BfS Bund	esam	nt für Strah	nlensch	utz			
		DECKBLATT	,	· · · ·			
	Projekt	PSP-Fiement	Obi. Kenn.	Aufgabe	L UA	Ltd. Nr.	Rev.
	NAAN	NNNNNNNNN	NNNNNN	X A A X X	A A	NNNN	NN
EU 396	9К			EGC	RB	0005	01
Titel der Unterlage: Radioput/lidauphroitung i	m Dooka	obinco für des	Cobiobt.com	oda11	Seite:		
Konrad (ET-IB-41)	ы реску	epirge for das	SCHICHTENN	loge11 -	Stand	 : + 01	
Ersteller:			- ··· ··· ·· ·· ·· ·· ··		Textn	ummer:	
BFS/ET 2.4/							
Stempetteld:							
PSP-Element TP:		zu Plan-t	Kapitel: 3.5	5			
· · · ·			<u> </u>				
				1			
		Freigo	ibe für Behörden		Freigab	e im Projekt	
Diese Unterlage unterliegt samt Inhalt d	em Schutz	des Urheberrechts sov	vie der Pflicht	zur vertrauli	chen Be	ehandlung a	auch
gemacht werden. Eine andere Verwendu	ng und We	stergabe bedarf der a	usdrücklichen Zi	ustimmung d	es BfS.	men zugani	911G1

BIS ET1.1-0001 12.89

Revisionsblatt

BfS

			Pr	ojekt	157	PSP-Element	Obj. Kenn.	Aufgabe	UA	Lfd, Nr.	Rev.
	EU 396		<u>N</u>	AN	NNN	N N N N N N N N	NNNNNN	X A A X X	A A	NNNN	N
				ЭК				EGC	RB	0005	00
Titel R S	der Unterlage adionuklic chichtenme	: dausbrei odell -	itung im De Konrad	eckge	birge	für das			Seite: II.		
(LI-18-4I/								Stand D1.	: 02.91	
Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeichn. Name	rev. Seite	Kat. *)		Erläuteru	ung der Revis	ion		
01	24.09.91	ET 2.4		04	5	Korrektur	von Zahle	enwerten	in Ta	ib. 1	
*) Ka	utegorie R = re	daktionelle	Korrektur								

BFS ET1,1-0002 12.89

BUNDESAMT FÜR STRAHLENSCHUTZ

Fachbereich Nukleare Entsorgung und Transport

Radionuklidausbreitung im Deckgebirge für das Schichtenmodell - Konrad

INTERNER ARBEITSBERICHT

Salzgitter, September 1991

ET-IB-41-REV-1

Inhaitsverzeichnis

		0-:+-
1	Finleitung	Selle 2
1.	Linicking	-
2.	Radionuklidausbreitung im Nahbereich	3
2.1	Das Anfangsinventar	3
2.2	Mobilisierung und Freisetzung	3
3.	Radionuklidausbreitung im Deckgebirge	4
3.1	Die Ausbreitungswege	4
3.2	Die eindimensionale Radionuklidausbreitungsrechnung	5
3.3	Relevante Radionuklide	9
3.4	Die Modellierung der Quellterme	9
4.	Ergebnisse	11
5.	Literaturverzeichnis	13
6.	Verzeichnis der Tabellen und Abbildungen	14
7.	Anhang A	16
8.	Anhang B	42

1 Einleitung

In den Sicherheitsanalysen zur Langzeitsicherheit des geplanten Endlagers Konrad wurde die potentielle Ausbreitung von Radionukliden aus dem Grubengebäude durch das Deckgebirge in das quartäre Grundwasser untersucht. Ziel der Untersuchung ist es, die möglicherweise auftretenden Radionuklidkonzentrationen, und damit die mögliche Strahlenbelastung des Menschen durch das eingelagerte Abfallgut, in konservativer Weise abzuschätzen.

Der vorliegende Arbeitsbericht beschreibt die Methodik und die Ergebnisse der Radionuklidausbreitungsrechnung für das Deckgebirge und das quartäre Grundwasser. Grundlage für diesen Bericht sind die in /1/ beschriebenen Radionuklidfreisetzungsraten aus dem Grubengebäude in der Nachbetriebsphase, sowie die in /2/ berechneten Wasserpfade aus dem Grubengebäude bis in das quartäre Grundwasser für das sogenannte "Schichtenmodell Konrad".

Die eindimensional modellierten Radionuklidtransportrechnungen wurden von andere Mitarbeiter der GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, durchgeführt. Aus Termingrunden erfolgte die Übergabe der Ergebnisse an das BfS auf Magnetband, das auch die weitere Verarbeitung und Darstellung der Daten übernahm.

2 Radionuklidausbreitung im Nahbereich

In der Langzeitsicherheitsanalyse für das geplante Endlager Konrad wird angenommen, daß sich das Grubengebäude in der Nachbetriebsphase mit Grundwasser füllt, und sich nach ca. 1000 Jahren die natürliche regionale Tiefenwasserbewegung wieder einstellt. Von diesem Zeitpunkt an können Radionuklide aus dem Bereich des Grubengebäudes mit dem Grundwasser durch das Deckgebirge bis in das oberflächennahe quartäre Grundwasser transportiert werden. Eine Aufnahme des kontaminierten Grundwassers über das Trinkwasser, oder indirekt, über die Nahrungskette, sowie eine direkte Strahlenbelastung, führt dann zu einer radiologischen Belastung des Menschen.

2.1 Das Anfangsinventar

Im Endlager Konrad sollen radioaktive Abfälle mit einem Gesamtvolumen von ca. 650000 m³ eingelagert werden. Je nach Herkunft und Abfallart sind die Abfälle unterschiedlich fixiert und verpackt. Die Gesamtaktivität der Abfälle sowie ihre Nuklidzusammensetzung sind mit Hilfe von konservativen Abschätzungen über die einzulagernden Abfälle abgeleitet worden. Für die Modellierung der Radionuklidausbreitung wird eine Auswahl betrachtet, die sich an den Erfordernissen der Langzeitsicherheitsanalyse orientiert /3/. Zu Beginn der Nachbetriebsphase beträgt die Aktivität der Beta und Gammastrahler ca. $5 \cdot 10^{18}$ Bq und die der Alphastrahler ca. $1.5 \cdot 10^{17}$ Bq. In Tabelle A1 ist das betrachtete Anfangsinventar dargestellt.

2.2 Mobilisierung und Freisetzung

Sobald die Tiefenwässer in das Grubengebäude eindringen, werden die Radionuklide aus den Abfallgebinden herausgelöst und damit mobilisiert. Das durch das Grubengebäude strömende Tiefenwasser wird nun kontinuierlich mit Radionukliden angereichert und setzt diese in die weitere Umgebung des Endlagerbereichs, das Deckgebirge, frei. Wie stark die Tiefenwässer mit Radionukliden im Grubengebäude angereichert werden, wird durch die Sorption der Radionuklide an Festoffen, durch das Erreichen von Löslichkeiten, durch den radioaktiven Zerfall sowie durch die Durchströmungsrate des Grubengebäudes bestimmt /1/.

3 Radionuklidausbreitung im Deckgebirge

Von der GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Braunschweig, ist im Auftrage des BfS die Radionuklidausbreitung mit den in /1/ beschriebenen Freisetzungsverläufen unter Verwendung des Computerprogrammes SWIFT /4/ und der in /2/ beschriebenen Modellierung des Deckgebirges berechnet worden.

3.1 Die Ausbreitungswege

Die Modellierung der eindimensionalen Radionuklidausbreitung basiert auf den in /2/ (Kapitel 5.4.4) beschriebenen dreidimensionalen Berechnungen zur Grundwasserströmung im Bereich des Endlagers Konrad für das sogenannte "Schichtenmodell Konrad". Mit dem Computerprogramm SWIFT wurde die Grundwasserströmung in dem Gebiet zwischen Salzgitter-Höhenzug im Süden und der Allerniederung im Norden berechnet. Das Deckgebirge wurde dafür in 13 geologische Einheiten differenziert, deren Durchlässigkeitsbeiwerte gemäß ihrer Bandbreite und konservativen Gesichtspunkten variiert wurden.

Zur Berechnung von Ausbreitungswegen wurden Stromlinien mit Startpunkten im Bereich des Grubengebäudes berechnet. Damit wurden die Laufzeiten und die Weglängen von Wasserteilchen bis zum Eintritt in die oberste Schicht, in der Regel das Quartär, ermittelt. Mit Hilfe dieser Methode wurden drei wesentliche Ausbreitungswege gefunden, wobei sich die Modellierung des Deckgebirges dafür nur in der Wahl des Durchlässigkeitsbeiwertes der Unterkreidetone unterscheidet.

Ein Durchlässigkeitsbeiwert der Unterkreidetone von 10⁻¹⁰ m/s führt zu einem nahezu senkrechten Aufsteigen der Stromlinien durch die Unterkreidetone und die Plänerkalke in das Quartär. Ein Durchlässigkeitsbeiwert von 10⁻¹² m/s führt zu zwei möglichen Ausbreitungwegen. In dem einen Fall verlaufen die Stromlinien nahezu horizontal durch das Oxford bis in die Gegend von Calberlah, wo sie senkrecht nach oben durch das Kimmeridge in den oberen Grundwasserleiter gelangen. In dem anderen Fall laufen die Stromlinen senkrecht nach unten durch die unter dem Grubengebäude liegenden Doggertone in den Cornbrash, wo sie wiederum nahezu horizontal durch den Cornbrash bis an die Überschiebung von Meine laufen. Hier treten die Stromlinien in das Oxford ein und folgen dann einem ähnlichen Weg wie im vorherigen Fall. In der Tabelle 1 sind die Weglängen und Laufzeiten für die Ausbreitungswege "Unterkreide", "Oxford" und "Cornbrash" dargestellt.

Geologische Einheit				Au Unterkreide	sbreitungsw Oxford	eg Cornbrash
Doggertone	L t	in in	m a			100 1000000
Cornbrash	L	in in	m a			28300 64000
Oxford	L t	in in	m a	920 7700	31500 263000	3900 17000
Kimmeridge	L t	in in	m a	160 6700	1800 75000	1700 39000
Unterkreide	L t	in in	m a	400 308300		
Plänerkalke	Ĺ	in in	m a	2320 58100		
Summe	L t	in in	m a	3800 381000	33300 338000	34000 1120000

Tab. 1 Laufzeiten (t) und Wegstrecken (L) in den geologischen Einheiten

Die Zahlen beziehen sich auf die Stromlinien mit den jeweils kürzesten Laufzeiten. Die Durchströmungsrate des Grubengebäudes ist neben den Laufwegen und den Laufzeiten der schnellsten Stromlinien ein weiterer wesentlicher Unterschied in den beiden Varianten. Für die Variante "Unterkreide" beträgt sie 3200 m³/a, für die Variante "Oxford" und "Cornbrash" beträgt sie 1620 m³/a.

3.2 Die eindimensionale Radionuklidausbreitungsrechnung

Die Konzentration entlang der Ausbreitungswege wird durch den radioaktiven Zerfall, Dispersion und Diffusion, Sorption der Radionuklide am Gestein sowie durch die Zumischung von unkontaminiertem Grundwasser beeinflußt. Eine Ausfällung von Radionukliden findet nicht statt, da Verdünnungseffekte ein Erreichen der Löslichkeiten verhindern.

Dispersion und Diffusion führen zu einem Konzentrationsausgleich der Radionuklide. Dieser Ausgleich kann sowohl in Strömungsrichtung als auch quer dazu erfolgen. In den eindimensionalen Rechnungen werden Diffusion und Dispersion nur in Strömungsrichtung berücksichtigt. Die longitudinale Dispersion wird durch eine Dispersionlänge charakterisiert, für die sich aus Feldversuchen eine deutliche Abhängigkeit von der Weglänge ergibt /2/ (Abbildung 7-6) und /5/. Für den Ausbreitungsweg "Unterkreide" wird eine Dispersionlänge von 30 m und für den Ausbreitungsweg "Oxford" eine Länge von 200 m gewählt. Die Diffusion wird durch den Diffusionskoeffizienten charakterisiert. Als Mittelwert aus verschiedenen Versuchen ergibt sich für beide Ausbreitungswege ein Wert von 10⁻¹¹ m²/s.

Durch Sorption am Gestein kann der Transport der Radionuklide verzögert werden. Indirekt führt dies über den radioaktiven Zerfall zu einer Konzentrationverminderung. Zur Berücksichtigung der Sorption müssen in einer Ausbreitungsrechnung mit dem Programm SWIFT K_d -Wert eingegeben werden. Programmintern werden daraus unter Einbeziehung der Gesteinsdichte und der Porosität Retardationsfaktoren bestimmt /2/ (Kapitel 5.5). Dabei ist allerdings zu beachten, daß der K_d -Wert für ein Radionuklid nicht nur vom Gesteinstyp abhängt, sondern auch von der Konzentration, in der EDTA und das Element vorliegen (/2/ Tab. 5-10 bis 5-17). Außerdem ist zu beachten, daß für die Modellierung der Sorption die gesamte effektive Porosität genommen wird, während für die Modellierung des konvektiven Transportes eine geringere Porosität angenommen wird (Tab. 2).

