PTB Phys	ikalisch-T	echnische	e Bundes	anstalt
	D	ECKBLATI	 Г	
EU 125.1 Titel der Unterlage: Schluß	Projekt N A A N 9K bericht zum	PSP-Element	Obj. Kenn. Au NNNNNXA HF rhaben	fgabe UA Lid. Nr. Rev. A X X A A N N N N N N RB 0002 00 Seite: I.
Ersteller: Universität Bonn Stempelfeld:			<u> </u>	Stand: 31.12.83 Textnummer:
				· · ·
PSP-Element TP. 9K/21285	6	zu Plan-Ka	apitel: 3.9.6	
Diese Unterlage unterliegt semt		Prolgab	e für Sehörden	Freigebe im Projekt

(

(

	Projekt	PSP-Element	Obj. Kenn.	Aufgabe	UA	Lfd. Nr.	Rev.
	NAAN	N N N N N N N N N N N	<u> </u>	XAAXX	A A	NNNN	NN
EU 125.1	9K			HF	RB	0002	00
Titel der Unterlage:					Seite:		
Schlußberich	t zum	Förderungsvo	rhaben				
"Radoökologie des Jods	-129"				II	•	
					Stand	:	
					31	.12.83	

PTB

Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeichn. Name	rev. Seite	Kat. *)	Erläuterung der Revision
						· ·
		-				
		,	_			
") K K	ategorie R — re ategorie V — ve ategorie S — su	daktionelle Indeutlicher Ibstantielle	Korrektur nde Verbesseru Änderung	ng		
Mind	destens bei der	Kategorie	S müssen Erläi	uterunge	en anç	jegeben werden.

(

ļ

F

e

ſ

(

9

4

INS NTUT FOR PHYSIKALISCHE CHEMIE DER UNIVERSITÄT BONN Abt. Nuklearchemie

Schlußbericht

zum Förderungsvorhaben <u>"Radioökologie des Iods-129"</u>

Förderungskennzeichen: O2 U 5171 bis 31.12.81 an der TU München und O2 U 5381 bis 31.12.83 an der Universität Bonn

Projektleiter:

- - - --

1. Aufgabenstellung

•1

ł

1.1 Entwicklung einer Analysenmethode zur Bestimmung von ¹²⁹I und ¹²⁷I in Umweltproben auf der Grundlage der Neutronenaktivierungsanalyse. In der Zielvereinbarung wurde gefordert, daß die Messung folgender Konzentrationen von ¹²⁹I möglich seine sollte:

Milch		10 ⁻¹⁵ Ci/l	(5,6·10 ⁻¹² g/l)
Feste Proben (Gras	, etc.)	5•10 ⁻¹⁶ Ci/g	(2,8·10 ⁻¹² g/g)
Bodenproben		5.10 ⁻¹⁷ Ci/g	(2,8·10 ⁻¹³ g/g)

- 1.2 Bestimmung des ¹²⁹I-Untergrundes in Deutschland durch Messung des ¹²⁹I- und ¹²⁷I-Gehalts und des ¹²⁹I/¹²⁷I-Verhältnisses in Rinder- und Schweineschilddrüsen.
- 1.3 Untersuchungen zum Langzeitverhalten des von der WAK freigesetzten ¹²⁹I durch langfristige Messungen des ¹²⁹I- und ¹²⁷I-Gehalts und des ¹²⁹I/¹²⁷I-Verhältnisses in Luft-, Boden-, Vegetations-, Milch- und Schilddrüsenproben aus der Umgebung der WAK.

Es sollte dabei auch versucht werden, die verschiedenen chemischen Formen des Iods zu bestimmen, die beim Transport vom Kamin der WAK bis zur Ablagerung auf dem Boden auftreten können.

- 1.4 Untersuchungen an Gras und Blattgemüse zu den Fragen, in welcher Form ¹²⁹I deponiert wird, welche Verweilzeiten es an Gras und Blattgemüse zeigt und welcher Anteil des ¹²⁹I-Gehalts aus dem Boden stammt.
- 2. Voraussetzungen, unter denen das Vorhaben durchgeführt wurde Das Vorhaben wurde am Institut für Radiochemie der TU München begonnen. Dabei waren die Voraussetzungen für die Entwicklung der Analysenmethode auf der Grundlage der Neutronenaktivierung besonders günstig, da sich das Institut in unmittelbarer Nachbarschaft zum Forschungsreaktor München befindet. Die Umgangsgenehmigung zum Umgang mit den bei der Neutronenaktivierung der Umweltproben entstehenden Aktivitäten, die teilweise mehrere Zehnerpotenzen über der Freigrenze liegen, war vorhanden,

ebenso ein Radionuklidlaboratorium, in dem radiochemische Arbeiten mit radioaktiven Stoffen dieser Aktivitäten ausgeführt werden konnten. Der Projektleiter hatte jahrelange Erfahrung auf dem Gebiet der Neutronenaktivierungsanalyse, der radiochemischen Bestimmung von Spaltprodukten, radiochemischer Trennund Reinigungsoperationen mit den verschiedensten Radionukliden und der Messung von Radionukliden auch im Low-Level-Bereich.

Nach der Berufung des Projektleiters an die Universität Bonn wurde das Vorhaben zum 1.1.1982 an das Institut für Physikalische Chemie, Abt. Nuklearchemie, der Universität Bonn transferiert. Die Voraussetzungen zur Durchführung des Vorhabens waren auch an der Universität Bonn gut. Die notwendigen Radionuklidlaboratorien mit der notwendigen Umgangsgenehmigung warer vorhanden. Ein Low-Level-Meßraum mußte allerdings erst eingerichtet werden. Die Bestrahlung der Proben im Kernreaktor zur Neutronenaktivierung konnte im FRJ-1 in der Kernforschungsanlage Jülich durchgeführt werden. Wegen der größeren Entfernung konnten die Bestrahlungen nicht so kurzfristig und flexibel durchgeführt werden wie in München.

In München arbeiteten 2 Doktoranden und 1 Chemotechniker an dem Vorhaben mit, in Bonn waren es 1 wissenschaftlicher Mitarbeiter und 1 Doktorandin und im Jahr 1983 2 Diplomanden.

3. Planung und Ablauf des Vorhabens

3.1 Die Analysenmethode zur Bestimmung von ¹²⁹I und ¹²⁷I in Umweltproben auf der Grundlage der Neutronenaktivierungsanalyse war im wesentlichen bis Mitte 1980 entwickelt, aufgebaut und getestet. Die wichtigsten Schritte bei der Entwicklung des Verfahrens waren a) die Ausarbeitung einer chemischen Methode, um Iod aus Umweltproben abzutrennen und anzureichern, b) die Ausarbeitung eines radiochemischen Trennverfahrens, um die Iodaktivitäten ¹²⁶I, ¹²⁸I und ¹³⁰I von anderen, bei der Neutronenbestrahlung der Probe entstehenden Aktivitäten abzutrennen und c) der Aufbau eines Mehrfachkoinzidenz-γ-Spektrometers, um das bei der Neutronenaktivierung von ¹²⁹I entstehende ¹³⁰I neben dem aus dem natürlichen ¹²⁷I entstehenden ¹²⁶I messen zu können. Die beiden chemischen Verfahren – Abtrennung des Iods aus den Umweltproben und radiochemische Reinigung des neutronenbestrahlten Iods - wurden parallel entwickelt. Die NaI(TI)- und Ge(Li)-Detektoren und das elektronische Zubehör für das Mehrfachkoinzidenzspektrometer waren bis Februar 1979 geliefert, so daß das Spektrometer bis Ende 1979 aufgebaut und eingestellt werden konnte. Während des ersten Halbjahrs 1980 wurden die notwendigen Testanalysen ausgeführt.

Bei diesen Testanalysen stellte sich heraus, daß bei der Bestimmung sehr geringer Mengen an ¹²⁹I in Gegenwart von natürlichem ¹²⁷I durch die dreifache Neutroneneinfangreaktion ¹²⁷I(n, γ) ¹²⁸I(n, γ) ¹²⁹I(n, γ) ¹³⁰I störende Mengen an ¹³⁰I entstehen könnten. In der Literatur war kein Wert für den Wirkungsquerschnitt der (n, γ)-Reaktion des 25 min ¹²⁸I veröffentlicht. Es war deshalb dringend notwendig, diesen Neutroneneinfangquerschnitt zu messen. Da die für die Wirkungsquerschnitte ¹²⁷I(n, γ) ¹²⁸I und ¹²⁹I(n, γ) ¹³⁰I in der Literatur veröffentlichten Werte stark schwankten, wurden auch diese Wirkungsquerschnitte neu gemessen.

Während dieser Arbeiten wurde begonnen, Rinder- und Schweineschilddrüsen aus verschiedenen Gegenden Deutschlands zu sammeln. Diese wurden dann im wesentlichen im Jahr 1981 analysiert.

In Zusammenarbeit mit dem Bundesgesundheitsamt, Abt. Strahlenhygiene, wurden im Jahr 1981 der ¹²⁹I- und ¹²⁷I-Gehalt in Schilddrüsen von Wildtieren gemessen, die in der näheren Umgebung von Kernkraftwerken erlegt worden waren.

