHE VO	RGEGEB	ENE KENN	WERTE				
Nuklid*	HWZ [a]		$K_{D}' = K_{D}^{**} \cdot [mg/l]$ Schichteneinheiten									
		31	32	34	15	14	13	12	11	10	9	29
Cm 244	1.76E+01											
Cm 245	8.50E+03											
Cm 246	4.73E+03	116	504	783	13.2	6 517	70	6 517	317.1	375	22.2	2.8
Cm 247	1.56E+07											
Cm 248	3.40E+05											
Pu 238	8.60E+01											
Pu 239	2.41E+04											
Pu 240	6.58E+03											
Pu 241	1.32E+01	116	504	783	13.2	6 517	70	6 517	317.1	375	22.2	2.8
Pu 242	3.76E+05										-	
Pu 244	8.26E+07											
U 232	7.20E+01											
U 233	1.59E+05											
U 234	2.45E+05											
U 235	7.04E+08	0.209	1.008	1.57	0.0183	13.03	0.1	13.03	0.57	0.675	0.111	0.014
U 236	2.34E+07										1	
U 238	4.47E+09											
U 239	2.00E+00											

Tab. 5: Eingabedaten für das SWIFT-1D-Modell, "Nuklidketten" nach Unterlagen des TÜV * und NLfB **

NUKLIDSPEZIFISCHE VORGEGEBENE KENNWERTE												
Nuklid*	HWZ [a]		$K_{D}^{\prime} = K_{D}^{**} \cdot K [mg/l]$ Schichteneinheiten									
		31	32	34	15	14	13	12	11	10	9	29
Th 229	7.34E+003											
Th 230	7.54E+04	9.28	20.2	31.32	0.378	261	2	261	25.4	30	2.22	0.28
Th 232	1.41E+10											
Am 241	4.58E+02											
Am 242	0.40E+00	116	504	783	13.2	6 517	70	6 517	317.1	375	22.2	2.8
Am 243	7.37E+03											
Np 237	2.14E+06	5.8	25.2	39.2	0.189	326	1 -	326	15.9	7.5	0.333	0.042
Ra 226	1.60E+03	0.209	1.008	1.57	0.0189	13.03	0.1	13.03	0.57	1.5	0.111	0.014
Pa 231	3.28E+04	116	504	783	3.78	6 517	20	6 517	317.1	375	22.2	2.8

<u>Tab. 5:</u> Eir	ingabedaten für	das SWIFT-1D-Modell,	"Nuklidketten"	nach Unterlagen	des TÜV * und NLfB ** (Fortsetzung)	

Transportzeiten	Ke	tte I	Kette II				Ke	Ket	Kette IV		
mbanren	Th 233	U 236	Np 237	U 233	Th 229	U 238	U 234	Th 230	Ra 226	U 235	Pa 231
1 000 000	4.580E-34	1.125E-26									
2 000 000	4.918E-17	3.377E-10		2.288E-14	1.082E-15	4.407E-10	4.435E-10	8.190E-12	1.501E-10	5.839E-11	1.692E-13
3 000 000	9.813E-11	2.562E-05		8.348E-11	4.398E-12	3.318E-05	3.318E-05	1.057E-06	1.938E-05	4.586E-06	1.901E-08
4 000 000	1.695E-09	2.105E-03		5.252E-10	2.850E-11	2.773E-03	2.770E-03	1.152E-04	2.111E-03	3.910E-04	1.876E-06
5 000 000	2.312E-08	1.559E-02		6.649E-10	3.632E-11	2.103E-02	2.102E-02	9.979E-04	1.829E-02	2.997E-03	1.537E-05
6 000 000	1.015E-07	4.048E-02		6.021E-10	3.294E-11	5.605E-02	5.602E-02	2.852E-03	5.227E-02	8.027E-03	4.256E-05
7 000 000	2.498E-07	6.245E-02		5.305E-10	2.902E-11	8.891E-02	8.885E-02	4.700E-03	8.615E-02	1.277E-02	6.887E-05
8 000 000	4.451E-07	7.285E-02		4.846E-10	2.650E-11	1.066E-01	1.066E-01	5.763E-03	1.056E-01	1.532E-02	8.350E-05
9 000 000	6.537E-07	7.241E-02		4.668E-10	2.551E-11	1.090E-01	1.090E-01	5.968E-03	1.094E-01	1.567E-02	8.589E-05
10 000 000	8.510E-07	6.534E-02		4.739E-10	2.588E-11	1.012E-01	1.011E-01	5.586E-03	1.024E-01	1.455E-02	8.002E-05
11 000 000	1.023E-06	5.547E-02		4.974E-10	2.716E-11	8.834E-02	8.830E-02	4.903E-03	8.987E-02	1.269E-02	7.000E-05
12 000 000	1.165E-06	4.517E-02		5.238E-10	2.861E-11	7.402E-02	7.398E-02	4.123E-03	7.556E-02	1.063E-02	5.871E-05
13 000 000	1.274E-06	3.573E-02		5.405E-10	2.952E-11	6.025E-02	6.021E-02	3.366E-03	6.169E-02	8.649E-03	4.782E-05
14 000 000	1.351E-06	2.765E-02		5.402E-10	2.950E-11	4.801E-02	4.798E-02	2.687E-03	4.924E-02	6.886E-03	3.812E-05
15 000 000	1.394E-06	2.106E-02		5.227E-10	2.858E-11	3.765E-02	3.762E-02	2.110E-03	3.866E-02	5.395E-03	2.990E-05
16 000 000	1.406E-06	1.583E-02		4.924E-10	2.693E-11	2.914E-02	2.913E-02	1.636E-03	2.998E-02	4.174E-03	2.314E-05
17 000 000	1.391E-06	1.178E-02	1.093E-19	4.539E-10	2.483E-11	2.233E-02	2.232E-02	1.254E-03	2.299E-02	3.196E-03	1.772E-05
18 000 000	1.352E-06	8.697E-03	8.000E-19	4.119E-10	2.252E-11	1.696E-02	1.696E-02	9.537E-04	1.748E-02	2.426E-03	1.346E-05
19 000 000	1.296E-06	6.371E-03	4.562E-18	3.691E-10	2.018E-11	1.280E-02	1.279E-02	7.201E-04	1.320E-02	1.829E-03	1.015E-05
20 000 000	1.230E-06	4.641E-03	2.104E-17			9.598E-03	9.592E-03	5.403E-04	9.904E-03	1.370E-03	7.606E-06
21 000 000	1.159E-06	3.362E-03	8.089E-17			7.160E-03	7.156E-03	4.033E-04	7.392E-03	1.021E-03	5.671E-06
22 000 000	1.089E-06	2.425E-03	2.655E-16			5.318E-03	5.314E-03	2.997E-04	5.494E-03	7.581E-04	4.209E-06
23 000 000	1.022E-06	1.742E-03	7.607E-16			3.935E-03	3.933E-03	2.218E-04	4.067E-03	5.604E-04	3.112E-06