Geologische	Porosit	it
Elmelt	konv. Transport	Sorption
Oberkreide	0,05	0,15
Unterkreide	0,10	0,20
Kimmeridge	0,10	0,10
Oxford	0,02	0,20
Doggertone	0,10	0,20
Cornbrash	0,05	0,10

Tab. 2 Porositäten für die Modellrechnungen

Die K_d-Werte der relevanten Spalt- und Aktivierungsprodukte sowie von Neptunium unterscheiden sich bei unterschiedlicher Element- und EDTA-Konzentrationen nicht. Für die Uran-Isotope hängt die Sorption von der Elementkonzentration ab. Für Thorium hängt die Sorption von der EDTA-Konzentration ab. Die restlichen relevanten Nuklide sind Zerfallsprodukte, die im radioaktiven Gleichgewicht mit ihren Müttern vorliegen. Ihre Konzentration läßt sich am Ende des Ausbreitungsweges aus dem Verhältniss des Retardationsfaktors des Mutternuklids zum Retardationsfaktor des Tochternuklids multipliziert mit der Konzentration des Mutternuklids berechnen (Tab. 3).

	Ausbreitungsweg						
Element	Oxford	Unterkreide					
U	62	89					
Th	17 551	8 821					
Ra	95	1 618					
РЪ	937	177					
Bi	937	177					
Po	23 401	14 701					
Pa	23 401	14 701					
Ac	1 405	4 411					
Np	703	5 894					

Tab. 3 Retardationsfaktoren am Ende der Ausbreitungswege

Eine Verdünnung der Radionuklidkonzentrationen entlang des Ausbreitungsweges findet nur für den Ausbreitungsweg "Oxford" statt. Hier strömt von unten aus den Doggertonen unkontaminiertes Tiefenwasser in das Oxford. Eine weitere Verdünnung der Radionuklidkonzentrationen geschieht in beiden Ausbreitungswegen allerdings erst, wenn sich das aufströmende kontaminierte Tiefenwasser mit dem oberflächennahen quartären Grundwasser mischt. Für den Ausbreitungsweg "Unterkreide" ergibt sich insgesamt eine Verdünnung um den Faktor 10. Für den Ausbreitungsweg "Oxford" ergibt sich insgesamt eine Verdünnung um den Faktor 70.

Für die eindimensionale Modellierung mit dem Programm SWIFT werden die Ausbreitungswege in Blöcke mit variablen geometrischen Abmessungen und variablen Parametern diskretisiert. Durch die Diskretisierung ergeben sich kleine Abweichungen der Kenngrößen für die Ausbreitungswege zu denen in Tabelle 1. In Tabelle 4 und 5 ist die Diskretisierung und die Parameterbelegung für die beiden Ausbreitungswege dargestellt.

Geologische Einheit	OXFORD	KIMMERIDGE	UNTERKREIDE	PLÄNER CENOMAN	RKALKE TURON
Diskretisierung Blockzahl mal Blocklänge	23 • 40	7.20, 2.10	40.10	2.10, 1.20, 18.40	39.40
Fläche in km ²	1,33	1,33	24,6	1,6	1,6
Porosität	0,02	0,1	0,1	0,05	0,05
Modelldaten	u=2,4. R _s =2600	10 ⁻³ m/a D kg/m ³ a _l	Q=3200 m ³ /a =30 m D _M =1	.0 ⁻¹¹ m ² /s	1

Tab. 4Parameterbelegung für den Ausbreitungsweg UnterkreideDie Blocklängen sind in Meter angegeben

Geologische Einheit	OXFORD	KIMMERIDGE
Diskretisierung Blockzahl mal Blocklänge	105.300	6.300
Fläche in km ²	0,675	0,675
Porosität	0,02	0,1
Modelldaten	u=2,4.10 ⁻³ m Q=1620 m ³ /a D _M =10 ⁻¹¹ m ² /	n/a a _l =200 m R _s =2600 kg/m ³ 's

u: Darcygeschwindigkeit R_s: Gesteinsdichte

- Q: Durchströmungsrate des Grubengebäudes
- a₁ : longitudinale Dispersionlänge

D_M: molekulare Diffusion

In Tabelle 6 und 7 sind die K_d -Werte entlang der beiden Ausbreitungswege dargestellt. Nur die K_d -Werte von Uran und Thorium zeigen eine Abhängigkeit von der Element- und EDTA-Konzentration, und können deshalb inerhalb einer geologischen Einheit unterschiedliche Werte haben. Die Berechnung der Retardationsfaktoren muß mit den Porositäten für die Sorption aus Tabelle 2 erfolgen. Bedingt durch die Struktur der Eingabedatensätze berechnet SWIFT programmintern die Retardationsfaktoren mit den Porositäten für den konvektiven Transport. Außerdem werden die Veränderungen der Strömungsgeschwindigkeit entlang des Ausbreitungsweges "Unterkreide", die durch die Änderungen der durchströmten Fläche verursacht werden, mit den K_d -Werten simuliert, sodaß die K_d -Werte für die Berechnung mit SWIFT angepaßt werden müßen.

Geologische Einheit	Block- Nummer	Ca	Se	TC	I	U	Th	Np
Oxford	1 - 7 8 - 23	0	0,1 0,1	0,7 0,7	0	1,8 2,0	70 70	30 30
Kimmeridge	24 - 30 31 - 32	0 0	0,1 0,1	0,3	0 0	1,9 2,6	50 750	30 30
Unterkreide	33 - 72	0	0,5	0,5	0	20	1000	60
Cenoman	73 - 93	0	0,4	0	9	6	200	500
Turon	94 -142	1	0,5	0	2	6	600	400

Tab. 6 K_d-Werte für den Ausbreitungsweg Unterkreide in cm³/g

Geologische Einheit	Block- Nummer	Са	Se	Тс	-	U	Th	Np
Oxford	1 - 23 24 -105	0 0	0,1 0,1	0,7 0,7	0 0	2,0 3,0	70 1000	30 30
Kimmeridge	106-121	0	0,1	0,3	0	2,6	750	30

Tab. 7 K_d-Werte für den Ausbreitungsweg Oxford in cm³/g

Die Konzentrationen für den Ausbreitungsweg "Cornbrash" wurden nicht mit dem Programm SWIFT, sondern in konservativer Weise mit einer analytischen Lösung berechnet.

In diesem Ausbreitungsweg erreicht nur ein kleiner Teil des Wassers aus dem Endlager nach einer Laufzeit von mehr als einer Millionen Jahre die Biosphäre. Deshalb ist anzunehmen, daß der Ausbreitungsweg "Cornbrash" ir seiner Bedeutung gegenüber dem Ausbreitungsweg "Oxford" zurücktritt. Um diese Annahme zu belegen, wird die Radionuklidausbreitung allein durch die Doggertone betrachtet. Dazu können mit Hilfe der Gleichung 7-22 aus /2/ Abschätzungen durchgeführt werden. Diese Gleichung beschreibt die einensionale Ausbreitung einer Deltaquelle in einem homogenen porösen Medium. Unter Berücksichtigung von Diffusion, Dispersion, Sorption und Zerfall wird das Konzentrationsmaximum nach der Durchwanderung der Doggertone bestimmt. Da von der Durchströmungsrate durch das Endlager nur 90 m³/a ins Liegende des Oxford eintreten, wird von dem ins Endlager eingebrachten Inventar nur der 90/1620 -zigste Teil bei der Abschätzung eingebracht.

Die Retardationsfaktoren werden entsprechend den nuklidspezifischen K_d -Werten für die Doggertone (Tabelle 8) ermittelt. Es wird angenommen, daß für die K_d -Werte von einer Verringerung der Element- und EDTA-Konzentraion gegenüber denen im Endlager um den Faktor 10 auszugehen ist.

Geologische Einheit	Са	Se	Tc	I	υ	Th	Np
Doggertone	0	0,2	0,5	0,1	2,0	80	50

Tab. 8 K_d-Werte für den Ausbreitungsweg Cornbrash in cm³/g

Bei einer Weglänge von ca. 100 m wird die longitudinale Dispersionslänge mit 10 m angesetzt. Der molekulare Diffusionskoeffizient beträgt wie bei den übrigen Szenarien 10⁻¹¹ m²/s. Die Porosität der Doggertone wird mit 10 % angesetzt.

Zu einer Verdünnung bei der Radionuklidausbreitung nach Verlassen der Doggertone tragen folgende Faktoren bei:

- Vedünnung auf 1/22,5 wegen der Vermischung der 90 m³/a des kontaminierten Grubenwassers mit der Wassermenge von 2030 m³/a, die im Cornbrash fließen.
- Verdünnung auf 1/6 wegen der Wasserzufuhr aus dem Liegenden in den Cornbrash entlang des Fließweges.
- Verdünnung auf 1/10 wegen der Zumischung von quartärem Grundwasser am Ende des Fließweges.

Insgesamt resultiert daraus eine Verdünnug um den Faktor 1350.

3.3 Relevante Radionuklide

Zur Ermittelung relevanter Radionuklide für die Ausbreitung im Deckgebirge wird die am Ende des Ausbreitungsweges höchstens zu erwartende Strahlenexposition berechnet. Dafür wird angenommen, daß das gesamte Anfangsinventar in einem Restholraumvolumen von 739000 m³ gelöst ist, daß der konvektive Transport 300000 Jahre dauert und gegebenenfalls durch Sorption verzögert wird. Der Retardationsfaktor wird für jedes Nuklid mit dem kleinsten K_d -Wert aus den Tabellen 5-10 bis 5-17 in /2/ berechnet. Radionuklide mit einer Strahlenexposition am Ende des Ausbreitungsweges unterhalb von 10⁻⁷ Sv/a werden als irrelevant eingestuft /2/ (Kapitel 7.3.5). Als relevant erweisen sich die Spaltprodukte Cl 36, Ca 41, Se 79, Tc 99 und I 129.

Bei der Abschätzung für die Zerfallsreihen werden ebenfalls alle Radionuklide einzeln betrachtet, wobei zu ihrem jeweiligen Inventar das der Mutternuklide addiert wird. Als relevant erweisen sich die Zerfallsreihen beginnend mit den Radionukliden U 238, U 236 und U 235. Da sich in früheren Untersuchungen Np 237 als relevant erweise, werden auch dafür Modellrechnungen durchgeführt /6/.

3.4 Die Modellierung der Queilterme

Grundlage für die Modellierung der Quellterme sind die in /1/ dargestellten Freisetzungsverläufe. Zu den Freisetzungen der vier Zerfallsreihen, beginnend mit U 238, U 236, U 235 und Np 237, werden die Freisetzungen der nicht berücksichtigten Mutternuklide addiert. Im Hinblick auf die Modellierung eines Quellterms für die Ausbreitungsrechnungen werden diese in konstante Freisetzungsraten für maximal fünf Zeitintervalle umgesetzt. In den Tabellen 9 und 10 werden die Quellterme der relevanten Radionuklide für die beiden Ausbreitungswege dargestellt. Die Einstromraten für Th 232 entsprechen allerdings nur einer eingelagerten Aktivität von 2.23 · 10¹¹ Bq gegenüber der im Plan 4/90 angenommenen eingelagerten Aktivität von 5 · 10¹¹ Bq. Um neue Rechnungen mit dem veränderten Inventar einzusparen, wurden die aktuellen Konzentrationen aus den alten Rechnungen durch die Multiplikation mit dem Faktor 2.17 berechnet.