In diesem Jahr wurde auch begonnen, in Zusammenarbeit mit der Hauptabteilung Sicherheit des KfK, aus der Umgebung des Kernforschungszentrums Karlsruhe Boden- und Vegetationsproben zu sammeln und auf ihren ¹²⁹I- und ¹²⁷I-Gehalt zu analysieren. Nach der Übersiedlung des Projektleiters an die Universität Bonn im Oktober 1981 wurde das Förderungsvorhaben zum 1.1.1982 an die Universität Bonn transferiert. Der Abbau der Meßgeräte in München und der Umzug nach Bonn wurden in den ersten 2 Monaten des Jahres 1982 durchgeführt. Der Wiederaufbau des y-Spektrometers verzögerte sich einige Monate, da der dafür vorgesehene Raum zuerst mit einem verstärkten Betonboden versehen werden mußte. In dieser Zeit konnten die neuen Mitarbeiter eingearbeitet werden und die Bestrahlung der Proben in der KfA Jülich und deren Transport nach Bonn organisiert werden.

÷

Die Analyse von Umweltproben aus der Umgebung der WAK konnte dann im letzten Quartal 1982 wieder aufgenommen und im Jahr 1983 fortgesetzt werden.

4. Wissenschaftlicher und technischer Stand

÷,

Als das Förderungsvorhaben begonnen wurde, waren in den USA einige Arbeiten über die aktivierungsanalytische Bestimmung von ¹²⁹I veröffentlicht worden:

- 1) Purkayastha, B.C., Martin, G.R., Can. J. Chem. <u>34</u>, 293 (1956)
- 2) Studier, M.H. et al., J. Inorg. Nucl. Chem. 34 755 (1962)
- 3) Brauer, F.P., Batelle Pacific Northwest Laboratory Report BNWL-SA-4983 (1974)
- 4) Ballad, R.V. et al. Health Physics 30, 345 (1976)
- 5) Rook, H.L. et al., Anal. Chem. <u>47</u>, 1557 (1975)

Lediglich in Ref.3) und 4) hatte die Bestimmung von ¹²⁹I eine radioökologische Zielsetzung.

In Deutschland waren von **einen (KfK 2620 und KfK 2775)** Messungen des ¹²⁹I-Gehalts in Proben aus der Umgebung des KfZ Karlsruhe gemacht worden.

Bei der Ausarbeitung der Bestimmungsmethode für ¹²⁹I waren die in Ref.2) und 3) beschriebenen Verfahren wertvoll. Allerdings brachte keines der in diesen Publikationen beschriebenen radiochemischen Trennverfahren eine ausreichend gute Iod-Brom-Trennung. Die Iodaktivierungsprodukte ¹²⁶I und ¹³⁰I waren stets von störenden ⁸²Br-Aktivitäten begleitet. Die Entwicklung eines radiochemischen Trennverfahrens, das einen ausreichenden Dekontamina tionsfaktor für ⁸²Br ergab, war deshalb vordringliches Ziel. Von den in diesen Publikationen beschriebenen Methoden für die Messung der ¹³⁰I-Aktivitäten eignete sich nur die in Ref.3) beschriebene B-Y-Koinzidenzmethode dazu, die bei der Aktivierung von Umweltproben entstehende geringe ¹³⁰I-Aktivität neben der aus dem natürlichen Iod entstehenden hohen ¹²⁶I-Aktivität zu messen. Da die Messung von B-Strahlung im allgemeinen schwieriger ist als die Messung von y-Strahlung, wurde diese Methode nicht übernommen, sondern eine Mehrfachkoinzidenz-Summenmethode aufgebaut, bei der nur y-Strahlung gemessen wird.

Die in Ref.3) aufgeführten Messungen wie auch die Messungen von Schüttelkopf zeigten, daß es in der unmittelbaren Nähe einer Wiederaufarbeitungsanlage zu einer lokal erhöhten ¹²⁹I-Konzentration kommen kann. Systematische Messungen an Proben aus der Umgebung der WAK sollten deshalb zeigen, wie stark sich ¹²⁹I unter den in Deutschland herrschenden klimatischen Bedingungen lokal anreichern kann und in welchen Teilen der Biosphäre höhere ¹²⁹I-Konzentrationen auftreten. Messungen zum Übergang des ¹²⁹I aus dem Boden in die Pflanzen gab es zu Beginn des Förderungsvorhabens keine.

Die während der Laufzeit des Vorhabens in den USA gemachten Messungen von ¹²⁹I-Konzentrationen in der Umgebung amerikanischer Wiederaufarbeitungsanlagen wurden hauptsächlich in Form von Reports des Batelle Pacific Northwest Laboratory, des Savannah River Laboratory und der Environmental Protection Agency veröffentlicht. Diese und andere Reports wurden über das Fachinformationszentrum Energie, Physik, Mathematik, Eggenstein-Leopoldshafen und über die Technische Informationsbibliothek Hannover bezogen.

5. Zusammenarbeit mit anderen Stellen

Im Rahmen des Vorhabens wurde mit folgenden Stellen zusammengearbeitet:

- 5.1 Hauptabteilung Sicherheit des Kernforschungszentrums Karlsruhe
- 5.2 Bundesgesundheitsamt, Abt. Strahlenhygiene, Neuherberg
- 5.3 Physik-Department der TU München, Forschungsreaktor
- 5.4 Staatl. Landwirtschaftliche Untersuchungs- und Forschungsanstalt Augustenberg, Karlsruhe
- 5.5 Institut für Chemie-Nuklearchemie- der KfA Jülich
- 5.6 KfA Jülich, Zentralabteilung Forschungsreaktoren
- 5.7 Institut für Bodenkunde, Universität Bonn

6. Erzielte Ergebnisse

6.1 <u>Die aktivierungsanalytische Bestimmung geringster Mengen von</u> ¹²⁹I und ¹²⁷I in der Biosphäre

Der direkte Nachweis von Spuren des ¹²⁹I in Umweltproben ist sehr schwierig, denn die Zerfallsrate ist wegen der langen Lebensdauer gering, und die emittierte Gammastrahlung ist sehr niederenergetisch (39,6 keV) und zudem noch stark konvertiert. Setzt man dagegen ¹²⁹I z.B. eine Stunde lang einem Fluß von 10¹³ thermischen Neutronen pro cm² und Sekunde aus, so entsteht eine 10⁴-fach höhere Aktivität an ¹³⁰I(T_{1/2} = 12,36 h).

- 5 -

Dieses ¹³⁰I emittiert beim Zerfall 3-4 Photonen in Kaskade mit hoher Summenenergie. Die Aktivierung mit thermischen Neutronen ermöglicht also einen sehr empfindlichen Nachweis von ¹²⁹I über die Kernreaktion ¹²⁹I(n, γ) ¹³⁰I. Das stets vorhandene natürliche Iod wird gleichzeitig durch thermische Neutronen über die Kernreaktion ¹²⁷I(n, γ) ¹²⁸I zum 25 m ¹²⁸I oder durch schnelle Neutronen nach ¹²⁷I(n,2n) ¹²⁶I zum 13d ¹²⁶I aktiviert.

 129 I bzw. dessen Aktivierungsprodukt 130 I kann allerdings auch aus U-, Cs- und Te-Verunreinigungen bei der Bestrahlung mit Neutronen über folgende Kernreaktionen entstehen: 235 U(n,f) 129 I

 $128_{Te(n,\gamma)}$ $129_{Te(B^{-})}$ 129_{I} $130_{Te(n,2n)}$ $129_{Te(B^{-})}$ 129_{I} $133_{Cs(n,\alpha)}$ 130_{I}

Vor der Neutronenbestrahlung muß deshalb eine chemische Vorreinigung und Anreicherung des Iods erfolgen. Diese ist auch deshalb notwendig, um die relativ großen Analysenproben (Schilddrüsen, Bodenproben, Pflanzenmaterial) in eine für die Bestrahlung im Reaktor geeignete Form zu bringen. Bei dieser Vorreinigung wird die chemische Ausbeute mit Hilfe von I-125 Tracer bestimmt, der der Analysenprobe vor der chemischen Aufarbeitung zugesetzt wird.

Nach der Bestrahlung im Reaktor muß das Iod einer erneuten chemischen Reinigung unterworfen werden. Dabei werden die induzierten Iodaktivitäten von Fremdaktivitäten abgetrennt, die aus den Verunreinigungen entstanden sind, die bei der Vorreinigung des Iods nicht oder schlecht abgetrennt wurden. Diese Fremdaktivitäten sind insbesondere ⁸²Br und ²⁴Na.

