

Physikalisch-Technische Bundesanstalt

DECKBLATT

	Brojeta	DSR Element		Aufenha	1		
						Lfd. Nr.	Rev.
EU 072.1	9K :	33234		EE	RB	0001	00
Titel der Unterlage	L					he ·	
Berechnungen	zur t	hermischen E	inwirkung	von	001	I.	
schwachwärmeentwickelnde	en rad	ioaktiven Abi	fällen av	if das		nd ·	
Wirtsgestein in der Sch	acntan	Lage Konrad			Jai		1000
					- Fei	oruar	1900
בראנוופר: בריתים					lex	tnummer:	
F 1D							
Stempelfeld:					_		
							ļ
PSP-Element TP9.K/2129		zu Plan-Ka	pitel: 3.6				
			86		1 24		
			00	04.1	1.00	1	
						1	
						L · ·	
	·		en			III PTOjekt	
Diese Unterlage unterliegt samt inhalt dem bei Beförderung und Versichtung und dar	Schutz de	s Urheberrechts sowie	e der Pflicht zur	vertrauliche	n Beha	ndlung auc	:h lich
gemacht werden. Eine andere Verwendung	und Weite	ergabe bedarf der auso	Irücklichen Zus	timmung de	r PTB.		

V 89 / 788 / 1

EU 072.1 Titel der Unterlage Bi schwachwärme Wirtsgestei:		Projekt							
EU 072.1 Titel der Unterlage Br schwachwärm Wirtsgestein			1	PSP-Element	Obj. Kenn.	Aufgabe	UA	Lfd. Nr.	Rev.
EU 072.1 Titel der Unterlage Schwachwärm Wirtsgestei:		NAAN	NNN	I N N N N N N N	N N N N N N	X A A X X	A A	NNNN	NN
Titel der Unterlage _B schwachwärm Wirtsgestei:		9K	33	234		EE	RB	0001	00
schwachwarm Wirtsgestei:	erechnunge	n zur tl	nerm	ischen Ei	nwirkung	von	Seite	:	
5	eentwickel n in der So	nden rac chachtar	lioa. 11ag	ktiven Ab e Konrad	fällen av	uf das	II.	•	
			<u> </u>				Stand	1:	
							Feb	ruar '	1986
Revisionest	verant Gegenze	oichn rev	Kat					/1 441	
Rev. Datum	Stelle Nam	e Seite	*)		Erläuterun	ig der Revis	ion		

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT

Abteilung Sicherstellung und Endlagerung radioaktiver Abfälle

Bericht SE-10

Berechnungen zur thermischen Einwirkung von schwachwärmeentwickelnden radioaktiven Abfällen auf das Wirtsgestein in der Schachtanlage Konrad

von

Braunschweig, Februar 1986

ISSN 0721-0892

Inhaltsverzeichnis

Zu	sammenfassung	4
1.	Einleitung	6
2.	Das mathematische Modell	7
	2.1. Verwendung des Differenzenverfahrens von CRANK/NICOLSON	7
	2.1.1. Das Wärmeleitungsproblem	7
	2.1.2. Diskretisierung der Wärmeleitungsgleichung	8
	2.1.3. Rand- und Übergangsbedingungen	12
	2.1.4. Das Gesamtproblem	14
	2.2. Verwendung der analytischen Lösungsmethode	16
	2.2.1. Das Temperaturfeld einer Linienquelle	16
	2.2.2. Die quasistationäre Näherung im Nahbereich einer Bohrung	17
3.	Berechnung der Grenzwärmeleistungen	19
	3.1. Durchführung der Berechnungen	19
	3.1.1. Modellparameter und thermische Material- eigenschaften	19
	3.1.2. Definition der Grenzwärmeleistungen	2 2
	3.2. Der einstufige Zerfall	24
	3.2.1. Berechnung der Grenzwärmeleistungen	24
	3.2.2. Abschneidekriterium für langlebige Radionuklide	28

Thermische Einwirkungen auf das Wirtsgestein S	Seite 3
3.2.3. Näherungsfunktion für Radionuklide mit mittleren Halbwertszeiten	28
3.2.4. Abschneidekriterien für kurzlebige Radionuklide	31
3.3. Radionuklide mit mehrstufigem Zerfall	31
3.3.1. Die theoretische Wärmeleistungsfunktion	31
3.3.2. Der Zerfall von Ra 228 als Beispiel	38
3.3.3. Abschneidekriterien für die Aktiniden	38
3.4. Beispiele von Grenzwärmeleistungen	39
4. Kriterien zur Überprüfung der Anforderungen	40
4.1. Das vollständige Summenkriterium	40
4.1.1. Generell zulässige Wärmeleistungen und Aktivitäten	41
4.1.2. Ableitung des vollständigen Summenkriteriums	42
4.2. Das Summenkriterium mit Leitnukliden	43
4.2.1. Auswahl der Leitnuklide	43
4.2.2. Restaktivitäten	46
4.2.3. Der 1 %- Meldewert	47
4.2.4. Weitere Spezifizierung	48
4.2.5. Berechnung der behälterspezifischen Aktivitäts grenzwerte	;- 48
4.2.6. Berechnung des Summenwertes mit Leitnukliden	50
4.3. Verdünnte Einlagerung	51
4.3.1. Verdünnung im Streckenquerschnitt	51
4.3.2. Axiale Verdünnung	52
4.3.3. Obergrenzen für die Summenwerte bei der axiale Verdünnung	en 54
Literaturverzeichnis	56

Anhang

Zusammenfassung

Es ist vorgesehen, in der Schachtanlage Konrad nur solche Abfallgebinde einzulagern, bei denen die Wärmeabgabe so gering ist, daß die thermischen Einwirkungen auf das Wirtsgestein vernachlässigt werden können. Man stellt deshalb die Forderung, daß die durch die in den Abfällen vorhandenen Radionuklide verursachte Temperaturerhöhung am Streckenstoß 3 K nicht überschreitet. Eine dreidimensionale Behandlung des sich ergebenden Wärmeleitungsproblems ist aus verschiedenen Gründen nicht möglich, so daß die genannte Forderung noch etwas modifiziert wird:

Würde ein vorliegender Abfall homogen in der Strecke eingelagert, so dürfte die durch die Zerfallswärme verursachte Temperaturerhöhung am Kammerstoß nicht mehr als 3 K betragen. Dabei ist ein Zeitraum bis zu 100 000 Jahren¹) zu berücksichtigen.

Für kleine Zeiträume ist die gegenseitige Beeinflussung der verschiedenen Nachbarstrecken zu vernachlässigen. In diesem Fall wird ein implizites Differenzenverfahren, das von einer zylindersymmetrischen Geometrie mit einer räumlichen Dimension ausgeht, verwendet. Für größere Zeiträume ist ein solches Vorgehen nicht mehr zulässig, da dann der Einfluß der Nachbarstrecken spürbar wird. Es wurde hier ein analytisches Lösungverfahren benutzt, bei dem die Lagerstrecken durch Linienquellen ersetzt werden. Zur Berechnung der Temperaturen innerhalb der Lagerstrecken wurde eine quasistationäre Näherung eingesetzt.

Bei der Ableitung geht man davon aus, daß nur ein Radionuklid homogen in der Strecke verteilt vorkommt. Aufgrund der Linearität des Problems kann dann eine Grenzwärmeleistung berechnet werden, bei der die Temperaturgrenze gerade erreicht wird. Bei den Aktiniden mit ihren komplizierten Zerfallsketten wurde die zeitliche Abhängigkeit der Wärmeleistung über eine entsprechende Formel bestimmt.

1) Die Grenze von 100 000 Jahren ergibt sich aus dem hier verwendeten Modell, das gerade für diesen Zeitrahmen noch einsetzbar ist. Radionuklide, bei denen das Temperaturmaximum noch später auftritt, ergeben nach diesem Zeitpunkt nur sehr geringfügige Temperaturerhöhungen. Aus diesen Gründen wird hier nicht auf die für andere Bereiche angesetzte Zeitmarke von 10 000 Jahren zurückgegriffen. Für alle für Konrad vorgesehenen Radionuklide wurden die Grenzwärmeleistungen und Aktivitätsgrenzwerte aufgrund neuer Meßergebnisse zu den thermischen Parametern des Wirtsgesteins ermittelt. Da im allgemeinen kein Einzelnuklid sondern ein ganzes Spektrum vorliegt, muß dafür die Temperaturerhöhung konservativ abgeschätzt werden. Aus dieser Tatsache ergibt sich ein Summenkriterium, mit dessen Hilfe die Einhaltung der Anforderungen bezüglich der thermischen Belastung überprüft werden kann. Für ein gegebenes Radionuklidinventar ist ein Summenwert zu berechnen, wobei die genannten Aktivitätsgrenzwerte benötigt werden. Liegt der Summenwert unter 1, so sind die Anforderungen erfüllt.

Die Aktivitätsgrenzwerte können über Gebindefaktoren, die von der Geometrie bei der Einlagerung abhängen, auf Einzelgebinde umgerechnet werden.

Die Überprüfung der Anforderungen erfolgt über ein Summenkriterium - ähnlich wie bei den Anforderungen, die sich aus den Störfallanalysen ergeben. Dabei werden Radionuklide mit sehr geringen Aktivitätsgrenzwerten sowie einige weitere häufig vorkommende als Leitnuklide bezeichnet, die bei den Auswertungen eine Sonderrolle spielen. Die übrigen Aktivitäten müssen nur dann aufgeschlüsselt werden, wenn der Summenwert 1 erreicht oder überschreitet. Dann ist es gegebenenfalls durch weitere Spezifikation möglich, diesen Wert zu reduzieren.

Abfallgebinde mit Summenwertüberschreitungen können unter Umständen zusammen mit Abfallgebinden entsprechend geringer Aktivitäten eingelagert werden (verdünnte Einlagerung). Auch in diesem Fall kommt ein Summenkriterium zum Einsatz.

1. Einleitung

In der Schachtanlage Konrad sollen nur solche radioaktiven Abfälle eingelagert werden, deren thermische Beeinflussung auf das Wirtsgestein vernachlässigt werden kann. Als Bedingung wird eine maximale Temperaturerhöhung von 3 K am Kammerstoβ für ein einfaches Modell bei der Berechnung der Wärmeausbreitung festgeleat.

Es stellt sich das Problem, daß eine dreidimensionale Berechnung des Temperaturfeldes mit Berücksichtigung der verschiedenen Abmessungen der Behälter, der thermisch unterschiedlichen Materialien, der Geometrien bei der Einlagerung, der möglichen Luft-spalte, der zeitlichen Verläufe und nicht zuletzt der stark variierenden Radionuklidinventare in den Abfällen nicht möglich ist. Es müßte eine Unmenge von verschiedenen Modellen berechnet werden, wobei viele Eingangsdaten überhaupt nicht bekannt sind. Aufgrund der nicht sehr hohen Genauigkeit, die hier nur gefordert ist, müssen solche dreidimensionalen Modelle durch einfache praktikable ersetzt werden. Als Ziel ist außerdem anzustreben, zu Anforderungen an das einzelne Abfallgebinde zu gelangen und nicht von einem vorgegebenen Mengengerüst auszugehen.

Im vorliegenden Bericht wird ein Modell vorgestellt, das ohne genaue Kenntnis der Daten zu den eingelagerten Abfällen auskommt. Benötigt werden, und das an wesentlicher Stelle, nur die Wärme-leistungen oder gleichwertig damit die Aktivitäten und deren zeitlichen Verläufe, d. h. die Radionuklidinventare der Abfallgebinde.

2. Das mathematische Modell

2.1. Verwendung des CRANK-NICOLSON-Verfahrens

Bei der Berechnung der Wärmeausbreitung in der Schachtanlage Konrad verwenden wir neben der analytischen Lösungsmethode folgendes Modell. Die Lagerstrecke wird ersetzt durch einen unendlich langen Kreiszylinder. Innerhalb und außerhalb dieses Zylinders werden jeweils homogene und isotrope thermische Material-eigenschaften und homogene Wärmeleistungsdichten vorausgesetzt. Es liegt dann ein Wärmeleitungsproblem mit Translationssymmetrie in Richtung der Strecke und Rotationssymmetrie um deren Achse vor. Die endliche Ausdehnung des Endlagers bleibt unberücksichtigt (im Gegensatz zur später zu behandelnden analytischen Lösungsmethode), ebenso die gegenseitige thermische Beeinflussung der Nachbarstrecken. Wegen dieser Voraussetzungen ist dieses Modell nur für solche Radionuklide mit relativ kurzen Halbwertszeiten geeignet, bei denen das Temperaturmaximum am Kammerstoß innerhalb weniger Jahre auftritt. Außerdem wird eine momentane Befüllung einer Strecke vorausgesetzt, d.h. die Wärmeabgabe setzt in der Strecke schlagartig ein.

2.1.1. Das Wärmeleitungsproblem

Mit $\mathfrak{P}(\mathbf{r},t)$ bezeichnen wir die Temperaturerhöhung zur Zeit t nach Einlagerungsbeginn im Abstand r von der Zylinderachse; R sei der Zylinderradius, λ_1 bzw. λ_2 sei die Wärmeleitfähigkeit in der Strecke bzw. im Gestein, $(gc_p)_1$ und $(\varrho c_p)_2$ seien die entsprechenden volumenbezogenen Wärmekapazitäten. Im Bereich 0 < r < R muß gelten:

$$(g_{C_P})_1 \frac{\partial \mathcal{Y}}{\partial t} = \mathcal{A}_1 \left(\frac{\partial^2 \mathcal{Y}}{\partial r^2} + \frac{1}{r} \frac{\partial \mathcal{Y}}{\partial r} \right) + W(t); \qquad (2.1)$$

sowie:

$$(g_{C_P})_2 \frac{\partial \mathcal{Y}}{\partial t} = \lambda_2 \left(\frac{\partial^2 \mathcal{Y}}{\partial r^2} + \frac{1}{r} \frac{\partial \mathcal{Y}}{\partial r} \right)$$
 (2.2)

für R < r, (W(t) ist die Wärmeleistungsdichte im Streckenquerschnitt). Zu der Wärmeleitungsgleichung kommen die Anfangsbedingung:

$$\lambda(\mathbf{r},0) = 0, \mathbf{r} > 0,$$
 (2.3)

die Randbedingungen:

-

.

$$\lim_{r \to 0} \frac{\partial \vartheta}{\partial r} (r, t) = 0, t > 0, \qquad (2.4)$$

$$\lim_{r \to \infty} \sqrt{(r,t)} = 0, t > 0,$$
(2.5)

und die Übergangsbedingungen am Zylinderrand r = R:

$$\lim_{r \to R} \mathcal{P}(\mathbf{r}, t) = \lim_{r \to R} \mathcal{P}(\mathbf{r}, t), t > 0, \qquad (2.6)$$

r-R r-R r-R
rR

$$\lim_{r \to R} \lambda_1 \frac{\partial \mathcal{Y}}{\partial r} (r, t) = \lim_{r \to R} \lambda_2 \frac{\partial \mathcal{Y}}{\partial r} (r, t), t > 0, \qquad (2.7)$$

$$r < R \qquad r > R$$

wobei sich die letzteren aus der Stetigkeit der Temperatur und des Wärmestroms ergeben.

Durch die Gleichungen (2.1) bis (2.7) ist ein Anfangsrandwertproblem gegeben, dessen analytische Lösung bekannt ist /1/. Allerdings ist die Auswertung dieser Lösung komplizierter als die Verwendung eines Differenzenverfahrens zur numerischen Lösung des Wärmeleitungsproblems. Aus diesem Grund wird in diesem Bericht das Differenzenverfahren von CRANK/NICOLSON verwendet.

2.1.2. Diskretisierung der Wärmeleitungsgleichung

Die räumliche Koordinate r wird diskretisiert:

 $r_1 < r_2 < r_3 < \ldots < r_k$

mit: $r_1 < 0$, $r_2 = 0$, $r_3 = -r_1$, $r_k < R < r_{k+1}$,

$$R = \frac{r_k + r_{k+1}}{2} . \qquad (2.8)$$

Es wird eine nichtäquidistante Einteilung zugelassen. Die zeitliche Diskretisierung:

$$t_n = n \Delta t, n = 0, 1, 2, ...$$

erfolgt gleichmäßig mit der Zeitschrittweite t > 0. Weiter gelte:

$$\vartheta_{m,n} = \vartheta(r_m, t_n), m = 1, 2, ..., 1; n = 0, 1, 2, ...$$

und:

$$w_n = \frac{W(t_n)}{(Q C_P)_1}.$$

Die 1. Ableitung ϑ_r wird ersetzt durch:

$$\frac{\vartheta_{m+1,n} - \vartheta_{m-1,n}}{r_{m+1} - r_{m-1}},$$

 $\mathcal{Y}_{\rm rr}$ durch:

$$\frac{2}{r_{m+1}-r_{m-1}} \left(\begin{array}{c} \frac{\vartheta_{m+1,n}-\vartheta_{m,n}}{r_{m+1}-r_{m}} - \frac{\vartheta_{m,n}-\vartheta_{m-1,n}}{r_{m}-r_{m-1}} \end{array} \right).$$

(2.9)

Man erhält die Differenzengleichung:

$$\frac{\Im_{m,n+1} - \Im_{m,n}}{t_{n+1} - t_{n}} = \frac{2}{t_{n+1} - t_{n}} = \frac{2}{t_{n+1} - t_{n}} = \frac{2}{t_{n+1} - t_{n-1}} = \frac{\Im_{m+1,n+1} - \Im_{m-1,n+1}}{t_{m+1} - t_{m-1}} = \frac{\Im_{m,n+1} - \Im_{m-1,n+1}}{t_{m} - t_{m-1}} + \frac{2}{t_{m-1} - t_{m-1}} + \frac{2}{t_{m-1}$$

für m = 2, 3, ..., k-1, k+2, k+3, ..., 1-1; n = 0, 1, 2, ...; i = 1, 2.Dabei gelte $w_n = 0$ für i = 2,

$$a_{i} = \frac{\chi_{i}}{(gc_{P})_{i}}, \quad i = 1,2$$
 (2.10)

und $0 \le \alpha \le 1$. Der Parameter α beschreibt den Typ des Verfahrens:

 $\alpha = 0 : explizites Verfahren,$ $\alpha = \frac{1}{\frac{1}{2}} : CRANK-NICOLSON-Verfahren,$ $\alpha = 1 : total implizites Verfahren.$

Für $\alpha < 1/2$ kann aus Stabilitätsgründen die Zeitschrittweite Δt nur sehr klein gewählt werden; für $1/2 \le \alpha \le 1$ ist das Verfahren für alle t stabil und damit konvergent.