	Einstromraten in Bq/s Zeitintervall in Jahren										
Nuklid	< 10000	< 100000	< 300000	< 10 ⁺⁶	< 10 ⁺⁷						
C1 36 Ca 41 Se 79 Tc 99 I 129 Th 232 Np 237 U 235 U 236 U 238	0,34 0,48 0,38 84 2,2 9,5 · 10 ⁻³ 0,61 0,45 2,7 4,0	$\begin{array}{c} 0,0\\ 0,0\\ 0,0\\ 0,0\\ 9,6\cdot 10^{-3}\\ 0,36\\ 0,043\\ 0,26\\ 0,22 \end{array}$	$\begin{array}{c} 0,0\\ 0,0\\ 0,0\\ 0,0\\ 0,0\\ 9,6\cdot 10^{-3}\\ 0,062\\ 7,7\cdot 10^{-4}\\ 1,4\cdot 10^{-5}\\ 2,4\cdot 10^{-5}\\ \end{array}$	$\begin{array}{c} 0,0\\ 0,0\\ 0,0\\ 0,0\\ 5,9\cdot 10^{-3}\\ 1,2\cdot 10^{-3}\\ 4,2\cdot 10^{-7}\\ 0,0\\ 5,5\cdot 10^{-6}\end{array}$	$\begin{array}{c} 0, 0\\ 0, 0\\ 0, 0\\ 0, 0\\ 2, 7 \cdot 10^{-5}\\ 6, 3 \cdot 10^{-9}\\ 0, 0\\ 0, 0\\ 3, 5 \cdot 10^{-8} \end{array}$						

Tab. 9 Einstromraten für den Ausbreitungsweg Unterkreide

Einstromraten in Bq/s Zeitintervall in Jahren					
Nuklid	< 10000	< 100000	< 300000	< 10 ⁺⁶	< 10 ⁺⁷
Cl 36 Ca 41 Se 79 Tc 99 I 129 Th 232 Np 237 U 235 U 236 U 238	0,34 0,48 0,38 84 2,2 4,8·10 ⁻³ 0,32 0,29 1,7 2,6	$\begin{array}{c} 0,0\\ 0,0\\ 0,0\\ 0,0\\ 4,8\cdot 10^{-3}\\ 0,24\\ 0,06\\ 0,37\\ 0,38 \end{array}$	$\begin{array}{c} 0,0\\ 0,0\\ 0,0\\ 0,0\\ 0,0\\ 4,8\cdot 10^{-3}\\ 0,094\\ 1,1\cdot 10^{-3}\\ 9,2\cdot 10^{-4}\\ 7,9\cdot 10^{-4}\end{array}$	$\begin{array}{c} 0,0\\ 0,0\\ 0,0\\ 0,0\\ 4,8\cdot 10^{-3}\\ 8,4\cdot 10^{-3}\\ 8,1\cdot 10^{-7}\\ 1,3\cdot 10^{-9}\\ 6,7\cdot 10^{-6}\end{array}$	$\begin{array}{c} 0,0\\ 0,0\\ 0,0\\ 0,0\\ 2,7\cdot 10^{-4}\\ 4,5\cdot 10^{-6}\\ 0,0\\ 0,0\\ 9,0\cdot 10^{-8}\end{array}$

Tab. 10 Einstromraten für den Ausbreitungsweg Oxford

4 Ergebnisse

In Tabelle 11 sind die Maximalwerte der Schadstoffkonzentration am Ende der Ausbreitungswege "Oxford" und "Unterkreide" dargestellt. Eine Ausnahme bilden die Elemente Th 232, Ra 228, Th 228, Ra 224, Np 237, U 233 und Th 229. Für diese Elemente wurden die Maximalkonzentrationen noch nicht innerhalb der Simulationszeit erreicht. Die Maximalkonzentrationen für diese Elemente sind die Maximalkonzentrationen entlang der Ausbreitungswege am Ende der Simulationzeit unter Berücksichtigung der Verdünnung für den gesamten Ausbreitungsweg. Tabelle 12 zeigt die Ergebnisse der vereinfachten Ausbreitungsrechnung für den Weg "Cornbrash".

		Unterkreide		0xf	ord
Nuklid	$\begin{bmatrix} T_1/2 \\ in a \end{bmatrix}$	^T Max in a	C _{Max} 3 in Bq/dm ³	T _{Max} in a	CMax 3 in Bq/dm ³
Cl 36 Ca 41 Se 79 Tc 99 I 129	$\begin{array}{c} 3,0\cdot10^{5} \\ 8,1\cdot10^{4} \\ 6,5\cdot10^{4} \\ 2,1\cdot10^{5} \\ 1,6\cdot10^{7} \end{array}$	$\begin{array}{c} 3,0\cdot10^{5} \\ 7,1\cdot10^{5} \\ 1,0\cdot10^{6} \\ 1,1\cdot10^{6} \\ 3,7\cdot10^{6} \end{array}$	$ \begin{array}{c} 6,3\cdot10^{-3} \\ 1,1\cdot10^{-5} \\ 1,5\cdot10^{-9} \\ 6,5\cdot10^{-3} \\ 8,5\cdot10^{-3} \end{array} $	$\begin{array}{c} 3,2\cdot10^{5} \\ 3,1\cdot10^{5} \\ 6,0\cdot10^{5} \\ 2,2\cdot10^{6} \\ 3,3\cdot10^{5} \end{array}$	$\begin{array}{c} 3, 2 \cdot 10^{-3} \\ 6, 4 \cdot 10^{-4} \\ 2, 7 \cdot 10^{-6} \\ 7, 8 \cdot 10^{-5} \\ 4, 2 \cdot 10^{-2} \end{array}$
U 236	2,3·10 ⁷	4,8·10 ⁷	2,0.10-4	1,1.107	1,5.10-3
Th 232 Ra 228 Th 228 Ra 224	1,4.10 ¹⁰ 6,7 1,9 1,0.10 ⁻²	>5,0.10 ⁸ >5,0.10 ⁸ >5,0.10 ⁸ >5,0.10 ⁸	<1,4.10 ⁻⁵ <7,6.10 ⁻⁵ <1,4.10 ⁻⁵ <7,6.10 ⁻⁵	>4,0.10 ⁸ >4,0.10 ⁸ >4,0.10 ⁸ >4,0.10 ⁸	<pre><1,2.10⁻⁵ <2,2.10⁻³ <1,2.10⁻⁵ <2,2.10⁻³</pre>
Np 237 U 233 Th 229	2,1.10 ⁶ 1,6.10 ⁵ 7,3.10 ³	>5,0·10 ⁷ >5,0·10 ⁷ >5,0·10 ⁷	<5,8·10 ⁻¹¹ <3,8·10 ⁻⁹ <3,8·10 ⁻¹¹	>5,0·10 ⁷ >5,0·10 ⁷ >5,0·10 ⁷	<5,3·10 ⁻¹¹ <6,0·10 ⁻¹⁰ <2,1·10 ⁻¹²
U 235 Th 231 Pa 231 Ac 227 Th 227 Ra 223	$7,0.10^{8} 2,9.10^{-3} 3,3.10^{4} 2,2.10^{1} 5,1.10^{-2} 3,1.10^{-2}$	$5,7.10^{7}$ $5,7.10^{7}$ $5,7.10^{7}$ $5,7.10^{7}$ $5,7.10^{7}$ $5,7.10^{7}$ $5,7.10^{7}$	$1,5 \cdot 10^{-4} 1,5 \cdot 10^{-6} 9,1 \cdot 10^{-7} 3,0 \cdot 10^{-6} 1,5 \cdot 10^{-6} 8,3 \cdot 10^{-6} $	$1,1 \cdot 10^{7}$	$\begin{array}{c} 3,5\cdot10^{-4} \\ 1,2\cdot10^{-6} \\ 9,3\cdot10^{-7} \\ 1,5\cdot10^{-5} \\ 1,2\cdot10^{-6} \\ 2,3\cdot10^{-4} \end{array}$
U 238 Th 234 U 234 Th 230 Ra 226 Pb 210 Bi 210 Po 210	$4,5.10^{9}6,6.10^{-2}2,4.10^{5}7,7.10^{4}1,6.10^{3}2,2.10^{1}1,4.10^{-2}3,8.10^{-1}$	$5,7\cdot10^{7}$ $5,7\cdot10^{7}$ $5,7\cdot10^{7}$ $5,7\cdot10^{7}$ $5,7\cdot10^{7}$ $5,7\cdot10^{7}$ $5,7\cdot10^{7}$ $5,7\cdot10^{7}$ $5,7\cdot10^{7}$	$1,1\cdot10^{-3}$ $1,1\cdot10^{-5}$ $1,1\cdot10^{-5}$ $1,1\cdot10^{-5}$ $6,1\cdot10^{-5}$ $5,5\cdot10^{-4}$ $5,5\cdot10^{-4}$ $6,7\cdot10^{-6}$	$1,1.10^{7}$ $1,1.10^{7}$ $1,1.10^{7}$ $1,1.10^{7}$ $1,1.10^{7}$ $1,1.10^{7}$ $1,1.10^{7}$ $1,1.10^{7}$ $1,1.10^{7}$	$2,5 \cdot 10^{-3}$ $8,8 \cdot 10^{-6}$ $2,5 \cdot 10^{-3}$ $8,8 \cdot 10^{-6}$ $1,6 \cdot 10^{-3}$ $1,7 \cdot 10^{-4}$ $1,7 \cdot 10^{-4}$ $6,6 \cdot 10^{-6}$

Tab. 11 Maximalwerte der Konzentration im Quartär für die beiden Ausbreitungswege Unterkreide und Oxford

T_{1/2}= Halbwertszeit C_{Max}= Maximalkonzentration im Quartär T_{Max}= Zeit bis zum Auftreten der Maximalkonzentration

		Corn	brash
Nuklid	$\frac{T_{1/2}}{\ln a}$	^T Max in a	C _{Max 3} in Bq/dm ³
C1 36	$\begin{array}{c} 3,0\cdot10^{5} \\ 8,1\cdot10^{4} \\ 6,5\cdot10^{4} \\ 2,1\cdot10^{5} \\ 1,6\cdot10^{7} \end{array}$	>3,6.10 ⁵	<8,1.10 ⁻⁶
Ca 41		>2,2.10 ⁵	<2,0.10 ⁻⁶
Se 79		>3,7.10 ⁵	<1,1.10 ⁻⁸
Tc 99		>9,3.10 ⁵	<6,6.10 ⁻⁶
I 129		>1,3.10 ⁶	<7,0.10 ⁻⁵
U 236	$2,3.10^{7}$ $1,4.1010$ $4,5.10^{9}$ $2,4.10^{5}$ $7,0.10^{8}$	>1,1.10 ⁷	$<1,1\cdot10^{-5}$
Th 232		>5,3.10 ⁸	$<1,2\cdot10^{-7}$
U 238		>1,4.10 ⁷	$<1,9\cdot10^{-5}$
U 234		>1,4.10 ⁷	$<1,9\cdot10^{-5}$
U 235		>1,4.10 ⁷	$<2,6\cdot10^{-6}$

Tab. 12 Maximalwerte der Konzentrationen im Quartär für den Ausbreitungsweg Cornbrash

Für die beiden potentiellen Ausbreitungswege "Unterkreide" und "Oxford sind die Zeitverläufe der Radionuklidkonzentrationen im Quartär in den beiden Anhängen dieses Berichtes dargestellt. Die Ergebnisse für den Ausbreitungsweg "Unterkreide" enthält Anhang A und die für den Ausbreitungsweg "Oxford" Anhang B. Der Ausbreitungsweg "Unterkreidetone" entspricht der Variante 1a und der Ausbreitungsweg "Oxford" der Variante 1b in /2/.

Beide Anhänge sind gleich aufgebaut. Die erste Tabelle enthält das Ausgangsnuklidspektrum. Gesondert gekennzeichnet sind hier diejenigen Radionuklide, die nicht im Kapitel 3.9 des Plans Konrad 4/90 behandelt werden, da sie sich unter den Gesichtspunkten der Langzeitsicherheit des geplanten Endlagers Konrad als unbedeutsam erwiesen haben. In Klammern aufgeführt sind in dieser Tabelle auch die Aktivitäten von Radionukliden aus /3/, wenn zwischen diesen Werten und den von der GSF bearbeiteten Aktivitätswerten Unterschiede bestehen. Die Abweichungen sind sicherheitstechnisch ohne Belang, da sie Radionuklide betreffen, die für die Langzeitsicherheit unbedeutsam sind. Wegen der langen Transportzeiten der Schadstoffe aus dem Bereich des Grubengebäudes bis in die Biosphäre haben nur die Radionuklide I 129, Th 232, U 235, U 236 und U 238 eine sicherheitstechnische Bedeutung.

In den Tabellen A2 bis A21 bzw. B2 bis B21 wird der zeitliche Verlauf der Radionuklidkonzentrationen in. Quartär am Ende der Ausbreitungswege dargestellt. Es werden nur Konzentrationen größer als 10⁻¹⁰ Bq/dm³ dargestellt. I 129 erreicht für beide Ausbreitungswege die maximalen Konzentrationen, und für den Ausbreitungsweg Oxford wird dieses Maximum nahezu in der Laufzeit für das Grundwasser erreicht.

In den Tabellen A22 und A23 bzw. B22 und B23 wird die Konzentrationverteilung innerhalb der Ausbreitungswege für die Nuklide Th 232 und Np 237 dargestellt. Die Konzentrationen berücksichtigen nicht die Verdünnung entlang bzw. am Ende der Ausbreitungswege. Die Maximalwerte sind deshalb gegenüber der Tabelle 10 für den Ausbreitungsweg "Unterkreide" um den Faktor 10 und für den Ausbreitungsweg "Oxford" um den Faktor 70 erhöht.-Die Konzentrationsverteilungen für die Nuklide U 233, Th 229, Ra 228, Th 228 und Ra 224 aus der Np 237 und Th 232 Kette werden nicht gesondert dargestellt.