Nach dieser radiochemischen Reinigung der im Reaktor bestrahlten Probe sollten nur noch die Iodaktivitäten ¹²⁶I, ¹²⁸I und ¹³⁰I vorhanden sein, die bei der Neutronenbestrahlung aus den Iodisotopen ¹²⁷I und ¹²⁹I entstanden sind, und keine Fremdaktivitäten. Das gesamte Analysenverfahren ist im folgenden Schema dargestellt:

- Probe homogenisieren, gefriertrocknen, mit ¹²⁵I-Tracer versetzen
- Probe im Sauerstoffstrom veraschen; das flüchtige Iod wird mit Aktivkohle aufgefangen

- 6 -

- 3) · Veraschen der iodhaltigen Aktivkohle im Sauerstoffstrom; das flüchtige Iod wird wiederum mit Aktivkohle in einem Absorptionsrohr aus hochreinem Quarz aufgefangen
- 4) Quarzrohr mit Aktivkohle wird unter Vakuum zur Ampulle verschmolzen
- 5) Iod wird aus der Aktivkohle durch eine Verjüngung in den oberen Teil der Ampulle destilliert; die obere Hälfte der Ampulle wird abgeschmolzen
- 6) Messung des ¹²⁵I zur Bestimmung der chemischen Ausbeute von Veraschung und Destillation
- 7) Bestrahlen der Ampulle im Reaktor zusammen mit einem Vergleichsstandard
- 8) Ampulle in geschlossenem Gefäß unter NaHSO₃-Lösung aufbrechen in Gegenwart von I-Träger und Br-Träger
- 9) Radiochemische Reinigung des Iods
- 9.1 Oxidation mit KMnO₄ : Br₂ wird im N₂-Strom ausgetrieben
- 9.2 Reduktion mit NH₂OH·HCl und Extraktion des I₂ mit CCl₄
- 9.3 Reduktion mit NaHSO3 und Extraktion des I mit H2O
- 9.4 Oxidation mit NaNO₂ und Extraktion des I_2 mit CCl₄
- 9.5 Reduktion mit NaHSO, und Extraktion des I mit H20
- 9.6 Zugabe von Br-Träger und Fällung als AgI und AgBr
- 9.7 AgI und AgBr werden mit $K_2Cr_2O_7$ in konz. H_2SO_4 behandelt; Br₂ wird im N₂-Strom ausgetrieben
- 9.8 Reduktion mit NaHSO,
- 10) Fällung des Iods als AgI, Wägung des AgI und Herstellung der Meßprobe
- 11) Messung der Aktivitäten von ¹²⁶I, ¹²⁸I und ¹³⁰I

Der Gehalt an natürlichem ¹²⁷I wird durch Messung der γ -Strahlung entweder des 25 min ¹²⁸I oder des 13d ¹²⁶I bestimmt, der Gehalt an ¹²⁹I durch Messung des 12,3 h ¹³⁰I. Die Messung des ¹³⁰I wird durch die γ -Strahlen sowohl des ¹²⁸I als auch des ¹²⁶I gestört. Die Störung durch ¹²⁸I wird umgangen, indem abgewartet wird, bis es abgefallen ist. Die Störung durch das langlebige ¹²⁶I kann nur durch meßtechnische Maßnahmen verhindert werden, durch die ¹²⁶I unterdrückt wird.

Beim Zerfall eines ¹³⁰I-Kerns werden stets 3 bzw. 4 Photonen in Koinzidenz emittiert. Ihre Summenenergie beträgt 2361 MeV bzw. 1944 MeV. Beim Zerfall von ¹²⁶I entstehen nur 1 bzw. 2 Photonen. Die Summenenergie der emittierten Strahlungen beträgt maximal 1688 keV. Wenn man diese charakteristischen Eigenschaften ausnützt, kann man ¹³⁰I auch in Gegenwart einer viel höheren Aktivität von ¹²⁶I nachweisen.

Unsere Meßapparatur besteht aus einem Ge(Li)-Detektor, der in einem in Längsrichtung viergeteilten NaI-Detektor-Torus steckt. Das dem Ge(Li)-Detektor gegenüberliegende Loch des Torus ist mit einem weiteren NaI-Detektor verschlossen (Abb.1). Es wird nun zwischen den beiden Iodisotopen ¹²⁶I und ¹³⁰I diskriminiert, indem im Ge(Li)-Detektor nur dann ein Ereignis registriert wird, wenn zugleich mindestens 2 der insgesamt 5 NaI-Detektoren ansprechen, und wenn zusätzlich die Summenenergie aller summierten Impulse zwischen 1850 keV und 2500 keV liegt (Abb.2). Das gesamte Analysen- und Meßverfahren ist in Radiochimica Acta <u>29</u>, 209-215 (1981) genau beschrieben (siehe Anhang I).

6.2 <u>Die Bestimmung von Wirkungsquerschnitt und Resonanzintegral</u> der (n,y)-Reaktionen von 127I, 128I (T_{1/2} = 25 min) und 129I

Bei der Neutronenbestrahlung von Proben, die natürliches Iod in größeren Mengen enthalten, kann über zweifachen Neutroneneinfang aus dem stabilen ¹²⁷I unerwünschterweise ¹²⁹I gebildet werden. Damit wird die Bestimmung geringster ¹²⁹I-Konzentrationen in Gegenwart größerer Mengen von natürlichem Iod mit Hilfe der Neutronenaktivierungsanalyse unsicher. Nur bei genauer Kenntnis aller thermischen Wirkungsquerschnitte und Resonanzintegrale der Reaktionsfolge ¹²⁷I(n, γ) ¹²⁸I(n, γ) ¹³⁰I kann der Beitrag dieser Störreaktion berücksichtigt werden.

Für den Wirkungsquerschnitt des 25 min ¹²⁸I waren bisher in der Literatur keine Messungen veröffentlicht. Die in der Literatur veröffentlichten Werte für die Wirkungsguerschnitte und Resonanzintegrale von ¹²⁷I und ¹²⁹I waren sehr unterschiedlich. Deshalb wurden Wirkungsguerschnitt und Resonanzintegral der drei Reaktionen ¹²⁷I(n, γ) ¹²⁸I, ¹²⁸I(n, γ) ¹²⁹I und ¹²⁹I(n, γ) ¹³⁰I gemessen. Eine genaue Beschreibung dieser Messungen und der Ergebnisse wurde in Radiochimica Acta <u>33</u>, ¹⁸³⁻¹⁸⁷ (1983) veröffentlicht (s. Anhang II).

- 8 -

Die Kernspaltung von ²³⁵Ü in Kernreaktoren stellt eine der wesentlichsten Quellen für ¹²⁹I dar. Maßgebliche Größe für die entstehende Menge an ¹²⁹I ist seine kumulative Spaltausbeute. Dieser Wert ist Ausgangsbasis für sämtliche Freisetzungsund Expositionsabschätzungen.

In der Literatur gibt es nur einen einzigen experimentell bestimmten Wert für die Spaltausbeute von 129 I (0,9%), der von den durch Interpolation der Massenausbeuten benachbarter Ketten erhaltenen Werten (0,61 - 0,8%) abweicht. Die Werte, die über Messungen der kumulativen Spaltausbeuten von 129 Sb und 129 Te gewonnen worden sind, schwanken in noch stärkerem Maße (0,2-1,1%)

Eine direkte experimentelle Bestimmung der kumulativen Spaltausbeute von ¹²⁹I war deshalb angebracht. Sie ist in Radiochimic: Acta <u>30</u>, 19-20 (1982) veröffentlicht (s.Anhang III).

6.4 <u>Konzentration aus ¹²⁷I und ¹²⁹I und ¹²⁹I/¹²⁷I - Verhältnis in</u> Schilddrüsen von Rindern und Schweinen

Die erste Aufgabe bestand darin, den Untergrund an ¹²⁹I in der Biosphäre in Deutschland zu bestimmen. Dazu wurden Rinder- und Schweineschilddrüsen aus verschiedenen Gegenden Deutschlands gesammelt und auf ihren ¹²⁹I- und ¹²⁷I-Gehalt untersucht. Die Ergebnisse der insgesamt 27 Messungen sind in Tab.1 zusammengestellt. Der Mittelwert für das Isotopenverhältnis Masse (¹²⁹I)/ Masse (¹²⁷I) liegt bei 26·10⁻⁹; die Einzelwerte liegen zwischen 0,4·10⁻⁹ und 91·10⁻⁹.

Die Einzelwerte überdecken einen überraschend großen Bereich von nahezu drei Größenordnungen. Es kann kein Zusammenhang zwischen dem Isotopenverhältnis und der Gegend der Probenahme festgestellt werden; große Unterschiede treten selbst zwischen Schild drüsen aus ein und demselben Schlachthof auf. Dagegen gibt es eine gewisse Korrelation zwischen dem Isotopenverhältnis und der Iodkonzentration in der Schilddrüse. Ein niedriges Isotopenverhältnis tritt vor allem bei Proben mit hoher Iodkonzentration auf Hier wird also durch eine gesteigerte Aufnahme von natürlichem Iod das aufgenommene ¹²⁹I verdünnt und seine Ausscheidung beschlet nigt. Stammt das angebotene Iod aus standortfremdem Futter oder aus Präparaten, so ist das Meßergebnis verfälscht. 6.5 Konzentration an ¹²⁷I und ¹²⁹I und ¹²⁹I/¹²⁷I-Verhältnis in Schilddrüsen von Wildtieren aus der Umgebung von Kernkraftwerken Diese Messungen sollten zeigen, ob der ¹²⁹I-Pegel in der Umgebung von Kernkraftwerken erhöht ist gegenüber dem in Rinder- und Schweineschilddrüsen gemessenen ¹²⁹I/¹²⁷I-Verhältnis. In Zusammenarbeit mit dem Bundesgesundheitsamt, Abt. Strahlenhygiene, wurden Schilddrüsen von Wildtieren untersucht, die in nächster Umgebung von Kernkraftwerken erlegt worden waren.

