Planfeststellungsverfahren zur Stilllegung des Endlagers für radioaktive Abfälle Morsleben

Verfahrensunterlage

Titel:Projekt Morsleben
Geologische Bearbeitung des HutgesteinsAutor:Balzer, D.Erscheinungsjahr:1998Unterlagen-Nr.:I 046Revision:00Unterlagenteil:

Inhaltsverzeichnis

		Seite
	Verkürzte Zusammenfassung	4
1	Vorgang	5
2	Zielstellung	5
3	Untersuchungsgebiet	6
3.1	Lage und Begrenzung des Untersuchungsgebietes	6
3.2	Geologisch-tektonischer Rahmen	7
4	Untersuchungsmethodik	7
4.1	Übersicht über die Bohraufschlüsse im Hutgestein	7
4.1.1	Altbohrungen	7
4.1.2	Standorterkundung ERAM	8
4.1.2.1	Bohrprogramm 1983-1985	8
4.1.2.2	Bohrprogramm 1988-1990	8
4.1.2.3	Bohrprogramm 1994-1995	9
4.2	Feldgeologische Aufnahme und Probenahme	11
4.2.1	Makroskopische Gefügeanalyse	11
4.2.2	Probenahme	12
4.3	Spezielle Probenuntersuchungen	12
4.3.1	Petrographisch-mineralogische Untersuchungen	12
4.3.1.1	Anschliffuntersuchungen	12
4.3.1.2	Mikroskopische Gefügeanalyse	13
4.3.1.3	Mineralogische Phasenanalyse	13
4.3.1.4	Korngrößenanalyse	14
4.3.2	Paläontologische Untersuchungen	14
4.4	Bohrlochgeophysikalische Messungen	14
4.5	Seismik	15
4.6	Gravimetrie	15
5	Zechsteinausbildung (Stratigraphie und Mächtigkeit) in der Allertal-Salzstruktur	16
6	Lithologische und lithostratigraphische Gliederung Hutgestein	18
6.1	Grundlagen der lithologischen und lithostratigraphischen Gliederung von zechsteinzeitlichen	
	Leithorizonten im Hutgestein	18
6.1.1	Leithorizont des Zechstein 2 im Hutgestein (Deckanhydrit)	18
6.1.2	Leithorizonte des Zechstein 3 im Hutgestein	19
6.1.2.1	Grauer Salzton	19
6.1.2.2	Leine-Karbonat	20
6.1.2.3	Hauptanhydrit	21
6.1.3	Leithorizonte des Zechstein 4 im Hutgestein	28
6.1.3.1	Aller-Anhydrit	28
6.1.3.2	Roter Salzton	28

6.2	Grundlagen der lithologischen und lithostratigraphischen Indizierung von residualen	
	Gesteinen im Hutgestein	30
6.2.1	Lithostratigraphische Indizierung von residualen Gesteinen des Zechstein 2 im Hutgestein	30
6.2.2	Lithostratigraphische Indizierung von residualen Gesteinen des Zechstein 3/4 im Hutgestein	31
6.2.3	Lithotypen residualer Ca-Sulfatgesteine des Zechstein 2 und Zechstein 3/4 im Hutgestein	32
6.2.4	Lithotyp der humidsubrosiven Gipsneubildung	36
6.3	Synoptische Darstellung der lithostratigraphischen Schichtenfolge im Hutgestein	37
7	Strukturgeologische Analyse im Hutgestein	39
7.1	Analyse der Lagerungsverhältnisse in Einzelaufschlüssen des Hutgesteins	39
7.1.1	Strukturgeologische Gliederung der Einzelaufschlüsse	43
7.1.2	Isolierte Hauptanhydritschollen im residualen Hutgestein	51
7.1.3	Zusammenfassende Übersicht über die strukturgeologische Gliederung der Hutgesteins-	
	bohrungen	51
7.1.4	Analyse der Mächtigkeiten des Hutgesteins	53
7.1.5	Störungen im Hutgestein	56
7.2.	Räumliche Analyse der Lagerungsverhältnisse im Hutgestein	58
7.2.1	Karte der Isohypsen der Salzstrukturoberfläche (= Hutgestein + Salinar)	58
7.2.2	Geologische Schnittdarstellungen Hutgestein	60
7.3	Diskussion der Ergebnisse der strukturgeologischen Analyse im Hutgestein	62
8	Analyse subrosiver Erscheinungen und Prozesse im Hutgestein	67
8.1	Subrosionsprozesse am Salzspiegel	67
8.1.1	Fazielle Analyse des Hutgesteins am rezenten Salzspiegel	67
8.1.2	Modellvorstellungen zum zeitlichen Verlauf subrosiver Prozesse und zur Genese der	
	rezenten Grenzfläche Hutgestein/Salinar	68
8.1.3	Selektive Subrosion am Kaliflöz Staßfurt nach Bohrungen	72
8.2	Erscheinungen der Humidsubrosion im Hutgestein	73
8.2.1	Klüfte im Hutgestein (mit Auswertung von CBIL-Image-Daten)	73
8.2.2	Sulfatkarst im Hutgestein	76
9	Zusammenfassung	80
10	Literaturverzeichnis	84
11	Verzeichnis der Tabellen	88
12	Verzeichnis der Abbildungen	89
13	Verzeichnis der Anlagen	90

i

Gesamtseitenzahl dieses Berichtes: 90

Gesamtblattzahl der Anlagen: 58

3

Verkürzte Zusammenfassung

Autor: BALZER, DIRK

Titel: Geologische Bearbeitung des Hutgesteins

Stichworte: Allertal-Salzstruktur, Endlager für radioaktive Abfälle Morsleben (ERAM), Hutgestein, Lithostratigraphie, Subrosion, TK 25: Meßtischblatt Helmstedt, Hötensleben, Seehausen.

In diesem Fachbericht der Bundesanstalt für Geowissenschaften und Rohstoffe werden die Ergebnisse der geologischen Bearbeitung des Hutgesteins über der Allertal-Salzstruktur dargestellt.

Die geologischen Untersuchungen erfolgten im Rahmen der Standortuntersuchungen für das Endlager für radioaktive Abfälle Morsleben.

Die Ergebnisse wurden auf der Grundlage der faziellen, lithostratigraphischen und strukturgeologischen Bearbeitung von Kernbohrungen, bohrlochgeophysikalischen Messungen, flach- und tiefenseismischen Messungen sowie unter Auswertung von relevanten Archiv- bzw. Literaturunterlagen erzielt.

Im Ergebnis der Untersuchungen konnten die Grundlagen für eine hydrogeologische Modellierung und für die Analyse der strukturellen Entwicklung der Hutgesteinsbildungen erarbeitet werden.

1 Vorgang

Als Folge der Vereinigung beider deutscher Staaten am 3. Oktober 1990 ging die Zuständigkeit für den Betrieb des Endlagers für radioaktive Abfälle Morsleben (ERAM) vom Staatlichen Amt für Atomsicherheit (SAAS) der DDR auf das Bundesamt für Strahlenschutz (BfS) über. Zur weiteren Standorterkundung im Rahmen des Planfeststellungsverfahrens zum Weiterbetrieb des ERAM über das Jahr 2000 hinaus bzw. zu dessen Stillegung wurden auf Veranlassung des BfS von der BGR umfangreiche geologische Untersuchungsarbeiten über und unter Tage geplant und durchgeführt. Die übertägigen geologischen und geophysikalischen Untersuchungen am Standort des ERA Morsleben dienten der Erkundung der Geologie, Stratigraphie, Petrographie und Strukturgeologie der Deckschichten im Bereich der Allertal-Salzstruktur, der Weferlinger Triasplatte und der Lappwaldscholle. Insbesondere sollten über den Kenntnisstand von 1993 (BGR-Bericht /1/) hinaus weitere Informationen für eine Analyse der Entwicklungsgeschichte der Allertal-Salzstruktur im Hinblick auf subrosive und tektonische Prozesse und für die Bewertung der Lagerungsverhältnisse im suprasalinaren Schichtenkomplex, insbesondere der grundwasserleitenden und grundwasserhemmenden Schichten im hydrogeologischen Modellgebiet und seinem geologischen Rahmen, gewonnen werden.

Als Teil dieser Untersuchungen wurde der BGR die "Geologische Bearbeitung des Hutgesteins über der Allertal-Salzstruktur" mit der Aufgabe übertragen, die Kenntnisse zum lithologischen und strukturgeologischen Aufbau des Hutgesteins über der Allertal-Salzstruktur im Untersuchungsgebiet zu verbessern, die Ergebnisse zu beschreiben und in Profilen, Karten, Schnitten u.a. darzustellen. Der Abschlußbericht zu diesen Untersuchungen wird hiermit vorgelegt.

2 Zielstellung

Bei der geologischen Bearbeitung von Salinarstrukturen muß das aus dem natürlichen Prozeß einer subterranen Ablaugung von Salzgesteinen (Salinarsubrosion) resultierende Hutgestein insbesondere über interndeformierten Salzstrukturen als ein in seiner Gesamtheit komplexer geologischer Körper angesehen werden.

Auf Grund seiner geologischen Position nimmt das Hutgestein über der Allertal-Salzstruktur eine vermittelnde Stellung ein: es lagert über seinem störungsbedingt intrusiv eingewanderten salinaren Zechstein-Muttergestein und unter dem suprasalinaren meso- und känozoischem Deckgebirge, von dem aus die Subrosion über geologische Zeiträume gesteuert wurde bzw. wird. 'Stratigraphisch' muß das Hutgestein als meso- bis känozoisch eingestuft werden.

Ziel dieses Berichtes ist es, die im Rahmen der geologischen Bearbeitung des Standortes ERAM erzielten Ergebnisse über den geologischen Körper "Hutgestein über der Allertal-Salzstruktur" hinsichtlich seiner lithologischen und lithostratigraphischen Ausbildung im Kontext mit strukturgeologischen Merkmalen sowie entwicklungsgeschichtlichen Aspekten darzustellen. Desweiteren sollen subrosive Erscheinungen und Prozesse, soweit dies im Zusammenhang mit der geologischen Bearbeitung des Hutgesteins möglich ist, interpretiert werden. Die geologische Bearbeitung des Hutgesteinskomplexes über der Allertal-Salzstruktur bildet die Grundlage für dessen hydrogeologische Modellierung.

3 Untersuchungsgebiet

3.1 Lage und Begrenzung des Untersuchungsgebietes

Das ERAM befindet sich in verschiedenen Teilbereichen bergmännischer Auffahrungen des ehemaligen Salzbergwerkes Gewerkschaft Bartensleben am NW-Rand der Ortslage Morsleben (Sachsen-Anhalt), ca. 5 km östlich von Helmstedt.

Das ca. 38 km² große, SE-NW-gerichtete engere Untersuchungsgebiet (Gebietsteile Sachsen-Anhalt, untergeordnet Niedersachsen) für das ERAM wird durch folgende Koordinaten (GAUSS-KRÜGER, Bessel-Ellipsoid 3° Streifen) auf TK 25 Meßtischblatt Helmstedt (3732) begrenzt:

rechts: ⁴⁴34 - ⁴⁴38,5 bei hoch: ⁵⁷93 rechts: ⁴⁴34 - ⁴⁴40 bei hoch: ⁵⁷90 rechts: ⁴⁴37 - ⁴⁴42 bei hoch: ⁵⁷86.

Die Kartendarstellungen für das Hutgestein im Maßstab 1: 10000 (Karte der Isohypsen der Salzstrukturoberfläche = Anlage 1; Karte der Isopachen des Hutgesteins = Anlage 2) sowie die 'Schematische Darstellung der am Salzspiegel ausstreichenden salinaren Strukturen' im Maßstab 1: 10000 (Anlage 3) werden durch folgende Koordinaten begrenzt:

rechts: ⁴⁴35 - ⁴⁴42 bei hoch: ⁵⁷95 rechts: ⁴⁴35 - ⁴⁴42 bei hoch: ⁵⁷86

Die Koordinaten für die oben genannten Kartendarstellungen weichen gegenüber den Koordinaten für das engere Untersuchungsgebiet ab, was auf die im Verlauf der Bearbeitung veränderten Grenzen des hydrogeologischen Modellgebietes zurückzuführen ist.

Der ca. 162 km² große geologische Rahmen für das erweiterte Untersuchungsgebiet des ERAM wird durch folgende Koordinaten (GAUSS-KRÜGER, Bessel-Ellipsoid 3° Streifen) umrissen (TK 25: Meßtischblätter Helmstedt 3732, Hötensleben 3832, Seehausen 3833).

rechts: ⁴⁴33 - ⁴⁴45 bei hoch: ⁵⁷98 rechts: ⁴⁴33 - ⁴⁴45 bei hoch: ⁵⁷92 rechts: ⁴⁴39 - ⁴⁴45 bei hoch: ⁵⁷82.

3.2 Geologisch-tektonischer Rahmen

Das ERAM wurde in den salinaren zechsteinzeitlichen Wirtsgesteinen der Allertal-Salzstruktur errichtet. Die Allertal-Salzstruktur ist Teil der Aller-Störungszone, einer über 100 km langen herzynisch streichenden tektonischen Linie am NE-Rand des Subherzynen Beckens, in die keuperzeitlich beginnend störungsbedingt Zechstein-Salinar intrudierte. Flankiert wird die Aller-Störungszone im NE durch eine Störungszone gegen die Weferlingen-Schönebecker Scholle (nachfolgend Weferlinger Triasplatte), in der über basalem Zechstein und geringmächtigen Zechstein-Residuen Buntsandstein auflagert. Der Zechstein streicht am Übergang von der Weferlinger Triasplatte zur Flechtingen-Roßlauer Scholle übertägig aus. In der südwestlich an die Aller-Störungszone angrenzenden Lappwald-Mulde lagert über dem nach SW einfallenden präsalinaren Zechstein-Sockel (gegenüber der Weferlinger Triasplatte mit einem Höhenunterschied von 500-600 m) Buntsandstein, Muschelkalk und mächtiger Keuper, überlagert von Jura.

Weitergehende Ausführungen zur strukturgeologischen Entwicklung der Aller-Störungszone bzw. Allertal-Salzstruktur sind in JUBITZ et al. (1991) und BEST (1996) sowie im BGR-Bericht /2/ zu finden.

4 Untersuchungsmethodik

4.1 Übersicht über die Bohraufschlüsse im Hutgestein

4.1.1 Altbohrungen

Die geologischen Informationen über das Hutgestein im engeren und erweiterten Untersuchungsgebiet aus den im Zusammenhang mit der lagerstättengeologischen Erkundung der Allertal-Salzstruktur geteuften Bohrungen sind beschränkt auf inhaltlich minimierte geologische Schichtenverzeichnisse; Kernmaterial existiert von diesen Altbohrungen nicht mehr. Die Bohrungen sind in diesem Bericht unter folgenden Bohrungskürzeln zu finden (gegliedert nach Meßtischblättern):

- TK 25 Meßtischblatt Helmstedt (3732) "Hmt xx/-",
- TK 25 Meßtischblatt Hötensleben (3832) "Höt xx/-",
- TK 25 Meßtischblatt Seehausen (3833) "SnWl xx/-".

Die in SCHMIERER (1914) publizierten Schichtenverzeichnisse der Bohrungen "Hmt xx/-" - Anteile Hutgestein/Zechstein - wurden durch die im Rahmen der geologischen Analyse des Hutgesteins durch die BGR erzielten Erkenntnisse um strukturgeologische Elemente ergänzt. Methodisch bedingt konnten jedoch nicht alle Schichtenverzeichnisse - Anteile Hutgestein/Zechstein - der Hmt xx/-Bohrungen durch zusätzliche strukturgeologische Informationen komplettiert werden (vgl. Kapitel 7.1).

Die überarbeiteten Schichtenverzeichnisse der Anteile Hutgestein/Zechstein dieser Bohrungen sind in Anlage 4 zusammengefaßt.

Die Bohrungen "Höt xx/-" und "SnWl xx/-" im erweiterten Untersuchungsgebiet wurden nur hinsichtlich ihrer geologischen Daten bezüglich Top, Basis und Mächtigkeit des Hutgesteins ausgewertet, gleiches gilt für die Bohrung Sd WakHl 19/79 im engeren Untersuchungsgebiet. Dieser letztgenannte Aufschluß mit erbohrter Grenze Deckgebirge/Hutgestein geht auf die Erkundung der Sand-Lagerstätte in Walbeck zurück.

4.1.2 Standorterkundung ERAM

4.1.2.1 Bohrprogramm 1983-1985

Im Zeitraum von 1983 bis 1985 wurden im Rahmen der 'Geowissenschaftlichen Analyse ERA Morsleben' im Auftrag des Kombinates Kernkraftwerke Greifswald und unter geologischer Begleitung durch das Zentrale Geologische Institut (ZGI) Berlin fünf Bohrungen geteuft, die Hutgestein bzw. Zechstein erbohrt haben. Von diesen fünf Bohrungen haben zwei Bohrungen die Grenze Hutgestein gegen Zechstein-Salinar und eine Bohrung die Grenze suprasalinares Deckgebirge gegen Zechstein-Salinar aufgeschlossen. Alle fünf Bohrungen liegen auf TK 25 Meßtischblatt Helmstedt (3732).

Geologisches Ziel war die Überprüfung der in den Altunterlagen dokumentierten Informationen bezüglich der Salzspiegel-Tiefenlage bzw. die Gewinnung allgemeiner geologischer und petrographischer Informationen zum Hutgestein über den Kenntnisstand von Altunterlagen hinaus.

Die Schichtenverzeichnisse der Bohrungen dieses Untersuchungszeitraumes, einschließlich Hutgestein/Zechstein, sind im ZGI-Bericht /3/ zusammengefaßt.

4.1.2.2 Bohrprogramm 1988-1990

Im Zeitraum von 1988 bis 1990 wurden unter geowissenschaftlicher Betreuung durch das ZGI Berlin weitere zehn Bohrungen bis in das Hutgestein bzw. in den Zechstein der Allertal-Salzstruktur niedergebracht, davon vier Bohrungen mit Salzspiegelaufschluß, eine Bohrung mit Aufschluß des Salzspiegelniveaus (= tiefstes Vergipsungsniveau) und zwei Bohrungen im Bereich des Lappwaldes mit Aufschluß der Grenze suprasalinares Deckgebirge gegen Zechstein. Die Bohrungen befinden sich auf TK 25 Meßtischblatt Helmstedt (3732).

Die Bohrungen mit Anteil Hutgestein/Zechstein dieser Bohretappe wurden im Jahre 1996 im Untertage-Kernlager Schacht 'Marie' durch die BGR lithologisch bzw. lithostratigraphisch überarbeitet und nachbeprobt. Die im Ergebnis der Neuaufnahme resultierenden Geologischen Feldaufnahmen sind im BGR-Bericht /4/ nachzulesen. Sie bilden die Grundlage der Geologischen Schichtenverzeichnisse - Anteil Hutgestein/Zechstein - unter Einarbeitung der Ergebnisse von Probennachuntersuchungen und der durch die Gesellschaft für bohrlochgeophysikalische und geoökologische Messungen mbH Storkow durchgeführten Sicherung und Auswertung bohrlochgeophysikalischer Daten aus diesem Untersuchungszeitraum (Berichte BLM Storkow 1995). Die Geologischen Schichtenverzeichnisse der Anteile Hutgestein/Zechstein aus dem Untersuchungszeitraum 1988-1990 sind in den Bohrakten dokumentiert sowie im BGR-Bericht /5/ integriert. Im Untersuchungszeitraum 1994-1995 wurden neunzehn Bohrungen bis in das Hutgestein geteuft, davon haben zwei Bohrungen den Salzspiegel und drei weitere Bohrungen das Salzspiegelniveau durchörtert.

Die Bohrungen mit Anteil Hutgestein/Zechstein beschränken sich auf TK 25 Meßtischblatt Helmstedt (3732). Die Geologischen Feldaufnahmen der Anteile Hutgestein/Zechstein wurden durch die BGR erarbeitet. Die Dokumentation der Feldaufnahmen erfolgte im BGR-Bericht /6/. Unter Auswertung der bohrlochgeophysikalischen Messungen (Berichte Western Atlas Wireline Services/Golder Ass. 1996) und unter Berücksichtigung der Probenergebnisse wurden die Geologischen Schichtenverzeichnisse - Anteile Hutgestein/Zechstein - für den Untersuchungsabschnitt 1994-1995 erarbeitet. Diese sind in den Bohrakten sowie im BGR-Bericht /5/ zu finden.

Tabelle 1 zeigt eine Übersicht über die Bohrungen mit Anteil Hutgestein/Zechstein im engeren und erweiterten Untersuchungsgebiet. Die grau hinterlegten Bohrungen befinden sich außerhalb der in Kapitel 3.1 genannten Koordinaten für die Kartendarstellungen Hutgestein.

Name der Bohrung	Meßtischblatt	Rechtewert	Hochwart	Bohransatzhöhe (m NN)
Hmt 2/-	3732	· 4436850,00	5794870,00	114,0
Hmt 3/-	3732	4437870,00	5793140,00	100,0
Hmt 4/-	3732	4438580,00	5789490,00	114,0
Hmt 5/-	3732	4437900,00	5789580,00	134,0
Hmt 6/-	3732	4438890,00	5789980,00	107,0
Hmt 7/-	3732	4438060,00	5790650,00	114,0
Hml 8/-	3732	4442830,00	5791200,00	155,0
Hmt 9/-	3732	4440030,00	5787000,00	119,0
Hmt 10/-	3732	4439430,00	6795280,00	111,0
Hmt 12/-	3732	4433770,00	5796450,00	108,0
Hmt 13/-(Schacht Marie)	3732	4438014,00	5789640,00	128,0
Hmt 14/-	3732	4434640,00	5795660,00	106,0
Hmt 16/-	3732	4435100,00	5794700,00	115,0
Hmt 16b/-	3732	4434980,00	5794730,00	120,0
Hmt 17/-	3732	4436640,00	5792130,00	132,0
Hml 18/-	3732	4434340,00	5796300,00	106,0
Hmit 19/-	3732	4433960,00	5796190,00	115,0
Hmt 21/-	3732	4439000,00	5789310,00	108,0
Hmt 24/-	3732	4440750,00	5786330,00	120,0
Hmt 25/-(Schacht Bartensleben)	3732	4438699,00	5788180,00	125,0
Hmt 26/-	3732	4441550,00	5785870,00	116,0
Hmt 27/-	3732	4440210,00	5786590,00	143,0
Hmt 28/-	3732	4440100,00	5786550,00	144,0
Hmt 29/-	3732	4440550,00	5786420,00	135,0
Hmt 30/-	3732	4440680,00	5786320,00	121,0
Hmt 31/-	3732	4441500,00	5785820,00	1:18,5
Hmt 33/-	3732	4441460,00	5785770,00	120,0
Hmt 36/-	3732	4440850,00	5786270,00	120,0
Himt 40/-	3732	4441410,00	5785810,00	120,0
Firmt 43/-	3732	4441390,00	5785740,00	121,0
Hmt 44/-	3732	4440880,00	5786410,00	119,0
Höt 1/- (Burbach 20)	3832	4442270,00	5783320,00	138,0
Höt 2/- (Schacht Wefensleben)	3832	4442840,00	5783440,00	126,0
Höt 4/- (Schacht Belsdorf)	3832	4441750,00	5784840,00	140,0
SnWI 5/- (Burbach 26)	3833	4443240,00	5782700,00	125,0
SnWI 6/- (Burbach 28)	3833	4443190,00	5782630,00	126,0
SnWI 7/+ (Burbach 37)	3833	4443200,00	5782600,00	125,0

Sd WakHI 19/79	3732	4435435,40	5794845,60	105,1
Hy Mors 7/83	3732	4439332,90	5788203,20	110,1
lg Mors 10/83	3732	4439741,40	5787635,90	111,0
Kb Mors 2/85	3732	4440050,40	5786217,40	137,2
Kb Mors 4/84	3732	4440734,50	5786978,90	115,1
Kb Mors 5/85	3732	4439819,30	5788917,60	118,2
Dp Mors 2/89	3732	4439503,30	5787843,00	112,1
Dp Mors 3/89	3732	4438256,70	5786721,00	159,9
Dp Mors 6/90	3732	4438897,00	5788372,00	115,1
Dp Mors 7/90	3732	4439384,90	5788672,00	109,3
Dp Mors 10/88	3732	4438124,40	5788993,10	135,2
Dp Mors 11/90	3732	4438837,70	5789225,40	109,9
Dp Mors 12/90	3732	4437200,40	5790293,40	148,0
Dp Mors 13A/88	3732	4437780,80	5790474,10	114,5
Dp Mors 14/89	3732	4438265,90	5790693,50	113,7
Dp Mors 20/88	3732	4439853,40	5787082,90	117,2
Dp Mors 30/90	3732	4434941,00	5795772,50	71,1
Dp Mors 34A/95	3732	4437760,55	5790043,50	133,6
Dp Mors 37A/95	3732	4438025,71	5789359,60	132,4
Dp Mors 38A/94	3732	4438287,62	5789448,90	120,4
Dp Mors 40A/95	3732	4438420,94	5788474,10	138,3
Dp Mors 42A/95	3732	4439089,08	5788597,40	111,5
Dp Mors 42A1/95	3732	4439088,54	5788601,90	111,6
Dp Mors 43A/95	3732	4438966,89	5787842,40	123,0
Dp Mors 44A/94	3732	4439569,36	5788103,30	110,8
Dp Mors 44A1/94	3732	4439571,66	5788111,30	110,9
Dp Mors 45A/94	3732	4440124,37	5788548,60	130,3
Dp Mors 45B/95	3732	4440119,71	5788557,80	130,7
Dp Mors 46A/95	3732	4438932,76	5789905,20	107,8
Dp Mors 47A/95	3732	4439440,18	5787213,80	131,5
Dp Mors 49A/95	3732	4438878,94	5788208,30	120,0
Dp Mors 65A/95	3732	4439799,99	5787276,80	113,2
Dp Mors 69A/95	3732	4438790,07	5788534,00	119,3
Dp Mors 71A/94	3732	4438725,16	5788856,80	117,0
Dp Mors 72A/95	3732	4438957,34	5788928,70	112,1
Dp Mors 86A/95	3732	4440131,52	5787649,20	136,5

Tabelle 1: Übersicht über die Bohrungen mit Anteil Hutgestein/Zechstein im engeren und erweiterten Untersuchungsgebiet (grau hinterlegt: Bohrungen außerhalb der in Kapitel 3.1 genannten Koordinaten für die Kartendarstellungen Hutgestein)

4.2 Feldgeologische Aufnahme und Probenahme

Der Aufbau der detaillierten Schichtenbeschreibung des Hutgesteins orientiert sich am Erfassungsprinzip des Symbolschlüssels Geologie nach PREUSS et al. (1991). Da im Symbolschlüssel weit weniger Kürzel für die Beschreibung eines Hutgesteins als notwendig zur Verfügung standen, wurden die Geologischen Feldaufnahmen in Klartext erstellt. Bei einer verschlüsselten Aufnahme des Hutgesteins wäre ein zu hoher Informationsverlust zu verzeichnen gewesen.

4.2.1 Makroskopische Gefügeanalyse

Die wesentliche Grundlage der geologischen Bearbeitung des Hutgesteins bildet die lithologische bzw. abgeleitet die lithostratigraphische Bohrkembemusterung unter Berücksichtigung tektonischer Elemente.

Ca-Sulfatgesteine

Die lithofazielle bzw. lithostratigraphische Differenzierung von Ca-Sulfatgesteinen im Hutgestein basiert auf der unterschiedlichen Ausbildung ihrer Gefüge im Bohrkern.

Das übergeordnete Gefügemerkmal ist dabei die Textur, also das Anordnungsgefüge. Für das Hutgestein über der Allertal-Salzstruktur sind zwei Arten der Texturausbildung zu unterscheiden:

a) Texturen, die durch die unterschiedliche Anordnung nichtsulfatischer Einlagerungen wie Karbonat, Ton oder Salzrelikte im Sulfat bedingt werden (laminare bzw. gestört laminare Schichtungstexturen, Flasertexturen, wolkige und netzartige Texturen, Anhydrit/Salz-Verwachsungen);

b) Texturen, die aus der unterschiedlichen Anordnung sulfatischer Komponenten resultieren (z.B. lagige oder flaserige Gipseinlagerungen im Anhydrit; reine Sulfat-Breccien).

Das Gefügemerkmal Struktur, also das Korngefüge, ist hinsichtlich der makroskopischen Unterscheidung von Ca-Sulfat-Lithotypen im Hutgestein von sekundärer Bedeutung.

Karbonatgesteine

Die makrotexturelle Bemusterung der Karbonatgesteine im Hutgestein wurde unter dem Aspekt der Bestimmung unterschiedlicher Schichtungstexturen (engständige Schichtung durch tonige Gemengteile; Brecciierung) sowie der unterschiedlichen Anordnung sulfatischer Komponenten (Gips und Anhydrit) im Karbonat durchgeführt. Die Kornstruktur von Karbonatgesteinen im Hutgestein spielt bei der makroskopischen Bemusterung nur eine untergeordnete Rolle.

Tonig-silikaklastische Gesteine

Die tonig-silikaklastischen Gesteine (Tonsteine, untergeordnet Schluff- und Feinsandsteine) wurden makroskopisch neben der Unterscheidung in Haupt- und Nebenkomponenten hinsichtlich Schichtung bzw. Schichtungsstörungen, Habitus und nach Einlagerungen von sulfatischem Material (Material, Farbe, Größe und Form) bemustert.

4.2.2 Probenahme

Auf der Grundlage der makrotexturellen Bemusterung wurden ausschließlich Einzelproben aller o.g. Gesteinstypen für weitergehende mineralogisch-petrographische und untergeordnet paläontologische Untersuchungen entnommen. Die Proben aus dem Bohrprogramm 1994-1995 wurden nach der vom Kontraktor des Bundesamtes für Strahlenschutz (GOLDER Ass. Celle) vorgegebenen Feld-Probendatei nummeriert. In der BGR erfolgte eine Umbezeichnung der Proben in Probennummern entsprechend einem BGR-internen Probenschlüssel.

Die vierstelligen Probennummern für das Hutgestein aus dem Bohrprogramm 1988-1990 beginnen mit Probennummer 3001, die aus dem Bohrprogramm 1994-1995 setzen mit Probennummer 9001 ein.

Das Probenjournal (Anlage 5) gibt eine Übersicht über die notwendigen Daten aller entnommenen bzw. untersuchten Proben im Rahmen der geologischen Bearbeitung des Hutgesteins.

4.3 Spezielle Probenuntersuchungen

4.3.1 Petrographisch-mineralogische Untersuchungen

Die speziellen petrographisch-mineralogischen Untersuchungen wurden als Leistungen Dritter durch die GFE GmbH Halle mit Unterauftragnehmer (UAN) Technische Universität (TU) Clausthal-Zellerfeld, Institut für Geologie und Paläontologie, Abteilung Erdölgeologie/Ingenieurgeologie, unter fachlicher Begleitung durch die BGR erbracht.

Bis auf wenige Ausnahmen wurden alle Proben vor einer entsprechenden Aufbereitung durch den UAN TU Clausthal-Zellerfeld fotografisch auf Farb-Diapositiven dokumentiert (Archivierung in der BGR, Dienstbereich Berlin, Referat B 2.7).

Die Untersuchung der Anschliffe und Dünnschliffe erfolgte durch die BGR.

Die Einzelergebnisse aller petrographisch-mineralogisch untersuchten Proben aus dem Hutgestein sind Bestandteil der Geologischen Schichtenverzeichnisse.

4.3.1.1 Anschliffuntersuchungen

Ausgewählte Einzelproben aus der Gruppe der Ca-Sulfatgesteine wurden entsprechend den Vorgaben durch die BGR einer speziellen Aufbereitung durch den UAN TU Clausthal-Zellerfeld unterzogen. Ziel war die makroskopische Bestimmung der Verteilung von Gips und Anhydrit durch Brennen oberflächengeschliffener Bohrkernhälften (basierend auf dem unterschiedlichen thermischen Verhalten des Minerals Gips gegenüber dem Mineral Anhydrit: vgl. BALZER 1992). Die Anschliffe bzw. 'gebrannten' Anschliffe wurden als Farb-Diapositive fotografiert.

Die Anschliff-Proben und Anschliff-Diapositive sind in der BGR (Dienstbereich Berlin, Referat B 2.7) archiviert.

4.3.1.2 Mikroskopische Gefügeanalyse

Ca-Sulfatgesteine und Karbonatgesteine

Ziel der mikroskopischen Dünnschliff-Analyse von Ca-Sulfatgesteinen war es, über die Bestimmung mikrostruktureller bzw. mikrotextureller Kenngrößen (Kornformen und Korngrößen bzw. Anordnungsgefüge) die aus der makroskopischen Ansprache abgeleiteten genetischen Deutungen dieser Gesteine zusätzlich zu stützen.

Die mikrofaziellen Merkmale der im Hutgestein der Allertal-Salzstruktur bestimmbaren Ca-Sulfatgesteine wurden auf der Grundlage der von BALZER (1997a) entwickelten Mikrofazies-Typisierung von Ca-Sulfatgesteinen des Zechstein analysiert.

Die Karbonatgesteine wurden an wenigen Einzelproben mikroskopisch untersucht. Bestimmt wurden Mineralbestand, Bindemittel, Rekristallisation und Verwachsungsgefüge sowie Partikel mit entsprechender Beschreibung.

Tonig-silikaklastische Gesteine

Die mikropetrographischen Untersuchungen zielten auf die Bestimmung der Zusammensetzung (Ton-Schluff-Verhältnis, Minerale der Schluffraktion, Karbonatanteil), von Fremdeinschaltungen (Sulfat), von Schichtungstexturen und Wechsellagerungen. Korngrößenmessungen an Dünnschliffen wurden nicht durchgeführt, da die Schnittverteilung im Schliff nicht vergleichbar ist mit der Siebkorngrößenverteilung. Eine mögliche Umrechnung bringt keinen Zuwachs an petrographischen Informationen.

Die Dünnschliffproben aus dem Hutgestein sind in der BGR (Dienstbereich Berlin, Referat B 2.7) archiviert.

4.3.1.3 Mineralogische Phasenanalyse

In der Auswertung von Ergebnissen mineralogischer Untersuchungen an Proben aus dem Hutgestein wurde teilweise vergleichend mit den Ergebnissen von Untersuchungen an Proben aus nicht subrosiv veränderten untertägigen Zechstein-Profilen gearbeitet¹. Entsprechende Mineralumbildungen oder -neubildungen infolge Verwitterung konnten somit identifiziert werden.

Ca-Sulfatgesteine und Karbonatgesteine

Ausgewählte Einzelproben aus der Gruppe der Ca-Sulfatgesteine und der Karbonatgesteine wurden zur Bestimmung des qualitativen Mineralbestandes in Übersichtsaufnahmen röntgendiffraktometrisch untersucht (Pulverpräparate).

Tonig-silikaklastische Gesteine

Bei der mineralogischen Phasenanalyse von tonig-silikaklastischen Gesteinen im Hutgestein stand die qualitative Bestimmung des Tonmineralbestandes im Vordergrund (Übersichtsaufnahmen an Texturpräparaten; zur Bestimmung quellfähiger Tonmineralstrukturen wurden die Texturpräparate glycolisiert).

¹ Die analytischen Untersuchungen von Zechstein-Proben aus dem Untertage-Untersuchungsprogramm wurden im Auftrag der BGR durch die Gesellschaft für Umwelt- und Wirtschaftsgeologie (UWG) mbH Berlin im Zeitraum 1995-1996 durchgeführt.

4.3.1.4 Korngrößenanalyse

Korngrößenanalysen wurden an Einzelproben aus dem Roten Salzton aus verschiedenen Hutgesteinsbohrungen durchgeführt. Ziel dieser Untersuchung war es, in Einzelproben die makroskopische Gesteinsansprache dieser Schichtenfolgen zu stützen.

Die Korngrößenverteilung wurde durch Siebung nach nassem Abtrennen der Feinkorn-Anteile bestimmt. Auf Grund des hohen Verfestigungsgrades der eisenschüssigen Proben mußten diese einer speziellen chemischen Probenaufbereitung unterzogen werden. Diese wiederum hatte negative Auswirkungen auf das Koagulationsverhalten des Gipses in der Fraktion < 63 µm. Zur Entfernung des Gipses aus der Fraktion < 63µm wurde diese Fraktion mit EDTA (Tri-Natriumsalz der Ethylendiamintetraessigsäure) versetzt.

Unter Berücksichtigung o.g. Aufbereitungsprobleme wurden anstelle der üblichen Sedimentationsanalysen im Aräometer nach DIN 18123 zur Ermittlung der Massenanteile der Korngrößen < 63 μ m alternativ röntgensedigraphische Messungen durchgeführt.

4.3.2 Paläontologische Untersuchungen

Paläontologische Untersuchungen wurden nur an wenigen tonig-silikaklastischen Proben aus dem Hutgestein (Bohrprogramm 1994-1995) durch BGR-eigene Labore durchgeführt sowie als Leistungen Dritter erbracht. Die Methodik der Probenaufbereitung sowie die Ergebnisse der Untersuchungen sind im BGR-Bericht /7/ nachzulesen. Die Einzelergebnisse aller paläontologisch untersuchten Proben aus dem Hutgestein sind Bestandteil der Geologischen Schichtenverzeichnisse.

4.4 Bohrlochgeophysikalische Messungen

Im Rahmen der geologischen Bearbeitung Hutgestein wurden die Ergebnisse bohrlochgeophysikalischer Messungen der Bohrkampagnen 1988-1990 und 1994-1995 in die Auswertung einbezogen.

Für die Bohrungen 1988-1990 erfolgte eine detaillierte lithologische Interpretation der bohrlochgeophysikalischen Messungen durch die Gesellschaft für bohrlochgeophysikalische und geoökologische Messungen mbH Storkow. Alle notwendigen Informationen bezüglich der Auswertung dieser bohrlochgeophysikalischen Messungen sowie die Ergebnisse der lithologischen Interpretation sind in Einzelberichten je Bohrung zusammenfassend dargestellt (Berichte BLM Storkow 1995).

Für die Bohrungen 1994-1995 wurde eine summarische lithologische Interpretation durch die Firma Western Atlas Wireline Services durchgeführt, deren Ergebnisse in composite logs dargestellt wurden. Alle wesentlichen Informationen zur Auswertung sowie die Ergebnisse sind den Einzelberichten je Bohrung (Berichte Western Atlas Wireline Services/Golder Ass. 1996) zu entnehmen.

Bei der Erarbeitung der Geologischen Schichtenverzeichnisse wurden die Ergebnisse der bohrlochgeophysikalischen Messungen mit den Geologischen Feldaufnahmen durch die BGR abgeglichen (Teufenkorrektur). Neben den bohrlochgeophysikalischen Standardmessungen wurden durch Western Atlas Logging Services nach Vorgaben durch das Bundesamt für Strahlenschutz CBIL-Messungen durchgeführt (CBIL = Circumferential Borehole Imaging Log). Der Anteil Hutgestein/Zechstein wurde in folgenden sechs Bohrungen in Teilabschnitten bzw. vollständig mit CBIL vermessen: Dp Mors: 40A/95; 43A/95; 45A/94; 46A/95; 65A/95; 72A/95 (vgl. Geologische Schichtenverzeichnisse). Im Hutgestein/Zechstein wurden Einfallswinkel und Einfallsrichtung der Schichtenfolgen sowie Kluftparameter (offen/geschlossen, Mineralisation, Fallen/Streichen) bestimmt.

Die Ergebnisse der CBIL-Messungen sowie methodische Hinweise sind in Einzelberichten je Bohrung und einem zusammfassenden Abschlußbericht dargelegt (Berichte Western Atlas Logging Services [WALS] / Atlas Geosciences 1996 und 1997).

In den Geologischen Schichtenverzeichnissen der Bohrungen mit CBIL-Messungen sind sowohl die durch die BGR konventionell bestimmten Fallwinkel als auch die durch Western Atlas Geosciences anhand akustischer Merkmale sowie Reflektivitätsunterschieden gemessenen Fallwinkel (bei CBIL auch Fallrichtungen) der Schichtflächen dokumentiert.