Die Differenzengleichung (2.9) kann umgeformt werden: (2.11)

$$(1 + 2 f_m A_m) \vartheta_{m,n+1} - f_m B_m \vartheta_{m+1,n+1} - f_m C_m \vartheta_{m-1,n+1} =$$

= $(1 - 2 g_n A_m) \vartheta_{m,n} + g_m B_m \vartheta_{m+1,n} +$
+ $g_m C_m \vartheta_{m-1,n} + t (\alpha w_{n+1} + (1 - \alpha) w_n),$

m = 3,4,...,k-1,k+2,k+3,...,l-1. Dabei wurden die Hilfsgröβen:

$$A_{m} = \frac{1}{(r_{m+1} - r_{m})(r_{m} - r_{m-1})}, \qquad (2.12)$$

$$B_{m} = \frac{r_{m+1} + r_{m}}{(r_{m+1} - r_{m-1}) (r_{m+1} - r_{m}) r_{m}}, \qquad (2.13)$$

$$C_{m} = \frac{r_{m} + r_{m-1}}{(r_{m+1} - r_{m-1}) (r_{m} - r_{m-1}) r_{m}}, \qquad (2.14)$$

für m = 3,4,...,1-1; die nur einmal berechnet werden müssen, und

$$f_m = \alpha a_i \Delta t \qquad (2.15)$$

$$g_m = (1 - \alpha) a_i \Delta t \qquad (2.16)$$

verwendet. Die Rand- und Übergangsbedingungen müssen gesondert behandelt werden. 2.1.3. Rand- und Übergangsbedingungen

a) Randbedingung für r = 0:

Für $r \rightarrow 0$ ist $\vartheta_{rr} + (1/r) \vartheta_r$ durch $2 \vartheta_{rr}$ zu ersetzen, wie man mit Hilfe einer TAYLOR-Entwicklung nachweisen kann. Setzt man:

$$A_2 = \frac{2}{r_3^2}, \qquad (2.17)$$

$$B_2 = \frac{4}{r_3^2}, \qquad (2.18)$$

$$C_2 = 0,$$
 (2.19)

so bleibt (2.11) auch für m = 2 gültig.

b) Übergangsbedingung an der Grenzschicht r = R:

Der Temperaturgradient ist an der Grenzfläche zweier Materialien mit unterschiedlichen Wärmeleitfähigkeiten unstetig. Man rechnet weiter mit (2.11), setzt aber anstelle von $\mathcal{A}_{k,n}$ und $\mathcal{A}_{k+1,n}$ folgende Hilfstemperaturen ein:

$$\mathbf{v}_{\mathbf{k},\mathbf{n}} = \frac{(\boldsymbol{\lambda}_{2} - \boldsymbol{\lambda}_{1}) \boldsymbol{\lambda}_{\mathbf{k}+1,\mathbf{n}} + 2 \boldsymbol{\lambda}_{1} \boldsymbol{\lambda}_{\mathbf{k},\mathbf{n}}}{\boldsymbol{\lambda}_{1} + \boldsymbol{\lambda}_{2}} \qquad (2.20)$$

(für m = k+1 auβerhalb des Zylinders) und:

$$\mathbf{v}_{k+1,n} = \frac{(\lambda_1 - \lambda_2) \mathcal{A}_{k,n} + 2 \mathcal{A}_2 \mathcal{A}_{k+1,n}}{\lambda_1 + \lambda_2}$$
(2.21)

(für m = k innerhalb des Zylinders).

Wir führen weitere Hilfsgrößen ein: (2.22)

 $A_m^* = A_m$ für m = 2, 3, ..., k-1, k+2, k+3, ..., l-1;

$$A_k \star = A_k - \frac{1}{2} B_k \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2};$$

$$A_{k+1}^{*} = A_{k+1} - \frac{1}{2} C_{k+1} \frac{\lambda_2 - \lambda_1}{\lambda_1 + \lambda_2};$$

$$B_m^* = B_m$$
 für $m = 2, 3, ..., k-1, k+1, k+2, ..., l-1;$

$$B_{k}^{\star} = B_{k} \frac{2 \lambda_{2}}{\lambda_{1} + \lambda_{2}}$$

und:

$$C_m^* = C_m$$
 für $m = 2, 3, ..., k, k+2, k+3, ..., 1-1;$

$$C_{k+1}^{\star} = C_{k+1} \frac{2 \lambda_1}{\lambda_1 + \lambda_2} .$$

Die Formel (2.11) bleibt nun auch für m = k und m = k+1 gültig – wenn die neuen Hilfsgrößen eingesetzt werden:

$$(1 + 2 f_{m} A_{m}^{*}) \vartheta_{m,n+1} - f_{m} B_{m}^{*} \vartheta_{m+1,n+1} - - - f_{m} C_{m}^{*} \vartheta_{m-1,n+1} =$$

$$= (1 - 2 g_{m} A_{m}^{*}) \vartheta_{m,n} + g_{m} B_{m}^{*} \vartheta_{m+1,n} +$$

$$+ g_{m} C_{m}^{*} \vartheta_{m-1,n} + + + (1 - \alpha) w_{n})$$

$$(2.25)$$

für $m = 2, 3, 4, \ldots, 1-1$.

c) Randbedingung für r $\rightarrow \infty$:

Die Randbedingung (2.5) ersetzen wir durch:

$$\lambda_{1,n} = 0,$$
 (2.26)

(der Radius rı ist hinreichend groß zu wählen; nämlich so groß, daß für die betrachteten Zeiträume im Abstand rı mit keiner spürbaren Aufheizung zu rechnen ist).

2.1.4. Das Gesamtproblem

Im expliziten Fall ($\alpha = 0$) gilt $f_m = 0$ und Formel (2.25) ist bereits nach den gesuchten Temperaturen $\mathfrak{D}_{m,n+1}$ im (n+1)-ten Zeitschritt aufgelöst. Für $\alpha > 0$ ist durch (2.25) ein lineares Gleichungssystem mit tridiagonaler Koeffizientenmatrix für die gesuchten Temperaturen:

$$\mathcal{P}_{2,n+1}, \mathcal{P}_{3,n+1}, \ldots, \mathcal{P}_{1-1,n+1}.$$

Dieses Gleichungssystem kann mit einem einfachen GAUSS-Algorithmus ohne Pivotisierung gelöst werden.

Es wurde ein FORTRAN-Programm KONRAD4D entwickelt, das ohne Probleme auf einem Personalcomputer läuft, und die Temperaturen nach der beschriebenen Methode berechnet.

Für die Wärmeleistungsfunktionen können folgende beiden Typen berücksichtigt werden:

Typ I:

 $W(t) = b_1 \exp(-c_1 t) + \ldots + b_P \exp(-c_P t)$ (2.27)

und Typ II:

 $W(t) = \exp(d_0 + d_1 \log(t) + d_2 (\log(t))^2 + \dots$

$$+ d_q (log(t))^q$$
. (2.28)

2.2. Verwendung der analytischen Lösungsmethode

2.2.1. Das Temperaturfeld einer Linienquelle

Bei Berechnungen über größere Zeiträume bis zu 100 000 Jahren ist das in 2.1. beschriebene Differenzenverfahren nicht mehr anwendbar. Dann werden die endliche Länge der Strecken und ihre gegenseitige Beeinflussung wesentlich.

Für Radionuklide mit entsprechend langen Halbwertszeiten, bei denen das Temperaturmaximum am Streckenstoß sehr spät auftritt wird die analytische Lösungsmethode verwendet.

Das Temperaturfeld einer Linienquelle ist durch: (2.29)

-

$$\vartheta(r,z,t) = \frac{1}{2 \pi (gc_p)_2} \int_0^L \frac{\omega(t_0)}{K} \exp(-\frac{r^2}{K}) *$$

* (erf(
$$\frac{h-z}{\sqrt{K}}$$
) + erf($\frac{h+z}{\sqrt{K}}$)) dt₀

gegeben, /2/. Dabei sind:

$$K = \frac{4\lambda_2}{(\mathbf{q}c_p)_2} \quad (t - t_0), \qquad (2.30)$$

z die Koordinate in Richtung der Streckenachse (z = 0entspricht der Mitte der Strecke), 2 h die Länge der Linienquelle und:

$$\boldsymbol{\omega}(t) = \boldsymbol{W}(t) \boldsymbol{\pi} \boldsymbol{R}^2 \tag{2.31}$$

die Wärmeleistung je Längeneinheit der Strecke.

Liegt ein System paralleler Strecken vor, so kann die Temperatur einfach durch Superposition der Lösung (2.21) berechnet werden.

Man wird dann zu einem kartesischen Koordinatensystem (x,y,z) übergehen.

Mit dem BASIC-Programm KONRADL2 kann eine solche Temperaturfeldberechnung durchgeführt werden.

2.2.2. Die quasistationäre Näherung im Nahbereich einer Bohrung

Im Nahbereich der Strecke und in ihrem Inneren verwenden wir die quasistationäre Näherung, vergl. /5/. Man geht dabei von stationären Verhältnissen in der Nähe der Strecke aus.

Für einen Anschlußpunkt $R_A > R$ wird die Temperatur \mathcal{A}_A mit Hilfe der analytischen Lösung (2.29) berechnet. Näherungsweise gilt dann:

$$\vartheta(\mathbf{r},\mathbf{t}) = \begin{cases} -\frac{W(\mathbf{t}) \mathbf{r}^2}{4 \lambda_1} + c_2 \quad \text{für } \mathbf{r} \leq \mathbf{R}, \\ c_0 \log \frac{\mathbf{r}}{\mathbf{R}} + c_1 \quad \text{für } \mathbf{r} \geq \mathbf{R}. \end{cases}$$
(2.32)

Dabei ist:

$$c_0 = -\frac{W(t) R^2}{2\lambda_2}, \qquad (2.33)$$

$$c_1 = \vartheta_A - c_0 \log \frac{R_A}{R}, \qquad (2.34)$$

und:

$$C_2 = C_1 + \frac{W(t) R^2}{4 \lambda_1}$$
, (2.35)

wobei die Stetigkeit der Temperatur und des Wärmestroms berücksichtigt wurden. Es gilt: $\mathcal{Q}(\mathbf{R},\mathbf{t}) = \mathbf{c}_1;$

daraus folgt für die Temperatur innerhalb der Strecke:

$$\vartheta(\mathbf{r},t) = \vartheta(\mathbf{R},t) + \frac{W(t)}{4\lambda_1} (\mathbf{R}^2 - \mathbf{r}^2)$$

oder:

$$\vartheta(\mathbf{r},t) = \vartheta(\mathbf{R},t) + \frac{\omega(t)}{4\pi\lambda_1} \left(1 - \frac{r^2}{R^2}\right).$$
 (2.36)

Bei schnellen Temperaturwechseln, so zu Beginn der Wärmeaus-breitung nach Einlagerungsbeginn, wird die quasistationäre Näherung ungenau. Das Temperaturmaximum am Streckensto β , an dem wir letztlich nur interessiert sind, tritt aber viel später auf, wenn im Nahbereich der Strecke nahezu stationäre Verhältnisse vorliegen. Dann ist die quasistationäre Näherung sehr genau, wie Rechnungen gezeigt haben.

Abb. 2: Qualitativer Temperaturverlauf bei der quasistationären Näherung

3. Berechnung der Grenzwärme-

leistungen

3.1. Durchführung der Berechnungen

3.1.1. Modellparameter und thermische Materialeigenschaften

Bei der Bestimmung der Grenzwärmeleistungen – die Definition dieses Begriffs folgt später – gehen wir davon aus, daß nur ein einziges Radionuklid eingelagert wird. Die Wärmeleistung, die durch den radioaktiven Zerfall dieses Nuklids hervorgerufen wird, sei homogen über den Streckenquerschnitt verteilt.

Den Streckenquerschnitt von etwa 40 m² stellen wir uns im Modell kreisförmig vor, woraus sich ein Radius von 3.6 m ergibt. Hier wird ein kleinerer Wert verwendet, der etwas über der halben Streckenhöhe liegt, wodurch die Temperaturen am Kammerstoß überschätzt werden. Eine Testrechnung für Co 60 ergab, daß bei dem kleineren Radius von 3.2 m etwa 7 % höhere Maximaltemperaturen auftreten als bei einem Wert von 3.6 m.

Die folgende Tabelle enthält die bei den Rechnungen verwendeten Parameter.

Tabelle 3.1: Modellparameter

Streckenradius:	3.2	m,
Streckenlänge (*):	1000	m,
Streckenabstand (*):	37.25	m,
im Modell (*):	9	

(*) Diese Größen werden nur bei der analytischen Lösungsmethode für langlebige Radionuklide benötigt.

Bei der Anwendung des Differenzenverfahrens werden die thermischen Parameter Wärmeleitfähigkeit und volumenbezogene Wärme-

Seite 20

kapazität für das Wirtsgestein wie auch für das Innere der Strecke benötigt, also charakteristische Werte für die räumliche Mischung von Abfallgebinden, Versatz und Luft. Die Stoffparameter von Eisenerz wurden von der Bundesanstalt für Geowissenschaften und Rohstoffe an verschiedenen Proben aus dem oberen Lager, dem unteren Lager und dem Zwischenmittel gemessen, /4/.

In der Strecke liegen die verschiedensten Materialien vor, wie Versatz, Beton, Zementstein, Stahl und natürlich die Vielfalt der möglichen Abfälle. Es mußte aufgrund der Unüberschaubarkeit der verschiedensten Möglichkeiten darauf verzichtet werden, die thermischen Parameter für die Strecke mit Hilfe von Mittelungsvorschriften genauer zu bestimmen. Es zeigt sich, daß das auch nicht unbedingt nötig ist, da ihr Einfluß auf die Temperaturen im Erz gering ist. Um das zu belegen, wurden für verschiedene Werte der Wärmeleitfähigkeit und Wärmekapazität in der Strecke Vergleichsrechnungen für Co 60 mit einer Zerfallskonstanten c = 0.132 1/a und weiteren Zerfallskonstanten c = 1.0 1/a sowie c = 10.0 1/a durchgeführt - vergl. Tabelle 3.2, 3.3 und 3.4.

Tabelle	3.2:	Einfluß der Wärmeleitfähigkeit und Wärmekapazität
		in der Strecke auf die Temperaturerhöhung am
		Kammerstoβ für Co 60, (Anfangsleistung: 100 W/m)

Maximale Temperaturerhöhung am Kammerstoβ in K für									
volumenb. Wärmekap.			Wá	irmele	itfähio	gkeit :	in W/m	ĸ	
in J/m ³ K	0.3	0.6	1.2	1.51	2.4	5.0	10.0	20.0	100.0
0.5E6 1.0E6 1.5E6 2.0E6	10.26	10.41 10.31	10.51 10.32	10.62 10.52 10.42	- 10.33	10.43	10.52		10.52

Tabelle 3.3: Einfluß der Wärmeleitfähigkeit und Wärmekapazität in der Strecke auf die Temperaturerhöhung am Kammerstoß für c = 1.0 1/a, (Anfangsleistung: 100 W/m)

Maximale Temperaturerhöhung am Kammerstoβ in K für										
volumenb.	enb. Wärmeleitfähigkeit in W/mK									
Warmekap. in J/m ³ K	0.3	0.6	1.2	1.51	2.4	5.0	10.0	20.0	100.0	
0.5E6 1.0E6 1.5E6 2.0E6 2.73E6 4.0E6	4.41	4.68	5.14 4.80	5.39 5.19 5.00 4.82 4.58 4.21	4.85	5.04 4.87	5.21 5.04 4.88	5.21 4.88 4.33	5.22	

Tabelle 3.4: Einfluß der Wärmeleitfähigkeit und Wärmekapazität in der Strecke auf die Temperaturerhöhung am Kammerstoß für c = $10.0 \ 1/a$, (Anfangsleistung: 1000 W/m)

Maximale Temperaturerhöhung am Kammerstoβ in K für									
volumenb.			W	ärmele	itfähi	gkeit	in W/m	K	
Warmekap. in J/m ³ K	0.3	0.6	1.2	1.51	2.4	5.0	10.0	20.0	100.0
0.5E6 1.0E6 1.5E6 2.0E6		12.21	14.35	19.03 16.30 14.27 12.73	14.88	15.40	17.36 15.61		17.48

Man erkennt an den Ergebnissen dieser Vergleichsrechnungen, die einen sehr weiten Bereich umspannen, daß die maximale Temperaturerhöhung am Kammerstoß nahezu unabhängig von der Wärmeleitfähigkeit in der Strecke ist. Ihr Einfluß wird für kurzlebige Radionuklide etwas größer. Aus konservativen Gründen wurde ein sehr hoher Wert für die Wärmeleitfähigkeit von 10 W/mK festgelegt. Die höchsten Maximaltemperaturen treten bei hohen Wärmeleitfähigkeiten und geringen volumenbezogenen Wärmekapazitäten auf. Für die volumenbezogene Wärmekapazität der Strecke wurde deshalb ein Wert von 1.0 106 J/m3K festgelegt. Die volumenbezogenen Wärmekapazi-

täten für die Materialien: Versatz mit der Porosität von 50 %, Stahl, Beton, Zementstein und Polystyrol liegen über diesem Wert.

Für langlebige Radionuklide, bei denen die analytische Lösungsmethode verwendet wird, sind solche Rechnungen unnötig, da die thermischen Parameter in der Strecke nicht in die Berechnung der Temperaturen am Kammerstoß und im Wirtsgestein einfließen. Die maximale Temperaturerhöhung am Kammerstoß ist hier unabhängig von Wärmeleitfähigkeit und Wärmekapazität in der Strecke.

Tabelle 3.5: Verwendete thermische Parameter

Wärmeleitfähigkeit der Strecke	10.0 W/mK,
volumenbez. Wärmekapazität der Strecke	$10^{6} J/m^{3} K$,
Wärmeleitfähigkeit des Wirtsgesteins	1.51 W/mK,
volumenbez. Wärmekapazität des Wirtsgesteins	2.73 $J/m^3 K$.

Um zu vernünftigen Gröβenordnungen für die Temperaturen bei den Vergleichsrechnungen zu gelangen, wurde mit unrealistisch hohen Anfangsleistungen gerechnet.

3.1.2. Definition der Grenzwärmeleistung

Aufgrund der Linearität des Wärmeleitungsproblems ist die gesamte Temperaturerhöhung, die durch ein gegebenes Radionuklidspektrum hervorgerufen wird, gleich der Summe der Temperaturerhöhungen, die durch die Einzelnuklide hervorgerufen werden. Diese Tatsache ermöglicht es, die einzelnen Radionuklide unabhängig voneinander zu untersuchen.

Mit W_N(t) bezeichnen wir die Wärmeleistung eines Radionuklids N je Längeneinheit Lagerstrecke in Abhängigkeit von der Zeit t nach Einlagerungsbeginn. Weiter sei $\mathcal{S}_N(r,t)$ die durch N hervorgerufene Temperaturerhöhung im Abstand r von der Streckenachse. Der Übergang Strecke/Wirtsgestein wird durch r = R beschrieben. Die Wärmeleistung muß so beschaffen sein, daß die Bedingung:

$$\vartheta_{N}(R,t) \leq \vartheta_{Grenz}$$
 (3.1)

für: $0 \le t \le 100000$ a mit: $\mathcal{P}_{grenz} = 3$ K eingehalten wird.

Für jedes Radionuklid N wird eine Grenzwärmeleistung Ww* bestimmt. Das ist die Anfangswärmeleistung je Längeneinheit Lagerstrecke, bei der am Streckenstoß der Einlagerungskammer gerade eine maximale Temperaturerhöhung von 3 K (innerhalb von 100000 Jahren nach Einlagerungsbeginn) erreicht wird.

Bei der Berechnung dieser Grenzwärmeleistung nutzt man die Linearität des vorliegenden Problems aus. Man geht man von einer beliebigen Anfangswärmeleistung (je Längeneinheit Lagerstrecke) Wo aus - wir haben im allgemeinen 100 W/m bzw. 1 W/m gewählt -, die eine maximale Temperaturerhöhung am Streckenstoß von:

$$\mathcal{N}_{N^{max}} = \max_{\substack{0 \le t \le 100000 \ a}} \mathcal{N}(R,t)$$
(3.2)

ergibt. Mit Hilfe von:

$$W_{N}^{*} = \frac{\mathcal{N}^{\text{Grenz}}}{\mathcal{N}_{N}^{\text{max}}} \quad W_{0} \tag{3.3}$$

kann dann die Grenzwärmeleistung für das Radionuklid N bestimmt werden.