Die Ergebnisse sind in Tab.2 zusammengestellt. Der Mittelwert der gemessenen Isotopenverhältnisse liegt mit 90·10⁻⁹ über dem Mittelwert aus den Haustierschilddrüsen, aber noch innerhalb von deren Streubereich. Ob der Unterschied in den Mittelwerten tatsächlich von Emissionen der Kernkraftwerke herrührt, oder ob dafür die unterschiedlichen Ernährungsweisen verantwortlich sind, müssen weitere Messungen zeigen. Außerdem sollten Messungen an Wildtieren aus Kraftwerks-fernen Gebieten als Vergleichswerte gewonnen werden; die erste Messung dieser Art ist ebenfalls in Tab.2 aufgeführt.

6.6 ¹²⁷I und ¹²⁹I in Proben aus der Umgebung der WAK

Die Probenahmepunkte befinden sich in der 1.Hauptwindrichtung in einer Entfernung von ca. 550-700 m bzw. 3000-3500 m von der WAK. Zwei dieser Stellen wurden deshalb gewählt, weil sich dort in enger Nachbarschaft Feld, Wiese und Wald befinden. Eine dritte Stelle umfaßt einen privaten Gemüsegarten und die in unmittelbarer Nähe liegenden Getreidefelder. Die Lage der Probenahmestellen ist in Abb.3 skizziert. Die Proben sind Erdproben aus verschiedenen Tiefen, um Tiefenprofile zu erhalten und, je nach Bewuchs, Buchenlaub, Gras, die verschiedenen Getreidesorten, Mais, Kartoffeln und verschiedene Gemüse- und Obstarten. An einer 29 Jahre alten Robinie von einer WAK-nahen Stelle soll untersucht werden, wie sich das im Laufe der Jahre abgegebene ¹²⁹I auf den ¹²⁹I-Gehalt der Jahresringe von Bäumen auswirkt. Eine Scheibe der Robinie wurde in die einzelnen Jahresringe zerlegt und in einem Teil der Jahresringe der ¹²⁷I- und ¹²⁹I-Gehalt bestimmt. Von den Bodenproben wurden in Zusammenarbeit mit dem Institut für Bodenkunde der Universität Bonn die wichtigsten Bodenkenndaten bestimmt, um dadurch die Böden zu charakterisieren. Bestimmt wurden

pH-Wert, Glühverlust, Gesamtstickstoffgehalt, Ton-, Schluffund Sandgehalt und Gesamtaustauschkapazität. Die Kenntnis dieser Daten ist Voraussetzung, um im Rahmen zukünftiger Messungen eine Abhängigkeit des Iodtransfers vom Boden zur Pflanze von den Bodeneigenschaften erkennen zu können. Die bisher an den Bodenproben gewonnenen Analysenergebnisse sind in Tab.3-8 zusammengestellt. In Abb.4-9 sind die entsprechenden Tiefenprofile aufgezeichnet. Die in den pflanzlichen Proben gemessenen ¹²⁷I- und ¹²⁹I-Konzentrationen sind in Tab.9 aufgeführt.

Es zeigt sich, daß die ¹²⁷I-Konzentration in allen Bodenproben ziemlich gleichmäßig ist. Lediglich die Humusschichten des Waldbodens haben einen 2- bis 4-fach höheren ¹²⁷I-Gehalt als die darunter liegenden mineralischen Schichten. Auch ¹²⁹I wird bevorzugt in den Humusschichten des Waldbodens angereichert. Im Gegensatz zum ¹²⁷I-Gehalt ist der ¹²⁹I-Gehalt der Humusschichten um mehr als eine Größenordnung höher als der der mineralischen Schichten. In den mineralischen Schichten selbst nimmt die ¹²⁹I-Konzentration innerhalb der oberen 30 cm sehr stark ab, teilweise um den Faktor 50.

Im Gegensatz zum Waldboden ist im Feldboden auch der ¹²⁹I-Gehalt bis zu einer Tiefe von ca. 25 cm ziemlich gleichmäßig. Bis zu dieser Tiefe etwa wird beim Pflügen der Boden vermischt.

Die Meßergebnisse zeigen, daß ¹²⁹I sehr effizient in den oberen 30 cm des Bodens festgehalten wird. Da die Konzentration in den Humusschichten am größten ist, scheinen der Gehalt an organischem Material und/oder die Tätigkeit von Mikroorganismen eine wichtige Rolle bei der Rückhaltung des ¹²⁹I zu spielen.

Der vertikale Transport des ¹²⁹I im Boden scheint also sehr langsam zu verlaufen. Das würde bedeuten, daß bei einer chronischen Abgabe von ¹²⁹I an die Atmosphäre das ¹²⁹I-Inventar in der Oberflächenschicht des Bodens nahezu linear mit der Zeit der Abgabe zunimmt.

Dementsprechend würden dann auch die Belastungspfade über den Verzehr pflanzlicher Nahrungsmittel bei Tier und Mensch wegen der zunehmenden Aufnahme von ¹²⁹I durch die Wurzeln der Pflanzen an Bedeutung gewinnen.

Aus den ¹²⁷I- und ¹²⁹I-Konzentrationen des Bodens und der pflanzlichen Proben lassen sich die Transferfaktoren für ¹²⁷I und ¹²⁹I berechnen, die den Übergang der Iodisotope vom Boden in die Pflanzen charakterisieren unter der Annahme, daß der direkt aus der Luft auf den Pflanzen abgelagerte Teil vernachlässigbar ist. Die Transferfaktoren für ¹²⁷I liegen zwischen 3,3·10⁰ und 2,0·10⁻² und die für ¹²⁹I zwischen 1,1·10⁰ und 5,3·10⁻³ (Tab.10). Die Unterschiede in der Aufrahme von ¹²⁷I und ¹²⁹I können durch unterschiedliche chemische Formen verursacht werden, in denen die beiden Iodisotope im Boden vorliegen. Dadurch kann es zu einer unterschiedlichen Verfügbarkeit der beiden Iodisotope für die Pflanzen kommen.

Ein Teil des im Pflanzenmaterial gemessenen ¹²⁹I kann außerdem aus direkter Ablagerung auf der Oberfläche der Pflanzen stammen. Allerdings wird beim Weizen im Mehl ein höherer ¹²⁹I-Gehalt gefunden als in der Kleie und in der Spreu. Das deutet darauf hin daß bei diesen Proben diese oberflächliche Ablagerung im Vergleich zur Wurzelaufnahme nicht bedeutend war. In dieselbe Richtung deutet der ¹²⁹I-Gehalt des Futterrübenkrautes, der niedriger ist als der der Rübe selbst.

In Tab.11 sind die ¹²⁷I- und ¹²⁹I-Konzentrationen in den verschiedenen Jahresringen der Robinie aufgeführt.

7. Nutzen der Ergebnisse

Mit der entwickelten Analysenmethode lassen sich geringste Mengen an 129 I (bis zu 10⁻¹⁵ g) und 127 I (bis zu 10⁻⁹ g) messen. Es lassen sich deshalb die 127 I- und 129 I-Konzentrationen nicht nur an Proben aus der unmittelbaren Umgebung kerntechnischer Anlagen, sondern auch an Proben aus weiter entfernten Gegenden messen. So können mit Hilfe der beschriebenen analytischen Bestimmungsmethode die Ergebnisse radioökologischer Modellrechnungen bezüglich der Ausbreitung des 129 I in der Umwelt auch noch in größeren Entfernungen von kerntechnischen Anlagen nachgeprüft werden. Mit Hilfe des entwickelten Analysenverfahrens wird es möglich sein, den 129 I- und 127 I-Gehalt von Luft und Niederschlägen zu messen und so Fallout-Geschwindigkeit und Washout-Koeffizienten zu bestimmen.

Da stets das ¹²⁹I/¹²⁷I-Verhältnis gemessen wird, läßt sich nachprüfen, ob das sog. spez. Aktivitätsmodell auch bei ¹²⁹I anwendbar ist.

Die Bestimmung der verschiedenen chemischen Formen des ¹²⁹I

und.¹²⁷I in Luft, Niederschlägen und im Boden wird möglich, wenn Trennmethoden vorliegen, nach denen die einzelnen chemischen Formen getrennt werden können. Die in den einzelnen getrennten Fraktionen vorliegenden Mengen an ¹²⁷I und ¹²⁹I lassen sich dann einfach mit der entwickelten Methode bestimmen.

Eine sehr wichtige Anwendung wird die Messung von Transferfaktoren für ¹²⁹I und ¹²⁷I in Gemüsepflanzen, Getreide, Obst, Milch, Fleisch und Eiern unter realistischen Bedingungen sein.

