Planfeststellungsverfahren zur Stilllegung des Endlagers für radioaktive Abfälle Morsleben

Verfahrensunterlage

Titel:	Geomechanische Betriebsüberwachung 2007
Autor:	DBE
Erscheinungsjahr:	2008
Unterlagen-Nr.:	I 270
Revision:	00
Unterlagenteil:	Teil 2 von 8

Proiekt	PSP-Element	Obi.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	NN	h de m
9M			00YES01			GC	ΒZ	0007	00	PBEL

Blatt: 4

Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE), Peine

Geomechanische Betriebsüberwachung 2007 - Schacht Bartensleben

Stichwörter:

Austrittsrate, Flat-Jack-Verfahren, Konvergenz, Schacht Bartensleben, Spannungsmessung

Zusammenfassung:

Im Schachtmauerwerk wurde an den Messlokationen bei -76,50 mNN und -106,25 mNN durch die Messungen nach dem Flat-Jack-Verfahren ein unkritisches Tangentialspannungsniveau nach der DMT-Klassifizierung nachgewiesen. Damit haben sich die vorher rechnerisch ermittelten Tangentialspannungsbeträge nicht bestätigt. In dem Vergleichshorizont im Mauerwerk bei -36,00 mNN liegen die gemessenen Tangentialspannungen ebenfalls im nicht kritischen Bereich. Die Ergebnisse der Spannungsmessungen werden durch die visuelle Bemusterung des Schachtmauerwerkes gestützt.

In den Konvergenzmesshorizonten ist kein langzeitlicher Verschiebungstrend erkennbar. Das Schachtmauerwerk ist in den überwachten Bereichen als verformungsstabil anzusehen.

	-	Projekt	PSP-EI		Obj.Ke	enn.	Funktion	Komponente	Baugruppe	Aufgabe	UA A A	Lfd Nr.	Rev	
		9M					00YES01			GC	BZ	0007	00	DBEL
Geom	necha	inisch	e Betrie	ebsüb	erwa	chur	ng 2007 –	- Schacht	t Barte	nslebei	n			Blatt: 5
						/								
Inhalt	tsver	zeich	nis Bla	itt										
1	Ei	nleitu	ng											7
2	M	esssit	uation	und M	lesss	yste	me							7
3	M	ess- ι	und Bec	bacht	tungs	erge	ebnisse							
3.1	Ko	onver	genz											10
3.2	Sp	bannu	ıng											10
3.3	Vi	suelle	Bemu	sterun	ng des	s So	hachtma	Jerwerke	S					
3.4	Ζl	ITIUSSI	messur	igen										12
4	Be	ewertu	ung											
5	Lit	teratu	r											14
Verze	eichn	is der	r Anhä	nge										Blatt
Anhar	ng 1	Ko	nverge	nz							<u>)</u>			
Anhar	ng 2	Sp	annung	gsellip	sen N	less	shorizonte	e CP001	K und (CP003I	٢			
Andrew		Du		nittlich		etritt	aratan							29
Annar	ig s	Du	ircnschi	munch	ie Au	Sun	siateri						• • • • • • •	
Annar	ig s	Du	ircnschi	munch	le Au	5010	srateri							20
Blattz	ig s zahl c	dieser	r Unter	lage o	ohne	Anl	agen:							Blatt: 29
Blattz	ahl c ahl c	dieser is der	r Unter r Anlag	lage o	ohne	Anl	agen:			jewe	ilige	e Blat	tzah	Blatt: 29 Il der Anlage
Annar Blattz Verze Anlage	z ahl c e 1	dieser is der Scha	r Unter r Anlag achtbild	lage o Jen d Scha	ohne acht E	Anl Barte	agen:	Blatt 1, -	+140 m	jewe NN bis	ilige 3 +4	e Blat 0 mNl	tza h N	Blatt: 29 Il der Anlage
Annar Blattz Verze Anlage	zahl c eichni e 1	dieser is der Scha 9M/0	r Unter r Anlag achtbild	lage o len d Scha	ohne acht E	Anl Barte	agen: ensleben, 1/13	Blatt 1, -	+140 m	jewe nNN bis	ilige s +4	e Blat 0 mNl	tzah N	Blatt: 29 Il der Anlage
Annar Blattz Verze Anlage	e 2	dieser is der Scha 9M// Scha	r Unter r Anlag achtbild 00YES achtbild	lage o len d Scha 01/GB	ohne acht E B/RG/	Anl Barte 000 Barte	agen: ensleben, 1/13	Blatt 1, - Blatt 2, -	+140 m +40 m	jewe nNN bis	ilige s +4 -60	e Blat 0 mNl mNN	tzah N	Blatt: 29 Il der Anlage
Annar Blattz Verze Anlage	e 1 e 2	dieser is der Scha 9M/0 Scha 9M/0	r Unter r Anlag achtbild 00YES achtbild	lage o Jen 01/GB 01/GB	acht E B/RG/ B/RG/	Anl Barte 000 Barte	agen: agen: ensleben, 1/13 ensleben, 2/14	Blatt 1, - Blatt 2, -	+140 m +40 m	jewe nNN bis	ilige 3 +4 -60	e Blat 0 mNl mNN	tzah N	Blatt: 29 Il der Anlage 1
Annar Blattz Verze Anlage Anlage	e 1 e 3	dieser is der Scha 9M/0 Scha 9M/0 Scha	r Unter r Unter achtbild 00YES achtbild 00YES achtbild	lage o Jen 01/GB 01/GB 01/GB d Scha	acht E B/RG/ B/RG/ acht E	Ani 3arte 000 3arte 000	agen: agen: agen: 2/14 ensleben, 2/14	Blatt 1, - Blatt 2, - Blatt 3, -	+140 m +40 mN	jewe NN bis NN bis	ilige 5 +4 -60 160	e Blat 0 mNl mNN mNN	tzah N	Blatt: 29 Il der Anlage 1
Annar Blattz Verze Anlage Anlage	e 1 e 3	Jieser is der Scha 9M/0 Scha 9M/0 Scha 9M/0	r Unter r Unter achtbild 00YES achtbild 00YES achtbild 00YES	lage o len d Scha d Scha d Scha 01/GB d Scha 01/GB	acht E 3/RG/ 3/RG/ 3/RG/ 3/RG/	Ani Barte 000 Barte 000 Barte 000	agen: agen: 1/13 ensleben, 2/14 ensleben, 3/14	Blatt 1, - Blatt 2, - Blatt 3, -	+140 m +40 mN -60 mN	jewe nNN bis NN bis	ilige 5 +4 -60 160	e Blat 0 mNl mNN mNN	tzah N	Blatt: 29 Il der Anlage 1 1
Annar Blattz Verze Anlage Anlage Anlage	e 1 e 3 e 4	Jieser is der Scha 9M/0 Scha 9M/0 Scha Scha	r Unter r Unter achtbild 00YES achtbild 00YES achtbild 00YES achtbild	lage o len d Scha d Scha d Scha d Scha d Scha d Scha	acht E 3/RG/ acht E 3/RG/ acht E 3/RG/ acht E	Ani Barte 0000 Barte 0000 Barte	agen: agen: 1/13 2/14 ensleben, 3/14 ensleben,	Blatt 1, - Blatt 2, - Blatt 3, - Blatt 4, -	+140 m +40 m -60 m -160 m	jewe NN bis NN bis IN bis -	ilige 3 +4 -60 160 -26	e Blat 0 mNl mNN mNN 0 mNl	tzah N N	Blatt: 29 Il der Anlage 1
Annar Blattz Verze Anlage Anlage Anlage	e 1 e 2 e 4	Jieser is der Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha	r Unter r Unter achtbild 00YES achtbild 00YES achtbild 00YES achtbild	lage of len d Scha d Scha d Scha d Scha d Scha d Scha d Scha d Scha	acht E 3/RG/ acht E 3/RG/ acht E 3/RG/ acht E 3/RG/	Anl Barte 0000 Barte 0000 Barte 0000	agen: agen: ensleben, 1/13 ensleben, 2/14 ensleben, 3/14 ensleben, 4/12	Blatt 1, - Blatt 2, - Blatt 3, - Blatt 4, -	+140 m +40 mN -60 mN	jewe NN bis NN bis IN bis -	ilige +4 -60 160 -26	e Blat 0 mNl mNN mNN 0 mN	tzah N	Blatt: 29 Il der Anlage 1 1 1
Annar Blattz Verze Anlage Anlage Anlage	e 1 e 2 e 3 e 5	Jieser is der Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha	r Unter r Anlag achtbild 00YES achtbild 00YES achtbild 00YES achtbild	lage of Jen d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB	acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E	Anl Barte 0000 Barte 0000 Barte 0000 Barte	agen: agen: ensleben, 1/13 ensleben, 2/14 ensleben, 3/14 ensleben, 4/12	Blatt 1, - Blatt 2, - Blatt 3, - Blatt 4, - Blatt 5, -	+140 m +40 mN -60 mN -160 m	jewe NN bis NN bis NN bis NN bis	ilige 3 +4 -60 -26 -26	e Blat 0 mNl mNN 0 mNl 0 mNl	tzah N N N	Blatt: 29 Il der Anlage 1 1 1
Annar Blattz Verze Anlage Anlage Anlage	e 1 e 2 e 3 e 5	Jieser is der Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0	r Unter r Anlag achtbild 00YES achtbild 00YES achtbild 00YES achtbild 00YES	lage of Jen d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha	acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E	Ani 3arte 000 3arte 000 3arte 000 3arte 000	agen: agen: agen: ensleben, 1/13 ensleben, 3/14 ensleben, 4/12 ensleben, 5/11	Blatt 1, - Blatt 2, - Blatt 3, - Blatt 4, - Blatt 5, -	+140 m +40 m -60 m -160 m -260 m	jewe NN bis NN bis NN bis NN bis	ilige 3 +4 -60 -26 -36	e Blat 0 mNl mNN mNN 0 mNl 0 mNl	tzah N N	Blatt: 29 Il der Anlage 1 1 1 1 1
Annar Blattz Verze Anlage Anlage Anlage Anlage	e 1 e 2 e 3 e 4 e 5 e 6	Jieser is der Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha	r Unter r Unter achtbild 00YES achtbild 00YES achtbild 00YES achtbild 00YES achtbild	lage of Jen d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha	acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E	Ani Barte 0000 Barte 0000 Barte 0000 Barte 0000 Barte	agen: agen: agen: agen: 2/14 2/14 ansleben, 3/14 ansleben, 5/11 ansleben,	Blatt 1, - Blatt 2, - Blatt 3, - Blatt 4, - Blatt 5, - Blatt 6, -	+140 m +40 m -60 m -160 m -260 m -360 m	jewe NN bis NN bis NN bis NN bis NN bis	ilige +4 -60 160 -26 -36 -46	e Blat 0 mNl mNN mNN 0 mN 0 mN	tzah N N N N	Blatt: 29 Il der Anlage 1 1 1 1
Annar Blattz Verze Anlage Anlage Anlage Anlage	e 1 e 2 e 3 e 4 e 5 e 6	Jieser is der Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0	r Unter r Unter r Anlag achtbild 00YES achtbild 00YES achtbild 00YES achtbild 00YES achtbild 00YES	lage of len d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB	acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/	Ani Barte 000 Barte 000 Barte 000 Barte 000 Barte 000	agen: agen: agen: 1/13 2/14 2/14 ansleben, 3/14 ansleben, 5/11 ansleben, 5/11	Blatt 1, - Blatt 2, - Blatt 3, - Blatt 4, - Blatt 5, - Blatt 6, -	+140 m +40 m -60 m -160 m -260 m -360 m	jewe NN bis NN bis NN bis NN bis NN bis	ilige +4 -60 160 -26 -36 -46	e Blat 0 mNl mNN mNN 0 mNl 0 mNl 0 mNl	tzah N N N N	Blatt: 29 Il der Anlage 1 1 1 1 1 1
Annar Blattz Verze Anlage Anlage Anlage Anlage Anlage	e 1 e 2 e 3 e 4 e 5 e 6 e 7	Jieser is der Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha 9M/0 Scha	r Unter r Anlag achtbilc 00YES achtbilc 00YES achtbilc 00YES achtbilc 00YES achtbilc 00YES achtbilc 00YES achtbilc	lage of len d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB	acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ Messe	Ani Barte 0000 Barte 0000 Barte 0000 Barte 0000 Barte 0000 Barte	agen: agen: agen: agen: agen: agensleben, 1/13 ansleben, 2/14 ansleben, 4/12 ansleben, 5/11 ansleben, 6/10	Blatt 1, - Blatt 2, - Blatt 3, - Blatt 4, - Blatt 5, - Blatt 6, - Schacht	+140 m +40 m -60 m -160 m -260 m -360 m Barter	jewe NN bis NN bis NN bis NN bis NN bis	ilige +4 -60 160 -26 -36 -46 	e Blat 0 mNl mNN 0 mNl 0 mNl 0 mNl 0 mNl	tzah N N N N	Blatt: 29 Il der Anlage 1 1 1 1 1 1
Annar Blattz Verze Anlage Anlage Anlage Anlage	e 1 e 2 e 3 e 4 e 5 e 6 e 7	dieser is der Scha 9M/0 Scha Scha Scha Scha Scha Scha Scha Scha	r Unter r Anlag achtbilo 00YES achtbilo 00YES achtbilo 00YES achtbilo 00YES achtbilo 00YES achtbilo 00YES 00YES	lage of len d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB d Scha 01/GB	acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ acht E B/RG/ Messe	Ani 3arte 000 3arte 000 3arte 000 3arte 000 3arte 000 3arte 000 000	agen: agen: agen: agen: agen: agensleben, 1/13 ansleben, 2/14 ansleben, 3/14 ansleben, 5/11 ansleben, 6/10 chtungen	Blatt 1, - Blatt 2, - Blatt 3, - Blatt 3, - Blatt 5, - Blatt 6, - Schacht	+140 m +40 m -60 m -160 m -260 m -360 m Barter	jewe NN bis NN bis IN bis NN bis NN bis	ilige +4 -60 160 -26 -36 -46 	e Blat 0 mNl mNN mNN 0 mNl 0 mNl 0 mNl	tzah N N N N	Blatt: 29 Il der Anlage 1 1 1 1 1 1 1 1

	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
	9M		NNNNNN	00YES01	AANNNA	AANN	GC	АА В7	0007	00	DBED
Geomech	anisch	ne Betriebsübe	erwachu	ng 2007 –	Schacht	t Barte	nslebe	n		1	Blatt: 6
Gesamte	Blattz	ahl dieser U	nterlage	:							36
Vorzoich	nic do	r Taballan									Platt
	lis dei										Diatt
Tabelle 1:	Me	erkmale der K	onverge	nzhorizon	te CG00	1K bis	CG011	1K			
Tabelle 2:	Me	erkmale der S	pannung	jsmessno	rizonte C	P001k	VL DIS	CP(JU3K/L		
Tabelle 3:	ve bi	is CG011K So	n und ve chacht B	rscniebun artenslebe	gsraten i en	n aen	Messno	oriz	onten	CG	
Tabelle 4:	Та	Ingentialspani	nungen r	nach dem	Flat-Jac	k-Verfa	ahren				
Tabelle 5:	Pa	arameter der S	Spannun	gsellipsen							

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	DDEA
9M			00YES01			GC	ΒZ	0007	00	PDEL

Blatt: 7

1 Einleitung

In jährlichen Abständen findet eine Begutachtung der Einbauten und des Ausbaus des Schachtes Bartensleben durch Sachverständige der DMT-Gesellschaft für Forschung und Prüfung mbH Leipzig statt, um die Sicherheit unter Berücksichtigung des besonderen Verwendungszweckes des Bergwerks als Endlager für radioaktive Abfallstoffe zu beurteilen und Maßnahmen vorzuschlagen, die der Gewährleistung der Sicherheit der Schachteinbauten und des -ausbaus dienen. Im Gutachten 13910-96-192 der DMT vom 07.11.1996 wurde empfohlen, bei ca. -40 mNN bis -50 mNN in einem Bereich mit instabilem Gebirge zur Beobachtung möglicher Veränderungen an der Kontur des Schachtausbaus u.a. Konvergenzhorizonte zur regelmäßigen Überwachung einzurichten /1/. In den Folgejahren wurde zur Überwachung der Standsicherheit in weiteren Bereichen des Schachtes das Messprogramm sukzessive erweitert. In diesem Zusammenhang erfolgte 2007 in 3 Messhorizonten die Messung der Tangentialspannungen im Schachtausbau sowie die Installation einer Messeinrichtung zur Langzeitspannungsmessung.

Dieser jährlich zu erstellende Bericht folgt der Festlegung zwischen dem Bergamt Staßfurt mit seinem Gutachter, dem BfS und der DBE. Er stellt die Ergebnisse der geomechanischen Überwachung des Schachtes Bartensleben bis zum 31.12.2007 dar.

2 Messsituation und Messsysteme

Der von März 1911 bis August 1913 abgeteufte Schacht Bartensleben besitzt einen Durchmesser von 5,25 m und eine Teufe von 526 m. Die Rasenhängebank liegt bei +133,75 mNN. Der Schacht verfügt über einen durchgängigen ca. 0,5 m dicken Regelausbau aus Ziegelmauerwerk, das sich entsprechend der Begutachtung durch die DMT und den visuellen Kontrollen der DBE in einem überwiegend guten Zustand befindet.

Die geologische und hydrogeologische Situation im Bereich des Schachtes wurde zur Erfüllung einer Auflage des Bergamtes Staßfurt zum Hauptbetriebsplan 1998/99 durch zwei bis in das Zechsteinsalinar reichende Kernbohrungen untersucht. Die Ergebnisse der in diesem Zusammenhang durchgeführten Untersuchungen sind in /2/ ausführlich dargestellt und wurden bei der Erstellung des Schachtbildes berücksichtigt.

Zwischen ca. -40 mNN und -60 mNN durchörtert der Schacht eine dünne Feinsandschicht (0,2 m) und anschließend geklüfteten Feinsandstein der Schilfsandstein-Formation (Anlage 2). Um Verformungen in diesem Bereich festzustellen, die auf Beanspruchungen des Schachtausbaus schließen lassen, wurden 1997 bei -41,6 mNN, -45,1 mNN und -48,6 mNN die Konvergenzhorizonte CG001K bis CG003K eingerichtet (Anlage 2).

In /3/ wurde die Standsicherheit des Schachtes Bartensleben bewertet. Darin konnte für den Schachtausbau der Bereiche -52,25 mNN bis -103,25 mNN und -103,25 mNN bis -120,25 mNN die Standsicherheit rechnerisch nicht nachgewiesen werden. Daraufhin wurden 2003 zur Überwachung der beiden Bereiche 5 Konvergenzhorizonte (CG004K bis CG008K) im Ausbaumauerwerk eingerichtet. Die Messhorizonte liegen zwischen -60 mNN und -115 mNN (Anlage 3). Das anstehende Gebirge im erstgenannten Abschnitt ist durch eine Schichtenfolge aus steifplastischen und festen, tonigen sowie feinsandigen Schluffsteinen mit mehr oder weniger entfestigten Zonen charakterisiert /3/. Im zweiten Bereich stehen schluffige Tonsteine mit gipsverheilten Klüften an. Gesteinsmechanische Kennwerte wie Kohäsion und Reibungswinkel zeigen sehr geringe Werte /3/.

Das LAGB Sachsen-Anhalt veranlasste mit seinem Schreiben vom 07.05.2004 /4/ die Ermittlung der vorhandenen Tangentialspannungen in den beiden oben genannten Schachtbereichen sowie in einem Referenzbereich. Außerdem sollten Spannungsänderungen über eine Langzeitmessung erfasst werden. Die entsprechenden Messungen sowie die Installation einer

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	hpen
9M			00YES01			GC	ΒZ	0007	00	PDEL

Blatt: 8

Messeinrichtung zur Langzeitspannungsmessung erfolgten in 2007 bei -36,00 mNN, -76,50 mNN sowie -106,25 mNN (Anlage 7).

Im Zusammenhang mit den Untersuchungen zu den in der Umgebung des Speicherbeckens der alten Wasserhaltung Schacht Bartensleben auf der -253 mNN Sohle durch Undichtheiten des Beckens entstandenen Solungstaschen wurden 2006 3 Konvergenzhorizonte (CG009K bis CG011K) zwischen -240 mNN und -260 mNN eingerichtet (Anlage 4 und Anlage 5). Im Bereich der Messhorizonte steht Steinsalz der Staßfurt-Serie an.

Die insgesamt 11 Konvergenzmesshorizonte (MH) (Tabelle 1) bestehen aus jeweils 6 Messpunkten, die mit ca. 20 cm bis 30 cm langen Schwerlastankern im Mauerwerk vermarkt sind. Zwischen den Messpunkten werden 7 verschiedene Messstrecken gemessen, um ggf. auch richtungsabhängige Konvergenzen erfassen zu können. Alle Messhorizonte sind gleich aufgebaut und orientiert. Die Messunsicherheit liegt bei ca. $\pm 0,5$ mm. Nach einem anfangs dichteren Messrhythmus wurde auf Grund der geringen Verschiebungen in den MH CG001K bis CG008K zu einem halbjährlichen Messzyklus übergegangen. In den übrigen 3 MH wurde viertel- bis halbjährlich gemessen.