Eine grafische Darstellung der Konzentrationsverläufe und der Konzentrationsverteilungen erfolgt in den Abbildungen A1 und A2 bzw. B1 und B2. In der Abbildung A1 ist der Konzentrationsverlauf von Se 79 nicht dargestellt, da die auftretenden Konzentrationen von Se 79 kleiner als 10⁻⁸ Bq/dm³ sind

5 Literaturverzeichnis

- /1/ Illi, H.; Fischer, S.: Radionuklidfreisetzung aus dem Grubengebäude Schichtenmodell - Konrad, Plan Konrad 3/89. BfS-IB-20. Salzgitter, Januar 1990.
- Storck, R.; Bütow, E.; Heredia, L.; Hossain, S.; Kühle, T.; Lütkemeier-Hosseinipour, S.; Nies, A.; Pröhl, G.; Struck, S.:
 Langzeitsicherheitsanalyse des Endlagers Konrad: Radionuklidausbreitung in der Nachbetriebsphase, GSF, Institut für Tieflagerung. Braunschweig, November 1986.
- /3/ Illi, H.; Fischer, S.: Aktivität sicherheitstechnisch relevanter Radionuklide am Ende der Betriebsphase des Endlagers Konrad und zeitliche Entwicklung der Aktivität und der Masse von Radionukliden in der Nachbetriebsphase. BfS-IB-18. Salzgitter, Dezember 1989.
- (4/ GSF, INTERA ENVIRONMENTAL CONSULTANTS, INC.: SWIFT Simulator for Waste Injection, Flow an Transport; Version 3.82 vom März 1986
- /5/ Lallemand-Barres, A.; Peaudecerf, P.: Recherche des relations entre la valeur de la dispersivite macroscopique d'un milieu aquifere, ses autres caracteristiques et les conditions de mesure, Bull. Bur. Rech. Geol. Min, 2nd Ser., Section III, 4, 1978.
- Projekt Sicherheitsstudien Entsorgung(PSE)
 Zusammenfassender Abschlußbericht, Projektleitung PSE(Hrsg.), Berlin, Januar 1985.

- 14 -

6 Verzeichnis der Tabellen und Abbildungen

- Tab. 1 Laufzeiten und Wegstrecken in den geologischen Einheiten
- Tab. 2 Porositäten für die Modellrechnungen
- Tab. 3 Retardationsfaktoren am Ende des Ausbreitungsweges
- Tab. 4 Parameterbelegung für den Ausbreitungsweg Unterkreide
- Tab. 5 Parameterbelegung für den Ausbreitungsweg Oxford
- Tab. 6 K_d-Werte für den Ausbreitungseg Unterkreide
- Tab. 7K_d-Werte für den Ausbreitungsweg Oxford
- Tab. 8 K_d-Werte für den Ausbreitungsweg Cornbrash
- Tab. 9 Einstromraten für den Ausbreitungsweg Unterkreide
- Tab. 10 Einstromraten für den Ausbreitungsweg Oxford
- Tab. 11
 Maximalwerte der Konzentration im Quartär am Ende der Ausbreitungswege Unterkreide und Oxford
- Tab. 12 Maximalwerte der Konzentrationen im Quartär für den Ausbreitungsweg Cornbrash
- Anhang A: Radionuklidkonzentration im Quartär Szenario Ia(Unterkreide)
- Tab. A1Aktivität und Masse der Radionuklide im Grubengebäude zu Beginn der
Nachbetriebsphase
- Tab. A2 A21: Zeitverlauf der Nuklidkonzentrationen im Quartär

Tab. A2	Cl 36
Tab. A3	Ca 36
Tab. A4	Se 79
Tab. A5	Tc 99
Tab. A6	I 129
Tab. A7	U 236
Tab. A8	U 235
Tab. A9	Th 231
Tab. A10	Pa 231
Tab. A11	Ac 227
Tab. A12	Th 227
Tab. A13	Ra 223
Tab. A14	U 238
Tab. A15	Th 234
Tab. A16	U 234
Tab. A17	Th 230
Tab. A18	Ra 226
Tab. A19	Pb 210
Tab. A20	Bi 210
Tab. A21	Po 210

Tab.A22-A23: Konzentrationsverteilung entlang des Ausbreitungsweges

Tab. A22 Th 232 Tab. A23 Np 237

- Abb. A2: Radionuklidkonzentration entlang des Aubreitungsweges Unterkreide für Np 237 und Th 232 in Bq/dm³
- Anhang B: Radionuklidkonzentration im Quartär Szenario Ib(Oxford)
- Tab. B1
 Aktivität und Masse der Radionuklide im Grubengebäude zu Beginn der Nachbetriebsphase
- Tab. B2 B21: Zeitverlauf der Nuklidkonzentrationen im Quartär

Tab. B2 Cl 36 Tab. B3 Ca 36 Tab. B4 Se 79 Tab. B5 Tc 99 I 129 Tab. B6 Tab. B7 U 236 Tab. B8 U 235 Tab. B9 Th 231 Pa 231 Tab. B10 Tab. B11 Ac 227 Tab. B12 Th 227 Ra 223 Tab. B13 U 238 Tab. B14 Tab. B15 Th 234 Tab. B16 U 234 Tab. B17 Th 230 Tab. B18 Ra 226 Tab. B19 РЬ 210 Tab. B20 Bi 210 Tab. B21 Po 210

Tab.B22-B23: Konzentrationsverteilung entlang des Ausbreitungsweges

Tab. B22 Th 232 Tab. B23 Np 237

- Abb. B1: Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/dm³ im Quartär bei der Ausbreitung über das Oxford
- Abb. B2: Radionuklidkonzentration entlang des Aubreitungsweges Oxford für Np 237 und Th 232 in Bq/dm³

7 Anhang A

Radionuklidkonzentration im Quartär - Szenario Ia(Unterkreide) Durchströmungsrate: 3200 m³/a

Lfd. Nr.	Radionuklid	Halbwertszeit in Jahren	Aktivität in Bq	Masse in kg
1	C 14	5750	$4,0.10^{14}$	2,4
2	C1 36	302000		$8,9.10^{-2}$
3	Ca 41	81300	$12, 5 \cdot 10^{17}$ (1 6 1017)	3,0.10
4		5,27	[2,7,10] (1,8,10)	1160
	N1 59		[4, 5, 10] [4, 0, 10] [6] (3, 8, 10] [6]	18
		92,1 65100	1 2.1011	4.7.10-2
	36 /9 Ph 97	4 70.1010	$17.0.10^4$	$2.2 \cdot 10^{-2}$
*		29.1	$(5, 2, 10^{16} (5, 0, 10^{16}))$	110
1 10	Zr 93	1.53.10	$1.0.10^{12}$	
11	ND 94	20300	$ 4,5\cdot10^9$	6.5.10-4
12	Mo 93	3490	$4.4.10^{7}$	$1.1 \cdot 10^{-6}$
13	TC 99	213000	$2,6.10^{13}$	42
14	Pd 107	6,51·10 ⁶	$1,3.10^{7}$	6,7.10-4
15	Sn 126	100000 _	$3,6.10^{11}$	0,34
16	I 129	1,57.107	7,0.10	110
17*	IA 129	1,57.10	2,5.10	3800
18_	Cs 135	2,30·10 [°]	$ 3,8\cdot10^{11}_{17}$	8,8
19	Cs 137	30,0	$1,1.10^{17}$	34
20	Sm 151	90,2	$ 7, 4.10^{-2}$	7,6.10-5
21	Eu 154	8,6	$ 4,2\cdot10^{-5}$ (4,0·10 ⁻⁵)	0,42
22	Cm 248	340000	4,8·10 ⁻	$3,1\cdot10$
23	Pu 244	8,29.10	25	3,8.10
24	Cm 244	18,2	2,2.10	10,74
25	Pu 240	0540	12,1.10	1230
20	U 230	2,35.10	15 0.1011	1 2.105
20*		1 72 1	12 4.107	3 0.10-8
20*	Cm 245	8510	17.0.1011	$1, 1 \cdot 10^{-2}$
30	P11 241	14.4	$12.0.10^{17}$	52
31		432	$(7.0.10^{14} (1.2.10^{15}))$	5.5
32	Np 237	2.14.106	$1.8 \cdot 10^{11}$	6.8
33	U 233	159000	$4.4.10^7$ (4.6.10 ⁷)	$1.2 \cdot 10^{-4}$
34	Th 229	7370	0.0 (920)	0,0
35*	Cm 246	4730	$ 2,6\cdot10^{10}$	$2,3\cdot 10^{-3}$
36*	Pu 242	387000	$ 4,4.10^{12}$	31 ,
37*	Am 242m	152	1,7.108	4,8.10
38	U 238	4,48.109	$1,9.10^{12}$	1,5.105
39	Pu 238	87,9	1,3.10	21
40	U 234	245000	$[8, 4 \cdot 10^{11} (9, 1 \cdot 10^{11})]$	3,7
41	Th 230	77100	6,1.10-12	8,1·10 ⁻²
42	Ra 226	1600	4,0.10	0,11
43	Pb 210	22,3	$[7,0\cdot10^{-5} (8,3\cdot10^{-5})]$	2,5.10-5
44	Cm 247	1,56.10	1,1,10	3,2.10-4
45	Am 243	7400	12 0.1015	12,3.10
40	Pu 239	24100	12,0,1011	12500
47	U 235	22700	11 7.1010	19 7.10-3
40		32700 31.0	1 7.1010	6.3.10-6
49	AC 22/	21,0	1,7,10	10,5-10

Tab. Al: Aktivität und Masse der Radionuklide im Grubengebäude zu Beginn der Nachbetriebsphase, Werte in Klammern nach /3/ * im Kapitel 3.9 des Plans Konrad 4/90 nicht angegeben

Zeit in a	Konz. in Bq/dm ³
8.000E+04	1.37E-10
9 0008+04	1.10E-09
1.000E+05	2.45E-08
1.100E+05	2.86E-07
1.200E+05	2.04E-06
1.300E+05	9.85E-06
1.400E+05	3.51E-05
1.500E+05	9.8 2E-0 5
1.600E+05	2.27E-04
1.700E+05	4.48E-04
1.800E+05	7.80E-04
1.900E+05	1.23E-03
2.000E+05	1.78E-03
2.100E+05	2.40E-03
2.200E+05	3.06E-03
2.300E+05	3.73E-03
2.400E+05	4.35E-03
2.500E+05	4.92E-03
2.600E+05	5.39E-03
2.700E+05	5.77E-03
2.800E+05	6.05E-03
2.900E+05	6.22E-03
3.000E+05	6.29E-03
3.100E+05	6.29E-03
3.200E+05	6.20E-03
3.300E+05	0.UJE-UJ 5.047 03
3.4001+05	5.84E-03
3.500E+05	5.000-03
3.0005405	5.325-03 5.03F-03
3 8002405	4.72E+03
3 9002+05	4.418-03
4.000E+05	4.10E-03

Tab. A2: Konzentrationsverlauf von Cl 36 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
2.800E+05	9.87E-11
3.000E+05	1.33E-10
3.200E+05	7.06E-10
3.400E+05	2.98E-09
3.600E+05	1.04E-08
3.800E+05	3.08E-08
4.000E+05	7.90E-08
4.200E+05	1.79E-07
4.400E+05	3.65E-07
4.600E+05	6.76E-07
4.800E+05	1.15E-06
5.000E+05	1.82E-06
5.200E+05	2.69E-06
5.400E+05	3.75 E- 06
5.600E+05	4.95E-06
5.800E+05	6.24E-06
6.000E+05	7.52E-06
6.200E+05	8.72E-06
6.400E+05	9.75E-06
6.600E+05	1.06E-05
6.800E+05	1.11E-05
7.000E+05	1.13E-05
7.200E+05	1.13E-05
7.400E+05	1.10E-05
7.600E+05	1.05E-05
7.800E+05	9.84E-06
8.000E+05	9.048-06
8.200E+05	8.1/2-00
8.400E+05	7.20E-00
8.600E+05	6.3/E-06
8.800E+05	5.51E-00
9.000E+05	4.70E-00
9.200E+05	3.9/2-00
9.4005+05	3.31 <u>0</u> -00
9.600E+05	2./4E-VD 2.2/E 06
9.800E+05	2.24B-VO 1 078 04
T.000E+00	T.076-00

Tab. A3: Konzentrationsverlauf von Ca 41 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
4,000E+05	9.63E-16
4.500E+05	1.25E-15
5.000E+05	3.64E-14
5.500E+05	5.09E-13
6.000E+05	4.03E-12
6.500E+05	2.03E-11
7.000E+05	/.18E-11 1 80F-10
7.500E+05	3.95E-10
8.500E+05	6.77E-10
9.000E+05	9.87E-10
9.500E+05	1.26E-09
1.000E+06	1.43E-09
1.050E+06	1.48E-09
1.100E+06	1.42E-09
1.150E+06	1.2/E-09
1.2502+06	8.51E-10
1.300E+06	6.52E-10
1.350E+06	4.80E-10
1.400E+06	3.43E-10
1.450E+06	2.38E-10
1.500E+06	1.61E-10
1.550E+06	1.06E-10
1.600E+06	6.91E-11 4 41E 11
1.0502+00	4.415-11 2.78E-11
1.750E+06	1.72E-11
1.800E+06	1.06E-11
1.850E+06	6.41E-12
1.900E+06	3.85E-12
1.950E+06	2.29E-12
2.000E+06	1.36E-12
2.050E+06	7.96E-13
2.1002+06	4.04E-13 2 69F-13
2.200E+06	1.55E-13
2.250E+06	8.91E-14
2.300E+06	5.09E-14
2.350E+06	2.90E-14
2.400E+06	1.64E-14
2.450E+06	9.29E-15
2.500E+06	5.24E-15
2.550E+06	2.94E-15
2.600E+06	1.65E-15