8. Veröffentlichungen der Ergebnisse

- 8.1 D.C. Aumann, H. Faleschini und L. Friedmann, "Determination of ¹²⁹I and ¹²⁷I at Natural Levels by Neutron Activation Analysis" Radiochimica Acta <u>29</u>, 209-215 (1981)
- 8.2 L. Friedmann und D.C. Aumann, "The Thermal Neutron Cross-Sections and Resonance Integrals of ¹²⁷I, ¹²⁸I and ¹²⁹I" Radiochimica Acta <u>33</u>, 183-187 (1983)
 - 8.3 D.C. Aumann und L. Friedmann, "Cumulative Yield of 1.6.10⁷y¹²⁹I from Thermal-Neutron Induced Fission of ²³⁵U" Radiochimica Acta <u>30</u>, 19-20 (1982)

8.4

"Iodine-129 in Thyroid Glands" Health Physics: in Vorbereitung

8.5

"Iodine-129 Distribution

in the Environment of the Karlsruhe Nuclear Fuel Reprocessing Plant"

Health Physics: in Vorbereitung

Probe	Herkunft	Jahr	127 I-K	onz.	¹²⁹ I-ко	nzentra	tion		¹²⁹ I/ ¹²	27 ₁
		Probe-	- mg	a _	₽ ₽ ₽ 9	٦	10-16	Ci		
		nanme	g Schi	lddrüse	g Schil	ddrüse	g Sch	ildd.	[10 ⁻⁹]	
Rind	München	1979	1,15	<u>+</u> 0,05	10,9 <u>+</u>	1,2	19,2	+ 2,1	9,5 <u>+</u>	٥, ٩
-		•	0,91	0,07	5,4	0,8	9,5	1,4	5,9 +	0,9
•		**	0,89	0,04	4,4	1,8	7,8	3,2	4,9 <u>+</u>	1,9
` •	Frankfurt	1980	0,30	0,01	8,4	,2,1	14,8	3,7	28,0 <u>+</u>	7,0
*	Flensburg	**	0,96	0,04	25,0	2,7	44,1	4,8	26,0	2,6
* • ·	".	*	0,70	0,08	20,7	2,7	36,5	4,8	29,4	1,9
-	Aachen	-	0,45	0,02	32,8	4,3	57,9	7,6	73,0	9,8
-	-	-	1,42	0,15	129,2	14,7	228,1	26,0	90,9	4,0
*	-	-	1,67	0,30	66,8	12,2	117,9	21,5	40,0	1,7
a,	Stuttgart	-	0,79	0,14	64,0	11,6	113,0	20,6	81,3	7,4
	"	-	4,80	1,37	< 0,6		< 1,1		<0,13	
•	-		1,45	0,24	16,0	2,8	28,2	5,0	11,1	0,7
=	Eschwege		0,43	0,06	17,9	2,6	31,6	4,6	41,8	2,7
	Nienburg	•	1,38	0,26	24,1	4,7	42,6	8,4	17,5	0,9
•	Diepholz	**	2,53	0,61	24,2	6,0	42,8	10,5	9,6	0,5
-	Hof	m	1,02	0,13	18,1	2,5	31,9	4,4	17,6	1,0
	t 4	**	1,19	0,17	65,4	10,1	115,5	17,9	55,1	3,8
•	**	11	2,77	0,67	20,4	5,0	36,1	8,8	7,4	0,3
·										
				فالتحسينية وعادي مافات						
wein	München	1979	1,63	0,08	0,7	0,1	1,2	0,2	0,4	0,1
	Aachen	1980	2,49	0,63	19,3	5,1	34,1	9,0	7,8	0,6
+9	Regensburg	-	0,65	0,07	40,2.	4,7	71,0	8,4	62,0	3,0
-	Würzburg	*	1,09	0,14	39,6	5,6	70,0	9,8	36,3	2,0
	•	-	0,60	0,06	22,5	2,6	39,7	4,6	37,3	1,9
	Nauen	-	0,89	0,57	9,7	7,4	17,1	13,0	10,9	5,6
•	Potsdam DDR	-	1,52	0,24	7,9	.1,7	14,0	2,9	- 5,2	0,7
-	Wittstock	-	0,48	0,05	1,4	• 0,2	2,5	0,4	2,9	0,3
Probe aus 6	Coburg	1981	3,54	0,67	7,3	1,4	12,8	2,6	2,1	0;1
Schw. schild	drüsen -						, ,	tilled	26	*

<u>Tab.1</u>: Konzentration an ¹²⁷I und ¹²⁹I und ¹²⁷I/¹²⁹I-Verhältnis in Schilddrüsen von Rindern und Schweinen

ſ

÷.,

Probe	Herkunft	Jehn	127 - Kongontration	́ 129т _{Малла}	• •	129-,127-
		der	1-Konzentration	² 1-Aonzen	tration	1/ 1/
	-	Probe- nahme	[10 ⁻⁵ ⁶ /8]	[10 ⁻¹² g/g]	[10 ⁻¹⁶ Ci/g]	[10-9]
	KKW		•			·
	Gundremmingen:					
Reh	W-SW, 1,3 km	1981	4,9 <u>+</u> 0,7	3,1 ± 0,5	5,5 <u>+</u> 0,8	64,0 <u>+</u> 9,2
3 Feldhasen	SW, 2-4 km	1981	$7,2 \pm 1,0$	2,1 + 0,6	3,6 + 1,1	28,5 + 9,2
5 Feldhasen	NO, 2-4,5 km KKW	1981	$2,1 \pm 0,3$	0,4 <u>+</u> 0,1	0,7 <u>+</u> 0,2	18,0 <u>+</u> 5,1
	Obrigheim:					
Feldhase	N, 400 m KKW	1981	13,9 <u>+</u> 2,7	7,9 <u>+</u> 1,5	14,0 <u>+</u> 2,6	56,8 <u>+</u> 13,0
	Lingen (Ems):					I
Kani nchen	NO, 600-1750 m	1 981	43,5 ± 3,3	74,9 + 6,4	132,0 +10,8	172,0 + 8,6 जे
Kani nchen	NO, 600-1750 m KKW	19 81	66,7 ± 3,9	57,8 <u>+</u> 5,4	102,0 <u>+</u> 9,2	86,7 <u>+</u> 7,0
	Würgassen		•	•		
Kaninchen	NO, 600 m	1982	0,2 + 0,02	0,4 <u>+</u> 0,5	0,7 <u>+</u> 1,0	185,0 + 257,0
					Millel	90
Reh	Rehau (Fichtelgebirge)	1982	>0,2	>0,2	.>0,5	102,0 <u>+</u> 15,5
					•	

<u>Tab.2</u>: Konzentration an ¹²⁷I und an ¹²⁹I und ¹²⁹I/¹²⁷I- Verhältnis in Schilddrüsen von Wildtieren aus der Umgebung von Kernkraftwerken und aus standortfernen Regionen

Da tum der Pr oben-	Tiefe (cm)	127 I-Kangentration im Trockenboden		129 _{І-Ко} ім т	¹²⁹ 1/ ¹²⁷ 1			
en tnahme		(10 ⁻⁶ g/g)	(1	0 ⁻¹² g/g)	(*	10 ⁻⁶ Bq/g)	(10	- ⁶ g/g)
	0-Schicht		<u></u>		<u> </u>		• · · · · · · · · · · · · · · · · · · ·	•
20. 7.82	10 - 9	2,5 <u>+</u> 0,1	195	<u>+</u> 12	1270	<u>+</u> 70	77	<u>+</u> 3
21 .10.82	10 - 8	1,8 <u>+</u> 0,1	126	<u>+</u> 8	823	<u>+</u> 45	72	<u>+</u> 3
21 .10.82	8 - 6	1,4 <u>+</u> 0,1	135	<u>+</u> 9	880	<u>+</u> 54	98	+ 4
21 .10.82	6 - 4	5,4 + 0,3	1010	<u>+</u> 64	6585	<u>+</u> 380	186	<u>+</u> 8
	A _h -Schicht							
21. 10.82	4 - 0	3,1 <u>+</u> 0,2	293	<u>+</u> 19	1920	<u>+</u> 114	95	<u>+</u> 4
	Mineral. Schicht							
21 .10.82	0 - 5	1,1 <u>+</u> 0,1	23	<u>+</u> 1	151	<u>+</u> 9	21	<u>+</u> 1
21.10.82	5 - 10	1,1 <u>+</u> 0,1	11	+ 1	74	<u>+</u> 4	11	<u>+</u> 1
21 .10.82	10 - 20	$1,4 \pm 0,1$	9,7	<u>+</u> 0,6	63	<u>+</u> 4	6,7	<u>+</u> 0,3
21.10.82	20 - 30	0,92 <u>+</u> 0,05	3,6	<u>+</u> 0,2	23	<u>+</u> 1	3,9	<u>+</u> 0,2
21.10.82	30 - 40	1,2 <u>+</u> 0,1	1,4	<u>+</u> 0,1	9,4	<u>+</u> 0,5	1,2	<u>+</u> 0,1
21.10.82	40 - 50	1,4 <u>+</u> 0,1	1,5	<u>+</u> 0,1	10	<u>+</u> 1	1,1	<u>+</u> 0,1