4.5 Seismik

Im Rahmen der geologischen Erkundung der Allertal-Salzstruktur wurden im Auftrag des BfS flach- und tiefenseismische Messungen im Untersuchungsgebiet durchgeführt (vgl. BGR-Berichte /8/ und /9/).

Im Ergebnis der Tiefenmigration flachseismischer Messungen (die tiefenseismischen Messungen liefern im Bereich der Allertal-Salzstruktur keine zuverlässigen Ergebnisse) wurde u.a. eine profilorientierte Datapoint-Karte für die Oberfläche der Salzstruktur (= Hutgestein + Salinar) erstellt. Sie bildet eine wesentliche Grundlage der Interpolation für die morphologische Darstellung der Oberfläche der Salzstruktur in einer Isolinienkarte (Karte der Isohypsen der Salzstrukturoberfläche) im Maßstab 1: 10000 (vgl. Anlage 1) sowie für die Konstruktion der Karte der Isopachen des Hutgesteins im Maßstab 1: 10000 (vgl. Anlage 2).

4.6 Gravimetrie

Die Auswertung gravimetrischer Messungen bezüglich der Ausbildung des Hutgesteins im engeren Untersuchungsgebiet basiert auf der im BGR-Bericht /10/ dargestellten Neubearbeitung von gravimetrischen Daten im Bereich der Allertal-Salzstruktur. Im Ergebnis dieser Neubearbeitung wurden unter den dargestellten Randbedingungen (durchschnittliche Punktdichte 200-300 m, Gitterpunktabstand 200 m) die Hochpassfilterergebnisse in maßstäblichen Lokalfeldkarten (1: 25000 und 1: 10000) dargestellt.

Die im Bereich der Allertal-Salzstruktur lokal deutlich ausgebildeten positiven Anomalien bzw. Minimaunterbrechungen innerhalb der Minimazone des Salinars widerspiegeln Dichtegradienten zwischen dem Salinar, dem unterschiedlich mächtigen Hutgestein, den unterschiedlich mächtigen Sedimenten der Oberkreide und quartären Senkungsstrukturen.

Durch Korrelation mit der Karte der Isohypsen der Salzstrukturoberfläche (= Hutgestein + Salinar) im Maßstab 1: 10000 (Anlage 1) konnten im Bereich der Hutgesteinsverbreitung spezifische positive Schwerestrukturen als mächtiges bzw. morphologisch hochliegendes Hutgestein identifiziert werden. Diese positiven Schwerestrukturen sind partiell durch Bohrungen belegt. Basierend auf diesen Ergebnissen wurde die 'Karte der Isohypsen der Salzstrukturoberfläche' zwischen Flachseismikprofilen bzw. an Stellen ohne Bohrungen entsprechend den positiven gravimetrischen Anomalien lokal modifiziert.

5 Zechsteinausbildung (Stratigraphie und Mächtigkeit) in der Allertal-Salzstruktur

Zum notwendigen Verständnis der Beobachtungen im Hutgestein *über* der Allertal-Salzstruktur sei an dieser Stelle übersichtsmäßig auf die primäre Schichtenfolge der Zechstein-Sedimente (Beckenfazies) und deren Mächtigkeit *in* der Allertal-Salzstruktur eingegangen, d.h. auf die lithostratigraphische Ausbildung der Schichtenfolgen mit Abschluß der Zechstein-Sedimentation bzw. -diagenese bis zum Zeitpunkt der frühesten strukturbildenden Prozesse im Keuper. Die Tabelle 2 gibt einen zusammenfassenden Überblick über die stratigraphische Abfolge und die Mächtigkeit der in der Allertal-Salzstruktur auftretenden Schichtenfolgen des Zechstein². Die nicht im Grubengebäude aufgeschlossenen basalen Schichtenfolgen des Zechstein 1 bis tieferer Teil des Staßfurt-Steinsalzes des Zechstein 2 wurden in Bohraufschlüssen kartiert. Gleiches gilt unter Vorbehalt auch für die Schichtenfolge des Zechstein 5³. Die Mächtigkeiten für die Schichtenfolgen des Zechsteins 1-4 in der Aller-

tal-Salzstruktur wurden von LOEFFLER (1962) übernommen bzw. entsprechend den Erkenntnissen aus neuen

Aufschlüssen angepaßt.

²Die stratigraphischen Kürzel weichen teilweise von den im BGR-Bericht /11/ verwendeten stratigraphischen Kürzeln ab. In dem genannten Bericht wurden die für die Bearbeitung des Salzstockes Gorleben in BORNE-MANN (1991) definierten stratigraphischen Kürzel verwendet.

³Die Ausbildung bzw. das Vorkommen des Zechstein 5 ist für das Untersuchungsgebiet nicht eindeutig zu klären. In den Grubenaufschlüssen ist als jüngste Zechstein-Schichtenfolge das Aller-Steinsalz nachweislich kartiert. In der Bohrung Dp Mors 45A/94 am NE-Rand der Allertal-Salzstruktur wurde über dem Aller-Steinsalz ein dm-mächtiger Anhydrit (in Verwachsung mit Steinsalz) erbohrt, der von dm-mächtigem Steinsalz überlagert wird. Unter Vorbehalt wurden diese beiden Schichtenfolgen dem Ohre-Anhydrit bzw. dem Ohre-Steinsalz zugeordnet. Ein tonig-silikaklastischer Anteil über dem Aller-Steinsalz fehlt. Der mit dem Keuper einsetzende intrusive Salzaufstieg in die Störungszone unter Akkumulation zu einer Salzstruktur erfaßte alle zechsteinzeitlichen Schichtenfolgen jünger als Basalanhydrit. Diese zechsteinzeitlichen Schichtenfolgen, beginnend mit dem Staßfurt-Steinsalz bis hin zum Leine-/(Ohre)-Steinsalz sind dadurch subrosiven Einflüssen zugänglich geworden. Die älteren Schichtenfolgen des Zechstein 1 (Zechsteinkonglomerat, Kupferschiefer, Zechsteinkalk, Werra-Anhydrit) und des Zechstein 2 (Stinkkalk bzw. Stinkschiefer und Basalanhydrit) bilden den nach SW einfallenden präsalinaren Zechsteinsockel im Liegenden der Salzstruktur und sind im Bereich der Allertal-Salzstruktur nicht Gegenstand subrosiver Prozesse.

Zechstein-Folge	Stratigraphische Bezeichnung	Stratigraphische	Mächtigkeit
-		Sympole	(11)
z5	Ohre-Steinsalz	ZONA	< 1,0
(Ohre-Folge)	Ohre-Annyarit	ZJAN	< 1,0
(unter Vorbehalt)			
z4	Aller-Steinsalz	z4NA	> 40,0 (?)
(Aller-Folge)	Aller-Anhydrit (Pegmatitanhydrit)	z4AN	0,5-1,0
	Aller-Ton (Roter Salzton)	z4RT	3,0-5,0
z3 .	Leine-Steinsalz	z3NA	55,0-85,0
(Leine-Folge)	Tonmittel-Zone	z3NA TM	
	Schwadensalz-Zone	z3NA SS	
	Anhydritmittel-Zone	z3NA AM	
	Übergangsschichten		
	(= Bank-/Bändersalz)	z3NA BK/BD	
	Kristallsalz (= Orangesalz)	z3NA OS	
	Liniensalz	z3NA LS	
	Basissalz	z3NA BS	
	Leine-Anhydrit (Hauptanhydrit)	z3AN	30,0-45,0
	Leine-Karbonat	z3CA	0,5-1,0
	Grauer Salzton	z3GT	2,5
z2	Deckanhydrit	z2DA	1,5
(Staßfurt-Folge)	Decksteinsalz	z2DS	0,3-2,5
	Kaliflöz Staßfurt	z2SF	6,0-8,0
	Staßfurt-Steinsalz	z2NA	100,0-200,0
	Kieseritische Übergangsschichten	z2NA UE	
	Hangendsalz	z2NA HG	
	Hauptsalz	z2NA HS	
	Basissalz	z2NA BS	
	Basalanhydrit	z2AN	2,0
	Stinkschiefer/Stinkkalk	z2CA	4,0-7,0
zl	Werra-Anhydrit	zIAN	38,0-48,0
(Werra-Folge)	Zechsteinkalk	zlK	4,0-10,0
	Kupferschiefer	zIT	0,3
	Zechsteinkonglomerat	z1C	1,0

Tabelle 2: Stratigraphische Schichtenfolge des Zechstein in der Allertal-Salzstruktur (stratigraphische Symbole in Anlehnung an PREUSS et al. 1991)

6 Lithologische und lithostratigraphische Gliederung Hutgestein

6.1 Grundlagen der lithologischen und lithostratigraphischen Gliederung von zechsteinzeitlichen Leithorizonten im Hutgestein

Die lithostratigraphische Gliederung von Hutgesteinsprofilen orientiert sich an der in Kapitel 5 für die Allertal-Salzstruktur dargestellten stratigraphischen Abfolge des Zechstein (vgl. Tabelle 2).

Im Hutgestein werden die subrosiv beeinflußten tonigen, karbonatischen und sulfatischen Schichtenfolgen des Zechstein 2-4 als zechsteinzeitliche Leithorizonte bezeichnet. Der stratigraphische Leitwert dieser nicht mehr oder nur noch partiell (zonenhaft) in ihrer primären Lithofazies ausgebildeten Schichtenfolgen bleibt im Verband mit den residualen Bildungen der verschiedenen Salinarfolgen (Staßfurt-Steinsalz, Leine-/Aller-Steinsalz) auch nach einer subrosiven Überprägung unangetastet⁴.

Für die strukturgeologische Gliederung des Hutgesteins über der Allertal-Salzstruktur sind insbesondere die zechsteinzeitlichen Leithorizonte des Zechstein 2/3 mit Deckanhydrit, Grauem Salzton, Leine-Karbonat und Hauptanhydrit im Hangenden bzw. im Liegenden der residualen Schichtenfolgen des Staßfurt- bzw. Leine-/Aller-Salinars relevant. Aller-Anhydrit und Roter Salzton sind als zechsteinzeitliche Leithorizonte des Zechstein 4 dagegen für die Identifizierung residualer Bildungen des Aller-Salinars von Bedeutung.

Infolge der NE-vergenten Fließbewegung des Salinars und der daraus resultierenden Aufsattelung des Staßfurt-Salzes bzw. der Einmuldung des Leine-/Aller-Salzes können einzelne dieser zechsteinzeitlichen Leithorizonte im Hutgestein sowohl stark ausgedünnt bzw. unterdrückt (Schichtlücken, speziell die Leithorizonte Deckanhydrit und Grauer Salzton; gleiches gilt es festzustellen für das Kaliflöz Staßfurt bzw. dessen residuale Äquivalente), als auch überdurchschnittlich mächtig ausgebildet sein. Teilweise wurden auch mehrere Durchgänge eines stratigraphischen Schichtgliedes erbohrt (z. B. Roter Salzton).

6.1.1 Leithorizont des Zechstein 2 im Hutgestein (Deckanhydrit)

Leithorizont des Zechstein 2 im Hutgestein ist der Deckanhydrit.

Mächtigkeit

Der Deckanhydrit im Hutgestein wurde in Mächtigkeiten von 0,12 m bis 2,30 m erbohrt.

⁴Unter genetisch-diagenetischen Gesichtspunkten werden die im Verlauf einer progressiven Diagenese zechsteinzeitlich (frühdiagenetisch-sedimentär) als Gips gebildeten und nach einer Versenkung als Anhydrit erhaltenen Ca-Sulfatgesteine (z.B. Hauptanhydrit) im Verlauf einer <u>retrograd</u>en Diagenese durch Subrosion wieder in Gips umgewandelt (spätdiagenetisch-subrosiv). Die akronyme Bezeichnung '<u>proretrograd</u>-subrosiv' in den Geologischen Feldaufnahmen bzw. den Geologischen Schichtenverzeichnissen - Anteile Hutgestein- steht für diesen genetischen Prozeß der subrosiven Rückumwandlung von frühdiagenetischen Anhydritgesteinen in sekundären Gips.

Mineralogische Zusammensetzung

Die primär im Deckanhydrit eingeschalteten schwach schluffigen Tonlagen zwischen den Sulfat-Lagen (Anhydrit, Kieserit) wurden auf Grund der engen Verzahnung mit dem Grauen Salzton nicht phasenanalytisch untersucht. Im Grubenfeld Bartensleben (4. Sohle, Flachen 2) wurde der Deckanhydrit intensiv beprobt und analysiert. Die qualitativen und quantitativen Analysenergebnisse von zwei Referenzproben aus dem basalen Teil des Deckanhydrits im Übergang zum liegenden Decksteinsalz (Probe A) und dem oberen Teil des Deckanhydrits im Übergang zum hangenden Grauen Salzton (Probe B) seien hier stellvertretend genannt (Mischprobe Sulfat/Tonstein):

Probe A: 51% Anhydrit, 33% Kieserit, 6% Glimmer-Illit, 3% Quarz; 2% Chlorit, 2% Serpentin, 2% Magnesit, 1% Halit;

Probe B: 47% Anhydrit, 32% Quarz, 11% Glimmer-Illit, 4% Chlorit, 3% Serpentin, 2% Magnesit, 1% Halit.

Der sulfatische Anteil wurde im Verlauf der Subrosion hydratisiert bzw. das Salz gelöst. Quarz (im Schluffanteil der Tonsteinlagen) sowie die genannten Tonminerale können auch für die mineralogische Ausbildung des Deckanhydrits im Hutgestein unterstellt werden, wobei sich der Anteil an Glimmer-Illit zugunsten einer Kaolinit-Neubildung verringert haben dürfte (vgl. Grauer Salzton: Kapitel 6.1.2.1 bzw. Roter Salzton: Kapitel 6.1.3.2).

Makropetrographische Ausbildung

Der Deckanhydrit in subrosiver Fazies zeigt nur noch andeutungsweise den primären Schichtenverband als Wechsellagerung von mm- bis cm-mächtigen Tonsteinlagen (partienweise schwach schluffig) und sulfatischen Partien. Die ursprünglich cm- bis dm-mächtigen Anhydrit- bzw. Anhydrit-Kieserit-Folgen sind nach der Hydratation im Hutgestein in Gestalt flaseriger bis brecciöser Gipseinlagerungen ausgebildet, wobei Ton bzw. Tonstein die Matrix bildet. Die Grenzziehung zum stratigraphisch jüngeren Grauen Salzton bzw. zum Leine-Karbonat ist, bedingt durch halokinetische und subrosive Prozesse, nicht in jedem Falle mehr eindeutig möglich (Brecciierung). Die Farbe des Deckanhydrits im Hutgestein variiert von grau bis olivgrau mit Einschaltungen weißgrauer Sulfat-Bestandteile.

6.1.2 Leithorizonte des Zechstein 3 im Hutgestein

Leithorizonte des Zechstein 3 im Hutgestein sind der Graue Salzton, das Leine-Karbonat und der Hauptanhydrit (mit Schwarzer Tonlage und Kammschale).

6.1.2.1 Grauer Salzton

Mächtigkeit

Die erbohrten Mächtigkeiten des Grauen Salztones im Hutgestein liegen zwischen 0,50 m und 4,60 m.

Mineralogische Zusammensetzung

Der Graue Salzton im Hutgestein wurde an drei Mischproben von Tonstein und Karbonat (Leine-Karbonat) aus der Bohrung Dp Mors 45A/94 phasenanalytisch untersucht. Als karbonatische Phase wurde Magnesit identifi-

ziert. Neben einem hohen Quarz-Gehalt (im Schluffanteil) wurden die Tonminerale (= 100%) Glimmer-Illit mit 21-32% und Kaolinit mit 68-79% bestimmt. Chlorit wurde nicht nachgewiesen.

Stellt man diesen Analysenergebnissen eine Analyse einer Probe aus dem Grenzbereich Grauer Salzton/Leine-Karbonat im Grubenfeld Bartensleben (4. Sohle, Flachen 2) gegenüber, so zeigt sich dort folgende Mineralzusammensetzung: 36% Quarz, 32% Glimmer-Illit, 10% Turmalin, 9% Chlorit, 7% Serpentin, 2% Plagioklas, 2% Halit, 1% Calcit, 1% Magnesit. Dabei handelt es sich bei den Glimmer-Illiten um Muskovit (dioktaedrisch, 2M-Struktur) ohne feststellbare Anteile quellfähiger Schichten in Wechsellagerung. Der Chlorit ist als Fe-arme, Mgreiche Varietät ausgebildet.

Im Gegensatz zum Grauen Salzton im Hutgestein fehlt Kaolinit, dafür tritt aber ein Mineral der Serpentin-Gruppe auf. Der Vergleich der Analysenergebnisse zeigt, daß im Hutgestein die hydrolytische Verwitterung des Glimmer-Illits unter Bildung von Kaolinit (bei saurer Reaktion) voranschreitet. Kaolinit wurde in keiner einzigen untertätigen Probe nachgewiesen.

Makropetrographische Ausbildung

Der Graue Salzton im Hutgestein ist analog dem Deckanhydrit gegenüber seiner Textur in der Salzstruktur verändert worden. Die feinschichtige Textur kann nur noch reliktisch beobachtet werden. In den Aufschlüssen im Hutgestein dominiert eine massige Textur. In Verbindung mit dem Leine-Karbonat (Bruchstücke) tritt der Graue Salzton (Matrix) auch brecciös auf. Der Schluffanteil im Tonstein ist durchgehend schwach. Im Grauen Salzton sind Einlagerungen von Gips (Lagen, Flasern, Klüfte) sehr häufig zu bestimmen. Die Farbe des Grauen Salztones im Hutgestein ist grau bis schwarzolivgrau. Auf Bruchflächen treten vereinzelt hämatitische Bestege auf, die als Relikte von kalisalzhaltigen Lösungen interpretiert werden können (Dp Mors 42A1/95).

6.1.2.2 Leine-Karbonat

Mächtigkeit

Das Leine-Karbonat im Hutgestein weist erbohrte Mächtigkeiten von 0,16 m bis 2,20 m auf.

Mineralogische Zusammensetzung

Nach mineralogischer Phasenanalyse ist das Leine-Karbonat als Magnesit ausgebildet, untergeordnet treten Tonminerale (Kaolinit >> Illit) und Quarz sowie in Spuren Gips auf. Die Tonminerale und Quarz sind an mmmächtige, schwach schluffige Tonstein-Zwischenlagen im Karbonat gebunden. Der Magnesit als ein hochsalinares Mineral stellt ein diagenetisches Umwandlungsprodukt des Dolomits dar. Als Mg-Quelle können hier hochkonzentrierte aszendente Lösungen aus dem Kaliflöz Staßfurt unterstellt werden, die zu einer spät- oder postzechsteinzeitlichen Magnesitisierung des Dolomits sowohl im Leine-Karbonat als auch im Hauptanhydrit führten.

Makropetrographische Ausbildung

Das Leine-Karbonat im Hutgestein ist makroskopisch in zwei texturellen Varianten aufgeschlossen (auch ineinander übergehend):

- als cm-geschichtete bis dünnbankige Folge mit dünnlagigen Tonstein-Einschaltungen
- als brecciöse Folge von Karbonat-Bruchstücken in einer tonigen Matrix des Grauen Salztones.

Die geschichtete bis bankige Ausbildung stellt die primäre Schichtungstextur dieser stratigraphischen Einheit dar. Das magnesitische Karbonat weist immer eine feinkristalline bis dichte Struktur auf.

In der brecciösen Folge variiert die Klastengröße im Durchmesser von 1-10 cm. Die Bruchstücke treten sowohl scharfkantig als auch kantengerundet bis rundlich auf. In den feinkristallinen bis dichten Gesteine sind selten poröse Bruchstücke zu beobachten.

Der Anteil an flaserartigen Gipseinlagerungen in den brecciösen Folgen ist dabei insgesamt höher als in den geschichteten bis bankigen Karbonatfolgen. Die Farbe des Leine-Karbonates ist grau bis braungrau, durchsetzt mit weißgrauen Sulfatanteilen.

Mikropetrographische Ausbildung

Die Mikrofazies der untersuchten Proben aus dem Leine-Karbonat im Hutgestein läßt sich charakterisieren als magnesitisierter Bioklastit-(Calcit-Dolomit)-Rudit mit lutitischer Matrix. Die bioklastischen Einlagerungen sind teilweise mit sparitischem Zement gefüllt, dabei häufig sulfatisiert (Gips mit xenotopischen Anhydritrelikten). Der Magnesit weist kluftartige Bestege von Gips bzw. Fasergips auf.

6.1.2.3 Hauptanhydrit

Mächtigkeit

Die erbohrte Mächtigkeit des Hauptanhydrits zeigt die größte Spannbreite aller zechsteinzeitlichen Leithorizonte im Hutgestein. Sie reicht von 25 m bis 81 m, in extremer Steilstellung bis 100 m.

Mineralogische Zusammensetzung

Der Mineralbestand des Hauptanhydrits vor der Subrosion zeigt nach mineralogischen Phasenanalysen folgende qualitative Zusammensetzung: Anhydrit, Magnesit (in Gehalten stark schwankend), zonenweise Halit, Carnallit, akzessorisch Quarz. Mineraloptisch konnten weiterhin glimmerartige Tonminerale, Koenenit und selten Boracit als akzessorische Beimengungen bestimmt werden.

Im Verlauf der Hydratation nimmt der Gehalt an Anhydrit bei steigendem Gipsanteil ab. Primäre Salzzementminerale werden gelöst und unter autochthonem Einbau schwerlöslicher Bestandteile, z.B. Hämatitschüppchen aus den Salzmineralen Carnallit und Sylvin, durch Ca-Sulfat substituiert.

Die Schwarze Tonlage im Hauptanhydrit des Hutgesteins wurde wegen unzureichender Probenmenge nicht phasenanalytisch untersucht. Eine Probe aus dem Grenzbereich Schwarze Tonlage/Kammschale/Leine-Steinsalz im Grubenfeld Marie (3./4. Südstrecke) zeigt folgendes Ergebnis: 63% Anhydrit, 16% Halit, 8% Glimmer-Illit, 5% Quarz, 2% Serpentin, 2% Pyrit.

Lithostratigraphische Gliederung und makropetrographische Ausbildung

Die lithostratigraphische Gliederung des am Aufbau des Hutgesteins beteiligten Hauptanhydrits erfolgte nach BALZER (1992) in fünf Zonen (Zonen α - ε sowie Schwarze Tonlage und Kammschale). Dabei handelt es sich um eine genetisch gestützte Textur- und Mikrofazies-Gliederung (vgl. auch BALZER 1997b und BGR-Berichte /4/ und /6/). Der Hauptanhydrit stellt als lithologische Schichtenfolge innerhalb der Zechstein-Großzyklen eine zyklisch entwickelte Folge in einem durch Aggradation und Evaporation regressiven Meeresbecken dar. Dies widerspiegelt sich in der Entwicklung einer shallowing-upward-Sequenz über dem Leine-Karbonat und den Sabkha-Bildungen an der Basis des Hauptanhydrits (untergliedert in drei Subzonen). Die Abbildung 1 zeigt die lithostratigraphische Gliederung des Hauptanhydrits im Hutgestein der Allertal-Salzstruktur nach BALZER (1992). Es sei darauf verwiesen, daß die Steinsalz-Anhydrite nicht mehr in dieser Fazies im Hutgestein auftreten (vgl. nachfolgende Ausführungen in Kapitel 6.1.2.3).

Der texturelle Übergang zwischen den Lithotypen muß dabei nicht zwangsläufig sprunghaft sein. Engständige Wechsellagerungen von laminitischen und gestört laminitischen Anhydriten sind schon durch geringfügige Konzentrationsschwankungen im GCD⁵-Bereich am Meeresboden möglich. Jedoch werden die niedrigsalinaren laminitischen Anhydrite immer von den höhersalinaren gestört laminitischen Anhydriten bzw. Massenanhydriten überlagert. Fazielle Wechsel zwischen Massenanhydriten und Steinsalz-Anhydriten (bzw. den subrosiven Äquivalenten im Hutgestein) als Reaktion auf Änderungen der Konzentration im Schwankungsbereich der HCD⁶ zum Ende der Hauptanhydrit-Sedimentation sind geradezu typisch für diese Schichtenfolge.

Auf Grund der zyklischen Entwicklung des Hauptanhydrits sind eindeutige Hinweise auf die Lagerungsverhältnisse (normale und inverse Lagerung) und ein mögliches Störungsinventar gegeben, was für die strukturgeologische Gliederung der Hutgesteinsprofile mit Hauptanhydrit-Anteil von grundlegender Bedeutung ist.

Im Hutgestein tritt der Hauptanhydrit nur noch zonenweise in seiner ursprünglichen anhydritischen Fazies auf. Durch Einwirkung von ungesättigten Grundwässern auf Anhydritgesteine wurden diese partiell oder nahezu vollständig vergipst (hydratisiert). Dieser spätdiagenetische Verdrängungsprozeß ist Teil der sogenannten Humidsubrosion (im Gegensatz zur Ablaugung oder Subrosion der Steinsalz- und Kalisalzfolgen, die nachfolgend als Salinarsubrosion bezeichnet wird: vgl. Kapitel 6.2.3).

Nach der Intensität der Vergipsungserscheinungen im Anhydrit lassen sich unterscheiden:

- vergipste Anhydritgesteine (initiales Hydratationsstadium)
- massige Gipsgesteine, die akzessorisch noch Anhydrit enthalten oder aber vollständig anhydritfrei sein können (finales Hydratationsstadium).

Als initiale Vergipsungserscheinungen sind dabei die Gipseinsprenglinge sowie die Gipsflasern zu nennen. Als Gipseinsprenglinge werden mm-große, hypidio- bis xenotopische Gipskristalle bezeichnet, die isoliert oder aber auch agglomeriert in der anhydritischen Matrix auftreten können. Auf Grund der Reflexion des Lichtes in diesen Kristallen erscheinen sie makroskopisch dunkel (grau bis schwarz).

Als Gipsflasern werden mm-mächtige und cm-lange Einlagerungen von Gips in Anhydrit verstanden, die stark unterschiedlich orientiert sein können (schichtungsparallel bis richtungslos). Gipsflasern treten in den meisten Fällen scharenartig als lithologischer Reflex eines vormals hydraulisch aktiven Kluftsystems im Anhydrit auf.

In der Bezeichnung der Lithotypen gibt es zwischen Anhydrit-Gesteinen mit und ohne initialen Hydratationserscheinungen keine Differenzierung.

⁶HCD - halite compensation depth nach LANGBEIN I.c.

⁵ GCD - gypsum compensation depth nach LANGBEIN (1987)

	Hutgestein: Residuen Leine-Steinsalz						
Zone bzw. Subzone Mächtigkeit			Mächtigkeit	Lithotyp	diagenetischer Typ		
			(m)		(nach LANGBEIN 1987)		
KS	KS Kammschale 0,3-0,8		0,3-0,8	hornartiger Anhydrit ± Pseudomorphosenanhydrit	? zechsteinzeitliche Rücklösehorizonte des z3NA		
ST	T Schwarze Tonlage 0,0-0,005		0,0-0,005	Tonstein			
	ε 20,0		20,0	Steinsalzanhydrit	Halitzementit (im Hutgestein subrosiv überprägt)		
	δ	_	-	Massenanhydrit	Anhydritzementit		
				(wolkig, marmoriert, flaserig, gemasert)			
z3AN			1,0-10,0	gestört laminitischer Anhydrit	Gipszementit		
1				(lagenweise laminitischer Anhydrit)	(± Kompaktit)		
'r I	β(γ)		0,10-1,0	laminitischer Anhydrit (Perl-Anhydrit-Fazies)	differentieller Kompaktit		
1			1,0-6,0	laminitischer Anhydrit	Kompaktit		
				(lagenweise gestört laminitischer Anhydrit)	(± Gipszementit)		
r 1	 I	α_3	0,0-1,5	Gekröse-Anhydrit			
		α_2	1,5-5,0	Karbonat-Fetzen-Anhydrit	Verdrängungsanhydrit		
	α			(an der Basis oolithisches Algenkarbonat)	(Sabkha-Fazies)		
		α.	0,5-1,0	feinschichtiger Anhydrit			
i 1	1	~1	ł	(mit stromatolithischem Algenkarbonat)			
z3CA	Leine-Ka	arbonat					

Abbildung 1: Lithostratigraphische Gliederung des Hauptanhydrits im Hutgestein der Allertal-Salzstruktur

--

23

In massig vergipsten Anhydritgesteinen lassen sich alle frühdiagenetisch-sedimentären Texturtypen des Hauptanhydrits nachweisen (keine Volumenerhöhung unter Gebirgsdruck). Massige Gipsgesteine weisen stark unterschiedliche Gehalte an reliktischem Anhydrit auf, wobei die Verdrängung von Anhydrit durch sekundären Gips nahezu vollständig erfolgen kann (Anhydrit-Relikte sind dann nur noch im mikroskopischen Bereich erkennbar). Insgesamt zeigen massige Gipsgesteine eine fein- bis grobkristalline Kornstruktur.

In der lithologischen Ansprache wurde der intensiven stofflichen Verdrängung von Anhydrit durch Gips durch Anfügen der Bezeichnung `Gips` an das jeweilige Texturmerkmal Rechnung getragen.

Nachfolgend sind die genetischen Texturtypen bzw. Lithotypen und die abgeleiteten stratigraphischen Zonen für den Hauptanhydrit im Hutgestein im Überblick dargestellt.

<u>A) Frühdiagenetische Sulfat-Karbonat-Verdrängungsgefüge (Sabkha-Fazies): Hauptanhydrit Zone α mit Subzonen 1-3:</u>

Die im Übergang vom subtidalen Leine-Karbonat zum Hauptanhydrit zu lokalisierenden Gefüge lassen sich nach texturellen Merkmalen einem vollständig entwickelten Sabkha-Zyklus zuordnen: an der Basis intertidale stromatolithischen Karbonatfolgen und Anhydrit-Laminen (z.T. mit Pseudomorphosen nach primärem Gips) der Subzone 1, überlagert von supratidalen Karbonat (Magnesit)-Fetzen-Anhydriten der Subzone 2, die an der Basis oolithisches, stark sulfatisiertes Algenkarbonat enthalten. Im Topbereich läßt sich die Subzone 3 mit Gekröse-Anhydriten bestimmen. Die Texturgrenze zwischen Karbonat-Fetzen-Anhydriten und überlagernden Gekröse-Anhydriten wird durch den Wechsel der Größe bzw. der äußeren Gestalt der magnesitischen Einlagerungen bestimmt. Die Struktur dieser Lithotypen ist feinkristallin, selten grobkristallin.

Nach der Hydratation des Anhydrits werden diese Gesteine als sekundärer Karbonat-Fetzen-Gips bzw. sekundärer Gekröse-Gips bezeichnet.

B) Kompaktionsgefüge und differentielle Kompaktionsgefüge: Hauptanhydrit Zone β

Die texturelle Grenze zur unterlagernden Sabkha-Sequenz wird durch den feingeschichteten *laminitischen Anhydrit* (Wechsellagerung Karbonat/Sulfat) in den meisten Profilen deutlich markiert. Dieser genetisch durch Kompaktion entstandene Lithotyp zeigt ebene bis unregelmäßig wellig ausgebildete Schichtflächen.

Abweichend davon tritt der laminitische Anhydrit auch in der *Perl'-Anhydrit*-Fazies auf. Hier erfolgte frühdiagenetisch eine erste, aber noch unvollständige Zementation der Sedimentoberfläche durch Gips. Eine syngenetisch verlaufende partielle Zementation um einen Gipskeim und eine differentielle Kompaktion der nichtzementierten Bereiche bedingen nach der Phasenumwandlung von Gips in Anhydrit eine perlartige Texturausbildung mit Einlagerungen von Anhydrit (mit mm-Durchmesser) in einer karbonatisch-tonigen Matrix. Die Struktur dieser Lithotypen ist feinkristallin.

Sekundärer laminitischer Gips und sekundärer 'Perl'-Gips sind die entsprechenden Lithotypen nach einer vollständigen Vergipsung.

C) Zementitgefüge: Hauptanhydrit Zonen γ, δ, ε

Bei den Zementitgefügen muß entsprechend den frühdiagenetischen Zementmineralen Gips, Anhydrit und Halit (zum Teil auch Kalisalz) unterschieden werden zwischen den genetischen Sedimenttypen:

- Gips-Zementit
- Anhydrit-Zementit
- Halit-Zementit

Hauptanhydrit Zone γ . Der Lithotyp gipszementierter Anhydrite im Hauptanhydrit wird auf Grund der teilweise stark unregelmäßig welligen bis fluidalen Schichtung als *gestört laminitischer Anhydrit* bezeichnet. Die sedimentäre Schichtungstextur als Wechsellagerung von Ca-Sulfat und Karbonat läßt sich in diesen Lithotypen nur noch reliktisch bestimmen. Die Struktur dieses Lithotypes ist als feinkristallin zu bezeichnen. Aus der vollständigen Hydratation resultiert der *sekundäre gestört laminitische Gips*.

Im Hauptanhydrit sind die Übergänge vom laminitischen zum gestört laminitischen Texturtyp bisweilen fließend, wobei im Hangenden der `Perl`-Fazies der Anteil an fluidalen Texturen eindeutig gegenüber laminitischen Texturen dominiert.

Hauptanhydrit Zone δ: Der Lithotyp anhydritzementierter Anhydrite im Hauptanhydrit ist nicht beschränkt auf einen Texturtyp. Sämtliche durch karbonatische Einlagerungen bedingten wolkigen, grobmaserigen, grobflaserigen oder marmorierten Anhydrite stehen für diesen genetischen Sedimenttyp. Für den Hauptanhydrit wurde dafür der Sammelbegriff *Massenanhydrit* eingeführt. Die Struktur der verschiedenen Texturtypen ist grobkristallin, selten feinkristallin.

Bei der vollständigen Vergipsung resultieren Massengipse mit frühdiagenetischen Texturen wie Maserung, Flaserung, Marmorierung durch karbonatische Einlagerungen.

Hauptanhydrit Zone ɛ: Der Lithotyp salinarzementierter Anhydrite im Hauptanhydrit unterscheidet sich vor der Subrosion von den Massenanhydriten nur hinsichtlich des makroskopisch sichtbaren salinaren Zementminerals (Halit, untergeordnet auch Carnallit, Sylvin). Der *Steinsalz-Anhydrit* ist in seiner primären Fazies nicht mehr im Hutgestein ausgebildet. An seine Stelle tritt vor dem Vergipsungsstadium *der Anhydritmikrit*. Als Anhydritmikrite werden Gesteine mit feinkristalliner bis dichter Struktur bezeichnet, die nur noch reliktisch, d. h. unscharf bis verschwommen frühdiagenetische Anhydrit-Texturen analog den Steinsalz-Anhydriten bzw. Massenanhydriten aufweisen. Partienweise kann dieser Lithotyp infolge der Umkristallisation auch massig texturlos bis fleckig erscheinen. Die Struktur dieses Lithotyps ist feinkristallin bis dicht. Der primäre Steinsalz-Zement wurde vor der Vergipsung vollständig gelöst und durch Neukristallisation von Anhydrit ersetzt (Zementkorrosion), wodurch auch die frühdiagenetischen Texturen intensiv verwischt wurden.

Das texturelle Äquivalent diese Lithotyps in sekundärer Gipsfazies ist der Massengips (mit reliktischen frühdiagenetischen Texturen).

Die Lithotypen der Zonen δ und ε können zonenhaft wechsellagern, was als synsedimentärer Fazieswechsel anzusehen ist (im Hutgestein Wechsellagerung von Massenanhydrit/Anhydritmikrit).

D) Schwarze Tonlage und Kammschale

Die Schwarze Tonlage und die Kammschale im Top des Hauptanhydrits stellen zechsteinzeitliche Rücklösehorizonte von bereits sedimentiertem Leine-Steinsalz dar. Die selten zu bestimmende Schwarze Tonlage im Hauptanhydrit (Hutgestein) ist nur noch als mm-mächtige, wellig ausgebildete schwarze Tonsteinlage zwischen Hauptanhydrit-Oberkante und Kammschale zu identifizieren; Lagen im cm-Bereich wurden sehr selten beobachtet (Dp Mors 10/88).

Die Kammschale ist texturell als massiger, selten feingeschichteter (hellgrau/dunkelgrau) und strukturell als dichter bis hornartiger Anhydrit ausgebildet (selten mit Pseudomorphosen-Zwischenlagen). Bei vollständiger Vergipsung ist die Kammschale als massiges Gipsgestein texturell kaum noch von vergipsten residualen Anhydritgesteinen zu unterscheiden.

Mikropetrographische Ausbildung

Die Grundlagen der mikropetrographischen Analyse von zechsteinzeitlichen Ca-Sulfatgesteinen im Hutgestein sind einerseits das Klassifizierungsschema für die Anhydritgesteine nach LANGBEIN (1987) und andererseits das Klassifizierungsschema für die sekundären Gipsgesteine nach BALZER (1997a).

In Analogie zur makroskopischen Ansprache muß bei der mikropetrographischen Bearbeitung des Hauptanhydrits im Hutgestein unterschieden werden zwischen:

- A) der Mikrofazies-Typisierung von (noch) unveränderten primären Anhydritgesteinen im Hutgestein;
- B) der Mikrofazies-Typisierung nach einer subrosiven Verdrängung von frühdiagenetisch-sedimentärem Anhydrit durch spätdiagenetisch-subrosiven Anhydrit (infolge Korrosion salinarer Zemente) bzw. nach einer subrosiven Verdrängung von Anhydrit durch sekundären Gips (infolge Hydratation).

zu A)

Frühdiagenetische Sulfat-Karbonat-Verdrängungsgefüge

Replacement-Gefüge: stromatolithische Karbonat-Matrix unregelmäßig nodulartig bis fleckenhaft durchsetzt mit Anhydritkristallen des isometrisch-granotopischen, selten des leistenförmig-tafligen Strukturtyps.

Kompaktionsgefüge und differentielle Kompaktionsgefüge

Kompaktionsgefüge: Wechsellagerung von karbonatisch-tonigen Laminen und Anhydritlaminen des isometrischgranotopischen Strukturtyps, selten des leistenförmig-tafligen Strukturtyps (bei schichtungsparalleler bis selten schichtungsnormaler Textur).

differentielle Kompaktionsgefüge: karbonatisch-tonige Matrix (feingeschichtet) mit lagig orientierten rundlichovalen Einlagerungen des leistenförmig-tafligen Strukturtyps mit sperriger bis gefältelter Textur bei geringer Neigung zur Rekristallisation unter Ausbildung amöboider Strukturtypen.

Zementitgefüge

Gips-Zementit: Einzelkristalle des leistenförmig-tafligen Strukturtyps mit sperrig-heterogener Textur (Pseudomorphosen-Gefüge) oder isometrisch-granotopischer Anhydritstrukturtyp poikilotopisch durchsetzt mit Karbonat bei fluidaler Textur.

Anhydrit-Zementit: Einzelkristalle und Kristallaggregate des leistenförmig-tafligen Strukturtyps bei schichtungsparalleler bis richtungslos heterogener Textur (Pseudomorphosen-Gefüge), fleckenhaft durchsetzt mit Anhydritkristallen des isometrisch-kristallotopischen Strukturtyps (Blockzement B mit `pile of brick`-Textur) bei starker Neigung zur Rekristallisation unter Ausbildung amöboider Strukturtypen.

Halit-Zementit: nicht mehr im Hutgestein nachweisbar.

<u>Kammschale</u>

`Pile of brick`-Textur von isometrisch-kristallotopischen Kristallen (primärer Anhydrit); bei lagenweisen Einschaltungen von Pseudomorphosenanhydrit: Einzelkristalle und Kristallaggregate des leistenförmig-tafligen und fibrösen Strukturtyps bei schichtungsnormaler bis richtungslos heterogener Textur; mit geringen Gehalten an Salinarzement.

zu B)

Anhydrit-Anhydrit-Verdrängung

Diese Art der Verdrängung ist gebunden an Anhydritgesteine mit frühdiagenetischem Salinarzement. Durch die sehr langsame Lösung von Salinarzement im Verlauf der Subrosion entsteht Porenraum, der aber syngenetisch durch Neukristallisation von zeitlich sekundärem Anhydrit wieder verschlossen wird. In der Mikrofazies wider-spiegelt sich dies in der Verdrängung von frühdiagenetisch-sedimentären Anhydritstrukturen mit leistenförmig-tafligen Kristallen durch spätdiagenetisch-subrosive Anhydritstrukturen mit isometrisch-kristallotopischen Kristallen (Parasekundäranhydrit sensu BALZER 1997a).