				1				
Kennzeichnung	Messsystem	Höhe	Teufe	Geologie	Verankerung	Streckenlä	ngen der Ha	upstrecken
						1-4	2-5	3-6
		[mNN]	[m]		[m]	[m]	[m]	[m]
00YES01	CG001K	-41,6	175,4	Oberer Gipskeuper (KmGo)	0,20	5,49	5,74	5,67
00YES01	CG002K	-45,1	178,9	Schilfsandstein (kmS)	0,20	5,58	5,76	5,74
00YES01	CG003K	-48,6	182,4	Schilfsandstein (kmS)	0,20	5,57	5,78	5,81
00YES01	CG004K	-60,0	193,7	Schilfsandstein (kmS)	0,185	5,62	5,75	5,79
00YES01	CG005K	-79,9	213,7	Schilfsandstein (kmS)	0,185	5,57	5,69	5,79
00YES01	CG006K	-94,9	228,7	Schilfsandstein (kmS)	0,185	5,68	5,69	5,78
00YES01	CG007K	-105,1	238,8	Unterer Gipskeuper (KmGu)	0,185	5,60	5,77	5,84
00YES01	CG008K	-115,1	248,8	Unterer Gipskeuper (KmGu)	0,185	5,60	5,74	5,87
00YES01	CG009K	-240,3	374,1	Steinsalz (Z2SF-UE)	0,30	5,73	5,99	5,96
00YES01	CG010K	-255,4	389,2	Steinsalz (Z2HG-HS3)	0,30	5,78	5,85	5,95
00YES01	CG011K	-260,3	394,1	Steinsalz (Z2HS3)	0,30	5,80	5,82	5,90

Tabelle 1: Merkmale der Konvergenzhorizonte CG001K bis CG011K

Die 3 Spannungsmesshorizonte (Tabelle 2 und Anlage 7) bestehen aus jeweils 4 Messlokationen, die ausgehend von geodätisch Nord bei 67 gon, 117 gon, 167 gon und 217 gon angeordnet sind. Im Oktober 2007 wurden die zu diesem Zeitpunkt vorliegenden absoluten Tangentialspannungen im Schachtmauerwerk nach dem Flat-Jack-Verfahren bestimmt. Die Messunsicherheit der ermittelten Absolutspannungsbeträge liegt bei ca. ±10 %. Der Messanordnung lag die Modellvorstellung zu Grunde, wonach gemäß den in /3/ getroffenen Standardlastannahmen eine ungleichförmige Radialbelastung des Schachtmauerwerkes in Form einer elliptischen Verteilung vorliegt. Dem zu Folge lassen sich auch die Tangentialspannungsverteilung im Schachtmauerwerk sowie auch deren Änderung durch eine Ellipse beschreiben. Durch die Anordnung der Messlokationen in vier von einander unabhängigen Richtungen kann aus den mit dem Flat-Jack-Verfahren bzw. den Druckkissen gemessenen Drücken die Tangentialspannungsverteilung im Messhorizont durch eine Ausgleichsellipse ermittelt werden. Die Längen der Halbachsen entsprechen dabei der maximalen und minimalen Tangentialspannung. Der Vorteil der gewählten Anordnung mit vier Messrichtungen besteht darin, dass die resultierende maximale Tangentialspannung im Schachtausbau bestimmt werden kann sowie eine einfache Redundanz für die Ermittlung der Ausgleichsellipse besteht. Im Falle einer gleichförmigen Belastung müssen die Messungen an den 4 Messlokationen eines Messhorizontes unter Beachtung der mit den eingesetzten Messverfahren erreichbaren Genauigkeit identische Ergebnisse erbringen.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDEA
9M			00YES01			GC	ΒZ	0007	00	PDEL

Blatt: 9

Unmittelbar im Anschluss an die Messungen wurde ein Messsystem zur Langzeitspannungsmessung instrumentiert. Mit dem Messsystem sollen Veränderungen des ermittelten Tangentialspannungsniveaus erkannt und in Hinblick auf die Standsicherheit des Schachtausbaus bewertet werden. Die für die Kurzzeitspannungsmessungen nach dem Flat-Jack-Verfahren erstellten Schlitze wurden zum Einbau der Druckkissen für die Langzeitspannungsmessung genutzt. Als Messsystem wurden flache, kreissegmentförmige, hydraulische Druckkissen mit einer Segmenthöhe von 115 mm und einer Breite von ca. 400 mm eingesetzt, an denen elektrische Sensoren zur Druck- und Temperaturmessung angeschlossen sind. Der Messbereich der Druckaufnehmer beträgt 20 MPa und die Messgenauigkeit ±0,1 MPa. Die Gesamtgenauigkeit der Druckkissenmessung wird bei einer Spannungsänderung von 10 MPa und einer Temperaturänderung von 20°C mit ±0,6 MPa abgeschätzt. Bei kleineren Änderungsbeträgen ist von einer entsprechend höheren Messgenauigkeit auszugehen.

Temperaturmessungen wurden im Rahmen der Kurzzeitspannungsmessungen in den 3 Horizonten jeweils an den Messlokationen bei 67 gon und 217 gon durchgeführt. An den Lokationen erfolgt auch standardmäßig während der Durchführung der Langzeitspannungsmessungen die Erfassung der Temperatur. Die eingesetzten Thermistoren weisen im Bereich von 0 °C bis +70 °C eine Messgenauigkeit von 0,2 K auf.

Die genannten Sensoren sind an eine übertägig stationierte automatische Messwerterfassungsanlage angeschlossen. Der Messrhythmus ist auf einstündlich eingestellt.

Kennzeich- nung	Messsys- tem	Höhe	Teufe	Stratigraphie	Petrogaphie	Schicht- streichen	Schicht- einfallen	Einfallrichtung
		[mNN]	[m]			[gon]	[gon]	[gon]
00YES01	CP001K/L	-36,00	169,75	Oberer Gipskeuper (KmGo)	Tonstein	124 (OSO-WNW)	33	224 (SSW)
00YES01	CP002K/L	-76,50	210,25	Schilfsandstein (kmS)	Schluffstein	200 (N-S)	33-39	300 (W)
00YES01	CP003K/L	-106,25	240,00	Unterer Gipskeuper (KmGu)	Tonstein	200 (N-S)	33	300 (W)

 Tabelle 2:
 Merkmale der Spannungsmesshorizonte CP001K/L bis CP003K/L

Im Gutachten 1120-98-184 der DMT vom 30.09.98 wurde empfohlen, ein Abtastprogramm zur Erkundung möglicher Hohlräume hinter dem Ausbau durchzuführen. Hierzu wurden 1999 insgesamt 202 Abtastbohrungen mit ca. 0,95 m Länge erstellt und inspiziert. Dabei wurden zwischen -265 mNN und -310 mNN insgesamt 6 Hohlräume mit insgesamt 0,18 m³ Volumen festgestellt. Anschließend wurden diese Hohlräume und alle Bohrungen mit einer Zementsuspension auf Portlandzementbasis verfüllt.

In den Füllortbereichen der Sohlen -291 mNN und -372 mNN waren auf Grund von Verformungen und Rissen im Jahr 2000 das gemauerte Gewölbe im Füllortbereich der -291 mNN Sohle sowie der südliche Salzpfeiler im Füllort der -372 mNN Sohle mit Jora-Tec-Ankern stabilisiert worden. Die Verschiebungen wurden durch Gipsmarken an den Rissflächen überwacht. Im Rahmen von Sanierungsmaßnahmen 2005 wurden die Gipsmarken entfernt.

Insgesamt befinden sich im Schacht 4 mit Packern versehene Austrittsstellen für Lösungen sowie eine Reihe diffuser Zutritte aus dem Schachtmauerwerk, die durch ein System von 11 Traufenrinnen gefasst und durch eine Traufenleitung zur Pumpenkammer der Wasserhaltung auf der -291 mNN Sohle geleitet werden (Anlage 1 bis Anlage 3). Durch Rohrleitungen für die bGZ ist die Austrittstelle 1.1 nicht mehr zugänglich und wurde verschlossen. Als Ersatz wurde am 10.09.03 ca. 1,2 m weiter westlich und ca. 1,2 m tiefer die Austrittstelle 1.5 (Packer mit Manometer) eingerichtet (Anlage 2).

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	hpen
9M			00YES01			GC	ΒZ	0007	00	PDEL

Blatt: 10

3 Mess- und Beobachtungsergebnisse

3.1 Konvergen z

Im Berichtszeitraum traten in den Konvergenzhorizonten keine signifikanten Verschiebungen auf.

Die mittleren Verschiebungen der Hauptstrecken der Konvergenzhorizonte sind in Tabelle 3 dargestellt. Weiterhin enthält Tabelle 3 die seit 1997 (CG001K bis CG003K), seit 2003 (CG004K bis CG008K) bzw. seit 2006 (CG009K bis CG011K) aufgelaufene maximale Verschiebung der Hauptstrecken und die zugehörige Richtung der Hauptstrecke. Für das Jahr 2007 ist weiterhin die mittlere Verschiebungsrate der Hauptstrecken im jeweiligen Horizont angegeben. Die Hauptstrecken verlaufen annähernd durch den Schachtmittelpunkt und entsprechen ca. dem Durchmesser des Schachtes. Die Konvergenzmessergebnisse sind als Zeitreihen im Anhang 1 dargestellt.

Messergebnisse werden als nicht signifikant gekennzeichnet, wenn sie kleiner gleich der Messunsicherheit sind.

			Streck	enlänge	en der	_		Messzeitraum		Berichtszeitraum
Mess- horizont	Höhe	Teufe	Hau	ptstrec	ken	Bezugs- messuna	Mittelwerte der	Maximum der l	lauptstrecken	Mittlere Verschiebungs-
			1-4	2-5	3-6		Hauptstrecken		Richtung	raten der Hauptstrecken
	[mNN]	[m]		[m]			[mm]	[mm]		[mm/a]
CG001K	-41,6	175,4	5,49	5,74	5,67	03/97	+0,1	-0,5	ENE /WSW	+0,1
CG002K	-45,1	178,9	5,58	5,76	5,74	03/97	+0,6	+1,1	SE / NW	+0,2
CG003K	-48,6	182,4	5,57	5,78	5,81	03/97	+0,1	-0,3	ENE /WSW	+0,1
CG004K	-60,0	193,7	5,62	5,75	5,79	02/03	+0,1	+0,5	SE / NW	+0,1
CG005K	-79,9	213,7	5,57	5,69	5,79	02/03	0,0	+0,3	SE / NW	+0,1
CG006K	-94,9	228,7	5,68	5,69	5,78	02/03	0,0	+0,2	SE / NW	+0,1
CG007K	-105,1	238,8	5,60	5,77	5,84	02/03	0,0	-0,3	NE /SW	+0,1
CG008K	-115,1	248,8	5,60	5,74	5,87	02/03	-0,1	+0,4	SE / NW	0,0
CG009K	-240,3	374,1	5,73	5,99	5,96	09/06	+0,5	+1,0	SE / NW	+0,1
CG010K	-255,4	389,2	5,78	5,85	5,95	09/06	+0,3	+0,6	SE / NW	+0,1
CG011K	-260,3	394,1	5,80	5,82	5,90	09/06	+0,2	+0,3	SE / NW	+0,1

Tabelle 3:Verschiebungen und Verschiebungsraten in den Messhorizonten CG001K bis CG011K Schacht
Bartensleben

Nicht signifikante Messergebnisse sind grau hinterlegt

Während des gesamten Messzeitraumes traten im Maximum der Hauptstrecken Divergenzen von +1,1 mm und +1,0 mm in SE/NW (CG002K und CG009K) auf. Signifikante Konvergenzen sind im Maximum der Hauptstrecken nicht zu verzeichnen. Signifikante Verschiebungen der Mittelwerte der Hauptstrecken sind mit +0,6 mm im Messhorizont CG002K und +0,5 mm im Messhorizont CG009K feststellbar. Generell lässt sich über den Gesamtzeitraum kein langzeitlicher Trend aus den Messwerten ableiten.

3.2 Spannung

Die nach dem Flat-Jack-Verfahren in den 3 Messhorizonten an den jeweils 4 Messlokationen (Anlage 7) ermittelten absoluten Tangentialspannungsbeträge sind in Tabelle 4 enthalten. Weiterhin ist die mittlere Temperatur über den Zeitraum der Messungen aufgeführt. Die mittlere Temperatur wurde aus den an den Lokationen B01 und B03 gemessenen Temperaturen bestimmt.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	ΝΝΑΑΑΝΝ	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	hpfin
9M			00YES01			GC	ΒZ	0007	00	

Blatt: 11

 Tabelle 4:
 Tangentialspannungen nach dem Flat-Jack-Verfahren

Messhorizont	Datum	Höhe [mNN]	Teufe [m]	Temperatur [°C]		Tangentia [M	Ispannung Pa]	
					B01	B02	B03	B04
CP001K	15.1016.10.07	-36,00	169,75	16,2	5,6	10,7	5,1	12,4
CP002K	17.1018.10.07	-76,50	210,25	15,1	6, 4	5,6	5,7	4,2
CP003K	22.1023.10.07	-106,25	240,00	13,0	7,6	11,7	8,5	5,9

Die Ergebnisse der durchgeführten Messungen zeigen in allen 3 Horizonten eine ungleichförmige Tangentialspannungsverteilung im Schachtmauerwerk.

Im Messhorizont CP001K betragen die ermittelten Tangentialspannungen im Minimum 5,1 MPa und im Maximum 12,4 MPa. Dabei variieren die Spannungen an den Messpositionen jedoch dergestalt, dass keine elliptische Spannungsverteilung daraus abgeleitet werden kann.

Im Messhorizont CP002K liegt das gemessene Minimum bei 4,2 MPa und das Maximum bei 6,4 MPa. Hier ist annähernd eine elliptische Verteilung der Tangentialspannungen im Schachtmauerwerk als Grundlage für die Berechnung einer Spannungsellipse gegeben.

Im Messhorizont CP003K beträgt das gemessene Minimum 5,9 MPa und das Maximum 11,7 MPa. Hier ist mit guter Näherung eine elliptische Verteilung der Tangentialspannungen im Schachtmauerwerk als Grundlage für die Berechnung einer Spannungsellipse feststellbar.

Die Parameter der berechneten Spannungsellipsen in den Messhorizonten CP002K und CP003K enthält Tabelle 5. Die zugehörigen graphischen Darstellungen beinhaltet Anhang 2.

Messhorizont	Datum	Höhe [mNN]	Teufe [m]	Richtung σ _{max} [gon]	σ _{max} [MPa]	σ _{min} [MPa]	$\sigma_{\text{max}}/\sigma_{\text{min}}$
CP001K	15.1016.10.07	-36,00	169,75	-	-	-	-
CP002K	17.1018.10.07	-76,50	210,25	198,9	6,3	4,8	1,32
CP003K	22.1023.10.07	-106,25	240,00	23,5	12,0	6,2	1,95

 Tabelle 5:
 Parameter der Spannungsellipsen

Im Messhorizont CP002K betragen die berechnete maximale bzw. minimale Tangentialspannung 6,3 MPa bzw. 4,8 MPa. Die maximale Spannung ist mit 199 gon in Nord-Süd-Richtung orientiert.

Im Messhorizont CP003K wurde die maximale Tangentialspannung mit 12,0 MPa und die minimale Tangentialspannung mit 6,2 MPa ermittelt. Die Richtung der maximalen Spannung beträgt 24 gon. Sie ist damit ca. NNO-SSW ausgerichtet und weist damit die gleiche Ausrichtung wie die maximale horizontale Gebirgsspannung für diesen Teufenbereich auf, die mit den Hydrofrac-Messungen in der ca. 37 m vom Schacht entfernt abgeteuften Vertikalbohrung Dp Mors 100A ermittelt wurden /5/.

Die Langzeitmessungen zeigen seit ihrem Messbeginn am 26.10.2007 wie erwartet kurzzeitige temperaturinduzierte Spannungsänderungen, die sich im Bereich von ca. \pm 0,5 MPa bewegen. Die Temperatur an den Messlokationen variiert zwischen 7,7 °C und 17,1 °C. Auf Grund der geringen Messdauer lassen sich noch keine Aussagen zum langzeitlichen Trend der Tangentialspannungen im Schachtmauerwerk treffen.

3.3 Visuelle Bemusterung des Schachtmauerwerkes

Im Zuge der Schachtbefahrung im Januar 2007 wurden am Schachtmauerwerk außer im Bereich zwischen -332 mNN und -372 mNN keine Auffälligkeiten beobachtet. In diesem Bereich liegen die bekannten Zonen mit Abplatzungen am Mauerwerk, die auf eine Beanspruchung hindeuten.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	hpfa
9M			00YES01			GC	ΒZ	0007	00	PDFL

Blatt: 12

3.4 Zuflussmessungen

Im Jahre 2007 liefen insgesamt 3.436 m³ Lösung zu. Dies entspricht einer durchschnittlichen Austrittsrate von 6,5 l/min. Die Zuflüsse im Berichtszeitraum liegen damit innerhalb der Standardabweichung des Mittelwertes aller Zuflüsse ab dem Jahr 1977 bis zum Jahr 2006. Die Dichten der Zuflüsse aus den Packern lagen zwischen 1,027 g/cm³ und 1,030 g/cm³. Die Austrittsraten, ermittelt aus der abgepumpten Menge der Schachtwasserhaltung, für die Jahre 1977 bis 2007 sind im Anhang 3 dargestellt. Zwei Drittel der zufließenden Lösungen kommen aus dem Schilfsandsteinbereich ab etwa –43,25 mNN bis zur Traufenrinne 10 (Anlage 2, Anlage 3). Im Jahr 2007 wurde an der Austrittsstelle 1.5 kein Druckaufbau festgestellt.

4 Bew ertung

Die im Bereich des lösungsführenden Schilfsandsteins zwischen -42 mNN und -49 mNN (ca. 175 m bis 182 m Teufe) beobachteten Verschiebungen der Maxima der Hauptstrecken sind nur im Messhorizont CG002K mit +1,1 mm signifikant. Dort ist auch der Mittelwert der Hauptstrecken mit einer Divergenz von +0,6 mm als signifikant anzusehen.

Ebenso zeigen die im Februar 2003 zwischen -60 mNN und -115 mNN im Schachtmauerwerk eingerichteten Konvergenzmessstellen nur geringe Konvergenzen bzw. Divergenzen bei den Mittelwerten der Hauptstrecken im Bereich der Messunsicherheit.

Bei den drei im September 2006 zwischen -240 mNN und -260 mNN zur Überwachung des Schachtmauerwerkes im Bereich des Speicherbeckens der alten Wasserhaltung installierten Messhorizonte zeigt nur der Mittelwert der Hauptstrecken des Messhorizontes CG009K mit einer Divergenz von +0,5 mm eine signifikante Verschiebung.

Mit den Spannungsmessungen wurde in den Messhorizonten bei -76,50 mNN und -106,25 mNN eine elliptische Spannungsverteilung nachgewiesen. Die bestimmten maximalen Tangentialspannungen betragen im Schachtmauerwerk bei –76,50 mNN 6,3 MPa und bei -106,25 mNN 12,0 MPa. Die Belastungswerte für diese Mauerwerksbereiche liegen damit deutlich unter den vorab durch DMT /3/ rechnerisch ermittelten maximalen Tangentialspannungen von 21 MPa bzw. 41 MPa. Im Referenzhorizont bei –36,00 mNN liegen die ermittelten Tangentialspannungen im Minimum bei 5,1 MPa und im Maximum bei 12,4 MPa. Hier kann keine elliptische Spannungsverteilung abgeleitet werden, wofür die Ursache nicht bekannt ist. Insgesamt ist nach den Kriterien der DMT bei den ermittelten Ausbaubeanspruchungen kein unmittelbarer Handlungsbedarf gegeben.

Unter weiterer Einbeziehung der Ergebnisse der visuellen Bemusterung des Schachtmauerwerkes sowie der Konvergenzmessungen ist davon auszugehen, dass in den betrachteten Bereichen derzeit ein für die Standsicherheit des Schachtmauerwerkes unkritisches Spannungsniveau vorliegt.

Die Langzeitmessungen zeigen bisher wie erwartet geringfügige temperaturinduzierte Spannungsänderungen. Auf Grund der kurzen Messdauer lassen sich noch keine Aussagen zum langzeitlichen Trend der Tangentialspannungsänderungen im Schachtmauerwerk sowie der Größenordnung des temperaturinduzierten Anteils treffen.

Am Schachtmauerwerk sind im Bereich -332 mNN (3. Sohle) bis -372 mNN (4. Sohle) Schädigungen des Mauerwerks erkennbar. Hier werden laufend Kontrollen und soweit erforderlich Beraube- und Sanierungsmaßnahmen durchgeführt.

Die aktuelle Austrittsrate im Jahr 2007 liegt mit ca. 6,5 l/min im Bereich des dreißigjährigen Durchschnitts.

_	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
-	NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	A A	NNNN	N N	DBED
	ЭM			UUYES01			GC	ΒZ	0007	00	
eomecha	anisch	e Betriebsüb	erwachu	ng 2007 –	Schacht	Barte	nslebei	n			Blatt: 13
allen Ko	onverg	jenzhorizonte	n ist übe	er den Ges	samtzeitr	aum k	ein Ian	gze	itliche	r Ve	rschiebungs-
d nacł	hweist	bar und dur	ch die S	spannungs	smessun	gen_w	urde h	nier	auch	ein	unkritisches
nnung	SNIVe2	au ermittelt. A	Zur Zeit	ist damit	in diese	em Bei	reich k	eine	e Bee	intra	chtigung der
lusion	Smon		1030203		cn.						

	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
	<u>9</u> M	<u> </u>	ΝΝΝΝΝ	00YES01	AANNNA	AANN	GC	A A BZ	0007	00	DBED
Geome	chanisch	e Betriebsüb	erwachu	ng 2007 –	Schacht	t Barte	nsleber	n			Blatt: 14
5 Litera	atur										
/1/	DMT – Gutacht Schach Leipzig, DBE: 9f	Institut für Fö ten Nr. 1391(tes Bartensle , 07.11.1996 M/01ADD/HX	rderung)-96-192 ben /CD/ET/(und Trans über die 0001/00	sport Schacht	einbau	iten un	d d	en Scl	nacł	ntausbau des
/2/	Geologi Geologi Bartens Baden (DBE: 9I	ische Forschu ische und hy sleben im obe (Schweiz), 20 M/00YES01/H	ung und l /drogeolo ren Aller .05.1999 IA/BN/00	Erkundung ogische S tal))001/00	g GmbH Situation	Halle/(des so	Colenco chachtr	o Po nah	ower E en Be	Engii ereic	neering AG hes Schacht
/3/	DMT – Standsi Essen, DBE: 91	Fachstelle für cherheitsnac 12.08.1999 M/99Y/G/BZ/0	⁻ Baustat nweis für 0007/00	ik [·] Schacht	Bartensl	eben u	nd Mar	ie			
<i> 4 </i>	Schreib vom 07 Fachge Schluss DBE: 91	en LAGB 51- .05.2004 spräch Schao sgutachten un M/99Y/DB/AL	34560-4 chtstatik d Zustim /0010/00	841-6813/ ERAM (12 imung)	/2004 He 2. Fachsi	err Tha tzung)	uer an vom 06	das 6.05	BFS	SE2	3/La-9MB
/5/	Geotecl Auswer Dp Mors birgsspa Leipzig, DBE: 91	hnik Projekt C tung und I s 98A und Dp annungen im , 25.01.1999 M/GC/BY/ES/	SbR nterpreta Mors 10 Deckgel 00001/00	ation vor DOA zur E birge und	n Hydro rmittlung Hutgeste	ofrac-M der Ri ein	lessung	gen	in sowie	den Bet	Bohrungen räge von Ge-