1, 10, 1

Tab.3 : Konzentration an ¹²⁷I und ¹²⁹I und ¹²⁹I/¹²⁷I-Verhältnis in Bodenproben aus der Umgebung der WAK Karlsruhe

Wald; 1.HWR; ca. 550 m Entfernung vom Abluftkamin

•

Datum der Tiefe Proben- (cm)	127 I-Konzentration im Trockenboden	¹²⁹ I-Konz im Tro	¹²⁹ I/ ¹²⁷ I		
entnahme		(10 ⁻⁶ g/g)	(10 ⁻¹² g/g) -	(10 ⁻⁶ Bq/g)	(10 ⁻⁶ g/g)
20.7.82	0 - 3	1,5 + 0,1	36 + 2	235 + 13	24 + 1
20.7.82	3 - 6	1,1 + 0,1	33 + 2	212 + 12	30 + 1
20.7.82	6 - 12	1,1 <u>+</u> 0,1	34 + 2	223 + 12	31 + 1
20.7.82	12 - 17	1,1 ± 0,1	10 + 1	67 + 4	9,3 + 0,4
20.7.82	. 17 - 30	1,2 + 0,1	0,63 + 0,10	11 + 1	1,4 + 0,1
20 .7.82	30 - 40	1,2 + 0,1	0,32 ± 0,02	$2,1 \pm 0,1$	$0,28 \pm 0,01$

Tab.4 : Konzentration an ¹²⁷I und ¹²⁹I und ¹²⁹I/¹²⁷I-Verhältnis in Bodenproben aus der Umgebung der WAK Karlsruhe

Wiese; 1.HWR; ca. 600 m Entfernung vom Abluftkamin

· .

20.7.82 0 - 1	(10 ⁻⁶ g/g)	(10 ⁻¹² g/g)	(10 ⁻⁶ Bq/g)	(10 ⁻⁶ g/g)
20 7 82 0 - 1				
20.7.02 0 - 1	5 1,0 <u>+</u> 0,1	6,0 + 0,4	39 <u>+</u> 2	5,8 <u>+</u> 0,3
20.7.82 15 - 2	5 0,87 <u>+</u> 0,05	4,5 <u>+</u> 0,3	29 <u>+</u> 2	5,1 <u>+</u> 0,2
20.7.82 25 - 3	5 1,2 <u>+</u> 0,1	0,48 <u>+</u> 0,03	3,1 <u>+</u> 0,2	0,40 <u>+</u> 0,02

der WAK Karlsruhe

·

Feld; 1.HWR; ca. 700 m Entfernung vom Abluftkamin

٠

· ·

•

Tiefe	14/				1	20				100	127	
(cm)	im T	leen rock	tration cenboden	¹²⁹ I-Konzentration im Trockenboden								
i	(10 ⁻⁶	a/a)		(*	0	¹² g/g)	(10	o ⁻⁶	Bq/g)	(10	0 -6 3/3)	
0-Schicht			•									
10 - 8	2,7	<u>+</u>	0,2	32	+	2	208 .	+	12	12	<u>+</u> 1	
8 - 6	3,7	<u>+</u>	0,2	88	+	5	572	<u>+</u>	31	24	<u>+</u> 1	
6 - 4	4,4	<u>+</u>	0,2	231	<u>+</u>	14 .	1510	<u>+</u>	82	52	<u>+</u> 2	
A _h -Schicht												
4 - 0	3,6	<u>+</u>	0,2	95	<u>+</u>	6	620	<u>+</u>	34	26	<u>+</u> 1	
Mineral. Schicht												
0·- 4	1,9	<u>+</u>	0,1	14	<u>+</u>	1	94	<u>+</u>	5	7,7	<u>+</u> 0,3	
4 - 10	1,0	<u>+</u>	0,1	2,0	±	0,1	13	<u>+</u>	1	1,9	<u>+</u> 0,1	
10 - 20	1,1	<u>+</u>	0,1	1,0	<u>+</u>	0,1	6,6	+	0,4	0,96	<u>+</u> 0,04	
20 - 30	1,1	<u>+</u>	0,1	0,36	+	0,02	2,4	+	0,1	0,32	<u>+</u> 0,01	
30 - 40	0,65	<u>+</u>	0,03	0,10	<u>+</u>	0,01	0,65	<u>+</u>	0,05	0,16	<u>+ 0,01</u>	
40 - 50	0,68	<u>+</u>	0,04	0,13	<u>+</u>	0,01	0,86	<u>+</u>	0,05	0,20	<u>+</u> 0,01	
	$\begin{array}{r} \text{O-Schicht} \\ 10 - 8 \\ 8 - 6 \\ 6 - 4 \\ \text{A}_{h} - \text{Schicht} \\ 4 - 0 \\ \text{Mineral} \\ \text{Schicht} \\ 0 - 4 \\ 4 - 10 \\ 10 - 20 \\ 20 - 30 \\ 30 - 40 \\ 40 - 50 \\ \end{array}$	(10^{-6}) i O-Schicht 10 - 8 = 2,7 8 - 6 = 3,7 6 - 4 = 4,4 A _h -Schicht 4 - 0 = 3,6 Mineral. Schicht 0 - 4 = 1,9 4 - 10 = 1,0 10 - 20 = 1,1 20 - 30 = 1,1 30 - 40 = 0,65 40 - 50 = 0,68	$(10^{-6} g/g)$ i O-Schicht $10 - 8 2,7 \pm \\ 8 - 6 3,7 \pm \\ 6 - 4 4,4 \pm \\$ A _h -Schicht $4 - 0 3,6 \pm \\$ Mineral. Schicht $0 - 4 1,9 \pm \\ 4 - 10 1,0 \pm \\ 10 - 20 1,1 \pm \\ 20 - 30 1,1 \pm \\ 30 - 40 0,65 \pm \\ 40 - 50 0,68 \pm \\$	$(10^{-6}g/g)$ O-Schicht $10 - 8 = 2,7 \pm 0,2$ $8 - 6 = 3,7 \pm 0,2$ $6 - 4 = 4,4 \pm 0,2$ A _h -Schicht $4 - 0 = 3,6 \pm 0,2$ Mineral. Schicht $0 - 4 = 1,9 \pm 0,1$ $4 - 10 = 1,0 \pm 0,1$ $10 - 20 = 1,1 \pm 0,1$ $10 - 20 = 1,1 \pm 0,1$ $20 - 30 = 1,1 \pm 0,1$ $30 - 40 = 0,65 \pm 0,03$ $40 - 50 = 0,68 \pm 0,04$	$(10^{-6} g/g)$ O-Schicht $10 - 8 2.7 \pm 0.2 \qquad 32$ $8 - 6 3.7 \pm 0.2 \qquad 88$ $6 - 4 \qquad 4.4 \pm 0.2 \qquad 231$ A _h -Schicht $4 - 0 \qquad 3.6 \pm 0.2 \qquad 95$ Mineral. Schicht $0 - 4 \qquad 1.9 \pm 0.1 \qquad 14$ $4 - 10 \qquad 1.0 \pm 0.1 \qquad 2.0$ $10 - 20 \qquad 1.1 \pm 0.1 \qquad 1.0$ $20 - 30 \qquad 1.1 \pm 0.1 \qquad 0.36$ $30 - 40 \qquad 0.65 \pm 0.03 \qquad 0.10$ $40 - 50 \qquad 0.68 \pm 0.04 \qquad 0.13$	$(10^{-6}g/g)$ (10 ⁻⁶ g/g) (10 ⁻⁶ g/g) (10 ⁻⁶ g/g) (10 ⁻⁶ g/g) (10 ⁻⁷) (1	$(10^{-6}g/g) \qquad (10^{-12}g/g)$ $(10^{-12}g/g)$	$(10^{-6} g/g) \qquad (10^{-12} g/g) \qquad (10^{-12} g/g) \qquad (10^{-12} g/g)$	$(10^{-6} g/g) \qquad (10^{-12} g/g) \qquad (10^{-6} g/g)$ O-Schicht $10 - 8 2,7 \pm 0,2 \qquad 32 \pm 2 \qquad 208 \pm \\ 8 - 6 \qquad 3,7 \pm 0,2 \qquad 88 \pm 5 \qquad 572 \pm \\ 6 - 4 \qquad 4,4 \pm 0,2 \qquad 231 \pm 14 \qquad 1510 \pm \\ h_{h}-Schicht \qquad 4 - 0 \qquad 3,6 \pm 0,2 \qquad 95 \pm 6 \qquad 620 \pm \\ Mineral. Schicht \qquad 0 - 4 \qquad 1,9 \pm 0,1 \qquad 14 \pm 1 \qquad 94 \pm \\ 4 - 10 \qquad 1,0 \pm 0,1 \qquad 2,0 \pm 0,1 \qquad 13 \pm \\ 10 - 20 1,1 \pm 0,1 \qquad 1,0 \pm 0,1 \qquad 6,6 \pm \\ 20 - 30 \qquad 1,1 \pm 0,1 \qquad 0,36 \pm 0,02 \qquad 2,4 \pm \\ 30 - 40 \qquad 0,65 \pm 0,03 \qquad 0,10 \pm 0,01 \qquad 0,86 \pm \\ 40 - 50 \qquad 0,68 \pm 0,04 \qquad 0,13 \pm 0,01 \qquad 0,86 \pm \\ \end{bmatrix}$	$(10^{-6} \text{g/g}) \qquad (10^{-12} \text{g/g}) \qquad (10^{-6} \text{Bg/g})$ O-Schicht $10 - 8 2,7 \pm \ 0,2 \qquad 32 \pm \ 2 \qquad 208 \pm \ 12 \\ 8 - 6 \qquad 3,7 \pm \ 0,2 \qquad 88 \pm \ 5 \qquad 572 \pm \ 31 \\ 6 - 4 \qquad 4,4 \pm \ 0,2 \qquad 231 \pm \ 14 \qquad 1510 \pm \ 82 \\ \text{A}_{h} - \text{Schicht} \\ 4 - 0 \qquad 3,6 \pm \ 0,2 \qquad 95 \pm \ 6 \qquad 620 \pm \ 34 \\ \text{Mineral.} \\ \text{Schicht} \\ 0 - 4 \qquad 1,9 \pm \ 0,1 \qquad 14 \pm \ 1 \qquad 94 \pm \ 5 \\ 4 - 10 1,0 \pm \ 0,1 \qquad 2,0 \pm \ 0,1 \qquad 13 \pm \ 1 \\ 10 - 20 1,1 \pm \ 0,1 \qquad 1,0 \pm \ 0,1 \qquad 6,6 \pm \ 0,4 \\ 20 - 30 1,1 \pm \ 0,1 \qquad 0,36 \pm \ 0,02 \qquad 2,4 \pm \ 0,1 \\ 30 - 40 \qquad 0,65 \pm \ 0,03 \qquad 0,10 \pm \ 0,01 \qquad 0,86 \pm \ 0,05 \\ 40 - 50 \qquad 0,68 \pm \ 0,04 \qquad 0,13 \pm \ 0,01 \qquad 0,86 \pm \ 0,05 \\ \end{array}$	$(10^{-6}g/g) \qquad (10^{-12}g/g) \qquad (10^{-6}Bq/g) \qquad (10^{-6}g/g) \qquad (1$	