Anhydrit-Gips-Verdrängung

In einem frühen Stadium der Hydratation ist sekundärer Gips im Anhydrit grundsätzlich gebunden an Gipseinsprenglinge (porphyrotopischer Strukturtyp) sowie feinste Gipsgänge (gypsum veins). Ist die Vergipsung dagegen sehr weit fortgeschritten, bildet Gips die Matrix des Gefüges, in der aber auch noch Anhydritrelikte präsent sein können.

Gipseinsprenglinge sind als poikilotopisch strukturierte Kristalle in regelloser Anordnung in einer ansonsten nicht durch Vergipsung veränderten Anhydrit-Matrix zu bstimmen. Sie können assoziiert sein mit mikrometer- bis millimetermächtigen Gipsgängen (häufig auch einander kreuzend unter Absonderung von Anhydrit-Schmitzen). Die Hydratation ist hier an Klüfte im Anhydritgestein gebunden. Dabei erfolgt eine initiale Verdrängung von Anhydritkristallen durch isometrisch-granotopische Gipsstrukturen. Nachfolgend unterliegen diese Verdrängungsstrukturen in den Gipsgängen der Integration (Sammelkristallisation). Die Bestimmung der Mikrofazies von Anhydrit ist im Stadium der initialen Hydratation aber in jedem Falle noch möglich.

Das Gegenstück zu den initialen Hydratationserscheinungen bilden im Stadium der finalen Hydratation die Gipsmatrixgefüge. Die Hydratation und die Integration führen zu einer intensiven Resorption der Anhydrit-Kristalle (makroskopisch ist nur noch selten Anhydrit in diesen Massengipsen zu bestimmen). Diese Gipsmatrixgefüge sind durch ein großes Spektrum mikrofazieller Gefügevariationen gekennzeichnet, da sie sowohl Pseudomorphosen- und Verdrängungsgefüge als auch Integrationsgefüge aufweisen. Auf eine mikrofazielle Charakterisierung der Gipsmatrixgefüge wird unter Hinweis auf BALZER (1997a) an dieser Stelle verzichtet.

6.1.3 Leithorizonte des Zechstein 4 im Hutgestein

Leithorizonte des Zechstein 4 im Hutgestein sind der Aller-Anhydrit und der Rote Salzton.

6.1.3.1 Aller-Anhydrit

Mächtigkeit

Im Hutgestein wurde der Aller-Anhydrit in einer Mächtigkeit bis ca. 0,2 m erbohrt.

Mineralogische Zusammensetzung

Der Aller-Anhydrit im Hutgestein wurde nicht mineralogisch untersucht. Im Stadium vor der Subrosion weist er folgende mineralogische Zusammensetzung auf (Referenzprobe aus dem Grubenfeld Marie: Westquerschlag): 73% Anhydrit, 24% Halit, 3% Magnesit.

Im Verlauf der Subrosion wurde der Steinsalz-Zement gelöst und der Anhydrit unter Bildung von Gips hydratisiert (siehe makropetrographische Ausbildung).

Makropetrographische Ausbildung

Der geringmächtige Aller-Anhydrit, in primärer Fazies zweigegliedert in einen cm-mächtigen felsitischen Fuß an der Basis und den durch hämatitische Reaktionssäume um den Steinsalz-Zement fleckig texturierten Anhydrit im Topbereich, unterliegt bei subrosiven Einflüssen auf Grund seines primär hohen Salzzement-Gehaltes einer intensiven gefügemäßigen (insbesondere strukturellen) Veränderung. In Kopplung mit einer stofflichen Verdrängung durch Gips infolge Hydratation ist die Abgrenzung des Aller-Anhydrits von über- oder unterlagernden sulfatischen Residuen zusätzlich erschwert.

6.1.3.2 Roter Salzton

Mächtigkeit

Die erbohrte Mächtigkeit des Roten Salztones im Hutgestein variiert zwischen durchschnittlich < 1 m und 5 m, vereinzelt sind Mächtigkeiten von 10-15 m zu beobachten.

Mineralogische Zusammensetzung

Die Tonmineral-Assoziation wird durch die Tonminerale Illit, Kaolinit und Fe-Chlorit bestimmt, wobei quantitativ Illit > Kaolinit > Fe-Chlorit ist. Neben Quarz im Schluffstein- und Feinsandsteinanteil und der Sulfatkomponente Gips, selten auch Anhydrit, wurden Spuren von Halit und Kalzit nachgewiesen. Quellfähige Phyllosilikate wurden im Roten Salzton nicht beobachtet. Im Vergleich dazu das repräsentative qualitative und quantitative Analyseergebnis einer Probe aus dem Roten Salzton aus der nicht subrosiv veränderten Salzstruktur (Grubenfeld Marie: Westquerschlag): 48% Glimmer-Illit, 24% Quarz, 15% Halit, 5% Chlorit, 4% Hämatit, 4% Anhydrit. In einzelnen Proben wurde auch Magnesit (1-3%) nachgewiesen.

Der Vergleich der Analysenergebnisse zeigt, daß im Hutgestein analog zum Grauen Salzton die hydrolytische Verwitterung des Glimmer-Illits unter Bildung von Kaolinit (bei saurer Reaktion) voranschreitet. Kaolinit wurde in keiner einzigen untertätigen Probe identifiziert. Chloridische Anteile in Form von Halit sind im Hutgestein als Neubildungen anzusehen. Eine Erhaltung der primär im Roten Salzton eingelagerten Halitkomponenten ist eher unwahrscheinlich. Der sulfatische Anteil liegt größtenteils in hydratisierter Form vor.

Korngrößen-Verteilung

Bei der Transformation der Korngrößenanalysen in eine entsprechende Gesteinsansprache wurden zum Teil Abweichungen gegenüber der Gesteinsbeschreibung am Kernmaterial festgestellt (zumeist im schluffigen Nebengemengteil). Als Gründe müssen die Aufbereitungsprobleme der stark verfestigten Gesteine genannt werden. Bei den ermittelten Kornfraktionen handelt es sich also nicht um die originale Korngrößenverteilung der Sedimente. Aus diesem Grund wird auf eine umfassende Interpretation der Korngrößen-Verteilung verzichtet.

Makropetrographische Ausbildung

In der makroskopischen Gefügeausbildung des Roten Salztones im Hutgestein dominiert ein massiger (ungeschichteter) Texturtyp. Mit zunehmendem Schluff- bis (selten) Feinsandstein-Anteil sind Flaserungstexturen, selten auch Feinschichtungstexturen zu beobachten. Eine brecciöse Textur kann lagen- und/oder partienweise auftreten. Die Farbe des Roten Salztones schwankt von rotbraun bis dunkelorangebraun. Daneben treten in nahezu jedem Profil grüngraue Reduktionsflecken oder -lagen unterschiedlicher Größe (Durchmesser im mmbis cm-Bereich) bzw. Mächtigkeit (cm- bis untergeordnet dm-Bereich) auf. Die Ursache dieser Grün- bis Graufärbung liegt in der Oxidation organischer Substanz.

Ein hervorstechendes Textur-Merkmal des Roten Salztones ist durch die ungeregelte Einlagerung diffus verteilter sulfatischer Knollen gegeben. Diese sabkhaartigen Bodenbildungen sind überwiegend in sekundärer Gips-Fazies ausgebildet, selten auch noch in der primären Anhydrit-Fazies (wie in der Salzstruktur) und können im Habitus als rundlich-oval mit wulstigen Ausbuchtungen beschrieben werden. Die Farbe der Knollen ist grau bis grauweißrot, untergeordnet weißrosa. Die Knollen-Größen schwanken im Durchmesser von < 1 cm bis 10 cm. Die Struktur ist sowohl in der Anhydrit- als auch in der Gips-Fazies als feinkristallin bis dicht zu bezeichnen.

Der Rote Salzton wird sehr häufig durch lagige bis bankartige Einlagerungen sulfatischer Residuen im cm- bis dm-Bereich durchsetzt (vor der Subrosion kleinmaßstäbliche Salzstrukturen). Diese `Steinsalzäquivalente` in sekundärer Gips-Fazies, untergeordnet in anhydritischer Fazies, zeigen die entsprechenden Textur- und Strukturmerkmale sulfatischer Residuen (vgl. Kapitel 6.2.3). Die sulfatischen Residuen treten insbesondere auch in brecciöser Fazies als charakteristische Kollapsbreccien mit Sulfat-Bruchstücken in der Tonstein-Matrix (infolge Massendefizits durch Salinarsubrosion im Liegenden) bzw, als Residualbreccien mit Sulfat-Bruchstücken in einer Sulfat-Matrix auf. Die Farbpalette dieser Rückstandsgesteine reicht von grau bis weißrosa.

Neben den sulfatischen Residuen sind sehr häufig Einlagerungen von Fasergips im Roten Salzton zu beobachten. Sie sind Ausdruck des sich sehr langsam setzenden Hutgesteins durch Massendefizit im Liegenden des Hutgesteins. Sich öffnende Klüfte werden bei entsprechendem CaSO₄-Lösungsangebot syngenetisch durch Fasergips versiegelt. Die Breite dieser Setzungsplatten (= Kluftweite) liegt im mm-Bereich bis ca. 2 cm. Im Gegensatz dazu werden sich spontan öffnende Klüfte bei entsprechendem CaSO₄-Lösungsangebot mit grobspätigem Gips (Marienglas) als Kluftmineral verheilt.

Mikropetrographische Ausbildung

Die mikropetrographische Ausbildung der Tonsteine des Roten Salztones wird bestimmt durch die feinlagige Regelung der Tonminerale sowie durch die Quarzkristalle im Schluff-, untergeordnet Feinsandstein-Anteil mit zum Teil gutem Rundungsgrad. Die gesamte Ton-Quarz-Matrix wird intensiv von hämatitischen Krusten durchsetzt. Selten wurden Karbonat-Kristalle (Kalzit) bestimmt. Der Sulfatanteil weist in anhydritischer Fazies den isometrisch-kristallotopischen Strukturtyp, in sekundärer Gipsfazies den granotopischen bis amöboiden Strukturtyp auf.

6.2 Grundlagen der lithologischen und lithostratigraphischen Indizierung von residualen Gesteinen im Hutgestein

Die lithologische bzw. lithostratigraphische Abgrenzung residualer Bildungen des Staßfurt-Steinsalzes gegen residuale Bildungen des Leine- bzw. Aller-Steinsalzes ist auf der Grundlage textureller Merkmale nur bedingt möglich, da sich einerseits unabhängig vom stratigraphischen Edukt salinarer Schichtenfolgen texturell übereinstimmende Ca-Sulfat-Lithotypen im residualen Hutgestein aushalten lassen, andererseits in der primären Salinarfazies nur wenige stratigraphische tonige und anhydritische marker beds existieren. Ebenso ist eine altersmäßige Stratifizierung anhand spezifischer textureller Residual-Bildungen nicht möglich, da gleiche Texturtypen sowohl am Bau der ältesten Hutgesteinsbildungen im Topbereich als auch am Bau jüngerer Hutgesteinsbildungen im unteren Bereich eines Profiles involviert sein können. Stoffliche Variationen (Gips- oder Anhydritbildung) durch schwankende Lösungskonzentrationen am jeweiligen Salzspiegel sind natürlich möglich. Die stratigraphische bzw. strukturgeologische Einordnung von residualen Gesteinen mächtiger Salinarfolgen

(hier Steinsalzfolgen im engeren Sinne betrachtet) in einem Bohraufschluß kann somit nur auf der Analyse eines Gesamtprofiles in Abhängigkeit von der Stellung eines Hutgesteinsprofiles zum Internbau der Salzstruktur basieren. Lithostratigraphische marker beds innerhalb residualer Gesteinsfolgen können, sofern in einem Bohraufschluß nachweisbar, die strukturgeologische Interpretation stützen.

6.2.1 Lithostratigraphische Indizierung von residualen Gesteinen des Zechstein 2 im Hutgestein

Im Staßfurt-Salinar des Zechstein 2 sind primär keine tonigen oder anhydritischen Einlagerungen zu finden, die auch nach einer Subrosion dieser Salzgesteine im resultierenden Hutgestein von stratigraphischem Leitwert wären. Dünnlagige (mm- bis untergeordnet cm-Bereich) tonige Residuen sind immer im grauen bis schwarzen, niemals im rötlichbraunen oder grünlichgrauen Farbspektrum zu bestimmen. Sie besitzen keinen stratigraphischen Leitwert.

Anders verhält es sich mit dem Kaliflöz Staßfurt. Aus dem regionalen Umfeld (Mansfelder Mulde) sind residuale Bildungen des Kaliflözes Staßfurt texturell beschrieben (LANGBEIN & SEIDEL 1960). In einer neuen Hutgesteinsbohrung aus dem Bereich des Ascherslebener Salzsattels (Subherzynes Becken) wurden eindeutig Residuen des Kaliflözes Staßfurt erbohrt und vom Autor als solche bestimmt. Typisches Texturmerkmal dieser Kalisalz-Rückstände ist die Residualbreccie mit intern feingeschichteten, undeutlich geregelten Bruchstücken hier bis 8 cm im Durchmesser (ehemalige Steinsalz-Leitbänke bei Hartsalzausbildung bzw. ehemalige Bruchstücke der Steinsalz-Leitbänke im Trümmercarnallit) und einem dichten bis hornartigen, ungeschichteten Zement, der aus der Neukristallisation von Anhydrit in hochsalinaren Lösungen an einem Salzspiegel resultiert.

Im gesamten Kernmaterial aus dem Hutgestein der Allertal-Salzstruktur konnte dieser Texturtyp eines residualen Kaliflözes nicht bestimmt werden.

In zwei Residualprofilen des Staßfurt-Steinsalzes (Bohrungen Dp Mors 11/90, Dp Mors 65A/95 und interessanterweise auch im Hutgestein des Staßfurt-Steinsalzes in der oben erwähnten Salzspiegelbohrung aus dem Ascherslebener Salzsattel) konnten Feinsandstein-Einlagerungen in Form von schichtungskonkordanten Lagen bis 5 cm Mächtigkeit im Hutgestein bestimmt werden. Untergeordnet sind auch Bruchstücke bis 4 cm im Durchmesser zu identifizieren. Diese Lagen/Bruchstücke sind scharf gegen die sulfatische Matrix begrenzt. Die Farbe dieser Sandstein-Einlagerungen ist olivgrün bis grau. Genetisch dürfte es sich um zechsteinzeitlich, also während der Staßfurt-Steinsalz-Sedimentation, abgelagerte (äolische ?) Bildungen handeln, die auch nach einer Salinarsubrosion im Hutgestein erhalten geblieben sind. Einen stratigraphischen Leitwert für residuale Bildungen des Staßfurt-Steinsalzes besitzen diese Feinsandstein-Einlagerungen nicht, da derartige Einlagerungen auch in Residuen des Leine-/Aller-Steinsalzes beobachtet wurden.

6.2.2 Lithostratigraphische Indizierung von residualen Gesteinen des Zechstein 3/4 im Hutgestein

Im Gegensatz zum Staßfurt-Salinar des Zechstein 2 existieren in den residualen Gesteinsfolgen der jüngeren stratigraphischen Zonen des Leine-/Aller-Salinars des Zechstein 3/4 Möglichkeiten der lithostratigraphischen Indizierung. Aus der Häufigkeit der nachstehend aufgeführten lithostratigraphischen marker beds des Leine-/Aller-Salinars in den erbohrten residualen Gesteinsfolgen läßt sich schlußfolgern, daß offensichtlich gerade diese jüngeren Steinsalzfolgen in den Muldenkernen schmalerer Falten bzw. internverfalteter Strukturen subro-diert wurden.

In der Anhydritmittelsalz-Zone des Leine-Steinsalzes lagern vier makroskopisch deutlich bestimmbare anhydritische Einlagerungen (die Anhydritmittel) unterschiedlicher Mächtigkeit (cm- bis m-Bereich) und petrographischer Ausbildung (Textur und Struktur), getrennt durch Reinsalz- und Schwadensalz-Zwischenfolgen, übereinander. Im Verlauf der Salinarsubrosion können diese anhydritischen marker-Horizonte in ihrem Korngefüge oder bei Hydratation im Stoffbestand verändert werden, ihre frühdiagenetisch-sedimentären Texturen bleiben dagegen auch nach einer intensiven subrosiven Überprägung innerhalb residualer Schichtenfolgen signifikant. Eine vollständige Sequenz aller vier Anhydritmittel in subrosiver Fazies ist allerdings nur selten aufgeschlossen (Dp Mors 10/88; Dp Mors 38A/94). Dies muß in Abhängigkeit von der Stellung eines Hutgesteinsaufschlusses zum Internbau der Salzstruktur und der Tiefenlage des Subrosionsniveaus gesehen werden.

Ein weiteres Kriterium für die stratigraphische Indizierung von residualen Bildungen des Leine-/Aller-Steinsalzes sind schichtungsparallele (flaserungsparallele) Einlagerungen von rotbraunen bis braunen, untergeordnet grüngrauen bis grauen Tonen oder Tonsteinen in den sulfatischen Rückständen, die fleckenhaft, augenartig (linsenartig) oder in mm- bis cm-mächtigen Lagen auftreten können. Die Abgrenzung derartiger Einlagerungen gegen die sulfatische Matrix ist dabei in jedem Falle scharf. Eine interne Schichtungstextur ist nicht nachweisbar. Ein schwacher Schluffanteil konnte selten bestimmt werden. Im Kalkgehalt variieren diese Tone/Tonsteine deutlich, wobei mit abnehmender Rotfärbung der Kalkgehalt zunimmt. Sie sind häufig durchsetzt von mm-mächtigen Gipsflasern. Primär sind solche Einlagerungen nur für die Tonmittelsalz-Zone des Leine-Steinsalzes und für den höheren Bereich des Aller-Steinsalzes (Tonbrockensalz) leitend, so daß auch hier stratigraphische Hinweise gegeben sind. Im Staßfurt-Steinsalz ist diese Fazies nicht ausgebildet.

In einem Residualprofil aus dem Leine-/Aller-Steinsalz (Bohrung Dp Mors 20/88) wurden Feinsandstein-Einlagerungen im Hutgestein bestimmt. Sie zeigen vergleichbare makroskopische Merkmale wie die Feinsandstein-Einlagerungen aus den Residualprofilen des Staßfurt-Steinsalzes (vgl. Kapitel 6.2.1), so daß eine analoge Genese für den Sedimentationszeitraum des Leine-/Aller-Steinsalzes unterstellt werden kann. Einen stratigraphischen Leitwert für residuale Bildungen des Leine-/Aller-Steinsalzes besitzen diese Feinsandstein-Lagen nicht, da solche auch in Residuen des Staßfurt-Steinsalzes nachgewiesen wurden.

6.2.3 Lithotypen residualer Ca-Sulfatgesteine des Zechstein 2 und Zechstein 3/4 im Hutgestein

Residuale Ca-Sulfatgesteine im Hutgestein der Allertal-Salzstruktur sind postzechsteinzeitlich (spätdiagenetischsubrosiv) gebildete Ca-Sulfatgesteine, die sich nach dem Aufstieg des Staßfurt-Steinsalzes ab dem Keuper im Ergebnis folgender Prozesse entwickelten:

- Diffusiv gesteuerte Lösung von mächtigen Steinsalzfolgen der Staßfurt-, Leine- und Aller- (Ohre-) Folge und Akkumulation der nicht- oder nur schwerlöslichen sulfatischen sowie untergeordnet der tonigsilikaklastischen Gemengteile (den eigentlichen Residuen) aus den genannten salinaren Gesteinsfolgen sowie deren spätdiagenetisch-subrosive Zementation durch Neukristallisation von Anhydrit in sulfatübersättigten, hochkonzentrierten NaCl-Lösungen. Dieser Prozeß wird als Salinarsubrosion bezeichnet. Die Akkumulation und die Zementation (Neukristallisation) erfolgten zu Beginn der Salinarsubrosion an der Grenzfläche zwischen den überlagernden Deckgebirgsschichten, sofern Deckgebirgsschichten vorhanden waren (sonst Erosion), und dem Salinar bzw. nachfolgend nach unten anbauend an der Grenzfläche zwischen den älteren Residualbildungen des Hutgesteins und dem Salinar. Die Grenzfläche des natürlichen Niveaus der Auflösungstiefe der Salinargesteine am Top einer Salzstruktur wird als Salzspiegel bezeichnet. Rezent liegt dieser in der Allertal-Salzstruktur bei durchschnittlich -140 m NN.
- Diese anhydritischen Residuen wurden nachfolgend durch deszendente humide (ungesättigte) Grundwässer partiell oder vollständig hydratisiert. Dieser Vergipsungsprozeß wird als Humidsubrosion bezeichnet. Es wurde bereits in Kapitel 6.1.2.3 darauf verwiesen, daß selbstverständlich auch die sulfatischen Schichtenfolgen der zechsteinzeitlichen Leithorizonte dieser Humidsubrosion unterlagen bzw. unterliegen (vgl. auch Kapitel 8.2).

Mineralogische Zusammensetzung

Der Mineralbestand residual-subrosiver Anydrit- und Gipsgesteine zeigt nach mineralogischen Phasenanalysen folgende qualitative Zusammensetzung: Anhydrit, Gips, Tonminerale (z.T. mit Quarzanteil).

Mineralogische Phasenanalysen an residualen Tonen/Tonsteinen in sulfatischen Rückstandsgesteinen wurden an Proben aus den Bohrungen 1994-1995 durchgeführt. Die Mineralverteilung in residualen Tonen/Tonsteinen in sulfatischen Rückstandsprofilen zeigt eine hohe Übereinstimmung mit dem Tonmineralbestand des Roten Salztones. Der Tonmineralbestand läßt sich als Glimmer-Illit-Kaolinit-Fe-Chlorit-Typ beschreiben, wobei quantitativ Glimmer-Illit > Kaolinit > Chlorit ist. Die quellfähigen Tonminerale in einzelnen Proben sind vermutlich an die Chlorit/Smectit-Wechsellagerungen gebunden, die im glykolisierten Texturpräparat identifiziert wurden. Untergeordnet wurden Pyrophyllit, Sepiolith und Palygorskit bestimmt. Palygorskit (hydratisiertes Mg-Dreischichtsilikat) wurde nur in der Bohrung Dp Mors 69A/95 nachgewiesen (dort auch im Kreide-Konglomerat, das dem Hutgestein in dieser Bohrung auflagert). Inwieweit die Mg-Quelle im Zusammenhang mit der Lösung Mg-reicher kalisalzhaltiger Gesteine im Untergrund steht, bleibt fraglich. Neben Gips in der Matrix und Quarz im Schluffanteil tritt in einigen Proben Dolomit als Karbonat-Phase auf.

Die geringmächtigen Feinsandstein-Einlagerungen in den Ca-Sulfatresiduen (vgl. Kapitel 6.2.1 und 6.2.2) zeigen folgenden Mineralbestand: neben Gips als Matrixmineral wurde Quarz analysiert; im Dünnschliff sind desweiteren glimmerartige Minerale, Feldspatleisten und Gesteinsbruchstücke bestimmbar.

Makropetrographische Ausbildung

Die nach gefügekundlichen (texturellen und strukturellen) sowie stofflichen Merkmalen differenzierbaren Lithotypen residualer Genese können bis auf wenige Ausnahmen in engem faziellen Wechsel in einem Hutgesteinsprofil auftreten.

In Übereinstimmung mit den in Kapitel 6.1.2.3 getroffenen Aussagen hinsichtlich der Bezeichnung von Lithotypen im Hutgestein gibt es zwischen residualen Anhydrit-Gesteinen mit und ohne initialen Hydratationserscheinungen keine Differenzierung, dagegen wird der intensiven stofflichen Verdrängung von residualem Anhydrit durch sekundären Gips durch Anfügen der Bezeichnung `Gips` an das jeweilige Texturmerkmal Rechnung getragen.

Katatektischer Anhydrit (im Sinne von GOLDMANN 1952) (kata tectos = built down = von oben nach unten anbauend) oder Linienanhydrit: Als katatektische Anhydrite werden residuale Anhydritgesteine mit feinschichtiger bis feinflaseriger Textur (durch Hell-/Dunkel-Streifung im Anhydrit bzw. durch mm-mächtige tonige und/oder hämatitische Einlagerungen) mit einer dichten bis hornartigen, selten feinkristallinen Struktur bezeichnet. Die Schichtungstextur resultiert aus der Neukristallisation von Anhydrit unter Einbau feiner Anhydritresiduen bzw. -straten, wobei die überlagernde ältere Schicht bzw. Schichtfläche nahezu verfestigt war, bevor die unterlagernde jüngere Schicht auf dem Salzspiegel `abgelagert` wurde (Indiz für eine geringe Subrosionsgeschwindigkeit). Partienweise oder auch in einzelnen Lagen können die Schichtflächen eine Kleinfältelungstextur aufweisen. Ursache hierfür sollten differentielle Setzungsbewegungen zwischen lagenartigen Residuen und dispers verteilten Residuen durch geringe morphologische Unebenheiten auf der Salzspiegeloberfläche vor einer endgültigen Lithifizierung sein.

Unter der Voraussetzung einer kontinuierlich ablaufenden Salinarsubrosion im Liegenden des katatektischen Anhydrits neigt dieser auf Grund seiner Feinschichtungs- bzw. Flaserungstextur, speziell auch bei Einlagerungen residualer Tone, zur Ablösung an den Schicht- bzw. Flaserflächen. Die resultierenden Trennflächengefüge sind prädestiniert für die Migration von Lösungen *nach* der Bildung des katatektischen Anhydrits. Die schichtungsbzw. fläserungsparallel orientierten, mm-mächtigen grobspätigen Marienglas-Lagen belegen die Gips-Kristallisation aus zirkulierenden sulfatübersättigten Lösungen. An der Kernoberfläche spiegelt sich dies in einer gegenüber der primären Textur deutlich hervorstechenden sekundären Pseudoschichtungs- bzw. -flasertextur wider. Kristallisieren salzgesättigte Sekundärlösungen unter Bildung von feinkörnigem Steinsalz aus, sind diese mm-mächtigen Salzlagen ebenfalls schichtungs- bzw. flaserungsparallel angeordnet. An Kernen aus Süßwasserspülung zeigen sich entsprechende mm-tiefe, drusenartige Hohlräume an der Oberfläche.

Das texturelle Äquivalent dieses residualen Anhydrit-Lithotyps im finalen Hydratationsstadium stellt der sekundäre katatektische Gips dar.

Hornanhydrit: Hornanhydrite lassen sich als residuale Anhydritgesteine mit schichtungslos-massiger bis untergeordnet weitständig geschichteter bis geflaserter Textur (durch feinste tonige und/oder hämatitische Gemengteile) und einer dichten bis hornartigen, selten feinkristallinen Struktur beschreiben. Dieser Lithotyp stellt wie der katatektische Anhydrit ein Neukristallisat von Anhydrit unter Einbau feiner Anhydritresiduen dar, wobei im Gegensatz zum katatektischen Anhydrit die Lithifizierung der Schichtflächen aber in größeren Zeitabständen erfolgte und somit eine Schichtungs- oder Flaserungstextur nur weitständig bzw. stark unterdrückt auftritt (Hinweis auf erhöhte Subrosionsgeschwindigkeit).

Das texturelle Äquivalent dieses residualen Anhydrit-Lithotyps im finalen Hydratationsstadium stellt der *Massengips mit Flasertextur* dar (im Gegensatz zum Massengips mit frühdiagenetisch-sedimentären Texturen im Hauptanhydrit, vgl. Kapitel 6.1.2.3).

Anhydrit-Residualbreccie: Als Residualbreccien werden Gesteine mit brecciöser Textur bezeichnet, wobei die Bruchstücke häufig einen länglichen Habitus im cm-Bereich aufweisen und, bedingt durch die Zementation, zumeist kantengerundet innerhalb des texturlosen Anhydrit-Zementes erscheinen. Die Bruchstücke sind lagig bzw. schichtungsparallel zueinander angeordnet, vereinzelt können Bruchstücke auch winklig verstellt sein. Die Anhydrit-Bruchstücke sind in hochkonzentrierten NaCl-Lösungen durch neukristallisierten Anhydrit-Zement lithifiziert worden. Bruchstücke und Zement weisen eine feinkristalline bis dichte Struktur auf. Diese salinarsubrosiven Rückstandsgesteine resultieren aus der Subrosion von Steinsalz mit lagigen Sulfatanreicherungen im cm-Bereich ('Linien' als grobe Streifen bis zu breiten Bändern). Die anhydritischen 'Linien' sind auf Grund der geringen Fallhöhe am Salzspiegel dabei in ihrem Schichtenverband nur unwesentlich gestört worden. Eine stärkere Verstellung der Bruchstücke kann auch schon durch eine präsubrosive Deformation der 'Linien' infolge Halokinese vorgezeichnet sein.

Als texturelles Äquivalent dieses residualen Anhydrit-Lithotyps im finalen Hydratationsstadium ist die sekundäre Gips-Residualbreccie zu nennen.

Anhydrit-Kollapsbreccie: Als Kollapsbreccien werden Gesteine mit brecciöser Textur benannt, bei denen die Bruchstücke einen stark unregelmäßig eckigen Habitus, aber andeutungsweise auch eine rundlich-ovale Gestalt infolge der Rekristallisation aufweisen können. Anhydrit-Kollapsbreccien entstehen, wenn Steinsalz durch mächtige Anhydrit-Schichtenfolgen (Hauptanhydrit oder ältere residuale Gesteine) überlagert wird und Anhydrit dabei in die durch Salinarsubrosion entstandenen Hohlräume oberhalb eines Salzspiegels oder einer subrodierten Salzeinschaltung kollabieren kann. Die Bruchstücke können in Abhängigkeit von der Konzentration der Salzspiegel-Lösung entweder durch primären Anhydrit zementiert sein (mit verschwommenen Texturen analog Residualbreccien) oder, wie in den meisten Fällen zu beobachten, zwischen den Bruchstücken kristallisierte Gips aus. Als texturelles Äquivalent dieses residualen Anhydrit-Lithotyps im finalen Hydratationsstadium ist *die sekundä*re Gips-Kollapsbreccie zu nennen.

Überprägte Pseudomorphosen-Anhydrite: Im Verlauf der Salinarsubrosion können die salinarzementierten Pseudomorphosen-Anhydrite der Anhydritmittel 1 und 2 bzw. 4 des Leine-Steinsalzes überprägt werden. Diese primär im Steinsalz eingelagerten Pseudomorphosen-Anhydrite werden bei Erreichen der Subrosionsfront im Verlauf der Salinarsubrosion unter hochsalinaren Bedingungen umkristallisiert. Neben den noch undeutlich erkennbaren frühdiagenetischen Texturen sind für diesen Lithotyp mit seiner feinkristallinen bis dichten Struktur die noch nicht vollständig verdrängten fleckenartigen bzw. selenitischen Pseudomorphosen-Strukturen (Flecken bis 1 cm Durchmesser bzw. Selenit-Aggregate im cm-Bereich) kennzeichnend. Insofern zeigt dieser auch als Pell-mell-Anhydrit bezeichnete Lithotyp starke texturelle und strukturelle Übereinstimmungen mit dem Anhydritmikrit im Hauptanhydrit.

Mikropetrographische Ausbildung

Die in Kapitel 6.1.2.3 zitierten Klassifizierungsgrundlagen von Anhydrit- bzw. Gips-Mikrostrukturen lassen sich nicht nur für die frühdiagenetisch-sedimentären, sondern auch für die residualen Ca-Sulfatgesteine im Hutgestein anwenden.

Bei der mikropetrographischen Bearbeitung residualer Ca-Sulfatgesteine muß unterschieden werden zwischen der Mikrofazies-Typisierung von residualen Anhydrit-Gesteinen und der Mikrofazies-Typisierung nach einer Verdrängung von residualen Anhydrit-Gesteinen durch Gips infolge Hydratation.

Für die anhydritischen Subrosionsgesteine im Hutgestein der Allertal-Salzstruktur ist eine Synthetisierung von *zwei* grundlegenden Anhydrit-Mikrofaziestypen im Sinne von BALZER (1997a) möglich:

Parasekundäranhydrit: Ein Palimpsest-Gefüge, in dem frühdiagenetisch kristallisierte Anhydrit-Strukturen des leistenförmig-tafligen Typs noch reliktisch in der `pile of brick`-Grundmasse eines zeitlich immer sekundär kristallisierten isometrisch-kristallotopischen Strukturtyps zu erkennen sind (spätdiagenetische Verdrängung von Anhydrit durch Neukristallisation von Anhydrit).

Als typische Vertreter für subrosive Anhydritgesteine mit dieser Parasekundäranhydrit-Fazies sind die Kollapsund die Residualbreccien zu nennen. Sie zeigen in den Bruchstücken zumeist die frühdiagenetische Fazies an (die Leisten-Kristalle), während der auf die Bruchstücke übergreifende Zement aus pinakoidalen Kristallen aufgebaut ist.

Orthosekundäranhydrit: Im Gegensatz zum Parasekundäranhydrit erscheint hier ausschließlich der isometrischkristallotopische Strukturtyp mit `pile of brick`-Textur gefügebildend (Neukristallisation von Anhydrit); leistenförmig-taflige Strukturen sind dagegen nicht zu identifizieren.

Katatektische Anhydrite und Hornanhydrite sind als typische Vertreter für Anhydritgesteine mit Orthosekundäranhydrit-Fazies zu nennen.

Residualbreccien mit Orthosekundäranhydrit-Fazies sind selten zu bestimmen, da sie entweder eine zechsteinzeitlich primäre Anhydrit-Abscheidung (d. h. ohne über die Gips-Phase) oder aber eine vollständige Verdrängung von Pseudomorphosen-Strukturen durch Anhydrit-Neukristallisation bedingen. Für die Mikrofazies-Typisierung nach einer Verdrängung von residualen Anhydrit-Gesteinen durch sekundären Gips infolge Hydratation gelten alle unter Kapitel 6.1.2.3 genannten Merkmale der Verdrängung von Anhydrit durch sekundären Gips im Mikrogefüge des Hauptanhydrits auch für die residualen Anhydritgesteine, so daß an dieser Stelle keine weiteren Ausführungen gemacht werden müssen.

6.2.4 Lithotyp der humidsubrosiven Gipsneubildung im Hutgestein

Neben der Vergipsung von Anhydritgesteinen in den zechsteinzeitlichen Leithorizonten im Hutgestein sowie der Vergipsung anhydritischer Residuen kann es zwischen den älteren Rückstandsbildungen des Zechstein 2- bzw. Zechstein 3/4-Salinars bzw. salinarüberlagernden zechsteinzeitlichen Anhydrit- bzw. Tongesteinen (z. B. Hauptanhydrit oder Roter Salzton) und der Salinaroberfläche (einem Salzspiegel zu einem bestimmten Zeitpunkt) oder in ehemals salzerfüllten Klüften zur Neukristallisation von Gips in sulfatischen Lösungen kommen (z.B. Dp Mors 65A/95: Teufenbereich von -107,30 bis -108,80 m NN), was gleichfalls dem Prozeß der Humidsubrosion zugerechnet werden kann (vgl. auch Kapitel 8.1.1). Diese Gipskristallisate sind somit kein Produkt der Hydratation von Anhydrit. Als Bedingungen für die Bildung derartiger Kristallisate sind einerseits die sehr langsam verlaufende Aussüßung der ursprünglich hochsalinaren Lösungen durch Zutritt von humiden Grundwässern und andererseits ein entsprechendes Raumangebot für eine Kristallisation von Gips anzusehen. Im Salzspiegelbereich treten diese Gipsneubildungen zumeist im alternierenden Wechsel mit geringmächtigen Residualgesteinen (einschließlich tonigen Anteilen) als Folge schwankender Konzentrationsverhältnisse in den Salzspiegel-Lösungen auf (Wechsellagerungen von katatektisch texturierten Gesteinen und Gipsneubildungen mit cm- bis m-Mächtigkeiten, vgl. Kapitel 8.1.1). Weiterhin können diese Gipskristallisate karstartige Hohlräume (cm- bis dm-Bereich) sowie Klüfte im mm- bis cm-Bereich ausfüllen (vgl. Kapitel 8.2).

Mineralogische Zusammensetzung

Nach mineraloptischer Analyse zeigen die Gipsneubildungen neben Gips geringe Gehalte an Tonmineralen, die in ihrer Zusammensetzung denen der residualen Tone entsprechen dürften.

Makropetrographische Ausbildung

Als Lithotyp der humidsubrosiven Gipsneubildung ist der Kristallgips (Marienglas) zu nennen. Als Kristallgipse werden Gipsgesteine mit einer fein- bis großkörnigen Struktur (bis zu 5 cm Kantenlänge) xeno- bis hypidiotopischer, untergeordnet auch idiotopischer Kristalle bezeichnet. Die Textur der spätigen Kristalle ist richtungsloskörnig. Die Farbe der Kristalle schwankt zwischen farblos bis weiß; im Salzspiegel-Bereich sind die Kristallgipse auch weißrosa gefärbt.
Mikropetrographische Ausbildung

Die mineraloptische Abgrenzung von humidsubrosiven Gipsneubildungen und sekundären Gipsgefügen ist durch folgende Kriterien möglich: für Hydratationsbildungen sprechen Relikte von zumeist xenotopischen, teilweise hypidiotopischen Anhydritkristallen *in* Gipskristallen. Spezifische Texturen von frühdiagenetisch-sedimentären Anhydritgesteinen (laminare Sulfat/Karbonat-Schichtung; `chicken wire`-Textur oder enterolithische Textur) oder spätdiagenetisch-subrosiven Anhydritgesteinen (z. B. katatektische Schichtung) stellen weitere Indizien für sekundäre Vergipsungen dar.

Humidsubrosive Gipsneubildungen zeigen dagegen im Mikrogefüge hypidio- bis idiotopische Kristalle mit verzahnt granotopischer Struktur bei richtungslos-körniger Textur. Die Korngrößen liegen zumeist im grobkörnigen bis großkörnigen Spektrum. Die Gipskristalle sind vollständig *anhydritfrei* und zeigen im Durchlicht z.T. feinste tonige Säume oder eine schwache Rosafärbung.

Durch eine z.T. engständige Verwachsung von katatektischen Residualgesteinen und Kristallgipsen sind im Dünnschliff Bereiche mit xenotopischen Anhydritrelikten und anhydritfreien Partien mitunter nur undeutlich gegeneinander abgrenzbar.