Zeit in a	Konz. in Bq/dm ³
3.000E+05	2.13E-10
3.200E+05	1.44E-09
3.600E+05	3.34E-08
4.000E+05	3.85E-07
4.200E+05	1.07E-06
4.800E+05	1.23E-05
5.000E+05	2.36E-05
5.600E+05	1.15E-04
5.800E+05	1.77E-04
6.000E+05	2.61E-04
6.200E+05	3.71E-04
6.400E+05	5.10E-04
6.600E+05	6.79E-04
6.800E+05	8.81E-04
7.000E+05	1.12E-03
7.200E+05	1.38E-03
7.400E+05	1.67E-03
7.600E+05	1.99E-03
7.800E+05	2.33E-03
8.000E+05	2.69E-03
8.200E+05	3.05E-03
8.400E+05	3.42E-03
8.600E+05	3.78E-03
8.800E+05	4.14E-03
9.000E+05	4.49E-03
1.000E+06	5.88E-03
1.020E+06	6.07E-03
1.040E+06	6.22E-03
1.060E+06	6.34E-03
1.080E+06	6.43E-03
1.100E+06	6.49E-03
1.120E+06	6.51E-03
1.160E+06	6.48E-03
1.180E+06	6.42E-03
1.200E+06	6.34E-03
1.220E+06	6.24E-03
1.240E+06	6.12E-03
1.260E+06	5.98E-03
1.280E+06	5.82E-03
1.300E+06	5.66E-03
1.400E+06	4./1E-03
1.500E+06	3.725-03

Tab. A5: Konzentrationsverlauf von Tc 99 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
1.000E+06	9.66E-11
1.100E+06	2.46E-10
1.200E+06	3.01E-09
1.300E+06	2.52E-08
1.400E+06	1.55E-07
1.500E+06	7.38E-07
1.600E+06	2.84E-06
1.700E+06	9.10E-06
1.800E+06	2.50E-05
1.900E+06	6.02E-05
2.000E+06	1.29E-04
2.100E+06	2.51E-04
2.200E+06	4.46E-04
2.300E+06	7.36E-04
2.400E+06	1.13E-03
2.500E+06	1.65E-03
2.600E+06	2.27E-03
2.700E+06	2.99E-03
2.800E+06	3.78E-03
2.900E+06	4.60E-03
3.000E+06	5.41E-03
3.100E+06	6.17E-03
3.200E+06	6.86E-03
3.300E+06	7.45 <u>E</u> -03
3.400E+06	7.91E-03
3.500E- 0	8.24E-03
3.600E 5	8.435-03
3.700E 06	8.48E-US 0.48E 03
3.800E+06	0.42E-UJ
3.9005+06	J.23E-UJ
4.0005+06	1.985-03

Tab. A6: Konzentrationsverlauf von I 129 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
1.000E+07	8.68E-11
1.500E+07	1.66E-08
2.000E+07	1.63E-06
2.500E+07	1.67E-05
3.000E+07	5.86E-05
3.500E+07	1.17E-04
4.000E+07	1.67E-04
4.500E+07	1.93E-04
5.000E+07	1.96E-04
5.500E+07	1.80E-04
6.000E+07	1.55E-04
6.500E+07	1.26E-04
7.000E+07	9.95E-05
7.500E+07	7.60 <u>E</u> -05
8.000E+07	5.68E-05
8.500E+07	4.17E-05
9.000E+07	3.02E-05
9.500E+07	2.16E-05
1.000E+08	1.53E-05
1.050E+08	1.07E-05
1.100E+08	7.50E-06
1.150E+08	5.21E-06
1.200E+08	3.61E-06
1.250E+08	2.49E-06
1.300E+08	1.71E-06
1.350E+08	1.17E-06
1.400E+08	8.01E-07
1.450E+08	5.47E-07
1.500E+08	3.73E-07
1.550E+08	2.54E-07
1.600E+08	1.73E-07
1.650E+08	1.18E-07
1.700E+08	8.00E-08
1.750E+08	5.44E-08
1.800E+08	3.70E-08
1.850E+08	2.51E-08
1.900E+08	1.71E-08
1.950E+08	1.16E-08
2.000E+08	7.88E-09
2.500E+08	1.68E-10

Tab. A7: Konzentrationsverlauf von U 236 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
1.200E+07	9.80E-11
1.400E+07	9.45E-10
1.600E+07	1.40E-08
1.800E+07	1.04E-07
2.000E+07	4.73E-07
2.200E+07	1.53E-06
2.400E+07	3.85E-06
2.600E+07	8.01E-06
2.800E+07	1.44E-05
3.000E+07	2.32E-05
3.200E+07	3.41E-05
3.400E+07	4.67E-05
3.600E+07	6.05E-05
3.800E+07	7.46E-05
4.000E+07	8.85E-05
4.200E+07	1.02E-04
4.400E+07	1.13E-04
4.600E+07	1.24E-04
4.800E+07	1.32E-04
5.000E+07	1.39E-04
5.200E+07	1.44E-04
5.400E+07	1.47E-04
5.600E+07	1.48E-04
5.800E+07	1.48E-04
6.000E+07	1.46E-04
6.200E+07	1.44E-04
6.400E+07	1.40E-04
6.600E+07	1.36E-04
6.800E+07	1.31E-04
7.000E+07	1.25E-04

Tab. A8: Konzentrationsverlauf von U 235 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
2.100E+07	1.00E-08
3.000E+07	2.32E-07
3.100E+07	2.84E-07
3.200E+07	3.41E-07
3.300E+07	4.02E-07
3.400E+07	4.67E-07
3.500E+07	5.35E-07
3.600E+07	6.05E-07
3.700E+07	6.75E-07
3.800E+07	7.46E-07
3.900E+07	8.16E-07
4.000E+07	8.85E-07
4.100E+07	9.52E-07
4.200E+07	1.02E-06
4.300E+07	1.08E-06
4.400E+07	1.13E-00
4.5005+07	1.195-06
4.0000000	1.245-06
4.700ET07	1.205-00
4.8005+07	1 365-06
4.900E+07	1 398-06
5 1005+07	1.41E-06
5.200E+07	1.44E-06
5.300E+07	1.45E-06
5.400E+07	1.47E-06
5.500E+07	1.47E-06
5.600E+07	1.48E-06
5.700E+07	1.48E-06
5.800E+07	1.48E-06
5.900E+07	1.47E-06
6.000E+07	1.46E-06
7.000E+07	1.25E-06

Tab. A9: Konzentrationsverlauf von Th 231 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
	1 OOF 10
1.6002+07	1.00E-10
1.800E+07	0.20E-10 2.86E 00
2.0002+07	2.80E-09
2.200E+07	9.275-09
2.400E+07	2.33E-00
2.500E+07	4.836-08
2.800E+07	8./2E-08
3.000E+07	1.408-07
3.200E+07	2.00E-07
3.400E+07	2.835-07
3.600E+07	3.00L-07
3.800E+07	4.518-07
4.000E+07	5.35E-07
4.200E+07	6.15E-07
4.400E+07	0.80E-07
4.600E+07	7.48E-07
4.800E+07	8.00E-07
5.000E+07	8.40E-07
5.200E+07	8.69E-07
5.400E+07	8.8/E-0/
5.600E+07	8.94E-07
5.800E+07	8.94E-07
6.000E+07	8.85E-07
6.200E+07	8.69E-07
6.400E+07	8.47E-07
6.600E+07	8.21E-07
6.800E+07	7.91E-07
7.000E+07	7.58E-07

Tab. Al0: Konzentrationsverlauf von Pa 231 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
1.600E+07	9.43E-10
1.800E+07	2.09E-09
2.000E+07	9.56E-09
2.200E+07	3.09E-08
2.400E+07	7.78E-08
2.600E+07	1.62E-07
2.800E+07	2.91E-07
3.000E+07	4.68E-07
3.200E+07	6.89E-07
3.400E+07	9.44E-07
3.600E+07	1.22E-06
3.800E+07	1.51E-06
4.000E+07	1.79E-06
4.200E+07	2.05E-06
4.400E+07	2.29E-06
4.600E+07	2.50E-06
4.800E+07	2.67E-06
5.000E+07	2.80E-06
5.200E+07	2.90E-06
5.400E+07	2.96E-06
5.600E+07	2.99E-06
5.800E+07	2.98E-06
6.000E+07	2.95E-06
6.200E+07	2.90E-06
6.400E+07	2.83E-06
6.600E+07	2.74E-06
6.800E+07	2.64E-06
7.000E+07	2.53E-06

Tab. All: Konzentrationsverlauf von Ac 227 in Bq/dm^3

Zeit in a	Konz. in Bq/dm
2.100E+07	1.00E-08
2.200E+07	1.53E-08
2.300E+07	2.50E-08
2.400E+07	3.85E-08
2.500E+07	5.67E-08
2.600E+07	8.01E-08
2.700E+07	1.09E-07
2.800E+07	1.44E-07
2.900E+07	1.85E-07
3.000E+^7	2.32E-07
3.100E+07	2.84E-07
3.200E+07	3.41E-07
3.300E+07	4.02E-07
3.400E+07	4.67E-07
3.500E+07	5.35E-07
3.600E+07	6.05E-07
3.700E+07	6.75E-07
3.800E+07	7.46E-07
3.900E+07	8.16E 7
4.000E+07	8.85E-07
4.100E+07	9.52E-07
4.200E+07	1.02E-06
4.300E+07	1.08E-06
4.400E+07	1.13E-06
4.500E+07	1.19E-06
4.600E+07	1.24E-06
4.700E+07	1.28E-06
4.800E+07	1.32E-06
4.900E+07	1.30E-00
5.000E+07	1.39E-00
5.500E+07	1.4/E-00
6.000E+07	1.40E-UD
6.500E+07	1.38E-00
7.000E+07	1.255-06
	1 6

Tab. Al2: Konzentrationsverlauf von Th in Bq/dm³

- 28 -

Zeit in a	Konz. in Bq/dm ³
1.800E+07	9.71E-09
2.000E+07	2.60E-08
2.200E+07	8.43E-08
2.400E+07	2.12E-07
2.600E+07	4.41E-07
2.800E+07	7.93E-07
3.000E+07	1.27E-06
3.200E+07	1.88E-06
3.400E+07	2.57E-06
3.600E+07	3.33E-06
3.800E+07	4.10E-06
4.000E+07	4.87E-06
4.200E+07	5.59E-06
4.400E+07	6.24E-06
4.600E+07	6.80E-06
4.800E+07	7.27E-06
5.000E+07	7.63E-06
5.200E+07	7.90E-06
5.400E+07	8.06E-06
5.600E+07	8.13E-06
5.800E+07	8.12E-06
6.000E+07	8.04E-06
6.200E+07	7.90E-06
6.400E+07	7.70E-06
6.600E+07	7.46E-06
6.800E+07	7.19E-06
7.000E+07	6.89E-06

Tab. Al3: Konzentrationsverlauf von Ra 223 in Bq/dm³

7eit	in a	Konz, in Ba/dm ³
1.000	E+07	8.68E-11
1.200	E+07	1.66E-10
1.400	E+07	6.85E-09
1.600	E+07	1.01E-07
1.800	E+07	7.48E-07
2.000	E+07	3.42E-06
2.200	E+07	1.11E-05
2.400	E+07	2.78E-05
2.600	E+07	5.80E-05
2.800	E+07	1.04E-04
3.000	E+07	1.68E-04
3.200	E+07	2.48E-04
3.400	E+07	3.40E-04
3.600	E+07	4.40E-04
3.800	E+07	5.44E-04
4.000	E+07	6.46E-04
4.200	E+07	7.43E-04
4.400	E+07	8.31E-04
4.600	E+07	9.07E-04
4.800	E+07	9.71E-04
5.000	E+07	1.02E-03
5.200	E+07	1.06E-03
5.400	E+07	1.08E-03
5.600	E+07	1.09E-03
5.800	E+07	1.09E-03
6.000	E+07	1.09E-03
6.200	E+07	1.0/E-03
6.400	E+07	1.04E-03
6.600	E+07	1.UIE-U3 0.768 04
5.800	E+0/	9./0E-04
7.000	些+07	9.3/5-04

Tab. Al4: Konzentrationsverlauf von U 238 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
1.400E+07	1.01E-10
1.600E+07	1.01E-09
1.800E+07	7.48E-09
2.000E+07	3.42E-08
2.200E+07	1.11E-07
2.400E+07	2.78E-07
2.600E+07	5.80E-07
2.800E+07	1.04E-06
3.000E+07	1.68E-06
3.200E+07	2.48E-06
3.400E+07	3.40E-06
3.600E+07	4.40E-06
3.800E+07	5.44E-06
4.000E+07	6.46E-06
4.200E+07	7.43E-06
4.400E+07	8.31E-06
4.600E+07	9.07E-06
4.800E+07	9.71E-06
5.000E+07	1.02E-05
5.200E+07	1.06E-05
5.400E+07	1.08E-05
5.600E+07	1.09E-05
5.800E+07	1.09E-05
6.000E+07	1.09E-05
6.200E+07	1.07E-05
6.400E+07	1.04E-05
6.600E+07	1.01E-05
6.800E+07	9.76E-06
7.000E+07	9.37E-06