Für kurze Halbwertszeiten (unter 14 a) wurde das Programm KONRAD4D eingesetzt, das das beschriebene Differenzenverfahren verwendet, für lange Halbwertszeiten das Programm KONRADL2, das auf der analytischen Lösungsmethode beruht.

Bei der analytischen Lösungsmethode gehen die Streckenlänge, der Streckenabstand und die Anzahl der benachbarten Strecken in die Berechnung ein, vergl. Tabelle 3.1. Es ist klar, das dadurch nur ein modellhaftes Endlager beschrieben wird, das nicht die genaue Geometrie des geplanten Endlagers mit den verschiedenen Einlagerungsfeldern und unterschiedlichen Streckenanordnungen nachvollzieht. Aber auch hier ist eine genauere Modellierung beim nicht möglich und nicht erforderlich. Die maximalen Temperaturen wurden für die Mitte der mittleren Strecke berechnet. Die gegenseitige Beeinflussung der verschiedenen Einlagerungsfelder wird vernachlässigt, ebenso die Abkühlung an der Erdoberfläche. Beides sind Effekte, die erst für sehr große Zeiträume eine Bedeutung bekommen.

3.2 Der einstufige Zerfall

3.2.1. Berechnung der Grenzwärmeleistungen

Im einfachsten Fall zerfällt das Radionuklid N in eine stabile Tochtersubstanz. Halbwertszeit $T^{N}_{1/2}$ und Zerfallskonstante c_{N} stehen in folgendem Zusammenhang:

$$C_N = \log(2) / T_{1/2}.$$
 (3.4)

Die zeitliche Abhängigkeit der Wärmeleistung wird durch eine Exponentialfunktion beschrieben:

$$W_{N}(t) = W_{N}(0) \exp(-c_{N} t),$$
 (3.5)

die der Aktivität durch:

 $A_N(t) = A_N(0) \exp(-c_N t).$ (3.6)

Wird je Zerfall die Energie QN frei, so gilt:

 $W_N(t) = A_N(t) Q_N.$ (3.7)

Für gewisse Werte der Zerfallskonstanten im Bereich:

1.0 E-11 1/a bis 100.0 1/a

bzw. für Halbwertszeiten:

2.5 Tage bis zu 0.69 E 11 Jahre

wurden Wärmeausbreitungsrechnungen durchgeführt und die Grenzwärmeleistungen bestimmt. Im Bereich:

1.0 E-11 1/a bis 1.0 E-1 1/a

für die Zerfallskonstante wurde die analytische Lösungsmethode

verwendet, im Bereich:

1.0 E-1 1/a bis 50.0 1/a

das Differenzenverfahren. Die Resultate beider Verfahren im Überlappungsbereich stimmen sehr gut überein - vergl. Tab. 3.6. Für relativ langlebige Nuklide kommt die gegenseitige Beeinflussung der Nachbarstrecken zum Tragen, bei kurzlebigen ist die quasistationäre Näherung nicht mehr genau genug. Als Grenze zwischen den Verwendungsbereichen beider Verfahren wurde schließlich eine Zerfallskonstante von 8.0 E-2 1/a bzw. eine Halbwertszeit von 8.7 a festgelegt. Die Grenzwärmeleistungen enthält Tabelle 3.7.

Tabelle 3.6: Vergleich der mit dem Differenzenverfahren und der analytischen Lösungsmethode berechneten Temperaturmaxima am Kammerstoβ (Anfangswärmeleistung 100 W/m)

Zerfallskonstante	Temperaturmaximum a	m Kammerstoβ in K
in 1/a	Differenzenverf.	analyt. Lösung
1.0 E- 2	19.75	25.9
2.0 E- 2	17.07	19.4
5.0 E- 2	13.74	13.9
1.0 E- 1	11.40	11.2
1.32E- 1	10.52	10.2
2.0 E- 1	9.27	8.88
2.66E- 1	8.46	8.01
5.0 E- 1	6.80	6.21

Seite 25

Tabelle 3.7: Maximale Temperaturerhöhungen und Grenzwärmeleistungen beim einstufigen Zerfall (Temperaturmaxima bei einer Anfangsleistung von 100 W/m)

Zerfalls- konstante	Bemerkung	max. Temp- erhöhung in K	Grenzwärme- leistung in W/m
111 1/4			
1.0 $E-11$ 1.0 $E-10$ 1.0 $E-9$ 1.0 $E-6$ 2.0 $E-6$ 5.0 $E-6$ 1.0 $E-5$ 2.0 $E-5$ 5.0 $E-5$ 1.0 $E-4$ 2.0 $E-4$ 2.0 $E-4$ 1.0 $E-3$ 2.0 $E-3$ 5.0 $E-3$ 1.0 $E-3$ 2.0 $E-3$ 5.0 $E-2$ 3.0 $E-2$ 3.0 $E-2$ 5.0 $E-2$	Max.bei 8E6 a Max.bei 7E6 a Max.bei 5E6 a	270.3 270.1 268.8 233.0 223.9 208.9 195.0 179.1 154.9 134.8 113.8 86.8 68.3 52.1 35.1 25.9 19.4 16.6 13.9	$\begin{array}{c} 1.11 (*) \\ 1.11 (*) \\ 1.12 (*) \\ 1.29 \\ 1.34 \\ 1.44 \\ 1.54 \\ 1.68 \\ 1.94 \\ 2.23 \\ 2.64 \\ 3.46 \\ 4.39 \\ 5.76 \\ 8.55 \\ 11.6 \\ 15.4 \\ 18:1 \\ 21.6 \end{array}$
0.132 0.2 0.266 0.5	Co 60 Fe 55	10.52 9.27 8.46 6.80	28.5 32.4 35.5 44.1
2.0 5.0 1.0 E 1 2.0 E 1 5.0 E 1 1.0 E 2		3.88 2.51 1.74 1.16 0.636 0.384	77.3 120 172 259 472 781 (+)

Anmerkungen:

- (*) Das Temperaturmaximum am Streckenstoß tritt erst nach mehr als 100 000 a auf. Deshalb werden die zugehörigen Grenzwärmeleistungen auf 1.29 W/m gesetzt.
- (+) Die Grenzwärmeleistung wird auf 472 W/m gesetzt.

3.2.2. Abschneidekriterium für langlebige Radionuklide

Die Zerfallskonstanten und die Halbwertszeiten der in Konrad vorkommenden Radionuklide streuen über einen Bereich von vielen Größenordnungen und dementsprechend ergeben sich die Temperaturmaxima am Kammerstoβ innerhalb weniger Wochen für die kurzlebigen Radionuklide oder erst nach vielen Millionen Jahren für einige sehr langlebige Radionuklide. Die Verwendung der analytischen Lösungsmethode bei der Berechnung der Temperaturmaxima setzt eine unendliche Ausdehnung des Wirtsgesteins voraus. Für extrem große Zeiträume ist dieses Modell deshalb sehr konservativ, denn es vernachlässigt die Abkühlung an der Erdoberfläche. Es ist hier im Rahmen der geforderten Genauigkeit nicht sinnvoll, eine detailliertere Modellierung vorzunehmen, sondern viel besser ein Abschneidekriterium festzulegen, mit dessen Hilfe die Grenzwärmeleistungen der extrem langlebigen Radionuklide bestimmt werden können.

Bei Radionukliden mit Zerfallskonstanten unter 5.0 E-6 1/a bzw. mit Halbwertszeiten über 1.4 E6 Jahren wird das Temperaturmaximum am Kammerstoß nicht vor 100 000 Jahren erreicht. Bei konstanter Wärmeleistung in den Einlagerungskammern steigt die Temperatur im Lauf der Zeit immer weiter an. Beträgt diese Leistung gerade 1.19 W/m, so erreicht die Temperaturerhöhung am Kammerstoß nach 100 000 Jahren 3 K. Eine konstante Wärmeleistung von 1.13 W/m bzw. von 1.11 W/m ergibt diesen Temperaturwert von 3 K nach 1 000 000 bzw. 10 000 000 Jahren.

Aus all diesen Gründen scheint es vernünftig zu sein, für die extrem langlebigen Radionuklide mit Zerfallskonstanten unter 1.0 E-6 1/a bzw. mit Halbwertszeiten über 0.69 E 6 Jahren einen Wert von 1.29 W/m festzulegen. Das ist gerade die Grenzwärmeleistung für eine Zerfallskonstante von 1.0 E-6 1/a. Eine Erweiterung des betrachteten Zeitraums würde diesen Wert nur unwesentlich verändern – ganz abgesehen davon, daß das Modell die Temperaturen in solchen Zeiträumen stark überschätzt.

3.2.3. Näherungsfunktion für Radionuklide mit mittleren Halbwertszeiten

Für Radionuklide mit Zerfallskonstanten über 10 E-6 1/a und unter 50 1/a d.h. mit Halbwertszeiten unter 0.69 E6 a und über 5.1 d wird durch die Werte in Tabelle 3.7 eine Näherungsfunktion gelegt, um nicht für jedes Radionuklid eine eigene Wärmeausbrei-

tungsrechnung durchführen zu müssen. Um dabei die Genauigkeit zu erhöhen, wurde der gesamte Bereich der Zerfallskonstanten in zwei Teile zerlegt, in jedem der beiden Teile wurde mit Hilfe der Methode der kleinsten Quadrate eine Näherungsfunktion berechnet.

Tabelle 3.8: Programmausdruck von KLEINQUL für den Bereich: $1.0 = 6 \frac{1}{a} \le c_N \le 8.0 = 3 \frac{1}{a}$

BERECHNUNG EINER NÄHERUNGSFUNKTION MIT HILFE DER METHODE DER KLEINSTEN QUADRATE

BASICA-PROGRAMM: K L E I N Q U L vom 18.7.1985

x	Y exakt. Wert	Y Näherungswert	Abweichung
0.1000D-05 0.2000D-05 0.5000D-05 0.1000D-04 0.2000D-04 0.5000D-04 0.1000D-03 0.2000D-03 0.2000D-03 0.5000D-03 0.1000D-02 0.2000D-02	0.1290D+01 0.1340D+01 0.1440D+01 0.1540D+01 0.1680D+01 0.1940D+01 0.2230D+01 0.2640D+01 0.3460D+01 0.4390D+01 0.5760D+01	0.1295D+01 0.1339D+01 0.1432D+01 0.1535D+01 0.1678D+01 0.1949D+01 0.2244D+01 0.2651D+01 0.3453D+01 0.4369D+01 0.5715D+01	35D-02 0.51D-03 0.57D-02 0.31D-02 0.14D-02 47D-02 62D-02 43D-02 0.21D-02 0.47D-02 0.47D-02
0.5000D-02	0.8550D+01	0.8606D+01	66D-02

Koeffizienten A(J) in der Näherungsfunktion (*)

U = A(0) + A(1) * Z + ... + A(N) * Z * * (N)

A(0) = 5.975469891127602

A(1) = .9909176170205746

A(2) = 5.648244857835139D-02A(3) = 1.064867769431097D-03

Tabelle 3.9: Programmausdruck von KLEINQUL für den Bereich: 8.0 E-3 $1/a \le c_N \le 50$ 1/a

BERECHNUNG EINER NÄHERUNGSFUNKTION MIT HILFE DER METHODE DER KLEINSTEN QUADRATE

BASICA-PROGRAMM: K L E I N Q U L vom 18.7.1985

Х	Y	Y	Abweichung
	exakt. Wert	Näherungswert	
0.1000D-01	0.1160D+02	0.1195D+02	31D-01
0.2000D-01	0.1540D+02	0.1534D+02	0.36D-02
0.3000D-01	0.1810D+02	0.1763D+02	0.26D-01
0.5000D-01	0.2183D+02	0.2089D+02	0.43D-01
0.1000D+00	0.2632D+02	0.2620D+02	0.46D-02
0.1320D+00	0.2852D+02	0.2868D+02	57D-02
0.2000D+00	0.3236D+02	0.3289D+02	17D-01
0.2660D+00	0.3546D+02	0.3620D+02	21D-01
0.5000D+00	0.4412D+02	0.4506D+02	21D-01
0.1000D+01	0.5755D+02	0.5830D+02	13D-01
0.2000D+01	0.7738D+02	0.7727D+02	0.14D-02
0.5000D+01	0.1197D+03	0.1178D+03	0.16D-01
0.1000D+02	0.1728D+03	0.1697D+03	0.18D-01
0.2000D+02	0.2591D+03	0.2562D+03	0.11D-01
0.5000D+02	0.4717D+03	0.4806D+03	19D-01

Koeffizienten A(J) in der Näherungsfunktion (*)

 $U = A(0) + A(1) * Z + \dots + A(N) * Z * * (N)$

```
A(0) = 4.065520478747259
A(1) = .3873154137359407
A(2) = 2.531445770668745D-02
A(3) = 3.456917930025422D-03
```

(*) Bemerkung: X = c, Y = W, U = log(W), Z = log(X)

Folglich ist die Grenzwärmeleistung durch:

W $\exp(a(0) + a(1) * s + ... + a(n) * s^{n})$ (3.8) = mit: S $= \log(c_N)$ und: a(0) = 5.9755, a(1) = 0.990918,

	a(2) = 0.056482,	a(3)	=	0.0010649
für:	10 E-6 1/a < cm < 7 E-3	1/a		
und:	a(0) = 4.06552,	a(1)	=	0.38732,
	a(2) = 0.025314,	a(3)	=	0.0034569
für:	7 E-3 1/a < cm < 50 1/a			
gegeben	(W in W/m, c_N in 1/a).			

3.2.4. Abschneidekriterien für kurzlebige Radionuklide

Radionuklide mit Zerfallskonstanten über 50 1/a bzw. mit Halbwertszeiten unter 5.1 d haben für die Wärmebelastung praktisch keine Bedeutung. Konservativ wird für sie eine Grenzwärmeleistung von 470 W/m festgelegt, die nicht zu einer Überschreitung der 3 K-Schranke führt. Der Wert von 470 W/m ist gleich der Grenzwärmeleistung für eine Zerfallskonstante von 50 1/a. Die sehr kurzlebigen Radionuklide mit Halbwertszeiten unter 1 d können unter dem Gesichtspunkt der Wärmebeeinflussung ganz unberücksichtigt bleiben.

3.3. Radionuklide mit mehrstufigem Zerfall

3.3.1. Die theoretische Wärmeleistungsfunktion

Bei Radionukliden, deren Tochternuklid nicht stabil ist, so wie bei fast allen Aktiniden, mußte für jedes Nuklid eine eigene Wärmeausbreitungsrechnung durchgeführt werden. Verzweigungen in den Zerfallsketten wurden nicht berücksichtigt. Wir betrachten eine lineare Zerfallskette:

N1 - N2 - ... - Nk - stabiles Nuklid

eines Radionuklids N₁ mit den zugehörigen Zerfallskonstanten: C₁, C₂, ..., C_k und Energiefreisetzungen pro Zerfall Q₁, Q₂, ..., Q_k. Sei n_j(t) die Anzahl der Atome des Radionuklids N_j, j = 1,2,...,k; dann muß gelten:

$$\frac{dn_{1}}{dt} = -c_{1} n_{1},$$

$$\frac{dn_{2}}{dt} = c_{1} n_{1} - c_{2} n_{2},$$

$$(3.9)$$

$$\frac{dn_k}{dt} = C_{k-1} n_{k-1} - C_k n_k.$$

Dieses System gewöhnlicher Differentialgleichungen wird mit Hilfe des Ansatzes:

 $n_{1} = A_{1,1} \exp(-c_{1}t),$ $n_{2} = A_{2,1} \exp(-c_{1}t) + A_{2,2} \exp(-c_{2}t),$ (3.10)

 $n_k = A_{k,1} \exp(-c_1 t) + \ldots + A_{k,k} \exp(-c_k t)$

gelöst, vergl. /10/. Die Anfangsbedingungen lauten:

 $n_1(0)$ vorgegeben, $n_2(0) = n_3(0) = \dots = n_k(0) = 0.$ (3.11)

Man erhält die Rekursionsformel:

$$A_{1,j} = \frac{C_{1-1}}{C_1 - C_j} \quad A_{1-1,j}, \qquad (3.12)$$

.

für: 1 = 2,3,...,k; j = 1,2,3,...,1-1. Zusammen mit:

$$A_{1,1} + A_{1,2} + \dots + A_{1,1} = 0$$
 (3.13)

können alle Koeffizienten $A_{1,j}$ bestimmt werden. Die Gesamtleistung des Nuklids N_1 und seiner Töchternuklide ist dann:

$$W_{N} (t) = \begin{pmatrix} k \\ \Sigma \\ j=1 \end{pmatrix} c_{j} n_{j} (t) Q_{j}$$

$$= \begin{pmatrix} k \\ \Sigma \\ j=1 \end{pmatrix} c_{j} Q_{j} \begin{pmatrix} j \\ \Sigma \\ l=1 \end{pmatrix} A_{j,l} exp(-c_{l}t)$$

$$= \begin{pmatrix} k \\ \Sigma \\ l=1 \end{pmatrix} exp(-c_{l}t)$$
(3.14)

mit:
$$a_1 = \sum c_j Q_j A_{j,1}$$
 (3.15)
 $j=1$

für: 1 = 1,2,...,k. Es gilt noch:

$$n_1(0) = a_1 + a_2 + \ldots + a_k.$$
 (3.16)

Bei den Aktiniden wurde die Wärmeleistungsfunktion (3.14) verwendet; wobei 4 Zerfallsreihen zugrunde gelegt wurden - vergl. Abb. 3.2 bis 3.5. Vergleichsrechnungen mit KORIGEN zeigen eine gute Übereinstimmung der Wärmeleistungen, die mit beiden Methoden ermittelt wurden.

Es wurde das BASIC-Programm ZERFKET2 entwickelt, mit dessen Hilfe für alle betrachteten Aktiniden die Koeffizienten an in (3.14) sowie der zeitliche Verlauf der Wärmeleistung berechnet werden können. Die berechneten Koeffizienten werden von ZERFKET2 in eine Datei geschrieben, die von den Programmen KONRAD4D und KONRADL2 unmittelbar gelesen werden kann.

Die Energiefreisetzungen der Töchternuklide, die erst nach Einlagerungsbeginn entstehen – Einlagerungsbeginn ist der Anfangszeitpunkt –, werden also bei den Wärmeausbreitungsrechnungen berücksichtigt und bewirken eine reduzierte Grenzwärmeleistung des Mutternuklids.