6.3 Synoptische Darstellung der lithostratigraphischen Schichtenfolge im Hutgestein

In den Kapiteln 6.1 bzw. 6.2 wurden die Möglichkeiten der lithostratigraphischen Gliederung im Hutgestein über der Allertal-Salzstruktur in Anlehnung an die lithostratigraphische Abfolge im Zechstein diskutiert. In Tabelle 3 sind die Ergebnisse vereinfacht synoptisch dargestellt (ohne Angabe von Mächtigkeiten).

lithostratigraphische Bezeichnung der Schichtenfolge im Hutgestein	Bemerkungen
Residuen Aller-Steinsalz	• texturell verschiedene Lithotypen residualer Genese (katatektischer Anhydrit, Hornanhydrit, Anhy-
(Mulden-Residuen)	drit-Residualbreccie, Anhydrit-Kollapsbreccie: alle Lithotypen auch in sekundärer Gips-Fazies);
	am Salzspiegel Gipsneubildungen
	• lithostratigraphische marker beds in sulfatischen Residuen des Aller-Steinsalzes: residuale
	Toneinlagerungen: rotbraun/grüngrau
Roter Salzton	• zechsteinzeitlicher Leithorizont (Zechstein 4): subrosiv überprägte Schichtenfolge mit Vergip-
(in Mulden-Residuen)	sung anhydritischer Einlagerungen innerhalb der residualen Bildungen des (Leine-) /Aller- Steinsalzes
Aller-Anhydrit	• zechsteinzeitlicher Leithorizont (Zechstein 4): subrosiv überprägte Schichtenfolge (Anhydrit
(in Mulden-Residuen)	und Gips) innerhalb der residualen Bildungen des (Leine-)/Aller-Steinsalzes
Residuen Leine-Steinsalz	• texturell verschiedene Lithotypen residualer Genese (katatektischer Anhydrit, Hornanhydrit, Anhy-
(Mulden-Residuen)	drit-Residualbreccie, Anhydrit-Kollapsbreccie: alle Lithotypen auch in sekundärer Gips-Fazies;
	überprägte Pseudomorphosen-Anhydrite); am Salzspiegel Gipsneubildungen
	• lithostratigraphische marker beds in sulfatischen Residuen des Leine-Steinsalzes: residuale
	Toneinlagerungen: rolbraun/grüngrau
	• lithostratigraphische marker beds in sulfatischen Residuen des Leine-/(Aller-) Steinsalzes: vier
	Anhydrit/Gips-Einlagerungen (Anhydritmittel) mit frühdiagenetisch-sedimentären Texturen, ge-
	trennt durch sulfatische Residuen des Leine-Steinsalzes
Hauptanhydrit	• zechsteinzeitlicher Leithorizont (Zechstein 3): subrosiv überprägte Schichtenfolge (Anhydrit
	und Gips) im Faltenschenkel zwischen residualen Strukturen oder isoliert als Scholle innerhalb sul-
	fatischer Residuen des Staßfurt-, Leine- und Aller-Steinsalzes
Leine-Karbonat	• zechsteinzeitlicher Leithorizont (Zechstein 3): subrosiv und halokinetisch überprägte Schichten-
	folge (Magnesit, untergeordnet Gips) im Faltenschenkel zwischen residualen Strukturen (im Ver-
	band mit Hauptanhydrit und Grauem Salzton) oder gebunden an isolierte Schollen von Hauptan-
	hydrit innerhalb sulfatischer Residuen des Staßfurt-, Leine- und Aller-Steinsalzes
Grauer Salzion	• zechsteinzeitlicher Leithorizont (Zechstein 3): subrosiv und halokinetisch überprägte Schichten-
	folge (Tonstein, untergeordnet Gips) im Faltenschenkel zwischen residualen Strukturen (im Ver-
	band mit Leine-Karbonat und Deckanhydrit) oder gebunden an isolierte Schollen von Hauptanhy-
1971 - D. J. L. J. L. J. J.	drit innerhalb sulfatischer Residuen des Staßfurt-, Leine- und Aller-Steinsalzes
Deckanhydrit	• zechsteinzeitlicher Leithorizont (Zechstein 2): subrosiv und halokinetisch überprägte Schichten-
	folge (Gips und Tonstein) im Faltenschenkel zwischen residualen Strukturen (im Verband mit Lei-
	ne-Karbonat, Grauem Salzton und Residuen des Staßfurt-Steinsalzes) oder gebunden an isolierte
	Schollen von Hauptanhydrit innerhalb sulfatischer Residuen des Staßfurt-, Leine- und Aller-
	Steinsalzes
Residuen Kaliflöz-Staßfurt	• keine residualen Bildungen erbohri
(Sallel-Kesiduen)	
(Sottal Basiduar)	• texturell verschiedene Lithotypen residualer Genese (katatektischer Anhydrit, Hornanhydrit, Anhy-
(Sanci-Residueii)	drit-Residualbreccie, Anhydrit-Kollapsbreccie: alle Lithotypen auch in sekundärer Gips-Fazies);
1	am Salzspiegel Gipsneubildungen
	keine lithostratigraphischen marker beds in sulfatischen Residuen des Staßfurt-Steinsalzes
Zechstein 1-	keine subrosive Beeinflussung
basaler Teil Zechstein 2-Steinsalz	

Tabelle 3: Synoptische Darstellung der lithostratigraphischen Gliederung der Schichtenfolgen im Hutgestein über der Allertal-Salzstruktur

ı.

.

7 Strukturgeologische Analyse im Hutgestein

Aufbauend auf der lithostratigraphischen Differenzierung der Schichtenfolgen in den erbohrten Hutgesteinsprofilen ist es das Ziel einer strukturgeologischen Analyse, über die Bestimmung der Lagerungsverhältnisse in den punktuell verteilten Hutgesteinsbohrungen räumliche Modellvorstellungen zum geologischen Bau des Hutgesteins zu entwickeln. Eine solche räumliche Modellierung bedingt die Übertragung engräumig (in Bohrungen) postulierter strukturgeologischer Bauprinzipien auch auf Bereiche des Hutgesteins ohne Bohraufschluß, was wiederum nur unter Berücksichtigung der Lagerungsverhältnisse in der Salzstruktur, insbesondere im Salzspiegelbereich, möglich ist.

Methodisch wurde wie folgt verfahren:

- Analyse der Einzelaufschlüsse: Bestimmung der Lagerungsverhältnisse der im Hutgestein auftretenden residualen Folgen und zechsteinzeitlichen Leithorizonte unter struktureller "Anbindung" der Hutgesteinsprofile an die internen Salzstrukturen im Niveau des rezenten Salzspiegels; diese Vorgehensweise wurde sowohl auf Hutgesteinsprofile mit als auch auf solche ohne Salzspiegelaufschluß angewendet;
- räumliche Analyse: Entwicklung räumlicher Modellvorstellungen (geologische Schnitte) zum geologischen Bau des Hutgesteins über der Allertal-Salzstruktur durch Verknüpfung mehrerer Hutgesteinsprofile unter struktureller "Anbindung" an die internen Salzstrukturen im Niveau des rezenten Salzspiegels.

7.1 Analyse der Lagerungsverhältnisse in Einzelaufschlüssen des Hutgesteins

In Kapitel 6 wurden die Grundlagen der lithologischen bzw. lithostratigraphischen Gliederung im Hutgestein der Allertal-Salzstruktur diskutiert. Sie bilden eine wesentliche Voraussetzung für weitergehende Betrachtungen zum strukturgeologischen Bau des Hutgesteins.

Die strukturgeologische Bearbeitung des Hutgesteins erfolgte nach aktualistischer Methodik ausgehend von den bekannten Lagerungsverhältnissen in der Allertal-Salzstruktur.

Im Salinar sind die als Folge der salinaren Kriechbewegungen des Staßfurt-Steinsalzes resultierenden Strukturelemente 'Mulde' und 'Sattel' durch die lithostratigraphische Schichtenfolge eindeutig bestimmt.

Die normale oder inverse stratigraphische Abfolge der Schichtglieder Deckanhydrit / Grauer Salzton / Leine-Karbonat / Hauptanhydrit in den Faltenschenkeln indiziert den Übergang von einem Salzsattel in eine Salzmulde und umgekehrt.

Berücksichtigt man die in den Salzsätteln und Salzmulden im westlichen und zentralen Teil der Allertal-Salzstruktur vorherrschende NE-Vergenz der Faltenachsenflächen, so können diese Schichtenfolgen in einem vertikalen Bohraufschluß in Abhängigkeit von den Faltenformen (nach dem Verhältnis Faltenhöhe zur Spannweite bzw. nach der Größe des Öffnungswinkels) in diesen Bereichen der Salzstruktur nicht nur nebeneinander, sondern auch stapelartig (deckenartig) übereinander lagern. In salinaren Strukturen mit einem Vergenzwinkel von null sind gestapelte Strukturen nicht zu erwarten. Aufbauend auf der Bestimmung von lithostratigraphischen Leithorizonten des Zechstein in den Hutgesteinsprofilen sowie deren Abgrenzung gegen die residualen Bildungen des Staßfurt-Steinsalzes bzw. des Leine-/Aller-Steinsalzes wurden die Lagerungsverhältnisse zur Klärung des strukturgeologischen Baus je Aufschluß analysiert.

Unter Beachtung der generellen Lagerungsverhältnisse in der Allertal-Salzstruktur sowie der Vergenz der salinaren Internstrukturen und der damit im Zusammenhang stehenden möglichen Stapelung von Strukturen lassen sich *in den Hutgesteinsaufschlüssen* anhand der lithostratigraphischen Abfolgen *die Lagerungsverhältnisse von salinartypischen Sattel- und/oder Muldenstrukturen* ableiten.

Im Gegensatz zu den salinaren Internstrukturen lagern in den subrosiven oder residualen Strukturen (residuale Sättel bzw. residuale Mulden) im Hutgestein deren lithostratigraphische Steinsalzäquivalente in Gestalt geringermächtiger residualer Schichtenfolgen. Da diese nur bedingt eine Zuordnung zum stratigraphischen Salinar-Edukt vor der Subrosion gestatten (vgl. Kapitel 6.2), liegt die Voraussetzung für eine strukturgeologische Analyse im Hutgestein vor allem in der Bestimmung der Lagerungsverhältnisse der zechsteinzeitlichen Leithorizonte Deckanhydrit / Grauer Salzton / Leine-Karbonat / Hauptanhydrit im Hangenden oder im Liegenden residualer Bildungen. In Residual-Profilen ohne diese zechsteinzeitlichen Leithorizonte ist die Grenzfläche (die Kontaktfläche) zwischen residualen Sattel- und Muldenstrukturen somit nur unsicher zu bestimmen, zumal diese Grenzfläche nicht zwangsläufig mit einem lateralen Fazieswechsel innerhalb der residualen Gesteine zusammenfallen muß.

Korrelation von residualen Strukturen im Hutgestein mit Strukturen im Salinar

Mit der Identifizierung von residualen Strukturen im Hutgestein anhand lithostratigraphischer Abfolgen können diese in Beziehung zu den Internstrukturen im Salinarkörper gesetzt werden. Eine Korrelation zwischen residualen und salinaren Strukturen erfolgt dabei unter Berücksichtigung oben genannter Vergenzeigenschaften sowie der herzynischen Streichrichtung der salinaren Strukturen.

Unter Verwendung einer 'Schematischen Darstellung der am Salzspiegel ausstreichenden salinaren Strukturen' im Maßstab 1: 10000 (Anlage 3) kann jedem Punkt über der Salzstruktur durch eine senkrechte Projektion auf den Salzspiegel-Ausbiß die spezifische Internstruktur sowie die angrenzende Internstruktur im Niveau der rezenten Salinaroberfläche zugeordnet werden (bei NE-Vergenz die südwestlich angrenzende Struktur). Dementsprechend können die Hutgesteinsbohrungen als eine Teilmenge dieser Punkte auf den Salzspiegel-Ausbiß "gestellt" werden, unabhängig davon, ob es sich dabei um einen Teilaufschluß des Hutgesteins (prioritäre geologische Zielstellung: Bestimmung der Grenze Deckgebirge/Hutgestein) oder um einen Gesamtaufschluß des Hutgesteins (Salzspiegelbohrung) handelt. Die 'Schematische Darstellung der am Salzspiegel ausstreichenden salinaren Strukturen' im Maßstab 1: 10000 (Anlage 3) wurde wie folgt konstruiert:

- im Bereich des Grubengebäudes Morsleben aus Ergebnissen der untertägigen Sohlenkartierung der Grubenfelder Bartensleben/Marie unter Berücksichtigung von EMR-Meßergebnissen (Übernahme der Strukturgrenzen aus BGR-Bericht /11/) sowie Kartierergebnissen hinsichtlich 'Salzspiegel-Stratigraphie' der in diesem Bericht aufgeführten Salzspiegelbohrungen;
- außerhalb des Grubengebäudes Morsleben nach Ergebnissen strukturgeologischer Untersuchungen der in diesem Bericht aufgeführten Salzspiegelbohrungen (zum Teil auch durchteuftem Zechstein: Dp Mors 20/88), wobei versucht wurde, die im Grenzbereich des Grubengebäudes auskartierten Strukturen entsprechend in die Konstruktion mit einzubinden.

Durch die im Zusammenhang mit der Erarbeitung eines geologischen Lagerstättenmodells durchgeführte Sohlenkartierung (einschließlich untertägigen EMR-Messungen) der Grubenfelder Bartensleben/Marie (vgl. BGR-Bericht /11/) konnte die geologische Informationsdichte gegenüber älteren Kartierunterlagen (KRZYWICKI 1949) erhöht werden. Eine Konsequenz dieser Untersuchungen liegt u.a. auch darin, daß die konstruierten Ausbisse der am Salzspiegel anstehenden salinaren Internstrukturen von bisherigen Salzspiegel-Unterlagen (ZGI-Bericht /12/) lokal abweichen können. Für die Anbindung der Hutgesteinsprofile ergeben sich somit teilweise neue strukturelle Zuordnungen im Salzspiegelbereich. Die in BALZER (1997b) publizierten vorläufigen Teilergebnisse der geologischen Bearbeitung des Hutgesteins der Allertal-Salzstruktur basieren noch auf dem im ZGI-Bericht /12/ enthaltenen 'Geologischen Schema der Salinaroberfläche'. Etwaige Abweichungen nachfolgend beschriebener Strukturverhältnisse im Hutgestein zu den in der Publikation dargestellten sind somit auf veränderte Modellgrundlagen zurückzuführen.

Die Bezeichnung der salinaren Internstrukturen in der Allertal-Salzstruktur geht auf KRZYWICKI (1949) zurück. Zusätzlich können nach neuen geologischen Informationen Randsättel bzw. Randmulden ausgehalten werden. Entsprechend der schematischen Darstellung der am Salzspiegel ausstreichenden salinaren Strukturen lassen sich folgende Sattel- und Muldenstrukturen am Salzspiegel aushalten (Tabelle 4; vgl. Anlage 3):

Bezeichnung der salinaren Internstruktur	im Text verwendete Abkürzung
Westsattel	WS
Westmulde	WM
Westlicher Schachtsattel	WSS
Südmulde	SM
Östlicher Schachtsattel	ÖSS
Hauptmulde	НМ
(Ostsattel)	(OS)
Ostmulde	OM
Randsattel	RS
Randmulde	RM

Tabelle 4: Salinare Internstrukturen in der Allertal-Salzstruktur im Salzspiegelniveau und verwendete Abkürzungen im Text In der Tabelle 5 sind alle Bohrungen entsprechend dem Kartenauschnitt für das Hutgestein (vgl. Kapitel 3.1) aufgelistet, bei denen eine Zuordnung des Hutgesteinsprofiles zur spezifischen Internstruktur im Niveau der rezenten Salinaroberfläche möglich ist.

Bezeichnung	Stellung der Hutgesteinsbohrungen zur salinaren Internstruktur im Niveau der Salinaroberthiche
der Bohrung	(Ühergang Hutgestein/Salinar)
Hmt 4/-	Hauptmulde
Hmt 5/-	Westmulde
Hmt 6/-	Randmulde 1 (-3 ?)
Hmt 7/-	Randmulde 1 (-3 ?)
Hmt 9/-	Hauptmulde
Hmt 13/-	z2NA-Teilsattel innerhalb der Westmulde
Hmt 21/-	Ostmulde
Hmt 24/-	(?) Hauptmulde/Ostmulde
Hmt 25/-	Westmulde
Hmt 27/-	Ostlicher Schachtsattel
Hmt 28/-	Westmulde/Südmulde
Hmt 29/-	Hauptmulde ,
Hmt 30/-	Hauptmulde
Hmt 44/-	Hauptmulde/Ostmulde
Hy Mors 7/83	Hauptmulde
Ig Mors 10/83	Hauptmulde
Kb Mors 2/85	Westmulde
Kb Mors 4/84	Ostmulde
Dp Mors 2/89	Hauptmulde
Dp Mors 6/90	Südmulde
Dp Mors 7/90	Ostmulde
Dp Mors 10/88	Teilmulde innerhalb des Westsattels
Dp Mors 11/90	Ostmulde
Dp Mors 13A/88	Westlicher bzw. Östlicher Schachtsattel
Dp Mors 14/89	Randmulde 1 (-3 ?)
Dp Mors 20/88	Hauptanhydrit im südwestlichen Faltenschenkel des Ostlichen Schachtsattels
Dp Mors 34A/95	Westlicher bzw. Östlicher Schachtsattel
Dp Mors 37A/95	Westmulde
Dp Mors 38A/94	Westlicher Schachtsattel
Dp Mors 40A/95	Westmulde
Dp Mors 42A/95	Hauptanhydrit im nordöstlichen Faltenschenkel des Östlichen Schachtsattels
Dp Mors 42A1/95	Hauptanhydrit im nordöstlichen Faltenschenkel des Östlichen Schachtsattels
Dp Mors 43A/95	Westmulde
Dp Mors 44A/94	Hauptmulde
Dp Mors 44A1/94	Hauptmulde
Dp Mors 45A/94	subrosiv überprägte z3AN-Klippe innerhalb Randmulde 2
Dp Mors 45B/95	subrosiv überprägte z3AN-Klippe innerhalb Randmulde 2
Dp Mors 46A/95	Randmulde 1 (-3 ?)
Dp Mors 47A/95	Südmulde
Dp Mors 49A/95	Südmulde

Dp Mors 65A/95	Hauptanhydrit im nordöstlichen Faltenschenkel des Östlichen Schachtsattels
Dp Mors 69A/95	Westlicher Schachtsattel
Dp Mors 71A/95	Westlicher Schachtsattel
Dp Mors 72A/95	Hauptmulde
Dp Mors 86A/95	Ostmulde

Tabelle 5: Übersicht über die Stellung der Hutgesteinsbohrungen zu den salinaren Internstrukturen im Niveau der rezenten Salinaroberfläche der Allertal-Salzstruktur (Grundlage: Schematische Darstellung der am Salzspiegel ausstreichenden salinaren Strukturen im Maßstab 1: 10000: Anlage 3; Sattel = z2NA/z2SF; Mulde = z3NA/z4NA; Bohrungen entsprechend Kartenausschnitt Hutgestein: vgl. Kapitel 3.1)

Da Hutgesteinsprofile je nach strukturellem Inventar monotyp (nur eine residuale Struktur im Hutgestein) oder polytyp (mehrere residuale Strukturen im Hutgestein) aufgebaut sein können, kann eine Korrelation in monotypen Profilen nur mit einer salinaren Internstruktur, in polytypen Profilen aber mit mehreren salinaren Internstrukturen im Salzspiegelbereich erfolgen.

In polytypen Profilen wird die Korrelation von residualen und salinaren Strukturen hauptsächlich durch die Lagerungsverhältnisse der zechsteinzeitlichen Leithorizonte im Faltenschenkel zwischen zwei residualen Strukturen im Hutgestein und den analogen Schichtenfolgen des Zechstein im Faltenschenkel zwischen angrenzenden salinaren "Mutter"-Internstrukturen im Niveau des Salzspiegels gestützt.

7.1.1 Strukturgeologische Gliederung der Einzelaufschlüsse

Im Ergebnis der strukturgeologischen Bearbeitung der Hutgesteinsaufschlüsse über der Allertal-Salzstruktur können vier strukturgeologische Kategorien definiert werden.

- residuale Mulden-Profile (monotyp)
- residuale Sattel-Profile (monotyp)
- residuale Mulden-Sattel-Profile (polytyp)
- residuale Sattel-Mulden-Profile (polytyp).

Residuale Muldenprofile (monotyp)

In residualen Mulden-Profilen der Allertal-Salzstruktur stehen in der vertikalen Abfolge vom Top des Hutgesteins (älteste Hutgesteinsbildungen) bis zur Basis des Hutgesteins am Salzspiegel (jüngste Hutgesteinsbildungen) ausschließlich die residualen Gesteine einer spezifischen Salzmulde an. Dabei handelt es sich um residuale Bildungen des Leine-/Aller-Steinsalzes, in die Aller-Anhydrit bzw. Roter Salzton sowie isolierte Körper von zechsteinzeitlichen Leithorizonten, speziell Hauptanhydrit, eingelagert sein können. Am Salzspiegel geht das Hutgestein in eine Salzmulde mit Leine-/Aller-Steinsalz über (oder schon in den Faltenschenkel zum angrenzenden Salzsattel).

Als Beispiel für ein monotypes Hutgesteinsprofil sei die Bohrung Dp Mors 40A/95 genannt (Abbildung 2). In dieser Bohrung wurden vom Top des Hutgesteins bis zur Basis des Hutgesteins residuale Gesteine der Westmulde erbohrt, die am Salzspiegel in das Leine-Salinar der Westmulde übergehen. Angrenzende Strukturen in residualer Fazies wurden nicht erbohrt.

Residuale Sattelprofile (monotyp)

In residualen Sattel-Profilen der Allertal-Salzstruktur lagern in der vertikalen Abfolge vom Top des Hutgesteins (älteste Hutgesteinsbildungen) bis zur Basis des Hutgesteins am Salzspiegel (jüngste Hutgesteinsbildungen) ausschließlich die residualen Gesteine eines spezifischen Salzsattels. Dabei handelt es sich um residuale Bildungen des Staßfurt-Steinsalzes, in die isolierte Körper von zechsteinzeitlichen Leithorizonten, speziell Hauptanhydrit, eingelagert sein können. Am Salzspiegel geht das Hutgestein in einen Salzsattel mit Staßfurt-Steinsalz über (oder schon in den Faltenschenkel zur angrenzenden Salzmulde).

In den geteuften Hutgesteinsbohrungen konnten nur wenige Bohrungen als monotype residuale Sattelprofile bestimmt werden. Zumeist ist der residuale Sattelanteil in polytypen Hutgesteinsprofilen integriert.

In der Bohrung Dp Mors 42A1/95 (Abbildung 3) lagern residuale Gesteine des Östlichen Schachtsattels über mehreren invers lagernden isolierten Schollen zechsteinzeitlicher Leithorizonte, die störungsbedingt durch sehr geringmächtige residuale Gesteine aus der Hauptmulde gegeneinander abgegrenzt sind (vgl. auch Kapitel 7.1.5). Mit der Endteufe wurde das Salzspiegelniveau erreicht, wo invers lagernder Hauptanhydrit im Faltenschenkel zwischen dem Östlichem Schachtsattel und der nordöstlich angrenzenden Hauptmulde erbohrt wurde. Nach Durchteufen des Hauptanhydrits im Faltenschenkel wäre das Leine-/Aller-Salinar der Hauptmulde erbohrt worden.

GIROS - PK

Die in BALZER (1997b) für das Hutgestein als monotypes Sattelprofil beschriebene Bohrung Hmt 4/- muß nach den veränderten Modellgrundlagen als monotypes Muldenprofil (Residuen der Hauptmulde) eingestuft werden. Der unterhalb des Salzspiegel-Niveaus erbohrte Anhydrit (+ Kalisalz) läßt sich danach nicht mehr als Faltenschenkel mit Hauptanhydrit zwischen dem Östlichem Schachtsattel und der Hauptmulde interpretieren (vgl. auch Anlage 4: Schichtenverzeichnis Hmt 4/-, Variante 2); denkbar wäre ein in steiler Lagerung erbohrtes Anhydritmittel aus dem Anhydritmittelsatz mit lokalen Kalisalzbildungen im Topbereich.

Bedingt durch das inhaltlich sehr knapp bemessene Geologische Schichtenverzeichnis der Bohrung Hmt 4/- in SCHMIERER (1914) lassen die petrographischen Informationen (von -34,73 bis -149 m NN: 'Gips') einen unbefriedigend großen Interpretationsspielraum zu.

Residuale Mulden-Sattel-Profile (polytyp)

In einem residualen Mulden-Sattel-Profil lagern residuale Gesteine einer spezifischen Salzmulde (residuale Bildungen des Leine-/Aller-Steinsalzes, mit möglichen Einlagerungen von Aller-Anhydrit bzw. Roter Salzton) über den residualen Gesteinen eines spezifischen Salzsattels (residuale Bildungen des Staßfurt-Steinsalzes). Am Salzspiegel steht Staßfurt-Steinsalz in einem Salzsattel an. Im Faltenschenkel zwischen der residualen Mulde und dem unterlagernden residualen Sattel lagern zechsteinzeitliche Leithorizonte (Hauptanhydrit / Leine-Karbonat / Grauer Salzton / Deckanhydrit) in normaler sedimentologischer (stratigraphischer) Abfolge. Einzelne oder mehrere Schichtglieder der genannten zechsteinzeitlichen Leithorizonte können dabei infolge des Salzaufstieges unterdrückt bzw. in ihrer Mächtigkeit reduziert sein (vgl. Kapitel 6.1). Lagern Mulden-Residuen direkt auf Sattel-Residuen (d.h. ohne die o.g. zechsteinzeitlichen Leithorizonte im Faltenschenkel), ist eine strukturelle Abgrenzung nur noch dann möglich, wenn die unter Kapitel 6.2.1 und 6.2.2 genannten lithostratigraphischen marker beds salinarer Folgen eine Abgrenzung erlauben. Lassen sich in einem Hutgesteinsprofil keinerlei lithostratigraphische marker beds nachweisen, kann der Strukturbau des Hutgesteins nur über den Analogieschluß durch Projektion auf die im Niveau des Salzspiegels anstehende salinare Struktur sowie unter Berücksichtigung von angrenzenden salinaren Strukturen und unter Beachtung der NE-Vergenz rekonstruiert werden. Sowohl im residualen Mulden- als auch im residualen Sattelanteil können isolierte Körper von zechsteinzeitlichen Leithorizonten, speziell Hauptanhydrit, eingelagert sein.

Als Beispiel für ein polytypes residuales Mulden-Sattel-Profil soll die Bohrung Dp Mors 65A/95 stehen (Abbildung 4). Hier lagern geringmächtige Residuen der Südmulde mit zwei isolierten Hauptanhydrit-Schollen über einer subrosiv stark veränderten Hauptanhydrit-Klippe, die über dem normal lagernden südwestlichen Faltenschenkel des Östlichen Schachtsattels mit der Schichtenfolge Hauptanhydrit / Leine-Karbonat / Grauer Salzton / Deckanhydrit erbohrt wurde. Der südwestliche Faltenschenkel des Östlichen Schachtsattels wird von den residualen Bildungen des Staßfurt-Steinsalzes des Östlichen Schachtsattels unterlagert. Im Liegenden schließt sich der nordöstliche Faltenschenkel des Östlichen Schachtsattels mit der invers lagernden Schichtenfolge Deckanhydrit / Grauer Salzton / Leine-Karbonat / Hauptanhydrit an. In Annäherung an das Salzspiegelniveau wurde die Bohrung im Hauptanhydrit eingestellt. Theoretisch läßt sich das Profil weiterverfolgen. Nach Durchteufen des Hauptanhydrits wäre das Leine-/Aller-Steinsalz in der Hauptmulde erbohrt worden. Die Grenze zwischen Hutgestein und nicht subrosiv verändertem Zechstein liegt in dieser Bohrung mit -131,90 m NN im Vergleich zum durchschnittlichen Salzspiegelniveau scheinbar höher. Diese Grenze geht auf den Bohrkernbefund zurück, wo in den letzten 20 cm Kernmaterial vor der Endteufe kein Gips mehr bestimmt werden konnte, dagegen porenartige Öffnungen durch gelösten Steinsalzzement.

Residuale Sattel-Mulden-Profile (polytyp)

Den lithostratigraphisch bzw. strukturgeologisch entgegengesetzten Bau zu residualen Mulden-Sattel-Profilen weisen die residualen Sattel-Mulden-Profile auf. Hier lagern residuale Gesteine eines spezifischen Salzsattels (residuale Bildungen des Staßfurt-Steinsalzes) über den residualen Gesteinen einer spezifischen Salzmulde (residuale Bildungen des Leine-/Aller-Steinsalzes, mit möglichen Einlagerungen von Aller-Anhydrit bzw. Roter Salzton). Am Salzspiegel steht Leine-/Aller-Steinsalz in einer Salzmulde an. Im Faltenschenkel zwischen dem residualen Sattel und der unterlagernden residualen Mulde können zechsteinzeitliche Leithorizonte (Deckanhydrit / Grauer Salzton / Leine-Karbonat / Hauptanhydrit) in inverser sedimentologischer (stratigraphischer) Abfolge lagern. Einzelne oder mehrere Schichtglieder der zechsteinzeitlichen Leithorizonte können dabei infolge des Salzaufstieges unterdrückt bzw. ausgedünnt sein (vgl. Kapitel 6.1). Für den Fall, daß Sattel-Residuen direkt auf Mulden-Residuen lagern (d.h. also keine zechsteinzeitlichen Leithorizonte im Faltenschenkel), sind die Kriterien einer strukturellen Abgrenzung analog den o.g. Merkmalen für residuale Mulden-Sattel-Profile. Sowohl im residualen Sattel- als auch im residualen Muldenanteil können isolierte Körper von zechsteinzeitlichen Leithorizonten, speziell Hauptanhydrit, eingelagert sein.

Beispielhaft ist dieser strukturelle Bau eines residualen Sattel-Mulden-Profiles im Hutgestein in der Bohrung Dp Mors 72A/95 aufgeschlossen (Abbildung 5). Residuale Bildungen des Östlichen Schachtsattels (mit eingelagerter Hauptanhydrit-Scholle) überlagern einen isolierten Körper des nordöstlichen Faltenschenkels des Östlichen Schachtsattels mit invers lagernder Schichtenfolge der zechsteinzeitlichen Leithorizonte Deckanhydrit / Grauer Salzton / Leine-Karbonat / Hauptanhydrit. Dieser Körper unbekannter Größenordnung lagert auf dem autochthonen Faltenschenkel mit analoger Schichtenfolge (Schichtverdopplung). Unterlagert wird der nordöstliche Faltenschenkel des Östlichen Schachtsattels von den residualen Bildungen der Hauptmulde (mit Einlagerung von Rotem Salzton); Endteufe der Bohrung ist unmittelbar oberhalb des Salzspiegels (mit vorauszusagendem Leine-/Aller-Salinar).

7.1.2 Isolierte Hauptanhydritschollen im residualen Hutgestein

Es wurde bereits mehrfach darauf verwiesen, daß innerhalb residualer Bildungen einer Salzmulde oder eines Salzsattels isolierte Hauptanhydrit-Körper `schwimmen` können⁷. Die Frage, ob ein im Hutgestein erbohrter subrosiv überprägter Hauptanhydrit als Schichtglied in einem Faltenschenkel zwischen residualen Strukturen mit Anbindung an das Salinar oder als isolierter Körper innerhalb einer residualen Hutgesteins-Struktur anzusprechen ist, könnte für eine Szenarien-Analyse möglicher Ausbreitungspfade aus der Salzstruktur über das Hutgestein von Interesse sein.

Als isoliert oder allochthon, d.h. ohne Anbindung an das Salinar, sind solche Hauptanhydrit-Körper innerhalb des residualen Hutgesteins dann zu definieren, wenn unter Berücksichtigung der NE-Vergenz:

A) bei Projektion der Hutgesteinsbohrung auf die Salinaroberfläche zwischen einer erbohrten bzw. durch Projektion bestimmten Salzmulde und einem südwestlich angrenzenden Salzsattel die Möglichkeit einer Korrelation mit einem am Salzspiegel ausstreichenden Hauptanhydrit im Faltenschenkel zwischen den salinaren Strukturen nicht gegeben ist;

B) bei Projektion der Hutgesteinsbohrung auf die Salinaroberfläche zwischen einem erbohrten bzw. durch Projektion bestimmten Salzsattel und einer südwestlich angrenzenden Salzmulde die Möglichkeit einer Korrelation mit einem am Salzspiegel ausstreichenden Hauptanhydrit im Faltenschenkel zwischen den salinaren Strukturen nicht gegeben ist.

Die lithostratigraphische Abfolge innerhalb der isolierten Hauptanhydrit-Körper läßt Rückschlüsse auf deren Herkunft zu. Lagert eine isolierte Hauptanhydritscholle z.B. im Topbereich einer erbohrten residualen Mulde überkippt (häufig mit der stratigraphisch ältesten Zone α erbohrt), so stammt dieser Hauptanhydrit-Körper aus dem überkippten Faltenschenkel zu einem südwestlich angrenzenden Sattel. Im Verlauf des Aufstieges des Staßfurt-Steinsalzes wurde der Hauptanhydrit lokal boudiniert und einzelne Hauptanhydrit-Schollen durch Salzbewegung disloziert.

7.1.3 Zusammenfassende Übersicht über die strukturgeologische Gliederung der Hutgesteinsbohrungen

Entsprechend der neu entwickelten Methodik der strukturgeologischen Analyse im Hutgestein der Allertal-Salzstruktur wurden alle Hutgesteinsbohrungen nach diesem methodischen Ansatz gegliedert, sofern der rezente Bau am Salzspiegel bekannt war.

In der Tabelle 6 sind alle diese Hutgesteinsaufschlüsse, geordnet nach residualen Muldenprofilen, residualen Sattelprofilen und residualen Sattel-Mulden- bzw. Mulden-Sattel-Residuen, zusammenfassend dargestellt. Dies gilt auch für den Hutgesteinsanteil in den Burbach-Bohrungen auf TK 25 Blatt Helmstedt (Hmt xx/-), die nur noch auf der Grundlage der inhaltlich sehr knapp bemessenen Schichtenverzeichnisse in SCHMIERER (1914) strukturiert wurden.

⁷ Im Verband mit dem Hauptanhydrit können auch Leine-Karbonat, Grauer Salzton und Deckanhydrit auftreten.

Bezeichnung der Bohrung	residuales Muldenprofil	residuales Sattelprofit	residuales Sattel-Mulden-bzw. Mulden-Sattel-Profil (mit und obne zechsteinzeitlichen Leithorizonten)
Hmt 4/-	Residuen HM über HM-Salz		
Hrnt 5/-			Residuen Teilsattel (innerhalb der WM) über Residuen WM über WM-Salz
Hmt 6/-	Residuen RM 1 (-3 ?) über RM 1 (-3 ?)-Salz		
Hmt 9/-			Residuen SM über z3AN über z3CA/z3GT/z2DA über Residuen ÖSS über z2DA/z3GT über z3AN über HM- Residuen über HM-Salz
Hmt 13/-			Residuen WM über Residuen eines Teilsattels (innerhalb der WM) über 22NA des Teilsattels
Hmt 21/- Hmt 24/-	Residuen OM über OM-Salz Residuen HM/OM über HM/OM-Salz		
Hmt 25/-	Residuen WM über WM-Salz		Residuen WM/SM (im Tophereich mit isolierter Scholle
Hatt 28/-	Residuen WM/SM über WM/SM-Salz		von z2DA/z3GT/z3AN) über z3AN über Residuen ÖSS über ÕSS-Salz
Hmt 29/-	Residuen HM (im Topbereich Residuen OSS möglich)		
Hmt 36/-	kein Hutgestein: kmSM über HM/OM-Salz		
Hmt-44/- Hy Mors 7/83	Residuen HM/OM über HM/OM-Salz		Residuen ÖSS mit isolierten z3AN-Schollen
Ig Mors 10/83			[über z3AN über Residuen HM über HM-Salz] Residuen ÖSS mit isolierten z3AN-Schollen
Kh Mors 2/85	Residuen WM mit isolierten z3AN-Schollen über WM-Salz		[über z3AN über Residuen HM über HM-Salz]
Kb Mors 4/84			Residuen Randsattel 1 über 22DA/z3GT/z3CA über z3AN über Residuen Ostmulde über OM-Salinar
Kb Mors 5/85		kein Hutgestein: mm über z3AN (isoliert in z2NA des RS 3)	
Dp Mois 2/89			[über z3AN über Residuen HM über HM-Salz]
Dp Mors 6/90 Dp Mors 7/90	Residuen SM mit isolierter z3AN-Scholle [über SM-Salz] Residuen OM über OM-Salz		
Dp Mors 10/88			isolierte Scholle von z2DA/z3GT/z3CA/z3AN über z3NA/z4NA-Residuen einer Teilmulde innerhalb des WS [über z3NA/z4NA der Teilmulde]
Dp Mors 11/90			Residuen OSS über z3GT/z3CA/z3AN über Residuen OSS über z3GT/z3CA/z3AN über Residuen OM über OM-Salz
Dp Mors 13A/88		Residuen WSS/ÖSS mit isolierter z3AN-Scholle [über WSS/ÖSS-Salz]	
Dp Mors 14/89 Dp Mors 20/88	Residuen RM I (- 3 ?) über RM I (- 3 ?)-Salz Residuen WM/SM über z3AN (in z3AN Grenze Hutgestein		
Do More 30/00	gegen nicht subrosiv veränderte Salinarstruktur) über 23CA/z3GT/z3CA über z3AN über HM-Salz		
De Maria 244 /02	(strukturelle Anbindung an die Salzstruktur nicht möglich)		
Dp Mors 37A/95	Residuen WM mit isolietter z3AN-Scholle [über WM-Salz]		
Dp Mors 38A/94 Dp Mors 40A/95	Residuen WM über WM-Salz		Residuen WM [über Residuen WSS über WSS-Salz]
Dp Mors 42A/95		Residuen ÖSS [über isolierter z2DA/z3GT/z3CA/z3AN-Scholle über Störungszone (mit z3NA/z4NA-Residuen und isolierter z3AN-Scholle) über isolierter z3AN-Scholle über Störungszone (mit z3NA/z4NA-Residuen) über ÖSS-Residuen ?/z2DA ?/	
Dp Mors 42A1/95		Residuen ÖSS über isolierter z2DA/z3GT/z3CA/z3AN-Scholle über Störungszone mit (z3NA/z4NA-Residuen und isolierter z3AN-Scholle) über isolierter z3AN-Scholle über Störungszone mit (z3NA/z4NA-Residuen) über ÖSS-Residuen ?/z2DA ?/ z3GT/z3CA/z3AN	
Dp Mors 43A/95			Residuen WS mit isolierten z3AN-Schollen über Residuen WM [über WM-Salz]
Dp Mors 44A/94	z3AN [über Residuen HM über HM-Salz]		
Dp Mois +++	Residuen HM [über HM-Salz] Fallgruppe 2: isolierte Scholle von z3AN innerhalb Residuen HM		
Dp Mors 45A/94	[über HM-Salz]		Residuen RM 3 über z3AN über Residuen RS 3 über z3GT/z3CA über z3AN über Residuen RM 2 über Anhy-
Dp Mors 45B/95			antkiippe (subrosiv uberprägt) Residuen RM 3 über z3AN über RM 3 über z3AN über Residuen RS 3 [über z3AN über Residuen RM 2 über Anhydritklippe (subrosiv überprägt)]
Dp Mors 46A/95 Dp Mors 47A/95	Residuen RM 1 (-3 ?) über RM 1 (-3 ?)-Salz		Residuen WSS über z2DA/z3GT über Residuen SM füber SM-Salz]
Dp Mors 49A/95 Dp Mors 65A/95	isolierte z3AN-Scholle [über Residuen SM über SM-Salz]		Residuen SM mit isolierten z3AN-Schollen über z3AN
			(Anhydrit-Klippe in subrosiver Fazies) über z3AN

		über z2DA/z3GT/z3CA über z3AN [über HM-Salz]
Dp Mors 69A/95		Residuen WM über z3GT/z2DA über Residuen WSS [über
		WSS-Salz]
Dp Mors 71A/95	Residuen WSS mit isolierter z3AN-Scholle [über WSS-Salz]	
Dp Mors 72A/95		Residuen ÖSS mit isolierter z3AN-Scholle über
		z2DA/z3GT/z3CA über z3AN über z2DA/z3GT/z3CA
		über z3AN über Residuen HM [über HM-Salz]
Dp Mors 86A/96	Residuen OM [über OM-Salz]	

über z3CA/z3GT/z2DA über Residuen ÖSS

Tabelle 6: Strukturelle Gliederung der Hutgesteinsbohrungen; Residuen WM, SM, HM, OM, RM = residuale Bildungen des z3NA/z4NA; Residuen WS, WSS, ÖSS, RS = residuale Bildungen des z2NA/z2SF; Bezeichnung der residualen Strukturen im Hutgestein in Analogie zur Bezeichnung der salinaren Internstrukturen nach KRZYWICKI (1949): vgl. Tabelle 4, Seite 41; in [] strukturelle Gliederung nicht erbohrter Hutgesteinsanteile bis einschließlich Salinarstruktur am Salzspiegel

7.1.4 Analyse der Mächtigkeiten des Hutgesteins

Aufbauend auf den strukturgeologisch gliederbaren Hutgesteinsprofilen können deren Mächtigkeiten vergleichend analysiert werden. In der Tabelle 7 sind die erbohrten (scheinbaren) Mächtigkeiten des Hutgesteins für die strukturierten Profile dargestellt (Bohrungen entsprechend Kartenausschnitt Hutgestein, vgl. Kapitel 3.1); in Bohrungen ohne Salzspiegelaufschluß wurden die Mächtigkeiten des Hutgesteins, bezogen auf das durchschnittliche -140 m NN-Niveau (Salzspiegelniveau bzw. korrespondierendes Niveau der Vergipsungstiefe in zechsteinzeitlichen Leithorizonten), als angenommene (fiktive) Mächtigkeiten in Klammern hinzugefügt.

