PB

Physikalisch-Technische Bundesanstalt

	D	ECKBLATT										
	UA	ils. Nr.	Rev.									
	NAAN	<u>, en en en et en en en en en en</u>	NNNNN	<u> </u>	<u> </u>	NNNN	N" N					
EU 072.2	9К	333623		EBK	RB	0001	00					
Titel der Unterlage: Systemanalize	e Konr	ad. Teil 2,	Zur Kriti	ikali-	Sei	te :						
tätssicherung im Endlage	er Kon	rad	CHE ALEC.	- ANDER	I.							
GRS-A-1049					De	ng: zember	84					
Freteller												
					l 'ex	anganner:						
GRD							_					
Stempelfeld:												
							i					
5												
PSP-Element TP9K/:21274		zu Plan-Ka	apitel: 3.7									
· 1		- PL		PL								
		04		04.	11.8	6						
		Freiget	e für Sehärden		Freigab	im Projekt						
Diese Unterlage unterliegt samt Inhalt dem bei Beförderung und Vernichtung und der	Schutz d	es Urheberrechts sowi	e der Pilicht zu	r vertrauliche	n Beha	andlung au	ch Ilich					
gemacht werden. Eine andere Verwendung	g und Weit	ergabe bedarf der aus	drücklichen Zu	stimmung de	r PTB.	ren toğanlı						

				Projekt		PSP-Element	Obj. Kenn.	Aufgabe	UA.	Lfd. Nr	Rev.
				NAAN	NN	NNNNNNN	NNNNNN	XAAXX	A A	NNNN	NN
EU	072.2			9K	333	623]	EBK	RB	0001	00
Titel	der Unterlage:	Syste	manalys	e Konr	ad,	Teil 2:	Zur Krit:	ikali-	Seite		
tä CP	tssicheru S-A-1049	ing im	Endlag	er Kon	rad				II.		
GR	0-4-1043	Stand	:								
			Dez	ember	84						
			202								
Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeich Name	nn. rev. Seite	Kat. *)		Erläuterur	ng der Revisi	ion		
											1
*) K K K	ategorie R — rec ategorie V — ve ategorie S — su	daktionelle rdeutliche bstantielle	Korrektur nde Verbess Ånderung	erung							
Mine	destens bei der	Kategorie	S müssen E	rläuterung	en ang	legeben werden.					

Gesellschaft für Reaktorsicherheit (GRS) mbH

SYSTEMANALYSE KONRAD, TEIL 2 ZUR KRITIKALITÄTSSICHERHEIT IM ENDLAGER KONRAD

GRS-A-1049

(Dezember 1984)

Auftragsnummer: 41330

Anmerkung:

Dieser Bericht ist von der GRS im Auftrag der Physikalisch Technischen Bundesanstalt erstellt worden. Der Eigentümer behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit Zustimmung des Auftraggebers zitiert, ganz oder teilweise vervielfältigt bzw. Dritten zugänglich gemacht werden.

Inhaltsverzeichnis:

.

Se	ite

	Zusammenfassung	3
1.	Einleitung	4
2.	Randbedingungen und Berechnungsmethode	5
3.	Rechnungen und Ergebnisse	7
3.1	Spaltstoff in Wasser	7
3.2	Spaltstoff in Beton und Grubenerz	7
3.3	Rechnungen für definierte Geometrie	9
4.	Bewertung der Ergebnisse	15
	Literaturverzeichnis	16
	Dokumentation durchgeführter Rechnungen	17
	Verteiler	24

Zusammenfassung

Auf der Basis von Planungsdaten für das Endlager für radioaktive Abfälle in der Schachtanlage KONRAD sind Rechnungen zur Kritikalitätssicherheit der mit Spaltstoffresten behafteten Abfälle durchgeführt worden. Als auslösendes Ereignis wird Zutritt von Wässern in verfüllte Einlagerungskammern in der Nachbetriebsphase unterstellt. Die dabei anzusetzenden Spaltstoffkonzentrationen sind so niedrig, daß Kritikalität ausgeschlossen werden kann.

1. Einleitung

Im Rahmen einer Systemanalyse für das Endlager KONRAD wird auch die Möglichkeit eines Kritikalitätsstörfalles untersucht. Als auslösendes Ereignis wird der Zutritt von Wässern in Einlagerungskammern, die mit spaltstoffhaltigen Abfallgebinden verfüllt sind, in der Nachbetriebsphase unterstellt.

Ausgehend vom gegenwärtigen Kenntnisstand wird kein konkreter Störfallablauf analysiert, sondern ganz allgemein die Möglichkeit eines Zutritts von Wässern in Einlagerungskammern deterministisch angesetzt. Als kritikalitätsrelevante Folge wird dann ein Auslaugen der Abfallgebinde und Herauslösen des Nuklidinventars unterstellt. So könnte es u.U. zur Ausbildung einer homogenen Verteilung von spaltbarem Material in Wasser bzw. in einem Gemisch aus Korrosionsprodukten der Abfallgebinde und Versatzmaterial mit Wasser kommen.

Wie eine einfache Abschätzung zeigt, ergeben die nach bestehenden Planungsdaten /1-3/ einzulagernden Spaltstoffmengen, umgerechnet auf das Einlagerungsvolumen so niedrige Konzentrationen (g Pu/l), daß es sinnvoll erscheint, hierfür einen Neutronenmultiplikanicht mehr tionsfaktor anzugeben. Die vorliegende Analyse beschränkt sich deshalb darauf, unter konservativen Randbedingungen obere Grenzwerte ermitteln. für Spaltstoffverteilungen zu Eine homogene Aussage darüber zu treffen, ob und unter welchen Umständen diese Grenzwerte überschritten werden können, bleibt anderen Untersuchungen vorbehalten, sofern dies nach den hier vorliegenden Ergebnissen erforderlich erscheint.

2. Randbedingungen und Berechnungsmethode

Die im vorliegenden Bericht vorgestellten Rechenergebnisse sind auf der Basis vorhandener Planungsdaten für das Endlager in der ehemaligen Eisenerzgrube KONRAD berechnet worden /1-3/. Aufgrund der geltenden Transportbestimmungen /4/ wird ein maximaler Spaltstoffgehalt von 15 g pro Gebinde angesetzt. Für die geplanten Einlagerungstechniken /2/ ergibt sich umgerechnet auf das Einlagerungsvolumen eine obere Grenze für die Spaltstoffkonzentration von 0.04 g Pu/l (bei Einlagerung von 200 I- Fässern in Containertechnik).