Abb. 3.2: Vereinfachte Thorium-Zerfallsreihe

· · · · · · · · · · · · · · · · · · ·										
Cm 248	:	360 000 a		Am 2	244	:	10.	.1	h	
Pu 244	•	8.76 E 7 a	l	Cm 2	244	:	18.	1	a	
U 240	:	14.1 h								
Np 240	:	1.1 h								
					•					
		Pu 240	:	6537 a						
		U 236	:	23 E 7 a		Pu	236	:	2.85	a
		Th 232	:	1.4 E 10 a		U	232	:	72 a	
		Ra 228	:	5.7 a						
		Ac 228	:	6.1 h						
		Th 228	:	1.9 a						
		Ra 224	:	3.7 d						
		Rn 220	:	55.6 s						
		Po 216	:	0.2 s						
		Pb 212	:	10.6 h						
		Bi 212	:	1.0 h						
		Po 212	:	0.6 s						

Cm 245	•	8500 a
Pu 241	¢.	14.8 a
Am 241	•	433 a
Np 237	:	2.14 E 6 a
Pa 233	:	27 d
U 233	:	158000 a
Th 229	:	7300 a
Ra 225	:	14.8 d
Ac 225	:	10.0 d
Fr 221	:	4.8 min
At 217	:	32.0 min
Bi 213	:	45.6 min
Po 213	:	4.2 s
Pb 20.9	:	3.3 h
the second s		

Abb. 3.3: Vereinfachte Neptunium-Zerfallsreihe

Abb. 3.4: Vereinfachte Uran-Radium-Zerfallsreihe

·			
Cm	246	:	4820 a
Pu	242	:	376000 a
U	238	:	4.5 E 9 a
Th	234	:	24.1 d
Pa	234	:	6.7 h

Am	242M	:	152 a
Am	242	:	16.0 h
Cm	242	:	163 d
Pu	238	:	87.7 a
	/		

			×
U	234	:	244000 a
Th	230	:	77000 a
Ra	226	:	1600 a
Rn	222	:	3.8 d
Po	218	:	3.1 min
Pb	214	:	26.8 min
Bi	214	:	19.8 min
Po	214	:	164 s
Pb	210	:	22.3 a
Bi	210	:	5.0 d
Po	210	:	138 d

Abb. 3.5: Vereinfachte Actinium-Zerfallsreihe

Cm 247	:	1.0 E 7 a			
Pu 243	:	5.0 h			
Am 243	:	7380 a			
Np 239	:	24 d	Cm 243	:	28.5 d
Pu 239	•	24110 a			
U 235	:	7.0 E 8 a			
Th 231	:	1.1 d			
Pa 231	:	32760 a			
Ac 227	:	21.6 a			
Th 227	:	18.7 d			
Ra 223	•	11.4 d			
Rn 219	:	4.0 s			
Po 215	:	1.8 ms			
Pb 211	•	36.1 min			
Bi 211	:	2.1 min			
Tl 207	:	4.8 min			

Die Grenzwärmeleistungen werden ähnlich wie beim einstufigen Zerfall berechnet. Beginnend mit einer beliebigen Anfangwärmeleistung kann mit Hilfe von (3.3) die Grenzwärmeleistung des Mutternuklids berechnet werden.

Bei einigen Aktiniden steigt im Verlauf der Zeit nach Einlagerungsbeginn die Wärmeleistung stark an. Das führt dazu, daß sich für solche Aktiniden sehr kleine Grenzwärmeleistungen ergeben.

3.3.2. Der Zerfall von Ra 228 als Beispiel

Beim Radionuklid Ra 228 steigt die Wärmeleistung in den ersten Jahren nach Einlagerungsbeginn sehr stark an (um einen Faktor von etwa 1800), da beim Zerfall der Tochternuklide Rn 220, Po 216 und Po 212 viel größere Wärmefreisetzungen als beim Zerfall des Mutternuklids erfolgen. Das führt insgesamt dazu, daß für Ra 228 nur eine sehr geringe Grenzwärmeleistung zugelassen ist.

Tabelle 3.10: Die Zerfallskette von Ra 228 mit Halbwertszeiten und Energiefreisetzungen je Zerfall

Radionuklid	Halbwertszeit	Energiefreisetzung je Zerfall
Ra 228	5.7 a	2.1 $E-15$ J
Ac 228	6.1 h	2.3 $E-13$ J
Th 228	1.9 a	8.8 $E-13$ J
Ra 224	3.7 d	9.3 $E-13$ J
Rn 220	55.6 s	1.0 $E-12$ J
Po 216	0.2 s	1.1 $E-12$ J
Pb 212	10.6 h	5.2 $E-14$ J
Bi 212	1.0 h	4.6 $E-13$ J
Po 212	0.6 μ s	1.4 $E-12$ J

3.3.3. Abschneidekriterium für die Aktiniden

Bei dem zeitlichen Verlauf der Wärmeleistung der Aktiniden ist nicht nur die Halbwertszeit des Mutternuklids wesentlich sondern es sind auch die Halbwertszeiten der Töchternuklide. Das Abschneidekriterium für kurzlebige Radionuklide aus Abschnitt

3.2.4. kann deshalb nicht einfach übernommen werden. Aktiniden, bei denen die Summe der Halbwertszeiten des Mutternuklids und der Töchternuklide einen Tag unterschreitet, werden nicht berücksichtigt. Das sind die Aktiniden:

Pb 211, Pb 212, Bi 211, Bi 212, Po 216, Rn 219, Rn 220.

bei ihnen davon ausgehen, Man kann daβ die thermische Beeinflussung des Wirtsgesteins zu vernachlässigen ist. Für alle anderen Aktiniden wurden Wärmeausbreitungsrechnungen bis **Z**11 100 000 Jahren durchgeführt - mit Ausnahme der Aktiniden mit stabilem Tochternuklid, bei denen die Methode für den einfachen Zerfall aus Abschnitt 3.2. eingesetzt wird.

Eine Abschneidekriterium für extrem langlebige Aktiniden gibt es nicht.

3.4. Beispiele von Grenzwärmeleistungen

Im folgenden sind einige Beispiele von Grenzwärmeleistungen aufgelistet. Die Umrechnung der Grenzwärmeleistungen auf das Einzelgebinde werden später behandelt.

Radionuklid	Grenzwärmeleistung				
	je m Lager-	im Guβ-	im Container		
	strecke	beh. II	Typ V		
Ra 228	10 mW	0.6 mW	4.2 mW		
Pb 210	120 mW	7 mW	50 mW		
U 238	470 mW	26 mW	200 mW		
Sr 90	2.7 W	150 mW	1.1 W		
Co 60	29 W	1.6 W	12 W		
Ra 224	270 W	15 W	110 W		

Tabelle 3.11: Beispiele von Grenzwärmeleistungen

4. Kriterien zur Überprüfung der Anforderungen

4.1. Das vollständige Summenkriterium

Die radioaktiven Abfälle, die zur Endlagerung in der Schachtanlage Konrad vorgesehen sind, enthalten im allgemeinen ein Spektrum verschiedenster Radionuklide, bei denen eventuell einige Aktivitäten gut bekannt sind, andere aber nur grob abgeschätzt werden können. Es ist ein System zu entwickeln, mit dessen Hilfe auf praktikable Weise überprüft werden kann, ob die Temperaturbegrenzung am Kammerstoß eingehalten wird oder nicht. Bei Gebinden mit niedrigen Aktivitätsinventaren sollte eine solche Überprüfungen möglichst einfach sein und nur wenige Aktivitätsangaben erfordern. Nur bei Gebinden mit höheren Aktivitätsinventaren, für die die gegebenen Einlagerungskapazitäten möglichst optimal ausgenutzt werden sollten, könnten weitergehende Aktivitätsangaben nötig sein. In diesem Kapitel wird ein solches Anforderungssystem vorgestellt.

Die Grenzwärmeleistungen W*, die im vorigen Kapitel behandelt wurden, können ohne Mühe auf Aktivitätsgrenzwerte A* umgerechnet werden, wenn die Wärmeenergiefreisetzungen Q je Zerfall bekannt sind. Diese Wärmefreisetzungen je Zerfall wurden dem Programm KORIGEN entnommen, /3/. Man kann davon ausgehen, daß die gesamte Strahlung, die beim radioaktiven Zerfall entsteht, im Bereich der Einlagerungskammer oder in deren unmittelbarer Umgebung in Wärmem umgesetzt wird - davon auszunehmen ist die beim β -Zerfall und K-Einfang entstehende Neutrinostrahlung. Es gilt:

$$W^* = A^* Q. \tag{4.1}$$

Mit Hilfe dieser Beziehung können Aktivitäten und Wärmeleistungen ineinander umgerechnet werden. Wir werden im folgenden Wärme- und Aktivitätsangaben verwenden.

4.1.1. Generell zulässige Wärmeleistungen und Aktivitäten

Die Radionuklide können nach aufsteigender Grenzwärmeleistung und auch nach aufsteigendem Aktivitätsgrenzwert geordnet werden (vergl. Tabelle 4.2). Liegen die Gesamt- α - bzw. Gesamt- β/γ -Aktivitäten eines vorliegenden Abfallgebindes unter den jeweils restriktivsten Grenzwerten, so ist damit nachgewiesen, daß die Anforderungen aus der thermischen Beeinflussung auf das Wirtsgestein ohne weitere Aktivitätsangaben erfüllt sind. In Tabelle 4.1 sind die generell zulässigen Wärmeleistungen und Aktivitäten für die einzelnen Behälter aufgelistet (die Umrechnung der Grenzwerte auf den einzelnen Behälter wird später behandelt.)

Behälter	g	enerell zul	.ässige	
	α-Aktivi- tät	α-Wärme- leistung	β/ %- Akti- vität	β/ %- Wärme- leistung
	in Bq/Geb.	in W/Geb.	in Bq/Geb.	in W/Geb.
Betonbehälter				
Typ I	8.9E 9	5.8E-3	1.7E11	5.2E-4
Typ II	9.7E 9	6.3E-3	1.8E11	5.6E-4
Typ III	2.1E10	1.3E-2	3.9E11	1.2E-3
Gußbehälter				
Typ I	5.8E 9	3.8E-3	1.1E11	3.4E-4
Typ II	9.7E 9	6.3E-3	1.8E11	5.6E-4
Typ II*	8.9E 9	5.8E-3	1.7E11	5.2E-4
Typ III	7.6E 9	5.0E-3	1.4E11	4.4E-4
Container				
Typ I	2.6E10	1.7E-2	5.0E11	1.5E-3
Typ II	2.9E10	1.9E-2	5.5E11	1.7E-3
Typ III	6.3E10	4.1E-2	1.2E12	3.7E-3
Typ IV	5.3E10	3.5E-2	1.0E12	3.1E-3
Typ V	7.4E10	4.8E-2	1.4E12	4.3E-3
Typ VI	3.7E10	2.4E-2	7.0E11	2.1E-3

Tabelle 4.1: Generell zulässige Wärmeleistungen und Aktivitäten (Werte ohne Leitnuklidkorrektur - s.u.)

Bemerkung: Bezieht man sich auf die Wärmeleistung, so ist Ra 228 der restriktivste β/γ - und Th 232 der restriktivste α -Strahler; bei Bezug auf die Aktivitäten sind es Ac 227 und wieder Th 232.

4.1.2. Ableitung des vollständigen Summenkriteriums

In den realen Abfällen kommt im allgemeinen nicht nur ein einziges sondern ein ganzes Spektrum von Radionukliden vor. Wir gehen von einem Inventar der Radionuklide N_1 , N_2 , ..., N_k mit den Anfangsaktivitäten A1, A2, ..., Ak aus (bezogen auf Längeneinheit Lagerstrecke). Jedes Radionuklid Ni ruft am Kammerstoß eine Temperaturerhöhung von $\mathfrak{P}_1(t)$ hervor (i = 1,2,...k). Die maximale Temperaturerhöhung am Kammerstoß max $\vartheta(t)$ kann dann durch:

$$\max_{t} \mathcal{P}(t) = \max_{t} (\mathcal{P}_{1}(t) + \mathcal{P}_{2}(t) + \ldots + \mathcal{P}_{k}(t))$$

$$\leq \max_{t} \mathcal{P}_{1}(t) + \max_{t} \mathcal{P}_{2}(t) + \ldots + \max_{t} \mathcal{P}_{k}(t) \quad (4.2)$$

$$= (\frac{A_{1}}{A_{1}^{*}} + \frac{A_{2}}{A_{2}^{*}} + \ldots + \frac{A_{k}}{A_{k}^{*}}) \mathcal{P}_{Grenz}$$

abgeschätzt werden - die Maxima sind über den Zeitraum:

 $0 \leq t \leq 100$ 000 Jahre

zu erstrecken. Weiter sind A_1^* , A_2^* , ..., A_k^* die mit Hilfe von (4.1) umgerechneten Grenzaktivitäten und $\Im_{Grenz} = 3$ K. Außerdem wurde noch die Linearität des Wärmeleitungsproblems in der Form:

$$\frac{\max \vartheta_{i}(t)}{A_{i}} = \frac{\vartheta_{Grenz}}{A_{i}^{*}}$$
(4.3)

für i=1,2,...,k ausgenutzt.

Die Größe:

$$S = \frac{A_{1}}{A_{1}} + \frac{A_{2}}{A_{2}} + \dots + \frac{A_{k}}{A_{k}}$$
(4.4)

heißt der Summenwert des gegebenen Aktivitätsinventars. Ist also die Bedingung:

S < 1 (4.5)

erfüllt, so folgt: max ϑ (t) < 3 K.

Das Kriterium (4.5) bildet die Grundlage bei den Überprüfungen der Anforderungen an Abfallgebinde, die sich aus der Wärmebeeinflussung ergeben. Für die praktische Anwendung ist es allerdings in dieser Form kaum geeignet, da es die Angabe aller Aktivitäten der Einzelnuklide erfordert.

Aus diesem Summenkriterium, das die vollständige Aufschlüsselung des Radionuklidinventars im Abfallgebinde verlangt, wird ein Kriterium hergeleitet, das etwas konservativer ist aber mit der Angabe möglichst weniger Einzelaktivitäten auskommt.

4.2. Das Summenkriterium mit Leitnukliden

4.2.1.Auswahl der Leitnuklide

Im allgemeinen ist es nicht nötig, daß die Aktivitäten aller Radionuklide angegeben oder abgeschätzt werden müssen, sondern nur bei einigen, nach gewissen Regeln herausgegriffenen. Radionuklide, bei denen die Aktivitäten i.a. angegeben oder nach oben abgeschätzt werden müssen, nennen wir Leitnuklide, das bedeutet nicht, daß sie unter anderen Gesichtspunkten eine besondere Bedeutung haben oder etwa häufig vorkommen. Aus Gründen der Einfachheit ist es wünschenswert, möglichst wenige Leitnuklide zu haben; andererseits ist es günstig, möglichst viele Leitnuklide zu verwenden, um bei der Abschätzung des Summenwertes nicht zu konservativ zu sein. Der folgende Vorschlag scheint nach unserer Ansicht ein guter Kompromiß zwischen beiden extremen Möglichkeiten zu sein.

Die Liste der Radionuklide wird nach aufsteigendem Aktivitätsgrenzwert geordnet – s. Tabelle 4.2.. Die ersten 13 α -Strahler dieser Liste werden Leitnuklide, ebenso die ersten 14 β/g -Strahler. Zusätzlich werden noch die in den Abfällen sehr häufig vorkommenden Radionuklide Pu 238, Cs 137, Ni 63 und Fe 55 zu Leitnukliden (am 29.10.1985, beim 62. PTB-Seminar wurde eine andere Auswahl vorgestellt, die inzwischen ersetzt wurde, /7/). Nur bei diesen insgesamt 31 Leitnukliden sind Aktivitätsangaben

erforderlich und auch nur dann, wenn ein Meldewert von 1 % des Aktivitätsgrenzwerts überschritten wird.

Tabelle 4.2: Grenzwärmeleistungen und Aktivitätsgrenzwerte für Einzelnuklide nach aufsteigendem Aktivitätsgrenzwerten geordnet (mit Leitnuklidkorrektur s.u.)

Nr.	Radio- nuklid		Grenzwärme- leistung in W/m	Aktivitäts- grenzwert in Bq/m
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ \end{array} $	Th 232 U 235 U 233 Th 230 Pa 231 U 234 Cm 248 Np 237 Cm 247 Pu 244 Ra 226 U 238 Cm 245 U 236 Pu 242 U 232 Pu 239 Am 243 Pu 240 Cm 246 Ac 227 Am 242M Ra 228 Am 241 Nb 94 Th 228 Ni 59 Pu 238 Cm 243 Pb 210 Cm 244 Ca 41 Ag 108M Cl 36 Pu 236 Be 10 Sn 126	(L) (L) (L) (L) (L) (L) (L) (L) (L) (L)	7.705E-02 9.715E-02 1.240E-01 1.293E-01 1.467E-01 1.775E-01 8.978E-01 2.325E-01 2.673E-01 3.236E-01 3.263E-01 3.263E-01 3.162E-01 7.169E-01 7.973E-01 8.911E-01 9.849E-01 1.186E+00 1.273E+00 1.514E+00 1.628E+00 2.921E-02 3.424E-02 6.834E-03 3.531E+00 1.220E+00 4.174E+00 1.012E+00 7.035E+00 1.119E+01 8.174E-02 1.313E+01 1.011E+00 6.016E+00 9.049E-01 2.265E+01 8.643E-01 9.892E-01	1.178E+11 1.295E+11 1.575E+11 1.693E+11 2.282E+11 2.672E+11 2.928E+11 3.119E+11 4.128E+11 4.128E+11 4.128E+11 4.623E+11 7.957E+11 1.089E+12 1.117E+12 1.136E+12 1.412E+12 1.412E+12 1.462E+12 1.462E+12 1.462E+12 1.840E+12 2.230E+12 3.200E+12 3.200E+12 3.200E+12 3.200E+12 3.200E+12 3.200E+12 3.200E+12 4.438E+12 4.722E+12 3.910E+12 4.438E+12 4.722E+12 5.886E+12 7.852E+12 1.128E+13 1.306E+13 1.388E+13 1.478E+13 2.291E+13 2.668E+13 2.935E+13
38 39	Rb 87 Th 227	(L)	8.643E-01 4.409E+01	3.824E+13 4.476E+13

.

Nr.	Radio- nuklid		Grenzwärme- leistung in W/m	Aktivitäts- grenzwert in Bq/m
$\begin{array}{c} 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 97\\ 71\\ 72\\ 71\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72$	nuklid Co 60 Ar 39 Cm 242 Po 210 Sr 90 Na 22 Eu 154 Tc 99 Eu 152 I 129 Cs 137 Ra 223 Ag 110M Cs 134 Cs 135 Zr 93 Pu 241 Ru 106 Se 79 Ce 144 Sc 46 Ba 133 C 14 Ra 224 Sb 125 Ta 182 Mn 54 Rn 222 Co 57 Cd 113M Fe 59 Kr 85	(L) (L) (S2) (L1)	leistung in W/m 1.919E+01 4.261E+00 5.360E+01 4.984E+01 1.843E+00 2.426E+01 1.635E+01 9.264E-01 1.407E+01 8.643E-01 2.325E+00 7.839E+01 3.924E+01 2.630E+01 3.423E-01 9.782E-02 2.023E-01 1.036E+00 3.049E+00 6.208E+01 1.523E+01 1.569E+00 1.843E+02 1.874E+01 5.395E+01 3.604E+01 2.419E+02 3.803E+01 1.378E+01 8.362E+01 1.523E+01 1.525E+01 1.555E+01 1.555E+01 1.555	grenzwert in Bq/m 4.603E+13 4.708E+13 5.382E+13 5.756E+13 5.868E+13 6.350E+13 6.812E+13 6.863E+13 6.914E+13 7.776E+13 8.183E+13 8.701E+13 9.565E+13 9.565E+13 9.565E+13 9.565E+14 1.090E+14 1.74E+14 1.265E+14 1.826E+14 1.826E+14 1.828E+14 2.239E+14 2.670E+14 2.699E+14 2.699E+14 3.028E+14 3.028E+14 3.18E+14 3.760E+14
72 73 74 75 76 77 78 79 80	CO 58 Zn 65 Th 234 Zr 95 Hf 181 Pd 107 Fe 55 Ni 63 Hf 175	(L1) (L1)	6.703E+01 3.962E+01 5.414E+00 7.031E+01 8.621E+01 8.643E-01 2.427E+01 7.192E+00 6.759E+01	4.138E+14 4.184E+14 4.921E+14 5.132E+14 5.257E+14 5.402E+14 6.523E+14 6.721E+14 6.904E+14

Tabelle 4.2 - Fortsetzung 1

2	
Grenzwärme- leistung in W/m	Aktivitäts- grenzwert in Bq/m
1.772E+00	7.003E+14

Tabelle 4.2 - Fortsetzung

Radio-

Nr.

	nuklid	leistung in W/m	grenzwert in Bq/m
81	Mo 93	1.772E+00	7.003E+14
82	Nb 95	9.503E+01	7.310E+14
83	Sr 89	7.903E+01	8.461E+14
84	Pa 234	3.350E+02	8.634E+14
85	Bi 214	3.350E+02	9.682E+14
86	Ru 103	8.966E+01	9.886E+14
87	Eu 155	1.958E+01	9.938E+14
88	Hg 203	8.195E+01	1.041E+15
89	Ac 228	3.350E+02	1.432E+15
90	Bi 210	1.092E+02	1.753E+15
91	Cd 109	3.115E+01	1.811E+15
92	S 35	6.074E+01	2.266E+15
93	Sm 151	7.250E+00	2.287E+15
94	Am 244	3.350E+02	2.359E+15
95	Pm 147	2.419E+01	2.496E+15
96	Pa 234M	3.350E+02	2.500E+15
97	I 131	2.314E+02	2.520E+15
98	I 125	7.243E+01	2.550E+15
99	Pa 233	1.782E+02	2.907E+15
100	ND 93M	1.407E+01	2.937E+15
101	Te 125M	7.373E+01	3.248E+15
102	Ca 45	4.654E+01	3.75 <u>3E</u> +15
103	Pb 214	3.350E+02	3.886E+15
104	Н 3	1.454E+01	1.593E+16
105	Cr 51	1.082E+02	1.872E+16
106	Th 231	3.350E+02	2.204E+16
107	V 49	3.529E+01	5.122E+16

Erläuterungen: (L) Leitnuklid. (S1) ... Wert für sonstige α -Strahler, (S2) ... Wert für sonstige β / -Strahler, (L1) ... zusätzliche Leitnuklide.