Die erbohrten Mächtigkeiten über alle residualen Muldenstrukturen variieren zwischen minimal 9,0 m und maximal 125,3 m (fiktiv bis maximal 215,0 m), die über alle residualen Sattelstrukturen zwischen minimal 20 m (fiktiv) und maximal 227,8 m.

Die erbohrten Mächtigkeiten residuler Sattel-Mulden-Strukturen liegen zwischen minimal 63,0 m (fiktiv minimal 27,0 m) und maximal 193,1 m (fiktiv bis 225,0 m), die residuler Mulden-Sattel-Strukturen zwischen minimal 72 m (fiktiv minimal 58,0 m) und maximal 202,4 m.

Die Gegenüberstellung der erbohrten Mächtigkeiten zeigt, daß monotype Residualprofile nicht zwangsläufig geringmächtiger sein müsssen als polytyp gebaute Hutgesteinsprofile.

In drei Bohrungen, jeweils im abtauchenden Flankenbereich der Salzstruktur, wurde suprasalinares Deckgebirge über Zechstein-Salinar erbohrt (Dp Mors 12/90; Kb Mors 5/85; Hmt 36/-).

Name der Bohrung	Mächtigkeit Hutgestein (m)
Hmt 4/-	114,3
Hmt 5/-	63,0
Hmt 6/-	9,0
Hmt 7/-	55,5
Hmt 9/~	112,8
Hmt 13/-(Schacht Marie)	72,0
Hmt 21/-	125,3
Hmt 24/-	21,6
Hmt 25/-(Schacht Bartensleben)	28,0
Hmt 27/-	202,4
Hmt 28/-	91,0
Hmt 29/-	80,6
Hmt 30/-	61,0
Hmt 44/-	83,0
Hy Mors 7/83	>4,6 (177)
Ig Mors 10/83	>13,9 (225)
Kb Mors 2/85	40,0
Kb Mors 4/84	162,5
Dp Mors 2/89	>8,6 (212)
Dp Mors 6/90	>26,2 (135)
Dp Mors 7/90	63,8
Dp Mors 10/88	>34,0 (74)
Dp Mors 11/90	193,1
Dp Mors 13A/88	>14,5 (94)
Dp Mors 14/89	62,5
Dp Mors 20/88	96,4
Dp Mors 34A/95	>7,0 (20)

Dp Mors 37A/95	>25,3 (26)
Dp Mors 38A/94	>20,2 (58)
Dp Mors 40A/95	20,7
Dp Mors 42A/95	>1,30 (219)
Dp Mors 42A1/95	227,8
Dp Mors 43A/95	>24,5 (27)
Dp Mors 44A/94	>19,5 (215)
Dp Mors 44A1/94	>0,9 (180)
Dp Mors 45A/94	142,6
Dp Mors 45B/95	>67,0 (138)
Dp Mors 46A/95	47,7
Dp Mors 47A/95	>50,5 (52)
Dp Mors 49A/95	>8,0 (85)
Dp Mors 65A/95	185,0
Dp Mors 69A/95	>51,0 (66)
Dp Mors 71A/94	>12,0 (188)
Dp Mors 72A/95	>178,4 (180)
Dp Mors 86A/95	>33,7 (85)

Tabelle 7: Mächtigkeiten des Hutgesteins in strukturgeologisch gliederbaren Profilen (in Klammern fiktive Mächtigkeit bezogen auf das Niveau -140 m NN)

Die erbohrten Mächtigkeiten des Hutgesteins in strukturgeologisch nicht gliederbaren Profilen zeigt die Tabelle 8 (Bohrungen entsprechend Kartenausschnitt Hutgestein, vgl. Kapitel 3.1). In einer Bohrung ohne Salzspiegelaufschluß wurde hier ebenfalls die fiktive Mächtigkeit, bezogen auf das -140 m NN-Niveau, in Klammern hinzugefügt. Es kann festgestellt werden, daß diese Mächtigkeiten im Schwankungsbereich der strukturierbaren Aufschlüsse liegen.

Name der Bohrung	erbohrte Mächtigkeit in m
Hmt 16/-	32,6
Hmt 17/-	26,1
Dp Mors 12/90	0,0
	(an der SW-Flanke der Salzstruktur: Grenze kmGu/z2 unterhalb Subrosionsniveau)
Sd WaKHI 19/79	. >3,2 (136)

Tabelle 8: Mächtigkeiten des Hutgesteins in strukturgeologisch nicht gliederbaren Profilen (in Klammern fiktive Mächtigkeit bezogen auf das Niveau -140 m NN)

Die erbohrten Mächtigkeiten des Hutgesteins in den Bohrungen außerhalb des Kartenausschnittes Hutgestein gibt Tabelle 9 wider.

Name der Bohrung	erbohrte Mächtigkeit in m
Hmt 12/-	11,9
Hmt 14/-	. 77,5
Hmt 16b/-	8,4
Hmt 18/	13,2
Hmt 19/-	22,9

Hmt 26/-	0,0
Hmt 31/	72,0
Hmt 33/-	0,0
Hmt 40/-	96,0
Hmt 43/-	0,0
Dp Mors 30/90	52,5
Höt 1/- (Burbach 20)	0,0
Höt 2/- (Schacht Wefensleben)	ca. 15,0 ?
Höt 4/- (Schacht Belsdorf)	61,0
SnWI 5/- (Burbach 25)	0,0
SnWI 6/- (Burbach 28)	43,0
SnWl 7/- (Burbach 37)	0,0

Tabelle 9: Erbohrte Mächtigkeiten des Hutgesteins in den Bohrungen außerhalb des Kartenausschnittes Hutgestein

Die Karte der Isopachen des Hutgesteins im Maßstab 1: 10000 (Anlage 2) widerspiegelt die Mächtigkeitsdifferenz zwischen Oberkante und Basis Hutgestein (Basis mit durchschnittlich -140 m NN angesetzt). Der Verlauf der 0 m- Hutgesteinsisopache deckt sich dabei bis auf lokale Abweichungen im Südteil des Untersuchungsgebietes mit dem Verlauf der -140 m NN-Isohypse als Grenze zwischen Hutgestein und Salinar (vgl. Kapitel 7.2.1). Im Vergleich zu den Bohrungen ergeben sich konstruktiv auf der Karte der Isopachen des Hutgesteins lokal begrenzte Maximalmächtigkeiten von 240 m Hutgestein.

Den größten Einfluß auf die Mächtigkeit von Hutgesteinsprofilen hat der Hauptanhydrit, der im Schichtenverband mit dem Leine-Karbonat, dem Grauen Salzton und dem Deckanhydrit in den Faltenschenkeln zwischen den residualen Strukturen, untergeordnet als Anhydritklippe im Sinne von HEMMANN (1971) sowie in Gestalt isolierter Gesteinsschollen innerhalb residualer Strukturen nachgewiesen wurde.

An drei Beispielen wird diese Feststellung deutlich: in der Bohrung Dp Mors 65A/95 entfallen von 185 m Hutgestein nur ca. 3,5% auf residuale Bildungen und 96,5 % auf den Hauptanhydrit bzw. untergeordnet auf andere zechsteinzeitliche Leithorizonte; in der Bohrung Dp Mors 72A/95 liegt das Verhältnis Residuen/zechsteinzeitliche Leithorizonte bei 53% : 47% und in der Bohrung Dp Mors 42A1/95 bei 6,7% : 93,3%.

Zu berücksichtigen ist an dieser Stelle, daß der Einfallswinkel des Hauptanhydrits in den Faltenschenkeln zwischen residualen Strukturen extrem stark divergiert. Dieser reicht von relativ flacher Lagerung (0-30°) bis hin zu Saigerstellung mit Überkippungen; teilweise wurde nur innerhalb der Zonen α - β/γ bzw. γ/β in steiler bis saigerer Lagerung gebohrt (Dp Mors 11/90; Dp Mors 45 B/95). Die z.T. extremen Mächtigkeiten des Hauptanhydrits sind somit nur scheinbare Mächtigkeiten.

Ein weiterer Grund für Mächtigkeitsschwankungen zwischen monotypen Muldenprofilen bzw. zwischen den Muldenanteilen in polytypen Profilen ist im Auftreten des Roten Salztones zu sehen. Der ursprünglich in Annäherung zum Kern einer Salzmulde zu lokalisierende Rote Salzton mit 3-5 m bankrechter Mächtigkeit wurde in einigen Bohrungen innerhalb eines Hutgesteinsprofils mehrfach in Durchgängen von 5-10 m, selten bis 15 m Mächtigkeit durchörtert, jeweils getrennt durch die residualen Steinsalzäquivalente. In der Gesamtmächtigkeit eines residualen Muldenprofiles macht sich dies deutlich bemerkbar. Der Grund für diese relative Anreicherung

des Roten Salztones gegenüber den sulfatischen Residuen muß einerseits in den schmalen bzw. fächerförmigen oder isoklinalen Faltenformen der Salzmulden (mit Steilstellung der Schichten und scheinbar erhöhten Mächtigkeiten) und andererseits in dem inhomogenen Internbau (Internverfaltungen) in den Salzmulden vor der Subrosion gesehen werden.

Die Anhydritmittel des Leine-Steinsalzes sowie der Aller-Anhydrit sind innerhalb residualer Muldenbildungen ebenfalls mächtigkeitsfördernd, haben aber nicht die Bedeutung wie der Rote Salzton.

7.1.5 Störungen im Hutgestein

Storungen im Grenzbereich Deckgebirge/Hutgestein

Störungen im Grenzbereich Deckgebirge/Hutgestein sind nicht zweifelsfrei zu bestimmen, da in diesem exponiertem Bereich ein Versatz in der Tiefenlage der Oberkante des Hutgesteins zwischen eng benachbarten Aufschlüssen nicht zwangsläufig als `Störung` interpretiert werden muß.

In den Bohrungen Dp Mors 44A/95 und Dp Mors 44A1/95 wurde die Oberkante des Hutgesteins in Teufen von 75,3 m NN und 40,2 m NN erbohrt. Die Bohransatzpunkte liegen nur ca. 8 m in gleicher Höhenlage voneinander entfernt. In der Bohrung Dp Mors 44A/95 wurde mit Erreichen des Hutgesteins bis Endteufe ein mit 50-70° einfallender, invers lagernder Hauptanhydrit (Zonen α - β/γ) des südwestlichen Faltenschenkels der Hauptmulde erbohrt, in der Bohrung Dp Mors 44A1/95 ist die stratigraphische Einstufung des 0,90 m mächtigen, vollständig verwitterten Kerns ('Gipsasche') nicht mehr möglich: sowohl residuales Material der Hauptmulde als auch eine isolierte Hauptanhydrit-Scholle im residualen Gestein der Hauptmulde sind als Einstufung möglich. Interpretationsvarianten für die extreme Differenz in der Höhenlage der Hutgesteinsoberfläche sind:

- Störung als Versatz des aufragenden Hauptanhydrits gegen die residualen Bildungen bzw. Störung im residualen Hutgestein;
- subrosiv bedingter Versatz des aufragenden Hauptanhydrits gegen die residualen Bildungen;
- Einfallseffekt innerhalb der erbohrten Hauptanhydrit-Folge;
- Sulfatkarst;
- präkretazischer ? erosiver Anschnitt der Hutgesteinsoberfläche (Jura als 'Versturz- und Gleitmasse' über dem Hutgestein).

Intraformationelle Störungen im Hutgestein

Intraformationelle Störungen im Hutgestein lassen sich aus der Analyse der lithostratigraphischen Abfolge in einem Hutgesteinsaufschluß nach Kernaufnahme ableiten. In einer Bohrung (Dp Mors 72A/95) wurde die nach Kernaufnahme bestimmte Störung durch die Auswertung der CBIL-Image-Daten zusätzlich gestützt (vgl. Berichte Western Atlas Logging Services (WALS) / Atlas Geosciences 1996 und 1997).

Die Grenzflächen zwischen isolierten Hauptanhydrit-Schollen (bzw. isolierten Schichtenfolgen zechsteinzeitlicher Leithorizonte) und den sie umhüllenden residualen Gesteinen widerspiegeln zwar ebenfalls gestörte lithostratigraphische Abfolgen, diese wurden aber in den geologischen Schichtenverzeichnissen nicht explizit als Störungsflächen ausgehalten. Störungen im Hutgestein wurden nur in drei Aufschlüssen bestimmt: Dp Mors 72A/95, Dp Mors 42A1/95, Dp Mors 45 B/95.

In der Bohrung Dp Mors 72A/95 (vgl. Abbildung 5) ist die Genese der Störung gebunden an die NE-vergenten Kriechbewegungen des Staßfurt-Steinsalzes des Östlichen Schachtsattels. Im Verlauf des Salinar-Aufstieges wurde dabei der südwestliche Faltenschenkel der nordöstlich angrenzenden Hauptmulde unter Isolierung eines (?) Schichtenpaketes mit Deckanhydrit / Grauer Salzton / Leine-Karbonat / Hauptanhydrit schollenartig zerrissen und durch das Staßfurt-Steinsalz unter Aufschiebung auf den autochthonen Faltenschenkel (Schichtverdopplung) in morphologisch höhere Bereiche innerhalb der Salzstruktur transportiert (nach CBIL-Image fällt dieses allochthone Schichtpaket nach WSW ein). Als Bewegungsbahn (= Störungsfläche) dienten die tonigen Schichtglieder Grauer Salzton bzw. Deckanhydrit des autochthonen Faltenschenkels, die im Kern neben einer deutlich brecciösen Textur auch Harnischflächen zeigen. Im CBIL-Image ist diese Aufschiebung ebenfalls als solche bestimmt worden. Der autochthone Faltenschenkel weist nach CBIL-Image dabei nicht nur die zu erwartende Einfallsrichtung nach WSW, sondern auch nach SE/ESE auf. Dies ist durchaus verständlich im Sinne eines lokalen seitlichen Verdrehens (Verfaltens?) dieses autochthonen Faltenschenkels infolge Salzbewegung.

In der Bohrung Dp Mors 42A1/95 müssen ähnliche Aufschiebungsvorgänge wie in der Bohrung Dp Mors 72A/95 unterstellt werden, nur daß hier statt einer isolierten Scholle zwei bzw. drei isolierte Schollen zechsteinzeilicher Leithorizonte innerhalb der residualen Bildungen des Östlichen Schachtsattels gestapelt übereinander lagern (vgl. Abbildung 3). Im Gegensatz zur stratigraphisch unvollständigen z3AN-Scholle im Hangenden des südwestlichen Faltenschenkels der Hauptmulde (Teufenbereich -25,15 m NN bis -118,3 m NN) weist die isolierte Scholle im Liegenden der residualen Bildungen des Östlichen Schachtsattels (Teufenbereich +75,2 m NN bis -3,37 m NN) eine vollständige Sequenz der invers lagernden zechsteinzeitlichen Leithorizonte Deckanhydrit / Grauer Salzton / Leine-Karbonat / Hauptanhydrit auf. An der Basis der isolierten Schollen indizieren die geringmächtigen residualen Bildungen das subrodierte Salinar aus einer Mulde bzw. gestörte Lagerungsverhältnisse.

Durch eine gedachte Rückrotation ('Abschiebung') der einzelnen isolierten Schollen wird der komplexe Bewegungsvorgang in diesem Bereich zur Zeit des aufsteigenden Staßfurt-Salinars deutlich. Danach kann folgende Modellvorstellung entwickelt werden:

Stadium 1: Aufstieg des Staßfurt-Steinsalzes und beginnende Anlage des Östlichen Schachtsattels und der Hauptmulde;

Stadium 2: Gebunden an den weiteren Aufstieg des Staßfurt-Steinsalzes kommt es zu einer tangentialen Abscherung im Hauptanhydrit des südwestlichen Faltenschenkels der Hauptmulde. Unter Isolierung von geringmächtigem Leine-/Aller-Steinsalz der Hauptmulde und unter Steilstellung des Hauptanhydrits kommt es zu deren Aufschiebung auf den autochthonen Faltenschenkel (mit inverser Lagerung) in höhere Bereiche der Salzstruktur. Als Gleitbahn sind geringmächtiges Leine-/Aller-Steinsalz auf geringmächtigem Staßfurt-Steinsalz sowie Deckanhydrit und Grauer Salzton anzusehen.

Stadium 3: Die nachfolgenden Kriechbewegungen des Staßfurt-Steinsalzes beeinflussen nur noch den bereits aufgeschobenen isolierten Hangendflügel. In diesem wird der Hauptanhydrit nochmals zerschert und unter Gleitung auf geringmächtigem Leine-/Aller-Steinsalz auf seinen Liegendflügel aufgeschoben.

Hinsichtlich der Größe bzw. der räumlichen Konfigurierung der isolierten Schollen innerhalb des residualen Östlichen Schachtsattels können keine Angaben gemacht werden.

Der Vergleich der Bohrungen Dp Mors 72A/95 und Dp Mors 42A1/95 widerspiegelt gleichsinnige Bewegungsvorgänge zum Zeitpunkt salinarer Aufstiegsbewegungen am südwestlichen Faltenschenkel der Hauptmulde im zentralen Teil des Untersuchungsgebietes.

In der Bohrung Dp Mors 45 B/95 wurde eine weitere Störung auf der Grundlage von Kernmaterial bestimmt (keine CBIL-Messungen). Diese Störung wird einerseits durch den lithostratigraphischen Versatz im Hauptanhydrit (Zone δ gegen Zone β) sowie durch Brecciierung im Hauptanhydrit markiert, andererseits wird diese Störungsfläche zusätzlich durch einen cm-mächtigen Steinsalzbesteg indiziert.

7.2 Räumliche Analyse der Lagerungsverhältnisse im Hutgestein

Die lithologische, lithostratigraphische und strukturgeologische Bearbeitung von Einzelaufschlüssen im Hutgestein ist eine grundlegende Voraussetzung für die Entwicklung räumlicher Modellvorstellungen im Untersuchungsgebiet. Die in den untersuchten Bohraufschlüssen erzielten Ergebnisse gestatten auf der Grundlage der angewandten Methodik der Korrelation von residualen und salinaren Strukturen am Salzspiegel auch eine analoge modellhafte Übertragung des strukturgeologischen Baus im Hutgestein auf Untersuchungsbereiche ohne Bohraufschluß. Grundlagen hierfür sind Informationen zum geologischen Bau am Salzspiegel sowie Informationen über die morphologische Ausbildung des Hutgesteins.

Zur salinargeologischen Strukturierung im Bereich des Salzspiegels wurde bereits in Kapitel 7.1 Stellung genommen.

Die Analyse der morphologischen Ausbildung des Hutgesteins im Untersuchungsgebiet basiert auf der Konstruktion einer Karte der Isohypsen der Salzstrukturoberfläche (= Hutgestein + Salinar) im Maßstab 1: 10000 (Anlage 1).

7.2.1 Karte der Isohypsen der Salzstrukturoberfläche (= Hutgestein + Salinar)

Die Karte der Isohypsen der Salzstrukturoberfläche (= Hutgestein + Salinar) im Maßstab 1: 10000 (Anlage 1) wurde durch geometrische Interpolation in Kombination aus rechnergestütztem Kriging-Verfahren (mit dem Software-Programm ISM) und manueller Überarbeitung erstellt. Die Interpolation stützt sich dabei auf folgende geologische Informationen:

- Bohraufschlüsse mit Aufschluß Top Hutgestein im Untersuchungsgebiet;
- Bohraufschlüsse mit Aufschluß Top Zechstein im Untersuchungsgebiet;
- Datapoints der Oberfläche der Salzstruktur auf Quer- und Längsprofilen im Ergebnis der Tiefenwandlung der flachseismischen Messungen (vgl. BGR-Bericht /8/);

• geringe Anzahl von Interpolationshilfspunkten zwischen benachbarten Profillinien flachseismischer Messungen im Ergebnis der Auswertung gravimetrischer Messungen (positive gravimetrische Internanomalien des Hutgesteins innerhalb der Minimazone des Salinars: vgl. BGR-Bericht /10/).

Die Karte der Isohypsen der Salzstrukturoberfläche wurde mit den Basis-Karten der das Hutgestein/Salinar überlagernden Schichtenfolgen abgeglichen (Trias/Jura, Kreide, Quartär).

Als Grenze des Hutgesteins gegen die subrosiv noch unveränderte Salzstruktur wird die -140 m NN-Isohypse definiert.

In Tabelle 10 sind die Toplagen Hutgestein/Zechstein in den Bohrungen zusammengefaßt (Bohrungen entsprechend Kartenausschnitt Hutgestein, vgl. Kapitel 3.1). Als Zechstein-Residuen (z-Residuen) werden die residualen Bildungen des Zechstein im Bereich der Weferlinger Triasplatte definiert. Die stratigraphischen Symbole wurden entsprechend dem Symbolschlüssel Geologie nach PREUSS et al. (1991) verwendet.

Name der Bohrung	Top Hutgestein/Zechstein in m NN
Hmt 2/- (Top z-Residuen)	-407,82
Hmt 3/-(Grenze su/z)	-402,51
Hmt 4/-	-34,73
Hmt 5/-	-75,00
Hmt 6/-	-131,00
Hmt 7/-	-84,50
Hmt 9/-	-27,00
Hmt 13/-(Schacht Marie)	-68,00
Hmt 16/-	-119,38
Hmt 17/-	-119,77
Hmt 21/-	-16,00
Hmt 24/-	-179,00
Hmt 25/-(Schacht Bartensleben)	-124,00
Hmt 27/-	60,40
Hmt 28/-	-50,00
Hmt 29/-	-66,00
Hmt 30/-	-101,00
Hmt 36/-(Grenze kmGo/z)	-157,00
Hmt 44/-	-71,00
Sd WakHI 19/79	-4,20
Hy Mors 7/83	37,20
lg Mors 10/83	84,90
Kb Mors 2/85	-100,80
Kb Mors 3/85	Top z-Salinar >-247,60
Kb Mors 4/84	21,00
Kb Mors 5/85(Grenze mm/z)	-141,80
Dp Mors 2/89	71,70
Dp Mors 3/89 (Grenze so/z)	-871,30
Dp Mors 6/90	-5,10
Dp Mors 7/90	-77,40
Dp Mors 10/88	-65,75
Dp Mors 11/90	52,30
Dp Mors 12/90 (Grenze kmGu/z)	-277,00
Dp Mors 13A/88	-46,30
Dp Mors 14/89	-76,30
Dp Mors 20/88	-44,80
Dp Mors 34A/95	-120,40
Dp Mors 37A/95	-114,30
Dp Mors 38A/94	-81,90
Dp Mors 40A/95	-117,50
Dp Mors 42A/95	78,80
Dp Mors 42A1/95	84,40
Dp Mors 43A/95	-112,54
Dp Mors 44A/94	75,30
Dp Mors 44A1/94	40,20
Dp Mors 45A/94	6,80

Dp Mors 45B/95	-2,30
Dp Mors 46A/95	~90,80
Dp Mors 47A/95	-88,00
Dp Mors 49A/95	-55,00
Dp Mors 65A/95	53,10
Dp Mors 69A/95	-74,40
Dp Mors 7.1A/94	48,00
Dp Mors 72A/95	40,44
Dp Mors 86A/95	-54,80

Tabelle 10: Toplagen Hutgestein/Zechstein im Kartenausschnitt Hutgestein (stratigraphische Symbole nach PREUSS et al. 1991)

Tabelle 11 gibt eine Übersicht über die Toplagen Hutgestein/Zechstein außerhalb des Kartenausschnittes Hutgestein.

Name der Bohrung	Top Hutgestein/Zechstein in m NN			
Hmt 8/-(Top z-Residuen)	-277,80			
Hmt 10/- (Top z-Residuen)	-343,20			
Hmt 12/-	-181,10			
Hmt 14/-	-62,80			
Hmt 16b/-	-154,20			
Hmt 18/-	-116,77			
Hmt 19/-	-120,60			
Hmt 26/-(Grenze kmS/z)	-190,00			
Hmt 31/-	-119,50			
Hmt 33/-(Grenze kmGo/z)	-170,00			
Hmt 40/-	-80,00			
Hmt 43/-(Grenze kmGo/z)	-165,00			
Dp Mors 30/90	-78,70			
Höt 1/- (Burbach 20) (Grenze ku/z)	-497,00			
Höt 2/- (Schacht Wefensleben)	ca174,00			
Höt 4/- (Schacht Belsdorf)	-92,00			
SnWl5/- (Burbach 25) (Grenze ko/z)	-238,00			
SnWI6/- (Burbach 28)	-194,00			
SnWI7- (Burbach 37) (Grenze ko/z)	-183,00			

Tabelle 11: Toplagen Hutgestein/Zechstein außerhalb des Kartenausschnittes Hutgestein (stratigraphische Symbole nach PREUSS et al. 1991)

7.2.2 Geologische Schnittdarstellungen Hutgestein

Für die Entwicklung räumlicher Vorstellungen zum geologischen Bau des Hutgesteins wurden zehn geologische Schnitte durch das Hutgestein im Maßstab 1: 2000 quer zum Streichen der Allertal-Struktur erarbeitet (Anlagen 6-15). In diesen geologischen Schnitten wird gleichzeitig das suprasalinare Deckgebirge über dem Hutgestein dargestellt (vgl. auch BGR-Berichte /13/ und /14/). Die Schnittspuren sind sowohl auf Anlage 1 als auch auf Anlage 3 dargestellt. Die Koordinaten der Schnittspuren sind in Tabelle 12 aufgeführt.

Geologischer	Nummer der	Rechtswort	Hochwert	Knickpunkt	Rechtswert	Hochwert
Schnitt Hutgestein	Anlage	(A-J)	(A-J)	im Profil	(A*-J*)	(A'-J')
A-A'	б	4439918	5786426	1	-4441025	5787177
В-В'	7	4439617	5786820		4440582	5787880
C-C'	8	4439496	5786941		4440480	5788032
D-D'	9	4438879	5787556		4440199	5788618
E-E'	10	4438488	5788032	Rechts: 4439734 Hoch: 5788923	4439838	5788924
F-F'	11	4438322	5788390		4439580	5789456
G-G'	12	4438271	5788627		4439315	5789738
H-H'	13	4438038	5788894		4439040	5790023
I-I'	14	4437758	5789388		4438838	5790470
J-J'	15	4437451	5790268		4438645	5791035

Tabelle 12: Koordinaten der Schnittspuren für die geologischen Schnitte durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur im Maßstab 1: 2000

Da für die Schnittkonstruktionen im Hutgestein die Bohraufschlüsse als prioritär anzusehen sind, wurden die Schnittlinien entlang der Bohrungen mit Aufschluß Hutgestein und in etwa gleichem Abstand zueinander gelegt. Sie decken sich nicht mit den Schnittspuren durch das Salinar (vgl. BGR-Bericht /11/). Die Anbindung der geologischen Schnitte im Übergang vom Hutgestein zum Salinar erfolgte auf der Grundlage der 'Schematischen Darstellung der am Salzspiegel ausstreichenden salinaren Strukturen' im Maßstab 1: 10000 (vgl. Anlage 3). Die Oberflächenmorphologie des Hutgesteins wurde aus der Karte der Isohypsen der Salzstrukturoberfläche im Maßstab 1: 10000 (vgl. Anlage 1) abgegriffen.

Die geologischen Schnitte durch das Hutgestein der Allertal-Salzstruktur sind durch folgende Bohrungen belegt:

Schnitt A-A': Hmt 28/-, Hmt 27/- (projiziert), Kb Mors 4/84;

Schnitt B-B': Dp Mors 20/88, Hmt 9/- (projiziert);

Schnitt C-C': Dp Mors 47A/95 (projiziert), Dp Mors 65A/95, Dp Mors 86A/95;

Schnitt D-D': Dp Mors 43A/95 (projiziert), Dp Mors 2/89 (projiziert), Dp Mors 44A/94, Dp Mors 44A1/94, Dp Mors 45A/94, Dp Mors 45B/95;

Schnitt E-E': Hmt 25/-, Dp Mors 6/90 (projiziert), Dp Mors 42A1/95 (projiziert), Dp Mors 7/90, Kb Mors 5/85;

Schnitt F-F': Dp Mors 40A/95, Dp Mors 71A/94 (projiziert), Dp Mors 72A/95;

Schnitt G-G': Dp Mors 11/90, Hmt 21/- (projiziert);

Schnitt H-H': Dp Mors 10/88, Hmt 4/-, Dp Mors 46A/95;

Schnitt I-I': Hmt 13/-;

Schnitt J-J': Dp Mors 13A/88, Hmt 7/-, Dp Mors 14/89 (projiziert).

Es sei darauf verwiesen, daß bei den projizierten Bohrungen Abweichungen bezüglich Teufenlagen von Schichtgrenzen und Endteufen bzw. in den Schichtmächtigkeiten zwischen geologischem Schnitt und Bohrergebnis auftreten können. Die Interpretation der geologischen Schnitte durch das Hutgestein erfolgt im Kontext mit weiteren Ergebnissen der strukturgeologischen Analyse.

7.3 Diskussion der Ergebnisse der strukturgeologischen Analyse im Hutgestein

Folgende Feststellungen sollen der Diskussion der Ergebnisse der strukturgeologischen Analyse im Hutgestein vorangestellt werden:

- die Strukturanalyse im Hutgestein hat das Ziel, geologische Modellvorstellungen als Grundlage für das hydrogeologische Modell zu erarbeiten;
- die auf der wissenschaftlichen Gesamtauswertung der vorhandenen Bohrkernaufschlüsse sowie der seismischen und gravimetrischen Messungen im Untersuchungsgebiet erarbeiteteten geologischen Modellvorstellungen im Hutgestein spiegeln dessen geologische Verhältnisse am wahrscheinlichsten wider.

Morphologische Charakterisierung der Hutgesteinsoberfläche

Die geologischen Schnitte durch das Hutgestein der Allertal-Salzstruktur zeigen im morphologischen Erscheinungsbild der Hutgesteinsoberfläche ein sehr differenziertes Bild.

Über alle geologischen Schnitte hinweg prägt eine herzynisch streichende Hochlage (von +20 bis > +80 m NN) im Zentralteil des engeren Untersuchungsgebietes die Morphologie des Hutgesteins. Von dieser zentralen Aufwölbung fällt die Hutgesteinsoberfläche in nordöstliche bzw. südwestliche Richtung zwar insgesamt stetig auf das Salzspiegelniveau von durchschnittlich -140 m NN ab, im regionalen Vergleich sind jedoch zum Teil deutliche morphologische Undulationen in der Hutgesteinsoberfläche durch unterschiedlich mächtiges Hutgestein beiderseits der zentralen Hutgesteinsaufwölbung erkennbar.

Im gravimetrischen Bild (Lokalfeldkarte Maßstab 1:10000, vgl. Kapitel 4.6) hebt sich die herzynisch streichende Hochlage des Hutgesteins im Zentralteil des Untersuchungsgebietes als Zone mit positivem Dichtekontrast gegen die südwestlich angrenzende deutliche Minimazone mit Oberkreide-Sedimenten ab. Dabei nehmen die positiven Schwerewerte mit steigender Mächtigkeit des Hutgesteins von Südwest nach Nordost stetig zu. Innerhalb dieser positven Maximazone wird die Mächtigkeit bzw. die morphologische Ausbildung vor allem durch die vom Salinar bis zum Top des Hutgesteins aushaltenden, subrosiv überprägten Hauptanhydrit-Folgen im Hutgestein (südwestlicher und nordöstlicher Faltenschenkel des Östlichen Schachtsattels) bestimmt. Neben dieser auch durch Bohrungen belegten streichenden morphologischen Hochlage (östlich Dp Mors 65A/95, Ig Mors 10/83, Dp Mors 2/89, Hy Mors 7/83, Dp Mors 44A/A1/94, Dp Mors 42A/A1/95, Dp Mors 72A/95, Dp Mors 11/90, Dp Mors 72A/95) lassen sich in deren nördlicher Verlängerung einzelne lokale Schweremaxima nördlich Beendorf als Hutgesteinshochlagen interpretieren (z.B. zwischen den Flachseismikprofilen 9413 und 9414 oder südlich angrenzend an das Flachseismikprofil 9415: nicht durch Bohrungen belegt; vgl. BGR-Bericht /8/).

Nordöstlich der zentralen Hutgesteinsaufwölbung ist der Dichtekontrast zwischen Keupersedimenten und Hutgestein geringer (abnehmende Mächtigkeit des Hutgesteins). Einzelne lokale Minimazonen sind dabei nicht durch geringmächtiges Hutgestein bedingt, sondern beispielsweise durch Lockersedimente der Oberkreide in Keuper-Umgebung (wie in der Bohrung Dp Mors 86A/95 nachgewiesen).

Abweichend vom generellen Abfall der Hutgesteinsoberfläche in den Flankenbereichen der zentralen Aufwölbung nehmen die Bohrungen Dp Mors 45A/94 und Dp Mors 45B/95 auf der NE-Flanke eine Sonderstellung ein. Die Oberkante des Hutgesteins liegt hier bei + 6,8 m NN bzw. - 2,3 m NN, was im Vergleich zur unmittelbaren Umgebung eine exponierte morphologische Hochlage darstellt (vgl. Schnitt D-D', Anlage 9). Im gravimetrischen Bild hebt sich dieser Bereich als lokal begrenztes Schweremaximum gleichfalls von der Umgebung ab und deckt sich exakt mit der Isolinienscharung um diese Bohrungen in der Karte der Isohypsen der Salzstrukturoberfläche (Anlage 1).

In Analogie dazu kann im nordöstlichen Flankenbereich der Allertal-Salzstruktur ein weiteres gravimetrisches Schwerehoch als anormale Hochlage des Hutgesteins interpretiert werden. Sie liegt ca. 1 km südöstlich der Bohrungen Dp Mors 45A/94 bzw. Dp Mors 45B/95.

Beziehung zwischen der morphologischen Ausbildung der Hutgesteinsoberfläche und der Form (Baustil) residualer Strukturen in Abhängigkeit von Salzbewegung und Salinarsubrosion

Die morphologische Variabilität der Hutgesteinsoberfläche muß im Zusammenhang mit zwei grundlegenden Prozessen gesehen werden:

- primär: präsubrosive bis synsubrosive Bildung disharmonischer Salzstrukturen,
- sekundär: flächenhafte Subrosion der salinaren Gesteine in diesen Strukturen über geologische Zeiträume.

In allen geologischen Schnittkonstruktionen durch das Hutgestein zeigt sich, daß die zentrale Hochlage im Hutgestein insbesondere an die Schichtenfolgen der residualen Strukturen der Südmulde, des Östlichen Schachtsattels und der Hauptmulde, untergeordnet der Ostmulde gebunden ist.

Die morphologisch tiefer gelegenen Bereiche des Hutgesteins werden südwestlich der zentralen Hutgesteinsaufwölbung durch die Gesteine der residualen Strukturen des Westsattels (nicht immer ausgebildet), der Westmulde, des Westlichen Schachtsattels (nicht immer ausgebildet) sowie untergeordnet der Südmulde aufgebaut und nordöstlich der zentralen Hutgesteinsaufwölbung durch die Gesteine der residualen Ostmulde sowie der nordöstlich angrenzenden residualen Randsattel- bzw. Randmulden-Strukturen (nicht immer ausgebildet).

Vergleicht man in den geologischen Schnitten A-A' bis J-J' durch das Hutgestein die einzelnen residualen Strukturen untereinander, so weisen diese teilweise ganz unregelmäßige Formen auf, insbesondere der residuale Östliche Schachtsattel im Zentralteil des Hutgesteins (zumal am intensivsten erkundet).

Ist der residuale Östliche Schachtsattel in den benachbarten Schnitten B-B' (Anlage 7) und C-C' (Anlage 8) südlich Morsleben, im Schnitt D-D' (Anlage 9) am Nordrand der Ortslage Morsleben sowie im Schnitt G-G' (Anlage 12) zwischen Morsleben und Beendorf als schmalere 'überkippte' Residual-Struktur zu charakterisieren, so läßt sich dieser sowohl im südlichen Teilbereich des engeren Untersuchungsgebietes (Schnitt A-A': Anlage 6), im Bereich nördlich Morsleben (Schnitte E-E', F-F': Anlagen 10 bis 11), südlich Beendorf (Schnitte H-H', I-I': Anlage 13 bis 14) sowie am Nordrand der Ortslage Beendorf (Schnitt J-J': Anlage 15) als breitere und 'schiefe' Residual-Struktur beschreiben (auch infolge der abtauchenden Südmulde).

Unter Beachtung der erbohrten Mächtigkeiten der residualen Bildungen (vgl. Kapitel 7.1.4) müssen für den zentralen Bereich der Salzstruktur im Untersuchungsgebiet große lokale Unterschiede in der primären Salzakkumulation in ein und derselben salinaren Struktur vor der Subrosion unterstellt werden. Im Umkehrschluß kann dies bedeuten, daß die Fließbewegungen des Salinars in Abhängigkeit von der Weitungstendenz der Störungszone in ihrer Intensität lokal ganz unterschiedlich gewesen sein müssen und ein lokal differenziertes Kriechverhalten, möglicherweise aber auch einen zeitlich versetzten Salzaufstieg, im Verlauf der Strukturentwicklung widerspiegelt. Bezüglich der frühesten Phasen der Strukturentwicklung im Keuper weist die unregelmäßige Verbreitung der hutgesteinsüberlagernden Deckgebirgssedimente des Unteren und Oberen Gipskeupers sowie des Schilfsandsteins einerseits und des Steinmergelkeupers andererseits auf diesen Umstand hin.

Für die rezente Ausbildung der zentralen Aufwölbung der Hutgesteinsoberfläche muß insbesondere das geomechanische Verhalten der Schichtenfolgen in den Faltenschenkeln mit den zechsteinzeitlichen Leithorizonten im Verlauf der Salinarsubrosion in den Sattel- und Muldenstrukturen sowie lateral angrenzender Salinarstrukturen betrachtet werden. Die geologischen Schnitte zeigen, daß die Faltenschenkel im Hutgestein einerseits extrem steil stehen können (z.B. Dp Mors 11/90; Dp Mors 45 B/95), andererseits ein relativ flaches Einfallen zeigen und Hauptanhydrit sowie residuale Gesteine im etwa gleichen morphologischen Niveau am Top Hutgestein erbohrt wurden.

Die Ausbildung dieser Lagerungsverhältnisse im Hutgestein soll nachfolgend modellhaft diskutiert werden, wobei von einem zweiphasigen Modellansatz ausgegangen wird:

- Phase 1 geht von einem Gleichgewichtszustand zwischen Salinarsubrosion und Salzaufstieg, für bestimmte Zeitspannen (Untere und Obere Kreide) möglicherweise sogar von einem Salzaufstieg größer als die Salinarsubrosion aus (dynamischer Modellansatz). Diese Phase kann somit nur für die Interpretation subrosiver Prozesse im Zeitraum Gipskeuper bzw. Steinmergelkeuper und Rhät sowie im Zeitraum Untere/Obere Kreide in Betracht gezogen werden, da nur in diesem Zeitraum signifikante Salzaufstiegsbewegungen stattfanden.
- Phase 2 unterstellt keinen Salznachschub mehr, so daß die Rate der Salinarsubrosion größer als die Salzaufstiegsrate ist bzw. Salzaufstieg gleich null ist (statischer Modellansatz). Phase 2 kann für subrosive Prozesse stehen, die mit Abschluß der letzten Salzbewegungen bis zum Abklingen der Salinarsubrosion ablaufen.