Ohne einen Störfallablauf näher zu analysieren wird unterstellt, daß sich durch Auslaugen von Abfallgebinden nach einem Wasserzutritt über den Bereich einer Einlagerungskammer eine homogene Spaltstoffverteilung einstellen kann. Weiter wurde in den Rechnungen der Spaltstoff als reines Pu-239 angesetzt. Neutronenabsorption z.B. durch Pu-240 Anteile oder durch Stickstoff im Pu-Nitrat wird damit konservativ vernachlässigt.

Die in die Rechnungen eingehenden Zusammensetzungen der Verfüllmaterialien, verschiedene Betonsorten und Grubenerz, sind in Tabelle 1 angegeben. Grubenerz weist als festes Gestein eine mittlere Dichte von 2,6 g/cm³ auf und nach Aufbereitung als Versatzmaterial 1,7 g/cm³. Beide Fälle sind in den Rechnungen berücksichtigt (Tabelle 2).

Der Querschnitt einer Einlagerungskammer beträgt ca. 40 m². Systeme dieser Größenordnung können kritikalitätsmäßig in guter Näherung als unendlich ausgedehnt behandelt werden. Deshalb werden Spaltstoffkonzentrationen für verschiedene Materialgemische und unterschiedlichen Wasseranteil unter der Randbedingung $k_{\infty} = 1.0$ berechnet.

Die Kritikalitätsrechnungen sind mit dem Transportcode XSDRNPM im Programmsystem SCALE und einer angeschlossenen auf ENDF/B-IV Daten beruhenden Wirkungsquerschnittsbibliothek mit 27 Gruppen durchgeführt worden /5/ (s. Anhang).

Tabelle 1

In den Rechnungen verwendete Materialzusammensetzungen von Beton in den Abfallgebinden und Erzgestein, Angaben in Massenanteilen. Der angegebene Wasseranteil entspricht einem mittleren Wert unter Normalbedingungen.

	Normalbeton	Normalbeton 2*)	Schwerbeton *)	Erzgestein /3/
Massenanteil	e in 🖇	in %	in %	in %
C O-Tr. Mg Na Al Si S K Ca Fe Ba H ₂ O	17,53 36,12 3,26 1,08 3,45 0,11 32,14 0,78 5,53	4,78 47,83 - 4,78 19,13 - 19,13 - 19,13 - 4,35	2,92 29,21 - 3,89 3,89 3,89 53,55 - 2,63	3,41 36,66 0,58 1,06 2,65 6,61 - 10,80 30,33 - 7,90
Dichte [g/cm ³]	2,30	2,30	3,49	1,7 bzw. 2,6
H ₂ O-Gehalt [kg/m ³]	127	100	91,8	134 bzw. 205

*) DIN 25413

3. Rechnungen und Ergebnisse

Zum Auslaugverhalten der Abfallgebinde und zu einer sich eventuell einstellenden Pu-Konzentration werden für diese Analyse keine Randbedingungen festgesetzt. Deshalb beschränkt sich die Untersuchung auf eine Ermittlung von Spaltstoffkonzentrationen, bei denen Kritikalitätssicherheit nicht mehr gewährleistet ist. Es werden kritische Konzentrationen für dreidimensional unendliche Spaltstoffverteilungen und für einen unendlich langen Zylinder mit gegebener Querschnittsfläche berechnet.

3.1 Spaltstoff in Wasser

Es wird konservativ eine homogene Verteilung von reinem Pu-239 in Wasser angesetzt und die kritische Konzentration für eine dreidimensional unendliche Spaltstoffverteilung $(k_{\infty} = 1,0)$ zu 7,1 g Pu pro I berechnet. Setzt man die maximal zulässige Spaltstoffmenge je Gebindenettovolumen hierzu in Relation (0.075 g/l für ein 200 I-Faß), so liegt dieser Wert um nahezu zwei Zehnerpotenzen niedriger. Um bei einer Konzentration von 7,5 g Pu/l Kritikalität zu erreichen, sind bereits 251 kg Pu-239 erforderlich. Dieser Wert steigt bei weiterer Abnahme der Pu-Konzentration steil an und geht für den oben angegebenen Grenzwert (7,1 g Pu/l) annähernd gegen unendlich.

Die kleinste kritische Masse von Pu-239 bei homogener Verteilung in Wasser wird bei der hierfür optimalen Konzentration von 30 g Pu/I erreicht und beträgt 0,51 kg. Weitere berechnete Kritikalitätsdaten für Plutonium-Wasser-Systeme liegen vor /6/ und können gegebenenfalls für Abschätzungen herangezogen werden.

3.2 Plutonium in Beton und Grubenerz

Der Hauptvolumenanteil einer Einlagerungskammer wird nach Befüllung von Beton und dem als Versatzmaterial vorgesehenen Erzgestein eingenommen. Es wird daher unterstellt, daß bei Flutung nach genügend langer Zeit ein Gemisch dieser Materialien mit Wasser und dem gelösten Spaltstoff entsteht. Deshalb werden in einem zweiten Schritt kritische Spaltstoffkonzentrationen für eine homogene Verteilung von Pu-239 in Beton bzw. Erzgestein berechnet. Um die Schwankungsbreite in der Zusammensetzung verschiedener Betonsorten konservativ abzudecken, ist neben einer speziellen Normalbetonmischung (N-Beton 1) auch eine mittlere, bezüglich Neutronenabsorption konservativ ausgelegte Betonzusammensetzung ausgewählt worden /7/. Letzteres gilt auch für die Rechnungen zu Hämatit-Schwerbeton mit einem Massenanteil von 55 % Eisen an der Trockenmasse.

Für verfestigten Beton unter Normalbedingungen kann ein Wasseranteil von ca. 100 kg/m³ angesetzt werden. In den hier durchgeführten Rechnungen ist der Wassergehalt als Parameter zwischen den theoretisch angesetzten Grenzwerten 0 und 350 kg/m³ variiert und die jeweils kritische Pu-239 Konzentration für ein unbegrenztes System bestimmt worden. Die Ergebnisse sind in den Abbildungen 1 und 2 für die verschiedenen Betonsorten sowie Erzgestein aufgetragen.