· · .

<u>Tab.6</u>: Konzentration an ¹²⁷I und ¹²⁹I und ¹²⁹I/¹²⁷I-Verhältnis in Bodenproben aus der Umgebung der WAK Karlsruhe

Wald; 1.HWR; ca. 3000 m Entfernung vom Abluftkamin

Da tum der Pro ben-	Tiefe (cm)	127 I-Kenzentration im Trockenboden	129 _{I-Kon} im Tro	¹²⁹ 1/ ¹²⁷ 1		
ent nahme		(10 ⁻⁶ g/g)	(10 ⁻¹² g/g)	(10 ⁻⁶ Bq/g)	(10 ⁻⁶ g/g)	
6.10.82	0 - 3	0,50 + 0,03	15 <u>+</u> 1	95 <u>+</u> 5	29 <u>+</u> 1	
6.10.82	3 - 10	1,7 + 0,1	25 <u>+</u> 2	162 + 9	15 <u>+</u> 1	
6.10 .82	10 - 15	1,6 <u>+</u> 0,1	7,4 + 0,5	49 ' <u>+</u> 3	4,6 + 0,2	
6.10.82	15 - 20	1,3 + 0,1	4,0 + 0,2	26 + 1	3,1 <u>+</u> 0,1	
6.10 .82	20 - 30	1,3 + 0,1	2,6 + 0,2	17 <u>+</u> 1	2,0 + 0,1	
6.10.82	30 - 40	0,97 ± 0,05	0,96 + 0,06	$6,3 \pm 0,3$	0,99 + 0,04	
6.10.82	40 - 50	0,54 + 0,03	0,29 + 0,02	1,9 + 0,1	0,55 + 0,03	
6.10.82	50 - 60	0,67 + 0,04	0,37 + 0,03	2,4 + 0,2	0,56 + 0,03	

. •

der WAK Karlsruhe

• •

Wiese; 1.HWR; ca. 3200 m Entfernung vom Abluftkamin

ent nanme	(10	-6 / \	12	6		•	
-	(10	g/g)	(10 [°] ' ² g/g)	(10-0	Bg/g)	(10 ⁻⁶ g/	9)
21.10.82 0 -	15 0,94	<u>+</u> 0,05	1,7 <u>+</u> 0,1	11	<u>+</u> 1	1,8 <u>+</u> 0	, 1
21.10.82 15 -	25 1,1	<u>+</u> 0,1	2,0 <u>+</u> 0,1	13	<u>+</u> 1	1,9 <u>+</u> 0	, 1
21.10.82 25 -	35 0,64	<u>+</u> 0,03	0,46 + 0,03	3,0	<u>+</u> 0,2	0,72 <u>+</u> 0	,03
21.10.82 35 -	45 1,05	<u>+</u> 0,05	0,23 <u>+</u> 0,01	1,5	<u>+</u> 0,1	0,22 <u>+</u> 0	,01
21.10.82 45 -	60 0,93	<u>+</u> 0,05	0,10 <u>+</u> 0,01	0,62	<u>+</u> 0,04	0,10 <u>+</u> 0	,01

Feld; 1.HWR; ca. 3000 m Entfernung vom Abluftkamin

12

Probe	Entfer- nung vom Abluft- kamin (m)	Datum der Proben- entnahme	^{12/} I-Konzentra- tion in der Pflanzentrocken+ masse (10 ⁻⁶ g/g)	129 I-Konzentration in der Pflanzentrockenmasse	¹²⁹ I/ ¹²⁷ I	
				(10 ⁻¹² g/g) (10 ⁻⁶ Bq/g)	(10 ⁻⁶ g/g).	
Kartoffeln (mit Schale)	700	20.7.82	0,25 <u>+</u> 0,01	0,13 <u>+</u> 0,01 0,85 <u>+</u> 0,06	0,52 <u>+</u> 0,03	
Roggen	700	20.7.82	0,41 <u>+</u> 0,02	0,80 <u>+</u> 0,06 5,3 <u>+</u> 0,4	2,0 <u>+</u> 0,1	
Roggen	3000	20.7.82	$0,25 \pm 0,01$	$2,2 \pm 0,1 14 \pm 1$	8,8 <u>+</u> 0,4	
Gras	600	20.7.82	0,31 <u>+</u> 0,02	2,3 <u>+</u> 0,2 15 <u>+</u> 1	$7,4 \pm 0,3$	
Gras	3200	20.7.82	0,17 <u>+</u> 0,01	2,1 <u>+</u> 0,2 13 <u>+</u> 1	12 <u>+</u> 1	
Buchenlaub	500	20.7.82	0,41 <u>+</u> 0,03	$3,2 \pm 0,2 21 \pm 1$	$7,8 \pm 0,5$	
Buchenlaub	3000	20.7.82	0,86 <u>+</u> 0,05	4,3 ± 0,3 28 ± 2	$5,0 \pm 0,2$	
Weizenstroh	3300	21.7.83	4,1 <u>+</u> 0,2	$0,43 \pm 0,04$ 2,8 $\pm 0,2$	0 ,1 0 <u>+</u> 0,01	
Weizenspreu	3300	21.7.83	0,06 <u>+</u> 0,01	$0,16 \pm 0,03$ $1,0 \pm 0,2$	$2,7 \pm 0,3$	
W eizenkl ei e	3300	21.7.83	1,5 <u>+</u> 0,1	$0,16 \pm 0,02 1,0 \pm 0,2$	0,11 <u>+</u> 0,01	
Weizenmehl	3300	21.7.83	0,69 <u>+</u> 0,04	$0,67 \pm 0,05 4,4 \pm 0,3$	0,97 ± 0,05	
Kopfsalat	3500	13.7.83	$0,41 \pm 0,03$	$0,28 \pm 0,02$ $1,8 \pm 0,2$	$0,68 \pm 0,05$	
Futterrübe	3500	13.7.83	$0,50 \pm 0,03$	$0,43 \pm 0,05 2,8 \pm 0,3$	$0,86 \pm 0,08$	
Futterrüben- blätter	3500	13.7.83	0,51 <u>+</u> 0,04	$0,30 \pm 0,03$ 2,0 $\pm 0,2$	0,59 ± 0,05	
Lauch	3500	13.7.83	0,52 <u>+</u> 0,03	2,1 <u>+</u> 0,2 14 <u>+</u> 1	4,0 <u>+</u> 0,2	
Gurke	3500	21.7.83	0,28 <u>+</u> 0,02	0,10 <u>+</u> 0,02 0,68 <u>+</u> 0,12	0,36 <u>+</u> 0,06	

<u>Tab.9</u>: Konzentration an ¹²⁷I und ¹²⁹I und ¹²⁹I/¹²⁷I-Verhältnis in Pflanzenproben aus der Umgebung der WAK Karlsruhe; 1.HWR.