Höhe NN (m)	Teufe M (m) I Datum n	ttlerer Abte urch- Verfal esser verfal (m)	euf- Ausba hren	u	Bemerku	19	Schnitt	Bauliche In Veränderungen In	sktionen	Schachtscheiben			Abwicklung	J		Austritte	Stratigraphie	Gesteinsbeschreibung	Petrogr	Schnitt aphische Darstellung	
						wsw		ENE				S	W N	E ;	S	14.11.2007			wsw		ENE
<u>+133,75</u> +130,0	0.03.1910	A A				Rasenhängebank ehem. Versorgungsk abgemauert n. 1,45m	+133,75 m +128,95 mN +128,95 mN	NN N Wetterkanal			<u>+125,53 mNN</u>		Scheduler		Traufenrinne 1		QUARTAF	Schluff bis Ton, feinsandig, kalkig Schluff bis Ton, feinsandig, kalkig mit Linsen von Feinsand und Brocken von Schluffstein/flachmarin bis kontinental, stark zerselzt/rotbraun, grünlichgrau, gelbbraun, undeutlich texturiert, an der Basis Feinsandlinsen mit Wasserführung, Gestein steifplastisch			1 1 1
+120,0										1					Traufenrinne 2 Traufenrinne 3	— 190mi/min — 1280mi/min	Oberer Keuper ko Unterer Oberkeuper ko(1)	Schluffstein, tonig, dolomitisch, kalkfrei, nesterweise Calcit, vereinzelt anzutreffen Feinsandstein, tonig, rötlich/flachmarin bis kontinental/rotbraun, partienweise grüngrau/partienweise geschichtet Klufthäufikeit: ca. 8 Klüfte/m, Gestein hältfest bis fest und durch schichtparallele Störungen mächtigkeitsreduziert			
+100,0	33,75						00XES91								Traufenrinne 4	176ml/min		Kalkstein, oolitisch, grau Schluffstein, tonig, schwach dolomitisch, partienweise brecciös/flachmarin bis kontinental/rotbraun, partienweise grüngrau/partienweise geschichtet Klufthäufigkeit: co. 6 Klüffz/m,		00YES01	
+90,0		,25m Sprengt	Ziegelst maueru ca. 0,5	ein- ng M						Reg	gelschachtscheibe bis zur -253 mNN-Sohle				Traufenrinne 5		NEUPER Steinmergelkeuper kmSM	Störungszöne von 35,0-35,5m mit schuppenartiger Einlagerung jüngerer Gesteine, oolithischer grauer Kalkstein Schluffstein, tonig, bis stark tonig, dolomitisch, kalkfrei, partienweise brecciös/flachmarin bis kontinent al /grüngrau, dunkelgrau, selten rotbraun/ partienweise geschichtet Klufthäufigkeit: 4 Klüfte/m,	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
+70,0	63,75																dittlerer Keuper km	bei 45,5m Störungszone mit schuppenartigen Einlagen jüngerer Gesteine: Keupersandstein, mürbe bis fest, steifplastisch, durch schichtparallele Störungen mächtigkeitsreduziert. Bei 69,0m Störung, an der untere Teile des Mittleren Grauen Steinmergelkeupers (kmSM(2)) und der Untere Bunte Steinmergelkeuper (kmSM(1)) unterdrückt sind, Gestein steifplastisch bis fest und durch schichtparallele Störungen mächtigkeitsreduziert			
+60,0	<u> </u>														Traufenrinne 6	— 27ml/min	er kmGo	Tonstein, schluffig bis Schluffstein, tonig, dolomitisch bis stark dolomitisch, kalkfrei, ungeschichtet, mif Gips in Lagen und auf Klüften, feilweise, Fasergips, Klufthäufigkeit: ca 0,3 Klüfte/m,	1 1 > / 1 1 - 1 - 1 - 1		
+50,0																	Oberer Gipskeup	85,0m bis 85,5m Gipsbank, grau bis rötlich/flachmarin bis kontinental/grau und rötlichgrau, Gestein überwiegend steifplastisch bis halbfest TGinshenk			
+40,0	93,75																	Tonstein, schluffig bis Schluffstein, Tonstein, schluffig bis Schluffstein, dolomitisch, kalkfrei, ungeschichtet, mit dm-mächtigen Lagen von Dolomitmergelstein, hellbraungrau und Gips, weißgrau bis röttlich/flachmarin bis kontinental			
	_						<u>Schachtmittelpunkt</u> R 44.38673,81 H 5788155,06					Austritthorizont — Traufenrinne						Kurzzeichen der Gesteinsbeschreibung n Geologische Überarbeitung des Schacht Bericht der GFE-GmbH und der Colenco P "Geologische und hydrogeologische Situ Schacht Bartensleben im oberen Allerta	ach "Symbolschlüssel Geologie, NLfB und BG ildes Schacht Bartensleben nach ower Engineering AG ation des schachtnahen Bereiches ; Halle und Baden (Schweiz), 1999".	R 3. Auflage 1991"	

Anlage Nr. 1 Blatt 1 von Blatt 1 zu: 9M/00YES01/GC/BZ/0007/00

Endlager für radioaktive Abfälle Morsleben Schachtbild Schacht Bartensleben

Blatt 1, + 140 mNN bis + 40 mNN Betriebszustand 31.12.2007

e des Dokuments ggf.in der Farbwiedergabe		Morsle	ben,				(Weid	enbach)	Ma	rksche	ider	
e in DIN A1 ab.	ULV-Nr.: 423815	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lifd. Nr.	Rev.	
	CAD-Nr.: A4551002	NAAN	NNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	
	DOKID: 11168288	9M			00YES01			GB	RG	0001	13	

Höhe NN Teufe (m) Datum	Mittlerer Durch- messer (m)	Ausbau	Bemerkung	Schnitt	Bauliche Veränderungen =	Schachtscheiben	s	Abwicklung W N	FS		Austritte	Stratigraphie	Gesteinsbeschreibung	Sohnitt Petrographische Darstellung WSW	! ENE
+30,0				лана и на											
+20,0													Tonstain, schluffig bis Schluffstein, tonig, dolomitisch bis stark dolomitisch, kalkfrei, ungeschichtet, mit dm-mächtigen Lagen von Dolomitmergelstein, heltbraungrau und Gips, wellgrau bis rötlich/flachmarin bis kontinental, von ca. 108–113m		
+10,0 123,75						Regelschachtscheibe bis zur -253 mNN-Sohle							Lehrbergschichten/rotbraun, daneben grüngrau; Klüffe durch Gips verheitl, Gestein halbfest bis fest. Bei 145m vermutlich Störungszone, da die Einfallsrichtung von SSE nach SSW wechselt.		· · · · · · · · · · · · · · · · · · ·
0,0	5,25m Sprengtechnik	iegelstein- mauerung ca. 0,5m		00XES01								Therer Keuper km berer Gipskeuper kmGo			
-10,0 -20,0 153,75									- T	Traufenrinne 7 —	- 102ml/min	ΞΨ			
-30,0													Tonstein, schluffig, dolomitisch, kalkfrei, ungeschichtet bis undeutlich geschichter, mir Knollen und dm-mächtigen Lagen von Gips, auf den Klüften Fasergips und Marienglas/Tachmarin bis kontinental/notbraum, seltener		
-40,0 <u>ca. 175</u>				- <u>- cgdo1K</u>		P01	CP001/L 804 CG001K P05 P0	801 8 P01 P02 P	B02 B03 53 P04				gragg un, Aufmanngken (za. y.) Külfte/m, Gestein steifplastisch bis halbfest, selten fest, Störung bei 177,0m.		
-50,0			Verzugsbohlen Sfärke 40 mm	сдоозк		Peo Pio Pio Pio Contraction Co	CG002K P85 P8 CG003K P05 P0	Pot Po2 P 0.1.5 Po2 P 0.1.5 Po2 P	03 P04 03 P04 03 P04	 Traufenrinne 8	- Oml/min - Oml/min - 270ml/min	sandstein kmS	Feinsand, weiß, locker/Störungszonf Feinsandstein, schwach schluffig, schwach glimmerführend, kalkfrei, fluviomarin, weiß, rötlich, nach Seigerriss sind die Schichten flexunartig gebogen mit herem Teil in westlicher Richtung, Klufthäufigkeil ca. 2 Klüfte/m, Gestein ist mürbe		
-60,0 193,75				Schachtmittelpunkt			CG004K P05 P04	9 P01 P02 P	203 P04			Schilfs	Schluffstein, schwach feinsandig bis feinsandig/fluviomarin/rotbraun, Klufthäufigkeit: ca. 2 Klüfte/m Kurzzeichen der Gesteinsbeschreibung	ach "Symbolschlüssel Geologie, NLfB und BGR 3. Auflage 1991"	
	Blatteinteilung +140 +40			R 4438673,81 H 5788155,06			Austritthorizont Traufenrinne Austrittstelle	1.1, verra 1.5, verra messung	ohrt, verschlossen ohrt, mit Manomete	n er			Geologische Überarbeitung des Schacht Bericht der GFE-GmbH und der Colenco "Geologische und hydrogeologische Sit Schacht Bartensleben im oberen Allert;	ildes Schacht Bartensleben nach ower Engineering AG ation des schachtnahen Bereiches I; Halle und Baden (Schweiz), 1999". Anlage ²⁰¹ 99000	B Nr. 2 Blatt 1 von Blatt 1 VYES01/GC/BZ/0007/00
	2 -60 3 -160 4 -260 5 -360 6 -460													Endlager für radioaktive Ab Schachtbi Schacht Bartenslei Blatt 2, + 40 mNN bis - 6	Jfälle Morsleben ild ^{60 mNN}

Schacht Bartensleben Blatt 2, + 40 mNN bis - 60 mNN Betriebszustand 31.12.2007

des Dokuments f.in der Farbwiedergabe		Morsle	ben,				(Weid	lenbach)	Ma	rksche	ider	
DIN A1 ab.	ULV-Nr.: 423816	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lifd. Nr.	Rev.	
	CAD-Nr.: A4551003	NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	
	DOKID: 11168289	9M			00YES01			GB	RG	0002	14	

Höhe NN Teufe M (m) (m) Datum I	fittlerer Durch- nesser (m)	Abteuf- verfahren	Ausbau	Bem	nerkung WSW		Schnitt	ENE	Bauliche Veränderungen	Injektionen	Schachtscheiben	s	· v	Abwick W N	lung	s	Austritte S	Iratigraphie	Gesteinsbeschreibung	wsw	Petrograp	Schnitt hische Darstell	lung	ENE
-70.0					• · · · · · · · · · · · · · · · · · · ·		-					-	1.3 00 1.2	Schachthord		— Traufenrinne 9 —	— 2200ml/min 2100ml/min	E 2	Schluffstein , schwach feinsandig bis feinsandig/fluviomarin/rotbraun, Klufthäufigkeit: ca. 2 Klüfte/m					
-80,0				Verzu Stärk	igsbohlen se 40 mm		СG005К					CP002/L	104 Pos Poi	P01	B01 B02 B03 ₽02 P03 P00			chil fe sonde tein	Schluffstein , schwach feinsandig glimmerführend/fluviomarin/ rotbraun, graugrün, tirkis Klufthäufigkeit: ca. 2 Klüfte/m					
-90,0 223,75											P02 P03 P04 P03 P03 P03 P03 Schachtscheibe Konvergenzhorizonte CG004K bis CG008K				o ^{~14}			E k						
-100,0							СG006К	H H H H H H H H H H H H H H H H H H H				СG006К	P05 P00	P01	P02 P03 P0	Traufenrinne 11 -	KEUPER	Mittlerer Keupe	Schluffstein, tonig, schwach feinsandig, kalkfrei, ungeschichtet, partienweise brecciös/fluviomarin/rotbraun, untergeordnet fürkis, Gestein stelifplastisch bis fest Tonstein, schluffig, dolomitisch, kalkfrei, brecciös, mit cm-großen Voollon wo fiber, mit fürs uff): 	
-110,0	5,25m Sp	prengtechnik	Ziegelstein- mauerung ca. 0,5m		+ 		сдоо7к					СG007К СР003/L 💡	P05 P00	P01	P02 P03 P0 B01 B02 B03			provide the second s	Klüften, bei 250m dolomitischer Steinmergel/flachmarin-kontinental/ dunkelgrüngrau, grüngrau, wolkig rotbraun, Klufthäufigkeit: a. 2 Klüfte/m, Gestein steifplastisch bis fest Gipestein , dicht bis feinkristallin, mit unregelmäßig steifiger Textur, mit			00YES01/		
-120,0 253,75							<u>сдоовк</u>				Regelschachtscheibe bis zur -253 mNN-Sohle	CG008K	P05 P06	Poi	P02 P03 P0	÷		Interest GaseLouis	Lagen von plattig-feinkörnigem Anhydrit, schwach karbonatisch, durchsetzt mit Gips, in Partien (bei 267-268m) nesterweise grobspätiger Gips (Marienglas), eingelagerte Ton- und Schluffsteinfetzen, auf Klufftlächen Gips, faserig, 1-5mm dünn/residuale Bildungen des Zechstein/grau, dunkelgrau,					
-130,0					OTYES	S01/RB515	00YES01	M7 5 01YES01/RB514			Schachtscheibe 	01YES01/RB515 -127,98 mNN (64.2mm)	•		•	01YES01/RB513 -121.99 mNN (42,2ma) 01YES01/RB514 -123,06 mNN (64,2ma)		iei I	prauhuch, rotpraun, Kutrhautigkeir: ca. 0,07 Küffer/m 254-262m Residuen Staßfurtsteinalz und Kaliflöz Staßfurt, 262-265m Residuen Leine- und Allersalze 269-270m Roter Salzton Gipastein, fein- bis mittelkristallin,					
-140,0					01	1YES01/RB557		176 01YES01/RB559			ortesties of the ortest	01YES01/RB560 -132,43 mN (Ø70mm) 01YES01/RB557 -132,42 mN (Ø70mm)	•		a 0	01YES01/RB559 -132,55 mN (#70mm) 01YES01/RB558 -132,60 mNN (#70mm)		Hithe	partienveise durchsetzt mit ion und Schulfsteinfetzen, nesterweise grobspätigem Gips (Marienglas)/ residuale Bildungen des Zechsteins/grau, dunkelorangebraun, rotbraun, 270–271m Residuen Leine- und Allersalze, 271–273m Residuen Leine-und Allersalze mit Penmaittanbydrit			-		
-150.0					01YES	S01/RB536	-	01YES01/RB535			Schachtscheibe	01YES01/RB536 -144,49 mNN (042mm)	·		Ø	01YES01/RB535 -144,40 mN (#42mm)		zع ۳۲+22	Steinseiz und Tonstein in Wechselfolge, Steinsalz mit grauen mm-bis cm-starken Tonlinien,-flocken und -brocken, orange bis dunkelbraun und Reinsalzlagen (Steinsalz, hellorange bis orange) - z31W, Steinsalz mit Iduinnen Andvdrit - und					
-160,0 293,75					01YE 01Y	ES01/RB537 g S YES01/RB556	- -	ភ្លី 01YES01/RB549			077 557 RB550	01YES01/RB537 -152,89 mNN (\$42mm) 01YES01/RB556 -153,68 mNN (\$42mm)	0	•	•	01YES01/RB550 -153,73 mN (@42mm) 01YES01/RB549 -153,30 mN (@42mm)	ZECHSTEIN	z4	Tonlinienresten parallel zur Farbänderung, orange bis rotorange und Schwadenzonen (Steinsalz mit dunkelgrauen Resten und Fetzen von Anhydritlinien, in Zwickeln roter Carnallit und rötlicher Ton) -23SS, Klufthäufigkeit: ca. 0,1 Klüfte/m Stofnsalz , milchig trüb, orange bis rotorange (Rosensalz)					
E	latteinte	ilung				<u>Schar</u> R H	<u>chtmittelpur</u> 4438673,81 5788155,06	nkt				 Austritthorizont Traufenrinne aktive Austrittstell Konvergenzmesspun KKonvergenzmesshor Druckmessgeber Temperatursensor LDruckmessgeber, La 	le nkt rizont	ssung	1.2-3, verrohrt, i 1.4, verrohrt, ve	nit Manometer rschlossen			Die Schichteinfallen des Zechsteins sind m Sie müssen nicht notwendigerweise in der Kurzzeichen der Gesteinsbeschreibung n Geologische Überarbeitung des Schacht Bericht der GFE-GmbH und der Colenco P "Geologische und hydrogeologische Situ Schacht Bartensleben im oberen Allerta	t ihren Maximalwerten dargee ngegebenen Schnittrichtung sch "Symbolschlüssel Geolo ildes Schacht Bartensleben ower Engineering AG stion des schachtnahen Ber- ; Halle und Baden (Schweiz)	stellt. liegen. gie, NLfB und BGR nach eiches 1999".	3. Auflage 1991	14	

Hohlräume nach den Abfastergebnissen von 1990 bis 1992 Die Hohlräume wurden mit Zementsuspansien druckles verfüllt) Quelle: Ausvertung Abfast- und Verfüllprogramm, Schachtbau Nordhausen GmbH (MM/VES/HT/GJ/BZ/000700)

Anlage Nr. 3 Blatt 1 von Blatt 1 zu: 9M/00YES01/GC/BZ/0007/00

Endlager für radioaktive Abfälle Morsleben Schachtbild Schacht Bartensleben

Blatt 3, - 60 mNN bis - 160 mNN Betriebszustand 31.12.2007

e des Dokuments gf.in der Farbwiedergabe		Morsle	aben,				(Weid	enbach)	Ma	rksche	ider	
in DIN A1 ab.	ULV-Nr.: 423817	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lifd. Nr.	Rev.	
	CAD-Nr.: A45510	MAAN	NNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	
	DOKID: 111682	ю 9M			00YES01			GB	RG	0003	14	

Erläuterungen zur Gesteinsbeschreibung:

1) Über die Abfolge 22 SF-UE im Teufenbereich -198,7 m bis 250,8 m NN existiert nach derzeitigen Kenntnisstand keine detailierte geologische Aufnahme. Nach dem Stand der Neukartierung (BFS 1995) der ersten Sohle im schachtnahen Bereich muß das Salzgebirge in diesen Teufenabschnit als stark verfaltet angenommen werden. Im Abteuf-Tagebuch wird das Gebirge nur mit "Steinsalz" bezeichnet. Die Darstellung im Schachtbild kann somit nicht die vahre geologische Situation wiedergeben, sondern beschränkt sich auf eine schematisierte petrographische Darstellung. Das Schichteinfallen wurde beim Abteufen in 349 m Teufe (ca. -241 m NN) mit 66 gemessen und für der nestlichen zu betrachtender Teil interpoliert. Die Grenzziehung von 220E zu 22HG (-250,8 m NN) wurde aufgrund der o.g. Neukartierung rein konstruktiv vorgenommen.

3

4

5

6

-160

-260

-360

-460

Bearbeitet: Jarolim

Geprüft: Schmedes

Gesteinsbeschreibung	Schnitt Petrographische Darstellung
	WSW ENE
eeinsalz, milchig trüb, orange bis torange (Rosensalz) eleinsalz und Tonsalz in echselfolge, Steinsalz mit grauen, n-bis cm-starken Tonlinien, - scken und -brocken, orange bis inkelbraun und Reinsalzlagen teinsalz, hellorange bis angel-23TW;	
einsatz mit dünnen Anhydrii- und unlinienresten, parallel zur rbänderung, orange bis rotorange di Schwadenzonen (Steinsatz mit nnelegrauen Resten und Fetzen von nhydritlinien, in Zwickeln roter rnallit und rötlicher Ton)-z3SS	
nhydritlagen mit fein- bis obkristallinen Steinsalzlagen in echselfolge	
teinsalz, klar bis milchig trüb, von innen Anhydritbändern gegliedert	
teinsalz mit Sylvin ylvinitisches Hartsalz)	
einsalz mit Sylvin ylvinitisches Hartsalz = z2SF) id ueinsalz, weiß, grau bis bräunlich mit iß ausblühenden Kieseritlagen und chnüren (=z2UE) ¹⁰	
einsalz, weißlich trüb bis gelblich n dunkelgrauen hydritflocken-Linien gegliedert leinsalz, klar, weißlich bis grau tist grobhristallin teinsalzkristallbrocken und ugen), mit honig- anhydritischen reifen und Schmitzen	

Die Schichteinfallen sind auf ihren Maximalwerten dargestellt. Sie müssen nicht notwendigerweise in der angegebenen Schnittrichtung liegen. Kurzzeichen der Gesteinsbeschreibung nach "Symbolschlüssel Geologie, NLfB und BGR 3. Auflage 1991"

Geologische Überarbeitung des Schachtbildes Schacht Bartensleben nach Bericht der GFE-GmbH und der Colenco Power Engineering AG "Geologische und hydrogeologische Situation des schachtnahen Bereiches Schacht Bartensleben im oberen Allertal; Halle und Baden (Schweiz), 1999".

Anlage Nr. 4 Blatt 1 von Blatt 1 9M/00YES01/GC/BZ/0007/00

Endlager für radioaktive Abfälle Morsleben Schachtbild

Schacht Bartensleben

Blatt 4, - 160 mNN bis - 260 mNN

Betriebszustand 31.12.2006

1:250 0 5 10 15 20 25m Die vorliegende Ausgabe des Dokuments weicht im Maßstab und ggf. in der Farbwiedergabe von der Originalausgabe in DIN A1 ab. (Weidenbach) Markscheider Morsleben
 ULV-NL:
 12930
 Preside
 UA
 Mannahoutication

 CAD-NL:
 A4551006
 NAAN
 NNNNNNNNNN
 NNAAANN
 AANNNA
 AANN XAAXX
 AA
 NNNN

 ORID:
 11166291
 9M
 0.012/E01
 GB
 RG
 0.004
 12

Geprüft: Schmedes

Die vorliegende Ausga weicht im Maßstab un von der Originalausga

	1:2	50	5	1)	15		20	11	25n	
	Morsleben,						(Weidenbach) Markscheider				
1 : 250 U Morsleben, ULV-M:: 412901 PSP-Elen CAD-M:: A455100 NAAN NNNNNN DKID: 11168212 9M	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lfd. Nr.	Rev.		
CAD-Nr.: A4551006	1:250 0 5 10 15 20 Morsleben, (Weidenbach) Marksche Projekt PSP-Ekemert Obj-Kernz, Funkton Komponente Baugr. Aufgabe UA LM. Kr. NAAN NNNNNNN NNAAAN AANN AANN AANN XAAXX AA NNNN 9M 00YES01 GB RG 0005 005 005 005	NN									
DOKID: 11168292	9M			00YES01			GB	RG	0005	11	
	ULV-Nr.: 412991 CAD-Nr.: A4551006 DOKID: 11166292	1:2 Morsie ULV-Nr.: 412991 Projekt CAD-Nr.: A4551006 NAAN DOKUD: 11166292 9M	1:250 0 Morsleben, 0 ULV-Nr.: 412391 Projekt PSP-Element 0 CAD-Nr.: A4551008 NA-AN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	1:250 0 5 Morsleben, ULV-N::412901 PSP-Ekenent ObjKenz. CAD-N::A4551006 NAAN NNNNNNNNN NNNNNN DOKID: 110-220 9M S S	1:250 5 10 Morsleben, 1000000000000000000000000000000000000	1:250 0 5 10 Morsleben,	1:250 0 5 10 15 Morsleben, (Weic ULV-N:: 412801 Popeki PSP-Element 06I-Kenrz, Funkton Komponentel Bauge, CAD-NI: A4651006 INAAN NINNINNINNI NINNINNI NINAAANIN AANINA AANINA 00YES01 00YES01	1:250 0 5 10 15 Morsleben, (Weldenbach) ULV-N::412901 Pogekt PSP-Exement 06J-Kernz. Funktion Komponential Bauge. Adaptee CAD-H2: Ad4551006 NAAN NNNNNNNNNNNN NNNNNN NNNNNN AANNA AANX AAAXX Doho:: 116232 9M 00YES01 GB	1:250 0 5 10 15 20 Morsleben, (Weidenbach) Ma ULV-NL:412901 Prejekt PSP-Element Ocj-Kernz. Funktion Komponente Baugr. Judguebe UA CAD-NL: A46551006 NAAN NNNNNNNN NNNNN NNNNN NNANNA AANN AANN AANN AANN AANX AAA OYES01 GB RG	1:250 0 5 10 15 20 Morsleben, ULV-N:: 412891 Pogekit PSP-Element OcjKennz, Funktion Komponentie Baugr. Audjable UL U. Lit, Lit, Lit, Lit, Lit, Lit, Lit, Lit,	

-460

Gesteinsbeschreibung	Sch Petrographisci WSW/	initt ne Darstellung ENIE
teinsalz, klar, weißlich bis grau, eist grobkristallin teinsalzkristallbrocken und augen), mit tonig-anhydritischen reifen und Schmitzen	00 KES01	

Die Schichteinfallen sind auf ihren Maximalwerten dargestellt. Sie müssen nicht notwendigerweise in der angegebenen Schnittrichtung liegen Kurzzeichen der Gesteinsbeschreibung nach "Symbolschlüssel Geologie, NLfB und BGR 3. Auflage 1991"

Geologische Überarbeitung des Schachtbildes Schacht Bartensleben nach Bericht der GFE-GmbH und der Colenco Power Engineering AG "Geologische und hydrogeologische Situation des schachtnahen Bereiches Schacht Bartensleben im oberen Allertal; Halle und Baden (Schweiz), 1999".