Bei allen nachfolgenden Ausführungen bleibt zu berücksichtigen, daß für einen bestimmten Anteil der in die Allertal-Struktur eingewanderten salinaren Folgen des Zechsteins eine Hutgesteinsbildung nicht möglich sein konnte, da mit der keuperzeitlichen Freilegung der Salzstruktur sensu BEST (1996) eine klimagesteuerte erosive Phase einen Teil der zechsteinzeitlichen Schichtenfolgen an der Erdoberfläche gelöst haben könnte (Zeitraum Gipskeuper). Die resultierenden salinaren Lösungen könnten im Keupersediment wiederausgefällt und zu einem späteren Zeitpunkt (Tertiär ?) subrodiert worden sein. Indiz hierfür könnten die in den Schichtenfolgen des Unteren und Oberen Gipskeupers häufig nachweisbaren residualen Texturen in den sulfatischen Anteilen sein, wie sie auch im Hutgestein zechsteinzeitlicher Schichtenfolgen beobachtet werden können.

Weiterhin muß in diese Überlegungen einbezogen werden, daß auch die älteren Hutgesteinsbildungen (vorstellbar auch noch Salinar) von erosiven Prozessen im Zeitraum Untere/Obere Kreide infolge intensiver Salzaufstiegsbewegungen beeinflußt worden sein könnten, so daß die heutige Oberfläche des Hutgesteins zumindest in Teilbereichen der Salzstruktur als Erosionsfläche angesehen werden müßte und die rezente Mächtigkeit des Hutgesteins nur eine scheinbare Mächtigkeit wäre. Dies könnte speziell auch für den Bereich der Verbreitung der Oberkreide-Sedimente auf der nach Südwesten abfallenden Hutgesteinsoberfläche zutreffen. Hier könnte die Erhaltung der oberkretazischen Sedimente im kausalen Zusammenhang mit intensivem Salzaufstieg und resultierenden salinarsubrosiven, aber auch erosiven Prozessen unter Umkehr des Reliefs im resultierenden Hutgestein stehen. Im Topbereich dieses residualen Hutgesteins konnten lagige sowie flecken- und schlierenartige Oberkreide-Einlagerungen nachgewiesen werden (Dp Mors 69A/95; Dp Mors 72A/95). Berücksichtigt werden muß weiterhin, daß durch die exarative Wirkung speziell des Elster-Eises die morphologisch höchsten Lagen des ältesten Hutgesteins gekappt worden sein könnten (z.B. lagert in der Bohrung Dp Mors 11/90 Elster I-Geschiebemergel über residualen Bildungen des Östlichen Schachtsattels).

In der Phase 1 kommt es durch die salinaren Kriechbewegungen des Staßfurt-Steinsalzes zu einem bestimmten Zeitpunkt zu lokalen Durchspießungen der überlagernden kompetenten Schichtenfolgen, insbesondere des Hauptanhydrits. Im Ergebnis dieser Durchspießung resultiert eine steile Lagerung in den aufgeschleppten, mitunter boudinierten Faltenschenkeln zwischen den salinaren Gesteinen in den Sätteln und Mulden. Unterstellt man zwischen den eher immobilen Faltenschenkeln aber weiterhin Salznachschub im Gleichgewicht mit der Subrosion der salinaren Schichtenfolgen, so könnte auf Grund der höheren Löslichkeit von salinaren Gesteinen gegenüber den schwererlöslichen sulfatisch-karbonatisch-tonigen Gesteinen das subrosionsbedingte Massendefizit im Salinarbereich durch Salznachschub ausgeglichen worden sein. Es ist nicht ausgeschlossen, daß die ältesten Hutgesteinsbildungen mit der Geschwindigkeit des aufsteigenden Staßfurt-Salinars über den Salzsätteln und Salzmulden nach oben gepreßt wurden, so daß es zu Verstellungen der auf der Salzoberfläche ursprünglich söhlig lagernden residualen Gesteinen kommen mußte (auch mit Auswirkung auf die Lagerung bzw. Abtragung der bis dato möglichen Deckgebirgssedimente). Dies würde auch die Beobachtung erklären, daß an der Hutoberfläche residuale Gesteine im gleichen Tiefenniveau wie die steilstehenden zechsteinzeitlichen Leithorizonte des z2/z3 nebeneinander ausstreichen. Der Einfallswinkel katatektisch geschichteter Residualgesteine steigt nach Kernaufnahme z.B. im residualen Sattelanteil der Bohrung Dp Mors 72A/95 im Topbereich auf Werte von durchschnittlich 30-60° an. Es ist in diesem Zusammenhang bemerkenswert, daß in der genannten Bohrung auch die Einfallsrichtung der residualen Gesteine des Östlichen Schachtsattels nach CBIL-Image stark divergiert: im Teufenbereich (unter Gelände) bis 106,40 m nach W bzw. WNW (als Ausdruck einer nach NE gerichteten Hebung des residualen Hutgesteins ?), von 112,50-116,10 m nach ESE, untergeordnet nach SW und von 125,20-127,40 m von E über SE bis W und WNW.

Mit dieser Modellvorstellung wäre auch die Genese von richtungslos orientierten Klüften im residualen Hutgestein erklärbar, die die durch Setzung zu erwartenden schichtungsparallelen Klüfte schneiden (Klüfte bzw. Kluftsysteme wiederum als eine grundsätzliche Voraussetzung von nachfolgendem Sulfatkarst im residualen Hutgestein, vgl. auch Kapitel 8.2.1 und 8.2.2).

Die Möglichkeit, daß die gegenüber dem Salinar schwererlöslichen Faltenschenkel auch rippenartig versetzt gegen die tieferliegenden Residualgesteine an der Hutgesteinsoberfläche ausstreichen, kann nicht ausgeschlossen werden (Dp Mors 44A/94 und Dp Mors 44A1/94: vgl. Kapitel 7.1.5).

Die in den Bohrungen Dp Mors 45A/94 bzw. Dp Mors 45 B/95 erkundete exponierte Hochlage des Hutgesteins auf dessen NE-Flanke muß gesondert betrachtet werden. Die Analyse der Lagerungsverhältnisse in den erbohrten Hutgesteins-Schichtenfolgen zwingt hier zur Annahme einer gegensinnigen 'Vergenz' der residualen Strukturen gegenüber den 'NE-vergenten' Residualstrukturen im südwestlichen und zentralen Teil des Hutgesteins (Dp Mors 45A/94: struktureller Einfallstrend nach CBIL in Zone 2 von -108 bis -152 m NN nach NNE/NE). Die morphologische Aufragung in der Hutgesteinsoberfläche wird durch residuale Gesteine eines Randsattels 3 bzw. einer Randmulde 3 und durch eine sehr steil bis saiger stehende Hauptanhydrit-Folge zwischen diesen residualen Strukturen bedingt (Schnitt D-D', Anlage 9). Die sowohl im Isolinien- als auch im gravimetrischen Bild signifikante lokale Anomalie könnte auf einen lokal begrenzten Aufstieg des Zechstein 2-Salinars von Nordosten in Richtung Südwesten hindeuten (keine streichenden Salinarstrukturen). Ein vollständiges Durchspießen jüngerer Zechstein-Schichtenfolgen durch einen Aufstieg von Staßfurt-Steinsalz aus südwestlicher Richtung ist für diesen Strukturbereich nicht zu unterstellen (nordöstlich des Östlichen Schachtsattels kein Staßfurt-Salinar im rezenten Salzspiegel-Niveau: vgl. Anlage 3). Mit der Annäherung dieser lokalen Hochlage an die NE-Rand-Störungszone ließe sich eine Beziehung zwischen der Anlage der Störungszone (nach BEST 1996 Abrißfläche des Buntsandsteins von der Hochscholle der Weferlinger Triasplatte) und lokal hoher Dehnungsrate, verbunden mit dem intrusiven Aufstieg des Zechstein 2-Salinars im Frühstadium der Strukturentwicklung, ableiten. In diesem Zusammenhang ist es wahrscheinlich, daß auch die südöstlich der Bohrungen Dp Mors 45A/94 und Dp Mors 45 B/95 identifizierte Hochlage der Hutgesteinsoberfläche an einen lokalen Aufstieg des Staßfurt-Salinars gebunden ist.

Mit dem Versiegen des Salznachschubes (Beginn Phase 2) führen allein die salinarsubrosiven Prozesse an der Salzoberfläche zu Veränderungen in den Lagerungsverhältnissen speziell der Faltenschenkel zwischen salinaren und residualen Strukturen.

Die aus der lithostratigraphischen Abfolge in Hutgesteinsprofilen rekonstruierbare stapelartige Lagerung mehrerer 'überkippter' residualer Strukturen zwingt zur Unterstellung eines großen Vergenzwinkels in den salinaren Strukturen schon in präsubrosiver Zeit. Das durch die höhere Löslichkeit von Salz gegenüber Anhydrit entstehende Massendefizit führt unter Absenkung des ältesten Hutgesteins und der überlagernden Deckgebirgsschichten zu einer stetigen Verflachung des Einfallswinkels der zechsteinzeitlichen Leithorizonte des z2/z3 zwischen subrodierten Salinarstrukturen. Dies gilt insbesondere für Strukturen mit einer großen primären Salzakkumulation bzw. in Annäherung an Strukturen mit hohem Salinaranteil. Im Ergebnis der Salinarsubrosion lagern die Faltenschenkel mit den zechsteinzeitlichen Leithorizonten des z2/z3 über dem residualen Hutgestein unter Ausbildung einer morphologisch gewölbten Oberfläche des Hutgesteins, an die sich lateral die geringermächtigen residualen Strukturen anschmiegen.

Dabei kann ein Teil des Massendefizits durch die Neukristallisation, speziell von Gips, sowohl im Grenzbereich der Faltenschenkel gegen unterlagerndes Salinar als auch innerhalb der residualen Bildungen wieder ausgeglichen werden. Weitere Indizien für Massendefizite (Raumangebot) sind Kollapsbreccien von Hauptanhydrit an der Grenze gegen unterlagernde Residuen als auch Kollapsbreccien von bereits gebildeten residualen Gesteinen innerhalb residualer Folgen.

Hinzu kommt, daß ab einer bestimmten Mächtigkeit residualer Bildungen der geologische Körper Hutgestein eine solche 'Steifheit' erlangt hat, daß eine weitere Verflachung der zechsteinzeitlichen Leithorizonte des z2/z3 in den Faltenschenkeln zwischen residualen Bildungen nicht mehr möglich ist. Dies würde auch mit der Erscheinung in Einklang stehen, daß z.B. die älteren Hutgesteinsbildungen des residualen Östlichen Schachtsattels in der Bohrung Dp Mors 11/90 durch steilstehende Faltenschenkel und die jüngeren Hutgesteinsbildungen dieser residualen Struktur durch flacher lagernde Faltenschenkel lateral begrenzt werden (vgl. Anlage 12). Die flachere Lagerung muß auf die flächenhafte Subrosion der unterlagenden, d.h. angrenzenden Strukturen der Haupt- bzw. Ostmulde zurückgeführt werden.

An den Prozeß der sukzessiven Verflachung der Faltenschenkel durch Salinarsubrosion sollte ein wesentlicher Teil der Klüftung in den zechsteinzeitlichen Leithorizonten gebunden sein.

In den geologischen Schnitten A-A' bis J-J'wurden die zechsteinzeitlichen Leithorizonte des z2/z3 in den Faltenschenkeln zwischen den residualen Strukturen vom Salzspiegel-Ausbiß bis zum Top Hutgestein zumeist in boudinierter Form dargestellt, was auch analogen Beobachtungen im Salinar entspricht. Dabei wird aber unterstellt, daß die Zerblockung unter Erhalt des prinzipiellen Strukturbaus erfolgte. In salinaren Strukturen mit geringerem Anteil an akkumulierter Salzmächtigkeit (vgl. auch Mächtigkeitsverhältnis Residuen/zechsteinzeitliche Leithorizonte in Kapitel 7.1.4) wird die Salinarsubrosion ohne wesentliche Verflachung des Einfallswinkels in den Faltenschenkeln ablaufen (vergleiche residualer Östlicher Schachtsattel in den Bohrungen Dp Mors 65A/95 und Dp Mors 20/88). Die Faltenschenkel bilden dann ein stützendes Gerüst für die aus der Salinarsubrosion resultierenden Gesteine zwischen den Faltenschenkeln bzw. die stabile Auflage für die Residuen angrenzender Strukturen auf den Faltenschenkeln.

8 Analyse subrosiver Erscheinungen und Prozesse im Hutgestein

8.1 Subrosionsprozesse am Salzspiegel

8.1.1 Fazielle Analyse des Hutgesteins am rezenten Salzspiegel

Die lithologische Ausbildung des jüngsten Hutgesteins im Grenzbereich zum Salzspiegel wird im Untersuchungsgebiet durch drei fazielle Einheiten bestimmt (vgl. auch Kapitel 6.2.3 und 6.2.4):

- anhydritische Fazies (als katatektischer Anhydrit) über Salz;
- sekundäre Gips-Fazies (als sekundärer katatektischer Gips, untergeordnet geflaserter Massengips) in Wechsellagerung mit humidsubrosiven Gipsneubildungen (Kristallgips) über Salz;
- Fazies der humidsubrosiven Gipsneubildungen (Kristallgips) über Salz.

Die unterschiedliche petrographische Ausbildung des Hutgesteins über dem Salzspiegel steht in kausalem Zusammenhang mit lokal heterogenen geochemischen Verhältnissen in den aus der Infiltration von Grundwässern und Auflösung von Salz resultierenden Lösungen über den salinaren Schichtenfolgen *zum Zeitpunkt der Bildung der Gesteine.*

Dabei variiert die mineralogische Zusammensetzung von residualen Ca-Sulfatgesteinen am Salzspiegel in Abhängigkeit vom Phasenumwandlungspunkt Gips/Anhydrit im System NaCl-CaSO₄-H₂O, von der Lösungskonzentration, der Temperatur (geothermischer Gradient) und der Tiefe (LANGBEIN 1987).

In einem hydraulisch-inaktiven (geschlossenen) System wird Steinsalz bis zum Erreichen der Sättigungskonzentration gelöst (Diffusion), so daß der Bodenkörper (Steinsalz) im Gleichgewicht mit der Lösung steht.

In konzentrierten NaCl-Lösungen würde *unter rezenten Bedingungen* bei den erbohrten Salzspiegel-Tiefenlagen im Zentralteil der Salzstruktur um 250 m unter Gelände und den sich aus dem geothermischen Gradienten ergebenden Temperaturen immer Anhydrit als diagenetisch stabiles Mineral am Salzspiegel neu kritallisieren. Eine Anhydrit-Fällung würde dann stattfinden, wenn das Löslichkeitsprodukt von Anhydrit in der Salzlösung überschritten wird. Gips wäre in steinsalzgesättigten Lösungen unter diesen Bedingungen erst oberhalb von ca. 125 m unter Gelände diagenetisch stabil.

Unterstellt man im Salzspiegelniveau den Zufluß NaCl-untersättiger Lösungen in einem offenen hydraulischen System, so würde es zu einer Aussüßung, zu einem Ausgleich des Konzentrationsgefälles im Grenzbereich zwischen der konzentrierten Salzlösung und NaCl-untersättigten Lösungen kommen. Mit abnehmender NaClKonzentration der Salzspiegel-Lösungen ist nach LANGBEIN (1987) bei CaSO₄-Sättigung eine Gipsneubildung bis 650 m unter Gelände möglich bzw. es kann eine Hydratation von Subrosionsanhydrit erfolgen.

Die unterschiedliche fazielle Ausbildung des Hutgesteins am rezenten Salzspiegel weist somit auf lokal schwankende Konzentrationsverhältnisse der Lösungen zwischen Salinar und Hutgestein zum Zeitpunkt der Bildung dieser Gesteine hin.

Aus den in den meisten Bohrungen über dem Salzspiegel nachgewiesenen Kristallgipsfolgen im dm- bis m-Bereich kann geschlußfolgert werden, daß diese Gesteine aus CaSO₄-übersättigten Lösungen am Salzspiegel auskristallisierten. Die untergeordnet auftretende Wechsellagerung von vergipstem katatektischem Anhydrit (= sekundärer katatektischer Gips) und Kristallgips kann als Beleg für alternierende Prozesse der Salinarsubrosion unter Aufsalzung der Lösungen und nachfolgender Kristallisation von Anhydrit bzw. der Humidsubrosion unter Aussüßung der Lösung und Kristallisation bzw. Hydratation von Gips gelten.

Die Ausnahme von der Regel stellt das Hutgestein in der Bohrung Dp Mors 30/90 dar. Hier wird das Leine-Steinsalz von residualem Anhydrit überlagert, welcher in einer konzentrierten Salzlösung kristallisierte und bis rezent nur sehr schwach vergipst wurde (der Salzspiegel liegt hier nur bei -131,20 m NN).

8.1.2 Modellvorstellungen zum zeitlichen Verlauf subrosiver Prozesse und zur Genese der rezenten Grenzfläche Hutgestein/Salinar

Basierend auf den Kenntnissen über die lithofazielle Ausbildung des residualen Hutgesteins am rezenten Salzspiegel sowie unter Berücksichtung von regionalgeologischen Vergleichen lassen sich Modellvorstellungen zur Genese des morphologisch nur gering differenzierten Salzspiegels in der Allertal-Salzstruktur entwickeln. Als Salzspiegel werden hier die Ablaugungsflächen am Top der herzynisch streichenden salinaren Internstrukturen verstanden. Die im rezenten Ablaugungsniveau parallel zwischen den Salinarstrukturen ausstreichenden tonigen, karbonatischen und sulfatischen Schichtenfolgen in den Faltenschenkeln (insbesondere der Hauptanhydrit) unterbrechen diesen Salzspiegel in ihrer streichenden Länge. In diesen Schichtenfolgen korrespondiert aber die Tiefenlage humidsubrosiver Umwandlungen (tiefstes Vergipsungsniveau) mit dem Salzspiegel-Niveau.

Im Gegensatz zur Allertal-Salzstruktur können Salzstrukturen im regionalen Umfeld (Bereich der Subherzynen Senke) wie der Ascherslebener Sattel und dessen angrenzende Quersättel (z.B. Schierstedter Sattel) zwei altersmäßig unterschiedliche Salzspiegel-Tiefenlagen aufweisen (LOEFFLER & LOEFFLER 1957). In diesem Beispiel ist der ältere und tiefere Salzspiegel mit -100 bis -200 m NN im Leine-/Aller-Steinsalz gebunden an altkimmerische Hebungsphasen des Quersattels bzw. syn- bis postkimmerische Subrosionsphasen und der jüngere und höhere Salzspiegel mit -75 m NN gebunden an den Aufstieg des Staßfurt-Steinsalzes im Verlauf der Sattelstruktur-Bildung in der Oberen Kreide und der nachfolgenden syn- bis postsaxonischen Subrosion im Zeitraum Obere Kreide, Tertiär und Pleistozän.

Im Vergleich dazu hält der rezente Salzspiegel in der Allertal-Salzstruktur über alle Internstrukturen hinweg in etwa niveaubeständig aus; lokale Tieflagen haben andere Ursachen (vgl. Kapitel 8.1.3).

Es kann unterstellt werden, daß nach Erreichen eines morphologisch nivellierenden Subrosionsniveaus über die Salinarstrukturen hinweg keine weiteren relevanten Salzaufstiegsbewegungen oder andere lokale tektonische Verstellungen innerhalb der Allertal-Salzstruktur stattfanden, da sich sonst unterschiedlich tiefe und unterschiedlich alte Ablaugungsniveaus (Salzspiegel) hätten einstellen müssen.

Nur im Bereich der Bohrung Dp Mors 30/90 könnten derartige jüngere Salzaufstiegsbewegungen zu lokalen Hochlagen des Salzes geführt haben, so daß der relativ hochliegende Salzspiegel von -131,20 m NN einen im Vergleich zum regionalen Umfeld jüngeren Salzspiegel darstellt (Alter der Bewegungen nach JUBITZ et al. 1991 laramisch). Für diese lokalen Salzbewegungen spricht auch eine isolierte Scholle von residualen Gesteinen (sekundärer Gips) im Bereich von -16,00 m bis -22,80 m NN (!) innerhalb der jurassischen Sedimente, deren Basis somit 55,90 m über der eigentlichen Hutgesteinsgrenze liegt.

In Kapitel 7.3 wurde bereits auf den kausalen Zusammenhang zwischen der rezenten Verbreitung von Oberkreide-Sedimenten im Untersuchungsgebiet und intensiven oberkretazischen Salzaufstiegsbewegungen bis in den Wirkungsbereich des Grundwassers sowie der dadurch initiierten Salinarsubrosion eingegangen.

Im Anfangsstadium der Salinarsubrosion wird sich im Ergebnis der flächenhaften Grundwasserbewegung bzw. infiltration ein ältestes Subrosionsniveau salinarer Gesteine, also ein ältester 'oberkretazischer' und flächenmäßig kleinerer Salzspiegel über den ursprünglich morphologisch am höchsten aufgepreßten Strukturen im südwestlichen und zentralen Teilbereich der Salzstruktur ausgebildet haben. Abgesehen von möglichen frühesten Erosions- und/oder Subrosionsprozessen im Keuper führte diese frühe oberkretazische Salinarsubrosion unter Umkehr des Reliefs der Salinarstrukturen zur Genese der ältesten residualen Bildungen im Hutgestein über einem sich einstellendem ältesten Salzspiegel und zur Versenkung der überlagernden oberkretazischen Sedimente in der muldenförmigen Auslaugungshohlform. Als Folge dieser Salinarsubrosion ist die Umlagerung der hangseitigen oberkretazischen Sedimente selbst zur Muldenachse hin, aber auch der Versturz bzw. das Abgleiten der seitlich anstehenden Deckgebirgsfolgen in die talartige Subrosionszone wahrscheinlich (auch mit stratigraphischen Umstapelungen).

Mit dem Hinweis auch auf mögliche erosive Prozesse am Top des Hutgesteins lassen die Einfallswinkel residualer Bildungen älterer Hutgesteine in diesen Bereichen durchaus die Interpretation einer syngenetischen Verstellung des ältesten Hutgesteins durch Salzaufpressung bis zum Zeitpunkt des Versiegens des Salznachschubes (vgl. Kapitel 7.3) zum Ende der Oberkreide zu.

Unter der Voraussetzung, daß die deszendente Infiltration von Grundwasser über geologische Zeiträume flächenhaft wirkte, konnte sich im Zeitraum oberste Oberkreide, Tertiär und Pleistozän unter Absenkung überlagernder Deckgebirgs- und Hutgesteinsfolgen mit fortschreitender Subrosion an der sich altersmäßig verjüngenden Salzablaugungsfläche, unabhängig von der sich oberhalb der Salzstruktur differenziert entwickelnden Mächtigkeit des Hutgesteins, ein morphologisch nivellierendes Niveau der Subrosion salinarer Gesteine einstellen. Dabei kann die Infiltration von Wässern durch die residualen Bildungen und/oder zechsteinzeitlichen Leithorizonte bis zum Salzspiegel nur über diskontinuierlich verteilte, kommunizierende Kluftsysteme erfolgt sein. Eine ausschließliche Matrixdiffusion von Wässern durch das diagenetisch hochzementierte und somit impermeable Hutgestein kann nicht unterstellt werden, da sonst das Hutgestein vollständig in sekundärer Gipsfazies ausgebildet sein müßte. An der Salzoberfläche werden die zutretenden Lösungen in ihrer Summe flächenhaft subrosiv und somit einebnend gewirkt haben, wobei es aber auf Grund der äußerst geringen Zuflußmengen bzw. der geringen "Fließgeschwindigkeiten" keine Umlagerungen von Residuen gegeben hat.

In Abhängigkeit von der Tiefenwirkung des Grundwassers wurden nachfolgend sukzessive die primär tieferliegenden Bereiche der Salzstruktur von der Salinarsubrosion erfaßt. Im Verlauf der Salinarsubrosion werden sich die resultierenden jüngeren Salzspiegel bis in das rezente Niveau von durchschnittlich -140 m NN stetig flächenhaft ausgedehnt und in ihrem morphologischen Erscheinungsbild angeglichen haben. Stellt man die erbohrten Salzspiegel-Tiefenlagen in der Allertal-Salzstruktur (vgl. Tabelle 13) denen im regionalen Umfeld gegenüber, so liegen die Salzspiegel einerseits in der Größenordnung wie in der Allertal-Salzstruktur (z.B. Mansfelder Mulde mit -140 bis -150 m NN), andererseits aber auch höher (siehe Ascherslebener Sattel).

Vergleicht man die Tiefenlage der Subrosionsfront in den angrenzenden Randbereichen wie der Lappwald-Mulde mit der Tiefenlage des Salzspiegels in der Salzstruktur, so korrespondiert diese in etwa mit der Tiefenlage der Steinsalzverbreitung in den lateral angrenzenden mesozoischen Sedimenten. Es muß geschlußfolgert werden, daß unabhängig von der Mächtigkeit überlagernder Deckgebirgs- und Hutgesteinsfolgen ausschließlich die Tiefe der Infiltration von Grundwasser (bei zunehmendem Alter desselbigen mit der Tiefe) als Folge eines hohen hydraulischen Gradienten als kritisches Merkmal der Salinarsubrosion unterstellt werden muß. Dies kann aber auch bedeuten, daß die Salinarsubrosion über geologische Zeiträume stetig verlaufen, jedoch ab einer bestimmten 'kritischen' Infiltrationstiefe des Grundwassers infolge mangelnden Lösungsangebotes auch versiegen kann. Eine Veränderung der Infiltration von Grundwasser wäre denkbar als Reaktion auf die besonderen geohydraulischen Bedingungen im Verlauf bzw. im Nachgang der pleistozänen Kalt- und Warmzeiten. Kommt es im Pleistozän zu einer intensiven flächenhaften Infiltration von Grundwasser durch das Deckgebirge und das ältere Hutgestein bis zu einem präpleistozänen Salzspiegel, so bedingen die unter erhöhtem Druckpotential eingepreßten Lösungsmengen eine verstärkte Ablaugung des Salinars und dadurch eine *nachhaltige* Tieferlegung des ursprünglich präpleistozänen Subrosionsniveaus.

Durch die relative Abnahme der Infiltration bzw. die geringere Tiefenwirkung des Grundwassers im Nachgang des Pleistozäns ist es wahrscheinlich, daß es an der nunmehr sehr tiefliegenden pleistozänen Salzspiegelfläche von durchschnittlich -140 m NN am Top der Allertal-Salzstruktur zur Stagnation des salinaren Subrosionsprozesses kommen mußte.

Die Faziesgrenze zwischen älteren vergipsten Anhydritresiduen und jüngsten Hutgesteinsbildungen mit Neukristallisaten von Gips (untergeordnet mit Einlagerungen von geringmächtigen vergipsten Residuen) im Übergang zum Salinar könnte aus Sicht salinarsubrosiver Prozesse als ein solcher zeitlicher und hydraulischer Hiatus aufgefaßt werden.

Stehen die ursprünglich anhydritischen Residuen für einen persistenten Prozeß der Aufsättigung deszendenter Grundwässer mit Salz und der Kristallisation von primärem Anhydrit in hochkonzentrierten Salzlösungen an den präpleistozänen Salzspiegeln, so widerspiegeln die Kristallgipse eine Umstellung in der Lösungskonzentration am pleistozänen Salzspiegel infolge des erhöhten Zuflusses deszendenter Grundwässer und der Kristallisation von Gips aus sulfatübersättigten Lösungen. Daß der Prozeß der Aufsättigung und Verdünnung der Lösungen am pleistozänen Salzspiegel auch alternierend verlaufen kann (im Wechsel von Kalt- und Warmzeiten ?), zeigen die geringmächtigen residualen Bildungen innerhalb der Gipsneubildungen.

Im Sinne obiger Hypothese bestätigen die Ergebnisse der Untersuchungen auf stabile Isotope und Salzgehalt an Lösungen aus dem Deckgebirge und dem Hutgestein sowohl die Zunahme des Alters der Grundwässer mit der Tiefe als auch den Einfluß pleistozäner Wässer auf die Salinarsubrosion (SONNTAG 1998).

Name der Bohrung	Tietenläge des Salzspiegels (m NN)
Hmt 4/-	-149,00
Hmt 5/-	-138,00
Hmt 6/-	-140,00
Hmt 7/-	-140,00
Hmt 9/-	-139,80
Hmt 12/-	-193,00
Hmt 13/-(Schacht Marie)	-140,00
Hmt 14/-	140,30
Hmt 16/-	-152,00
Hmt 16b/-	162,60
Hmt 17/-	-145,85
Hmt 18/-	-130,00
Hmt 19/-	-143,50
Hmt 21/-	-141,34
Hmt 24/-	-200,55
Hmt 25/-(Schacht Bartensleben)	-152,00
Hmt 26/-(Grenze kmS/z)	-190,00
Hmt 27/-	-142,00
Hmt 28/-	-141,00
Hmt 29/-	-146,60
Hmt 30/-	-162,00
Hmt 31A	-191,50
Hmt 33/-(Grenze kmGo/z)	-170,00
Hmt 36/-(Grenze kmGo/z)	-157,00
Hml 40/-	-176;00
Hmi 43/- (Grenze kmGo/z)	-165,00
Hmt 44/-	-154,00
Höt 1/- (Burbach 20) (Grenze ku/z)	-497,00
Höt 2/- (Schacht Welensleben)	-189,00
Höt 4/- (Schacht Belsdorf)	-153,00
SnWI5/- (Burbach 25) (Grenze ko/z)	-238,00
SnWl6/- (Burbach 28)	-194,00
SnWI7- (Burbach 37) (Grenze kø/z)	-183,00
Kb Mors 2/85	-140,80
Kb Mors 4/84	-141,50
Kb Mors 5/85(Grenze Muschelkalk/z)	-141,80
Dp Mors 7/90	-141,20
Dp Mors 11/90	-140,80
Dp Mors 12/90 (Grenze kmGu/z)	-277,00
Dp Mors 14/89	-138,80
Dp Mors 20/88 (tiefstes Vergipsungsniveau im z3AN)	-141,20
Dp Mors 30/90	-131,20
Dp Mors 40A/95	-138,15
Dp Mors 42A1/95 (tiefstes Vergipsungsniveau im z3AN)	-143,50
Dp Mors 45A/94 (tiefstes Vergipsungsniveau im z3AN)	-135,80
Dp Mors 46A/95	-138,54
Dp Mors 65A/95 (tiefstes Vergipsungsniveau im z3AN)	-131,90

Tabelle 13: Salzspiegel-Tiefenlage in der Allertal-Salzstruktur nach Bohrungen (stratigraphische Symbole nach PREUSS et al. 1991); (grau hinterlegt: Bohrungen außerhalb der unter Kapitel 3.1 genannten Koordinaten für die Kartendarstellungen Hutgestein)

Koppelt man diese Modellvorstellungen mit den Beobachtungen am rezenten Salzspiegel in der Allertal-Salzstruktur, so kann zunächst festgestellt werden, daß zwischen jüngstem Hutgestein und rezentem Salzspiegel keine flächenhaften Lösungshohlräume zu postulieren sind (vgl. Ergebnisse des hydraulischen testings). Erbohrt wurden Kontaktflächen Hutgestein/Salz. Danach kann angenommen werden, daß die durch Salinarsubrosion zwischen Hutgestein und Salinar entstandenen flächenhaften Lösungshohlräume (wenn Ablaugung > Akkumulation und Neubildung; die Größenordnung der Lösungshohlräume läßt sich aus den Kantenlängen der frei kristallisierten Kristallgipse mit bis zu 5 cm abschätzen) im Ausklang der Salinarsubrosion durch Fällung von Gips oder Anhydrit aus aufgesättigten salinaren Restlösungen 'auskristallisiert' wurden. Dadurch könnte es lokal zur Abtrennung isolierter Lösungsvorkommen am Salzspiegel gekommen sein, beispielsweise dann, wenn das am Salzspiegel zu subrodierende Steinsalz nur sehr geringe Gehalte an anhydritischen Nebengemengteilen enthält, so daß eine Übersättigung bzw. Fällung von Ca-Sulfat in den Lösungen nicht möglich ist. Damit steht in Einklang, daß der rezente Salzspiegel in der Allertal-Salzstruktur zumeist trocken aufgeschlossen wurde und feuchte Salzspiegel durch sulfatische oder wiederaufgesättigte salinare Restlösungen nur in einigen wenigen, lokal weit auseinander liegenden Bohrungen als isolierte Vorkommen angefahren wurden (Kb Mors 2/85; Dp Mors 45A/94; ? Hmt 21/-). Auch im regionalen Umfeld (Plömnitz, Schönebeck) ist der Salzspiegel in trockenem Zustand erbohrt worden.

Innerhalb der Hutgesteinsbildungen selbst werden die humidsubrosiven Prozesse (Vergipsung, Verkarstung: vgl. Kapitel 8.2) sowohl während als auch nach einer Salinarsubrosion ablaufen, wobei sich auch hier die abnehmende Beeinflußung durch Grundwässer sowohl in den residualen Anhydritgesteinen als auch in den sulfatischen Gesteinen der zechsteinzeitlichen Leithorizonte in einer Verringerung der Vergipsungsintensität mit der Tiefe widerspiegelt. Die im Kern als sehr heterogen zu beobachtende Vergipsung des Hutgesteins kann, wie bereits oben erwähnt, nur auf die Infiltration von Wässern über Kluftsysteme zurückgeführt werden. Die sich infolge einer räumlich und zeitlich differenzierten Setzung des Hutgesteins durch fortschreitende Salinarsubrosion bildenden Klüfte (altersmäßig sicher verschiedene Kluftgenerationen) werden in Abhängigkeit vom Angebot humider (sulfatischer), untergeordnet salinarer Lösungen wieder verschlossen. Somit würden sich neue Klüfte im Rahmen eines Massenschwundes am Top der Salzstruktur (Salinarsubrosion) oder infolge Konvergenz über Bergbau-Hohlräumen bilden können.

Legt man das oben diskutierte Modell sowie die genannten geologischen Tatsachenbefunde zu Grunde, so muß dies zu der Annahme führen, daß das rezente Salzspiegel-Niveau in der Allertal-Salzstruktur ein fossiles Ablaugungsniveau darstellt und die Salinarsubrosion mit ausgehendem Pleistozän als stationär anzusehen ist.

8.1.3 Selektive Subrosion am Kaliflöz Staßfurt nach Bohrungen

Auf Grund der erhöhten Löslichkeit von Kalisalzen gegenüber Steinsalz kann bei Zutritt von ungesättigten Lösungen die Subrosion im Kaliflöz Staßfurt der in den angrenzenden salinaren Gesteinen vorauseilen. Es ist denkbar, daß eine solche selektive Subrosion und die damit verbundene lokale Absenkung des Salzspiegels aber nur dort wirksam wird, wo das Kaliflöz Staßfurt im streichenden Verlauf von den zechsteinzeitlichen Leithorizonten des z2/z3 als mögliche hydraulisch aktive Schichtenfolgen begleitet wird. Die Morphologie der aus der selektiven Subrosion resultierenden Salzoberfläche hängt dabei von der Ausbiß-Breite bzw. -Länge des Kaliflözes ab (vgl. auch BGR-Bericht/11/).

Obwohl bei einigen Bohransatzpunkten die entsprechende strukturelle Position mit Ausbiß des Kaliflözes im Salzspiegelbereich gegeben war, haben die texturellen Untersuchungen an Kernen der Hutgesteinsbohrungen keine Hinweise geliefert, die auf ein subrodiertes Kaliflözes schließen lassen (vgl. Kapitel 6.2.1).

Nach BALZER (1997b) wurde die in der Bohrung Hmt 4/- nachgewiesene Tieflage des Salzspiegels mit -149 m NN entsprechend den älteren Modellgrundlagen der Salzspiegel-Strukturierung (ZGI-Bericht /12/) als partiell subrodiertes Kaliflöz am nordöstlichen Faltenschenkel des Östlichen Schachtsattels interpretiert. Basierend auf
den neuen Modellgrundlagen (Anlage 3) ist diese Interpretation zu revidieren. In Kapitel 7.1.1 wurde bereits auf die Möglichkeit eines unterhalb des Subrosionsniveaus erbohrten Anhydritmittels verwiesen, an dessen Top die Subrosion von eingeschalteten Kalisalzen eine lokale Depression des Salzspiegels bedingt haben könnte (vgl. Anlage 13).

8.2 Erscheinungen der Humidsubrosion im Hutgestein

Alle Erscheinungen der Humidsubrosion im Hutgestein sind gebunden an die Wechselwirkung von ungesättigten Grundwässern und den im Hutgestein anstehenden Anhydritgesteinen sowie den darin ursprünglich enthaltenen Fremdanteilen (z.B. Salz auf Klüften im Hauptanhydrit). Auf die Bildung von Kristallgips in humiden, CaSO₄gesättigten Lösungen infolge Aussüßung am Salzspiegel wurde bereits in Kapitel 6.2.4 sowie 8.1.1 und 8.1.2 eingegangen.

Mit der Hydratation von Anhydrit unter Bildung von sekundärem Gips setzt ein Prozeß ein, der über Zwischenstadien (partielle Vergipsung) final in der völligen Zerstörung des Gesteinsgefüges und der Auflösung des sekundären Gipses münden kann. In Kapitel 6.1.2.3 bzw. Kapitel 6.2.3 wurden die petrographischen Merkmale einer Vergipsung im Mikro- und Makrobereich in den zechsteinzeitlichen Leithorizonten sowie in den residualen Gesteinen im Hutgestein ausführlich diskutiert. Da die Vergipsung im Hutgestein an Klüfte bzw. Kluftsysteme gebunden ist, erfolgt eine allgemeine Kluftauswertung für das Hutgestein in diesem Abschnitt, wobei Beziehungen und Abhängigkeiten von Vergipsung und Kluftbildung bzw. Kluftdichte (Anzahl Klüfte pro Meter im erbohrten/CBIL-vermessenen Anteil Hutgestein)⁸ sowie Erscheinungen des Sulfatkarstes im Hutgestein diskutiert werden. Unter Berücksichtigung der in Kapitel 8.1.2 dargelegten Modellvorstellung sei darauf verwiesen, daß in der geologischen Vergangenheit mit ausgehender Oberkreide bis einschließlich Pleistozän Salinarsubrosion und Humidsubrosion als kontemporäre Prozesse ablaufen konnten, dagegen rezent die Prozesse der Humidsubrosion innerhalb des Hutgesteins dominieren sollten.

8.2.1 Klüfte im Hutgestein (mit Auswertung von CBIL-Image-Daten)

Klüfte im Hutgestein wurden bestimmt:

- am Bohrkernmaterial der Bohrungen 1988-1990 und 1994-1995 (dokumentiert in den Geologischen Feldaufnahmen bzw. Geologischen Schichtenverzeichnissen); Beschreibung: Kluftweite (Öffnungsweite), Orientierung (Einfallswinkel), Verteilung, Zustand (offen oder geschlossen: mit Kluftfüllung);
- anhand der CBIL-Image-Daten der Bohrungen 1994-1995 (vgl. Kapitel 4.4), sofern die Bohrung mit CBIL vermessen wurde (teilweise vergleichende Untersuchungen am Bohrkernmaterial durch Western Atlas Geosciences: vgl. Berichte Western Atlas Logging Services [WALS] / Atlas Geosciences 1996 und 1997); Beschreibung: Orientierung (Einfallswinkel / Einfallsrichtung), Zustand (offen/partiell offen und geschlossen: mit Kluftfüllung).

⁸ Bei der Ermittlung der Kluftdichte wurden nur Klüfte betrachtet, die den Kern vollständig durchsetzen. Die viel häufiger zu beobachtenden, aber räumlich begrenzten Gipsflasern (vgl. Kapitel 6.1.2.3) innerhalb einer anhydritischen Matrix wurden in dieser Statistik nicht berücksichtigt. Nachfolgend werden die Ergebnisse beider Kluftkartierungen gemeinsam diskutiert.

In Tabelle 14 sind die nach CBIL-Image-Daten für das Gesamtintervall Hutgestein (teilweise einschließlich Zechstein) ermittelten Streichrichtungs- bzw. Fallrichtungswerte der Klüfte je vermessener Bohrung zusammenfassend dargestellt.