- 22 -

			Probe	Dotum der Probe- nabme	Wasser- gehalt (%)	Ge 127 _I Peucht- aasse (g/g)	chalt 129 _I Feucht- masse (g/g)	129 _{1/} 127 _I (g/g)	<u>FI/R P</u> gI/g Tro Pflanzen ¹²⁷ I	<u>flanze</u> ckenboden frischmesse 129 ₁	
			Boden (0-30cm)	21.7.8	3	1,2 (-6) 0,1	1,8 (-12) 0,1	1,5 (-6) 0,1	•		
			Weizen- stroh	21.7.8	3 5,1	3,9 (-6) 0,2	4,0 (-13) 0,4	1,0 (-7) 0,1	3,3 (0) 0,3	2,3 (-1)	> Felle great
	feld	ONO	Weizen- spreu	21.7.8	3 9,1	5,6 (-8) 0,8	1,4 (-13) 0.2	2,7 (-6) 0,3	4,7 (-2) 0,8	8,0 (-2) 1,4	± 0,3
•.	lien	•	Keizen- kleie	21.7.8	3 10,7	1,3 (-6) 0,1	1,1 (-13) 0,2	1,1 (-7) 0,1	1,1 (0) 0,1	8,0 (-2) 1,2	
	, Xe	062 0	Weizen- mehl	21.7.8	3 10,6	6,2 (-7) 0,4	6,0 (-13) 0,4	9.7 (-7) 0,5	5,2 (-1) 0,4	3,4 (-1) 0,3	
•	leld	ONC	Boden (0-25cm)	21.10.8	2	1,0 (-6) 0,1	1,8 (-12) 0,1	1,8 (-6) 0,1			
	Roaron	3000	Roggen (Ähren)	20.7.8	2 9,2	2,3 (-7) 0,1	2,0 (-12) 0,1	8,3 (-6) 0,4	2,3 (-1) 0,2	1,1 (0) 0,1	
			Boden (0-25cm)	20.7.8	2	9,7 (-7) 0,5	5,4 (-12) 0,3	5,6 (-6) 0,3			
1.14	ź	ONI	Roggen (Ähren)	20.7.8	2 7,2	3,8 (-7) 0,2	7,5 (-13) 0,5	2,0 (-6) 0,1	3,9 (-1) 0,3	1,4 (-1) 0,1	
-45	Feld	700 =	Kartoffe mit Schale	120.7.8	2 78,1	5,5 (<u>-</u> 8) 0,3	2,8 (-14) 0,2	5,2 (-7) 0,3	5,7 (-2) 0,4	5,3 (-3) 0,5	
		0110	Boden (0-10cm)	6.10 <i>.</i> 8	32	1,3 (-6) 0,1	2,2 (-11) 0,1				
		100Cm	Gras	20.7.8	2,7	1,7 (-7) 0,1	2,0 (-12) 0,1	1,2 (-5) 0,1	1,3 (-1) 0,1	9,2 (-2) 0,8	
	,	2	Boden (9-12cm	20.7.8	32	1,2 (-6) 0,1	3,4 (-11) 0,1				
а -		50Cn 1	Gras	20.7.8	32 10,9	2,8 (-7) 0,2	2,0 (-12) 0,1	7,4(-6) 0,3	2,3 (-1) 0,2	5,9 (-2) 0,5	_
	2	2	Boden 1 (0-30cm	13.7.8)	33	4,4 (-7) 0,2	2,2 (-13) 0,1	5.0 (-7) 0,2			
			Boden 3 (0-30cm	13.7.8)	33	8,6 (-7) 0,5	5,3 (-13) 0,3	6,1 (-7) 0,3			
			Kittel- wert			6,5 (-7) 2,1	3,8 (-13) 1,6				
		Ş	Kopfsal	at13.7.8	96,3	1,5 (-8) 0,1	1,0 (-14) 0,1	6,8 (-7) 0,5	2,3 (-2) 0,9	2,7 (-2) 1,2	
(, s	5	Lauch	13.7.8	83 89,9	5,3 (-8) 0,3	2,1 (-13) 0,2	4,0 (-6) 0,2	8,1 (-2) 2,9	5,6 (-1) 2,4	
		3500	Futter- rübe	13.7.8	89,9	5,1 (-8) 0,3	4,3 (-14) 0,5	8,6 (-7) 0,8	7,8 (-2) 2,7	1,2 (-1) 0,5	
			Putter- rüben- blätter	13.7.8	33 91,7	4,2 (-8) 0,3	2,5 (-14) 0,2	5,9 (-7) 0,5	6,5 (-2) 2,4	6,6 (-2) 2,8	
			Gurke	21.7.8	33 95.3	1,3 (-8) 0,1	4,9 (-15) 0,9	3,6 (-7) 0,6	2,0 (-2) 0,7	1,3 (-2) 0,6	
•								127 13	20		-

.

<u>Tab.10</u>: Fflanze/Boden Konzentrationsfektoren für ¹²⁷I und ¹²⁹I (*: Trockenmasse)

.

.

.

(

Jahresring	127 I-Konzentration in Trockenmasse	129 _{I-Konz} in Tro	129 _{1/} 127 ₁		
	(10 ⁻⁶ g/g)	(10 ⁻¹² g/g)	$(10^{-6} B_{q/g})$	(10 ⁻⁶ g/g)	
1983	0,31 <u>+</u> 0,02	1,74 <u>+</u> 0,12	11,30 <u>+</u> 0,73	5,61 <u>+</u> 0,31	
19 82	0,13 <u>+</u> 0,01	1,16 <u>+</u> 0,08	$7,56 \pm 0,49$	8,92 <u>+</u> 0,41	
19 81	0,12 <u>+</u> 0,01	0,74 <u>+</u> 0,05	4,81 ± 0,30	6,17 <u>+</u> 0,27	
19 80	0,34 <u>+</u> 0,03	1,42 <u>+</u> 0,09	9,30 <u>+</u> 0,58	4,18 <u>+</u> 0,25	
19 79	0,19 <u>+</u> 0,01	1,96 <u>+</u> 0,13 ·	12,80 <u>+</u> 0,79	10,32 <u>+</u> 0,51	
19 78	0,20 <u>+</u> 0,02	5,41 <u>+</u> 0,40	35,41 <u>+</u> 2,41	27,05 <u>+</u> 1,20	
19 77	0,13 <u>+</u> 0,01	0,41 <u>+</u> 0,03	2,70 <u>+</u> 0,18	3,15 <u>+</u> 0,17	
19 76	0,19 <u>+</u> 0,02	0,41 <u>+</u> 0,03	2,68 <u>+</u> 0,19	2,16 <u>+</u> 0,16	1
19 75	1,25 <u>+</u> 0,07	0,44 <u>+</u> 0,04	2,87 <u>+</u> 0,26	0,35 <u>+</u> 0,03	Ņ
1 974	0,16 <u>+</u> 0,01	0,94 <u>+</u> 0,07	6,17 <u>+</u> 0,43	5,88 <u>+</u> 0,34	1
1973	0,33 <u>+</u> 0,02	0,29 <u>+</u> 0,02	1,91 <u>+</u> 0,14	0,88 <u>+</u> 0,05	
Rinde	0,75 ± 0,05	225 <u>+</u> 15,1	1470 <u>+</u> 91,3	300 <u>+</u> 13,8	

<u>Tab.11</u>: Konzentration an ¹²⁷I und ¹²⁹I und ¹²⁹I/¹²⁷I-Verhältnis in den Jahresringen einer Kobinie 1.HWR; ca. 1000 m Entfernung vom Abluftkamin

--

۰.

ĺ

C

SV = Summenverstärker, TSCA = Timing Single Channel Analyser

АЪЬ. 2 Gesamtschaltplan der Summen-Koinzidenz-Meßelektronik 26

<u>Abb.3</u>: Probenahmestellen in der Umgebung der WAK

<u>Abb.4</u>: ¹²⁹I- und ¹²⁷I-Gehalt von Bodenproben aus der Umgebung der WAK (Wald, 1. HWR, ca. 550 m)

<u>Abb5</u>: ¹²⁹I- und ¹²⁷I-Gehalt von Bodenproben aus der Umgebung der WAK (Wiese, 1. HWR, ca. 600 m)

نغيد)

<u>Abb.6</u>: ¹²⁹I- und ¹²⁷I-Gehalt von Bodenproben aus der Umgebung der WAK (Feld, 1. HWR, ca. 700 m)

<u>Abb.7</u>: ¹²⁹I- und ¹²⁷I-Gehalt von Bodenproben aus der Umgebung der WAK (Wald, 1. HWR, ca. 3000 m)

.

()

<u>Abb.8</u>: ¹²⁹I- und ¹²⁷I-Gehalt von Bodenproben aus der Umgebung der WAK (Wiese, 1.HWR, ca. 3200 m)

<u>Abb.9</u>: ¹²⁹I- und ¹²⁷I-Gehalt von Bodenproben aus der Umgebung der WAK (Feld, 1. HWR, ca. 3000 m)

.

1

()