Die Kurven für Normalbeton zeigen mit abnehmendem Wasseranteil eine Abnahme der kritischen Pu-Konzentration, die über einen weiten Bereich bis ca. 50 kg Wasser pro m³ linear verläuft und zum trockenen Ende hin etwas stärker abfällt. Hier wirkt sich die Zunahme des Schnellspaltanteils von Pu-239 auf den Neutronenmultiplikationsfaktor aus.

Für Schwerbeton und Erzgestein mit hohem Anteil an Eisen gibt es einen Bereich optimaler Moderation, unterhalb dessen die kritische Spaltstoffkonzentration wegen der Zunahme der Resonanzabsorption für schnelle Neutronen in Eisen wieder ansteigt.

Für Normalbeton mittleren Wassergehalts als Moderator liegt die kritische Spaltstoffkonzentration mit 2.35 g Pu pro I um das Dreifache niedriger als für reines $Pu-H_2O$ -Gemisch (vergl. Tabelle 2). Als theoretischer Grenz-wert für Betontrockenmasse ohne Wasseranteil sind 1.4 g Pu/I ermittelt worden.

Im vorliegenden Fall werden, um auf der sicheren Seite zu liegen, dreidimensional unbegrenzte Systeme berechnet. Dies hat zur Folge, daß eine Dichteverringerung des Moderator- bzw. Absorbermaterials eine entsprechende Abnahme der kritischen Spaltstoffkonzentration nach sich zieht, was sich auch an der Kurve für Normalbeton mit verminderter Dichte ($\rho = 1.15 \text{ g/cm}^3$) ablesen läßt. Gleiches gilt für die Rechnungen mit Grubenerz. Die in Abbildung 1 eingezeichnete Kurve für Normalbeton mit halber Dichte sollte nicht zu der Schlußfolgerung verleiten, daß durch entsprechende Verringerung der Betondichte die kritische Pu-Konzentration bei konstant bleibender Gesamtmenge beliebig verkleinert werden kann. Wie bereits erwähnt beziehen sich die den Kurven zugrundeliegenden Rechnungen auf infinite Systeme ($k_{\infty} = 1,0$) und liefern als Ergebnis die kleinste kritische Konzentration unter der Voraussetzung unbegrenzter Spaltstoffmasse. Eine untere Grenze für die kritische Pu-Konzentration wird im Einzelfall durch die erforderliche Gesamtmenge an Pu-239 gesetzt. Im folgenden Abschnitt werden u.a. dazu durchgeführte Rechnungen diskutiert. Abgesehen davon ist die Annahme einer halben Dichte für Normalbeton im vorliegenden Fall als äußerst konservativ anzusehen.

3.3 Rechnungen für definierte Geometrie

Um die Übertragbarkeit der oben dargestellten Ergebnisse auf die räumlichen Dimensionen im Endlager zu überprüfen, sind einige Fälle in Zylindergeometrie gerechnet worden. Ausgehend von der Querschnittsfläche 40 m² für eine Einlagerungskammer sind Kritikalitätsrechnungen für einen Zylinder mit gleicher Querschnittsfläche und unbegrenzter Länge durchgeführt worden. Eine umgebende Schicht aus Erzgestein wird zusätzlich als Neutronenreflektor angesetzt.

Für die mittlere Betonzusammensetzung (Kurve 2 in Abb.1) mit variablem Wasseranteil als Moderator wurden unter dieser Randbedingung erneut kritische Pu-Konzentrationen berechnet (Tabelle 3). Wie ein Vergleich mit den Ergebnissen für allseitig unbegrenzte Systeme zeigt, weichen letztere eindeutig zur sicheren Seite hin ab (ca. 2 % bei mittlerem Wasseranteil), so daß sie als konservative Abschätzung betrachtet werden können.

Berechnet man für dieselbe Moderatorzusammensetzung (N-Beton 2, Wassergehalt 100 kg/m³) eine in der Ebene unbegrenzte Schicht mit Erzgestein als beidseitigem Reflektor, so beträgt für 2.5 g Pu-239 pro I die kritische Schichtdicke 245 cm.

Daneben sind Rechnungen in Kugelgeometrie zur Ermittlung kleinster kritischer Pu-Mengen bei verschiedenen Spaltstoffkonzentrationen durchgeführt worden. Es wird ein homogenes Gemisch von Pu-239 und Normalbeton (N-Beton 2) als Spaltstoffzone angesetzt, die von einer 50 cm dicken Reflektorzone aus Erzgestein umschlossen wird. Wesentliche Randbedingungen wie Pu-Konzentration, Dichte der Betontrockenmasse und Wasseranteil sind aus Tabelle 4 ersichtlich. In einer Neutronen-Transportrechnung ist unter jeweiliger Vorgabe dieser Werte der kritische Kugelradius für die Spaltstoffzone bestimmt und damit die kritische Menge Pu-239 berechnet worden. Der gewählte Anfangswert der Pu-Konzentration (5 g/l) entspricht etwa der doppelten kritischen Konzentration für das vergleichbare unendliche System.

Vergleicht man Randbedingungen und Ergebnisse der Rechnungen, so ist zu erkennen, daß bei Verringerung der Spaltstoff<u>konzentration</u> die erforderliche Spaltstoff<u>menge</u> überproportional ansteigt. Dieser Effekt wird auch durch eine entsprechende Reduzierung der Dichte der Betontrockenmasse nicht ausgeglichen. Vermindert man die Pu-Konzentration weiter, so wird die Zunahme der kleinsten kritischen Pu-Menge immer größer; für die in Abbildung 1 aufgetragenen unteren Grenzwerte der kritischen Konzentration kann eine definierte Gesamtmasse an Spaltstoff auf diese Weise nicht mehr berechnet werden.

Einige ausgewählte Beispiele aus den durchgeführten Rechenserien sind im Anhang mit Eingabedatensatz und Ausdruck der Ergebnisse dokumentiert.

Kleinste kritische Pu-Konzentration bei homogener Verteilung in Normalbeton und Grubenerz in Abhängigkeit vom Wasseranteil.

Abb. 2:

Kleinste kritische Pu-Konzentration bei homogener Verteilung in Schwerbeton und festem Grubenerz in Abhängigkeit vom Wasseranteil.

Tabelle 2:

Kritische Pu-Konzentrationen, berechnet für unendliche, homogene Spaltstoffanordnungen [$k_{\infty} = 1,0$] bei verschiedener Moderatorzusammensetzung.