Anlage Nr. 6 Blatt 1 von Blatt 1 zu: 9M/00YES01/GC/BZ/0007/00

Endlager für radioaktive Abfälle Morsleben Schachtbild

Schacht Bartensleben Blatt 6, - 360 mNN bis - 460 mNN Betriebszustand 30.06.2007

Ausgabe des Dokuments tab und ggf. in der Farbwiede	rgabe	Morsie	ben,	(Weidenbach) Markschr								
lausgabe in DIN A1 ab.	ULV-Nr.: 417750	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Beugr.	Aufgabe	UA	Lid. Nr.	Rev.	r
	CAD-Nr.: A4551007	NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	
	DOKID: 11168293	9M			00YES01			GB	RG	0006	10	

Projekt N A A N	PSP-Element N N N N N N N N N N	Obj.Kenn. N N N N N N	Funktion N N A A A N N	Komponente A A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd Nr. N N N N	Rev N N	DDEF
9M			00YES02			GC	ΒZ	0008	00	PDEU

Blatt: 4

Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE), Peine

Geomechanische Betriebsüberwachung 2007 – Schacht Marie

Stichwörter:

Konvergenz, Austrittsrate, Schacht Marie

Zusammenfassung:

Die seit ca. 7 ½ Jahren beobachteten Konvergenzen der Hauptstrecken betragen maximal -4,1 mm. Der in den Horizonten CG003K bis CG006K im Messzeitraum festgestellte leichte Verschiebungstrend deutet auf eine Zunahme der Spannungen im Ausbaumauerwerk hin, wobei im Bereich der Messhorizonte CG003K bis CG005K durch die in 2007 abgeschlossene Sanierung des Mauerwerkes eine neue Ausgangssituation geschaffen wurde. Im Jahr 2007 waren keine signifikanten Konvergenzraten festzustellen. Aus den Messergebnissen und den visuellen Beobachtungen sind aktuell keine Zustandsverschlechterungen des Schachtmauerwerks nachzuweisen.

	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
	9M	NNNNNNNNNN	NNNNNN	00YES02	AANNNA	AANN	GC	BZ	0008	00	DBED
Geomecha	anisch	e Betriebsüb	erwachu	ng 2007 –	Schacht	t Marie	L	1	1	1	Blatt: 5
Inhaltsvei	rzeich	nis Blatt									
1 E	inleitu	ng									6
2 N	lesssit	tuation und M	esssyste	eme							6
3 N	lesser	gebnisse									7
4 B	ewerti	ung									8
5 L	iteratu	ır									9
Verzeichr	nis de	r Anhänge									Blatt
Anhang 1	Ko	nvergenzmes	ssergebn	isse							
Anhang 2	Da	arstellung des	sanierte	n Bereich	es						
Anhang 3	Au	strittsraten vo	on Lösun	gen							17
Blattzahl	diese	r Unterlage o	ohne Anl	agen:							17
Verzeichr	nis de	r Anlagen					jewe	ilig	e Blat	tzah	l der Anlage
Anlage 1	S	chachtbild Sc	hacht Ma	arie, Blatt	1, +140	mNN b	is +40	m٨	IN		
Anlage 2	D	BE: 9M/00YE	S02/GB	/RG/0001/ arie Blatt	/13 2 +40 m	NN bi	s -60 m				1
7 mage 2	D	BE: 9M/00YE	S02/GB	/RG/0002/	/13						1
Anlage 3	S	chachtbild Sc	hacht Ma	arie, Blatt	3, -60 m	NN bis	-160 n	nNľ	٧		4
Anlage 4	D S	chachtbild Sc	hacht M	arie, Blatt	4, -160 r	nNN bi	is -260	mN	 IN		1
0	D	BE: 9M/00YE	S02/GB	/RG/0004/	/12						1
Anlage 5	S	chachtbild Sc	hacht Ma	arie, Blatt /RG/0005	5, -260 r 109	nNN bi	s -360	m٨	IN		1
Anlage 6	S	chachtbild Sc	hacht Ma	arie, Blatt	6, -360 r	nNN bi	s -460	mN	IN		1
	D	BE: 9M/00YE	S02/GB	/RG/0006/	/09						1
•	-										
Gesamte	Blattz	ahl dieser U	nterlage								23
Verzeichr	nis de	r Tabellen									Blatt
Tabelle 1:	Me	erkmale der K	onverge	nzmessqu	ierschnit	te					7
Tabelle 2:	Erę	gebnisse der	Konverg	enzmessu	ingen						8
Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev		
---------	-----------------------	-----------	----------	------------	-----------	---------	----	---------	-----	------	
NAAN	N N N N N N N N N N N	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DREM	
9M			00YES02			GC	ΒZ	0008	00		

Geomechanische Betriebsüberwachung 2007 – Schacht Marie

Blatt: 6

1 Einleitung

In jährlichen Abständen findet eine Begutachtung der Einbauten und des Ausbaus des Schachtes Marie durch Sachverständige der DMT – Gesellschaft für Forschung und Prüfung mbH Leipzig statt, um die Sicherheit unter Berücksichtigung des besonderen Verwendungszweckes des Bergwerks als Endlager für radioaktive Abfallstoffe zu beurteilen und ggf. Maßnahmen vorzuschlagen, die der Gewährleistung der Sicherheit der Schachteinbauten und des -ausbaus dienen.

Im Gutachten 13910-96-193 der DMT vom 16.01.1997 wurde empfohlen, ein Abtastprogramm zur Erkundung möglicher Hohlräume hinter dem Schachtausbau durchzuführen. Hierzu wurden 1998 zwischen -139 mNN und -197 mNN Abtastbohrungen erstellt und angetroffenen Hohlräume verfüllt.

Zur Erfüllung der Nebenbestimmung 5.4 (5) der Zulassung 34560-4841-01-M0199 vom 02.02.2000 zum Hauptbetriebsplan 2000/2001 (DBE M0199) reichte die DBE mit Schreiben vom 23.02.2000 ein Handlungskonzept ein, in dem u. a. die Überwachung der horizontalen Verschiebungen des Mauerwerks dargestellt wurde /2/. Mit Schreiben vom 19.12.2000 vom Bergamt Staßfurt wurde das Handlungskonzept bestätigt.

Dieser jährlich zu erstellende Bericht, folgt der Festlegung zwischen dem Bergamt Staßfurt mit seinem Gutachter, dem BfS und der DBE vom 05.06.1998. Er stellt die Ergebnisse der geomechanischen Überwachung des Schachtes Marie bis zum 31.12.2007 dar.

2 Messsituation und Messsysteme

Der 1897/1898 abgeteufte Schacht Marie besitzt einen Durchmesser von 5,25 m und eine Teufe von ca. 522 m. Er verfügt bis zu einer Teufe von ca. 401 m über einen Regelausbau aus 0,5 m dickem Ziegelmauerwerk, das sich entsprechend der Begutachtung durch die DMT und visuellen Kontrollen der DBE in einem weitestgehend guten Zustand befindet. Die Rasenhängebank liegt bei +129,08 mNN.

Im Jahr 1998 wurde eine neue Schachtwasserhaltung auf der -231 mNN Sohle entsprechend dem SBPL "Schacht Marie: Errichtung und Betrieb einer neuen Schachtwasserhaltung" (DBE M2196) vom 07.03.1997 und der Zulassung des Bergamtes Staßfurt (Az.: 34560-4841-04-M2196) vom 22.04.1997 in Betrieb genommen. Die alte Schachtwasserhaltung im Schacht Marie bei ca. 150 m Teufe und die zugehörige Pumpenkammer bei ca. 157 m Teufe wurden nach Inbetriebnahme der neuen Schachtwasserhaltung mit Beton verfüllt (siehe Anlage 2).

Die geologische und hydrogeologische Situation im Bereich des Schachtes wurde zur Erfüllung einer Auflage des Bergamtes Staßfurt zum Hauptbetriebsplan 1998/99 durch drei bis in das Zechsteinsalinar reichende Kernbohrungen untersucht. Die Ergebnisse der in diesem Zusammenhang durchgeführten Untersuchungen sind in /1/ ausführlich dargestellt und wurden bei der Erstellung des Schachtbildes berücksichtigt.

Die Anbindung der Schachtwand an das Gebirge wird in größeren Zeitabständen durch Abtastbohrungen überprüft. Nach einer Kampagne im Zeitraum 1983 – 1985 wurden im Jahr 1998 132 Abtastbohrungen mit durchschnittlich 0,95 m Länge erstellt und inspiziert. Dabei wurden sechs Hohlräume mit insgesamt 0,4 m³ Volumen festgestellt. Anschließend wurden diese Hohlräume und alle Bohrungen mit einer Zementsuspension auf Portlandzementbasis verfüllt. Im Gutachten 1120-99-192 vom 06.07.1999 stellte die DMT fest, dass anhand der Ergebnisse des Abtastprogramms und aus der unveränderten Zuflusssituation keine Beeinträchtigung der Standsicherheit des Ausbaus erkennbar ist.

Im Bereich des Hutgesteins befindet sich im Osten des Schachtes ein bereits 1966/67 sanierter Mauerwerksbereich von ca. 40 m², der Abplatzungen aufwies. Im Januar 2001 wurden in diesem Bereich (-120 mNN bis -135 mNN) umfangreiche Beraubearbeiten durchgeführt. Anschlie-

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	hpfa
9M			00YES02			GC	ΒZ	0008	00	PDEL

Geomechanische Betriebsüberwachung 2007 – Schacht Marie

Blatt: 7

ßend wurde der Bereich durch eine Systemankerung mit Spreizhülsen- und Injektionsankern konsolidiert (Anhang 2). Ab Oktober 2006 wurde das Mauerwerk in diesem Bereich auf einer Fläche von ca. 40 m² erneuert (siehe Anhang 2). Die Arbeiten wurden am 27.04.2007 abgeschlossen, anschließend wurde bis zum 11.05.2007 die Arbeitsbühne abgebaut.

Im Schacht befinden sich 13 Austrittsstellen sowie eine Reihe diffuser Austritte aus dem Schachtmauerwerk in den Bereichen +100 mNN bis -20 mNN und bei -150 mNN, die durch ein System von acht Traufenrinnen gefasst und durch eine Traufenleitung zu einem Sammelbecken (neue Schachtwasserhaltung) auf der -231 mNN Sohle geleitet werden. Die Erneuerung der Traufenrinnen und -leitungen wurde im Jahr 2005 abgeschlossen. 2006 wurden an den verrohrten Zuflüssen bei 82 m und 140 m neue Packer gesetzt.

Die sechs Konvergenzmesshorizonte (siehe Tabelle 1) wurden im Juni 2000 an der Basis des Hutgesteins in einer Teufe von ca. 233 m bis ca. 265 m (-104,5 mNN bis -135,5 mNN) entsprechend dem Handlungskonzept der DBE installiert /2/ (siehe Anlage 3). Sie bestehen aus jeweils sieben Messpunkten, die im Regelfall mit 20 cm langen Schwerlastankern vermarkt sind. Zwischen den Messpunkten werden 12 verschiedene Messstrecken gemessen, um auch richtungsabhängige Konvergenzen erfassen zu können. Alle Messhorizonte sind gleich aufgebaut und orientiert. Die Messunsicherheit liegt bei ca. ±0,5 mm. Von Juni bis September 2000 wurde zunächst in monatlichem Abstand gemessen. Ab 2002 wurde die Messfrequenz auf 2 Messungen pro Jahr reduziert. Wegen einer Beschädigung des Messpunktes Nr. 2 im obersten Messhorizont wurden im Dezember 2000 alle Messpunkte zum Schutz vor weiteren Beschädigungen im Mauerwerk versenkt. Im Zuge der Sanierung 2007 wurden die Konvergenzmessbolzen CG003K-P02 und P03, CG004K-P02 und P03 sowie CG005K-P02 und P03 abgebaut und anschließend wieder eingebaut. Im Konvergenzmesshorizont CG004K wurden zwei Messpunkte (P02 und P03) im Gebirge 80 cm tief vermarkt. Der Einbau erfolgte zum Schutz vor möglichen Beschädigungen versenkt in einer Nische. Der erneuerte Bereich wurde am 24.05.2007 neu eingemessen und berechnet. Nach dieser Neueinmessung wurden 2007 in allen 6 Messhorizonten zwei Konvergenzmessungen durchgeführt. (04./05.06.2007 bzw. 26./30.11.2007).

Kennzeichnung	Messsystem	Teufe	Geologie	Verankerung	Anker	Streckenlär	ngen der Ha	upstrecken
						1–5	2–6	3–7
02YES02	CG001K	-104,5 mNN	Hutgestein, cr (z2NA)	0,20 m	Schwerlastanker	4,98 m	5,19 m	5,10 m
02YES02	CG002K	-120,4 mNN	Hutgestein, cr (z2NA)	0,20 m	Schwerlastanker	4,96 m	5,14 m	5,08 m
02YES02	CG003K	-124,4 mNN	Hutgestein, cr (z2NA)	0,20 m ¹⁾	Schwerlastanker	4,97 m	5,14 m	5,04 m
02YES02	CG004K	-127,4 mNN	Hutgestein, cr (z2NA)	0,20 m ²⁾	Schwerlastanker	4,97 m	5,11 m	5,04 m
02YES02	CG005K	-131,4 mNN	Hutgestein, cr (z2NA)	0,20 m ¹⁾	Schwerlastanker	4,97 m	5,18 m	5,05 m
02YES02	CG006K	-135,5 mNN	Hutgestein, cr (z2NA)	0,20 m	Schwerlastanker	5,01 m	5,20 m	5,10 m

 Tabelle 1:
 Merkmale der Konvergenzmessquerschnitte

¹⁾ Die Vermarkung der Messpunkte P02 und P03 erfolgte 2007 mit 25 cm Länge im Mauerwerk

²⁾ Die Vermarkung der Messpunkte P02 und P03 erfolgte 2007 mit 80 cm Länge im Gebirge

3 Messergeb nisse

Die Ergebnisse der Konvergenzmessungen sind in Tabelle 2 dargestellt. Die Tabelle enthält die seit Juni 2000 aufgelaufene mittlere Gesamtkonvergenz der Hauptstrecken, den Maximalwert einer der drei Hauptstrecken im Gesamtzeitraum, deren Richtung sowie die mittlere Konvergenzrate für das Jahr 2007. Die Hauptstrecken verlaufen annähernd durch den Schachtmittelpunkt und entsprechen ca. dem Durchmesser des Schachtes.

Messergebnisse werden als nicht signifikant gekennzeichnet, wenn sie kleiner gleich der Messunsicherheit sind.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	NNNNN	ΝΝΑΑΑΝΝ	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	DDEA
9M			00YES02			GC	ΒZ	0008	00	PDEL

Geomechanische Betriebsüberwachung 2007 – Schacht Marie

Blatt: 8

Tabelle 2:	Eraebnisse	der Konvergenzmessungen	
		aee	

							Mess	zeitraum		Berichtszeitraum
Mess– horizont	Höhe	Teufe	Strec Ha	kenlänge upstreck	en der ken	Bezugs- messung	Mittelwerte der Hauptstrecken	Maxi Haup	mum der tstrecken	Mittlere Konvergenzraten der Hauptstrecken
			1–5	2–6	3–7				Richtung	
	[mNN]	[m]		[m]			[mm]	[mm]		[mm/a]
CG 001K	-104,5	233,6	4,98	5,19	5,10	06/00	-1,0	-1,0	NNW-SSE	-0,2
CG 002K	-120,4	249,5	4,96	5,14	5,08	06/00	-1,8	-1,9	SW-NE	-0,3
CG 003K	-124,4	253,5	4,97	5,14	5,04	06/00	-2,8	-2,9	SW-NE	-0,4
CG 004K	-127,4	256,5	4,97	5,11	5,04	06/00	-4,1	-4,1	SW-NE	-0,5
CG 005K	-131,4	260,5	4,97	5,18	5,05	06/00	-2,7	-2,8	SW-NE	-0,4
CG 006K	-135,5	264,6	5,01	5,20	5,10	06/00	-2,2	-2,5	SW-NE	-0,4

Nicht signifikante Messergebnisse sind grau hinterlegt

Im Anhang 1 sind die Konvergenzmessergebnisse als Zeitreihen dargestellt. Dabei wurden die Konvergenzen der in den Messhorizonten CG003K, CG004K und CG005K nach der Sanierung 2006/07 wiederhergestellten Strecken über den aus den vorausgegangenen Messungen ermittelten Trend an den bisherigen Messverlauf angeschlossen. Signifikante Konvergenzen sind zum Ende des Messzeitraumes in allen Messhorizonten zu verzeichnen. Die Maximalwerte der Hauptstrecken in den sechs Messhorizonten umfassen zu diesem Zeitpunkt einen Bereich von -1,0 mm bis -4,1 mm. Die zugehörigen mittleren Konvergenzraten liegen unter -1,0 mm/a. Im Berichtszeitraum wurden keine signifikanten Konvergenzen beobachtet.

Im Jahre 2007 wurden insgesamt 6.300 m³ Lösung mit einer Dichte von 1,00 bis 1,29 g/cm³ gefasst. Die aktuelle Austrittsrate im Jahr 2007 – aus der abgepumpten Menge der Schachtwasserhaltung ermittelt – liegt mit ca. 12,0 l/min unter dem Mittelwert der Austrittsrate der letzten 30 Jahre von ca. 13,8 l/min (s. Anhang 3). Die Dichte der Lösungen aus den Austrittsstellen ist auf dem Niveau der Vorjahre geblieben.

4 Bew ertung

Die seit ca. 7 ½ Jahren im Bereich des Hutgesteins in ca. 233 m bis ca. 265 m Teufe beobachteten Konvergenzen der Hauptstrecken betragen zum Ende des Messzeitraumes maximal -4,1 mm. Der überwiegende Anteil an Konvergenz ist dabei vor der im Zeitraum 10/2006 bis 04/2007 durchgeführten Sanierung des Mauerwerks und in diesem Teufenbereich abgelaufen. Im Jahr 2007 wurden keine signifikanten Konvergenzraten festgestellt. Im Konvergenzhorizont CG006K unterhalb des sanierten Mauerbereichs wurde auch in 2007 die mit geringer Rate gleichmäßig fortlaufende Konvergenz beobachtet, die auf eine Zunahme der Spannungen im Mauerwerk hinweist.

Visuell wurden nach der Sanierung keine Zustandsverschlechterungen im Schachtmauerwerk festgestellt.

Die Austrittsrate von Schachtwässern lag auch 2007 innerhalb der langjährigen Schwankungsbreite und zeigt damit keine Auffälligkeit an.

	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
	9M	IN	IN IN IN IN IN IN	00YES02	AANNNA	AANN	GC	BZ	0008	00	DBEL
Geome	chanisch	e Betriebsüb	erwachu	ng 2007 –	Schacht	t Marie	I	<u> </u>	I	<u> </u>	Blatt: 9
5 Litor	atur										
5 Liter											
/1/	Geologi	ische und hvo	drologisc	he Situatio	on des so	chacht	nahen	Ber	eiches	s Scl	hacht Marie
	im ober	en Allertal									
		er, Juli 1999 M/00VES02/F		001/00							
	DDL. 91	W/001L302/1		501700							
/2/	DBE										
	Schreib Peine	en an das Be 23.03.2000	ergamt Si	talsfurt							
	DBE: 9	M/00YES02/F	HT/DB/EI	P/0003/00							

Höhe NN (m)	Teufe Mittlerer (m) Durch- Datum messer (m)	Abteuf- verfahren	Ausbeu	Bemerkung	sw	Schnitt	NE	Bauliche Veränderungen	Injektionen	Sche	achtscheiben			s w	Abwicki / N	ung E	S		Austritte 16.11.2007	Stratign	aphle	Gesteinsbeschreibung	sw	Petrograj	Schnitt phische Dars/	ellung	NE
															Schachthord												
+129,08 +127,38 1 +120,0	0,00 5,50 <u>1,70</u> 12.05.1897 5,50 3,31				Rasenhängebank neu Rasenhängebank alt]				+125,77 mNN			09ZAB						QUARTÄR	Saale Weichsel (qs) (qw)	Schluff, stark feinsandig, oben kalkfrei, unten kalkig/Lösslehm/ gelbbraun Mittelsand, feinsandig, kiesig, kalkig Schmelzwassersand/dunkelocker, ocker		°I °I ° ° ° ° ° ° °			
+110,0	<u>11,5 5,32</u> - <u>19,9</u> -5,32				Scht Beo 13/- -128 -242						+117.6 mNN							Traufenrinne 1	270ml/min						, . , .		
+100,0						5									·			Traufenrinne 2	Oml/min			Schluff bls Schluffstein, tonig,			·		
+90,0	<u>36,8</u> 39,08	Handschachtung				00YES0									2.9,0	مر 2.1 بر هر 2.8	Р 2.13 Т	Traufenrinne 3.1	++++++++++++++++++++++++++++++++++++++		mclm – jmclo)	schwach feinsandig, kalkfrei, schwach dolomitisch, selten pyrit- führend, ungeschichtet bis undeutlich geschichtet, fossilführend (Ammoniten, Muscheln), von ca. 15-40m Dolomitmergelstein bis Dolomitstein, reinkristalltin bis dicht, Porosifät ca. 15-20%, braungrau bis dunkelbraungrau, stark klüftig, Kulfte offen, partienweise mit					
+80,0	46,85		Ziegelstein- mauerung ca. 0,5 m												2.11 , +		Т	Fraufenrinne 3.2	100ml/min	DOGGER	s Oberes Callovium (ji	Dolomit verheilt, von ca. 76-78m Dolomitmergelstein, schwach schluffig, porös, olivgrau, grünlichgrau, dunkelbraumgrau/Schichtenfolge dunch subrosive Vorgänge eingebrochen und verstürzt, Gebirge zeigt Steilstellung der Schichten, einzelne geschichtert Gesteinsblöcke liegen schräggestellt in einer					
+70,0	55,4 5,30								6							 2.2		Traufenrinne 4	0ml/min		Mittleres bis	brecciösen Matrix, die teilweise steifplastische Konsistenz hat, Gestein ist steifplastisch bis mürbe und zeigt selten festere Bereiche oder polygone Bruchstücke (Fliessbreccie), das Gestein konnte beim Abteufen bis 72,0m mit Handschachtung ausgebracht werden. Ungeklüfter bis schwach geklüftet, vereinzelt Harnische, Klufffallen					
+60,0	69,08														- -							22-779 SW,NE.				$\begin{array}{c} - & & \\ - & & \\ &$	
+50,0		Sprengtechnik										4				2.3 D 2.4 D	1	Traufenrinne 5	0ml/min 2860ml/min 92ml/min			Tonstein, schluffig, kalkfrei, schwachdolomifisch, ungeschichtet, partienweise brecciös, seltenen Pyrit (2-5mm), fossilführend				- I I	
+40,0	89,08					Schachtmittelpunkt R 4438014,29															Mittleres Callovium	(Ammoniten, muschein, dunketgrau, dunkelbraungrau / Gestein mürbe bis fest, vorliegend als Fliessbreccie (wie bis 81m), partienweise Harnische, schwach geklüftet, Kluftfallen 22–779 SW, NE.	halwerten dargestellt. Si	e müssen nicht notwe	endigerweise i	n der angegebenen Schnittri	
	Blatteir	nteilung +140				H 5789639,89							Austritthoriz — Traufenrinne —⊙ aktive Austri —⊗ inaktive Austri	ont ttstelle rittstelle	2.1, v 2.2, v 2.3, v 2.4, v 2.8, v 2.9, v 2.11, 2.13,	errohrt, ver verrohrt, ver verrohrt, of verrohrt, ve verrohrt, ve verrohrt, ve verrohrt, ve	rschlossen, m rschlossen, m fen erschlossen, m rschlossen rschlossen erschlossen erschlossen	ur Manometer nit Manometer nit Manometer			Gi de "C Si	eologische Uberarbeilung des Schacht er GFE-GmbH und der Colenco Power Ei Seologische und hydrogeologische Situ chacht Marie im oberen Allertal; Halle	uldes Schacht Marie nacl igineering AG ation des schachtnahen und Baden (Schweiz), 199	Bericht ereiches ".	[nlage Nr. 1 Blatt 1 von E	3latt 1
	2 3 4 5 6	+40 -60 -160 -260 -360 -460																					Endla	jer für radi SC 8 Blatt 1, + 1	oaktive hach Schacht M 40 mNN t	Abfälle Morsle tbild arie is + 40 mNN] ∍ben