Tab. 6: Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/I am Übergang zum Quartär (Block 386 im SWIFT 1D-Modell)

Tab. 6: Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/I am Übergang zum Quartär (Block 386 im SWIFT 1D-Modell) (Fortsetzung)

Transportzeiten	Ke	tte l		Kette II		Kette III			Kette IV		
in Jahren	Th 233	U 236	Np 237	U 233	Th 229	U 238	U 234	Th 230	Ra 226	U 235	Pa 231
24 000 000	9.623E-07	1.247E-03	1.933E-15			2.900E-03	2.899E-03	1.636E-04	2.998E-03	4.128E-04	2.293E-06
25 000 000	9.095E-07	8.902E-04	4.422E-15			2.132E-03	2.131E-03	1.203E-04	2.204E-03	3.031E-04	1.684E-06
26 000 000	8.647E-07	6.335E-04	9.218E-15			1.562E-03	1.562E-03	8.814E-05	1.616E-03	2.221E-04	1.234E-06
27 000 000	8.272E-07	4.497E-04	1.770E-14			1.142E-03	1.142E-03	6.449E-05	1.182E-03	1.622E-04	9.014E-07
28 000 000	7.965E-07	3.185E-04	3.157E-14			8.334E-04	8.330E-04	4.705E-05	8.622E-04	1.182E-04	6.572F-07
29 000 000	7.723E-07	2.253E-04	5.275E-14			6.067E-04	6.065E-04	3.426E-05	6.279E-04	8.601E-05	4.781F-07
30 000 000	7.529E-07	1.589E-04	8.310E-14			4.409E-04	4.407E-04	2.491E-05	4.563E-04	6.245E-05	3.470F-07
31 000 000	7.376E-07	1.119E-04	1.241E-13							4.526E-05	2.516E-07
32 000 000	7.259E-07	7.877E-05	1.767E-13							3.276E-05	1.821E-07
33 000 000	7.170E-07	5.532E-05	2.408E-13							2.367E-05	1.316E-07
34 000 000	7.106E-07	3.881E-05	3.154E-13			Ē				1.709E-05	9.500E-08
35 000 000	7.057E-07	2.717E-05	3.982E-13							1.232E-05	6 849E-08
36 000 000			4.867E-13							8.873E-06	4 932E-08
37 000 000			5.767E-13								
38 000 000			6.647E-13								
39 000 000			7.464E-13		:						
40 000 000			8.188E-13								
41 000 000			8.784E-13								
42 000 000			9.231E-13								
43 000 000			9.520E-13								
44 000 000			9.643E-13								
45 000 000			9.611E-13								

.

1

<u>Verteiler</u>

TÜV-Hannover	6 x
GRS	

Geschäftsführer Bereichsleiter Projektbetreuung Abteilung 604 Autoren

.

Gesamtauflage: 27 x