Moderator*	Wasseranteil	kritische Bus Konsostastion
	[kg/m³]	[Pu-239, g/l]
Wasser	1000	7.1
Normal- beton 1	0 10 60 100 127** 200 300 350	1.73 1.88 2.35 2.70 2.90 3.45 4.18 4.55
Normal- beton 2	0 50 100** 200 300 350	1.38 1.93 2.35 3.07 3.78 4.18
Grubenerz Dichte 2.6	0 25 50 100 205** 300	9.10 7.30 7.30 7.83 8.75 9.57
Grubenerz Dichte 1.7	0 15 23 75 134** 300	5.95 4.78 4.75 5.17 5.70 7.10
Hämatit- Schwerbeton	50 70 92** 125 200 250	15.90 15.50 15.40 15.50 16.15 16.60

*) Zusammensetzung s. Abschnitt 2 **) mittlerer Wasseranteil

Tabelle 3:

Kritikalitätsrechnungen für einen axial unbegrenzten Zylinder mit 40 m² Querschnittsfläche; Bestimmung der kritischen Pu-Konzentration, Moderator NB-2 mit variablem Wasseranteil, Reflektor 50 cm Erzgestein.

H ₂ O-Gehalt [kg/m ³]	0	100	200	
kritische Pu-Konzen- tration [g/l]	1.55	2.40	3.15	

Tabelle 4:

Kritikalitätsrechnungen in Kugelgeometrie für ein homogenes Pu-Beton-Gemisch (NB-2) mit 50 cm Erzgestein als Reflektor.

Pu-Konzen-	Dichte der	Wasserante	il kritische	r kritische
tration	Betontrocken-		Kugelrad	ius Pu-Masse
	masse			
[g/I]	[g/cm ³]	[kg/m³]	[cm]	[kg]
5	2.2	100	74.4	8,6
2,5	1,1	100	132,8	24,5
1,75	1,1	100	481	816
5	2,2	50	88,4	14,5
2,5	2,2	50	170,7	52,1
2,5	1,1	50	147,2	33,4
1,5	1,1	50	264,9	116,8
1,25	1,1	50	ca. 1820	ca. 31600

4. Bewertung der Ergebnisse

Unabhängig vom realen Auslaug- bzw. Lösungsverhalten der endzulagernden konditionierten Spaltstoffreste sind für homogene Spaltstoffverteilungen obere Grenzwerte zur Kritikalitätssicherheit ermittelt worden. Nicht betrachtet werden dabei Strukturmaterialien wie Stahlbleche und Armierungen, sowie der übrige Inhalt der Abfallgebinde. Eine rechnerische Einbeziehung dieser Materialien würde, ebenso wie ein Zumischen von Grubenerz zum Normalbeton, eine Verschiebung der kritischen Pu-Konzentration zu höheren Werten bewirken.

Vergleicht man nun die berechneten Werte mit Spaltstoffkonzentrationen, die sich aus den Planungsdaten des Endlagers bei unterstellter Wasserflutung unter konservativ vereinfachten Annahmen ermitteln lassen, so liegen diese um mehrere Größenordnungen unter den Grenzwerten. Somit kann unter den gegebenen Randbedingungen Kritikalität als Folge von Wasserzutritt im Endlager in der Nachbetriebsphase ausgeschlossen werden.

Literaturverzeichnis:

- /1/ DBE, "Schachtanlage Konrad", Planung Grubengebäude (Teilaufgabe 2222.04), Peine 2/84
- /2/ DBE, Einlagerung Abfallgebinde Bd. 1 (Teilaufgabe 2225.03), Peine 4/84
- /3/ GSF, Eignungsprüfung der Schachtanlage KONRAD für die Endlagerung radioaktiver Abfälle, Bd I, 1982
- /4/ IAEA, Regulations for the Safe Transport of Radioaktive Materials, Wien 1973
- /5/ J.A. Bucholz, A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, ORNL/NUREG/CSD-2, 1980
- /6/ GRS Handbuch zur Kritikalität, Teil III, Garching, 1971
- /7/ DIN 25413, Klassifikation von Betonen nach Elementanteilen bei Verwendung zur Neutronenabschirmung, Berlin 1976

Anhang

Im folgenden werden aus den auf der GRS-Rechenanlage durchgeführten Computerrechnungen beispielhaft für die Fälle

- Berechnung von k_∞ für ein homogenes Pu-Beton-Gemisch, Pu-239,
 N-Beton 2, Wasseranteil 200 kg/m³,
- Berechnung des kritischen Kugelradius f
 ür ein homogenes Pu-Beton-Gemisch, Wasseranteil 50 kg/m³, Reflektor aus Erzgestein,

Eingabedatensätze und Ergebnisausdruck wiedergegeben. Zu den Rechnungen wird das Programmsystem SCALE /5/ eingesetzt, wobei die hier vorliegende Systemgeometrie mit einem Transportcode ('XSDRNPM') hinreichend gut berechnet werden kann. Es wird mit Wirkungsquerschnitten in 27 Energiegruppen (davon 13 thermische Gruppen) gearbeitet, Selbstabschirmung durch Resonanzabsorption ist gegebenenfalls berücksichtigt worden.

					_																		 	-
	PRIMARY MODULE ACCESS AND INPUT RECORD (SCALE DRIVER - JULY 6,1978)																							
	MODULE	E CSA	AS1	[أنبا	LL 8	BE CAL	LED 1	TIME	0F	DAY	15.44	. 34	DAT	E 84.	324									
	PTB 27GF PLUT C AL SI CA H2O END	KONF	AD 9 NDF4 1 1 1 1 1 1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9 D) 1.9 4.1 2.4 9.0 36-0	IN-BET(1 5474-04 5155-03 1406-02 1553-03 1553-03 1350-03 5579-03 01	0N 20 INFH01 20 33 33 33	00 L 111E D 93.0	, WAS IUM)	SER 0 942	3.07 39 1	G 0044444	20/L 10 10 10 10 10 10 10	K-IN END	٩F	24.08.	84							
	MODULE	CSF	AS1	IS	FIN	ISHED	. USE	ER C	OMPL	ETIO	N COD	ε 0	000.	CPU	TIME	USED	1	2.82	(SECO	NDS).	I/0'S	USED	0	
								•																
													·;										 	
						075					DET					0.00							 	
GE≀	NERAL	PROB	LEM	DESCR	RIPT	ION DA	TA BL	OCK	-239	UIN	-8E10	JN 2	200 L	WHS	SEK	3.07 (5 PU/	L K.	1.1.1.	24.0	5.84			