Blatt 1, + 140 mNN bis + 40 mNN Betriebszustand 31.12.2007

des Dokuments If.in der Farbwiedergabe		Morsle	ben,				(Weid	enbach)) Ma	rksche	ider	
n DIN A1 ab.	ULV-Nr.: 423811	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lifd. Nr.	Rev.	
	CAD-Nr.: A4561002	NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	
	DOKID: 11168492	9M			00YE\$02			GB	RG	0001	13	

Gesteinsbeschreibung		Petro	Schnitt graphische Darst	ellung	
	sw				NE
onstein, schluffig, kalkfrei, hvachdolomitisch, ungeschichtet, irtienweise brecciös, selten rrit (2–5mm), fossilführend mmoniten, Muscheln), dunkelgrau, mnkelbraungrau / Gestein miche bis st, vorliegend als Fliessbreccie (wie 8 flm), partienweise Harnische, hvach geklüftet, Kluftfallen 22–779 W, NE.		•• I • I • I • I • I • I • I • I			
Fossilfunde		- 1		G I	
chluffstein, tonig, schwach insandig, dolomitisch, selten Pyrit ggregate 2-5mm, pyritisierte ssällen), ungeschichtet bis rtienweise geschichtet, z.T. recciös, fossilführend (Ammoniten, uchele) vor c. 110.130m mit		 			
uschein Von Ca. 119-130m mir ahnen im dm bis m - Bereich von Iomitstein, feinkristallin, olivgrau s Dolomitmergelstein, partienweise hwach feinsandig, prosifäl 15-20%, dunkelolivgrau, tichtehrafolg durch subrosive orgänge eingebrochen und erstürzt. Gebirge zeigt Steilstellung er Schichten,		I — I — I — I — I — I — I — I —			
nzelne geschichtete Gesteins- öcke liegen schräg gestellt in ner brecciösen Matrix, e teilweise steifplastische onsistenz hat, Gestein ist reifplastisch bis überwiegend st und zerfällt in polyedrische ruchstücke (Fliessbreccie), uftfallen 50-90° SW, NE, Jene Gins zur Kurkflüchen		I G I		· · · · · · · · · · · · · · · · · · ·	
Aren üps auf Kuffriaknen da Is Zwickeftülung brectiösen Bereichen. onstein, schluffig, kalkfrei bis sehr hvach kalkig, dolomitisch, selten vrit ungeschichtet bis partienveise rectiös, fossilführend likrofossilion, dunkelgrau, unkelbraungrau, selten ocker/		I I			
estein murbe uis resi, daneden tiefsbartsche Bereiche Berlighartsche Bereiche Belüftet, Klufffällen 4-88 ⁹ SW, NE auf Klufffächen und 5 Zwickelfüllung in brecciösen ereichen Gips bis 2mm.		• • • 		⊳ e 	
		· · · · · · · · · · · · · · · · · · ·		I I I I	
ipsstein, körnig und spätig bzw.		• I • • • I • • • I			
inkristallin, zum Teil mittelkristallin, xturiert durch mm-dinne, graue snsteinfetzen, partienweise erfältette und faserige Gipstagen mit nlagen von körnigem und spätigem so (Marienglas) / Hutgestein, minärgestein Stafifurfsteinsalz, grau s dunkelgrau, geklüttet, Klüfte mit ps verschlossen.				 	
		—		—	

Die Schichteinfallen sind auf ihren Maximalwerten dargestellt. Sie müssen nicht notwendigerweise in der angegebenen Schnittrichtung lieger

Geologische Überarbeitung des Schachtbildes Schacht Marie nach Bericht der GFE-GmbH und der Colenco Power Engineering AG "Geologische und hydrogeologische Situation des schachtnahen Bereiches Schacht Marie im oberen Allertal; Halle und Baden (Schweiz), 1999".

Anlage Nr. 2 Blatt 1 von Blatt 1 zu: 9M/00YES02/GC/BZ/0008/00

Endlager für radioaktive Abfälle Morsleben Schachtbild

Schacht Marie

Blatt 2. + 40 mNN bis - 60 mNN

			Did	au ∠, ⊤	40 111111	1 DIS - 0		NIN			
			E	Betriebs	szustano	1 31.12	2.200	17			
		1:2	50 	5	10)	15		20		
gabe des Dokuments nd ggf.in der Farbwiedergabe		Morsle	eben,				(Weid	enbach)	Ma	rksche	ider
abe in DIN A1 ab.	ULV-Nr.: 423812	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lid. Nr.	Rev.
	CAD-Nr.: A4561003	NAAN	NNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
	DOKID: 11168493	9M			00YES02			GB	RG	0002	13

Betrieb	szustand	31.12.2007	

			E	3etriebs	szustano	1 31.12	2.200	7			
		1:2	50 °	5 	10)	15	2	20		25r
abe des Dokuments nd ggf.in der Farbwiedergabe		Morsle	ben,				(Weid	lenbach)	Ma	rksche	ider
abe in DIN A1 ab.	ULV-Nr.: 423813	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lifd. Nr.	Rev.
	CAD-Nr.: A4561004	NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
	DOKID: 11168494	9M			00YES02			GB	RG	0003	14

Die vorliegende Aus weicht im Maßstab v von der Originalaus

		Blatt 4, - 160 mNN bis - 260 mNN											
			E	Betriebs	szustano	1 31.12	2.200	17					
		1:2	50	5 	10)	15		20		25r	n	
gabe des Dokuments nd ggf.in der Farbwiedergabe		Morsle	ben,				(Weid	enbach)) Ma	rksche	ider		
abe in DIN A1 ab.	ULV-Nr.: 423814	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lfd. Nr.	Rev.		
	CAD-Nr.: A4561005	NAAN	NNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN		
	DOKID: 11168495	9M			00YES02			GB	RG	0004	12		

Höhe NN (m)	Teufe (m) Datum	Mittlerer Durch- messer (m)	r Abte verfal	euf- hren	Ausbau	Bemerkung	sw	Schnitt	NE	Bauliche Veränderungen	Injektionen	Schachtscheiben	S	Abv	vicklung N E	: S	Austritte 14.11.2005	Stratigra	aphie	Get
-270,0	ca. 401				Ziegelstein- mauerung ca. 0,375 m								2	Schachtnord		2				
-280,0																				
-290,0			_																	
-300,0	429,08		Sprengt	echnik				92												
-310,0								00YES										ZECHSTEIN	22HS	Steinsalz, meist grobi anhydritisc grauen Str
-320,0	<u>459,08</u>								OK Versatz -319,9 mNN		3				P					
-340,0																		- 		
-350,0																		- Tr		
-360,0	ca. 482 489,08			ž.				?	ca353 mNN Bühne (?)											lie Schichtei
								R 4438014,29 H 5789639 89											ĸ	urzzeichen

Blatteinteilung

Hinweis zum PDF-Dokum Die vorliegende PDF-Auso kann im Maßstab und in d von der Originalausgabe a

Go	etoin	cho	ohn	oibur	100

steinsbeschreibung		Schnitt Petrographische Darsi	tellung
	sw		NE
	A		
	A	4	
	۵ ۵	4	
klar, weißlich bis grau, kristallin, mit tonig- hen, grauen bis dunkel- eifen und Schmitzen	AA		
	 		▲ ▲ ▲ ▲
	A A	4	
	A		
	A A A		

Die Schichteinfallen sind auf ihren Maximalwerten dargestellt. Sie müssen nicht notwendigerweise in der angegebenen Schnittrichtung liegen Kurzzeichen der Gesteinsbeschreibung nach "Symbolschlüssel Geologie, NLfB und BGR 3. Auflage 1991"

Geologische Überarbeitung des Schachtbildes Schacht Marie nach Bericht der GFE-GmbH und der Colenco Power Engineering AG "Geologische und hydrogeologische Situation des schachtnahen Bereiches Schacht Marie im oberen Allertal, Halle und Baden (Schweiz), 1999".

Anlage Nr. 5 Blatt 1 von Blatt 1 zu: 9M/00YES02/GC/BZ/0008/00

Endlager für radioaktive Abfälle Morsleben Schachtbild

Schacht Marie

Blatt 5, - 260 mNN bis - 360 mNN

Betriebszustand 31.12.2005

1:250 0 5 10 15 20 25m

ent:			1.2	50 1.1.1	-1-1-1-1-	La L		1.4	1 11	1.1		1.1
gabe des Dokuments er Farbwiedergabe			Morsle	eben,				(Weid	lenbach) Ma	irksche	eider
abweichen.	ULV-Nr.:	394403	Projekt	PSP-Element	ObjKennz.	Funktion	Komponente	Baugr.	Aufgabe	UA	Lfd. Nr.	Rev.
	CAD-Nr :	A4561006	NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
	DOKID:	11168496	9M			00YES02			GB	RG	0005	09

Höhe NN (m)	Teufe (m) Datum	Mittlerer Durch- messer (m)	Abteuf- verfahren	Ausbau	Bemerkung	Star	V	Bauliche /eränderungen	Injektionen	Schachtscheiben	Abwicklung	Austritte	Stratigraphie	Gesteinsbeschreibung	Sch Petrographisch	nitt he Darstellung
-370,0	499.05				Laugenstand 1996 -369,97 mNN	TIYEF 02/RUOV ROO2	TYVEF02/R001/R002						2			2709/779 3J
-380,0			Sprengtechnik			-372,44 mNN 177YKA03	17YKA04						ZECHSTE	Steinsalz, klar, weiflich bis grau, meist grobkristallin, mit tonig- anhydritischen, grauen bis dunkel- grauen Streifen und Schmitzen	▲▲ ▲▲	
-390,0						00	L 1982 Nr. 2									
-400,0	ca. 522	-	•	-							Schachtmord					
-410,0						6										
-420,0						Sicherheitspfeiler It. Verfügung 8B vom 10.02	2.82 TgbNr 3081/81									
-430.0																
-440.0						Ce.										
-450.0																
-460,0																
						<u>Schachtmittelpunkt</u> R 4438014,29 H 5789639,89								Die Schichteinfallen sind auf ihren Maxin Kurzzeichen der Gesteinsbeschreibung r 3) Einfallsrichtung und Einfallen	alwerten dargestellt. Sie müssen nicht notwendiger ach "Symbolschlüssel Geologie, NLf8 und BGR 3. Au	weise in der angegebenen Schnittrichtung liegen. Flage 1991
		Blattein 1	teilung +140 +40											Geologische Überarbeitung des Schacht Bericht der GFE-Gimbt und der Colenco F "Geologische und hydrogeologische Situ Schacht Bartensleben im oberen Allerta	ildes Schacht Bartensleben nach ower Engineering AG ation des schachtnahen Bereiches ; Halle und Baden (Schweiz), 1999".	Anlage Nr. 6 Blatt 1 von Blatt 1 zu: 9M/00YES02/GC/BZ/0008/00
		2 3 4 5 6	-60 -160 -260 -360 -460												Endlager für radioal Scha Scha Blatt 6, - 360 m	ctive Abfälle Morsleben IChtbild INN bis - 460 mNN

Schachtbild

Blatt 6, - 360 mNN bis - 460 mNN

Betriebszustand 31.12.2005

ent:		1:2	50 ⁰	5 +.1.+1.+1.+	1) 	0	15		20	1.1	25m ⊥]
abe des Dokuments er Farbwiedergabe		Morsle	ben,				(Weid	lenbach) Ma	irksche	ider
lbweichen.	ULV-Nr.: 394404	Projekt	PSP-Element	ObjKennz	Funktion	Komponente	Baugr.	Aufgabe	UA	Lid. Nr.	Rev.
	CAD-Nr.: A4561007	NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XXAAXX	AA	NNNN	NN
	DOKID: 11168497	9M			00YES02			GB	RG	0006	09

	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
		N N N N N N N N N N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN QQVEP31	AANNNA	AANN		A A RV			DBED
Geomech	anisch	l le Betriebsübe	erwachu	ng 2007 –	Südfeld		00		0010	00	Blatt: 5
Inhaltsve	rzeich	nis Blatt									
1 E	Einleitu	ng									7
2 N	/lesssit	tuation und M	esssyste	eme							8
2.1 0	Geologi	ie									8
2.2 E	Bergba	uliche Situatio	on								8
2.3	Seotecl	hnisches Mes	sprogra	mm							
2.4 K	Converg	genzquerschr	nitte								
2.5 E	xtenso	ometer			0:						
2.0 F	(ISSUDE Aikrook	erwacnung au		urometer,	Gipsma	rken ur	na Fun	inar	enkor	itroll	en12
2.7 N 2.8 F	adarm?										
2.0 A	nkerül	berwachung r	nit Quets	schkörperi	ำ						13
2.10 F	irstniv	ellement									
3 N	lesser	gebnisse									14
3.1 K	Converg	genzmessung	gen								14
3.2 E	Extenso	ometermessu	ngen								15
3.3 F	Rissübe	erwachung									17
3.4 N	/likroak	kustikmessun	gen								
3.5 F	Radarm	nessung									
3.6	Quetscl	hkörperüberw	achung.								
3.7 F	Vottorn										
3.0 V	vellem	heissung									
4 0	Seoteci	nnischer Stat	us								
5 E	Bewertu	ung									22
Verzeich	nis der	r Anhänge									Blatt
Anhang 1	Üb	ersicht Höhen	änderung	g und Kon	vergenz i	n der S	Südstree	cke	17YEF	R31/	R001 23
Anhang 2	Ko	nvergenzmes	sergebn	isse							24
Anhang 3	Ex	tensometerm	essergel	onisse							
Anhang 4	Fis	surometerme	essergeb	nisse							56
Anhang 5	We	ettermesserge	ebnisse .								66
Anhang 6	La	gepläne der N	/lesssyst	eme							67

Blattzahl dieser Unterlage:

77

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	NNNNN	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	DDEF
9M			99YER31			GC	ΒY	0010	00	PDEL

Blatt: 6

Blatt

Verzeichnis der Tabellen

Tabelle 1:	Technische Angaben zu den Extensometern	. 12
Tabelle 2:	Ergebnisse der Konvergenzmessungen	. 15
Tabelle 3:	Ergebnisse der Extensometermessungen	. 16
Tabelle 4:	Ergebnisse der Fissurometermessungen, -332 mNN Sohle (3. Sohle)	. 17
Tabelle 5:	Ergebnisse der Fissurometermessungen, -372 mNN Sohle (4. Sohle)	. 18
Tabelle 6:	Ergebnisse der Wettermessungen	. 20

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDLA
9M			99YER31			GC	ΒY	0010	00	2DEU

1 Einleitung

Das Südfeld wird seit 1970 durch ein bis heute mehrfach erweitertes geotechnisches Messprogramm mit einem Vertikalextensometer im Pfeiler des Rolllochs 12YER31/RL002 (Rolllochsystems 9, 2. Sohle) (ab 1970), Firstnivellements (ab 1982), Fühlhakenkontrollen in der hochgewölbten Sohlfläche (seit 11/92) und Konvergenzmessungen (seit 07/93) überwacht.

In geomechanischen Modellrechnungen der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) wurde der Bereich 1995/96 in 2 Schnitten nachgebildet und die Aussage getroffen, dass trotz der Stauchungen in den Schweben und Pfeilern die großräumige Stabilität gewährleistet ist. Aufgrund einer Nebenbestimmung aus der Zulassung des Hauptbetriebsplans 1996/97 wurden zur Bestätigung der Rechnungen hinsichtlich der horizontalen Stauchung in 01/97 in den zwei Berechnungsschnitten Extensometer und Konvergenzlinien in der Südstrecke instrumentiert. Zur Überwachung der Risse wurden seit 02/96 Fissurometer und Gipsmarken eingesetzt. Ergänzt wurde die Instrumentierung in 03/97 durch je eine horizontale Konvergenzstrecke in 2 Abbauen auf der -291 mNN Sohle (2. Sohle).

Ab 1998 wurden zur Vorbereitung weiterer Instrumentierungen im Südfeld im Abbau 12YER31/R004, -291 mNN (8 südl., 2. Sohle) umfangreiche Firstsicherungen durchgeführt, das Rollloch 09YEA32/RL001 (Rolllochsystem 8, 1. Sohle) zum Teil aufgewältigt und 1999 auf der -332 mNN Sohle (3. Sohle) in den Abbauen 15YER31/R004 und 15YER31/R005 (8 südl. und 9 nördl.) Beraubearbeiten durchgeführt. Im Bereich der Pfeilerdurchhiebe wurden geomechanische Beanspruchungen in Form von Abschalungen und vertikalen Rissen festgestellt. Zur betrieblichen Überwachung wurden hier seit 02/99 Fissurometer und Gipsmarken angebracht sowie in 04/99 Konvergenzquerschnitte installiert. Im Rahmen von Firstsicherungsarbeiten wurden zur Beobachtung von Löserverdachtsflächen Anker mit Quetschkörpern gesetzt.

Im Juni 1999 wurde etwa in der Mitte der Abbaue 15YER31/R004 und 15YER31/R005, -332 mNN (8 südl. und 9 nördl., 3. Sohle) je eine vertikale Kernbohrung durchschlägig zum darunter liegenden Abbau der -346 mNN Sohle (4a Sohle) erstellt. Die Schwebe unterhalb Abbau 15YER31/R005 (9 nördl., 3. Sohle) zeigte sich rissfrei, unterhalb des Abbaus 15YER31/R004 (8 südl., 3. Sohle) wurden mehrere annähernd horizontale Risse festgestellt. Daraufhin wurde das Südfeld am 02.07.99 von der -305 mNN Sohle (3a Sohle) bis zur -346 mNN Sohle (4a Sohle) für bergbauliche Aktivitäten vorläufig gestundet. Aufgrund der Befunde wurde von der DBE in Abstimmung mit BfS und BGR ein geotechnisches Überwachungs- und Untersuchungsprogramm aufgestellt, das den Kenntnisstand über den Zustand und das Verformungsverhalten der Schweben und Pfeiler im Bereich der betroffenen Abbaue erweitern sollte. Dieses Programm wurde am 13.09.99 von der Bergbehörde im Rahmen eines Sonderbetriebsplans zugelassen. Es beinhaltet:

- Radarmessungen zur Erfassung des Ist-Zustandes,
- Einbau von Gipsmarken und Fissurometern zur Rissüberwachung,
- Einbau von Ankern mit Quetschkörpern zur Kontrolle der Firstsicherheit,
- Einbau von Extensometern zur Erfassung von Schwebenauflockerungen und Pfeilerquerdehnungen,
- Einrichtung von Konvergenzmessstellen,
- Installation von Nivellementspunkten und Durchführung von relativen Höhenmessungen,
- Einbau eines mikroakustischen Messsystems,
- Durchführung von festigkeitsmechanischen Laborversuchen an gewonnenen Bohrkernen,
- Aufnahme der Hohlraumgeometrien mit einem Scanner und
- Erstellen eines Löserkatasters.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DPLA
9M			99YER31			GC	ΒY	0010	00	DDEL

Blatt: 8

Gemäß Nebenbestimmungen der o. a. Betriebsplanzulassung wurden in Anzeigen an das Bergamt die Durchführung von Radarmessungen zur Rissortung und die messtechnische Überwachung durch Quetschkörper näher beschrieben (BfS: ET2.2/Suc/9M 668 200 11 /HF/AE und DBE: 9M/AF/DB/EE/0016/00). In 11/99 bis 11/00 fanden im Abbau 12YER31/R003, -291 mNN (8 nördl., 2. Sohle), im Rollloch 09YEA32/RL001 (Rolllochsystem 8), in den Abbauen 16YEA31/R001 und 16YEA32/R002, -346 mNN (8 südl. und 9 nördl., 4a Sohle) sowie in der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) Radarmessungen zur Bestimmung der Schwebenmächtigkeit und zur Erkundung von Trennflächen in den Schweben und Pfeilern statt. Die als Risse interpretierten Reflektoren wurden exemplarisch durch Endoskopien in Tastbohrungen verifiziert. Weitere Radarmessungen fanden in 03/02 in der Zufahrt 12YER31/R001 zu Abbau 12YER31/R003, -291 mNN (8 nördl., 2.Sohle) zur Schwebenerkundung statt.

Bei Untersuchungen der liegenden Schweben der Abbaue 12YER31/R003, -291 mNN (8 nördl., 2. Sohle) sowie 15YER31/R004 und 15YER31/R005, -332 mNN (8 südl. und 9 nördl., 3. Sohle) wurden in größeren Bereichen nach Osten einfallende scherbandartige Beanspruchungszonen festgestellt. Da die geologischen Trennflächen nach Westen einfallen, war im Südfeld grund-sätzlich die Bildung von größeren Lösern nicht auszuschließen. Daher wurde in 10/00 der Abbau 12YER31/R003, -291 mNN (8 nördl., 2. Sohle) und damit das gesamte Südfeld oberhalb der -372 mNN Sohle (4. Sohle) gesperrt. Im Berichtszeitraum wurden zwei Befahrungen zur Inspektion der gesperrten Örtlichkeiten und Ablesung der geotechnischen Messstellen am 16.04.07 und am 13.11.07 durchgeführt.

Da keine weitere Einlagerung in den Abbauen der -395 mNN Sohle (5a Sohle) vorgesehen ist, wurde, um das Steinfallrisiko auszuschließen, die schnellstmögliche Verfüllung der Resthohlräume – beginnend mit Abbau 18YEA32/R003 (Abbau 2) von der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) aus entsprechend einer aufsichtlichen Anordnung der Eigenüberwachung und dem SBPL DBE M2200 sowie den diesbezüglichen Zulassungen des Bergamtes Staßfurt vom 14.11.00 und 23.11.00 – angefangen. In 2000 wurden in den Abbau 18YEA32/R003 (Abbau 2) insgesamt 4.697 m³ Salzgrus eingebracht. Zwischen Januar und März 2001 wurde Abbau 18YEA32/R002 (Abbau 1) mit 8.745 m³ Salzgrus verfüllt (Sturzversatz). Von August bis November 2002 wurden die Abbaue 18YEA32/R002 und 18YEA32/R003 (Abbaue 1 und 2) nochmals mit 423 m³ bzw. 555 m³ Salzgrus versetzt. Ab April 2007 erfolgte die Resthohlraumverfüllung des Abbaus 18YEA32/R002 (Abbau 1). Bis zum Ende 2007 wurden 835 m³ Braunkohlenfilterasche eingebracht.

Dieser jährlich zu erstellende Bericht folgt der Festlegung zwischen dem Bergamt Staßfurt mit seinem Gutachter, dem BfS und der DBE vom 05.06.98. Er stellt die Ergebnisse der geomechanischen Überwachung des Südfeldes bis zum 31.12.07 dar.