Name der Bohrung	Streichrichtung der Klüfte	Fallrichtung der Klüfte
Dp Mors 40A/95	keine Klüfte	keine Klüfte
Dp Mors 43A/95	N-S	E und W
Dp Mors 45A/94	N/NNW-S/SSE	W/WSW und E-W sowie N
Dp Mors 46A/95	keine Klüfte	keine Klüfte
Dp Mors 65A/95	NNW-SSE	NE
	NE-SW	NW-SE
	E-W	S und N
	NW-SE	NE
Dp Mors 72A/95	NE-SW sowie NE, NE-SW, ENE- WSW	WNW

Tabelle 14: Streich- und Fallrichtung von Klüften im Hutgestein (einschließlich Zechstein) nach CBIL-Image-Daten

Klüfte in Gesteinen zechsteinzeitlicher Leithorizonte

Klüfte in den Gesteinen der zechsteinzeitlichen Leithorizonte des z2/z3 in den Faltenschenkeln zwischen residualen Strukturen sind im wesentlichen gebunden an den Hauptanhydrit. Im Leine-Karbonat, im Grauen Salzton und im Deckanhydrit lassen sich auf Grund der zum Teil intensiven Brecciierung Klüfte nur unsicher bestimmen. Die Kluftdichte im Hauptanhydrit schwankt zwischen minimal 0,07 und maximal 0,98 Klüften pro Meter im erbohrten/CBIL-vermessenen Anteil Hutgestein. Dabei muß berücksichtigt werden, daß diese Werte nur als integrale Größe für einen bestimmten erbohrten Teufenabschnitt repräsentativ sind. Die Verteilung der Klüfte in den zechsteinzeitlichen Leithorizonten über die Teufe kann in allen Bohrungen als völlig regellos (diskontinuierlich) beschrieben werden, ebenso zeigt sich keine signifikante Änderung in der Kluftdichte zwischen steilstehenden und flacher lagernden Faltenschenkeln im Hutgestein. Die Fallwinkel der Klüfte divergieren zwischen 20° und 90°. Die Kluftweiten liegen im Durchschnitt im mm- bis cm-Bereich. Vereinzelt müssen in steilstehenden Klüften größere Kluftweiten bis dm-Bereich unterstellt werden, da im Kern nur eine Kluftfläche aufgeschlossen ist (Dp Mors 42A1/95). Die am Kern sichtbare Erstreckung von Klüften reicht von wenigen Millimetern bis zu mehreren Metern. Sowohl nach Auswertung der CBIL-Image-Daten als auch nach Kernaufnahme kann festgestellt werden, daß in den zechsteinzeitlichen Leithorizonten geschlossene bzw. teilweise geschlossene (mineralisierte bzw. partiell mineralisierte) Klüfte eindeutig gegenüber offenen (nicht mineralisierten) Klüften dominieren. Das mit Abstand am häufigsten zu beobachtende Kluftmineral ist Gips. Untergeordnet treten Steinsalz, Anhydrit sowie Ton als Kluftfüllung, selten auch hämatitische Relikte oder Boratminerale als Lösungsrückstände von Kalisalz in Klüften auf.

Klüfte in residualen Gesteinsfolgen

Innerhalb residualer Gesteinsfolgen liegt die Kluftdichte (als integrale Größe über die erbohrte/vermessene Teufe) zwischen minimal 0,02 und maximal 0,5 Klüften pro Meter im erbohrten/CBIL-vermessenen Anteil Hutgestein. Einen Ausreißer stellt die Bohrung Dp Mors 38A/94 mit 3,5 Klüften pro Meter dar. Eine teufenabhängige Verteilung der Klüfte in residualen Gesteinen kann nicht festgestellt werden, so daß auch hier von einer diskontinuierlichen Kluftverteilung gesprochen werden kann. Eine kausale Beziehung zwischen Kluftdichte und Mächtigkeit des residualen Hutgesteins läßt sich nicht ableiten.

Die Fallwinkel der Klüfte in residualen Gesteinen reichen von 0° bis 90°. Die Kluftweiten liegen im mm-Bereich, untergeordnet im cm-Bereich. Sowohl CBIL-Image als auch Kernaufnahme belegen einen extrem hohen Anteil an geschlossenen (mineralisierten) Klüften in den Residualgesteinen. Als Kluftminerale sind Gips (vornehmlich in Marienglas-Fazies) und Steinsalz zu nennen.

Bemerkungen zur Genese von Klüften im Hutgestein

Die Genese der Klüfte in den zechsteinzeitlichen Leithorizonten im Hutgestein ist an verschiedene Prozesse gebunden:

- Kluftbildung in den Schichtenfolgen des Zechstein im Verlauf des schwerkraftbedingten Aufstiegs des Staßfurt-Salinars vor der Salinarsubrosion;
- Kluftbildung durch Verstellung dieser Schichtenfolgen während der Salinarsubrosion;
- Kluftbildung gebunden an (neo ?) tektonische Vorgänge.

Die Kluftbildung in den residualen Gesteinen steht mit folgenden Prozessen in Beziehung:

- Kluftbildung durch langsame, aber stetig andauernde Setzungsbewegungen von bereits gebildetem Hutgestein über dem Salinarkörper, besonders in Phasen erhöhter Salinarsubrosion (Setzungsklüfte): Klüfte in residualen Gesteinen wurden besonders in Lithotypen mit Schichtungstextur beobachtet, da diese an den Schichtgrenzen zur Ausbildung von Trennflächengefügen neigen;
- Kluftbildung im Zusammenhang mit einer möglichen Bewegung älterer Hutgesteinsbildungen durch salinare Aufstiegsbewegungen: diese richtungslos orientierten Klüfte schneiden die schichtungsparall- bzw. flaserungsparallel orientierten Setzungsklüfte;
- Kluftbildung gebunden an (neo?) tektonische Vorgänge.

Sowohl die Klüfte/Kluftsysteme in den zechsteinzeitlichen Leithorizonten als auch die Klüfte in den residualen Gesteinen wurden und werden durch die Einwirkung wässriger Lösungen im Verlauf einer Humidsubrosion verändert. Offene Klüfte können durch Kristallisation von Gips (Marienglas, Fasergips) aus entsprechenden Lösungen geschlossen werden, geschlossene Klüfte durch Lösung von Kluftsalzen oder Sulfat geöffnet und vergrößert, um nachfolgend wieder partiell oder vollständig mineralisiert zu werden.

In diesem Zusammenhang sei darauf verwiesen, daß Klüfte auch in intensiv vergipsten Partien des Hutgesteins, sowohl in residualen Gesteinen als auch in den zechsteinzeitlichen Leithorizonten, durch Salzminerale partiell oder vollständig verschlossen sein können. Diese Kluftfüllungen können als Kristallisationsprodukte salinarer Lösungen angesehen werden, deren ionarer Anteil ursprünglich aus dem Salzspiegelbereich stammen sollte. Die rezent im Hutgestein zu bestimmenden Merkmale Kluftdichte, Kluftzustand (offen/geschlossen), Kluftweiten, Kluftmineralisation widerspiegeln insgesamt einen Ist-Zustand, der sich unter den o.g. Randbedingungen verändern kann.

In Abhängigkeit von diskontinuierlich verteilten Klüften/Kluftsystemen in den Anhydritgesteinen und der damit möglichen Migration wässriger Lösungen unterliegen die Anhydritgesteine einer räumlich-diskontinuierlichen Hydratation (vgl. Kapitel 8.1.2). Neben den fast immer im Grenzbereich Deckgebirge/Hutgestein intensiv vergipsten Anhydritgesteinen als Ausdruck erhöhter Wegsamkeiten wässriger Lösungen läßt der völlig unregelmä-Bige Wechsel von stark und weniger stark vergipsten bzw. gipsfreien Abschnitten nur bedingt Abhängigkeiten erkennen. Neben einer allgemeinen tendenziellen Abnahme der Vergipsungsintensität mit der Tiefe (vgl. Kapitel 8.1.2) sind Zonen intensiver Vergipsung in Annäherung an mächtige tonige Einlagerungen im Hutgestein, z.B. Deckanhydrit, Grauer Salzton, Roter Salzton, residuale Tone bzw. in Gesteinen mit hohem karbonatisch-tonigem Fremdanteil (stratigraphisch ältester Teil des Hauptanhydrits) zu finden.

8.2.2 Sulfatkarst im Hutgestein

Erscheinungen des Sulfatkarstes im Hutgestein sind an lokale, räumlich begrenzte Lösungsvorgänge durch ungesättigte wässrige Lösungen in den residualen sulfatischen Gesteinen und in den sulfatischen Gesteinen der zechsteinzeitlichen Leithorizonte des z2/z3 gebunden.

Im Hutgesteinskern können folgende Karstphänomene typisiert werden:

A) fremdgesteinserfüllte Karsthohlräume (zumeist in Topbereichen des Hutgesteins, selten tieferliegend) mit Einlagerungen von isolierten Schollen geringer Mächtigkeit aus dem suprasalinaren Deckgebirge (zumeist kollapsartig verstürzt);

B) offene Karsthohlräume mit geringmächtigen Einlagerungen von Deckgebirgsmaterial; nicht technogen bedingter Kernverlust (Kaverneneffekt im Log);

C) fossile, geschlossene Karsthohlräume (m- bis dekameter-mächtige Kristallgips-Folgen innerhalb residualer Bildungen);

D) schlottenartig erweiterte Klüfte im Hauptanhydrit (vor der Subrosion mit Kalisalz erfüllt) mit partieller Neukristallisation von Marienglas;

E) Hohlraum im Salzspiegelbereich (Kernverlust und/oder Spülungsverlust).

Tabelle 15 gibt eine Übersicht über die Bohrungen mit Sulfatkarsterscheinungen bzw. deren strukturelle Einbindung im Hutgestein.

Name der	Struktureinheit,	Teutenlage	stratigraphisches Alter	Тур
Bohrung	in der Karst auftritt	(m NN)	der Karsteinlagerungen	Karstphänomen
Kb Mors 2/85	Westmulde	-138,50 bis -139,90	nicht bestimmbar,	E
			hoher Kernverlust	
0			(mit Spülungsverlust),	
			(meßbarer Zufluß von Lösungen)	
Dp Mors 2/89	isolierte Scholle von Hauptanhydrit	+71,70 bis +63,10	nicht bestimmbar,	B oder D
li -	innerhalb des residualen	0	boher Kernverlust	
	Östlichen Schachtsattels		(mit Spülungsverlust)	
Dp Mors 6/90	residuale Südmulde	-19,30 bis -29,05	Oberkreide	A
Dp Mors 11/90	1) residualer Östlicher Schachtsattel	+46,90 bis +33,60	1)? Jura, Kreide, Quartär: teil-	В
	2) Übergang von 1) in südwestlichen		weise auch Nachfall möglich;	В
	Faltenschenkel des residualen Östli-		2) ? Jura, Kreide, Quartăr: teil-	
	chen Schachtsattels		weise auch Nachfall möglich;	
Dp Mors 20/88	residuale Westmulde/Südmulde	-87,30 bis -92,60	jüngere Öberkreide und	A
			Tertiär (Paläozän bis Untereozän)	
Dp Mors 34A/95	residualer Westlicher bzw.	-120,40 bis -127,40	Unterer Gipskeuper	A
	Östlicher Schachtsattel			
Dp Mors 37A/95	residuale Westmulde	-114,90 bis -115,40	Oberer Gipskeuper	A
Dp Mors 40A/95	residuale Westmulde	-117,50 bis -118,50	Unterer Jura	A
Dp Mors 42A1/95	isolierte Scholle von zechsteinzeitli-	+69,60 bis +63,60	keine Einlagerungen von Fremd-	D ·
	chen Leithorizonten innerhalb des		material: partiell auskristallisierte	
	residualen Östlichen Schachtsattels		Kluft	
Dp Mors 43A/95	residualer Westsattel	-117,50 bis - 117,60	Oberer Gipskeuper	A
Dp Mors 45A/94	Randmulde 2	-123,65 bis -125,70	nicht bestimmbar: ? Pleistozän,	E
			geringer Kernverlust,	
			meßbarer Zufluß von Lösungen	
Dp Mors 46A/95	residuale Randmulde 1 (- 3?)	-95,40 bis -97,70	prä-Steinmergelkeuper bis Stein-	A
		-99,00 bis -99,70	mergelkeuper	
Dp Mors 47A/95	residuale Südmulde	-113,64 bis -115,34	? Keuper oder Jura	A
Dp Mors 69A/95	residuale Westmulde	-79,40 bis ca93,90	Obere Kreide (geringe Beimen-	С
			gungen im residualen Hutgestein)	
Dp Mors 86A/95	residuale Ostmulde	-54,80 bis -57,70	Steinmergelkeuper (geringe	A
			Beimengungen im residualen	
			Hutgestein)	
Hmt 4/	residuale Hauptmulde	-34,70	nicht bestimmbar	? A
Hmt 9/-	residuale Westmulde/Südmulde	-27,00 bis -32,80	in Analogie zur Dp Mors 20/88:	A
			? Oberkreide und Tertiär	

Tabelle 15: Übersicht über die Bohrungen mit Sulfatkarsterscheinungen bzw. deren strukturelle Einbindung im Hutgestein

ł

÷

Zeitliche und genetische Aspekte der Sulfatkarstbildung im Hutgestein der Allertal-Salzstruktur

Bei der genetischen Betrachtung von Erscheinungen des Sulfatkarstes im Hutgestein der Allertal-Salzstruktur müssen klimatische, hydrogeologische und gesteinsspezifische Faktoren im Zusammenhang gesehen werden.

Mit dem Aufreißen der Allertal-Störungszone im Gipskeuper und dem Aufdringen der salinaren Gesteinsfolgen bis an die Erdoberfläche gelangen diese zeitweilig in den direkten Einfluß der Atmosphärilien bei syngenetischer Ablagerung jüngerer Sedimente. Durch Lösung von Salz an der Erdoberfläche oder unterhalb einer geringmächtigen unlöslichen Sedimentdecke von Keupermaterial ist die Ausbildung von Dolinen bzw. Einsturzdolinen und Erdfällen vorstellbar. Die in verschiedenen Bohrungen (Dp Mors 34A/95; Dp Mors 37A/95; Dp Mors 43A/95; Dp Mors 46A/95; Dp Mors 47A/95; Dp Mors 86A/95) nachgewiesenen Einlagerungen von Keupermaterial im Topbereich des residualen Hutgesteins lassen sich als keuperzeitliche Erdfallbildungen, verursacht durch oberflächennahe Lösung von Salz, deuten.

In der Bohrung Dp Mors 20/88 lagert 43 m unterhalb der Oberkante des residualen Hutgesteins der West- bzw. Südmulde eine durch Gipsresiduen (1,30 m mächtig) zweigeteilte Oberkreide/Tertiär-Scholle (obere 1,80 m, untere 1,70 m mächtig; lithologische und paläontologische Beschreibung in BGR-Bericht /14/): Das Hutgestein wird in dieser Bohrung von Oberkreide-Sedimenten überlagert, die zumindest im unteren Abschnitt deutliche Anzeichen von Versturz zeigen sowie insgesamt ein steiles Einfallen aufweisen (vgl. Anlage 7). Die auf der Kreide lagernden quartären Schotterbildungen sind im Vergleich zur unmittelbaren Umgebung um ca. 38 m abgesenkt (BGR-Bericht /15/). Die Interpretation aller genannten Erscheinungen muß im Zusammenhang betrachtet werden.

Die Erhaltung der tertiären Sedimente ist ausschließlich an Karsthohlräume gebunden, da im regionalen Umfeld tertiäre Sedimente bis auf wenige lokale Vorkommen abgetragen wurden. Infolge der großflächigen Erosion der oberkretazischen Sedimente (außer in den subrosiv angelegten Depressionen) bzw. der tertiären Sedimente unterlagen die sulfatischen Hutgesteine offensichtlich einer lokal tiefreichenden Verkarstung (Auflösung), die vorherrschend durch die subtropischen Temperaturverhältnisse im Tertiär gesteuert wurde. Neben der oberkretazisch-tertiären Karstfüllung spricht auch der Versturz oberkretazischer Ablagerungen bzw. die signifikante Tieflage der quartären Schotter über den oberkretazisch-tertiären Sediment-Pakete im Hutgestein mit Kreide-Überlagerung sagen aus, daß Karsterscheinungen dieser Größenordnungen durch unterirdische Sickerwässer oder Karstläufe mit entsprechend hohem Lösungspotential in Abhängigkeit von den Vorflut-Verhältnissen entstanden sein müssen. Damit in Beziehung könnte auch eine nicht eindeutig als Karstfüllung zu interpretierende Schichtenfolge ('Gips mit milden Letten, partienweise sehr sandig') stehen, die in der Bohrung Hmt 9/- erbohrt wurde. Diese mögliche Karstfüllung lagert in analoger struktureller Position wie die tertiäre Karstfüllung in der Bohrung Dp Mors 20/88, aber ca. 60 m höher in Richtung NW versetzt (vgl. Anlage 4). Ein kommunizierendes Karsthohlraumsystem wäre in Bezug auf diese beiden Vorkommen zu postulieren.

Im Ergebnis aller Befunde kann die Karsterscheinung im Hutgestein der Bohrung Dp Mors 20/88 als ein tertiär angelegter Erdfall gedeutet werden, dessen Ausmaße im Bereich quartärer Sedimente nach BGR-Bericht /15/ 10-30 m im Durchmesser betragen. In der Bohrung Dp Mors 11/90 sollte der Verkarstungsprozeß im Zusammenhang mit quartären Prozessen gesehen werden. Die Karsterscheinungen liegen im Bereich des residualen Östlichen Schachtsattels bzw. im Übergang von dieser Residualstruktur in den südwestlich angrenzenden Faltenschenkel und sind durch totalen Kernverlust bzw. durch Einlagerungen von quartären Geröllen (Geschieben) und quartärzeitlich aufgearbeiteten jurassischen (?) und oberkretazischen Geröllen sowie Relikten des Leine-Karbonates bzw. des Grauen Salztones gekennzeichnet. Hinsichtlich der Genese ist vorstellbar, daß diese Karstschlotte (kein Versturz des Hutgesteins über der Karstschlotte) an eine 'Schwächezone' durch kryogene Risse im Topbereich des Hutgesteins geknüpft ist, zumal Elster-I-Geschiebemergel das Hutgestein überlagert.

In der Bohrung Dp Mors 69A/95 ist nur noch ein fossiler Karst zu bestimmen. Hier erfolgte eine intensive Sulfatlösung im residualen Hutgestein unter Aufsättigung der Lösung mit Ca-Sulfat. Der daraus resultierende schlottenartige Hohlraum kristallisierte vollständig mit Marienglas aus (ca. 14,50 m mächtiges Marienglas, mit geringmächtigen Residual-Einlagerungen von Gips und Ton). Das residuale Hutgestein über der Marienglas-Folge zeigt keine Anzeichen von Versturz. Im Topbereich der Marienglas-Bildungen wurden fleckige bis schlierenartige Einlagerungen der Oberkreide bestimmt. Es ist anzunehmen, daß die Sulfatverkarstung, also die Lösung von bereits gebildetem Hutgestein, im Zusammenhang mit einer erhöhten Zufuhr von Wässern noch während der Oberkreide-Sedimentation steht.

Mit der intensiven Lösung von Sulfat im Hutgestein während der Oberkreide sollte auch die kreidezeitliche Karstschlottenfüllung in der Bohrung Dp Mors 6/90 in Verbindung stehen (lithologische und paläontologische Beschreibung in BGR-Bericht /14/). Die Karstfüllung im Hutgestein lagert exakt im Grenzbereich zwischen einer isolierten Hauptanhydritscholle im Top des Hutgesteins und den unterlagernden Residuen der Südmulde. Die Kontaktfläche zwischen der isolierten Hauptanhydritscholle und dem residualen Hutgestein deutet auf eine mögliche karstfördernde Schwächezone hin.

Von großer Bedeutung für die Ausbildung von Sulfatkarst im Hutgestein sind steilstehende, mit Salz erfüllte Klüfte im Hauptanhydrit. In der Bohrung Dp Mors 42A1/95 wurde in der obersten, isoliert und invers lagernden Scholle zechsteinzeitlicher Leithorizonte (vgl. Kapitel 7.1.1) ein schlottenartiger Hohlraum im Topbereich des Hauptanhydrits (Zone α) erbohrt. Gebunden ist dieser Hohlraum an die Lösung von Kalisalz in einer Kluft mit einem Einfallen von 80°-90°. Den Rückschluß auf Kalisalz gestatten die makroskopisch deutlich erkennbaren hämatitischen Anreicherungen (Schüppchen) im Marienglas als Relikte von Carnallit oder Sylvin. Die Kluftweite (Öffnungsweite) läßt sich nicht bestimmen, da nur eine Kluftfläche im Kern erbohrt wurde (Kluftweite > Bohrdurchmesser). Die aufgeschlossene Kluftfläche zeigt hypidiotopische, glasklare Gipskristalle mit Kanten-längen bis 4 cm, die überwiegend senkrecht zur Kluftfläche orientiert sind. Im Bohrkern ist die Kluft auf einer Strecke von ca. 6 m nachweisbar, bevor sie aus dem Bohrkern austritt. Im Liegenden des Karsthohlraumes ist der Kern durch eine extreme Vergipsung im Hauptanhydrit gekennzeichnet. Einlagerungen von Fremdmaterial konnten in dieser Kluft nicht bestimmt werden.

In der Bohrung Hmt 4/- weist die Hutgesteinsoberfläche zur unmittelbar angrenzenden Umgebung eine morphologische Depression auf, die in dieser Schnittebene eine steilere NE-Flanke aufweist (vgl. Anlage 13). Entgegen älteren Modellvorstellungen (BALZER 1997b) ist diese Tieflage an die residualen Bildungen der Hauptmulde gebunden (vgl. Kapitel 7.1.1). Ursache dieser Depression könnte eine Doline oder ein Erdfall infolge Subrosion von Leine-/Aller-Steinsalz der Hauptmulde zwischen zwei isolierten Hauptanhydritschollen gewesen sein. Die Beschreibung der im Schichtenverzeichnis nur als "feste, blaue Sandsteine" angesprochenen Deckgebirgssedimente unsicherer stratigraphischer Einstufung (geringmächtiger Jura unter Oberkreide ?) über dem Hutgestein läßt eine eindeutige Bestimmung des Karstphänomens nicht mehr zu.

In den Bohrungen Kb Mors 2/85 und Dp Mors 45A/94 wurden karstartige Hohlräume im Grenzbereich Hutgestein/Salzstruktur in der Größenordnung von ca. 1,40 m bzw. 0,60 m 'Mächtigkeit' lokalisiert. In diesen Bohrungen handelt es sich streng genommen nicht um Sulfatkarst, sondern um Phänomene im Gefolge der Salinarsubrosion.

In der Bohrung Kb Mors 2/85 ist der 'Karst' innerhalb der jüngsten Hutgesteinsbildungen in Annäherung zum Salzspiegel (mit Leine-Steinsalz der Westmulde) identifiziert worden (Kernverlust, Spülungsverlust, meßbarer Zufluß). Dieser Hohlraum kann als Folge einer unvollständigen Auskristallisation des salinarsubrosiv bedingten Lösungshohlraumes unter Erhalt von Lösungen am Salzspiegel angesehen werden.

In der Bohrung Dp Mors 45A/94 ist der 'Karstbereich' innerhalb der jüngsten Bildungen des Hutgesteins mit Kristallgipsen direkt oberhalb einer Hauptanhydrit-Klippe zu lokalisieren, wobei die Anhydritklippe bis auf eine Mikritisierung des Anhydrits in den obersten Partien und eine mit Marienglas auskristallisierte Kluft (ca. 10 m unterhalb der Oberkante Anhydritklippe) keinerlei Anzeichen einer subrosiven Veränderung zeigt. Der 'Karst' steht in kausalem Zusammenhang mit der vollständigen Subrosion des Salzlagers der Randmulde 2 im Hangenden der Anhydritklippe (vgl. Anlage 9) und einer nicht vollständigen Auskristallisation des resultierenden Lösungshohlraumes (geringer 'Kernverlust') unter Erhalt eines Lösungsreservoirs. Die Interpretation der Meßergebnisse des hydraulischen Bohrloch-Tests im Grenzbereich Gipsneubildungen/Anhydritklippe geht ebenfalls von einem begrenzten Lösungsreservoir aus.

9 Zusammenfassung

Zur weiteren Standorterkundung im Rahmen des Planfeststellungsverfahrens zum Weiterbetrieb des ERA Morsleben über das Jahr 2000 hinaus bzw. zu dessen Stillegung wurden auf Veranlassung des BfS von der BGR umfangreiche geologische Untersuchungsarbeiten über und unter Tage geplant und durchgeführt.

Als Teil dieser Untersuchungen wurde der BGR die "Geologische Bearbeitung des Hutgesteins über der Allertal-Salzstruktur" mit der Aufgabe übertragen, die Kenntnisse zum lithologischen und strukturgeologischen Aufbau des Hutgesteins über der Allertal-Salzstruktur im Untersuchungsgebiet zu verbessern, die Ergebnisse zu beschreiben und in Profilen, Karten, Schnitten u.a. darzustellen. Mit der Vorlage dieses Berichtes finden diese geologischen Arbeiten ihren Abschluß.

Die Ergebnisse wurden auf der Grundlage der faziellen, lithostratigraphischen und strukturgeologischen Bearbeitung von Kernbohrungen, bohrlochgeophysikalischen Messungen, flach- und tiefenseismischen Messungen sowie unter Auswertung von relevanten Archiv- bzw. Literaturunterlagen erzielt.

Die Abbildung 6 gibt eine Übersicht zur Untersuchungsmethodik der geologischen Bearbeitung des Hutgesteins über der Allertal-Salzstruktur. Die lithologische und lithostratigraphische Gliederung des Hutgesteins orientiert sich an der stratigraphischen Abfolge des Zechstein in der Allertal-Salzstruktur, wobei im Hutgestein die subrosiv beeinflußten tonigen, karbonatischen und sulfatischen Schichtenfolgen des Zechstein 2-4 als zechsteinzeitliche Leithorizonte bezeichnet werden. Für die strukturgeologische Gliederung des Hutgesteins über der Allertal-Salzstruktur sind die Schichtglieder Deckanhydrit, Grauer Salzton, Leine-Karbonat und Hauptanhydrit sowie Aller-Anhydrit und Roter Salzton relevant.

Die lithologische bzw. lithostratigraphische Abgrenzung residualer Bildungen des Staßfurt-Steinsalzes gegen residuale Bildungen des Leine- bzw. Aller-Steinsalzes auf der Grundlage textureller Merkmale ist nur bedingt möglich, da sich einerseits unabhängig vom stratigraphischen Edukt salinarer Schichtenfolgen texturell übereinstimmende Ca-Sulfat-Lithotypen im residualen Hutgestein aushalten lassen, andererseits in der primären Salinarfazies nur wenige stratigraphische Leithorizonte existieren.

Als Lithotypen, die aus der Subrosion salinarer Gesteinsfolgen resultieren, können genannt werden: katatektischer Anhydrit, Hornanhydrit, Anhydrit-Residualbreccie, Anhydrit-Kollapsbreccie. Alle aufgeführten Lithotypen können auch in sekundärer Gips-Fazies ausgebildet sein.

Als Lithotyp, der im Zusammenhang mit der Kristallisation aus sulfatübersättigten (humiden) Lösungen kristallisiert, ist der Kristallgips zu nennen.

Aufbauend auf der lithostratigraphischen Differenzierung der Schichtenfolgen in den erbohrten Hutgesteinsprofilen war es das Ziel der strukturgeologischen Analyse, über die Bestimmung der Lagerungsverhältnisse in den punktuell verteilten Hutgesteinsbohrungen räumliche Modellvorstellungen zum geologischen Bau des Hutgesteins unter Berücksichtigung der Lagerungsverhältnisse in der Salzstruktur, insbesondere im Salzspiegelbereich, zu erzielen.

Durch eine Analyse der Lagerungsverhältnisse der im Hutgestein auftretenden residualen Folgen und zechsteinzeitlichen Leithorizonte konnten in den Hutgesteinsaufschlüssen die Lagerungsverhältnisse von salinartypischen Sattel- und/oder Muldenstrukturen in residualer Fazies abgeleitet werden. Es lassen sich vier strukturgeologische Kategorien für das Hutgestein über der Allertal-Salzstruktur definieren, wobei zwischen monotypen und polytypen Hutgesteinsprofilen unterschieden werden kann: residuale Mulden-Profile (monotyp), residuale Sattel-Profile (monotyp), residuale Mulden-Sattel-Profile (polytyp), residuale Sattel-Mulden-Profile (polytyp).

Durch Verknüpfung mehrerer Hutgesteinsprofile und unter struktureller "Anbindung" an die internen Salzstrukturen im Niveau des rezenten Salzspiegels wurden zweidimensionale Modellvorstellungen zum geologischen Bau des Hutgesteins über der Allertal-Salzstruktur unter Verwendung einer Karte der Isohypsen der Salzstrukturoberfläche im Maßstab 1: 10000 entwickelt (zehn geologische Schnitte durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur). Die geologischen Schnitte durch das Hutgestein der Allertal-Salzstruktur zeigen im morphologischen Erscheinungsbild der Hutgesteinsoberfläche ein sehr differenziertes Bild. Die morphologische Variabilität der Hutgesteinsoberfläche muß im Zusammenhang mit den zwei grundlegenden Prozessen der präsubrosiven bis synsubrosiven Bildung disharmonischer Salzstrukturen und der flächenhaften Subrosion der salinaren Gesteine in diesen Strukturen über geologische Zeiträume gesehen werden.

81

Allertal-Salzstruktur

82

Die Analyse subrosiver Erscheinungen und Prozesse im Hutgestein der Allertal-Salzstruktur umfaßt die fazielle Analyse des Hutgesteins am rezenten Salzspiegel, Modellvorstellungen zur Genese der rezenten Grenzfläche Hutgestein/Salinar, die Betrachtungen zur selektiven Subrosion am Kaliflöz Staßfurt auf der Grundlage von Bohrergebnissen sowie zur Humidsubrosion im Hutgestein (einschließlich Kluftanalyse) und zum Sulfatkarst.

BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE

DIENSTBEREICH BERLIN

Im Auftrag:

Projektleiter:

(Prof. Dr. M. Langer) - Direktor und Professor - Sachbearbeiter:

- Wissenschaftlicher Angestellter -

Arbeitspaketleiter:

(Dr. D. Halzer) - Wissenschaftlicher Angestellter -

10 Literaturverzeichnis

- BALZER, D. (1992): Petrologische Untersuchungen von Anhydrit- und Gipsgesteinen an ausgewählten Bohrprofilen aus dem Hutgestein des Allertaldiapirs. - Diss. Math.-Naturwiss. Fak. Universität Greifswald. -[Unveröff.].
- (1997a): Mikrofazies-Analyse von Ca-Sulfatgesteinen des Zechstein. Ein Beitrag zur petrographischen und petrologischen Bearbeitung salinarer Wirtsgesteine für die Endlagerung radioaktiver Abfälle in der Bundesrepublik Deutschland. - Geol. Jb., D 106: 3-99; Hannover.
- (1997b): Möglichkeiten und Grenzen der Analyse und Interpretation salinarer Zechstein-Strukturen in subrosiver Fazies. - Greifswalder Geowissenschaftl. Beiträge, 5, 57-76; Greifswald.
- BEST, G. (1996): Floßtektonik in Norddeutschland: Erste Ergebnisse reflexionsseismischer Untersuchungen an der Salzstruktur "Oberes Allertal". Z. dt. geol. Ges., 147, 4: 455-464; Stuttgart.
- BORNEMANN, O. (1991): Zur Geologie des Salzstocks Gorleben nach den Bohrergebnissen. BfS-Schriften, 4/91: 1-67; Braunschweig.
- DIN 18 123 (1983): Baugrund; Untersuchung von Bodenproben. Normenauschuß Bauwesen (NABau) im DIN Deutsches Institut für Normung e.V. Berlin.
- GOLDMANN, M. (1952): Deformation, metamorphism and mineralization in gypsum-anhydrite caprock, Sulphur salt dome, Louisiana. - Mem. Geol. Soc. Am., 50: 1-169; New York.
- HEMMANN, M. (1971): Ausbildung und Genese des Leinesteinsalzes und des Hauptanhydrits (Zechstein 3) im Ostteil des Subherzynen Beckens. Ber. dt. geol. Gesell., **16:** 1076-1106; Berlin.
- JUBITZ, K.-B., BEUTLER, G., SCHWAB, G. & STACKEBRANDT, W. (1991): Zur Strukturentwicklung des Spaltendiapirs der Allertalzone (Subherzyne Senke). - Z. geol. Wiss., 19, 4: 409-421; Berlin.
- KRZYWICKI, E. (1949): Die Geologie des Kali- und Steinsalzbergwerkes Bartensleben/Allertal. -Gutachten Geol. LA; Berlin.
- LANGBEIN, R. (1987): The Zechstein sulfates: the state of the art. In: PERYT, T. M. (Ed.): The Zechstein facies in Europe. Lecture Notes in Earth Sciences, 10: 143-188; Berlin u.a. (Springer).
- LANGBEIN, R. & SEIDEL, G. (1960): Zur Frage des "Sangerhäuser Anhydrits". Geologie, 9: 778-787; Berlin.

- LOEFFLER, J. & LOEFFLER, I. (1957): Salzspiegel im Raum Aschersleben-Güsten. Z. Bergakademie, 9, 4: 191-195; Freiberg.
- LOEFFLER, J. (1962): Die Kali- und Steinsalzlagerstätten des Zechstein in der DDR. Teil III: Sachsen-Anhalt. - Freiberger Forsch.- H. C97: 1-336; Freiberg.
- PREUSS, H., VINKEN, R. & VOSS, H.-H. (1991): Symbolschlüssel Geologie. Niedersächsisches Landesamt für Bodenforschung und Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover.
- SCHMIERER, T. (1914): Erläuterungen zur Geologischen Karte von Preußen und benachbarten Bundesstaaten, Blatt Helmstedt. - Lief. 185: 1-11; Berlin.

Berichte des Zentralen Geologischen Instituts (ZGI) Berlin, der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) Hannover/Berlin und der Deutschen Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE) Peine zum Projekt Morsleben, die in diesem Fachbericht zitiert werden (Reihenfolge wie im Text):

- /1/ BALZER, D., KÄBEL, H., LANGKUTSCH, U., LOTSCH, D., TESSIN, R. & ZIERMANN, H. (1993):
 Projekt Morsleben: Grundlagen zur hydrogeologischen Modellbildung. Zwischenbericht 1993. BGR-Bericht: Archivnummer Hannover 111002; Berlin/Hannover. [Unveröff.].
- /2/ BEST, G. & ZIRNGAST, M. (1998): Analyse der strukturgeologischen Entwicklung der Salzstruktur "Oberes Allertal". - BGR-Bericht: Archivnummer Hannover 116873; Hannover. - [Unveröff.].
- /3/ KÄBEL, H., LOTSCH, D., PUTSCHER, S., REMUS, W., SÖLLIG, A., TESSIN, R. & ZIERMANN, H. (1987): Geowissenschaftliche Analyse zur Endlagerung radioaktiver Abfälle. Geologische und hydrogeologische Verhältnisse in der weiteren Umgebung des Endlagerstandortes Morsleben: Dokumentation zum Bohrprogramm ERA Morsleben 1983-1985 (Dokumentationsband 1 zur geowissenschaftlichen Analyse ERAM 1987). ZGI-Bericht 44/87; Archivnummer Hannover 4105219; Berlin. [Unveröff.].
- /4/ BALZER, D. (1996a): Projekt Morsleben: Geologische Feldaufnahmen des Hutgesteins der Bohrungen Dp Mors xx/88-90. - BGR-Bericht: Archivnummer Hannover 115453, Archivnummer Berlin 2025738; Berlin/Hannover. - [Unveröff.].
- /5/ LOTSCH, D. (1998a): Projekt Morsleben: Geologische Schichtenverzeichnisse der Bohrungen Dp Mors xx/88-90 und Dp Mors xx/94-95. - BGR-Bericht: Archivnummer Hannover 116625; Berlin/ Hannover. -[Unveröff.].

- /6/ BALZER, D. (1996b): Projekt Morsleben: Geologische Feldaufnahmen des Hutgesteins der Bohrungen
 Dp Mors xx/94-95. BGR-Bericht: Archivnummer Hannover: 114650, Archivnummer Berlin 2025600;
 Berlin/Hannover. [Unveröff.].
- /7/ FENNER, J. (1998): Projekt Morsleben: Zusammenfassende Darstellung der paläontologischbiostratigraphischen Ergebnisse aus tertiären und mesozoischen Sedimenten im Deckgebirge der Salzstruktur "Oberes Allertal". - BGR-Bericht: Archivnummer Hannover 116691; Hannover. - [Unveröff.].
- /8/ ZIRNGAST, M. (1997): Projekt Morsleben: Flachseismische Untersuchungen Begleitung und Bewertung.
 BGR-Bericht: Archivnummer Hannover 116347; Hannover. [Unveröff.].
- /9/ BEST, G. (1997): Projekt Morsleben: Reflexionsseismische Untersuchungen Begleitung und Bewertung.
 BGR-Bericht: Archivnummer Hannover 115984; Hannover. [Unveröff.].
- /10/ STIEWE, H. (1992): Gravimetrische Untersuchung der Allertalzone im Raum Morsleben. BGR-Bericht: Archivnummer Hannover 109682, Archivnummer Berlin 109682; Berlin/Hannover. - [Unveröff.].
- /11/ BEHLAU, J., BORNEMANN, O. & MINGERZAHN, G. (1998): Projekt Morsleben: Erarbeitung eines geologischen Lagerstättenmodells Bartensleben/Marie. - BGR-Bericht: Archivnummer Hannover 116872; Hannover. - [Unveröff.].
- /12/ KÄBEL, H. (1990): Zum geologischen Bau der Allertalzone im Abschnitt Alleringersleben-Beendorf (Zwischenbericht). - Bericht Zentrales Geologisches Institut; Archivnummer Berlin: 2023565; Berlin. - [Unveröff.].
- /13/ ALBRECHT, H. & *BURCHARDT, I. (1998): Geologische Bearbeitung von Trias und Jura mit Erarbeitung einer Karte ohne kretazische und jüngere Bildungen. - Bericht der BGR und der *Geologische Forschung und Erkundung (GFE) GmbH Halle: Archivnummer 116621; Hannover/Halle. - [Unveröff.].
- /14/ LOTSCH, D. (1998b): Projekt Morsleben: Geologische Bearbeitung von Kreide und Tertiär.
 BGR-Bericht: Archivnummer Hannover 116620; Berlin/Hannover. [Unveröff.].
- /15/ ZIERMANN, H., *HEDERICH, N. & *ZWIRNER, R. (1998): Projekt Morsleben: Geologische Bearbeitung des Quartärs. - Bericht der BGR und *WERSCHE GmbH Hannover (im Auftrag der BGR): Archivnummer Hannover 116619; Berlin/Hannover. - [Unveröff.].

Berichte von Unterauftragnehmern der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) HannoverlBerlin und des Bundesamtes für Strahlenschutz (BfS) Salzgitter zum Projekt Morsleben, die in diesem Fachbericht zitiert werden:

- Berichte BLM Storkow (1995): Projekt Morsleben: Sicherung und Auswertung bohrlochgeophysikalischer Daten aus dem Bohrprogramm 1988-1990 (Bohrlochgeophysikalische Kurzberichte Dp Mors xx/88-90 der Gesellschaft für bohrlochgeophysikalische und geoökologische Messungen mbH Storkow). - Berichte im Auftrag des BfS Salzgitter; Storkow. - [Unveröff.].
- Berichte Western Atlas Logging Services (WALS) / Atlas Geosciences (1996 und 1997): Projekt Morsleben: Struktur- und Kluftauswertung basierend auf den CBIL-Imagedaten der Bohrungen Dp Mors xx/94-95. -Berichte im Auftrag des BfS Salzgitter; London, Den Helder. - [Unveröff.].
- Berichte Western Atlas Wireline Services/Golder Ass. (1996): Projekt Morsleben: Übertägige Standorterkundung ERA Morsleben, Abschlußberichte geophysikalische Bohrlochmessungen der Bohrungen Dp Mors xx/94-95. - Berichte im Auftrag des BfS Salzgitter; Celle. - [Unveröff.].
- SONNTAG, C. (1998): Interpretation der Isotopen-Edelgase und Salinitätsuntersuchungen an Grundwasserproben und an Porenwässern in frischen Bohrkernproben aus dem hydrogeologischen Untersuchungsgebiet des ERA Morsleben. - Bericht Universität Heidelberg im Auftrag des BfS Salzgitter; Heidelberg. -[Unveröff.].