	GENERAL PROBLEM DESCRIPTION DATA BLOCK
	GENERAL PROBLEM DATA
	IGE1/2/3PLANE/CYLINDER/SPHERE0ISNQUADRATUREORDER8IZMNUMBER OF ZONES1ISCT ORDER OF SCATTERING3IMNUMBER OF SPACIAL INTERVALS1IEVT 0/1/2/3/4/5/6=0/K/ALPHA/C/Z/R/H1IBL0/1/2/3YACUUM/REFL/PER/WHITE1IIMINNER ITERATION20IBRRIGHT BOUNDARY CONDITION1ICHOUTER ITERATIONAXIMUM25TXXNUMBER OF MIXTURES1ICLC-1/0/N-FLAT RES/SW/OPT0MSMIXING TABLE LENGTH7IFH0/1= FORWARD/ADJOINT0IGMNUMBER OF NEUTRON GROUPS27IFLU NOT USED (ALWAYS WGTD)0NGGNUMBER OF FIRST THERMAL GROUP15:IPBT -1/0/1=NONE/FINE/ALL BAL. PRT0
	SPECIAL OPTIONS
	IFG 0/1 = NONE/WEIGHTING CALCULATION 0 IPN 0/1/2 DIFF. COEF. PARAM 0 IOH VOLUMETRIC SOURCES (0/N=NO/YES) 0 IDFM 0/1 = NONE/DENSITY FACTORS 38* 0 IPH BOUNDARY SOURCES (0/N=NO/YES) 0 IAZ 0/N = NONE/NETIVITIES BY ZONE 0 IFH BOUNDARY SOURCES (0/N=NO/YES) 0 IAZ 0/N = NONE/NETIVITIES BY ZONE 0 IFN 0/1/2 INPUT 33*/34*/USE IAST 0 IAI 0/1=NO/YES 0 ITMX MAXINUM IME (MINUTES) 0 IFCT 0/1=NO/YES 0 1011 0/1/2/3=NO/XSECT/SRCE/FLUXOUT 0 IFVT 0/1/2=NO/K/AEDHA 0 1011 0 ISEN 0/1/2=NO/K/AEDHA 0 1011 0 1011 0 ISEN 0/1/2=NO/K/AEDHA 0 1011 0 1011 0 1011 0 ISEN 0/1/2=NO/K/AEDHA 0 1011 0
ĺ	FLOATING POINT PARAMETERS
	EPS OVERALL CONVERGENCE 1.00000E-04 DY CYL/PLA HT FOR BUCKLING 0.0 PTC POINT CONVERGENCE 1.00000E-04 DZ PLANE DEPTH FOR BUCKLING 0.0 XNF NORTHALIZATION FACTOR 1.00000E+00 VSC V010 STREAHING CORRECTION 0.0 EV EIGENVALUE GUESS 0.0 PV IPVT=1/2K/ALPHA 1.00000E+00 EVH EIGENVALUE MODIFIER 0.0 EQL EV CHANGE EPS FOR SEARCH 1.00000E-03 BF BUCKLING FACTOR=1.420892 1.42089E+00 XNPH NEW PARAM MOD FOR SEARCH 7.50000E-01 THIS CASE WILL REQUIRE 2363 LOCATIONS FOR MIXING THIS CASE HAS BEEN ALLOCATED 181760 LOCATIONS

ſ	INT 1 2	RA 1.000	DII 0 00E+	00	nid	PTS ZON	E NO. 1 1.00 1.00	REAS 000E+00 000E+00	VOLU 1.0000	MES 0E+00	DENS	FACT	RADIUS	MOD	SPEC(INT)		
	ELAPS	ED TI	ME	0.01	MIN.												
	OUTER ITER 1 2	INNER ITERS 0	1 -4 . -8 .	- BALA 440896 881786	-16 -16	EIGENVALUE 1.00448D+00 9.97014D-01	E 1 - SOURCE RATIO 0 -1.57413E-0 1.73081E-0	1 - S0 2 1.0000 2 -2.0340	CATTER ATIO 00E+00 06E-01	1 - UP RA -4.7134 -4.4402	SCAT TIO BE-02 9E-03	PARA 0.0 0.0	ARCH METER	11T (M) 000.0	1E N) 183		
	34567	00000	-4.	440896 661346 661348 440896	-16 -16 -16	9.97210D-01 9.98719D-01 9.99313D-01 9.99398D-01 9.99410D-01	1.41532E-0 -1.74708E-0 -7.76972E-0 -1.32353E-0 -1.97104E-0	3 -3.6010 3 5.8053 4 4.2853 4 1.046 5 1 7000	04E -02 32E -03 13E -03 72E -03	1.8548 9.4453 2.2341 3.6680	4E -03 2E -04 3E -04 1E -05	00000		0.01	07 17 30 42 52		
		v				0.004100 01	1.011042-0	5 1.700	502-04	5.1110	1 2 3 4	1234	1 1 1		52	1 1.00000D+00 1 1.00000D+00 1 1.00000D+00 1 1.00000D+00	0000
											56780	56780	1	0 0.0		1 1.00000D+00 1 1.00000D+00 1 1.00000D+00 1 1.00000D+00	00000
											10	10 11 12 13		0 0.0 0 0.0 0 0.0		1 1.0000000+00 1 1.000000+00 1 1.000000+00 1 1.000000+00 1 1.000000+00	00000
											14	14 15 16 17	1			1 1.00000D+00 1 1.00000D+00 1 1.00000D+00 1 1.00000D+00	0000
											19	19 20 21 22	1			1 1.000000+00 1 1.000000+00 1 1.000000+00 1 1.000000+00 1 1.000000+00	00000
											23242526	23 24 25 26	1 1 1			1 1.000000+00 1 1.000000+00 1 1.000000+00 1 1.000000+00	0000
	8	0	FINA	44089E L MONI LAP	-16 TOR 18DA	9.99412D-01 9.99420E-01	-3.10892E-0 AN	6 2.6473 GULAR FLU	73E-05 JX ON	9.57180 16	27 DE-07	27 0.0	1	° °.02	70	1 1.00000D+00	0
	ELAPS	ED TI	15	0.03	MIN.		∕ k∞										