2 Messsituation und Messsysteme

2.1 Geologie

Das Südfeld des Grubenteils Bartensleben im Endlager für radioaktive Abfälle Morsleben (ERAM) befindet sich in der intensiv eingefalteten, NNW-SSE streichenden Südmulde. Die Abbaue liegen im Wesentlichen im Orange- bis Bank-/Bändersalz (z3OS-BK/BD) und grenzen östlich an das Liniensalz (z3LS). In der östlichen Flanke der Mulde steht Hauptanhydrit (z3HA) an. In der westlichen Flanke liegt in dm-Mächtigkeit das Kalilager A (z2SF) gefolgt vom Hauptsalz (z2HS).

2.2 Bergbauliche Situation

Von 1915 bis ca. 1930 wurde das Kalilager B (z2SF) von der -245 mNN Sohle bis zur -475 mNN Sohle (1a bis 6. Sohle) abgebaut. Von 1933 bis 1949 entstanden die Abbaue zur Steinsalzgewinnung auf den Sohlen -346 mNN, -332 mNN, -305 mNN, -291 mNN und

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	npre
9M			99YER31			GC	ΒY	0010	00	PDEL

Blatt: 9

-267 mNN (4a, 3., 3a, 2. und 2a Sohle). Zur Abförderung wurde 1933 die Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) erstellt (Anhang 6, Blatt 71 und 77). Der 1934 bis 1937 aufgefahrene Abbau 16YEA32/R003, -346 mNN (9 südl., 4a Sohle) ist teilweise mit Trockenversatz (Steinsalz) 6 m bis 11 m hoch verfüllt. Die Steinsalzabbaue der -395 mNN Sohle (5a Sohle) wurden in den 40er und 50er Jahren von der Strecke 19YER31/R001, -420 mNN (Richtstrecke Südfeld, 5. Sohle) aus aufgefahren.

Im Abbau 18YEA32/R002 (Abbau 1, 5a Sohle, 1943 aufgefahren) wurden von 1980 bis 1990 überwiegend radioaktive Abfälle durch in-situ-Verfestigung eingelagert. Nach einer Unterbrechung wurden von 1995 bis 1998 Fässer mit radioaktiven Abfällen von der Strecke 17YEA33/R001, -372 mNN (Versturzstrecke, 4. Sohle) Sohle aus in den Abbau 1 verstürzt. Zur Abdeckung der radioaktiven Abfälle wurden von 01/01 bis 12/02 vorsorglich 9.168 m³ Salzgrus verstürzt, um die Entstehung von radioaktiv kontaminiertem Staub bei möglichen Löserfällen auszuschließen. Von 04/2007 bis 12/2007 wurden zu Verfüllung des Resthohlraumes 835 m³ Braunkohlenfilterasche eingebracht.

Im Abbau 18YEA32/R003 (Abbau 2, 5a Sohle, 1952 aufgefahren) wurden von 1988 bis 1990 ebenfalls überwiegend radioaktive Abfälle durch in-situ-Verfestigung eingelagert. Nach einer Unterbrechung wurden von 1995 bis 1998 Fässer mit radioaktiven Abfällen von der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) aus in den Abbau 2 verstürzt. Zur Abdeckung der radioaktiven Abfälle wurden von 11/00 bis 09/02 insgesamt 5.252 m³ Salzgrus verstürzt. Im Abbau 18YEA32/R004 (Abbau 3, 5a Sohle, 1957 aufgefahren) wurden von 1979 bis 1988 radioaktive Abfälle überwiegend nach dem Verfahren der in-situ-Verfestigung eingelagert. Anschließend wurde der Abbau mit Braunkohlenfilterasche restverfüllt.

Die Strecke 17YEA34/R001, -372 mNN (Wetterstrecke, 4. Sohle) (Anhang 6, Blatt 71) wurde 1993 aufgefahren. Im nördlichen Teil der Wetterstrecke steht Kristallbrockensalz (z2HS3) an. Im südlichen Teil wurden zusätzlich Hangendsalz (z2HG), kieseritische Übergangsschichten (z2UE) sowie das Kaliflöz Staßfurt (z2SF) aufgeschlossen.

Im Abbau 12YER31/R004, -291 mNN (8 südl., 2. Sohle) wurden 1998 umfangreiche Firstsicherungen durchgeführt und das Rollloch 09AEA32/RL001 (Rolllochsystem 8) von der -291 mNN Sohle (2. Sohle) zur -332 mNN Sohle (3. Sohle) saniert, um die Zugänglichkeit des Südfeldes von der -291 mNN bis zur -332 mNN Sohle herzustellen. Anschließend wurden in den Abbauen 15YER31/R004 und 15YER31/R005, -332 mNN (8 südl. und 9 nördl., 3. Sohle) bis 03/99 weitere lokale Firstsicherungsmaßnahmen durchgeführt.

Im Jahr 2001 wurden in der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) umfangreiche Firstsicherungsarbeiten (Nachschneiden der Firste, Setzen von Ankern) durchgeführt. Im Bereich des Extensometers CG707E wurden Beraubearbeiten durchgeführt. Bereiche an den Rolllochfüßen 09YEA32/RL001 (Fahrrollloch 8) sowie an Durchbrüchen zu Abbauen der -346 mNN Sohle (4a Sohle) wurden ab 10/01 umfangreich gesichert und die Konvergenzmessstation CG190K installiert. Im Jahr 2002 wurden in der Strecke 17YER31/R001 (Südstrecke, 4. Sohle) Firstsicherungsarbeiten durchgeführt, die Fahrbahn erneuert sowie zwischen Januar und Mai 2002 die Rolllochfüße 09YEA32/RL001 und 12YER31/RL001 (Rolllochsysteme 8 und 9) sowie 12YER31/RL001 und RL004 (Fahrrolllöcher 8 und 9) verschalt und betoniert. Aus diesem Grund musste die mikroakustische Messdatenerfassungsanlage versetzt und das Extensometer CG731E umgebaut werden. Auf der -372 mNN Sohle (4. Sohle) wurden im Dezember zwei 3D-Fissurometer am Weststoß der Strecke 17YER31/R001 (Südstrecke) installiert. Im Jahr 2004 wurde in Strecke 17YER31/R001 (Südstrecke) die Konditionierungsanlage für flüssige aktive Abfälle errichtet und in Betrieb genommen. Im Jahr 2007 erfolgten in der Strecke 17YER31/R001 (Südstrecke) von Mai bis Juni Firstsicherungsarbeiten durch Setzen von Ankern und Netzen.

Der z. T. hohe Durchbauungsgrad führte zu deutlich erkennbaren Auflockerungen des Gebirges. So bildeten sich Abschalungen und Risse an bzw. in den Pfeilern und Schweben. Außerdem zeigen sich seit den 60er Jahren generell horizontale Risse an den Stößen der Strecke 17YER31/R001,-372 mNN (Südstrecke) in einem Bereich, in dem die Strecke in einer Schwebe

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDEF
9M			99YER31			GC	ΒY	0010	00	PDES

zwischen unmittelbar unter und über ihr liegenden Abbauen verläuft. Nachdem in den 70er Jahren die Sohle in diesem Bereich betoniert wurde, zeigen sich dort deutliche Aufwölbungen. Die geometrische und geologische Situation mit den Messsystemen ist in Anhang 6 dargestellt.

2.3 Geotechnisches Messprogramm

Das geotechnische Messprogramm im Südfeld umfasst:

- Auf der -291 mNN Sohle (2. Sohle):
 - in den Abbauen 12YER31/R004 und 12YER31/R005 (8 südl. und 9 nördl.) je eine horizontale Konvergenzstrecke seit 03/97,
 - auf der Sohle des Abbaus 12YER31/R003 (8 nördl.) in 09/99 und 11/00 und in der Zufahrt zu Abbau 12YER31/R003 (8 nördl.) Radarmessungen in 03/02.
- Im Rollloch 12YER31/RL001 (Fahrrollloch 8) zwischen den Sohlen -291 mNN und -332 mNN (3. Sohle) Radarmessungen zur Untersuchung des Pfeilers im Jahre 2000.
- Auf der -332 mNN Sohle (3. Sohle):
 - im Bereich der Pfeilerdurchhiebe in den Abbauen 15YER31/R004 und 15YER31/R005 (8 südl. und 9 nördl.) drei 3D-Fissurometer und 6 Gipsmarken an Rissenden seit 02/99 sowie 6 Konvergenzquerschnitte mit unterschiedlichen Verankerungstiefen ab 04/99,
 - etwa in der Mitte der Abbaue 15YER31/R004 und 15YER31/R005 (8 südl. und 9 nördl.) je eine vertikale Kernbohrung zur Überwachung der liegenden Schwebe durchschlägig zur -346 mNN Sohle (4a Sohle), in 06/99 endoskopiert und Extensometereinbau in 03/00,
 - o auf den Sohlen der Abbaue 15YER31/R004 und 15YER31/R005 (8 südl. und 9 nördl.) Radarmessungen im September 1999,
 - in den Abbauen 15YER31/R004 und 15YER31/R005 (8 südl. und 9 nördl.) Montage je einer horizontalen querschlägigen Konvergenzstrecke in der Ebene der o. a. Vertikalextensometer im März bzw. Mai 2000.
- In der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle):
 - im Pfeiler des Rolllochs 12YER31/RL002 (Rolllochsystem 9) ein Vertikalextensometer seit 1970,
 - o jährliche Firstnivellements seit 1982,
 - im Bereich der hochgewölbten Sohlfläche über Abbau 18YEA32/R004 (Abbau 3, 5a Sohle) Fühlhakenkontrollen in 14 Bohrungen zur Beobachtung der Sohlenauflockerung in 1992 (Nullmessung), 1995 und 1999,
 - 6 Konvergenzquerschnitte mit Messbeginn 1993 sowie 8 weitere seit 1995, 1997 und 2001,
 - vier 3D-Fissurometer und 31 Gipsmarken an Rissenden zur Überwachung der Risse seit 02/96, ein 3D-Fissurometer am Oststoß seit 08/01 und zwei 3D-Fissurometer am Weststoß seit 12/02,
 - querschlägige horizontale Extensometer in 2 Schnittebenen (S9 und S3), die in der Strecke mit je einer horizontalen Konvergenzlinie verlängert sind seit 01/97,
 - Radarmessungen in der Südstrecke auf der Sohle und in den Überfahrungsstrecken über 18YEA32/R002 (Abbau 1, 5a Sohle) in 03/00 sowie an der Firste und am östlichen Stoß der Südstrecke in 12/00.
- In der Strecke 17YEA34/R001, -372 mNN (Wetterstrecke, 4. Sohle):
 - o 8 Konvergenzquerschnitte mit Messbeginn 1993.

Projekt N A A N	PSP-Element	Obj.Kenn. N N N N N N N	Funktion	Komponente A A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd Nr. N N N N	Rev N N	nore
9M			99YER31			GC	BY	0010	00	DBEU

Blatt: 11

2.4 Konvergen zquerschnitte

Im Südfeld sind 32 Konvergenzquerschnitte mit 58 Messstrecken installiert. Die Konvergenzmesspunkte im ERA Morsleben bestehen in der Regel aus 0,8 m langen Spreizhülsenankern mit aufgeschraubten Universalmessbolzen. In dieser Weise sind die beiden horizontalen querschlägigen Messstrecken CG137K und CG138K (Anhang 6, Blatt 67) in den Abbauen 12YER31/R004 und 12YER31/R005, -291 mNN (8 südl. und 9 nördl., 2.Sohle) vermarkt.

Auf der -332 mNN Sohle (3. Sohle) wurden zur Überwachung von Auflockerungen im Konturbereich der Pfeilerdurchhiebe insgesamt 6 unterschiedlich tief vermarkte Messquerschnitte (MQ) installiert. Die MQ CG175K, CG177K und CG179K sind mit 0,8 m langen Spreizhülsenankern instrumentiert, während bei den jeweils daneben angeordneten MQ CG174K, CG176K und CG178K nur der Sohlpunkt (Nr. 4) in dieser Weise verankert ist. In der Firste und den Stößen wurden 1,5 m lange Spreizhülsenanker installiert, um so Auflockerungen im Bereich von 0,8 m bis 1,5 m erkennen zu können. Die MQ CG174K und CG175K befinden sich im Durchhieb zwischen den Abbauen 15YER31/R004 und 15YER31/R005 (8 südl. und 9 nördl., 3. Sohle) und die MQ CG176K bis CG179K im Durchhieb zwischen den Abbauen 15YER31/R005 und 15YER31/R006 (9 nördl. und 9 südl., 3. Sohle) (Anhang 6, Blatt 67).

In der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) sind die MQ CG190K, CG068K, CG069K und CG071K 0,8 m tief vermarkt. Die horizontale Konvergenzlinie CG707K schließt auf der einen Seite an einem Extensometerkopf (CG707E) an und ist im anderen Stoß in 0,8 m Tiefe verankert. Die Konvergenzlinie CG709K verbindet die Extensometerköpfe CG708E und CG709E. Alle übrigen MQ wurden durch Klebeanker in 35 cm Tiefe vermarkt (Tabelle 2).

In der Strecke 17YEA34/R001, -372 mNN (Wetterstrecke, 4. Sohle) sind die MQ CG165K bis CG171K mit 0,8 m langen Spreizhülsenankern vermarkt. Der MQ CG178K wurde mit 0,35 m langen Klebeankern instrumentiert, um ggf. auch stoßnahe Verformungen zu erfassen (Tabelle 2). Die Messunsicherheit der in Kapitel 3.1 angegebenen Konvergenzen beträgt ca. $\pm 0,5$ mm. Die Konvergenzmessungen erfolgen i. d. R. halbjährlich mit Ausnahme der Südstrecke auf der -372 mNN Sohle, wo i. d. R. monatlich gemessen wird.

2.5 Extensometer

Im Südfeld sind 6 Extensometer installiert, wovon im Berichtszeitraum an 5 Extensometern Messungen durchgeführt wurden.

Das Stahlseilextensometer CG731E wurde 1970 ca. vertikal in dem Pfeilersystem zwischen den Abbauen 16YEA32/R003 und 16YEA32/R002, -346 mNN (9 nördl. und 9 südl., 4a Sohle) und der -332 mNN Sohle (3. Sohle) parallel zu den Rolllöchern 12YER31/RL002 und RL004 (Rolllöchsystem 9, Fahrrollloch 9) eingebaut. Die Pfeilerfläche beträgt ca. 18 m x 18 m. Die Höhen der Abbaue liegen auf der -346 mNN Sohle bei ca. 30 m und auf der -332 mNN Sohle bei 15 m. Um die Ablesung des Extensometers von der Südstrecke der -372 mNN Sohle (4. Sohle) aus zu ermöglichen, wurden die Ablesenonien dort angebracht. Veränderungen der Strecke zwischen Ansatzpunkt der Extensometerbohrung und den Ablesenonien werden durch eine zusätzliche Messstrecke erfasst. Die Messunsicherheit der ermittelten Verschiebungen beträgt ca. \pm 1,5 mm pro Messabschnitt. Daraus resultiert für die in Kapitel 3.2 angegebenen Messwerte ein Fehler von \pm 1,5 mm für den ersten und \pm 2,12 mm für jeden weiteren Messabschnitt. Seit März 2002 sind keine Messungen mehr möglich.

Das Stangenextensometer CG707E (Anhang 6, Blatt 72) ist annähernd horizontal querschlägig in der Schwebe zwischen den Abbauen 18YEA32/R003 (Abbau 2, 5a Sohle) und 16YEA32/R002 (9 nördl., 4a Sohle) in Richtung ENE eingebaut. Die Schwebenmächtigkeit zwischen den Abbauen beträgt ca. 8 m. Das Stangenextensometer CG709E (Anhang 6, Blatt 73) ist in der Schwebe zwischen den Abbauen 16YEA32/R003 (9 südl., 4a Sohle) und

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDEF
9M			99YER31			GC	ΒY	0010	00	DDEL

Blatt: 12

18YEA32/R004 (Abbau 3, 5a Sohle) ebenfalls annähernd horizontal in Richtung ENE installiert worden. Die Schwebenmächtigkeit zwischen den Abbauen beträgt hier ca. 9 m. Das Stangenextensometer CG708E setzt die Messstrecke in entgegengesetzter Richtung ca. horizontal fort. Es liegt mit der vorderen Hälfte etwa 7 m oberhalb des Abbaus 18YEA32/R004 (Abbau 3, 5a Sohle) und läuft dann ins Unverritzte.

Im März 2000 wurden zur Überwachung der vertikalen Verformungen in den liegenden Schweben der Abbaue 15YER31/R004 und 15YER31/R005, -332 mNN (8 südl. und 9 nördl., 3. Sohle) der Sohle die Stangenextensometer CG759E und CG760E eingebaut (Anhang 6, Blatt 67).

Bei den Stangenextensometern beträgt die Messunsicherheit für Verschiebungen $\pm 0,1$ mm. Daraus resultiert für die in Kapitel 3.2 angegebenen Messwerte ein Wert von $\pm 0,1$ mm für den ersten und $\pm 0,14$ mm für jeden weiteren Messabschnitt. Die Extensometermessungen auf der -332 mNN Sohle (3. Sohle) erfolgen i. d. R. halbjährlich, auf der -372 mNN Sohle (4. Sohle) i. d. R. monatlich. Die technische Angaben der Extensometer sind in Tabelle 1 zusammengestellt.

Kennzo	eichnung	Ankerpunkttiefe	Messobjekt	Neigung	Richtung	Messsyst	em
		[m]		[gon]	[gon]		
15YER31	CG759E	2,5/4,8/7,3/9,4	Schwebe	-100	-	Glasfibergestänge	Messuhr
15YER31	CG760E	3,4/6,4	Schwebe	-100	-	Glasfibergestänge	Messuhr
17YER31	CG707E	5,2/9,8/14,1/18,6/23,1/29,7	Schwebe	-4,9	77	Glasfibergestänge	Messuhr
17YER31	CG708E	1,9/6,4/30,0	Schwebe	-5	282	Glasfibergestänge	Messuhr
17YER31	CG709E	1,9/6,4/30,0	Schwebe	-2	83	Glasfibergestänge	Messuhr
17YER31	CG731E	6,0/11,0/23,0/34,0/47,0	Pfeiler	97	84	Stahlseil	Nonius

 Tabelle 1:
 Technische Angaben zu den Extensometern

2.6 Rissüberwachung durch Fissurometer, Gipsmarken und Fühlhakenkontrollen

Im Südfeld sind insgesamt 10 Fissurometer installiert und 33 Gipsmarken angebracht.

Auf der -332 mNN Sohle (3. Sohle) wurden Anfang 1999 drei Fissurometer CG171F bis CG173F an der Firste im Bereich des Rolllochs 09YEA32/RL001(Rolllochsystem 8) installiert, um die etwa vertikalen normal zur Abbaulängsachse verlaufenden Risse in ihrer Entwicklung zu überwachen.

Zur Beobachtung der annähernd horizontalen Risse am Stoß der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) sind seit 02/96 an 2 Stellen je zwei 3D-Fissurometer installiert. In 08/01 wurde ca. 17 m südlich des Extensometer CG707E am Oststoß ein weiteres Fissurometer installiert. In 12/02 wurden am Weststoß die Fissurometer CG191F und CG192F installiert.

Die Fissurometer bestehen aus Messkonsole und Anschlagwinkel, die auf je einem Rissufer verankert werden. Über Messuhranschläge werden die Abstandsänderungen in 3 Richtungen mit einer Messuhr festgestellt. Die Messunsicherheit für die ermittelten Relativverschiebungen beträgt ca. ±0,17 mm. Die Fissurometermessungen auf der -332 mNN Sohle (3. Sohle) erfolgen i. d. R. halbjährlich, auf der -372 mNN Sohle (4. Sohle) i. d. R. monatlich.

Zusätzlich wurden in Nachbarschaft der Fissurometer an den Rissenden Gipsmarken zur Beobachtung der Rissentwicklung angebracht. Risse in Gipsmarken werden visuell kontrolliert. Im Berichtszeitraum wurden 23 Gipsmarken auf der 4. Sohle kontrolliert (Anhang 6, Blatt 71).

In der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) sind oberhalb des Abbaus 18YEA32/R004, -395 mNN (Abbau 3, 5a Sohle) im Bereich der visuell feststellbaren Sohlaufwölbungen insgesamt 14 Bohrungen von ca. 2 m Länge in die Sohle erstellt worden. In ihnen wurden – zuletzt 1999 – zur Erkundung und Beobachtung der Auflockerungen der Schwebe Fühlhakenkontrollen durchgeführt.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDEF
9M			99YER31			GC	ΒY	0010	00	DDEL

Blatt: 13

2.7 Mikroakusti k

Zur Feststellung aktueller Mikrorissbildungen wurde in 06/97 ein mikroakustisches Netzwerk mit 24 mikroakustischen Aufnehmern im Bereich der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) über den Einlagerungsabbauen 18YEA32/R003 und 18YEA32/R004 (Abbaue 2 und 3, 5a Sohle) installiert. Die Auswertung der Messungen erfolgt durch die BGR. Nach Testmessungen von 3 Monaten Dauer nahm die Anlage in 09/97 den automatischen Dauermessbetrieb auf. Dabei erfolgt für die registrierten mikroakustischen Ereignisse im Untersuchungsbereich eine automatische Ortung mit einer Genauigkeit von ca. 1 m. Die Steuerung der Anlage erfolgt über Telefonmodem. Die Lokationen der mikroakustischen Messaufnehmer sind in Anhang 6 auf Blatt 71 dargestellt.

2.8 Radarmess ungen

Radarmessungen werden zur Ortung von Rissen und Trennflächen in Tragelementen des Abbausystems durchgeführt. Die eingesetzte Ausrüstung RAMAC GPR besteht aus dem Radarbetriebsgerät und den in einem Gehäuse zusammengefassten Sende- und Empfangsantennen (bi-statisch) mit integrierter Elektronikeinheit. Es kamen je nach Aufgabenstellung geschirmte Antennen mit 250 MHz, 500 MHz, 800 MHz und 1 GHz zum Einsatz. Im anstehenden Steinsalz wurden Eindringtiefen von mindestens 12 m erreicht. Für die Auswertung wird eine Geschwindigkeit der Radarwellen im Steinsalz von 124 m/µs zu Grunde gelegt.

In 03/00 führte die Fa. DGFZ im Auftrag des BfS folgende Radarmessungen durch:

- auf der Sohle des Abbaus 12YER31/R003, -291 mNN (8 nördl., 2. Sohle) Verdichtungsmessungen zur Erkundung des Zustandes der Schwebe,
- im sanierten Bereich des Rolllochs 12YER31/RL001 (Rolllochsystem 8) in den Niveaus -322 mNN und -301,6 mNN zur Erkundung der Dicke und des Zustandes der Pfeiler in den Ebenen der hier geplanten Extensometer und
- auf der Sohle der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) oberhalb der Einlagerungsabbaue 18YEA32/R002 bis 18YEA32/R004 (Abbaue 1 bis 3, 5a Sohle) zur Untersuchung der Dicke und des Zustandes der liegenden Schwebe.