4.2.2. Restaktivitäten

Bei den übrigen Radionukliden, die nicht Leitnuklide sind, ist nur summarisch die Rest- α - bzw. Rest- β/γ -Aktivität anzugeben

(falls die Meldewerte von 1 % der Grenzwerte überschritten werden). Die zugehörigen Grenzwerte A_{α}^* und A_{β}/γ^* sind die Aktivi-tätsgrenzwerte des ersten α -Strahlers bzw. β/γ -Strahlers in der oben erwähnten Liste nach den Leitnukliden.

Der Summenwert (4.4), bei dem nach allen Radionukliden aufgeschlüsselt wurde, kann nach oben durch folgenden Summenwert abgeschätzt werden:

$$S_{L} = \Sigma \frac{A_{1}}{Leitn.} + \frac{A_{\alpha}}{A_{1}} + \frac{A_{\beta}}{A_{\alpha}}, \qquad (4.6)$$

bei dem alle Aktivitäten der Leitnuklide A_i, der sonstigen α - und β/γ -Strahler A_a und A_{b/\gamma} ohne die Leitnuklide anzugeben sind.

4.2.3. Der 1 % - Meldewert

Sind die Aktivitäten der Leitnuklide, der sonstigen α - und $\beta/\sqrt[n]{-}$ Strahler sehr gering, so ist eine explizite Zahlenangabe zur Aktivität kaum sinnvoll. Aus diesem Grund wird ein sogenannter Meldewert von einem Prozent des Aktivitätsgrenzwertes eingeführt. Liegt die aktuelle Aktivität eines Leitnuklids oder die der sonstigen Strahler unter diesem Meldewert, so ist eine Angabe der Aktivität nicht erforderlich, sondern es genügt die Mitteilung daß die Aktivität den Meldewert unterschreitet.

Nun muß man einen - konstruierten - Abfall unterstellen, bei dem alle Leitnuklide und die sonstigen $\alpha-$ und $\beta/\zeta-$ Strahler gerade eine Aktivität knapp unter dem Meldewert besitzen. In (4.6) würde ein Anteil am Summenwert von fast (n+2)/100 vernachlässigt werden, wenn n die Anzahl der Leitnuklide ist. Das bedeutet, daß erst die Bedingung:

$$S_L < 1 - \frac{n+2}{100}$$
 (4.7)

sichert, daß (4.5) erfüllt ist. Wir multiplizieren deshalb alle Aktivitätsgrenzwerte mit der sogenannten Leitnuklidkorrektur von:

$$k_L = (98 - n) / 100.$$
 (4.8)

Man sieht an dieser Stelle, daß die Anzahl n der Leitnuklide möglichst gering gehalten werden sollte, um nicht durch die Einführung eines Meldewertes weitere Konservativitäten zu erhalten.

4.2.4. Weitere Spezifizierung

Will man die gegeben Kapazitäten besser ausschöpfen, so ist die weitere Spezifizierung, d.h. die Angabe von Aktivitäten weiterer Einzelnuklide möglich. Im Summenwert (4.6) werden dann diese Einzelnuklide nicht mehr mit dem entsprechenden Grenzwert für sonstige Strahler sondern mit ihrem eigenen größeren berücksichtigt. Der Summenwert wird dadurch reduziert.

4.2.5. Berechnung der behälterspezifischen Aktivitätsgrenzwerte

Bisher sind wir von Grenzwärmeleistungen und Aktivitätsgrenzwerten ausgegangen, die auf die Längeneinheit Lagerstrecke bezogen waren. Diese Werte sollen jetzt auf behälterbezogene Werte umgerechnet werden. Seien a die Anzahl der Gebinde im Streckenquerschnitt und b die Länge eines Stapelabschnitts einschließlich eines eventuellen Zwischenraumes zwischen den Stapelabschnitten. Ist dann WB die Wärmeleistung eines Behälters und sind in einer gewissen Länge der Strecke gleichartige Abfallgebinde eingelagert, so ist die Wärmeleistung W je Längeneinheit durch:

$$W = W_B a / b \tag{4.9}$$

gegeben. Die längenbezogenen Grenzwerte sind also mit einem sogenannten Gebindefaktor:

$$f_{B} = b / a$$
 (4.10)

zu multiplizieren, um zu den behälterspezifischen Werten zu gelangen.

Behälter	Anzahl der Gebinde im Streckenquer- schnitt	Stapelabschnitts- länge in m	Gebinde- faktor in m
Betonbehälter			
Typ I	29	1.47	0.0507
TYP II	29	1.60	0.0552
Typ III	18	2.10	0.117
	-		
Guβbehälter			
Typ I	39	1.25	0.0331
Typ II	29	1.60	0.0552
Typ II*	29	1.47	0.0507
Typ III	31	1.34	0.0432
Container			
Typ I	12	1.80	0.150
Typ II	11	1.80	0.164
Typ III	5	1.80	0.360
Typ IV	6	1.80	0.300
Typ V	5	2.10	0.420
Typ VI	10	2.10	0.210

Tabelle 4.3: Behälterspezifikationen und Gebindefaktoren (nach PTB-Vorgaben, /9/)

Faβt man alles zusammen, so können die behälterspezifischen Aktivitätsgrenzwerte, die aus der thermischen Beeinflussung des Wirtsgesteins resultieren, durch:

$$G_{W}(i,B) = A_{i} * k_{L} f_{B} \qquad (4.11)$$

berechnet werden (i bezeichnet das Radionuklid, B den Behälter). Diese Werte werden als Aktivitätsgrenzwerte bezeichnet, obwohl sie strenggenommen nur dann wirkliche Grenzwerte sind, wenn nur ein Radionuklid im Abfall vorkommt und wenn die später zu behandelnde "verdünnte Einlagerung" unberücksichtigt bleibt.

4.2.6. Berechnung des Summenwertes mit Leitnukliden

Der Summenwert kann mit Hilfe der Formel:

$$S_{L} = \sum_{\substack{\text{Leitn. } G_{W}(i,B) \\ i}} + \frac{A(\text{sonst. } \alpha)}{G_{W}(\text{sonst. } \alpha, B)} + \frac{A(\text{sonst. } \alpha, B)}{G_{W}(\text{sonst. } \beta/\gamma)} + \frac{A(\text{sonst. } \beta/\gamma)}{G_{W}(\text{sonst. } \beta/\gamma, B)}$$
(4.12)

$$\begin{array}{ccc} A(i) & A(i) \\ + & \Sigma & & \\ spez. & \alpha - & G_W(i, B) & spez. \beta/y - & G_W(i, B) \\ Strahler & & Strahler & \\ \end{array}$$

berechnet werden; dabei sind:

A(i)	die Aktivität des Radionuklids i im Abfallgebinde,
Gw(i, B)	der Aktivitätsgrenzwert für das Radio- nuklid i und den Behälter B,
A(sonst. α)	die Restaktivität der nicht aufge- schlüsselten α-Strahler im Abfall- gebinde,
A(sonst. β/γ)	die Restaktivität der nicht aufge- schlüsselten β/ γ-S trahler im Abfall- gebinde,
Gw(sonst.α, B)	der Aktivitätsgrenzwert für die nicht aufgeschlüsselten α-Strahler im Ab- fallgebinde,
Gw(sonst. β/Υ,Β)	der Aktivitätsgrenzwert für die nicht aufgeschlüsselten β/γ-Strahler im Ab- fallgebinde.

Die erste Summe in (4.12) erstreckt sich über alle Leitnuklide, die letzten beiden über alle darüber hinaus spezifizierten $\alpha-$ bzw. $\beta/\chi-$ Strahler. Liegt der Summenwert über eins oder möchte man

aus anderen Gründen eine weniger konservative Abschätzung bestimmen, so kann man versuchen, durch die Spezifizierung weiterer Radionuklide, deren Aktivitäten bekannt sind, den Summenwert SL in (4.12) zu reduzieren. Diese Aktivitäten werden nicht mehr durch die relativ kleinen Werte für sonstige Strahler sondern durch die zugehörigen größeren Grenzwerte dividiert. Eine untere Grenze: S k_L fB (mit S aus Formel (4.4)) bei dieser Spezifizierung erreicht man dann, wenn die Aktivitäten aller Radionuklide angegeben sind.

4.3. Verdünnte Einlagerung

Abfallgebinde mit Summenwerten S_1 über 1 können gegebenenfalls zusammen mit Abfallgebinden mit niedrigen Summenwerten S_2 eingelagert werden. Die Summenwerte sind dabei volumengewichtet zu mitteln. Diese Vorgehensweise entspricht dem Prinzip der Verschmierung der Wärmeleistung in der Einlagerungskammer, da in Zeiträumen von einigen Monaten bis zu vielen Jahren ein weitgehender Temperaturausgleich in den Einlagerungskammern zu erwarten ist. Eine solche Einlagerung ist dann möglich, wenn der gemittelte Summenwert unter 1 liegt.

4.3.1. Verdünnung im Streckenquerschnitt

Bei der verdünnten Einlagerung im Streckenquerschnitt werden von den äußeren Abmessungen gleiche Abfallgebinde verschiedener Summenwerte zusammen im Querschnitt der Einlagerungskammer eingelagert. Sei n1 bzw. n2 die Anzahl der Behälter gleichen Typs mit Summenwert S1 bzw. S2, ($n = n_1 + n_2$). Dann ist der volumen- und (was hier das gleiche ist) der anzahlgewichtete Summenwert durch:

$$S_{2} = \frac{n_{1}}{n} S_{1} + \frac{n_{2}}{n} S_{2}$$
 (4.13)

gegeben. Das Verhältnis:

$$v = n_1 / n$$
 (4.14)

heißt das Verdünnungsverhältnis. Falls $S_1 > 1$ und $S_2 < 1$ gelten, ist die Bedingung:

$$S_{q} < 1$$
 (4.15)

gleichwertig mit:

$$v < \frac{1 - S_2}{S_1 - S_2}$$
 (4.16)

Das Verdünnungsverhältnis darf diese Schranke nicht erreichen oder überschreiten. Andererseits ist das Verdünnungsverhältnis auch nach unten beschränkt - es kann nicht kleiner als 1 / n werden, wenn n die Anzahl der Gebinde im Streckenquerschnitt ist. Aus dieser Bedingung folgt, daß nicht Gebinde mit beliebig hohem Summenwert eingelagert werden können, sondern nur solche, bei denen der Summenwert n nicht überschreitet, und das auch nur dann, wenn die Summenwerte der übrigen n - 1 Abfallgebinde im Streckenquerschnitt den Summenwert O besitzen. Aus Gründen der Praktikabilität werden folgende maximale Summenwerte bei der Verdünnung im Streckenquerschnitt festgelegt:

- 4 für Container Typ III, IV und V,
- 8 für Container Typ I, II und VI,
- für Betonbehälter Typ III, 10
- für Betonbehälter Typ I, II und alle Gußbehälter. 20

4.3.2. Axiale Verdünnung

Bei der axialen Verdünnung geht man davon aus, daß der Temperaturausgleich in der Einlagerungskammer nicht nur in radialer sondern auch in axialer Richtung vor sich geht. Drei Stapelabschnitte haben in etwa die gleiche geometrische Ausdehnung von etwa 6 m in axialer Richtung wie der Streckenquerschnitt. Deshalb wird festgelegt, daß die Wärmeleistung rechnerisch über maximal drei Stapelabschnitte homogen verteilt werden darf. Der Summenwert wird dem entsprechend volumengewichtet über die Streckenquerschnitte und maximal drei Stapelabschnitte gemittelt. Dadurch können Abfallgebinde mit noch höheren Summenwerten eingelagert werden, wenn genügend Abfallgebinde mit geringen Summenwerten zur Verfügung stehen. Der zweite Vorteil dieser Methode ist die größere Flexibilität, da verschiedene Behältertypen in den Stapelabschnitten kombiniert werden können.

Der volumengewichtete Summenwert ist durch:

$$S_{A} = \frac{l_{1}}{l_{1}} \left(\frac{n_{1}}{l_{1}} S_{1} + \frac{n_{2}}{l_{1}} S_{2} \right) + \frac{l_{3}}{l_{1}} S_{3} \quad (4.17)$$

gegeben; dabei sind (vergl. Abb. 4.1):

sowie:

n	=	$n_1 + n_2$	Anzahl der Gebinde im ersten Stapel- abschnitt,
1	=	lı + l3	Gesamtlänge der drei betrachteten Stapelabschnitte.

Abb. 4.1: Axiale Vedünnung

Anordnung bei der verdünnten Einlagerung (schematisch)

Eine gegebene Konfiguration aus drei Gruppen von Abfallgebinden erfüllt die Anforderungen, die sich aus der thermischen Beeinflussung ergeben, wenn gilt:

$$S_A < 1.$$
 (4.18)

4.3.3. Obergrenzen für die Summenwerte bei der axialen Verdünnung

In diesem Abschnitt sollen Obergrenzen für die bei der axialen Verdünnung auftretenden Summenwerte ermittelt werden. Wir gehen von einem Gebinde mit dem Summenwert $S_1 > 1$ aus. Die Gebinde, mit denen "verdünnt" wird, mögen Summenwerte $S_2 = S_3 = 0$ besitzen. Die Obergrenze für den Summenwert S_1 ist unabhängig von dem Gebindetyp im zweiten und dritten Abschnitt zu bestimmen. Aus (4.17) folgt:

$$S_{A} = \frac{1_{1}}{1} \frac{1}{n} S_{1}. \qquad (4.19)$$

Als Obergrenze für S1 ergibt sich also:

$$S_{1, \max} = n \left(1 + \frac{l_3}{l_1} \right)$$
 (4.20)

Wir gehen von dem ungünstigsten Fall:

$$l_3 = 2 * 1.25 m = 2.50 m$$

(zweifache Stapelabschnittslänge für Gußbehälter Typ I) aus und erhalten für die einzelnen Behälter theoretische Obergrenzen der Summenwerte (vergl. Tab. 4.4). Da kaum damit zu rechnen ist, daß genügend Abfallgebinde mit sehr kleinen Summenwerten zur Verfügung stehen, und um die Auswertungen zu vereinfachen, werden etwas geringere Obergrenzen festgelegt. Abfallgebinde, deren Summenwert diese Obergrenzen überschreiten, sind zur Endlagerung in der Schachtanlage Konrad nicht geeignet.

Behälter	theor. Obergrenze	festgelegte Obergrenze
Betonbehälter		
Typ I	78	60
TYP II	74	60
Typ III	39	30
Gußbehälter		
Typ I	117	60
Typ II	74	60
Typ II*	78	60
Typ III	88	60
Container		
Typ I	28	16
Typ II	26	16
Typ III	11	8
Typ IV	14	8
Typ V	10	8
Typ VI	21	16

Tabelle 4.3: Obergrenzen der Summenwerte bei der axialen Verdünnung

-

Literaturverzeichnis

- /1/ BÖTTCHER, A.: Analytische Lösungen für einfache Wärmeleitungsprobleme bei der Endlagerung verfestigter hochaktiver Abfälle. Kernenergie, 19, 1976, S. 158-161.
- /2/ CARSLAW, H.S., JAEGER, J.C.: Conduction of Heat in Solids. Oxford, 1959.
- FISCHER, U., WIESE, H.W.: Verbesserte konsistente Berech-/3/ nung des nuklearen Inventars abgebrannter DWR-Brennstoffe auf der Basis von Zell-Abbrand-Verfahren mit KORIGEN. Kernforschungszentrum Karlsruhe, Januar 1983.
- /4/ KOPIETZ, J,: Thermophysikalische Eigenschaften von Gesteinen aus dem Einlagerungshorizont der Schachtanlage Konrad. Bundesanstalt für Geowissenschaften und Rohstoffe. 1985.
- /5/ : Berechnungen zur Aufheizung einer Salzformation durch ein HAW-Endlager bei Berücksichtigung nicht-wärmeentwickelnder Bohrlochabschnitte. Teil 1: Mathematische Grundlagen und Ergebnisse für nicht-wärmeentwickelnde Bohrlochabschnitte aus Salz. September 1982. Teil 2: Ergebnisse für nicht-wärmeentwickelnde Bohrlochabschnitte aus Glas, die analytische Lösung des Wärmeleitungsproblems und weitere Berechnungen. Februar 1983.
- 161 .: Weitere Berechnungen zur Wärmeausbreitung in einem Salzgestein mit eingelagerten wärmeabgebenden radioaktiven Abfällen. Dezember 1984.
- 171 : Ableitung von Anforderungen an Abfallgebinde aus der thermischen Belastung des Wirtsgesteins. Vortrag beim 62. PTB-Seminar am 29.10.1985, in PTB-SE-8, April 1986.
- /8/ .: Beschreibung des Programms ANKONA zur Durchführung der Überprüfungen. Vortrag beim 62. PTB-Seminar am 29.10.1985.
- /9/ DBE: Einlagerung Abfallgebinde Leistungskatalog Konrad, Band 1, April 1984.
- /10/ SEGRE, E.: Nuclei and Particles, 1965.