- 20 -

PU-BETON-H20 HOM RLEFEKT. KUGEL	
GENERAL PROBLEM DESCRIPTION DATA BLOCK	
GENERAL PROBLEM DATA	
IGE1/2/3= PLANE/CYLINDER/SPHERE3ISNQUADRATURE4IZHNUMBER OFZONES2ISCORDER OFSCATTERING1IHNUMBER OFSPACIAL INTERVALS70IEVT 0/1/2/3/4/5/6=Q/K/ALPHA/C/Z/R/H41BL0/1/2/3* VACUUM/REFL/PER/WHITE1IIMINNER ITERATION251BRRIGHT BOUNDARY CONDITION0ICM01/2/3/4/5/6=Q/K/ALPHA/C/Z/R/H90MXXNUMBER OFMIXING2ICLC-1/0/NFLATRES/SN/OPT0MXXNUMBER OFMIXING7IFLUNOT000MXNUMBER OFENREGY GROUPS2ICLC-1/0/NFLATRES/SN/OPT0MSGNUMBER OF NEUTRON GROUPS27IFLUNOTUSED/ALWAYSUSED/ALWAYS0NNGNUMBER OF NEUTRON GROUPS27IPLUNOTUSED/ALWAYSMGTU0NNGNUMBER OF FIRST THERMAL GROUP15IPBT-1/0/1=NONE/FINE/ALLAL. PRT0	
SPECIAL OPTIONS	
IFG 0/1 = NONE/WEIGHTING CALCULATION 0 IPN 0/1/2 DIFF. COEF. PARAH 0 IGH volumetric Sources (0/N=NO/YES) 0 IDFM 0/1 = NONE/DENSITY FACTORS 38* 0 IPM BOUNDARY SOURCES (0/N=NO/YES) 0 IAF 0/N = NONE/DENSITY FACTORS 38* 0 IFM BOUNDARY SOURCES (0/N=NO/YES) 0 IAF 0/N = NONE/DENSITY FACTORS 38* 0 IFM BOUNDARY SOURCES (0/N=NO/YES) 0 IAF 0/N = NONE/DENSITY FACTORS 38* 0 IFM BOUNDARY SOURCES (0/N=NO/YES) 0 IAF 0/N = NONE/ACTIVITIES BY ZONE 0 IFN 0/1/2 = INPUT 33*/34*/USE LAST 0 IAI 0/1=NONE/ACTIVITIES BY INTERVAL 0 ITMX MAXIMUM TIME (MINUTES) 0 IFCT 0/1=NO/YES UPSCATTER SCALING 0 IDT1 0/1/2/3=NO/XSECT/SRCE/FLUXOUT 0 IPVT 0/1/2=NO/K/ALPHA PARAMETRIC SRCH 0 ISLN RCHAND GROUP FLUXES 0 ISEN OUTER ITERATION ACCELERATION 0 IBLN RCHAND GROUP FLUXES 0 ISEN BARD REBALN PARAMETER 0	
FLOATING POINT PARAMETERS	
EPS OVERALL CONVERGENCE 1.00000E-04 DY CYL/PLA HT FOR BUCKLING 0.0 PTC POINT CONVERGENCE 1.00000E-04 DZ PLANE DEPTH FOR BUCKLING 0.0 XNF MORHALIZATION FACTOR 1.00000E-00 YSC VOID STREAMING CORRECTION 0.0 EV EIGENVALUE GUESS 0.0 EV EIGENVALUE MODIFIER -1.00000E-01 EQL EV CHANGE EPS FOR SEARCH 1.00000E-03 BF BUCKLING FACTOR=1.420892 142089E+00 XNPM NEW PARAM MOD FOR SEARCH 7.50000E-01 THIS CASE WILL REQUIRE 2427 LOCATIONS FOR MIXING THIS CASE HAS BEEN ALLOCATED 178688 LOCATIONS	