In 11/00 wurden zur Erkundung der Dicke und des Zustandes der Firste zu den darüber bzw. daneben liegenden Abbauen der -346 mNN Sohle (4a Sohle) weitere Messungen an der Firste und dem Oststoß in der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) durchgeführt. In 08/01 wurden zur Lagebestimmung von abgedeckten Rolllöchern und Untersuchung der Schwebe zu den Abbauen der -346 mNN Sohle (4a Sohle) in der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) und der Strecke 17YEA33/R001, -372 mNN (Südstrecke, 4. Sohle) und der Strecke 17YEA33/R001, -372 mNN (Versturzstrecke, 4. Sohle) und der Strecke 17YEA33/R001, -372 mNN (Versturzstrecke, 4. Sohle) Radarmessungen durchgeführt. In 03/02 wurden zur Erkundung der Schwebe zum Abbau 13YEA32/R002, -305 mNN (8 nördl., 3a Sohle) Sohle Radarmessungen in der Zufahrt 12YER31/R001 zum Abbau 12YER31/R003, -291 mNN (8 nördl., 2. Sohle) durchgeführt.

2.9 Ankerüberwachung mit Quetschkörpern

Im Südfeld des ERAM werden bei Firstsicherungsarbeiten Bereiche, in denen es zu Löserbildungen kommen kann und die nicht beraubt werden können, durch Anker gesichert. Um die mit Löserbildungen einhergehenden erhöhten Belastungen bzw. Deformationen der Anker frühzeitig erkennen zu können, wurden an ausgewählten Stellen Spreizhülsenanker mit Quetschkörpern gesetzt. Diese haben einen Innendurchmesser von 64 mm, 9,5 mm Wandstärke und 60 mm Breite. Sie bestehen aus unbehandeltem Stahlrohr. Die Spreizhülsenanker werden mit einer Vorspannung von 20 kN gesetzt. Bei ca. 25 kN Ankerbelastung beginnen sich die Quetschkörper zu verformen. Bei ca. 80 kN ist die Grenze der Verformbarkeit erreicht. Der Quetschkörper ist dann zusammengedrückt und gebrochen. Da die Spreizhülsenanker eine Nennlast von 100 kN (Bruchlast 177 kN) haben, ist der Anker zu diesem Zeitpunkt mit 80 %

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DPLA
9M			99YER31			GC	ΒY	0010	00	PDEL

seiner Nennlast beaufschlagt. Bisher wurden auf der -291 mNN Sohle (2. Sohle) 30 Anker mit Quetschkörpern in Abbau 12YER31/R003, (8 nördl.) und auf der -332 mNN Sohle (3. Sohle) je 13 Anker mit Quetschkörpern in die Abbaue 15YER31/R004 und 15YER31/R005 (8 südl. und 9 nördl.) eingebaut.

2.10 Firstnivellement

Bei den Angaben zum Nivellement handelt es sich um spezielle lokale Auswertungen der jährlichen Nivellementsdaten in Abgrenzung zu der großräumigen sohlenübergreifenden Auswertung. Durch diese Verfahrensweise können kleinräumige Bewegungen besser erfasst werden, da sie nicht von der großräumigen sohlenübergreifenden Netzkonfiguration beeinflusst werden.

Das ab 1982 jährlich durchgeführte untertägige Nivellement beinhaltete in der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) 4 Punkte, die ca. 6 cm tief in der Firste verankert waren. Bei der Neuvermarkung des untertägigen Festpunktfeldes 1994 wurden stattdessen in diesem Bereich 10 Firstanker von 80 cm Länge installiert. Dabei wurden die Firstanker der Konvergenzquerschnitte CG068K, CG069K und CG071K integriert (Anhang 6, Blatt 71). Höhenänderungen sind in dieser speziellen Auswertung ab etwa ±0,7 mm signifikant nachweisbar, Bewegungsraten ab etwa ±0,2 mm/a.

3 Messergeb nisse

3.1 Konvergen zmessungen

Die Konvergenzmessergebnisse sind in Tabelle 2 dargestellt. Die Konvergenzentwicklung über die Zeit ist für alle Messquerschnitte aus Anhang 2 zu entnehmen.

Auf der -291 mNN Sohle (2. Sohle) zeigen die horizontalen Messstrecken CG137K (Abbau 12YER31/R004 (8 südl.)) und CG138K (Abbau 12YER31/R005 (9 nördl.)) im Vergleich zum Gesamtzeitraum in 2007 eine auf etwa um die Hälfte geringere Konvergenzrate von -0,4 mm/a. Die Konvergenzrate des Gesamtzeitraumes beträgt -0,7 mm/a bzw. -0,8 mm/a.

Auf der -332 mNN Sohle (3. Sohle), in den durch Rissbildungen gekennzeichneten Durchhieben zwischen den Abbauen 15YER31/R003 und 15YER31/R006 (8 nördl. und 9 südl.), wurde bisher kein signifikanter Unterschied bei den Verschiebungen der 0,8 m und 1,5 m tief vermarkten Messstrecken beobachtet. Die Konvergenzraten an den Messquerschnitten CG174K bis CG179K liegen im Jahr 2007 auf dem Niveau des Vorjahres und geringfügig unter den Konvergenzraten des Gesamtzeitraumes.

Die in der Mitte der Abbaue 15YER31/R004 und 15YER31/R005 (8 südl. und 9 nördl., 3. Sohle) in 03/00 eingerichteten horizontalen Messstrecken CG759K bzw. CG760K zeigten im Berichtszeitraum keine signifikante Konvergenzrate bzw. eine Konvergenzrate von –1,5 mm/a. In der Messstrecke CG759K ist die Konvergenzrate im Berichtszeitraum um 0,6 mm/a gesunken; in der Messstrecke CG760K liegt die Konvergenzrate im Bereich des langjährigen Trends.

Auf der -372 mNN Sohle (4. Sohle) wurde in der Strecke 17YER31/R001 (Südstrecke) über dem südlichen Teil des Abbaus 18YEA32/R003 (Abbau 2, 5a Sohle) und dem Abbau 18YEA32/R004 (Abbau 3, 5a Sohle) im Bereich der Messstrecken CG068K bis CG077K im Jahr 2007 eine durchschnittliche Konvergenzrate von horizontal -1,2 mm/a und vertikal -0,6 mm/a beobachtet. Die maximale Horizontal- und Vertikalkonvergenz tritt im Streckenabschnitt über 18YEA32/R004 (Abbau 3, 5a Sohle) (CG172K bis CG177K) auf. Dort ist die betonierte Sohle aufgewölbt.

Die Konvergenzrate in der Strecke 17YEA34/R001 (Wetterstrecke, 4. Sohle) hat sich nach dem Abklingen der Anfangsverformungen aus der Auffahrung deutlich verringert und verlief ab 1997 etwa stationär. Die Werte ab 03/97 sind in Tabelle 2 dargestellt. Die Gesamtkonvergenz seit 08/93 beträgt maximal -70 mm horizontal und -74 mm vertikal. Die durchschnittliche Konvergenzrate ab 03/97 aller 4 nördlichen Messquerschnitte (CG165K, CG178K, CG166K und

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DEF
9M			99YER31			GC	ΒY	0010	00	PDEB

Blatt: 15

CG167K) lag bis zum Jahr 2006 bei -2,7 mm/a (horizontal) bzw. -3,0 mm/a (vertikal). Die Konvergenzraten im Berichtszeitraum sind geringer. Sie nehmen nach Süden ab.

 Tabelle 2:
 Ergebnisse der Konvergenzmessungen

						Messze	eitraum		Berichts:	zeitraum
Konvergenz-		Bezugs-	Strecke	nlänge	Konve	rgenz	Konverg	jenzrate	Konverg	enzrate
Messquerschnitte	Ankertiefe	messung	Horizontal	Vertikal	Horizontal	Vertikal	Horizontal	Vertikal	Horizontal	Vertikal
	[m]		[m]	[m]	[mm]	[mm]	[mm/a]	[mm/a]	[mm/a]	[mm/a]
-291 mNN Sohle, Ab	bau 8 südl.	und Abbau	9 nördl.				-			
12YER31/CG137K	0,80	03/97	30,83		-7,0		-0,7		-0,4	
12YER31/CG138K	0,80	03/97	22,64		-8,2		-0,8		-0,4	
-332 mNN Sohle, Pf	eilerdurchhi	ieb zwischer	n Abbau 8 si	üdl. und 9	nördl. von N	ord nach S	Süd			
15YER31/CG174K	1,50/0,80	04/99	12,23	5,12	-5,8	-8,8	-0,7	-1,0	-0,5	-0,8
15YER31/CG175K	0,80	04/99	10,78	4,43	-6,3	-8,9	-0,7	-1,0	-0,5	-0,8
-332 mNN Sohle, Pf	eilerdurchhi	ieb zwischer	n Abbau 9 ni	ördl. und 9	südl. von N	ord nach S	Süd			
15YER31/CG176K	1,50/0,80	04/99	9,33	4,87	-7,2	-8,8	-0,8	-1,0	-0,7	-0,8
15YER31/CG177K	0,80	04/99	7,84	4,22	-9,3	-9,8	-1,1	-1,1	-0,9	-0,9
15YER31/CG178K	1,50/0,80	04/99	7,86	5,10	-10,2	-11,7	-1,2	-1,4	-1,0	-1,1
15YER31/CG179K	0,80	04/99	6,44	4,40	-10,8	-12,0	-1,3	-1,4	-1,0	-1,1
-332 mNN Sohle, Ab	bau 8 südl.	und Abbau	9 nördl.							
15YER31/CG759K	1,50	03/00	22,93		-3,8		-0,5		-0,0	
15YER31/CG760K	1,50	03/00	20,04		-14,2		-1,9		-1,5	
-372 mNN Sohle, Sü	dstrecke vo	on Nord nacl	n Süd							
17YER31/CG061K	0,80	12/95	7,16	5,62	-15,4	-10,2	-1,3	-0,8	-1,0	-0,8
17YER31/CG190K*2	0,80	10/01	9,44	5,27	-2,5	-2,3	-0,4	-0,4	-0,3	-0,1
17YER31/CG068K	0,80	12/95	9,81	5,21	-11,1	-2,4	-0,9	-0,2	-0,6	-0,2
17YER31/CG707K	0,80/0,40	06/97	5,95		-9,7		-0,9		-1,4	
17YER31/CG069K	0,80	12/95	7,62	4,47	-13,9	-7,4	-1,2	-0,6	-1,0	-0,6
17YER31/CG172K	0,35	07/93	6,02	3,35	-21,7	-16,8	-1,5	-1,2	-1,3	-1,3
17YER31/CG173K	0,35	07/93	5,88	3,09	-25,9	-27,4	-1,8	-1,9	-1,5	-1,3
17YER31/CG174K	0,35	07/93	5,95	2,93	-25,6	-8,0	-1,8	-0,6	-1,8	-1,0
17YER31/CG175K	0,35	07/93	6,05	3,18	-25,3	-3,6	-1,8	-0,3	-1,5	-0,2
17YER31/CG709K	0,40	06/97	5,90		-14,3		-1,4		-1,9	
17YER31/CG176K	0,35	07/93	5,94	3,45	-23,5	-20,8	-1,6	-1,4	-1,3	-1,7
17YER31/CG177K	0,35	07/93	5,34	3,34	-17,4	0,6	-1,2	0,0	-0,9	0,2
17YER31/CG071K	0,80	12/95	6,11	4,17	-12,7	-4,9	-1,1	-0,4	-0,9	-0,1
17YER31/CG077K	0,80	12/95	6,32	4,50	-0,8	-0,1	-0,1	0,0	0,1	0,1
-372 mNN Sohle, We	etterstrecke	von Nord n	ach Süd							
17YEA34/CG165K	0,80	03/97	6,89	5,35	-29,1	-33,4	-2,7	-3,1	-1,7	-1,9
17YEA34/CG178K	0,35	03/97	6,01	4,43	-30,0	-35,0	-2,8	-3,3	-1,8	-2,0
17YEA34/CG166K	0,80	03/97	6,49	5,22	-31,8	-32,5	-3,0	-3,0	-2,0	-2,0
17YEA34/CG167K	0,80	03/97	6,33	5,18	-27,3	-28,1	-2,5	-2,6	-1,7	-1,8
17YEA34/CG168K	0,80	03/97	6,70	4,74	-18,9	-18,2	-1,8	-1,7	-1,2	-1,1
17YEA34/CG169K	0,80	03/97	6,11	4,80	-6,1	-6,0	-0,6	-0,6	-0,3	-0,3
17YEA34/CG170K	0,80	03/97	6,32	5,00	-2,7	-3,8	-0,3	-0,4	-0,1	-0,1
17YEA34/CG171K	0,80	03/97	6,07	4,63	-4,2	-4,1	-0,4	-0,4	-0,2	-0,1

Nicht signifikante Messergebnisse sind grau hinterlegt.

*2 Nur Messtrecke 2-4. Die Messstrecke 6-8 wurde durch Lauge am Sohlenpunkt angelöst und im Juli 2002 durch Ladearbeiten zerstört.

3.2 Extensometermessungen

Die Extensometermessergebnisse sind in ihrer zeitlichen Entwicklung im Anhang 3 dargestellt. Die Verschiebungen und Verformungen aller Messabschnitte und der jeweils längsten Messstrecken sowohl für den Messzeitraum als auch für den Berichtszeitraum sind in Tabelle 3 dargestellt.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N N	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DPLA
9M			99YER31			GC	ΒY	0010	00	2DE E

Blatt: 16

In den durch die Vertikalextensometer CG759E und CG760E überwachten Schweben wurden deutliche Dehnungen festgestellt. Beim Extensometer CG759E konzentrieren sich die Dehnungen auf den Bereich unterhalb der Schwebenmitte (4,8 m - 7,3 m). Hier wurden bei Bohrlochinspektionen in 12/99 und 03/00 zwischen 7,0 m und 7,1 m zwei Risse mit insgesamt 7 cm Öffnungsweite festgestellt (Anhang 3, Blatt 40 und 41). Das Extensometer CG760E zeigt im unteren Bereich der Schwebe mit annähernd gleichbleibend 0,34 mm/(m·a) die höchste Verformungsrate im Südfeld (Anhang 3, Blatt 42 und 43).

 Tabelle 3:
 Ergebnisse der Extensometermessungen

Bezeich-	Mess-	Höhe des	Bezugs-		Messze	itraum		Berichts	zeitraum
nung	abschnitt	Abschnitts	messung	Verschiebung	VerschRate	Verformung	VerformRate	VerschRate	VerformRate
	[m]	[mNN]		[mm]	[mm/a]	[mm/m]	[mm/(m⋅a)]	[mm/a]	[mm/(m·a)]
-332 mNI	N Sohle, Ab	bau 15YER31/R0)4 (8 südl.) und Abbau 15	YER31/R005 (9 nördl.)			
CG759E	0,4 - 2,5	-332,7 bis -334,8		0,84	0,11	0,40	0,052	0,16	0,075
	2,5 - 4,8	-333,4 bis -337,1	02/00	1,49	0,19	0,65	0,084	0,18	0,078
	4,8 - 7,3	-337,1 bis -339,6	03/00	4,54	0,59	1,82	0,237	0,60	0,239
	7,3 - 9,4	-339,6 bis -341,7		-0,02	0,00	-0,01	-0,001	0,02	0,010
	0,4 - 9,4	-332,7 bis -341,7		6,85	0,89	0,76	0,099	0,95	0,106
CG760E	0,4 - 3,4	-332,7 bis -335,7		4,39	0,57	1,46	0,191	0,61	0,203
	3,4 - 6,4	-335,7 bis -338,7	03/00	7,71	1,00	2,57	0,335	0,99	0,329
	0,4 - 6,4	-332,7 bis -338,7		12,10	1,58	2,02	0,263	1,59	0,266
-372 mNI	N Sohle, Sü	dstrecke							
CG707E	0,4 - 5,2	-371,0 bis -371,4		-0,72	-0,07	-0,15	-0,014	-0,11	-0,023
	5,2 - 9,8	-371,4 bis -371,8		-7,83	-0,72	-1,70	-0,156	-0,61	-0,133
	9,8 - 14,1	-371,8 bis -372,1		-1,24	-0,11	-0,29	-0,026	-0,09	-0,021
	14,1 – 18.6	-372,1 bis -372,4	04/07	-0.35	-0.03	-0.08	-0.007	-0.06	-0.013
	18,6 – 23,1	-372,4 bis -372,8	01/97	-1,08	-0,10	-0,24	-0,022	-0,01	-0,002
	23,1 – 29,7	-372,8 bis -373,3		0,72	0,07	0,11	0,010	-0,06	-0,009
	0,4 - 29,7	-371,0 bis -373,3		-10,50	-0,96	-0,36	-0,033	-0,94	-0,032
CG708E	0,4 - 1,9	-370,9 bis -371,0		-0,24	-0,02	-0,16	-0,015	-0,03	-0,020
	1,9 - 6,4	-371,0 bis -371,1	01/07	-0,19	-0,02	-0,04	-0,004	-0,01	-0,002
	6,4 - 30,0	-371,1 bis -371,4	01/57	-1,11	-0,10	-0,05	-0,004	-0,10	-0,004
	0,4 - 30,0	-370,9 bis -371,4		-1,54	-0,14	-0,05	-0,005	-0,14	-0,005
CG709E	0,4 - 1,9	-371,0 bis -371,0		-0,15	-0,01	-0,10	-0,009	0,01	0,007
	1,9 - 6,4	-371,0 bis -371,1	01/97	-0,12	-0,01	-0,03	-0,002	-0,02	-0,004
	6,4 - 30,0	-371,1 bis -371,2	01/01	-1,18	-0,11	-0,05	-0,005	-0,06	-0,003
	0,4 - 30,0	-371,0 bis -371,2		-1,45	-0,13	-0,05	-0,004	-0,07	-0,002
CG731E	0,0 - 6,0	-362,0 bis –356,0		0,40	0,01	0,07	0,002		
	6,0 - 11,0	-356,0 bis –351,0		-7,60	-0,24	-1,52	-0,048		
	11,0 – 23,0	-351,0 bis –339,0		0,40	0,01	0,03	0,001		
	23,0 – 34,0	-339,0 bis –328,0	06/70 ¹⁾	4,50	0,14	0,41	0,013		
	34,0 – 47,0	-328,0 bis –315,0		-5,20	-0,16	-0,40	-0,013		
	0,0 - 47,0	-362,0 bis -315,0		-7,50	-0,24	-0,16	-0,005		

Nicht signifikante Messergebnisse sind grau hinterlegt. ¹⁾: Seit März 2002 außer Funktion, Zugang gesperrt.

Beim in der Schnittebene S11 etwa horizontal liegenden Extensometer CG707E traten im Bereich von 5,2 m bis 9,8 m unterhalb des Westteiles von Abbau 9 nördl. unverändert deutliche Stauchungen auf. Im Berichtszeitraum lagen die Verschiebungsraten der anderen Messabschnitte überwiegend im Bereich der Messunsicherheit (Anhang 3, Blatt 44 und 45).

Das Extensometer CG707E und die Konvergenzstrecke CG707K bilden eine horizontale insgesamt 35 m lange Messstrecke. Für den Abschnitt zwischen dem Weststoß der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) und dem Ankerpunkt bei 29,7 m Tiefe ergibt

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDEF
9M			99YER31			GC	ΒY	0010	00	20EU

Blatt: 17

sich bis Ende 2007 insgesamt eine horizontale Stauchung von etwa -1,9 mm/a bzw. -0,05 mm/(m·a). Die weitgehend gleichmäßige Entwicklung der Streckenkonvergenz und der Verschiebung des Extensometerkopfpunktes zum 29,7 m Anker sind zu etwa gleichen Anteilen an der Gesamtverschiebung beteiligt (Anhang 3, Blatt 54). Da an CG707E nur am Kopfpunkt ein Temperatursensor ist, wurde der bohrlochtiefste vergleichbare Sensor von CG709E eingeblendet.

Der in der Schnittebene S3 liegende Extensometerquerschnitt CG708E - CG709E weist auch in 2007 insgesamt gleichbleibende geringfügige Verformungen aus (Anhang 3, Blatt 46 und 47). Die Verknüpfung der Extensometer- und Konvergenzergebnisse zeigt, dass mit einer horizontalen Konvergenzrate von ca. -1,4 mm/a eine horizontale Stauchung von -1,6 mm/a bzw. -0,02 mm/(m·a) im 65 m-Bereich auftritt (Anhang 3, Blatt 55).

Aus den Werten des Vertikalextensometers CG731E ergibt sich aufgrund der Hohlraumsituation ein Wechsel zwischen Stauchungen und Dehnungen in den einzelnen Abschnitten des beobachteten Pfeilersystems, die im Wesentlichen von 1977 bis 1986 abliefen (Anhang 3, Blatt 50). Ab 1997 ist kein einheitlicher Trend erkennbar. Die Verschiebungen schwanken überwiegend im Rahmen der Messunsicherheit. Das Extensometer ist seit März 2002 nicht mehr funktionsfähig und kann aus arbeitssicherheitlichen Gründen nicht repariert werden.

3.3 Rissüberwachung

Die grafischen Darstellungen der Messergebnisse in Anhang 4 zeigen den resultierenden Betrag des Verschiebungsvektors sowie dessen Richtung und Neigung. Für die Auswertung wurde entsprechend der geomechanischen Situation – wie unten erläutert – a priori ein Rissufer als fest angenommen.

Auf der -332 mNN Sohle (3. Sohle) ergaben die Fissurometermessungen an den ca. vertikalen Rissen in der Firste des Durchhiebs am nördl. Ausgang des Abbaus 15YER31/R004 (8 südl.) die in Tabelle 4 angegebenen Verschiebungen, Verschiebungsraten und -richtungen. Bei der Berechnung der Vektoren wurde das zum Pfeilerkern hin liegende Rissufer als fest angesehen.

Bezeichnung	Bezugs-		Messzeitrau	m	Berichtszeitraum					
15YER31	messung	Verschiebung	Verschiebungsrate	Richtung	Einfallen	Verschiebungsrate	Richtung	Einfallen		
		[mm]	[mm/a]	[gon]	[gon]	[mm/a]	[gon]	[gon]		
CG171F	04/99	1,31	0,15	163	12	0,28	137	-11		
CG172F	04/99	1,92	0,22	170	11	0,19	167	17		
CG173F	04/99	0,77	0,09	149	5	0,07	179	7		

 Tabelle 4:
 Ergebnisse der Fissurometermessungen, -332 mNN Sohle (3. Sohle)

Nicht signifikante Messergebnisse sind grau hinterlegt.

Es ergeben sich geringfügige leicht ansteigende Verschiebungen des konturnäheren Rissufers auf den südlich gelegenen Abbau 8 südl. zu. Die Rate der Verschiebungsvektoren liegt bei ca. 0,1 mm/a bis 0,3 mm/a. Die Ergebnisse der Fissurometer CG172F und CG173F liegen im bisherigen Trend. Beim Fissurometer CG171F zeigt in 2007 die Rissöffnungsweite wieder eine Zunahme. Die Rissöffnungsweite und die Verschiebungen in u- und v-Richtung kehren auf den bis Ende 2005 vorliegenden Trend zurück.

Die in der liegenden Schwebe des Abbaus 15YER31/R004 (8 südl., 3. Sohle) in der Bohrung RB759 festgestellten Risse werden durch das Extensometer CG759E beobachtet (Anhang 3, Blatt 40 und 41). Die Ergebnisse sind in Abschnitt 3.2 dargestellt.