Radio- nuklid/	Längen- bezogener		A k t i v	ität	sgren	zwer	t				0			
Radio-	AKTIVITATS	- ве	Condenait	er	С		L 			0	Cont.	ainer	M 1/	
nuklid-	grenzwert	тур 1	TYP II	тур III	тур 1	тур 11	тур 11*	TAB TTT	тур I	тур II	тур III	түр тү	тур v	тур VI
gruppe	1ņ Bq/m													
Th 232	1.2E+11	6.0E+09	6.5E+09	1.4E+10	3.8E+09	6.5E+09	6.0E+09	5.1E+09	1.8E+10	1.9E+10	4.2E+10	3.5E+10	4.9E+10	2.5E+10
U 235	1.3E+11	6.6E+09	7.2E+09	1.5E+10	4.2E+09	7.2E+09	6.6E+09	5.6E+09	1.9E+10	2.1E+10	4.7E+10	3.9E+10	5.4E+10	2.7E+10
U 233	1.6E+11	8.0E+09	8.7E+09	1.8E+10	5.1E+09	8.7E+09	8.0E+09	6.8E+09	2.4E+10	2.6E+10	5.7E+10	4.7E+10	6.6E+10	3.3E+10
Th 230	1.7E+11	8.6E+09	9.3E+09	2.0E+10	5.4E+09	9.3E+09	8.6E+09	7.3E+09	2.5E+10	2.8E+10	6.1E+10	5.1E+10	7.1E+10	3.6E+10
Pa 231	1.8E+11	9.0E+09	9.8E+09	2.1E+10	5.7E+09	9.8E+09	9.0E+09	7.7E+09	2.7E+10	2.9E+10	6.4E+10	5.3E+10	7.5E+10	3.7E+10
U 234	2.3E+11	1.2E+10	1.3E+10	2.7E+10	7.3E+09	1.3E+10	1.2E+10	9.9E+09	3.4E+10	3.7E+10	8.2E+10	6.8E+10	9.6E+10	4.8E+10
Cm 248	2.7E+11	1.4E+10	1.5E+10	3.1E+10	8.6E+09	1.5E+10	1.4E+10	1.2E+10	4.0E+10	4.4E+10	9.6E+10	8.0E+10	1.1E+11	5.6E+10
Np 237	2.9E+11	1.5E+10	1.6E+10	3.4E+10	9.4E+09	1.6E+10	1.5E+10	1.3E+10	4.4E+10	4.8E+10	1.1E+11	8.8E+10	1.2E+11	6.1E+10
Cm 247	3.1E+11	1.6E+10	1.7E+10	3.6E+10	1.0E+10	1.7E+10	1.6E+10	1.3E+10	4.7E+10	5.1E+10	1.1E+11	9.4E+10	1.3E+11	6.6E+10
Pu 244	4.1E+11	2.1E+10	2.3E+10	4.8E+10	1.3E+10	2.3E+10	2.1E+10	1.8E+10	6.2E+10	6.8E+10	1.5E+11	1.2E+11	1.7E+11	8.7E+10
Ra 226	4.2E+11	2.1E+10	2.3E+10	4.9E+10	1.3E+10	2.3E+10	2.1E+10	1.8E+10	6.3E+10	6.9E+10	1.5E+11	1.3E+11	1.8E+11	8.8E+10
U 238	4.6E+11	2.3E+10	2.6E+10	5.4E+10	1.5E+10	2.6E+10	2.3E+10	2.0E+10	6.9E+10	7.6E+10	1.7E+11	1.4E+11	1.9E+11	9.7E+10
Cm 245	8.0E+11	4.0E+10	4.4E+10	9.3E+10	2.6E+10	4.4E+10	4.0E+10	3.4E+10	1.2E+11	1.3E+11	2.9E+11	2.4E+11	3.3E+11	1.7E+11
Ac 227	2.2E+12	1.1E+11	1.2E+11	2.6E+11	7.2E+10	1.2E+11	1.1E+11	9.6E+10	3.3E+11	3.7E+11	8.0E+11	6.7E+11	9.4E+11	4.7E+11
Am 242M	3.2E+12	1.6E+11	1.8E+11	3.7E+11	1.0E+11	1.8E+11	1.6E+11	1.4E+11	4.8E+11	5.2E+11	1.2E+12	9.6E+11	1.3E+12	6.7E+11
Ra 228	3.3E+12	1.7E+11	1.8E+11	3.8E+11	1.1E+11	1.8E+11	1.7E+11	1.4E+11	4.9E+11	5.4E+11	1.2E+12	9.9E+11	1.4E+12	6.9E+11
ND 94	4.4E+12	2.3E+11	2.4E+11	5.2E+11	1.4E+11	2.4E+11	2.3E+11	1.9E+11	6.7E+11	7.3E+11	1.6E+12	1.3E+12	1.9E+12	9.3E+11
Ni 59	5.9E+12	3.0E+11	3.2E+11	6.9E+11	1.9E+11	3.2E+11	3.0E+11	2.5E+11	8.8E+11	9.7E+11	2.1E+12	1.8E+12	2.5E+12	1.2E+12
Pu 238	7.9E+12	4.0E+11	4.3E+11	9.2E+11	2.5E+11	4.3E+11	4.0E+11	3.4E+11	1.2E+12	1.3E+12	2.8E+12	2.4E+12	3.3E+12	1.6E+12
Pb 210	1.3E+13	6.6E+11	7.2E+11	1.5E+12	4.2E+11	7.2E+11	6.6E+11	5.6E+11	2.0E+12	2.1E+12	4.7E+12	3.9E+12	5.5E+12	2.7E+12
Ca 41	1.5E+13	7.5E+11	8.2E+11	1.7E+12	4.7E+11	8.2E+11	7.5E+11	6.4E+11	2.2E+12	2.4E+12	5.3E+12	4.4E+12	6.2E+12	3.1E+12
Ag 108M	2.3E+13	1.2E+12	1.3E+12	2.7E+12	7.3E+11	1.3E+12	1.2E+12	9.9E+11	3.4E+12	3.8E+12	8.2E+12	6.9E+12	9.6E+12	4.8E+12
Cl 36	2.3E+13	1.2E+12	1.3E+12	2.7E+12	7.4E+11	1.3E+12	1.2E+12	9.9E+11	3.4E+12	3.8E+12	8.2E+12	6.9E+12	9.6E+12	4.8E+12
Be 10	2.7E+13	1.4E+12	1.5E+12	3.1E+12	8.6E+11	1.5E+12	1.4E+12	1.2E+12	4.0E+12	4.4E+12	9.6E+12	8.0E+12	1.1E+13	5.6E+12
Sn 126	2.9E+13	1.5E+12	1.6E+12	3.4E+12	9.4E+11	1.6E+12	1.5E+12	1.3E+12	4.4E+12	4.8E+12	1.1E+13	8.8E+12	1.2E+13	6.2E+12
Rb 87	3.8E+13	1.9E+12	2.1E+12	4.5E+12	1.2E+12	2.1E+12	1.9E+12	1.7E+12	5.7E+12	6.3E+12	1.4E+13	1.1E+13	1.6E+13	8.0E+12
Co 60	4.6E+13	2.3E+12	2.5E+12	5.4E+12	1.5E+12	2.5E+12	2.3E+12	2.0E+12	6.9E+12	7.5E+12	1.7E+13	1.4E+13	1.9E+13	9.7E+12
Ar 39	4.7E+13	2.4E+12	2.6E+12	5.5E+12	1.5E+12	2.6E+12	2.4E+12	2.0E+12	7.1E+12	7.7E+12	1.7E+13	1.4E+13	2.0E+13	9.9E+12
Cs 137	7.8E+13	3.9E+12	4.3E+12	9.1E+12	2.5E+12	4.3E+12	3.9E+12	3.4E+12	1.2E+13	1.3E+13	2.8E+13	2.3E+13	3.3E+13	1.6E+13
Ni 63	6.7E+14	3.4E+13	3.7E+13	7.9E+13	2.2E+13	3.7E+13	3.4E+13	2.9E+13	1.0E+14	1.1E+14	2.4E+14	2.0E+14	2.8E+14	1.4E+14
Fe 55	6.5E+14	3.3E+13	3.6E+13	7.6E+13	2.1E+13	3.6E+13	3.3E+13	2.8E+13	9.8E+13	1.1E+14	2.3E+14	2.0E+14	2.7E+14	1.4E+14
Sonst.a	1.1E+12	5.5E+10	6.0E+10	1.3E+11	3.5E+10	6.0E+10	5.5E+10	4.7E+10	1.6E+11	1.8E+11	3.9E+11	3.3E+11	4.6E+11	2.3E+11
Sonst. β/γ	5.9E+13	3.0E+12	3.2E+12	6.9E+12	1.9E+12	3.2E+12	3.0E+12	2.5E+12	8.8E+12	9.6E+12	2.1E+13	1.8E+13	2.5E+13	1.2E+13
1	1	1							1					

Tab. A.1: Aktivitätswerte für Leitnuklide und nicht spezifizierte sonstige Alpha- und Beta/Gamma-Strahler, die aus Analysen zur thermischen Beeinflussung des Wirtsgesteins resultieren. Angaben in Bq/Abfallgebinde.

.

Tab. A.2: Aktivitätswerte für weitere Radionuklide, die aus Analysen zur thermischen Beeinflussung des Wirtsgesteins resultieren. Angaben in Bq/Abfallgebinde.