OUTER INNER 1 - BALANCE ITER ITERS -3.94968E-07 2 414 -4.1904E-07 3 591 -4.45766E-07 4 448202E-07 5 883 -4.49418E-07 6 1013 -4.50194E-07 7 1131 -4.50194E-07 7 1131 -4.50194E-07 9 1333 -4.51282E-07 9 1333 -4.51282E-07 10 1429 -4.52054E-07 11 1622 -4.522842E-07 12 1610 -4.52621E-07 13 1697 -4.52842E-07 14 1783 -4.53355E-07 15 1868 +533210E-07 16 1868 +53355E-07 17 2031 -4.53482E-07 18 2109 -4.53355E-07 19 2181 -4.534582E-07 20 2250 -4.534582E-07 21 2109 -4	EIGENVALUE 1 - SOURCE RATIO 2.84336D-01 7.09368E-01 4.489890-01 -5.44456E-01 5.92729D-01 -1.862897-01 5.92729D-01 -1.862897-02 6.46500D-01 -8.42893E-02 7.20244D-01 -4.85 .85934E-02 7.48046D-01 -3.85934E-02 7.48046D-01 -3.85934E-02 7.90948D-01 -2.08801E-02 8.21407D-01 -1.72712E-02 8.33204D-01 -1.43640E-02 8.21407D-01 -1.19989E-02 8.31682D-01 -2.08801E-02 8.51682D-01 -1.19989E-02 8.51682D-01 -1.19989E-02 8.56832D-01 -2.1825E-03 8.74726D-01 -3.172712E-03 8.43199-01 -1.19989E-02 8.58832D-01 -1.00638E-03 8.76026D-01 -7.14818E-03 8.772726D-01 -5.13221E-03 8.81809D-01 -3.17727E-03 8.81809D-01 -3.17727E-03 8.88093D-01 -2.33080E-03 8.89039D-01 -2.33080E-03 8.9903D-01 -2.33080E-03 8.9903D-01 -2.33080E-03 8.9903D-01 -2.33080E-03 8.9903D-01 -2.33080E-03 8.9903D-01 -2.33080E-03 8.9903D-01 -2.33080E-03 8.9903D-01 -1.7215E-03 8.993712D-01 -1.42789E-03 8.99844D-01 -1.10585E-03	1 - SCATTER RATIO 1.00000E+00 4.69745E-01 7.88698E-03 7.88698E-03 3.1323E-04 1.96025E-04 4.73350E-04 4.73350E-04 4.73350E-04 4.73350E-04 4.33268E-04 4.33268E-04 4.33268E-04 4.33268E-04 4.33268E-04 4.33268E-04 4.33268E-04 4.33268E-04 4.33268E-04 4.33268E-04 2.38275E-04 2.0824E-04 2.38275E-04 2.0824E-04 2.38275E-04 1.37492E-04 1.35628E-04 1.35988E-05 8.235985E-05 8.255985E-05 6.38444E-05	$\begin{array}{rrrr} 1 & - & UPSCRT \\ RATID \\ 23140E & - 01 \\ 9.88753E & - 03 \\ 6.40918E & - 03 \\ 3.59654E & - 04 \\ 1.50354E & - 04 \\ 1.50354E & - 04 \\ 2.22577FE & - 04 \\ 2.42577FE & - 04 \\ 2.42577FE & - 04 \\ 2.42582E & - 04 \\ 2.385602E & - 04 \\ 1.657598E & - 04 \\ 2.385602E & - 04 \\ 1.657598E & - 05 \\ 1.5575$	SEARCH PARAMETER 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	TIME (MIN) 0.0825 0.1417 0.1995 0.2505 0.2960 0.3407 0.3805 0.4177 0.4517 0.4458 0.5192 0.5513 0.5827 0.6138 0.6448 0.6755 0.7053 0.7053 0.7053 0.7053 0.7053 0.7053 0.7618 0.7618 0.7618 0.8395 0.8648 0.8905 0.9150 0.9150 0.9150 0.9150 0.9150 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9847 0.98898 0.9947 0.98898 0.9947 0.98898 0.9947 0.98898 0.9947 0.98898 0.9947 0.98898 0.9947 0
ELAPSED TIME 1.01 MIN. 30 2894 -4.53829E-07 31 2956 -4.53842E-07	8.969350-01 -1.22430E-03 8.976920-01 -8.38830E-04	1.58613E-04 -2.34030E-05	-1.19287E-05 2.05018E-05	1.00000E-01 4.24978E+00	1.0393 1.0640
ELAPSED TIME 1.06 MIN. 32 3064 -4.55164E-07 33 3139 -4.54938E-07 34 3203 -4.54955E-07	9.07683D-01 -1.13891E-02 9.03779D-01 -9.71422E-04 9.09640D-01 -9.30823E-04	4.00704E-03 -2.76687E-03 -1.38382E-04	-1.47685E-03 -1.00853E-04 -2.55505E-06	4.24978E+00 4.24978E+00 2.77811E+01	1.1022 1.1302 1.1552
ELAPSED TIME 1.16 MIN. 35 3368 -4.60925E-07 36 3483 -4.59877E-07 37 3568 -4.59979E-07 38 3551 -4.59979E-07 39 3733 -4.60056E-07 40 3813 -4.60127E-07 41 3893 -4.60122E-07 42 3970 -4.60249E-07 43 4043 -4.60300E-07 44 4112 -4.60384E-07 45 4180 -4.60384E-07	9.514080-01 -4.71104E-02 9.541720-01 -1.85570E-03 9.561550-01 -1.99866E-03 9.598210-01 -1.97606E-03 9.598210-01 -1.82735E-03 9.614050-01 -1.65052E-03 9.628260-01 -1.32074E-03 9.652320-01 -1.32074E-03 9.652320-01 -1.17884E-03 9.65260-01 -1.05172E-03 9.667153D-01 -9.39317E-04	1.70160E-02 -7.65298E-04 -1.05125E-04 -7.99425E-05 1.22742E-04 1.24387E-04 1.5185E-04 9.32066E-05 8.32277E-05	-6.67613E-03 -8.21791E-05 4.09312E-05 6.9576E-05 6.64035E-05 5.95088E-05 5.95088E-05 5.368002E-05 4.28795E-05	2.77811E+01 2.77811E+01 2.77811E+01 2.77811E+01 2.77811E+01 2.77811E+01 2.77811E+01 2.77811E+01 2.77811E+01 2.77811E+01 4.62171E+01	1.2097 1.2493 1.2800 1.3110 1.3412 1.3707 1.4003 1.4290 1.4567 1.4832 1.5093
ELAPSED TIME 1.51 MIN. 46 4336 -4 63227E-07 47 4436 -4 62715E-07 48 4517 -4 62745E-07 49 4595 -4 62791E-07 50 4675 -4 62936E-07 51 4751 -4 62936E-07 52 4925 -4 62928E-07	9.89024D-01 -2.31973E-02 9.90868D-01 -1.344172-03 9.92242D-01 -1.34733E-03 9.93537D-01 -1.34733E-03 9.94720D-01 -1.29401E-03 9.54720D-01 -1.18853E-03 9.55788D-01 -1.07478E-03 9.95771C-01 -5.65571E-04	8.55463E-03 -5.78475E-03 -3.33937E-04 -1.76751E-05 8.81555E-05 9.64131E-05	-3.23269E-03 -2.46115E-04 -2.12165E-05 3.8231E-05 5.09795E-05 5.05142E-05 4.66468E-05	4.62171E+01 4.62171E+01 4.62171E+01 4.62171E+01 4.62171E+01 4.62171E+01 4.62171E+01 4.83760E+01	1.5620 1.6295 1.6275 1.6565 1.6862 1.7143 1.7423