Tab. Al5: Konzentrationsverlauf von Th 234 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
1.400E+07	1.01E-08
1.600E+07	1.01E-07
1.800E+07	7.48E-07
2.000E+07	3.42E-06
2.200E+07	1.11E-05
2.400E+07	2.78E-05
2.600E+07	5.80E-05
2.800E+07	1.04 E-04
3.000E+07	1. 3 E-0 4
3.200E+07	2.48 E-04
3.400E+07	3.40E-04
3.600E+07	4.40E-04
3.800E+07	5.44E-04
4.000E+07	6.46E-04
4.200E+07	7.43E-04
4.400E+07	8.31E-04
4.600E+07	9.07E-04
4.800E+07	9.71E-04
5.000E+07	1.02E-03
5.200E+07	1.06E-03
5.400E+07	1.08E-03
5.600E+07	1.09E-03
5.800E+07	1.09E-03
6.000E+07	1.09E-03
6.200E+07	1.07E-03
6.400E+07	1.04E-03
6.600E+07	1.01E-03
6.800E+07	9.76E-04
7.000E+07	9.37E-04

Tab. Al6: Konzentrationsverlauf von U 234 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
1.400E+07	1.01E-10
1.600E+07	1.01E-09
1.800E+07	7.48E-09
2.000E+07	3.42E-08
2.200E+07	1.11E-07
2.400E+07	2.78E-07
2.600E+07	5.80E-07
2.800E+07	1.04E-06
3.000E+07	1.68E-06
3.200E+07	2.48E-06
3.400E+07	3.40E-06
3.600E+07	4.40E-06
3.800E+07	5.44E-06
4.000E+07	6.46E-06
4.200E+07	7.43E-06
4.400E+07	8.31E-06
4.600E+07	9.07E-06
4.800E+07	9.71E-06
5.000E+07	1.02E-05
5.200E+07	1.06E-05
5.400E+07	1.08E-05
5.600E+07	1.09E-05
5.800E+07	1.09E-05
6.000E+07	1.09E-05
6.200E+07	1.07E-05
6.400E+07	1.04E-05
6.600E+07	1.01E-05
6.800E+07	9.76E-06
7.000E+07	9.37E-06

Tab. Al7: Konzentrationsverlauf von Th 230 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
1.200E+07	9.36E-11
1.400E+07	3.77E-10
1.600E+07	5.56E-09
1.800E+07	4.11E-08
2.000E+07	1.88E-07
2.200E+07	6.09E-07
2.400E+07	1.53E-06
2.600E+07	3.19E-06
2.800E+07	5.74E-06
3.000E+07	9.25E-06
3.200E+07	1.36E-05
3.400E+07	1.87E-05
3.600E+07	2.42E-05
3.800E+07	2.99E-05
4.000E+07	3.55E-05
4.200E+07	4.09E-05
4.400E+07	4.57 E-05
4.600E+07	4.99E-05
4.800E+07	5.34E-05
5.000E+07	5.62 E-05
5.200E+07	5.82E-05
5.400E+07	5.95E-05
5.600E+07	6.01E-05
5.800E+07	6.01E-05
6.000E+07	5.97E-05
6.200E+07	5.87E-05
6.400E+07	5.73E-05
6.600E+07	5.56E-05
6.800E+07	5.37E-05
7.000E+07	5.15E-05

Tab. Al8: Konzentrationsverlauf von Ra 226 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
1.200E+07	9.32E-10
1.400E+07	3.44E-09
1.600E+07	5.09E-08
1.800E+07	3.76E-07
2.000E+07	1.72E-06
2.200E+07	5.57E-06
2.400E+07	1.40E-05
2.600E+07	2.92E-05
2.800E+07	5.25E-05
3.000E+07	8.46E-05
3.200E+07	1.25E-04
3.400E+07	1.71E-04
3.600E+07	2.21E-04
3.800E+07	2.74E-04
4.000E+07	3.25E-04
4.200E+07	3.74E-04
4.400E+07	4.18E-04
4.600E+07	4.56E-04
4.800E+07	4.89E-04
5.000E+07	5.14E-04
5.200E+07	5.32E-04
5.400E+07	5.44E-04
5.600E+07	5.50E-04
5.800E+07	5.50E-04 5.46E 04
6.000E+07	5.405-04
6.200E+07	5.3/2-04
6.400E+07	5 09E-04
5.000ET07	4 91 E-04
7 0005+07	4 71E-04
1.0005-01	4.175-04

Tab. Al9: Konzentrationsverlauf von Pb 210 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
1.200E+07	9.32E-10
1.400E+07	3.44E-09
1.600E+07	5.09E-08
1.800E+07	3.76E-07
2.000E+07	1.72E-06
2.200E+07	5.57E-06
2.400E+07	1.40E-05
2.600E+07	2.92E-05
2.800E+07	5.25E-05
3.000E+07	8.46E-05
3.200E+07	1.25E-04
3.400E+07	1.71E-04
3.600E+07	2.21E-04
3.800E+07	2.74E-04
4.000E+07	3.25E-04
4.200E+07	3.74E-04
4.400E+07	4.18E-04
4.600E+07	4.56E-04
4.800E+07	4.89E-04
5.000E+07	5.14E-04
5.200E+07	5.32E-04
5.400E+07	5.44E-04
5.600E+07	5.50E-04
5.800E+07	5.50E-04
6.000E+07	5.46E-04
6.200E+07	5.37E-04
6.400E+07	5.24E-04
6.600E+07	5.09E-04
6.800E+07	4.91E-04
7.000E+07	4.71E-04

Tab. A20: Konzentrationsverlauf von Bi 210 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
1.400E+07	9.83E-11
1.600E+07	6.12E-10
1.800E+07	4.53E-09
2.000E+07	2.07E-08
2.200E+07	6.70E-08
2.400E+07	1.68E-07
2.600E+07	3.51E-07
2.800E+07	6.32E-07
3.000E+07	1.02E-06
3.200E+07	1.50E-06
3.400E+07	2.06E-06
3.600E+07	2.66E-06
3.800E+07	3.29E-06
4.000E+07	3.91E-06
4.200E+07	4.50E-06
4.400E+07	5.03E-06
4.600E+07	5.49E-06
4.800E+07	5.88E-06
5.000E+07	6.18E-06
5.200E+07	6.40E-06
5.400E+07	6.55E-06
5.600E+07	6.62E-06
5.800E+07	6.61E-06
6.000E+07	6.56E-06
6.200E+07	6.46E-06
6.400E+07	6.31E-06
6.600E+07	6.12E-06
6.800E+07	5.91E-06
7,000E+07	5.67E-06

Tab. A21: Konzentrationsverlauf von Po 210 in Bq/dm³

Ort	in m	Kon.	in	Bq/dm ³
		5 21	 R_1 9	
2	20	2 51	 	, 1
		5.51	0-1- 0-11	4
40	30	5.0	6-11	•
62	20	1.01	5-09	
82	20	1.11	E-07	
97	70	3.31	E-06	j
106	55	3.81	E-05	j
109	95	8.21	E-05	i
111	.5	1.11	S-04	•
113	5	1.31	S-04	
115	5	1.4I	E-04	
117	5	1.41	S-04	,
119	5	1.21	5-04	
121	.5	9.11	S-05	
126	5	3.31	S-05	
131	.5	6.9E	5-06	
136	5	1.1F	C-06	
141	5	2.71	5-07	
146	5	1.8	E-07	
174	0	1.78	-07	
254	0	1.6	-07	
334	0	1.48	207	
270	0	1 25	-07	
210	0	T.35		

Tab. A22: Konzentrationsverteilung von Th 232 nach $5\cdot 10^8$ Jahren in Bq/dm³

Kon. in Bq/dm ³
1.9E-20
8.5E-17
5.7E-15
3.8E-13
1.1E-11
1.1E-10
3.5E-10
5.6E-10
5.8E-10
5.6E-10
3.3E-10
1.4E-10
4.1E-11
8.2E-12
1.2E-12
1.6E-13
1.1E-15

Tab. A23: Konzentrationsverteilung von Np 237 nach $5 \cdot 10^7$ Jahren in Bq/dm³

Abb. A1: Zeitlicher Verlauf der Radionuklidkonzentrationen in Bq/dm³ im Quartär bei der Ausbreitung über die Unterkreide

_____ : Uran-Radium-Zerfallsreihe

------ : Actinium—Zerfalisreihe

Abb. A2: Radionuklidkonzentration entlang des Ausbreitungsweges Unterkreide für Np 237 und Th 232 in Bq/dm³

8 Anhang B

Radionuklidkonzentration im Quartär - Szenario Ib(Oxford) Durchströmungsrate: 1620 m³/a

-	43	-	

Lfd. Nr.	Radionuklid	Halbwertszeit in Jahren	Aktivität in Bq	Masse in kg
			4 0 1014	2 /
1	C 14	5/50		8 9.10-2
2	CI 36	302000		3 8.10-2
3		81300	12, 7, 1017 (1 6, 1017)	6 3
4		90000	12,710 (1,010)	1160
5	N1 59	00000	14,01016 (3 8,1016)	118
	N1 05	55100	1 2.1011	$4.7 \cdot 10^{-2}$
	DE 79	4 70.1010	$17.0.10^4$	$2.2 \cdot 10^{-2}$
· · · ·	Sr 90	29.1	$5.2 \cdot 10^{16}$ (5.0 \ 10^{16})	10
10	Zr 93	$1.53 \cdot 10^{6}$	$1.0 \cdot 10^{12}$	11
111	Nb 94	20300	$4.5 \cdot 10^9$	6,5.10-4
12	Mo 93	3490	4,4.107	1,1.10-6
13	Tc 99	213000	$2,6\cdot 10^{13}$	42
14	Pd 107	6,51·10 ⁶	1,3.10	6,7.10-4
15	Sn 126	100000 _	3,6.10	0,34
16	I 129	1,57.10/	7,0·10 ¹¹	110
17*	IA 129	1,57.10	2,5.10	3800
18_	· Cs 135	2,30.10	$ 3,8\cdot10^{11}$	8,8
19	Cs 137	30,0	$1,1.10^{-7}$	34
20	Sm 151	90,2	$ 7, 4 \cdot 10^{-2}$	7,6.10
21	Eu 154	8,6	$[4,2\cdot10^{-5}]$ (4,0·10)	0,42
22	Cm 248	340000	4,8.10	$3,1\cdot 10$
23	Pu 244	8,29.10	25	3,8.10
24	Cm 244	18,2	2,2.10-5	0,74
25	Pu 240	6540	2,1.10	1420
26	0 236	2,35.10	15 0.1011	11 2.105
2/		1 1,41.10	12 4.107	3.0.10-8
20*	0 232	/2,⊥ 8510	7.0.1011	$11.1 \cdot 10^{-2}$
29	Din 243	14.4	12.0.1017	52
31	Am 241	432	$7.0.10^{14}$ (1.2.10 ¹⁵)	15.5
32	Np 237	$2.14 \cdot 10^{6}$	1.8.1011	6,8
33	U 233	159000	$4.4.10^7$ (4.6.10 ⁷)	$1,2.10^{-4}$
34	Th 229	7370	0,0 (920)	0,0
35*	Cm 246	4730	2,6.1010	$ 2,3\cdot10^{-3}$
36*	Pu 242	387000	$ 4, 4 \cdot 10^{12}$	31 7
37*	Am 242m	1.52	1,7.10	4,8.10,
38	U 238	4,48.109	$ 1,9.10^{12}$	1,5.10
39	Pu 238	87,9	1,3.10-0	21
40	U 234	245000	$ 8,4\cdot10^{-1}$ (9,1·10)	3,7
41	Th 230	77100	$6, 1 \cdot 10^{-0}$	8,1.10 -
42	Ra 226	1600	4,0.10-0	10,11
43	Pb 210	22,3	[/,0·10 (8,3·10)	2,5.10-5
44	Cm 247	1,56.10	11,1.10	13,2.10-4
45	Am 243	7400	12,0.1015	1970
46	Pu 239	24100	12,0.10	12500
4/	U 235	22700	11 7.1010	19.7.10-3
48		β2700 91 Ω	1, 7, 1010	6.3.10-6
49	AC 22/	21,0	1,,,,,,,	10,0.10

Tab. Bl: Aktivität und Masse der Radionuklide im Grubengebäude zu Beginn der Nachbetriebsphase, Werte in Klammern nach /3/ * im Kapitel 3.9 des Plans Konrad 4/90 nicht angegeben