NATLE Outbound Outbound Continer Continer 10 10 770	Radio-	Längen-	A k tivit ät s g r e n z w e r t												
remerent Typ I Typ II T	nukild	Aktivität	- Be	tonbehält	er	G	ußbehälte	r				Cont	ainer	Tres 17	TYP NT
k 1		grenzwert in Bq/m	Тур І	Typ II	Typ III	тур І	TYP II	тур 11*	тур 111	тур 1	TYP II	TYP III	TAD TA	IYP V	IYP VI
Term Series Series <td>Ac 228</td> <td>1.4E+15</td> <td>7.3E+13</td> <td>7.9E+13</td> <td>1.7E+14</td> <td>4.6E+13</td> <td>7.9E+13</td> <td>7.3E+13</td> <td>6.2E+13</td> <td>2.1E+14</td> <td>2.3E+14</td> <td>5.2E+14</td> <td>4.3E+14</td> <td>6.0E+14</td> <td>3.0E+14</td>	Ac 228	1.4E+15	7.3E+13	7.9E+13	1.7E+14	4.6E+13	7.9E+13	7.3E+13	6.2E+13	2.1E+14	2.3E+14	5.2E+14	4.3E+14	6.0E+14	3.0E+14
hs 1.92+12 Const.1 C.22+11 C.22+11 <thc.22+11< th=""> <thc.22+11< th=""> <thc.2+11< td=""><td>Ag 110M</td><td>8.7E+13</td><td>4.4E+12</td><td>4.8E+12</td><td>1.0E+13</td><td>2.8E+12</td><td>4.8E+12</td><td>4.4E+12</td><td>3.8E+12</td><td>1.3E+13</td><td>1.4E+13</td><td>3.1E+13</td><td>2.6E+13</td><td>3.7E+13</td><td>1.8E+13</td></thc.2+11<></thc.22+11<></thc.22+11<>	Ag 110M	8.7E+13	4.4E+12	4.8E+12	1.0E+13	2.8E+12	4.8E+12	4.4E+12	3.8E+12	1.3E+13	1.4E+13	3.1E+13	2.6E+13	3.7E+13	1.8E+13
Am Add 1.0 <t< td=""><td>Am 241</td><td>3.9E+12</td><td>2.0E+11</td><td>2.2E+11</td><td>4.6E+11</td><td>1.3E+11</td><td>2.2E+11</td><td>2.0E+11</td><td>1.7E+11</td><td>5.9E+11</td><td>6.4E+11</td><td>1.4E+12</td><td>1.2E+12</td><td>1.6E+12</td><td>8.2E+11 3 1F+11</td></t<>	Am 241	3.9E+12	2.0E+11	2.2E+11	4.6E+11	1.3E+11	2.2E+11	2.0E+11	1.7E+11	5.9E+11	6.4E+11	1.4E+12	1.2E+12	1.6E+12	8.2E+11 3 1F+11
Am Signed	Am 243	1.5E+12	7.4E+10	8.1E+10 1 3E+14	1./E+11 2 8F+14	4./E+10 7.6E+13	8.1E+10 1.3E+14	1.2E+14	1.0E+14	2.2E+11 3.5E+14	3.9E+14	8.5E+14	7.1E+14	9.9E+14	5.0E+14
bit bit <td>Am 244 Ba 133</td> <td>1.8E+14</td> <td>9.3E+12</td> <td>1.0E+13</td> <td>2.1E+13</td> <td>5.9E+12</td> <td>1.0E+13</td> <td>9.3E+12</td> <td>7.9E+12</td> <td>2.7E+13</td> <td>3.0E+13</td> <td>6.6E+13</td> <td>5.5E+13</td> <td>7.7E+13</td> <td>3.8E+13</td>	Am 244 Ba 133	1.8E+14	9.3E+12	1.0E+13	2.1E+13	5.9E+12	1.0E+13	9.3E+12	7.9E+12	2.7E+13	3.0E+13	6.6E+13	5.5E+13	7.7E+13	3.8E+13
bi 124 9.778-14 (979-13 5.78-13 1.18-14 3.18-13 5.78-13 4.98-13 4.28-13 1.58-14 3.78-1	Bi 210	1.8E+15	8.9E+13	9.7E+13	2.1E+14	5.6E+13	9.7E+13	8.9E+13	7.6E+13	2.6E+14	2.9E+14	6.3E+14	5.3E+14	7.4E+14	3.7E+14
C 14 2.08414 1.0841 1.0841 1.0841 1.0841 1.0844 1.0	Bi 214	9.7E+14	4.9E+13	5.3E+13	1.1E+14	3.1E+13	5.3E+13	4.9E+13	4.2E+13	1.5E+14	1.6E+14	3.5E+14	2.9E+14	4.1E+14	2.0E+14
1.38*15 5.28*13 1.08*14 5.28*13 1.08*14 5.28*13 1.08*14 5.28*13 1.08*14 5.28*13 1.08*14 5.28*13 1.08*14 5.28*13 1.18*14 5.18*13 3.18*14 5.18*13 3.18*14 5.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.18*13 3.68*13 3.28*11 3.18*13 3.68*13 3.28*11 3.18*13 3.68*13 3.28*11 3.28*13	C 14	2.0E+14	1.0E+13	1.1E+13 2 1E+14	2.3E+13	6.4E+12 1 2E+14	1.1E+13 2 1E+14	1.0E+13 1.9E+14	8.5E+14	5.6E+14	5.2E+13 6.2E+14	1.4E+15	1.1E+15	1.6E+15	4.2E+13 7.9E+14
rd 1119 3.000000 1.120000 3.000000 3.000000 3.000000 3.000000 3.000000 3.00000 3.00000 3.000000 3.000000 3.000000 3.000000 3.00000000	Ca 45 Ca 109	1.8E+15	9.2E+13	1.0E+14	2.1E+14	5.8E+13	1.0E+14	9.2E+13	7.8E+13	2.7E+14	3.0E+14	6.5E+14	5.4E+14	7.6E+14	3.8E+14
Ce 144 1.78+14 8.68+12 9.48+12 8.68+12 7.48+12 2.68+13 5.18+13 7.28+13 J.88+13	Cd 113M	3.0E+14	1.5E+13	1.7E+13	3.5E+13	9.7E+12	1.7E+13	1.5E+13	1.3E+13	4.5E+13	5.0E+13	1.1E+14	9.1E+13	1.3E+14	6.4E+13
Ca 24 5.44*13 2.78*12 1.78*12 1.78*12 1.78*13 1.78*13 1.78*13 1.78*13 1.78*13 1.78*13 1.78*13 1.78*11 1	Ce 144	1.7E+14	8.6E+12	9.4E+12	2.0E+13	5.5E+12	9.4E+12	8.6E+12	7.4E+12	2.6E+13	2.8E+13	6.1E+13	5.1E+13	7.2E+13	3.6E+13
C = 0.24 1.48:13 7.05:11 <	Cm 242	5.4E+13	2.7E+12	3.0E+12	6.3E+12	1.7E+12 3.6F+11	3.0E+12 6 2E+11	2./E+12 5 7E+11	4.9E+11	8.1E+12 1.7E+12	1.8E+12	1.9E+13 4.1E+12	3.4E+12	4.7E+12	2.4E+12
$ \begin{array}{c} r_{1} r_{2} r_{1} r_{2} r_{1} r_{2} r_{1} r_{2} r_{1} r_{2} r_{1} r_{2} r_{2$	Cm 243 Cm 244	1.4E+13	7.0E+11	7.7E+11	1. 6E+12	4.5E+11	7.7E+11	7.0E+11	6.0E+11	2.1E+12	2.3E+12	5.0E+12	4.2E+12	5.8E+12	2.9E+12
Co 7 2.88+14 1.18+13 3.18+13 3.12+13 3.12+13 4.12+13 1.12+14 3.12+13 3.12+13 3.12+13 3.12+13 3.12+13 3.12+13 3.12+13 3.12+13 3.12+13 3.12+13 3.12+13 5.22+13 5.22+14 5.22+14 5.22+14 </td <td>Cm 246</td> <td>1.8E+12</td> <td>9.3E+10</td> <td>1.0E+11</td> <td>2.2E+11</td> <td>5.9E+10</td> <td>1.0E+11</td> <td>9.3E+10</td> <td>7.9E+10</td> <td>2.8E+11</td> <td>3.0E+11</td> <td>6.6E+11</td> <td>5.5E+11</td> <td>7.7E+11</td> <td>3.9E+11</td>	Cm 246	1.8E+12	9.3E+10	1.0E+11	2.2E+11	5.9E+10	1.0E+11	9.3E+10	7.9E+10	2.8E+11	3.0E+11	6.6E+11	5.5E+11	7.7E+11	3.9E+11
$ \begin{array}{c} c_{0} \leq 8_{0} \ \ \ \ \ \ \ \ \ \ \ \ \$	Co 57	2.8E+14	1.4E+13	1.6E+13	3.3E+13	9.1E+12	1.6E+13	1.4E+13	1.2E+13	4.3E+13	4.7E+13	1.0E+14	8.5E+13	1.2E+14	6.0E+13
1 1.254.4 <	Co 58	4.1E+14	2.1E+13	2.3E+13	4.8E+13	1.3E+13	2.3E+13	2.1E+13	1.8E+13 8 1E+14	6.2E+13 2 8E+15	6.8E+13	1.5E+14 6 7E+15	1.2E+14 5.6E+15	1. /E+14 7. 9E+15	8.7E+15
C = 115 9. G = 11 1.0 = 12 5.1 = 12 1.0 = 12 2.0 = 12 1.0 = 12 <td< td=""><td>Cr 51 Ce 134</td><td>9 6E+13</td><td>9.5E+14 4 8E+12</td><td>1.0E+15 5.3E+12</td><td>2.2E+13</td><td>3.1E+12</td><td>5.3E+12</td><td>4.8E+12</td><td>4.1E+12</td><td>1.4E+13</td><td>1.6E+13</td><td>3.4E+13</td><td>2.9E+13</td><td>4.0E+13</td><td>2.0E+13</td></td<>	Cr 51 Ce 134	9 6E+13	9.5E+14 4 8E+12	1.0E+15 5.3E+12	2.2E+13	3.1E+12	5.3E+12	4.8E+12	4.1E+12	1.4E+13	1.6E+13	3.4E+13	2.9E+13	4.0E+13	2.0E+13
Du Di Co Serie S. Berlo	Cs 135	9.6E+13	4.9E+12	5.3E+12	1.1E+13	3.1E+12	5.3E+12	4.9E+12	4.1E+12	1.4E+13	1.6E+13	3.4E+13	2.9E+13	4.0E+13	2.0E+13
Eu 154 6.88+13 3.4E+12 7.9E+12 0.7E+12 3.4E+12 2.7E+12 1.0E+13 2.4E+13 2.0E+13 2.0E+13 2.0E+13 2.0E+13 2.0E+13 2.0E+13 2.0E+13 2.0E+13 2.0E+13 3.0E+14 3.0E+14 3.0E+14 3.0E+14 3.0E+14 3.0E+14 3.0E+14 3.0E+14 3.0E+14 3.0E+13 3.0E+13 3.0E+13 3.0E+14 3.0E+14 3.0E+14 3.0E+13	Eu 152	6.9E+13	3.5E+12	3.8E+12	8.0E+12	2.2E+12	3.8E+12	3.5E+12	3.0E+12	1.0E+13	1.1E+13	2.5E+13	2.1E+13	2.9E+13	1.4E+13
Bu 155 9.98+14 5.08+13 3.28+14 1.28+14 3.08+14 1.08+14	Eu 154	6.8E+13	3.4E+12	3.7E+12	7.9E+12	2.2E+12	3.7E+12	3.4E+12	2.9E+12	1.0E+13	1.1E+13	2.4E+13	2.0E+13	2.8E+13	1.4E+13 2.1E+14
0 3.5.211 1.5.211 1.5.211 1.5.211 1.5.211 1.5.211 1.5.211 2.4.2.11 2.4.2.15 2.6.2.15 5.7.2.15 4.8.2.15 5.7.2.15 4.8.2.15 5.7.2.15 4.8.2.15 5.7.2.15 4.8.2.15 5.7.2.15 4.8.2.15 5.7.2.15 4.8.2.15 5.7.2.15 4.8.2.15 5.7.2.15 4.8.2.15 4.7.2.14 2.2.2.14 1.8.2.14 4.2.2.11 4.1.2.14 4.1.2.1.2.15 4.2.2.14 4.2.2.2.14 4.2.2.2.14 3.2.2.11 4.2.2.2.14 3.2.2.2.13 5.2.2.12 3.2.2.13 4.2.2.14 4.2.2.2.14 4.2.2.2.14 5.2.2.12 4.2.2.14 4.2.2.2.14 5.2.2.14 5.2.2.14 4.2.2.2.14 5.2.2.14 5.2.2.14 5.2.2.14	Eu 155	9.9E+14	5.0E+13	5.5E+13	1.2E+14	3.2E+13	5.5E+13	5.0E+13 1 7F+13	4.3E+13	1. 5E+14 5. 0E+13	5. 4E+13	1.2E+14	1.0E+14	4.2E+14 1.4E+14	7.0E+13
$ \begin{array}{c} \text{iff} 175 \\ \textbf{f} 0, \textbf{g} = 14 \\ \textbf{f} 1, \textbf{g} 1, \textbf{g} = 14 \\ \textbf{f} 1, \textbf{g} 1, \textbf{g} = 15 \\ \textbf{g} 1, \textbf{g} $	H 3	1.6E+16	8.1E+14	8.8E+14	1.9E+15	5.1E+14	8.8E+14	8.1E+14	6.9E+14	2.4E+15	2.6E+15	5.7E+15	4.8E+15	6.7E+15	3.3E+15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H£ 175	6.9E+14	3.5E+13	3.8E+13	8.1E+13	2.2E+13	3.8E+13	3.5E+13	3.0E+13	1.0E+14	1.1E+14	2.5E+14	2.1E+14	2.9E+14	1.4E+14
$ \begin{array}{c} 10 \ column{2}{ c c c c c c c c c c c c c c c c c c c$	Hf 181	5.3E+14	2.7E+13	2.9E+13	6.2E+13	1.7E+13	2.9E+13	2.7E+13	2.3E+13	7.9E+13	8.6E+13	1.9E+14	1.6E+14	2.2E+14	1.1E+14
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	Hg 203	1.0E+15	5.3E+13	5.7E+13	1.2E+14	3.3E+13	5.7E+13	5.3E+13	4.55+13	1.6E+14 3.9E+14	1.7E+14	3./E+14 9.2F+14	3.1E+14 7 7F+14	4.45+14	2.2E+14 5 4E+14
1 1.32+14 1.42+14 2.92+14 8.12+13 1.42+14 1.12+14 <	1 125 T 129	2.6E+15	1.3E+14 3.5E+12	1.4E+14 3.8E+12	3.0E+14 8 1E+12	8.2E+13 2 2E+12	1.4E+14 3 8E+12	1.3E+14 3.5E+12	3.0E+12	1.0E+13	1.1E+13	2.5E+13	2.1E+13	2.9E+13	1.5E+13
$ \begin{array}{c} kr & 5s \\ 1, 6g+14 \\ 1, 0g+13 \\ 2, 7g+14 \\ 1, 4g+13 \\ 1, 2g+13 \\ 2, 7g+14 \\ 1, 4g+13 \\ 1, 1g+14 \\ 1, 1g+13 \\ 1, 1g+13 \\ 1, 1g+13 \\ 1, 0g+13 \\ 1, 1g+14 \\ 1, 0g+13 \\ 1, 0g+14 \\ 1, 0$	I 131	2.5E+15	1.3E+14	1.4E+14	2.9E+14	8.1E+13	1.4E+14	1.3E+14	1.1E+14	3.8E+14	4.1E+14	9.1E+14	7.6E+14	1.1E+15	5.3E+14
$ \begin{array}{c} \text{Mn} & 54 \\ \text{O} & 93 \\ \text{O} & 7.0\text{E}+14 & 1.4\text{E}+13 & 1.5\text{E}+13 & 3.2\text{E}+13 \\ \text{O} & 2.2\text{E}+12 \\ \text{O} & 2.4\text{E}+13 & 3.6\text{E}+13 & 3.0\text{E}+13 \\ \text{O} & 3.2\text{E}+12 \\ \text{O} & 2.4\text{E}+12 \\ \text{O} & 2.4\text{E}+12 \\ \text{O} & 2.4\text{E}+12 \\ \text{O} & 3.5\text{E}+12 \\ \text{O} & 3.5\text{E}+13 \\ \text{O} & 3.5\text{E}+14 \\ \text{O} & 3$	Kr 85	3.8E+14	1.9E+13	2.1E+13	4.4E+13	1.2E+13	2.1E+13	1.9E+13	1.6E+13	5.6E+13	6.2E+13	1.4E+14	1.1E+14	1.6E+14	7.9E+13
No 93 7.05+14 3.95+13 3	Mn 54	2.7E+14	1.4E+13	1.5E+13	3.1E+13	8.6E+12	1.5E+13	1.4E+13	1.2E+13	4.0E+13	4.4E+13	9.6E+13	8.0E+13	1.1E+14 2 9E+14	5.6E+13
$ \begin{array}{c} 1.8 \\ 2.9 \\ 1.9 $	Mo 93	7.0E+14	3.6E+13	3.9E+13	8.2E+13 7 AF+12	2.2E+13 2.0E+12	3.9E+13 3.5E+12	3.6E+13 3.2E+12	2.7E+12	9.5E+12	1.0E+13	2.3E+13	2.1E+14 1.9E+13	2.7E+13	1.3E+13
$ \begin{array}{c} N_{5} & 95 \\ 7, 3E+14 \\ 2, 7E+13 \\ 2, 9E+15 \\ 1, 5E+14 \\ 1, 6E+14 \\ 2, 3E+13 \\ 2, 9E+15 \\ 1, 5E+14 \\ 1, 6E+14 \\ 2, 9E+14 \\ 1, 6E+14 \\ 1, 6E+15 \\ 1, 6E+11 \\ 1, 6E+14 \\ 1$	Nb 93M	2.9E+15	1.5E+14	1.6E+14	3.4E+14	9.4E+13	1.6E+14	1.5E+14	1.3E+14	4.4E+14	4.8E+14	1.1E+15	8.8E+14	1.2E+15	6.2E+14
Pa 233 2.9E+15 1.5E+14 1.6E+14 3.8E+14 1.0E+15 8.7E+14 1.2E+15 6.1E+14 Pa 234M 2.5E+15 1.3E+14 1.4E+14 2.9E+14 1.3E+14 1.8E+14 1.8E+14 1.1E+14 3.8E+14 1.8E+14	Nb 95	7.3E+14	3.7E+13	4.0E+13	8.6E+13	2.3E+13	4.0E+13	3.7E+13	3.2E+13	1.1E+14	1.2E+14	2.6E+14	2.2E+14	3.1E+14	1.5E+14
Pa 234R 2.5E+15 1.3E+14 1.4E+14 2.5E+14 8.0E+13 1.4E+14 1.3E+14 1.7E+14 9.0E+14 7.5E+14 1.5E+14 1.6E+14 3.5E+14 4.4E+13 3.5E+14 4.4E+13 3.5E+14 4.4E+13 3.5E+14 4.4E+13 3.5E+14 4.4E+13 3.5E+14 4.4E+14 3.5E+14 4.5E+14 3.6E+14 1.4E+14 3.5E+14 4.5E+14 9.0E+14 7.5E+14 1.6E+14 2.3E+14 1.5E+14 9.0E+14 7.5E+14 1.6E+14 2.3E+14 1.5E+14 9.0E+14 7.5E+14 1.6E+14 2.3E+14 1.5E+14 9.0E+13 7.5E+14 1.6E+15 5.2E+14 1.7E+13 9.2E+12 7.2E+12 1.5E+13 1.7E+13 1.7E+13 2.4E+13 1.7E+13 2.4E+13 1.2E+13 9.2E+12 3.2E+12 3.2E+13 1.7E+13 2.4E+13 1.2E+13 9.2E+11 3.1E+14 9.0E+11 3.4E+11 4.7E+13 2.4E+13 1.2E+13 9.2E+13 1.2E+13 9.2E+13 1.2E+13 9.2E+13 9.2E+14 9.2E+14 9.2E+14 9.2E+14 9.2E+14 9.2E+14 9.2E+14 9.2E+14 9.2E+1	Pa 233	2.9E+15	1.5E+14	1.6E+14	3.4E+14	9.3E+13	1.6E+14	1.5E+14	1.3E+14	4.4E+14	4.8E+14	1.0E+15	8.7E+14	1.2E+15	6.1E+14
Pb 214 3.08-14 4.08-13	Pa 234M	2.5E+15	1.3E+14	1.4E+14	2.9E+14	8.0E+13	1.4E+14	1.3E+14	1.1E+14 3.7E+13	3.8E+14 1 3E+14	4.1E+14	9.0E+14 3.1E+14	2.6E+14	1.1E+15 3.6E+14	5.3E+14 1.8E+14
Pd 107 5.4E+14 2.7E+13 3.0E+13 2.7E+13 2.3E+13 8.1E+13 8.9E+13 1.9E+14 1.6E+14 2.3E+14 1.1E+14 Pm 147 2.5E+15 1.3E+14 1.4E+14 2.9E+12 8.0E+13 1.4E+14 1.3E+14 1.1E+14 3.7E+14 4.1E+14 9.0E+14 7.5E+14 1.0E+15 5.2E+14 Pu 20 5.8E+13 2.9E+12 3.2E+12 6.7E+12 1.8E+12 3.2E+12 2.9E+12 3.6E+12 4.0E+14 7.5E+14 1.0E+15 5.2E+13 Pu 23 1.4E+12 7.2E+10 7.8E+10 7.2E+10 6.1E+10 2.1E+11 2.9E+11 5.4E+13 5.9E+13 3.0E+13 5.9E+13 3.0E+13 5.9E+13 3.0E+13 5.9E+13 3.0E+13 5.9E+13 5.9E+13 3.0E+13 5.9E+13	Pb 214	3.9E+15	2.0E+14	2.1E+14	4.5E+14	1.2E+14	2.1E+14	2.0E+14	1.7E+14	5.8E+14	6.4E+14	1.4E+15	1.2E+15	1.6E+15	8.2E+14
Pm 147 2.5E+15 1.3E+14 1.4E+14 2.9E+14 8.0E+13 1.4E+14 1.3E+14 1.1E+14 3.7E+14 4.1E+14 9.0E+14 7.5E+14 1.0E+15 5.2E+13 Pu 216 5.8E+13 2.9E+12 3.2E+12 6.7E+12 1.3E+12 3.2E+12 2.9E+12 2.5E+12 8.6E+12 9.4E+12 2.1E+13 1.7E+13 2.4E+13 1.2E+13 Pu 236 2.4E+13 1.2E+10 7.8E+10 1.7E+11 1.3E+12 2.9E+10 6.1E+10 2.1E+11 2.3E+11 5.1E+12 2.3E+11 5.1E+11 4.2E+11 5.9E+11 3.0E+11 Pu 239 1.4E+12 9.1E+10 9.9E+10 9.1E+10 7.8E+10 2.1E+11 2.3E+11 5.1E+12 2.3E+11 5.1E+11 4.2E+11 5.9E+11 3.0E+11 Pu 240 1.8E+12 5.7E+10 6.2E+10 1.3E+11 3.6E+12 6.6E+12 5.1E+12 1.8E+13 1.9E+13 4.2E+13 3.5E+13 4.9E+13 4.2E+13 2.5E+13 4.4E+13 5.7E+12 7.5E+13 4.4E+13 5.7E+14 4.4E+13 5.7E+1	Pd 107	5.4E+14	2.7E+13	3.0E+13	6.3E+13	1.7E+13	3.0E+13	2.7E+13	2.3E+13	8.1E+13	8.9E+13	1.9E+14	1.6E+14	2.3E+14	1.1E+14
Po 210 5.8E+13 2.9E+12 3.2E+12 6.7E+12 1.8E+12 3.2E+12 2.5E+12 2.5E+12 8.6E+12 2.1E+13 1.1E+13 2.4E+13 1.2E+13 1.2E+13 <th1.2e+13< th=""> <th1.2e+13< th=""> 1.</th1.2e+13<></th1.2e+13<>	Pm 147	2.5E+15	1.3E+14	1.4E+14	2.9E+14	8.0E+13	1.4E+14	1.3E+14	1.1E+14	3.7E+14	4.1E+14	9.0E+14	7.5E+14	1.0E+15	5.2E+14