ELAPSED TIME 1.74 MIN. 53 4918 -4.63352E-07 54 4993 -4.63324E-07	1.00017D+00 1.00109D+00	-3.49578E-03 -8.61045E-04	1.09606E-03 -6.21094E-04	-3.42114E-04 5.67665E-06	4.89760E+01 4.86311E+01	1.7762 1.8043
ELAPSED TIME 1.80 MIN. 55 5062 -4.63100E-07	1.00157D+00	-4.70611E-04	-1.02795E-04	7.46880E-05	4.94379E+01	1.8313
ELAPSED TIME 1.83 MIN. 56 5141 -4.63463E-07 57 5208 -4.63474E-07	1.00299D+00 1.00367D+00	-1.44293E-03 -6.61836E-04	4.22424E-04 -1.35999E-04	-7.28883E-05 2.27514E-05	4.94379E+01 4.83864E+01	1.8607 1.8868
ELAPSED TIME 1.89 MIN. 58 5287 -4.63325E-07	1.00334D+00	3.51341E-04	-3.23971E-04	1.64008E-04	4.09790E+01	1.9170
ELAPSED TIME 1.92 MIN. 59 5407 -4.62451E-07 60 5472 -4.62637E-07	9.96364D-01 9.96872D-01	6.61434E-03 -1.74348E-04	-2.42932E-03 1.90043E-03	1.04857E-03 1.06787E-04	4.09790E+01 4.23228E+01	1.9597 1.9855
ELAPSED TIME 1.99 MIN. 61 5553 -4.62783E-07 62 5608 -4.62758E-07	9.98295D-01 9.98463D-01	-1.47520E-03 -1.40751E-04	6.75437E-04 -3.03942E-04	-1.62590E-04 -3.54224E-06	4.23228E+01 4.37924E+01	2.0163 2.0388
ELAPSED TIME 2.04 MIN. 63 5690 -4.62718E-07 64 5747 -4.62689E-07	1.000000+00 1.000210+00	-1.57410E-03 -1.78816E-04	5.46934E-04 -3.65851E-04	-2.02319E-04 -1.10358E-05	4.37924E+01 4.37257E+01	2.0695 2.0923
ELAPSED TIME 2.09 MIN. 65 \$802 -4.62974E-07 66 \$857 -4.62983E-07 67 \$912 -4.62989E-07 68 \$966 -4.62989E-07 69 6020 -4.63002E-07 70 6074 -4.63002E-07 71 6128 -4.63012E-07 72 6182 -4.63017E-07	1.000330+00 1.000480+00 1.000630+00 1.00077D+00 1.00090D+00 1.00110+00 1.00112D+00 1.00122D+00	-1.08174E-04 -1.60140E-04 -1.48526E-04 -1.36891E-04 -1.26063E-04 -1.16144E-04 -1.07091E-04 -9.88294E-05	-3.88130E-05 2.36239E-05 1.24328E-05 1.2514E-05 1.0514E-05 9.90301E-06 9.14892E-06	1.27591E-05 7.48149E-06 6.99265E-06 6.49966E-06 6.49966E-06 5.56816E-06 5.15405E-06	4.37257E+01 4.37257E+01 4.37257E+01 4.37257E+01 4.37257E+01 4.37257E+01 4.37257E+01 4.37257E+01 4.29589E+01	2.1153 2.1377 2.1600 2.1817 2.2263 2.2483 2.2702
ELAPSED TIME 2.27 MIN. 73 6257 -4.62812E-07 74 6302 -4.62833E-07	1.00058D+00 1.00062D+00	6.50971E-04 -5.37679E-05	-2.73761E-04 1.98667E-04	1.10174E-04 1.27450E-05	4.29589E+01 4.25698E+01	2.2992 2.3187
ELAPSED TIME 2.32 MIN. 75 6366 -4.62649E-07 76 6411 -4.62660E-07	1.00030D+00 1.00031D+00	3.33142E-04 -2.49639E-05	-1.24676E-04 1.04899E-04	5.86994E-05 7.16537E-06	4.25698E+01 4.23756E+01	2.3440 2.3635
ELAPSED TIME 2.36 MIN. 77 6465 -4.62468E-07 78 6510 -4.62474E-07	1.00015D+00 1.00015D+00	1.68212E-04 -1.16440E-05	-6.15997E-05 5.30604E-05	2.97543E-05 3.68594E-06	4.23756E+01 4.22803E+01	2.3858 2.4055
ELAPSED TIME 2.41 MIN. 79 6553 -4.62477E-07	1.00008D+00	8.00229E-05	-3.01983E-05	1.49512E-05	4.22355E+01	2.4247
ELAPSED TIME 2.42 MIN.						

PU-BETON-H2	O HOM RL	EFEKT. KUGEL					
INT. 1234 567 890 112 1456 7890 112 134 156 7890 112 134 156 7890 112 134 156 7890 112 134 156 7890 112 134 156 7890 1234 156 7890 1233 1235 1235 1235 1235 125555 125555 125555 125555 125555 125555 125555 125555 125555 1255555 125555 125555 125555 125555 125555555 125555555555	NUMB 111111111111111111111111111111111111	RefUls 0.0 31200995124000 1.241336401 1.85619322400 1.255182401 1.85619322400 1.255182401 1.85619322400 1.255182401 1.82519322400 1.255182401 1.8251922400 1.255182401 1.8251922400 1.255182401 1.33341847400 1.33341847400 1.33341847400 1.33341847400 1.33341847400 1.33341847400 1.4355536184400 1.435553618400 1.25518618400 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.255182000 1.2551820000 1.255182000 1.255182000 1.255182000 1.255182000 1.2551820000 1.255182000 1.2551820000 1.2551820000 1.2551820000 1.2551820000 1.2551820000 1.2551820000 1.2551820000 1.25518200000000 1.2551820000000000000000000000000000000000	INT 	ARE A 0.0 0.1 1.21021E±+022 1.293634E±+033 3.0225577E±+033 4.356577E±+033 3.0225577E±+033 1.21021E±+04 1.745377E±+04 1.745372E±+04 1.745372E±+04 1.745372E±+04 2.237229814E±+04 3.399558E±+04 4.356886E±+04 3.399558E±+04 4.356886E±+04 5.65742E±+04 4.336886E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 5.65742E±+04 1.018799E±+105 1.2393900E±+055 1.2393900E±+055 1.3393902E±+055 1.3393902E±+055 5.657332E±+055 5.657	VOLUME +02 VOLUME +02 +02 +02 +02 +02 +02 +02 +02	PROD DENSITY 1.575170-05 1.101830-04 2.985460-04 5.788200-04 3.524570-04 1.414410-03 1.963150-03 3.308270-03 4.097210-03 4.957330-03 5.885650-03 5.885650-03 6.875050-03 9.015950-03 1.015510-02 1.233740-02 1.233740-02 1.235740-02 1.376640-02 1.376640-02 2.138770-02 2.13970-02 2.130010-02 3.00100-02 3.00100-02 3.0010-	
	2	1.94016E+02	1.335622+02	4.730242705	1.003332+00		
64 65 66 69 70 71	2 2222222	1.94018E+02 2.00682E+02 2.04016E+02 2.07349E+02 2.10682E+02 2.11018E+02 2.17349E+02 2.20682E+02	1.99016E+02 2.02349E+02 2.05682E+02 2.05016E+02 2.12348E+02 2.15682E+02 2.15682E+02 2.19016E+02	4.89417E+05 5.06090E+05 5.23042E+05 5.7573E+05 5.5778E+05 5.9762E+05 6.11990E+05	1.65909E+06 1.71515E+06 1.7721E+06 1.89886E+06 2.00931E+06		