Zeit in a	Konz. in Bq/dm ³
1,200E+05	3.20E-10
1.300E+05	4.26E-10
1.400E+05	3.85E-09
1.500E+05	3.04E-08
1.600E+05	1.80E-07
1.700E+05	8.22E-07
1.800E+05	3.33E-06
1.900E+05	1.10E-05
2.000E+05	3.05E-05
2.100E+05	7.56E-05
2.200E+05	1.63E-04
2.300E+05	3.11E-04
2.400E+05	5.42E-04
2.500E+05	8.58E-04
2.600E+05	1.25E-03
2.700E+05	1.68E-03
2.800E+05	2.12E-03
2.900E+05	2.53E-03
3.000E+05	2.85E-03
3.100E+05	3.06E-03
3.200E+05	3.16E-03
3.300E+05	3.13E-03
3.400E+05	3.00E-03
3.500E+05	2.80E-03
3.600E+05	2.54E-03
3.700E+05	2.25E-03
3.800E+05	1.96E-03
3.900E+05	1.6/E-03
4.000E+05	1.485-03

Tab. B2: Konzentrationsverlauf von Cl 36 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
1.300E+05	3.96E-10
1.400E+05	2.10E-09
1.500E+05	1.58E-08
1.600E+05	8.92E-08
1.700E+05	3.88E-07
1.800E+05	1.49E-06
1.900E+05	4.68E-06
2.000E+05	1.23E-05
2.100E+05	2.87E-05
2.200E+05	5.86E-05
2.300E+05	1.06E-04
2.400E+05	1.73E-04
2.500E+05	2.58E-04
2.600E+05	3.54E-04
2.700E+05	4.50E-04
2.800E+05	5.34E-04
2.900E+05	5.98E-04
3.000E+05	6.33E-04
3.100E+05	6.40E-04
3.200E+05	6.20E-04
3.300E+05	5.77E-04
3.400E+05	5.20E-04
3.500E+05	4.55E-04
3.600E+05	3.88E-04
3.700E+05	3.23E-04
3.800E+05	2.64E-04
3.900E+05	2.12E-04
4.000E+05	1.79E-04

Tab. B3: Konzentrationsverlauf von Ca 41 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
2.000E+05	4.01E-15
2.200E+05	5.66E-15
2.400E+05	1.10E-13
2.600E+05	1.49E-12
2.800E+05	1.46E-11
3.000E+05	1.07E-10
3.200E+05	6.06E-10
3.400E+05	2.73E-09
3.600E+05	9.99E-09
3.800E+05	3.04E-08
4.000E+05	7.87E-08
4.200E+05	1.76E-07
4.400E+05	3.44E-07
4.600E+05	5.99E-07
4.800E+05	9.39E-07
5.000E+05	1.34E-06
5.200E+05	1.77E-06
5.400E+05	2.16E-06
5.600E+05	2.46E-06
5.800E+05	2.65E-06
6.000E+05	2.70E-06
6.200E+05	2.64E-06
6.400E+05	2.46E-06
6.600E+05	2.22E-06
6.800E+05	1.93E-06
7.000E+05	1.64E-06
7.200E+05	1.35E-06
7.400E+05	1.09E-06
7.600E+05	8.63E-07
7.800E+05	6.72E-07
8.000E+05	5.16E-07
8.200E+05	3.91E-07
8.400E+05	2.94E-07
8.600E+05	2.18E-07
8.800E+05	1.61E-07
9.000E+05	1.265-07

Tab. B4: Konzentrationsverlauf von Se 79 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
1.000E+06	2.01E-10
1.050E+06	3.10E-10
1.100E+06	1.27E-09
1.150E+06	4.40E-09
1.200E+06	1.43E-08
1.250E+06	4.03E-08
1.300E+06	1.07E-07
1.350E+06	2.51E-07
1.4005+06	1 128-06
1 5008+06	2.14E-06
1.550E+06	3.75E-06
1.600E+06	6.27E-06
1.650E+06	9.79E-06
1.700E+06	1.46E-05
1.750E+06	2.06E-05
1.800E+06	2.77E-05
1.850E+06	3.57E-05
1.900E+06	4.435-05
1.9508+06	5.28E-05
2.050E+06	6.76E-05
2.100E+06	7.29E-05
2.150E+06	7.66E-05
2.200E+06	7.80E-05
2.250E+06	7.79E-05
2.300E+06	7.57E-05
2.350E+06	7.21E-05
2.400E+06	6.72E-05
2.450E+06	5.10 <u>2</u> -05
2.500E+06	4.90E-05
2.550E+06	4.27E-05
2.650E+06	3.67E-05
2.700E+06	3.11E-05
2.750E+06	2.61E-05
2.800E+06	2.16E-05
2.850E+06	1.77E-05
2.900E+06	1.44E-UD
2.950E+06 3 000E±06	9.25E-06
3.050E+06	7.31E-06
3.100E+06	5.77E-06
3.150E+06	4.50E-06
3.200E+06	3.81E-06

Tab. B5: Konzentrationsverlauf von Tc 99 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
1.300E+05	1.72E-08
1.400E+05	1.99E-08
1.500E+05	1.79E-07
1.600E+05	1.22E-06
1.700E+05	6.53E-06
1.800E+05	2.80E-05
1.900E+05	9.89E-05
2.000E+05	2.95E-04
2.100E+05	7.53E-04
2.200E+05	1.68E-03
2.300E+05	3.34E-03
2.400E+05	5.95E-03
2.500E+05	9.65E-03
2.600E+05	1.44E-02
2.700E+05	1.99E-02
2.800E+05	2.56E-02
2.900E+05	3.12E-02
3.000E+05	3.59E-02
3.100E+05	3.94E-02
3.200E+05	4.15E-02
3.300E+05	4.21E-02
3.400E+ 5	4.13E-02
3.500Eru5	3.93E-02
3.600E+05	3.65E-02
3.700E+05	3.31E-02
3.800E+05	2.95E-02
3.900E+05	2.58E-02
4.000E+05	2.29E-02

Tab. B6: Konzentrationsverlauf von I 129 in Bq/dm^3

Tait in a	Kong in Ba/dm ³
Zeit in a	Konz. In Dq/an
5.000E+06	3.95E-08
1.000E+07	1.25E-03
1.500E+07	6.67E-04
2.000E+07	1.19E-04
2.500E+07	1.89E-05
3.000E+07	2.75E-06
3.500E+07	7.63E-07
4.000E+07	3.92E-07
4.500E+07	3.05E-07
5.000E+07	2.57E-07
5.500E+07	2.20E-07
6.000E+07	1.89E-07
6.500E+07	1.63E-07
7.000E+07	1.40E-07
7.500E+07	1.20E-07
8.000E+07	1.03E-07
8.500E+07	8.88E-08
9.000E+07	7.63E-08
9.500E+07	6.56E-08
1.000E+08	5.63E-08
1.050E+08	4.85E-08
1.100E+08	4.16E-08
1.150E+08	3.58E-08
1.200E+08	3.08E-08
1.250E+08	2.65E-08
1.300E+08	2.27E-08
1.350E+08	1.96E-08
1.400E+08	1.68E-08
1.450E+08	1.44E-08
1.500E+08	1.24E-08
1.550E+08	1.14E-08

Tab. B7: Konzentrationsverlauf U 236 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
4.200E+06	2.278-10
4.400E+06	1.9/8-10
4.600E+06	7.53E-10
4.800E+06	2.47E-09
5.000E+06	7.70E-09
5.200E+06	2.11E-08
5.400E+06	5.52E-08
5.600E+06	1,308-07
5.8002+06	2.918-07
6.000E+06	J.995-07
6.200E+06	1.10E-00 2.16F 06
6.400E+06	2.100-00
6.000E+00	5.82E-00
0.800E+00	1 028-05
7.000E+06	1.02E-05
8.000E+06	J.698=05
8.200ET06	0.57E-05
8.4005+06	9.578-05 1 17E-04
8.000E+00	1 418 04
8.800E+06	1.410-04
9.000E+00	2 828-04
1 0205407	2.02E=04 3.00F_04
1.0205+07	3 15E-04
1 0508+07	3.28E-04
1 0805+07	3.37E-04
1 1008+07	3.44E-04
1.120E+07	3.48E-04
1.140E+07	3.48E=04
1.160E+07	3.48E-04
1.180E+07	3.44E-04
1.200E+07	3.38E-04
1.220E+07	3.31E-04
1.240E+07	3.23E-04
1.260E+07	3.13E-04
1.280E+07	3.02E-04
1.300E+07	2.91E-04
1.400E+07	2.30E-04
1.500E+07	1.75E-04

		1.5002+07 1	. / 3)E-04	+			
Tab.	B8:	Konzentrationsverla	uf	von	ט	235	in	Bq/dm ³

Zeit in a	Konz. in Bq/dm ³
5.200E+06	1.82E-10
6.000E+06	2.11E-09
7.000E+06	3.58E-08
8.000E+06	2.08E-07
9.000E+06	5.83E-07
9.200E+06	6.71E-07
9.400E+06	7.58E-07
9.600E+06	8.42E-07
9.800E+06	9.21E-07
1.000E+07	9.94E-07
1.020E+07	1.06E-06
1.040E+07	1.11E-06
1.060E+07	1.16E-06
1.080E+07	1.19E-06
1.100E+07	1.21E-06
1.120E+07	1.23E-06
1.140E+07	1.23E-06
1.160E+07	1.23E-06
1.180E+07	1.21E-06
1.200E+07	1.19E-06
1.220E+07	1.17E-06
1.240E+07	1.14E-06
1.260E+07	1.10E-06
1.280E+07	1.07E-06
1.300E+07	1.03E-06
1.400E+07	8.13E-07
1.500E+07	6.18E-07

Tab. B9: Konzentrationsverlauf von Th 231 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ^{3.}
5.400E+06	2.00E-10
6.000E+06	1.58E-09
7.000E+06	2.69E-08
8.000E+06	1.56E-07
8.200E+06	2.02E-07
8.400E+06	2.53E-07
8.600E+06	3.11E-07
8.800E+06	3.72E-07
9.000E+06	4.37E-07
9.200E+06	5.03E-07
9.400E+06	5.68E-07
9.600E+06	6.32E-07
9.800E+06	6.91E-07
1.000E+07	7.45E-07
1.020E+07	7.93E-07
1.040E+07	8.34E-07
1.060E+07	8.67E-07
1.080E+07	8.93E-07
1.100E+07	9.11E-07
1.120E+07	9.20E-07
1.140E+07	9.22E-07
1.160E+07	9.20E-07
1.180E+07	9.11E-07
1.200E+07	8.96E-07
1.220E+07	8.77E-07
1.240E+07	8.54E-07
1.260E+07	8.28E-07
1.280E+07	8.00E-07
1.300E+07	7.70E-07
1.400E+07	6.09E-07
1.500E+07	4.63E-07

Tab. Blo: Konzentrationsverlauf von Pa 231 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
5.000E+06	3.40E-10
6.000E+06	2.64E-08
7.000E+06	4.48E-07
7.200E+06	6.82E-07
7.400E+06	1.01E-06
7.600E+06	1.42E-06
7.800E+06	1.96E-06
8.000E+06	2.60E-06
8.200E+06	3.36E-06
8.400E+06	4.22E-06
8.600E+06	5.18E-06
8.800E+06	6.21E-06
9.000E+06	7.29E-06
9.200E+06	8.38E-06
9.400E+06	9.47E-06
9.600E+06	1.05E-05
9.800E+06	1.15E-05
1.000E+07	1.24E-05
1.020E+07	1.32E-05
1.040E+07	1.39E-05
1.060E+07	1.45E-05
1.080E+07	1.49E-05
1.100E+07	1.52E-05
1.120E+07	1.53E-05
1.140E+07	1.54E-05
1.160E+07	1.53E-05
1.180E+07	1.52E-05
1.200E+07	1.49E-05
1.220E+07	1.46E-05
1.240E+07	1.42E-05
1.260E+07	1,38E-05
1.280E+07	1.33E-05
1.300E+07	1.28E-05
1.400E+07	1.02E-05
1.500E+07	7.72E-06

Tab.	B11:	Konzentrationsverlauf	von	Ac	227	in	Bq/	dm-
------	------	-----------------------	-----	----	-----	----	-----	-----

Zeit in	a	Konz.	in	Bq/dm ³
5 200F±	 06	1 83	28-1	0
5.200E+	00	2.1	1E-0	9
7 000E+	00	2 5	RE-(18
8 000E+	06	2 0	3E_(17
8 200E+	06	2.6	9E-()7
8 4005+	06	3.3	BE-()7
8.600E+	06	4.14	4E-0	07
8.800E+	06	4.9	7E-0	07
9.000E+	06	5.8	3E-0	07
9.200E+	06	6.7	1E-0	07
9.400E+	06	7.5	8E-(07
9.600E+	06	8.4	2E-(07
9.800E+	06	9.2	1E-0	07
1.000E+	07	9.9	4E-(07
1.020E+	07	1.0	6E-(06
1.040E+	07	1.1	1E-0	06
1.060E+	07	1.1	6E-(06
1.080E+	07	1.1	9E-0	06
1.100E+	07	1.2	1E-(06
1.120E+	07	1.2	3E-(06
1.140E+	07	1.2	3E-(06
1.160E+	07	1.2	3E-(06
1.180E+	07	1.2	1E-0	06
1.200E+	07	1.1	9E-(06
1.220E+	07	1.1	7E-(06
1.240E+	07	1.1	4E-0	06
1.260E+	07	1.1	OE = 0	06
1.280E+	07	1.0	7E-()6)6
1.300E+	07	1.0	3E-(
1.320E+	07	9.8	つビー(つ 戸 - (
1.340E+	07	9.4	28-0	
1.360E+	07	8.9	96-0	07 77
1.380E+	07	8.5	25-V 25-V	J/
1.400E+	07	0.1 7 7	0 F - 1	57 7
1.42064	07	7.7	05-1	7
1 / 6054	07	6.8		7
1 40051	07	6.5	0E-0	07
1 50054	07	6.1	8E-0	07
1.00021		0.1		