$ \begin{array}{c} Pu \ 236 \\ Pu \ 236 \\ Pu \ 236 \\ Pu \ 236 \\ Pu \ 240 \\ 1.8E+12 \ 7.2E+12 \ 7.2$	Po 210	5.8E+13	2.9E+12	3.2E+12	6.7E+12	1.8E+12	3.2E+12	2.9E+12	2.5E+12	8.6E+12	9.4E+12	2.1E+13	1./E+13 7 2E+12	2.4E+13	1.2E+13 5 1F+12
Pu 240 1.5E+12 9.1E+10 9.9E+10 2.1E+11 5.3E+10 9.9E+10 9.1E+10 7.3E+10 2.7E+11 2.9E+11 5.3E+11 3.8E+11 Pu 241 1.2E+14 6.0E+12 6.5E+12 1.4E+13 3.8E+12 6.5E+12 5.1E+10 7.3E+10 2.7E+11 1.9E+13 4.2E+13 3.5E+13 4.9E+13 2.5E+13 Pu 241 1.1E+12 5.7E+10 6.2E+10 1.3E+11 3.6E+10 6.2E+10 5.7E+10 4.8E+10 1.7E+11 1.9E+13 4.2E+13 3.5E+13 4.9E+13 2.5E+13 Pu 242 1.1E+12 5.7E+10 6.2E+10 1.7E+11 3.6E+11 1.4E+13 1.5E+13 1.2E+14 4.2E+13 1.3E+11 4.2E+13 3.5E+13 4.2E+13 3.5E+13 4.2E+13 3.3E+13 4.2E+13 4.2E+13 3.3E+13 4.2E+13	Pu 236 Pu 239	2.4E+13	1.2E+12 7.2E+10	1.3E+12 7.8E+10	2.8E+12 1 7E+11	4 5E+10	7.8E+10	1.2E+12 7.2E+10	1.0E+12 6.1E+10	2.1E+11	2. 3E+11	5.1E+11	4.2E+12	5.9E+11	3.0E+11
Pu241 $1.2E+14$ $6.0E+12$ $6.5E+12$ $1.4E+13$ $3.8E+12$ $6.5E+12$ $6.0E+12$ $5.1E+12$ $1.8E+13$ $1.9E+13$ $4.2E+13$ $3.5E+13$ $4.9E+13$ $2.5E+13$ Pu242 $1.1E+12$ $5.7E+10$ $6.2E+10$ $1.3E+11$ $3.6E+10$ $6.2E+10$ $5.7E+10$ $4.8E+10$ $1.7E+11$ $1.8E+11$ $4.0E+11$ $3.4E+11$ $4.7E+11$ $2.5E+13$ Ra223 $8.2E+13$ $4.1E+12$ $4.5E+12$ $9.6E+12$ $2.6E+12$ $4.5E+12$ $4.1E+12$ $3.5E+12$ $1.8E+13$ $2.9E+13$ $2.5E+13$ $3.4E+13$ $1.7E+13$ Ra224 $2.0E+14$ $1.0E+13$ $1.1E+13$ $2.3E+13$ $6.4E+12$ $1.1E+13$ $1.0E+13$ $3.5E+12$ $3.2E+13$ $3.5E+13$ $4.2E+13$ Rn222 $2.7E+14$ $1.4E+13$ $1.5E+13$ $3.2E+13$ $8.7E+12$ $1.5E+13$ $1.4E+13$ $1.2E+14$ $4.0E+13$ $4.4E+13$ $9.7E+13$ $8.1E+13$ $1.1E+14$ $5.7E+13$ Ru103 $9.9E+14$ $5.0E+13$ $1.2E+13$ $3.2E+13$ $5.5E+13$ $5.2E+13$ $5.2E+12$ $1.9E+13$ $3.6E+14$ $3.6E+14$ $3.0E+14$ $4.2E+14$ <	Pu 240	1.8E+12	9.1E+10	9.9E+10	2.1E+11	5.8E+10	9.9E+10	9.1E+10	7.8E+10	2.7E+11	2.9E+11	6.5E+11	5.4E+11	7.6E+11	3.8E+11
$ \begin{array}{c} Pu \ 242 \\ Ra \ 223 \\ Ra \ 224 \\ 2.0E+13 \ 4.1E+12 \ 5.7E+10 \ 6.2E+10 \ 1.3E+11 \ 3.6E+10 \ 6.2E+10 \ 6.2E+10 \ 5.7E+10 \ 4.8E+10 \ 1.7E+11 \ 1.8E+11 \ 4.0E+11 \ 3.4E+11 \ 4.7E+11 \ 2.3E+11 \ 2.3E+11 \\ Ra \ 224 \\ 2.0E+14 \ 1.0E+13 \ 1.1E+13 \ 2.6E+12 \ 2.6E+12 \ 4.5E+12 \ 4.1E+12 \ 3.5E+12 \ 1.2E+13 \ 1.3E+13 \ 2.9E+13 \ 2.9E+13 \ 2.5E+13 \ 3.4E+13 \ 1.7E+13 \\ Rn \ 222 \\ 2.7E+14 \ 1.4E+13 \ 1.5E+13 \ 3.2E+13 \ 8.7E+12 \ 1.5E+13 \ 1.0E+13 \ 8.6E+12 \ 3.0E+13 \ 3.3E+13 \ 7.1E+13 \ 6.0E+13 \ 8.3E+13 \ 1.2E+13 \\ Rn \ 222 \\ 2.7E+14 \ 1.4E+13 \ 1.5E+13 \ 3.2E+13 \ 8.7E+12 \ 1.5E+13 \ 1.4E+13 \ 1.2E+13 \ 4.0E+13 \ 4.4E+13 \ 9.7E+13 \ 8.1E+13 \ 1.1E+14 \ 5.7E+13 \\ Ru \ 103 \ 9.9E+14 \ 5.0E+13 \ 5.5E+13 \ 1.2E+14 \ 3.2E+13 \ 5.5E+13 \ 5.0E+12 \ 5.5E+13 \ 1.5E+14 \ 1.6E+14 \ 3.6E+14 \ 3.0E+14 \ 3.0E+14 \ 4.2E+14 \ 2.1E+14 \\ Ru \ 106 \ 1.3E+14 \ 5.0E+12 \ 1.5E+13 \ 1.2E+13 \ 4.1E+12 \ 7.0E+12 \ 5.5E+12 \ 1.9E+13 \ 1.5E+14 \ 1.6E+14 \ 3.6E+14 \ 3.0E+14 \ 3.0E+14 \ 4.2E+14 \ 2.1E+14 \\ Ru \ 106 \ 1.3E+14 \ 5.0E+13 \ 1.2E+14 \ 2.7E+14 \ 1.3E+14 \ 1.3E+14 \ 3.7E+14 \ 3.7E+14 \ 3.6E+13 \ 3.6E+13 \ 5.3E+13 \ 2.7E+13 \\ S \ 3.5 \ 2.3E+15 \ 1.1E+14 \ 1.3E+14 \ 2.7E+14 \ 7.3E+13 \ 1.3E+14 \ 1.1E+14 \ 9.8E+13 \ 3.4E+14 \ 3.7E+14 \ 8.0E+14 \ 6.8E+14 \ 9.5E+14 \ 4.8E+14 \\ Sb \ 125 \ 2.2E+14 \ 1.1E+14 \ 9.3E+13 \ 2.6E+13 \ 7.1E+12 \ 1.2E+13 \ 1.1E+14 \ 9.8E+13 \ 3.6E+13 \ 3.6E+13 \ 8.0E+13 \ 6.7E+13 \ 9.3E+13 \ 4.7E+13 \\ Sc \ 46 \ 1.8E+14 \ 9.3E+12 \ 1.0E+13 \ 2.5E+12 \ 1.0E+13 \ 9.3E+12 \ 7.9E+12 \ 2.7E+13 \ 3.0E+13 \ 3.0E+13 \ 5.5E+13 \ 7.7E+13 \ 3.8E+13 \\ Sc \ 7.9 \ 1.5E+14 \ 1.3E+14 \ 1.3E+14 \ 1.3E+14 \ 1.3E+14 \ 3.3E+14 \ 3.3E+14 \ 3.3E+14 \ 4.3E+14 \ 5.5E+13 \ 3.3E+13 \ 3.4E+14 \ 5.5E+13 \ 3.5E+13 \ 3.5E+13 \ 3.2E+13 \ 3.2E+13 \ 3.5E+13 \ 3.5E+13 \ 3.5E+13 \ 3.2E+13 \ 3.2E+13 \ 3.5E+13 \ 3.5E+14 \ 4.8E+14 \ 5.5E+14 \ 4.3E+14 \ 5.5E+14 \ 4.3E+14 \ 5.5E+14 \ 4.3E+14 \ 5.5E+14 \ 4.3E+14 \ 5.5E+14$	Pu 241	1.2E+14	6.0E+12	6.5E+12	1.4E+13	3.8E+12	6.5E+12	6.0E+12	5.1E+12	1.8E+13	1.9E+13	4.2E+13	3.5E+13	4.9E+13	2.5E+13
Ra2220.22+130.22+141.02+131.12+132.32+130.22+132.32+130.22+132.32+130.22+132.32+130.22+1	Pu 242	1.1E+12 9.2E+12	5.7E+10	6.2E+10	1.3E+11	3.6E+10	6.2E+10	5.7E+10	4.8E+10	1.7E+11	1.8E+11	4.0E+11	3.4E+11	4.7E+11	2.3E+11
Rn 222 2.7E+14 1.4E+13 1.5E+13 3.2E+13 8.7E+12 1.5E+13 1.4E+13 1.2E+13 4.0E+13 4.4E+13 9.7E+13 8.1E+13 1.1E+14 5.7E+13 Ru 103 9.9E+14 5.0E+13 5.5E+13 1.2E+13 4.0E+13 1.5E+14 1.6E+14 3.0E+14 4.2E+13 2.1E+14 4.2E+13 3.2E+13 5.7E+13	Ra 224	2.0E+14	1.0E+13	4.5E+12 1.1E+13	2.3E+13	6.4E+12	4.5E+12 1.1E+13	4.1E+12 1.0E+13	3.5E+12 8.6E+12	3.0E+13	1. 3E+13	2.9E+13 7.1E+13	6.0E+13	3.4E+13 8.3E+13	1.7E+13 4.2E+13
Ru 103 9.9E+14 5.0E+13 5.5E+13 1.2E+14 3.2E+13 5.5E+13 5.0E+13 4.3E+13 1.5E+14 1.6E+14 3.0E+14 3.0E+14 4.2E+14 2.1E+14 Ru 106 1.3E+14 6.4E+12 7.0E+12 1.5E+13 4.1E+12 7.0E+12 5.5E+13 2.1E+13 2.1E+13 3.8E+13 3.8E+13 3.2E+13 2.7E+13 S 35 2.3E+15 1.1E+14 1.3E+14 7.0E+12 7.3E+13 1.3E+14 1.1E+14 9.8E+13 3.4E+14 3.7E+14 8.2E+14 8.2E+14 9.5E+14 4.6E+13 3.8E+13 5.3E+13 2.7E+13 S 2.3E+15 1.1E+13 1.2E+13 2.6E+13 7.1E+12 1.2E+13 1.1E+13 9.6E+12 3.3E+13 3.6E+14 8.0E+13 6.7E+13 9.3E+13 4.7E+13 S 4 1.8E+14 9.3E+12 1.0E+13 9.6E+12 7.9E+12 2.7E+13 3.0E+13 6.6E+13 5.5E+13 7.7E+13 3.8E+13 S 7 9 1.5E+14 7.3E+12 1.0E+13 9.3E+12 7.8E+12 2.3E+13 3.8E+14 3.0E+14 3.6E+14 3.6E+14 <	Rn 222	2.7E+14	1.4E+13	1.5E+13	3.2E+13	8.7E+12	1.5E+13	1.4E+13	1.2E+13	4.0E+13	4.4E+13	9.7E+13	8.1E+13	1.1E+14	5.7E+13
Ru 100 1.35+14 0.4E+12 7.0E+12 1.5E+13 4.1E+12 7.0E+12 6.4E+12 5.5E+12 1.9E+13 2.1E+13 4.6E+13 3.8E+13 5.3E+13 2.7E+13 S 35 2.3E+15 1.1E+14 1.3E+14 2.7E+14 7.3E+13 1.3E+14 1.1E+14 3.7E+14 8.2E+14 6.4E+12 5.5E+12 3.4E+14 3.7E+14 8.2E+14 6.8E+14 9.5E+14 4.8E+14 Sb 125 2.2E+14 1.1E+13 1.2E+13 7.1E+12 1.2E+13 1.1E+13 9.6E+12 3.3E+13 3.6E+13 6.7E+13 9.3E+13 4.7E+13 Sc 46 1.8E+14 9.8E+12 1.0E+13 9.1E+13 1.9E+12 7.9E+12 7.9E+12 7.9E+12 7.9E+12 3.2E+13 3.0E+13 6.6E+13 5.5E+13 4.7E+13 3.8E+13 Se 79 1.5E+14 7.8E+12 8.5E+12 1.8E+13 4.9E+14 8.5E+12 7.8E+13 3.4E+14 3.8E+13 5.5E+13 3.6E+13 5.5E+13 3.2E+13 Sm 151 2.3E+14 1.3E+14 1.3E+14 1.2E+13 1.3E+14 1.2E+14 3.8E+14 <t< td=""><td>Ru 103</td><td>9.9E+14</td><td>5.0E+13</td><td>5.5E+13</td><td>1.2E+14</td><td>3.2E+13</td><td>5.5E+13</td><td>5.0E+13</td><td>4.3E+13</td><td>1.5E+14</td><td>1.6E+14</td><td>3.6E+14</td><td>3.0E+14</td><td>4.2E+14</td><td>2.1E+14</td></t<>	Ru 103	9.9E+14	5.0E+13	5.5E+13	1.2E+14	3.2E+13	5.5E+13	5.0E+13	4.3E+13	1.5E+14	1.6E+14	3.6E+14	3.0E+14	4.2E+14	2.1E+14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RU 106	1.3E+14	6.4E+12	7.0E+12	1.5E+13	4.1E+12	7.0E+12	6.4E+12	5.5E+12	1.9E+13	2.1E+13	4.6E+13	3.8E+13	5.3E+13	2.7E+13
Sc 46 1.3E+14 9.3E+12 1.0E+13 2.1E+13 5.9E+12 1.0E+13 9.3E+12 5.9E+12 7.7E+13 3.0E+13 6.6E+13 5.5E+13 7.7E+13 3.2E+13 Sm 151 2.3E+15 1.2E+14 1.3E+14 2.7E+13 1.3E+14 1.2E+14 9.9E+13 3.4E+14 3.8E+13 5.5E+13 3.2E+13 Sm 151 2.3E+15 1.2E+14 1.3E+14 2.7E+13 1.3E+14 1.2E+14 9.9E+13 3.4E+14 3.8E+14 8.2E+14 6.9E+14 9.6E+14 4.8E+14 Sr 89 8.5E+14 4.3E+13 9.7E+13 4.3E+13 3.7E+13 1.3E+14 1.4E+14 3.0E+14 2.5E+14 3.6E+14 4.8E+14 Sr 90 5.9E+13 3.0E+12 6.9E+12 3.2E+12 3.0E+12 3.7E+13 1.3E+14 1.4E+14 3.0E+14 2.5E+14 3.6E+14 1.8E+14 Sr 90	55 125	2.3E+13 2.2E+14	1.1E+13	1.3E+14 1.2E+13	2.6E+13	7.1E+12	1.3E+14 1.2E+13	1.1E+13	9.8E+13 9.6E+12	3.4E+14 3.3E+13	3.7E+14	8.2E+14 8 0F+13	6.8E+14 6 7E+13	9.5E+14	4.8E+14 4.7E+13
Se 79 1.5E+14 7.8E+12 8.5E+12 1.8E+13 4.9E+12 8.5E+12 7.8E+12 6.7E+12 2.3E+13 2.5E+13 4.6E+13 6.5E+13 3.2E+13 Sm 151 2.3E+15 1.2E+14 1.3E+14 2.7E+13 1.3E+14 1.2E+14 9.9E+13 3.4E+14 3.8E+14 8.2E+14 6.9E+14 9.6E+14 4.8E+14 Sr 89 8.5E+14 4.3E+13 9.7E+13 4.7E+13 4.7E+13 4.3E+14 3.4E+14 3.8E+14 8.2E+14 6.9E+14 9.6E+14 4.8E+14 Sr 89 8.5E+14 4.3E+13 9.7E+13 4.7E+13 4.7E+13 3.7E+13 1.3E+14 1.4E+14 3.0E+14 2.5E+14 3.6E+14 1.8E+14 Sr 90 5.9E+13 3.0E+12 3.2E+12 3.0E+12 3.7E+13 1.3E+14 1.4E+14 3.0E+14 2.5E+14 3.6E+14 1.8E+14 Sr 90 5.9E+13 3.0E+12 3.2E+12 3.0E+12 3.0E+12 2.1E+13 1.8E+13 3.7E+13 1.4E+13 3.6E+14 1.8E+14 3.6E+13 3.6E+14 3	Sc 46	1.8E+14	9.3E+12	1.0E+13	2.1E+13	5.9E+12	1.0E+13	9.3E+12	7.9E+12	2.7E+13	3.0E+13	6.6E+13	5.5E+13	7.7E+13	3.8E+13
Sm 151 2.3E+15 1.2E+14 1.3E+14 2.7E+13 1.3E+14 1.2E+14 9.9E+13 3.4E+14 3.8E+14 8.2E+14 6.9E+14 9.6E+14 4.8E+14 Sr 89 8.5E+14 4.3E+13 4.7E+13 9.7E+13 1.3E+14 1.3E+14 1.4E+14 3.8E+14 8.2E+14 6.9E+14 9.6E+14 4.8E+14 Sr 90 5.9E+13 3.0E+12 3.2E+12 3.7E+13 1.3E+14 1.4E+14 3.0E+14 2.5E+14 3.6E+14 3.6E+14 1.8E+14 Sr 90 5.9E+13 3.0E+12 3.2E+12 3.0E+12 3.2E+12 3.0E+12 2.5E+12 9.6E+12 2.1E+13 1.8E+13 2.5E+13 1.2E+13 Ta 182 2.2E+14 1.1E+13 1.2E+13 1.2E+13 </td <td>Se 79</td> <td>1.5E+14</td> <td>7.8E+12</td> <td>8.5E+12</td> <td>1.8E+13</td> <td>4.9E+12</td> <td>8.5E+12</td> <td>7.8E+12</td> <td>6.7E+12</td> <td>2.3E+13</td> <td>2.5E+13</td> <td>5.5E+13</td> <td>4.6E+13</td> <td>6.5E+13</td> <td>3.2E+13</td>	Se 79	1.5E+14	7.8E+12	8.5E+12	1.8E+13	4.9E+12	8.5E+12	7.8E+12	6.7E+12	2.3E+13	2.5E+13	5.5E+13	4.6E+13	6.5E+13	3.2E+13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm 151	2.3E+15	1.2E+14	1.3E+14	2.7E+14	7.3E+13	1.3E+14	1.2E+14	9.9E+13	3.4E+14	3.8E+14	8.2E+14	6.9E+14	9.6E+14	4.8E+14
$\begin{array}{c} \textbf{Ta} 182 \\ \textbf{2.2E114} \\ \textbf{1.1E+13} \\ \textbf{1.2E+13} \\ \textbf{7} \textbf{7} \textbf{1.2E+13} \\ \textbf{7} \textbf{7} \textbf{1.2E+13} \\ \textbf{7} \textbf{7} \textbf{1.2E+13} \\ 1$	Sr 90	5 QE-11	4.JE+13	4./E+13 3.2E+12	9.9E+13	2./E+13	4./E+13	4.JE+13 3 OF+12	J./E+13	1. JE+14	1.4E+14	3.0E+14	2.5E+14	3.6E+14	1.8E+14
$r \rightarrow$ is seven as seven as seven as a seven as a seven as r_{r} and r_{r} and r_{r} a seven as seven	Ta 182	2.2E+14	1.1E+13	1.2E+12	2.6E+13	7.2E+12	1.2E+12	1.1E+13	2.5E+12 9.7E+12	3. 4E+13	3.7E+13	2.1E+13 8.1E+13	6.7E+13	2.5E+13 9.4E+13	1.2E+13 4.7E+13
Tc 99 6.8E+13 3.5E+12 3.8E+12 8.0E+12 2.2E+12 3.8E+12 3.5E+12 2.9E+12 1.0E+13 1.1E+13 2.5E+13 2.0E+13 2.9E+13 1.4E+13	Tc 99	6.8E+13	3.5E+12	3.8E+12	8.0E+12	2.2E+12	3.8E+12	3.5E+12	2.9E+12	1.0E+13	1.1E+13	2.5E+13	2.0E+13	2.9E+13	1.4E+13
TE 125H 3.2E+15 1.6E+14 1.8E+14 3.8E+14 1.0E+14 1.8E+14 1.6E+14 1.4E+14 4.9E+14 5.3E+14 1.2E+15 9.7E+14 1.4E+15 6.8E+14	Te 125M	3.2E+15	1.6E+14	1.8E+14	3.8E+14	1.0E+14	1.8E+14	1.6E+14	1.4E+14	4.9E+14	5.3E+14	1.2E+15	9.7E+14	1.4E+15	6.8E+14
1 in 447 4.5E+13 2.3E+12 2.5E+12 5.2E+12 1.4E+12 2.5E+12 2.3E+12 1.9E+12 6.7E+12 7.3E+12 1.6E+13 1.3E+13 1.9E+13 9.4E+13 1.7E+13 9.4E+13 9.4E+	Th 228	4.5E+13 4 7E±12	2. JE+12	2.5E+12	5.2E+12	1.4E+12	2.5E+12	2.3E+12	1.9E+12	6.7E+12	7.3E+12	1.6E+13	1.3E+13	1.9E+13	9.4E+12
Th 200 Tright 2-92711 2-02711 3-32711 1-32711 2-02711 2-42711 2-42711 2-42711 1-42711 1-42711 1-42712 1-42712 2-02712 9-92711 1-72715 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-727555 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755 1-72755	Th 231	2.2E+16	1.1E+15	2.0E+11 1.2E+15	5.5E+11 2.6E+15	7.15+11	2.0E+11 1.2E±15	2.4E+11 1.1E+15	2.UE+11 9.5E+14	7.1E+11 3.3E±15	1. /E+11	1. /E+12 7 0F+15	1.4E+12 6.6E+15	2.UE+12 9 3E+15	9.9E+11 4 6F±15
Th 234 4.9E+14 2.5E+13 2.7E+13 2.5E+13 2.7E+13 2.5E+13 2.1E+13 7.1E+13 7.1E+13 7.1E+13 7.1E+13 7.1E+14 1.5E+14 2.1E+14 1.5E+14	Th 234	4.9E+14	2.5E+13	2.7E+13	5.8E+13	1.6E+13	2.7E+13	2.5E+13	2.1E+13	7:4E+13	8.1E+13	1.8E+14	1.5E+14	2.1E+14	1.0E+14
U 212 1.1E+12 5.8E+10 6.3E+10 1.3E+11 3.6E+10 6.3E+10 5.8E+10 4.9E+10 1.7E+11 1.9E+11 4.1E+11 3.4E+11 4.8E+11 2.4E+11	U 232	1.1E+12	5.8E+10	6.3E+10	1.3E+11	3.6E+10	6.3E+10	5.8E+10	4.9E+10	1.7E+11	1.9E+11	4.1E+11	3.4E+11	4.8E+11	2.4E+11
¹ ²³⁶ 1.1E ¹ 2 5.5E ¹ 0 6.0E ¹ 0 1.3E ¹ 1 3.5E ¹ 0 6.0E ¹ 0 5.5E ¹ 0 4.7E ¹ 0 1.6E ¹ 1 1.8E ¹ 1 3.9E ¹ 1 3.3E ¹ 1 4.6E ¹ 1 2.3E ¹ 1	U 236	1.1E+12	5.5E+10	6.0E+10	1.3E+11	3.5E+10	6.0E+10	5.5E+10	4.7E+10	1.6E+11	1.8E+11	3.9E+11	3.3E+11	4.6E+11	2.3E+11
$\frac{1}{20}$ = $\frac{2}{5}$ = $\frac{2}{5}$ = $\frac{1}{5}$ = $\frac{2}{5}$ = $\frac{1}{5}$ = 1	Zn 65	5.1E+16 4.2E+14	2.6E+15	2.8E+15	6.0E+15	1.6E+15	2.8E+15	2.6E+15 2 1F+13	2.2E+15	7.7E+15	8.4E+15	1.8E+16	1.5E+16	2.2E+16	1.1E+16
Zr 93 1.1E+14 5.5E+12 6.0E+12 1.3E+13 1.5E+12 6.0E+12 5.5E+12 6.7E+12 1.6E+13 0.3E+13 0.7E+13 1.3E+13 1.3E+13 4.6E+13 1.5E+14 8.8E+13	Zr 93	1.1E+14	5.5E+12	6.0E+12	1.3E+13	3.5E+12	6.0E+12	5.5E+12	4.7E+12	1.6E+13	1.8E+13	3.9E+13	3.3E+13	1.0E+14 4.6E+13	0.0ETIJ 2.3E+13
Zr 95 5.1E+14 2.6E+13 2.8E+13 2.6E+13 2.6E+13 2.2E+13 7.7E+13 8.4E+13 1.8E+14 1.5E+14 2.2E+14 1.1E+14	Zr 95	5.1E+14	2.6E+13	2.8E+13	6.0E+13	1.6E+13	2.8E+13	2.6E+13	2.2E+13	7.7E+13	8.4E+13	1.8E+14	1.5E+14	2.2E+14	1.1E+14