In der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) sind an den Fissurometern im Jahr 2007 Zunahmen der Rissweite (RW) bis 0,2 mm und insgesamt nur geringe Scherbewegungen zu beobachten. In Tabelle 5 sind die Verschiebungen, Verschiebungsraten und -richtungen angegeben. Demnach ist eine gleichmäßige Senkung des Liegenden auf das jeweilige Zentrum der darunter liegenden Abbaue festzustellen. Im Jahr 2007 lagen die durchschnitt-

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDLA
9M			99YER31			GC	ΒY	0010	00	2DEU

Blatt: 18

lichen Verschiebungsraten am Oststoß über Abbau 18YEA32/R003 (Abbau 2, 5a Sohle) und am Weststoß über Abbau 18YEA32/R004 (Abbau 3, 5a Sohle) im Trend der Vorjahre.

 Tabelle 5:
 Ergebnisse der Fissurometermessungen, -372 mNN Sohle (4. Sohle)

Bezeichnung	Bezugs-		Messzeitraur	Berichtszeitraum						
17YER31	messung	Verschiebung	Verschiebungsrate	Richtung	Einfallen	Verschiebungsrate	Richtung	Einfallen		
		[mm]	[mm/a]	[gon]	[gon]	[mm/a]	[gon]	[gon]		
Oststoß über	Abbau 2									
CG187F	02/96	1,69	0,14	38	-85	0,12	81	-50		
CG186F	02/96	1,49	0,13	27	-89	0,15	277	-58		
CG189F	08/01	0,75	0,14	65	-70	0,10	234	-56		
Weststoß übe	r Abbau 3									
CG185F	02/96	1,95	0,17	214	-71	0,13	93	-40		
CG184F	02/96	1,85	0,16	250	-73	0,12	272	-45		
CG191F	12/02	1,36	0,27	246	-79	0,15	287	-85		
CG192F	12/02	0,51	0,10	254	-84	0,07	56	-67		

Nicht signifikante Messergebnisse sind grau hinterlegt.

Die gerissene Gipsmarke 150300/06 wurde im Dezember 2002 durch das Fissurometer CG191F ersetzt. Am 26.04.05 wurden die gerissenen Gipsmarken 150300/5, 050298/1, 150300/7, 210100/1, 130499/2 und 040298/6 durch neue Gipsmarken ersetzt. Im Berichtszeitraum sind keine Gipsmarken gerissen und es wurden keine Arbeiten an den Gipsmarken durchgeführt. Die Lage und der Zustand aller Gipsmarken ist in Anhang 6, Blatt 71 dargestellt.

Flach einfallende Risse waren auch bei der Endoskopie der Bohrungen RB708 und RB709 im Zuge der Instrumentierung der Extensometer CG708E und CG709E festgestellt worden (Schnittdarstellung Anhang 3, Blatt 46). Ebenso wurden in der RB964 annähernd horizontale Risse in den Bohrlochtiefen 1,2 m (RW 2 cm), 1,8 m (RW 0,5 cm) und 2 m (RW 1,5 cm) erkannt. Die Rissentwicklung kann aufgrund der eingebauten Messinstrumente zwar nicht unmittelbar überwacht werden, aber die Ergebnisse der Extensometermessungen in den beiden erstgenannten Bohrungen lassen keine Hinweise auf signifikante Rissveränderungen erkennen.

Seit 1999 wurden keine Fühlhakenkontrollen durchgeführt. Bei den Fühlhakenkontrollen im Bereich der aufgewölbten Betonfläche über Abbau 18YEA32/R004 (Abbau 3, 5a Sohle) sind im Gebirge bis in maximal 0,91 m Tiefe Risse bis 95 mm Rissweite festgestellt worden. Der Abstand zwischen den hochgewölbten Betonplatten und der Salzschwebe betrug maximal 130 mm. Kumuliert pro Bohrung ergaben sich im Gebirge Gesamtrissweiten zwischen 3 mm im südlichen Teil und 194 mm im mittleren Bereich. Im nördlichen Bereich lagen die Gesamtrissweiten generell über 23 mm. Bei der letztmaligen Messung 1999 wurden zu- aber auch abnehmende Rissweiten festgestellt. Insgesamt überwogen geringe Zunahmen der Rissweiten bis maximal 10 mm. Im nördlichen und mittleren Bereich hat sich die Betonsohle um 5 mm bzw. 20 mm weiter vom Gebirge abgehoben. Die Bohrungen sind seit 1999 durch die zunehmende Aufwölbung der Betonsohle zugefallen bzw. die Risse sind nicht mehr eindeutig ertastbar.

Für die Abbaue 12YER31/R004 und 12YER31/R005, -291 mNN (8 südl. und 9 nördl., 2. Sohle) sowie die Abbaue 15YER31/R003, R004, R005 und R006, -332 mNN (8 nördl., 8 südl., 9 nördl. und 9 südl., 3. Sohle) wurden in 2002 bzw. 2004 alle sichtbaren Löser und Risse kartiert und in den zeichnerischen Darstellungen in Anhang 6 (Blatt 67, 69 und 70) farbig dargestellt. Eine Aktualisierung wurde seither nicht vorgenommen.

3.4 Mikroakusti kmessungen

Die Auswertung der Messungen durch die BGR ergab folgende wesentlichen Ergebnisse seit Aufnahme der Messungen im Jahr 1997:

 Die akustischen Emissionen konzentrierten sich auf die Hohlraumkonturen im unteren Bereich des Pfeilersystems mit dem Rollloch 12YER31/RL004 (Fahrrollloch 9) sowie die Schweben zwischen den Abbauen 16YEA32/R002 und 16YEA32/R003, -346 mNN (9 nördl. und 9 südl.,

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDEF
9M			99YER31			GC	ΒY	0010	00	2DE E

4a Sohle) und den Abbauen 18YEA32/R003 und 18YEA32/R004, -395 mNN (Abbaue 2 und 3, 5a Sohle). Eine Ansammlung von Ereignissen etwa 40 m westlich und unterhalb der erfassten Abbaue bildete dabei eine Ausnahme. Sie werden mit dem Vorkommen von Anhydritmittelsalz (z3AM) in einem Muldenkern korreliert.

- Die im Jahr 2002 aufgetretenen Erhöhungen und räumlichen Veränderungen der Mikrorissprozesse im Vergleich zum früheren Messzeitraum blieben auch 2007 erhalten. Die westlich der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) ab Mai 2002 beobachteten Aktivitäten, die sich innerhalb der Anordnung der mikroakustischen Aufnehmer – über dem südlichen Teil des Abbaus 18YEA32/R003, -395 mNN (Abbau 2, 5a Sohle) bis über dem nördlichen Teil des Abbaus 18YEA32/R004, -395 mNN (Abbau 3, 5a Sohle) – von der Kontur der Südstrecke bis ca. 5 m bis 10 m in das Gebirge hinein erstreckten, blieben weiter erhalten.
- Die von 2003 bis 2006 aufgetretene Aktivität westlich der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) an der Grenze zwischen dem schmalen Kalilager z2SF und Steinsalz z3 wurde im Jahr 2007 nicht mehr beobachtet.
- Insgesamt hat sich die Lage der Ortungen gegenüber 2006 wenig verändert. Die Anzahl der Ortungen nahm im Berichtszeitraum mit etwa 20 % gegenüber dem Vorjahr ab.

3.5 Radarmess ung

Im Berichtszeitraum wurden keine Radarmessungen durchgeführt. Die Auswertung der Radarmessergebnisse aus den Jahren 2000 und 2002 bestätigte bzw. präzisierte lokal die vorliegenden Informationen zur Dicke der Schweben und Pfeiler. Zum Zustand der Tragelemente wurden die folgenden wesentlichen Informationen gewonnen:

- Die Schwebe zwischen dem Abbau12YER31/R003, -291 mNN (8 nördl., 2. Sohle) und dem Abbau 13YEA32/R002, -305 mNN ((8 nördl., 3a. Sohle) weist deutliche nach NE einfallende Trennflächen (TF) auf (Anhang 6, Blatt 76). Durch die Tastbohrungen RB629, RB630 und RB635 in Verbindung mit Bohrlochinspektionen wurden in diesen Bereichen Risse festgestellt. Die Lage und Neigung der Rissflächen deuten auf Scherbeanspruchungen der Schwebe hin.
- Die Schwebe zwischen dem Abbau 15YER31/R004, -332 mNN (8 südl., 3. Sohle) und dem Abbau 16YEA31/R003, -346 mNN (8 südl., 4a. Sohle) weist ebenfalls deutliche nach NE einfallende TF auf, die auf durch Scherbeanspruchung entstandene Rissflächen hindeuten. Die Inspektion der Extensometerbohrung RB759 bestätigt dies.
- Die Schwebe zwischen dem Abbau 15YER31/R005, -332 mNN (9 südl., 3. Sohle) und dem Abbau 16YEA32/R002, -346 mNN (9 südl., 4a. Sohle) weist lokal ebenfalls deutliche nach NE einfallende TF auf, die auf eine vergleichbare Scherbeanspruchung hindeuten. Im Bereich der rissfrei festgestellten Extensometerbohrung RB760 sind die Reflektoren wesentlich geringer ausgeprägt.
- In der Schwebe zwischen der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) sowie den Abbauen 18YEA32/R003 und 18YEA32/R004, -395 mNN (Abbau 2 und 3, 5a Sohle) wurden keine TF größerer Ausdehnung festgestellt.
- Die Messungen im Rollloch 12YER31/RL001 (Fahrrollloch 8) präzisierten die bis dahin vorliegenden geometrischen Informationen über die Lage des Rolllochs 09YEA32/RL001 (Förderrollloch) und die Dicke des Pfeilers in den beiden Untersuchungsebenen. Hinweise auf TF können jedoch ohne Tastbohrungen nicht sicher interpretiert werden.
- In der Schwebe zwischen der Zufahrt zu Abbau 12YER31/R003, -291 mNN (8 nördl., 2. Sohle) und Abbau 13YEA32/R002, -305 mNN (8 nördl., 3a Sohle) sind keine markanten TF erkannt worden.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDEF
9M			99YER31			GC	ΒY	0010	00	DDEL

Blatt: 20

3.6 Quetschkörperüberw achung

Im Berichtszeitraum wurden keine Kontrollen durchgeführt Bei der letzten visuellen Kontrolle der Quetschkörper am 17.10.01 wurden keine Verformungen festgestellt. Der Bereich ist z. Z. nicht zugänglich. Eine messtechnische Überwachung fand nicht statt.

3.7 Firstnivellement

Das Nivellement der Firstpunkte zeigt längs der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) Senkungen mit einer gestreckten Mulde über den Abbauen 18YEA32/R002 und 18YEA32/R003, -395 mNN (Abbau 1 und 2, 5a Sohle) sowie einem lokalen Senkungsmaximum über dem Abbau 18YEA32/R004, -395 mNN (Abbau 3, 5a Sohle).

Von 1983 bis 1994 wurden hier maximal 19 mm Firstsenkung mit einer konstanten Rate von ca. 1,6 mm/a festgestellt. Im Zeitraum 1994 bis 2007 betrug die Firstsenkung in den Senkungsmaxima 12,2 mm. Die maximale aktuelle Firstsenkungsrate 2007 betrug ca. 0,9 mm/a (Anhang 1). Die Firstsenkungsrate nahm gegenüber der Vormessung leicht zu.

3.8 Wettermessung

Zur Darstellung der Klimaverhältnisse für die Jahre 1998 bis 2007 sind in Tabelle 6 und Anhang 5 (Blatt 66) die durchschnittlichen Wetterdaten der Wettermessstelle 2.1 (Anhang 6, Blatt 71 und 77) angegeben. Insbesondere stieg die Wettermenge mit Beginn der Verfüllarbeiten in der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) im November 2000 von ca. 600 m³/min auf 900 m³/min deutlich an. Da es jedoch durch die erhöhte Wettermenge nur zu einem geringfügigen Rückgang der Temperatur kam, blieb der Einfluss auf die Gebirgsverformungen gering. Ab Juli 2001 wurde nach Abschluss der Verfüllarbeiten die Wettermenge wieder auf ca. 500 m³/min gedrosselt. Ab August 2002 wurde die Wettermenge wieder auf Werte von ca. 900 m³/min erhöht. In den südlichen Bereich der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) gelangt nur noch ca. 1/3 der Frischwettermenge, die an Messstelle 2.1 gemessen wird. Damit sind hier auch die Schwankungen der Temperatur deutlich niedriger.

Zeitraum		Wettermessstelle 2.1	
	Wettermenge	Temperatur	Rel. Luftfeuchtigkeit
	[111 /11111]	[0]	[/0]
1998	545	21,4	45
1999	501	21,2	44
2000	720	20,5	46
2001	694	19,7	46
2002	698	20,0	43
2003	874	19,2	44
2004	920	17,5	42
2005	884	18,5	47
2006	881	19,5	47
2007	913	19,8	48

 Tabelle 6:
 Ergebnisse der Wettermessungen

4 Geotechnischer Status

-291 mNN Sohle (2. Sohle)

In der liegenden Schwebe des Abbaus 12YER31/R003 (8 nördl., 2. Sohle) sind durch die Radarmessungen und Kernbohrungen (RB629, RB635 und RB630) die in Anhang 6, Blatt 76 dargestellten Trennflächen (TF) bzw. Risse bekannt. Für den durchgehenden Reflektor 2 ist durch die Radarmessungen eine flächenhafte Ausdehnung vom mittleren bis zum südöstlichen Be-

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	npre
9M			99YER31			GC	ΒY	0010	00	DDEE

Blatt: 21

reich des Abbaus nachgewiesen. Die Kernbohrungen RB629 und RB635 ergaben seinerzeit Rissöffnungsweiten von 14 cm bzw. 16 cm. Aufgrund dieser Ergebnisse ist der Abbau 12YER31/R003 (8 nördl., 2. Sohle) seit 10/00 vorläufig gesperrt.

In den Abbauen 12YER31/R004 und 12YER31/R005 (8 südl. und 9 nördl., 2. Sohle) zeigten sich 1999 horizontale Konvergenzraten von ca. -1,7 mm/a. Ab dem Jahr 2000 verringerten sich die Konvergenzraten und nahmen im Jahr 2002 Werte von ca. -0,7 mm/a im Abbau 12YER31/R005 (9 nördl., 2 Sohle)) und ca. +0,2 mm/a im Abbau 12YER31/R004 (8 südl., 2. Sohle) an. Im Betrachtungszeitraum waren keine signifikanten Konvergenzraten zu beobachten.

-332 mNN Sohle (3. Sohle)

In der Sohle des Abbaus 15YER/R004 (8 südl., 3. Sohle) wurden 1999 durch Radarmessungen und die Inspektion der Kernbohrung RB759 Risse mit Öffnungsweiten von 2,0 cm bis 4,5 cm festgestellt (Anhang 3, Blatt 40). Die Bohrung RB759 steht stratigraphisch im z30S-BK/BD, wobei die Kristallinität des Steinsalzes wechselt und Kristalldurchmesser über 6 cm angetroffen wurden. Die durch das Extensometer CG759E festgestellten Dehnungen konzentrieren sich auf den Messabschnitt unterhalb der Schwebenmitte (4,8 m bis 7,3 m) und damit auf den Firstbereich des darunterliegenden Abbaus 16YEA31/R003, -346 mNN (Abbaus 8 südl., 4a Sohle). In diesem Messabschnitt, der den Riss mit der größten Öffnungsweite überspannt, wurde im Jahr 2007 eine gegenüber dem Vorjahr etwa gleichbleibende Verschiebungsrate von 0,6 mm/a gemessen.

In der Sohle des Abbaus 15YER31/R005 (9 nördl., 3. Sohle) wurden 1999 durch Radarmessungen in der Längsachse Bereiche mit Reflektoren ermittelt, die auf lokale Schädigungen hindeuten. In der E-W-Ebene, in der auch die Kernbohrung RB760 liegt, wurden jedoch weder deutliche Radarreflektionen noch Risse in der Bohrung festgestellt. Die maximale Verformungsrate lag im Jahr 2007, wie schon im Vorjahr, in den unteren 3 m der Schwebe (3,4 m bis 6,4 m) bei 0,33 mm/(m·a). Dies ist weiterhin der höchste Wert im Südfeld.

In den Durchhieben zwischen den Abbauen 15YER/R004, 15YER31/R005 und 15YER31/R006 (8 südl., 9 nördl. und 9 südl., 3. Sohle) waren seit 04/99 in allen Messquerschnitten Konvergenzraten von etwa -0,7 mm/a bis -1,4 mm/a zu beobachten. Tendenziell nehmen die Konvergenzen von Norden nach Süden zu und liegen vertikal etwas höher als horizontal. In 2000 stieg die durchschnittliche Konvergenzrate gegenüber 1999 um ca. 40 % auf -1,5 mm/a. Dies war jedoch durch jahreszeitliche Schwankungen verursacht, da der übliche saisonale Rückgang zum Jahresende aufgrund der Sperrung des Südfeldes ab 09/00 nicht erfasst werden konnte. Im Jahr 2007 lag die durchschnittliche Konvergenzrate mit -0,9 mm/a geringfügig unterhalb des langjährigen Mittelwertes.

-372 mNN Sohle (4. Sohle)

In der Strecke 17YER31/R001 (Südstrecke, 4. Sohle) wurden Senkungen der Streckenfirste im gesamten Bereich oberhalb der Abbaue 18YEA32/R002 bis 18YEA32/R004, -395 mNN (Abbaue 1 bis 3, 5a Sohle) beobachtet. Die maximalen Senkungsraten von ca. -0,8 mm/a sind seit Jahren konstant. Insgesamt ist eine leichte Zunahme der Senkungsraten zu beobachten. Die stärksten Senkungen liegen im Streckenverlauf oberhalb des Abbaus 18YEA32/R003, -395 mNN (Abbau 2, 5a Sohle) dicht neben dem bis in das Streckenniveau gebauten Abbau 16YEA32/R002, -346 mNN (9 nördl., 4a Sohle) sowie im Streckenverlauf zwischen Abbau 18YEA32/R004, -395 mNN (Abbau 3, 5a Sohle) und Abbau 16YEA32/R003, -346 mNN (9 südl., 4a Sohle).

Die seit 1993 nahezu konstante Konvergenzrate von ca. -1 mm/a bis -2 mm/a im Bereich der Strecke 17YER31/R001 (Südstrecke, 4. Sohle) über Abbau 18YEA32/R004, -395 mNN (Abbau 3, 5a Sohle) liegt im bekannten Verformungsverhalten von Abbaubereichen der Grube Bartensleben. Bemerkenswert ist die meist deutlich geringere Vertikalkonvergenz. Die höchsten Konvergenzen sind auf einen ca. 25 m langen Streckenabschnitt konzentriert, in dem auch Aufwöl-
Projekt	PSP-Element	Obj.Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	DDEF
9M			99YER31			GC	ΒY	0010	00	DDEL

Geomechanische Betriebsüberwachung 2007 – Südfeld

Blatt: 22

bungen der Betonplatten auf der Sohle festzustellen sind (Anhang 1). Im Jahr 2007 bewegten sich die durchschnittlichen horizontalen und vertikalen Konvergenzraten überwiegend leicht unterhalb der langjährigen Mittelwerte. Früher durchgeführte Fühlhakenkontrollen und Endoskopien in Bohrungen weisen lokale Auflockerungen im oberen Bereich der Sohle nach. Konvergenzmessergebnisse im Berichtszeitraum deuten weiterhin auf zunehmende Schädigungen der Schwebe über dem Abbau 18YEA32/R004, -395 mNN (Abbau 3, 5a Sohle) hin.

Im nördlichen Extensometerquerschnitt CG707E (Schnitt S11) sind die hier deutlicheren und sehr stetig ablaufenden horizontalen Stauchungen im Gebirge auf den Bereich unterhalb des westlichen Teils von Abbau 16YEA32/R002, -346 mNN (9 nördl., 4a Sohle) konzentriert. Im südlichen Extensometerquerschnitt CG708E/CG709E (Schnitt S9), der querschlägig durch das Zentrum von Abbau 3 verläuft, sind nur geringe horizontale Verformungen festzustellen.

Im Pfeiler des Rolllochs 12YER31/RL002 (Rolllochsystem 9) wurden bis März 2002 vertikal in den Messabschnitten -356 mNN bis -351 mNN und -328 mNN bis -315 mNN deutliche bzw. geringe Stauchungen sowie in den übrigen Bereichen geringere Dehnungen festgestellt. In diesem Bereich waren ab Mai 2002 erhöhte mikroakustische Aktivitäten zu beobachten, die auch im Jahr 2007 anhielten.

In der 1993 aufgefahrenen Strecke 17YEA34/R001 (Wetterstrecke, 4. Sohle) haben sich nach Abklingen der Anfangsverformungen etwa stationäre Konvergenzraten eingestellt. Die mittleren Konvergenzraten im nördlichen Teil lagen im Jahr 2007 bei horizontal und vertikal -1,8 mm/a. Nach Süden nehmen die Konvergenzraten immer weiter ab. Die noch leicht erhöhten Konvergenzraten im nördlichen Teil der Wetterstrecke hängen vermutlich mit der hier anstehenden Geologie zusammen.

5 Bew ertung

Durch Rissbeobachtungen, Bohrlochinspektionen und Radarmessungen sind teilweise flächenhafte Schädigungszonen in den untersuchten Schweben und Pfeilern bekannt. Es ist davon auszugehen, dass dies in ähnlicher Form auch auf die bisher nicht untersuchten Tragelemente zutrifft. Die Schädigungen sind vermutlich überwiegend im Zeitraum unmittelbar nach der Auffahrung des Abbausystems entstanden. Dies wird lokal aus den geringen und gleichmäßigen Verschiebungen der Rissflächen zueinander und der bis zum Jahr 2002 gleichbleibenden mikroakustischen Aktivität geschlossen. Dabei konzentrierten sich die akustischen Emissionen auf die Hohlraumkonturen im unteren Bereich des Pfeilersystems mit dem Rollloch 12YER31/RL004 (Fahrrollloch 9, 2. Sohle) sowie die Schweben zwischen den Abbauen 16YEA32/R002 und 16YEA32/R003, -346 mNN (9 nördl. und 9 südl., 4a Sohle) und den Abbauen 18YEA32/R003 und 18YEA32/R004, -395 mNN (Abbau 2 und 3, 5a Sohle). Der Beginn einer erhöhten mikroakustischen Aktivität und die räumlichen Veränderungen der Mikrorissprozesse ab Mai 2002 korrelieren mit bergbaulichen Maßnahmen am Rollloch 12YER31/RL002 und RL004 (Rolllochsystem 9 und Fahrrollloch 9, 2. Sohle).

Im Bereich zwischen der -332 mNN Sohle (3. Sohle) und der -395 mNN Sohle (5a Sohle) deuten die relativ hohen vertikalen Dehnungsraten in den mit Extensometern überwachten Schweben auf zunehmende lokale Schädigungen hin. Bei entsprechender räumlicher Ausdehnung der Schädigungszonen kann es zu Ablösungen bzw. Firstfällen kommen.

Im Bereich der Strecke 17YER31/R001, -372 mNN (Südstrecke, 4. Sohle) – insbesondere über Abbau 18YEA32/R004 (Abbau 3, 5a Sohle) – sind horizontal im Gebirge geringe kontinuierliche Stauchungen und in der Südstrecke deutliche Konvergenzen zu beobachten. Dies deutet auf einen horizontalen Massefluss hin, der über den durch die Extensometer überwachten Gebirgsbereich hinausgeht.

Plot: 24.04.2008 10:58:14 A4351285 20.02.2008

Plot: 24.04.2008 11:00:20 A4351286.DWG 04.05.2007

Plot: 24.04.2008 11:02:30 A4351287.DWG 04.05.2007

olot: 24.04.2008 11:03:56 A4351288.DWG 21.02.2008