Tab. B12: Konzentrationsverlauf von Th 231 in Bq/dm^3

Zeit	in	a l	Conz.	in	Bq/	dm ³
 4.400	0E+0	6	2.61	LE-1	0	
5.000	0E+0	6	5.02	2E-0	9	
6.000	0E+0	6	3.90)E-0)7	
7.00	0E+0	6	6.62	2E-0)6	
8.00	0E+C	6	3.84	+E-C)5	
8.20	ÓÉ+C	6	4.96	5E-0)5	
8.40	0E+0	6	6.24	+E-C)5	
8.60	0E+0	6	7.66	5E-0)5	
8.80	0E+0	6	9.17	7E-0)5	
9.00	0E+C	6	1.08	3E-0)4	
9.20	0E+0	6	1.24	4Ε-C)4	
9.40	0E+0	6	1.40	DE=0)4	
9.60	0E+C	6	1.56	5E-0)4	
9.80	0E+C	6	1.70	DE - C)4	
1.00	0E+0)7	1.84	4E-()4	
1.02	0E+C)7	1.9	5E-()4	
1.04	0E+C)7	2.0	5E-(04	
1.06	0E+C)7	2.14	4E-(04	
1.08	0E+0)7	2.20	DE = 0	04	
1.10	0E+C)7	2.24	4E-0	04	
1.12	0E+C)7	2.2	7E-0	04	
1.14	0E+0)7	2.2	7E-0	04	
1.16	0E+0)7	2.2	7E-()4	
1.18	0E+C)7	2.24	4E-0)4	
1.20	0E+0)7	2.2	LE-()4	
1.22	0E+0)7	2.10	5E-()4	
1.24	0E+0)7	2.10		<u>)</u> 4	
1.26	0E+0)7 . 	2.04	4 E - (7 F	J4	
1.28	05+0)/ 	1.9	/ E - (J4 54	
1.30)/ \ 7	1.90)4 74	
1.32	0E+()/ 	1.0	25-1	J4 74	
1.34)/ \7	1.7	+ D - V)4 7/i	
1.30	05+L)/ \7	1 50	85-(54 74	
1.30	OBTU)/ \7	1 5/		54 74	
1 40	0570	17	1 47	28-1	54 54	
1 .42	0540	\7 \7	1 2	58-0	14 14	
1 /6	0540	,,)7	1 2	78-4	14	
1 /0	0510	17	1 2	05-0	54 74	
1 50	0510	7	1 1	4E-(54 54	
1.50	0240	,,	T.T.	1001		

Tab. B13: Konzentrationsverlauf von Ra 223 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
4.000E+06	3.04E-10
5.000E+06	5.67E-08
6.000E+06	4.37E-06
7.000E+06	7.35E-05
7.200E+06	1.12E-04
7.400E+06	1.65E-04
7.600E+06	2.33E-04
7.800E+06	3.20E-04
8.000E+06	4.24E-04
8.200E+06	5.48E-04
8.400E+06	6.88E-04
8.600E+06	8.43E-04
8.800E+06	1.01E-03
9.000E+06	1.18E-03
9.200E+06	1.36E-03
9.400E+06	1.54E-03
9.600E+06	1.71E-03
9.800E+06	1.87E-03
1.000E+07	2.02E-03
1.020E+07	2.14E-03
1.040E+07	2.25E-03
1.060E+07	2.34E-03
1.080E+07	2.41E-03
1.100E+07	2.46E-03
1.120E+07	2.49E-03
1.140E+07	2.49E-03
1.160E+07	2.48E-03
1.180E+07	2.46E-03
1.200E+07	2.42E-03
1.300E+07	2.08E-03
1.400E+07	1.65E-03
1.500E+07	1.256-03

	1.5006407	1.236-03					
Tab. B14:	Konzentrationsv	erlauf von	υ	238	in	Bq/dm ³	

Zeit in a	Konz. in Bq/dm ³
5.000E+06	2.00E-10
6.000E+06	1.54E-08
7.000E+06	2.59E-07
7.200E+06	3.95E-07
7.400E+06	5.81E-07
7.600E+06	8.22E-07
7.800E+06	1.13E-06
8.000E+06	1.50E-06
8.200E+06	1.93E-06
8.400E+06	2.43E-06
8.600E+06	2.98E-06
8.800E+06	3.57E-06
9.000E+06	4.18E-06
9.200E+06	4.81E-06
9.400E+06	5.43E-06
9.600E+06	6.03E-06
9.800E+06	6.60E-06
1.000E+07	7.11E-06
1.020E+07	7.57E-06
1.040E+07	7.95E-06
1.060E+07	8.27E-06
1.080E+07	8.51E-06
1.100E+07	8.68E-06
1.120E+07	8.77E-06
1.140E+07	8./9E-06
1.160E+07	8./6E-06
1.180E+07	8.6/E-06
1.200E+07	8.53E-06
1.220E+07	8.35E-06
1.240E+07	8.135-06
1.260E+07	7.89E-06
1.280E+07	7.025-00 7.025-06
1.300E+07	7.33E-00
1.400E+07	5.81E-00
1.500E+07	4.425-00

Tab. B15: Konzentrationsverlauf von Th 234 in Bq/dm³

Zeit	in	8	Konz.	in	Bq/dm ³
4.000)E+()6	3.04	É-:	10
5.000)E+()6	5.67	7E-(58
6.000)E+()6	4.37	7E-(06
6.200)E+()6	8.60)E-(06
6.400)E+()6	1.57	7E-(05
6.600)E+()6	2.77	7E-(55
6.800	E+C)6	4.59)E-(05
7.000)E+()6	7.35	5E-(05
7.200)E+()6	1.12	2E-(04
7.400)E+()6	1.65	5E-(04
7.600)E+()6	2.33	3E-(04
7.800)E+()6	3.20)E-(04
8.000)E+()6	4.24	₩E-(04
8.200)E+()6	5.48	3E-(04
8.400)E+()6	6.88	3E-(04
8.600)E+()6	8.43	3E-(04
8.800)E+()6	1.01	LE-(03
9.000)E+()6	1.18	3E-(03
9.200)E+()6	1.36	5E-(03
9.400)E+()6	1.54	+E-(03
9.600)E+()6	1.71	LE-(03
9.800)E+()6	1.87	7E-(03
1.000)E+() 7	2.02	2E-(03
1.020)E+i	7	2.14	+E-(03
1.040	E+()7	2.25	5E-(03
1.060)E+(07	2.34	+E-(03
1.080	E+0	07	2.4]	LE-(03
1.100)E+()7	2.46	5E-(03
1.120)E+()7	2.49)==(03
1.140)E+()7	2.49	9E-(03
1.160	E+0	07	2.48	3E-(03
1.180)E+()7	2.40	5E-1	03
1.200	$\mathbf{DE+0}$	07	2.42	25-0	03
1.220)E+()/	2.3	/ <u>15</u> -0	23
1.240)E+(2.30)ビー() ビー(
1.260)E+(2.2	5E-(23
1.280)E+()/	2.10)ビー!) ア	22
1.300)E+(57	2.08	5 <u>5</u> -1	2
1.400)E+(07	1.6)트_(- 프	
1.500)E+()/	1.2	-120	20

-

Tab. B16: Konzentrationsverlauf von U 23- in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
5.000E+06	2.00E-10
6.000E+06	1.54E-08
7.000E+06	2.59E-07
7.200E+06	3.958-07
7.400E+06	5.81E-07
7.600E+06	8.22E-07
7.800E+06	1.135-00
8.000E+06	1.508-06
8.200E+06	1.93E-06
8.400E+06	2.43E-06
8.600E+06	2.985-06
8.800E+06	3.5/5-06
9.000E+06	4.18E-06
9.200E+06	4.81E-06
9.400E+06	5.43E-06
9.600E+06	6.03E-06
9.800E+06	0.00E-00
1.000E+07	7.11E-06
1.020E+07	7.5/E-06
1.040E+07	7.955-06
1.060E+07	8.2/E-00
1.080E+07	8.51E-00
1.1006+07	8.08L-UD
1.120E+07	8.77E-06
1.140E+07	8.79E-00
1.160E+07	8.768-06
1.180E+07	8.6/E-06
1.200E+07	8.535-06
1.220E+07	8.355-06
1.240E+07	8.13E-00
1.260E+07	7.89E-06
1.280E+07	7.62E-06
1.300E+07	7.33E-06
1.400E+07	5.81E-06
1.500E+07	4.42E-06

Tab. B17: Konzentrationsverlauf von Th 230 in Bq/dm^3

Zeit in a	Konz. in Bq/dm ³
4.000E+06	1.98E-10
5.000E+06	3.70E-08
6.000E+06	2.85E-06
7.000E+06	4.79E-05
7.200E+06	7.29E-05
7.400E+06	1.07E-04
7.600E+06	1.52E-04
7.800E+06	2.08E-04
8.000E+06	2.76E-04
8.200E+06	3.57E-04
8.400E+06	4.48E-04
8.600E+06	5.50E-04
8.800E+06	6.59E-04
9.000E+06	7.73E-04
9.200E+06	8.88E-04
9.400E+06	1.00E-03
9.600E+06	1.11E-03
9.800E+06	1.22E-03
1.000E+07	1.31E-03
1.020E+07	1.40E-03
1.040E+07	1.47E-03
1.060E+07	1.53E-03
1.080E+07	1.57E-03
1.100E+07	1.60E-03
1.120E+07	1.62E-03
1.140E+07	1.62E-03
1.160E+07	1.62E-03
1.180E+07	1.60E-03
1.200E+07	1.58E-03
1.220E+07	1.54E-03
1.240E+07	1.50E-03
1.260E+07	1.46E-03
1.280E+07	1.41E-03
1.300E+07	1.35E-03
1.400E+07	1.07E-03
1.500E+07	8.16E-04

Tab. B18: Konzentrationsverlauf von Ra 226 in Bq/dm³

Zeit in a	Konz. in Bq/dm ³
4,400E+06	1.96E-10
5.000E+06	3.75E-09
6.000E+06	2.89E-07
7.000E+06	4.86E-06
7.200E+06	7.40E-06
7.400E+06	1.09E-05
7.600E+06	1.54E-05
7.800E+06	2.12E-05
8.000E+06	2.81E-05
8.200E+06	3.62E-05
8.400E+06	4.55E-05
8.600E+06	5.58E-05
8.800E+06	6.68E-05
9.000E+06	7.84E-05
9.200E+06	9.02E-05
9.400E+06	1.02E-04
9.600E+06	1.13E-04
9.800E+06	1.24E-04
1.000E+07	1.33E-04
1.020E+07	1.42E-04
1.040E+07	1.49E-04
1.060E+07	1.55E-04
1.080E+07	1.60E-04
1.100E+07	1.63E-04
1.120E+07	1.64E-04
1.140E+07	1.65E-04
1.160E+07	1.64E-04
1.180E+07	1.63E-04
1.200E+07	1.005-04
1.220E+07	1.3/5-04
1.240E+07	1 /05 0/
1.2000+07	1 432-04
1.2806+07	1 378-04
1.3006+07	1 008-04
1 5005+07	2.09E=04
1.2006407	0.202-03

Tab. B19: Konzentrationsverlauf von Pb 210 in Bq/dm³

Kon. in Bq/dm ³
1.6E-14
1.4E-12
2.9E-10
1.1E-08
2.2E-06
4.8E-05
3.4E-04
6.2E-04
7.7E-04
8.6E-04
8.4E-04
7 08-04
5.48-04
2.96-04
8.46-05
1.1E-05
6.6E-07
2.3E-07
1.9E-07
1.8E-07
1.7E-07

Tab. B22: Konzentrationsverteilung von Th 232 nach 4.10⁸ Jahren in Bq/dm³

Ort in m	Kon. in Bq/dm ³
150	9.0E-17
1650	2.2E-15
3450	3.9E-14
4650	2.1E-13
6450	1.9E-12
7650	7.1E-12
9450	3.9E-11
10650	1.1E-10
12450	3.7E-10
13650	7.3E-10
15450	1.6E-09
16650	2.4E-09
18450	3.4E-09
20550	3.73E-9
21450	3.4E-09
22650	2.7E-09
24450	1.6E-09
25650	9.7E-10
27450	3.7E-10
28650	1.7E-10
30450	4.6E-11
31650	4.9E-12
33150	3.6E-15

Tab. B23: Konzentrationsverteilung von Np 237 nach 5.107 Jahren in Bq/dm³