11 Verzeichnis der Tabellen

Tabelle 1: Übersicht über die Bohrungen mit Anteil Hutgestein/Zechstein im engeren und erweiterten Untersu-
chungsgebiet (grau hinterlegt: Bohrungen außerhalb der in Kapitel 3.1 genannten Koordinaten für die Kar-
tendarstellungen Hutgestein)
Tabelle 2: Stratigraphische Schichtenfolge des Zechstein in der Allertal-Salzstruktur (stratigraphische Symbole
nach PREUSS et al. 1991)
Tabelle 3: Synoptische Darstellung der lithostratigraphischen Gliederung der Schichtenfolgen im Hutgestein
über der Allertal-Salzstruktur
Tabelle 4: Salinare Internstrukturen in der Allertal-Salzstruktur im Salzspiegelniveau und verwendete Abkür-
zungen im Text
Tabelle 5: Übersicht über die Stellung der Hutgesteinsbohrungen zu den salinaren Internstrukturen im Niveau
der rezenten Salinaroberfläche der Allertal-Salzstruktur (Grundlage: Schematische Darstellung der am
Salzspiegel ausstreichenden salinaren Strukturen im Maßstab 1: 10000: Anlage 3; Sattel = z2NA/z2SF;
Mulde = z3NA/z4NA; Bohrungen entsprechend Kartenausschnitt Hutgestein: vgl. Kapitel 3.1)
Tabelle 6: Strukturelle Gliederung der Hutgesteinsbohrungen; Residuen WM, SM, HM, OM, RM = residuale
Bildungen des z3NA/z4NA; Residuen WS, WSS, ÖSS, RS = residuale Bildungen des z2NA/z2SF; Be-
zeichnung der residualen Strukturen im Hutgestein in Analogie zur Bezeichnung der salinaren Internstruk-
turen nach KRZYWICKI (1949): vgl. Tabelle 4, Seite 41; in [] strukturelle Gliederung nicht erbohrter
Hutgesteinsanteile bis einschließlich Salinarstruktur am Salzspiegel;
Tabelle 7: Mächtigkeiten des Hutgesteins in strukturgeologisch gliederbaren Profilen (in Klammern fiktive
Mächtigkeit bezogen auf das Niveau -140 m NN)
Tabelle 8: Mächtigkeiten des Hutgesteins in strukturgeologisch nicht gliederbaren Profilen (in Klammern fiktive
Mächtigkeit bezogen auf das Niveau -140 m NN)
Tabelle 9: Erbohrte Mächtigkeiten des Hutgesteins in den Bohrungen außerhalb des Kartenausschnittes Hutge-
stein
Tabelle 10: Toplagen Hutgestein/Zechstein im Kartenausschnitt Hutgestein (stratigraphische Symbole nach
PREUSS et al. 1991)
Tabelle 11: Toplagen Hutgestein/Zechstein außerhalb des Kartenausschnittes Hutgestein (stratigraphische Sym-
bole nach PREUSS et al. 1991)
Tabelle 12: Koordinaten der Schnittspuren für die geologischen Schnitte durch das Deckgebirge und das Hutge-
stein über der Allertal-Salzstruktur im Maßstab 1: 2000
Tabelle 13: Salzspiegel-Tiefenlage in der Allertal-Salzstruktur nach Bohrungen (stratigraphische Symbole nach
PREUSS et al. 1991); (grau hinterlegt: Bohrungen außerhalb der unter Kapitel 3.1 genannten Koordinaten
für die Kartendarstellungen Hutgestein)
Tabelle 14: Streich- und Fallrichtung von Klüften im Hutgestein (einschließlich Zechstein) nach CBIL-Image-
Daten

12 Verzeichnis der Abbildungen

Abbildung 1: Lithostratigraphische Gliederung des Hauptanhydrits im Hutgestein der Allertal-Salzstruktur	
nach BALZER (1992)	23
Abbildung 2: Strukturgeologische Gliederung des Hutgesteins in der Bohrung Dp Mors 40A/95	45
Abbildung 3: Strukturgeologische Gliederung des Hutgesteins in der Bohrung Dp Mors 42A1/95	. 46
Abbildung 4: Strukturgeologische Gliederung des Hutgesteins in der Bohrung Dp Mors 65A/95	. 49
Abbildung 5: Strukturgeologische Gliederung des Hutgesteins in der Bohrung Dp Mors 72A/95	, 50
Abbildung 6: Übersicht zur Untersuchungsmethodik der geologischen Bearbeitung des Hutgesteins über	
der Allerial-Salzstruktur.	. 82

89

13 Verzeichnis der Anlagen

Anlage 1:	Karte der Isohypsen der Salzstrukturoberfläche (= Hutgestein + Salinar) (Maßstab 1: 10000)
Anlage 2:	Karte der Isopachen des Hutgesteins (Maßstab 1: 10000)
Anlage 3:	Schematische Darstellung der am Salzspiegel ausstreichenden salinaren Strukturen
	(Maßstab 1: 10000)
Anlage 4:	(Blattzahl 38): Überarbeitete geologische Schichtenverzeichnisse der Bohrungen Hmt xx/-
	- Anteile Hutgestein/Zechstein einschließlich Säulenprofile - (in Anlehnung an SCHMIERER 1914)
Anlage 5:	(Blattzahl 7): Probenjournal (Übersicht über die Daten aller entnommenen bzw. untersuchten Proben
	im Rahmen der geologischen Bearbeitung des Hutgesteins)
Anlage 6:	Geologischer Schnitt A-A' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
•	(Maßstab 1: 2000)
Anlage 7:	Geologischer Schnitt B-B' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)
Anlage 8:	Geologischer Schnitt C-C' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)
Anlage 9:	Geologischer Schnitt D-D' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)
Anlage 10:	Geologischer Schnitt E-E' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)
Anlage 11:	Geologischer Schnitt F-F' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)
Anlage 12:	Geologischer Schnitt G-G' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)
Anlage 13:	Geologischer Schnitt H-H' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)
Anlage 14:	Geologischer Schnitt I-I' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)
Anlage 15:	Geologischer Schnitt J-J' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur
	(Maßstab 1: 2000)

Anlage 4: Überarbeitete geologische Schichtenverzeichnisse der Bohrungen Hmt xx/-

- Anteile Hutgestein / Zechstein einschließlich Bohrsäulenprofile -

(in Anlehnung an SCHMIERER 1914)

Inhaltsverzeichnis:

Name der Bohrung	Blattzahl	Blattzahl
	Schichtenverzeichnis	Bohrsäulenprofil
Hmt 4/- (Variante 1)	1	1
Hmt 4/- (Variante 2)	1	1
Hmt 5/-	1	1
Hmt 6/-	1	1
Hmt 7/-	1	1
Hmt 9/-	2	1
Hmt 13/-	1	1
Hmt 21/	2	1
Hmt 24/-	1	1
Hmt 25/-	1	1
Hmt 27/-	3	2
Hmt 28/-	1	1
Hmt 29/-	1	1
Hmt 30/-	2	1
Hmt 44/-	1	1

Gesamtblattzahl der Anlage 4: 38

Projek	ct Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ng Hmt 4/-							Blatt 1 von 1
Hutge	stein/Zechstein (Variante	1)					
	Kem- / -st	recke		Absch	unitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[Ш]	[m]	[ш]	[ɯ]	Bohrlochachse		Bez.
1	-148,73						j/kroALu ?; Grenze Deckgebirge/Hutgestein bei 148,73 m unter Gelände;	j/kroALu ?
5	148,73-263,00			114,27	263,00		Gips (Residuen 23NA/24NA der Hauptmulde) / sekundär residual- subrosiv // Salzspiegel bei 263,00 m (= -149 m NN); selektive Subrosion //	Hutgestein
ю	263,00-295,00			32,00	295,00		Anhydrit und Kalisalz (keine weiteren Angaben: Anhydritmittel ?) / sedimentär //	z3NA
4	295,00-442,00			147,00	442,00		Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagerungen (Hauptmulde)/sedimentär//	z3/z4
	442,00						Endteufe der Bohrung Hmt 4/- bei 442,00 m unter Gelände;	

Projel	kt Morsleben		t i	-		Geologi	sches Schichtenverzeichnis	
Bohrı	ing Hmt 4/-							Blatt 1 von 1
Hutge	stein/Zechstein (Variante	2)					
	Kem- / -st	trecke		Absch	mitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[¤]	[m]	[ш]	[m]	Bohrlochachse		Bez.
	-148,73						j/kroALu ?; Grenze Deckgebirge/Hutgestein bei 148,73 m unter Gelände;	j/kroALu ?
2	148,73-263,00			114,27	263,00		Gips (Residuen z2NA des Östlichen Schachtsattels) / sekundär residual- subrosiv // Salzspiegel bei 263,00 m (– -149 m NN); selektive Subrosion am Kaliflöz Staßfurt Lager H //	Hutgestein
3	263,00-295,00	7		32,00	295,00		Anhydrit und Kalisalz (keine weiteren Angaben; nach Strukturanalyse lagert Kalilager Staßfurt über Hauptanhydrit)/sedimentär//	z2SF über
			*		2			z3AN
4	295,00-442,00			147,00	442,00		Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagerungen (Hauptmulde)/sedimentär//	z3/z4
	442,00						Endteufe der Bohrung Hmt 4/- bei 442,00 m unter Gelände;	

Projel	kt Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ing Hmt 5/- Hut	gestein/Z4	schstein					Blatt 1 von 1
	Kern- / -st	recke		Absch	hnitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[ɯ]	[m]	[m]	Bohrlochachse		Bez.
-	-209,00						kmGo; Grenze Deckgebirge/Hutgestein bei 209,00 m unter Gelände;	kmGo
4	209,00-272,00			63,00	272,00		Auhydrit (z2NA-Residuen eines Teilsattels im Bereich der Westmulde über z3NA/z4NA-Residuen der Westmulde mit isolierter z3AN-Scholle ?: Abgrenzung nicht möglich) / primär residual-subrosiv / Salzspiegel bei 272,00 m (138 m NN) //	Hutgestein
2	272,00-650,00	7		378,00	650,00		Steinsalz mit Kalisalzeinlagerungen (Westmulde mit z2NA-Teilsattel über Westlichem Schachtsattel) / sedimentär //	z.2/z3/z4
	650,00				2		Endteufe der Bohrung Hmt 5/- bei 650,00 m unter Gelände;	

Projel	kt Morsleben					Geologi	sches Schichtenverzeichnis	
Bohrı	ıng Hmt 6/- Hutg	gestein/Zec	chstein					Blatt 1 von 1
	Kern- / -s	trecke		Abscl	nnitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[m]	[m]	[m]	Bohrlochachse		Bez.
1	-238,00						kmSM; Grenze Deckgebirge/Hutgestein bei 238,00 m unter Gelände;	kmSM
2	238,00-247,00			00'6	247,00		Anhydrit und Gips: Residuen z3NA/z4NA der Randmulde 1 (-3 ?) / se- kundär residual-subrosiv / Salzspiegel bei 247,00 m (140 m NN) //	Hutgestein
3	247,00-347,00			100.00	347,00		Steinsalz: Randmulde 1 (-3 7) / sedimentär //	z3/z4
	347,00						Endteufe der Bohrung Hmt 6/- bei 347,00 m unter Gelände;	

Projekt Morsleben

Geologisches Schichtenverzeichnis

keAbschnitts-TektonikyTektonikyStrain-GewVert.LängeTeuteWinkel zurgraph.Gew(m)(m)[m]BohrlochachseBez.Jan(m)[m]BohrlochachsekmSM: Grenze Deckgebringe/Hutgestein bei 198,50 m unter Gelände:Bez.Image: Serie227,00kmSM: Grenze Deckgebringe/Hutgestein bei 198,50 m unter Gelände:kmSM:Image: Serie238,50227,00kmSM: Grenze Deckgebringe/Hutgestein bei 198,50 m unter Gelände:kmSM:Image: Serie238,50245,60kmSM: Grenze Deckgebringe/Hutgestein bei 198,50 m unter Gelände:kmSM:Image: Serie238,50245,60kmSM: Grenze Deckgebringe/Hutgestein bei 198,50 m unter Gelände:kmSM:Image: Serie245,60245,60kmSM: Grenze Deckgebringe/Hutgestein bei 198,50 m unter Gelände:kmSM:Image: Serie245,60245,60Kandmulde 1-(37) / sekundärHutgesteinImage: Serie245,60245,60Kandmulde 1-(37) / sekundärHutgesteinImage: Serie245,60SerieSerieSerieSerieImage: Serie246,60SerieSerieSerieSerieImage: Serie246,60SerieSerieSerieSerieImage: Serie245,60SerieSerieSerieSerieImage: Serie245,60SerieSerieSerieSerieImage: Serie246,60SerieSerieSerieSerieImage: SerieSerieSeri	ng Hmt	7/- Hut _{	gestein/Zec	chstein					latt 1 von 1
w. Vert. Länge Teufe Winkel zur Geologische Beschreibung/ Bemerkungen graph. il [m] [m] [m] [m] Bohrlochachse Bez. il [m] [m] [m] Bohrlochachse McSM: Grenze Deckgebtrge/Hutgestein bei 198,50 m unter Gelände: Bez. 28,50 227,00 227,00 Gips (spätig): Residuen Z3NA/24NA der Randmulde 1- (3 ?) / sekundär Hutgestein 18,60 245,60 245,60 Tonstein (Lettenschiefer), untergordnet Gips: Residuen Z3NA/24NA der Randmulde 1- (3 ?) / sekundär Hutgestein 8,40 254,00 245,60 245,60 Randmulde 1- (3 ?) / sekundär residual-subrosiv / dunkeltor/// Hutgestein 8,40 254,00 254,00 Miny/dit, Salzton- und Kalisalzeinlagenugen (Randmulde 1- (3 ?) / sekundär Hutgestein 12,20 56,30 565,30 S66,30 S66,30 S66,30 Mony/dit, bituminös / sedimentär // Z3/23/200 Z2/23/24 1,20 567,50 567,50 S66,30 Kalkmergel, feingeschichtet / sedimentär // Z3/0 1,20 57,33 57,33 Munter Gelände Z2/23/24 Sedimentär // ZAN	Kem- / -strecke	trecke			Absch	mitts-	Tektonik/		Strati-
i)[m][m][m]BohlochachseBez.i)[m][m][m]BohlochachsekmSM: Grenze Deckgebirge/Hutgestein bei 198,50 m unter Gelände:kmSM28,50227,00(spätig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein18,60245,60(spätig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein8,40254,00(spätig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein8,40254,00(spätig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein8,40254,00(spätig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein8,40254,00(spätig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein11,20566,30S66,30Sefisati zahnbydrit, Salzton- und Kalisalzeinlagerungen (Randmulde 1- (3 ?) / sekundär2/23/z411,20567,50Sefisati zahnbydrit, Salzton- und Kalisalzeinlagerungen (Randmulde 1- (3 ?) / sekundärz2/23/z411,20567,50Sefisati zahnbydrit, Salzton- und Kalisalzeinlagerungen (Randmulde 1- (3 ?) / sekundärz2/23/z411,20567,50Sefisati zahnbydrit, Salzton- und Kalisalzeinlagerungen (Randmulde 1- (3 ?) / sekundärz2/23/z411,20567,50Sefisati zahnbydrit, Salzton- und Kalisalzeinlagerungen (Randmulde 1- (3 ?) / sekundärz2/23/z411,20567,50Sefisati zahnbydrit, Salzton- und Kalisalzeinlagerungen (Randmulde 1- (3 ?) / sekundärz2/23/z411,20573,38S73,38S73,38ZAN11,20Sit <td>Teufe</td> <td>Ge</td> <td>Ň</td> <td>Verl.</td> <td>Länge</td> <td>Teufe</td> <td>Winkel zur</td> <td>Geologische Beschreibung / Bemerkungen</td> <td>graph.</td>	Teufe	Ge	Ň	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
28,50227,00kmSM; Grenze Deckgebirge/Hutgestein bei 198,50 m unter Gelände:kmSM28,50227,00Gips (spätig); Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein18,60245,60Tonstein (Lettenschiefer), untergeordnet Gips: Residuen z3NA/z4NA derHutgestein8,40254,00Gips (massig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein8,40254,00Cips (massig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein12,30566,30Gips (massig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundärHutgestein1,20567,50Stoin mortin, Salzspiegel bei 254,00 m (=-140)z2/z3/z41,20567,50Anhydrit, bituminös / sedimentär //z2/33/z45,88573,38Kalkmergel, feingeschichtet / sedimentär //z2/33/z45,88573,38m unter Geländez2/33.8 m unter Gelände	[m]	<u>E</u>	6	[m]	[m]	[ɯ]	Bohrlochachse		Bez.
28,50227,00Cips (spätig): Residuen Z3NA/z4NA der Randmulde 1- (3 ?) / sekundårHutgestein18,60245,60Tonstein (Lettenschiefer), untergeordnet Gips: Residuen Z3NA/z4NA der Randmulde 1- (3 ?) / sekundår residual-subrosiv / dunkelrot //Hutgestein8,40254,00Gips (massig): Residuen Z3NA/z4NA der Randmulde 1- (3 ?) / sekundår residual-subrosiv + Gipsneubildungen / Salzspiegel bei 254,00 m (140 m NN) //Hutgestein312,30566,30Ste6,30Reinal-subrosiv + Gipsneubildungen / Salzspiegel bei 254,00 m (140 m NN) //Zutsch1,20567,50Anhydrit, bituminös / sedimentår //zolz3/z43zolz3/z435,88573,38Kalkmergel, feingeschichtet / sedimentår //zolz3/z45,88573,38unter Geländezolz3,385,88573,38unter Geländezolz3,38	-198,50							kmSM; Grenze Deckgebirge/Hutgestein bei 198,50 m unter Gelände;	kmSM
18,60245,60Tonstein (Lettenschiefer), untergeordnet Gips: Residuen Z3NA/z4NA der Randmulde 1- (3 ?) / sekundär residual-subrosiv / dunkelrot // B,40Hutgestein 254,00 m(1408,40254,00Z54,00 m(140)Hutgestein residual-subrosiv + Gipsneubildungen / Salzspiegel bei 254,00 m(140)Hutgestein 22/23/z4312,30566,30S66,30Steinsalz mit Anhydrit, Salzton- und Kalisalzeinlagerungen (Randmulde 1 % edimentär // Anhydrit, bituminös / sedimentär //Autgestein 22/z3/z41,20567,50Kalkmergel, feingeschichtet / sedimentär //z2/z3/z45,88573,38Kalkmergel, feingeschichtet / sedimentär //z2/z3/z4	198,50-227,00				28,50	227,00		Gips (spätig): Residuen z3NA/z4NA der Randmulde 1- (3 7) / sekundär residual-subrosiv + Gipsneubildungen //	Hutgestein
8,40254,00Gips (massig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundär residual-subrosiv + Gipsneubildungen / Salzspiegel bei 254,00 m (=-140 m NN) //Hutgestein z2/23/z4312,30566,30S66,30Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagerungen (Randmulde 1 über Randsattel 1 ? / sedimentär // Anhydrit, bituminös / sedimentär //22/23/z41,20567,50Anhydrit, bituminös / sedimentär // Anhydrit, bituminös / sedimentär //22/23/z45,88573,38573,38z2/33/8Fudteufe der Bohrung Hmt 7/- bei 573,38 m unter Geländez2/23/38 m unter Gelände	227,00-245,60				18,60	245,60		Tonstein (Lettenschiefer), untergeordnet Gips: Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundär residual-subrosiv / dunkelrot //	Hutgestein
312,30 566,30 Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagerungen (Randmulde 22/23/24 1,20 567,50 Anhydrit, bituminös / sedimentär // z2AN 5,88 573,38 Kalkmergel, feingeschichtet / sedimentär // z2AN 5,88 573,38 Endteufe der Bohrung Hmt 7/- bei 573,38 m unter Gelände z2CA	245,60-254,00				8,40	254,00		Gips (massig): Residuen z3NA/z4NA der Randmulde 1- (3 ?) / sekundär residual-subrosiv + Gipsneubildungen / Salzspiegel bei 254,00 m (= -140 m NN) //	Hutgestein
1,20 567,50 Anhydrit, bituminös / sedimentär // z2AN 5,88 573,38 Kalkmergel, feingeschichtet / sedimentär / schwarz // z2CA Endteufe der Bohrung Hmt 7/- bei 573,38 m unter Gelände z2CA	254,00-566,30				312,30	566,30		Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagerungen (Randmulde 1 über Randsattel 1 ? / sedimentär //	z2/z3/z4
5,88 573,38 Kalkmergel, feingeschichtet / sedimentär / schwarz // z2CA Endteufe der Bohrung Hmt 7/- bei 573,38 m unter Gelände	566,30-567,50				1,20	567,50		Anhydrit, bituminös/sedimentär//	z2AN
Endteufe der Bohrung Hmt 7/- bei 573,38 m unter Gelände	567,50-573,38				5,88	573,38		Kalkmergel, feingeschichtet / sedimentär / schwarz //	z2CA
	573,38							Endteufe der Bohrung Hmt 7/- bei 573,38 m unter Gelände	

	l von 2	rati-	aph.	lez.	сто	gestein	gestein }AN)	gestein V/z3GT/ DA)	gestein	
	Blatt	St	ß	д		Hut	Hut _s	Hut ₁ (z3C/	Hut	
			Geologische Beschreibung / Bemerkungen		kro; Grenze Deckgebirge/Hutgestein bei 146,00 m unter Gelände;	Wechselfolge im dm-Bereich von Gips und Tonstein (milde Letten, Letten partienweise sehr sandig) (Residuen z3NA/z4NA der Südmulde: mit karstartigen Einlagerungen wie in Dp 20/88 ?) / sekundär residual-subrosiv //	Gips, im Bereich von 170,00-175,00 m Gips mit Ton, im Bereich von 175,00-189,40 m Anhydrit / proretrograd-subrosiv //	Wechselfolge von Gips mit Ton, untergeordnet Sandstein (Karbonat 23CA ?) und Anhydrit / subrosiv überprägte Folge 23CA/23GT/22DA (Abgrenzung zu liegenden Residuen des Östlichen Schachtsattels nicht eindeutig möglich) //	im Bereich von 210,80-213,30 m Anhydrit mit schwachen Tonschichten; von 213,30-223,70 m Ton, Gips und Anhydrit; von 223,70-225,90 m Anhydrit (Residuen z2NA des Östlichen Schachtsattels) / sekundär residual-subrosiv //	
Rolon Rolon		Cektonik/	/inkel zur	ohrlochachse						
		L	X	ă					- 1	
		hnitts- 7	Teufe	[m]		151,80	191,80	210,80	225,90	
		Abschnitts-	Länge Teufe W	[m] B		5,80 151,80	40,00 191,80	19,00 210,80	15,10 225,90	
		Abschnitts-	Verl. Länge Teufe W	[m] [m] [m]		5,80 151,80	40,00 191,80	19,00 210,80	15,10 225,90	
	jestein	recke Abschnitts- T	Gew. Verl. Länge Teufe W	[m] [m] [m]		5,80 151,80	40,00 191,80	19,00 210,80	15,10 225,90	
	ng Hmt 9/- Hutgestein	Kern- / -strecke Abschnitts- 7	Teufe Gew. Verl. Länge Teufe W	[m] [m] [m] [m] [m]	-146,00	146,00-151,80 5,80 151,80	151,80-191,80 191,80	191,80-210,80 210,80	210,80-225,90	

Projel	kt Morsleben					Geoloa	sches Schichtenverzeichnis	
Bohru	mg Hmt 9/- Hutg	estein/Zeo	chstein					Blatt 2 von 2
	Kem- / -st	recke		Absch	initts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[IJ]	[ɯ]	[IJ]	[ш]	Bohrlochachse		Bez.
0	225,90-227,10			1,20	227,20		Ton, Gips und Anhydrit / subrosiv überprägte Folge z2DA/z3GT ? //	Hutgestein
								(z2DA/z3GT)
6	227,10-258,80			23,80	258,80		im Bereich von 227,10-232,00 m Anhydrit, von 232,00-235,00 m Anhy- drit mit Ton; von 235,00-258,80 m Anhydrit und Gips / proretrograd- subrosiv: basal sekundär residual-subrosiv bzw. Gipsneubildung möglich	Hutgestein (z3AN)
							/ z3AN, an der Basis Residuen z3NA/z4NA der Hauptmulde möglich / Salzspiegel bei 258,80 m (139,80 m NN);	
∞	258,80-610,00			351,20	610,00		Steinsalz, grau, mit steil einfallenden Anhydritstreifen (Hauptmulde) / sedimentär //	z3/24
	610,00						Endteufe der Bohrung Hmt 9/- bei 610,00 m unter Gelände;	

Projel	kt Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ung Hmt 13/- Hut	tgestein/Z	echstein					Blatt 1 von 1
	Kern- / -st	trecke		Abscł	nnitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[m]	[m]	[m]	Bohrlochachse		Bez.
1	-196,00						kmSM; Grenze Deckgebirge/Hutgestein bei 196,00 m unter Gelände;	kmSM
5	196,00-268,00			72,00	268,00		Gips (körnig und spätig) (z3NA/z4NA-Residuen der Westmulde über z2NA-Residuen eines Teilsattels im Bereich der Westmulde) / sekundär residual-subrosiv + Gipsneubildungen / Salzspiegel bei 268,00 m (140 m NN) //	Hutgestein
ر	268,00-370,00	7		102,00	370,00		Steinsalz mit Kalisalzeinlagerungen (z2NA-Teilsattel im Bereich der Westmulde über Westmulde über Westlichem Schachtsattel)/ sedimentär //	z2/z3/z4
	370,00	-			2		Endteufe der Bohrung Hmt 13/- bei 370,00 m unter Gelände;	

Proje	kt Morsleben				4	Geologi	sches Schichtenverzeichnis	
Bohrı	ing Hmt 21/- Hut	gestein						Blatt 1 von 2
	Kern- / -st	recke		Absch	unitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufc	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	Ĩ	[ɯ]	[m]	[m]	Bohrlochachse		Bcz.
1	-124,00						kmSM; Grenze Deckgebirge/Hutgestein bei 124,00 m unter Gelände;	kmSM
2	124,00-128,44			4,44	128,44		Anhydrit und Gips (Residuen z3NA/z4NA der Ostmulde) / sekundär residual-subrosiv //	Hutgestein
3	128,44-151,14			22,70	151,14		Gips, untergeordnet Tonstein-Letten (Residuen z3NA/z4NA der Ostmulde) / sekundär residual-subrosiv //	Hutgestein
4	151,14-157,52			6,38	157,42		Gips, untergeordnet Tonstein-Letten und Roter Salzton (Residuen z3NA/z4NA bzw. z4RT der Ostmulde) / sekundär residual-subrosiv //	Hutgestein (mit z4RT)
2	157,52-163,82			6,30	163,82		Roter (?) Salzton / sedimentär (in subrosiver Folge der Ostmulde) //	Hutgestein
								(z4RT)
9	163,82-175,00			11,18	175,00	5	Gips und Anhydrit (Residuen z3NA/z4NA der Ostmulde) / sekundär residual-subrosiv //	Hutgestein
7	175,00-195,92			20,92	195,92		Roter (?) Salzton / sedimentär (in subrosiver Folge der Ostmulde) //	Hutgestein
								(z4RT)
8	195,92-204,76			8,48	204,76		Anhydrit und Gips (Residuen z3NA/z4NA der Ostmulde) / sekundär residual-subrosiv //	Hutgestein

•

Projel	ct Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ing Hmt 21/- Hut	gestein						Blatt 2 von 2
	Kem- / -st	recke		Absch	mitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[m]	[m]	[m]	Bohrlochachse		Bez.
6	204,76-219,76			15,00	219,76		Roter (?) Salzton, untergeordnet mit Gipseinlagenungen (Residuen -2MA/24MA dar Octmulde) / cedimentär (in cubrociver Folge dar	Hutgestein
							Ostmulde) // Ostmulde) // Source of	(z4RT)
10	219,76-229,76			10,00	229,76		Roter (?) Salzton, untergeordnet mit Gips- und Anhydriteinlagerungen (Residuen z3NA/z4NA der Ostmulde) / sedimentär (in subrosiver Folge	Hutgestein
							der Ostmuldc) //	(z4RT)
11	229,76-238,72			8,96	238,72		Anhydrit, untergeordnet Tonstein in dünnen Lagen (Residuen z3NA/z4NA der Ostmulde) / primär residual-subrosiv //	Hutgestein
12	238,72-244,97			6,25	244,97		Anhydrit (Residuen z3NA/z4NA der Ostmulde) / primär residual- subrosiv //	Hutgestein
13	244,97-249,00			4,03	249,00		Anhydrit, untergeordnet Tonstein (Residuen z3NA/z4NA der Ostmulde) / primär residual-subrosiv //	Hutgestein
14	249,00-249,34			0,34	249,34		Gips, untergeordnet Tonstein in dünnen Lagen (Residuen z3NA/z4NA der Ostmulde) / sekundär residual-subrosiv + Gipsneubildungen // Salzspiegel bei 249,34 m (141,34 m NN); am Salzspiegel Sole erbohrt) //	Hutgestein
	249,34						Endteufe der Bohrung Hmt 21/- bei 249,34 m unter Gelände;	

Projel	¢t Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ing Hmt 24/- Hut	gestein/Z.	echstein					Blatt 1 von 1
	Kem- / -st	recke		Absch	mitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[ɯ]	[m]	[m]	[ш]	Bohrlochachse		Bez.
	-299,00						kmSM; Grenze Deckgebirge/Hutgestein bei 299,00 m unter Gelände;	kmSM
6	299,00-306,00			7,00	306,00	4	Salzton / sedimentär (Salzton in subrosiver Folge): strukturelle Zuord- nung unsicher (Haupmulde/Ostmulde ?) //	(Hutgestein) (z4RT ?)
~	306,00-320,55			14,55	320,55		Ton, sandig, hart / sedimentär (z3GT ? in subrosiver Folge) / grau / Salzspiegel bei 320,55 (= - 200,55 m NN) //	(Hutgestein) (z3GT ?)
**	320,55-322,36			1,81	322,36		Steinsalz / sedimentär //	z2/z3/z4
	322,36						Endteufe der Bohrung Hmt 24/- bei 322,36 m unter Gelände;	

Projek	tt Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ng Hmt 25/- Hut	gestein/Ze	schstein					Blatt 1 von 1
	Kem- / -st	recke		Abscł	mitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[m]	[ɯ]	[m]	Bohrlochachse		Bez.
1	-254,00						kmGu; Grenze Deckgebirge/Hutgestein bei 254,00 m unter Gelände;	kmGu
5	254,00-267,00			13,00	267,00		Tonstein (Letten), untergeordnet Gips (grobspätig) und Anhydrit (feinkörnig) (Residuen 23NA/24NA der Westmulde) / sekundär residual- subrosiv + Gipsneubildungen / Tonstein: grau bis rot //	Hutgestein
ε	267,00-268,00			1,00	268,00		Tonstein (Letten) mit grobspätigem Marienglas (Residuen z3NA/z4NA der Westmulde) / sekundär residual-subrosiv + Gipsneubildungen //	Hutgestein
4	268,00-270,00			2,00	270,00		Tonstein (Letten), untergeordnet Gips (grobspätig) und Anhydrit (feinkörnig) (Residuen z3NA/z4NA der Westmulde) / sekundär residual- subrosiv + Gipsneubildungen / Tonstein: grau bis rot //	Hutgestein
2	270,00-282,00			12,00	282,00		Tonstein (Letten) mit Gips (Residuen z3NA/z4NA der Westmulde) / sekundär residual-subrosiv + Gipsneubildungen / Tonstein: grau und rot / Salzspiegel bei 282,00 m (152 m NN) //	Hutgestein
9	282,00-282,50			0,50	282,50	5	Steinsalz (Westmulde) / sedimentär / rot bis weiß //	z3/z4
	282,50				: - - - - - - - - - - - - 		Endteufe der Bohrung Hmt 25/- bei 282,50 m unter Gelände;	

Projel	kt Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ing Hmt 27/- Hut	gestein/ZA	echstein					Blatt 1 von 3
	Kem- / -st	recke		Absch	mitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[ш]	[m]	[m]	[m]	Bohrlochachse		Bez.
1	-82,60						kmSM; Grenze Deckgebirge/Hutgestein bei 82,60 m unter Gelände;	kmSM
	82,60-83,00			0,40	83,00		Gips, untergeordnet Anhydrit, basal in Tonstein (Letten) übergehend	Hutgestein
								(22DA/z3GT
								(;
2	83,00-84,00			1,00	84,00		Anhydrit / residual-subrosiv / bläulich / isolierte z3AN-Scholle in residualer Folge ?;	Hutgestein
								(23AN ?)
ς Γ	84,00-91,40			7,40	91,40		Gips, untergeordnet Anhydrit (Residuen z3NA/z4NA der Westmulde/Südmulde) / sekundär residual-subrosiv //	Hutgestein
4	91,40-96,00			4,60	96,00		Anhydrit (Residuen z3NA/z4NA der Westmulde/Südmulde) / primär residual-subrosiv //	Hutgestein
5	96,00-111,00	_		15,00	111,00		Anhydrit, Gips / (Residuen z3NA/z4NA der Westmulde/Südmulde) / sekundär residual-subrosiv //	Hutgestein
6	111,00-127,00			16,00	127,00		Anhydrit (rein, fest) (Residuen z3NA/z4NA der Westmulde/Südmulde) / primär residual-subrosiv //	Hutgestein

Hut 27.k HutgesteinAbschnits-Tektonik/Kern-/-sireckeAbschnits-Tektonik/TeuteAbschnits-Tektonik/TeuteAbschnits-ItalizeTeuteAbschnits-Tektonik/Toti[m][m][m]BohrlochachesGeologische Beschreibung / BemerkungenStrati-7,00-131,00[m][m][m]BohrlochachesAnhydrit, durchsetzt mit Tonstein (Letten) in Schmitzen und Nestern / BohrlochachesBezc.7,00-131,00[m][m][m]BohrlochachesAnhydrit, durchsetzt mit Tonstein (Letten) in Schmitzen und Nestern / Bubrostv //Busc.7,00-131,00[m][m][m]BohrlochachesAnhydrit, durchsetzt mit Tonstein (Letten) in Schmitzen und Nestern / Bubrostv //Bubrostv // Bubrostv //8,30-132,00137.00137.00137.00137.00137.00137.00Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Stidmulde) / Hutgestein8,30-132,00137.00137.00137.00137.00137.00137.00137.000.200137.00137.00137.00137.00137.00137.						- According		
Kern-/-streckeAbsthritts-Tektonik/Tektonik/Strain-FuteVerl.LängeTeufeWinkel zurGeologische Beschreibung / BenerkungenStrain-ful(m)(m)(m)(m)BohrlochachesGeologische Beschreibung / BenerkungenStrain-00-131,00m4,00131,00Ranydrit, durchsezt mit Tonstein (Letten) in Schmitzen und Mestern /Hugestein00-131,00m4,00131,00Ranydrit, Gips (Residuen z3NA/Z4NA der Westmulde/Sidmulde) / primär residual-subrosiv //Hugestein00-132,200m17,30148,300132,00132,00Ranydrit, Gips (Residuen z3NA/Z4NA der Westmulde/Sidmulde) / primärHugestein00-132,20013,00132,00132,00132,00132,00Ranydrit, Gips (Residuen z3NA/Z4NA der Westmulde/Sidmulde) / primärHugestein00-132,20018,30132,00132,00132,00Ranydrit, Gips (Residuen z3NA/Z4NA der Westmulde/Sidmulde) / Hugestein00-132,2002.50137,00137,002.50137,00Ranydrit, Gips (Residuen z3NA/Z4NA der Westmulde/Sidmulde) / Hugestein00-132,2002.50137,002.50137,002.502.50Random Random Rand	nt 27/- Hutges	itein						Blatt 2 von 3
TeutieGew.Vert.LängeTeutieWinke (zurGeologische Beschreibung / Bernetkungengraph. $[m]$ $[m]$ $[m]$ $[m]$ $[m]$ $[m]$ $[m]$ $[m]$ $Bez.$ $[m]$ $[m]$ $[m]$ $[m]$ $[m]$ $[m]$ $BohrlochaehseBernetkungenBez.00-131,00[m][m][m][m]BohrlochaehseAnhydrit, durchsetzt mit Tonstein (Letten) in Schmitzen und Nestern /Bez.00-131,00[m][m][n][n]Anhydrit, Gies (Residuen z3NA/z4NA der Westmulde/Sudmulde) / primär residual-subrosiv //Anhydrit, Gies (Residuen z3NA/z4NA der Westmulde/Sudmulde) / PrimärHugestein30-152,00[n]3.70152,00Anhydrit, Gies (Residuen z3NA/z4NA der Westmulde/Sudmulde) / HugesteinAnhydrit, Gies (Residuen z3NA/z4NA der Westmulde/Sudmulde) / Hugestein30-152,20[n][n][n]Anhydrit, Gies (Residuen z3NA/z4NA der Westmulde/Sudmulde) / Hugestein(0-152,20)[n][n][n]Anhydrit, Gies (Residuen z3NA/z4NA der Westmulde/Sudmulde) / Hugestein(0-152,20)[n][n][n][n][n][n](n][n][n][n][n][n][n](n][n][n][n][n][n][n](n][n][n][n][n][n][n](n][n][n][n][n][n][n](n]<$	Kern- / -strec	ke		Absch	nitts-	Tektonik/		Strati-
	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
7,00-131,00 4,00 131,00 131,00 Anhydrit, durchsezt mit Tonstein (Letten) in Schmitzen und Nestern / Hurgestein aubrosiv // Hurgestein 1,00-143,30 17,30 148,30 Anhydrit, (Residuen z3NA/z4NA der Westmulde/Südmulde) / primär residual- Hurgestein 8,30-152,00 3,70 18,30 J75,00 148,30 Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / primär residual-subrosiv) // Hurgestein 8,30-152,00 0,20 152,00 Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein Hurgestein 2,00-152,20 0,20 152,20 Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein Hurgestein 2,00-173,00 18,30 170,50 Tonstein, bankig (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein Hurgestein 2,00-173,00 2,50 173,00 170,50 Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein 2,00-173,00 2,50 173,00 20,50 Zubrosiv // Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein 2,00-173,00 2,50 173,00 20,50 Zubrosiv // Hurgestein 3,00-202,00 2,50 20,00 202,00 202,00 202,00<	[m]	[m]	[m]	[ɯ]	[m]	Bohrlochachse		Bez.
1,00-148,3017,30148,30Anhydrit (Residuen z3NA/z4NA der Westmulde/Südmulde) / primärHurgestein8,30-152,003,70152,00152,00Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / HurgesteinHurgestein2,00-152,200,20152,20Tonstein, bankig (Residuen z3NA/z4NA der Westmulde/Südmulde) / HurgesteinHurgestein2,00-152,200,20152,20Tonstein, bankig (Residuen z3NA/z4NA der Westmulde/Südmulde) / HurgesteinHurgestein2,00-152,2018,30170,50Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / HurgesteinHurgestein2,00-152,202,50173,002,50173,00Sekundär residual-subrosiv / von 160-170 m Saiger-Kluft mit TonsteinHurgestein0,50-173,002,50173,00202,00202,00Gips, untergeordnet Anhydrit (Dlaulitch) / proretrograd-subrosiv //Hurgestein	7,00-131,00			4,00	131,00		Anhydrit, durchsetzt mit Tonstein (Letten) in Schmitzen und Nestern / (Residuen z3NA/z4NA der Westmulde/Südmulde) / primär residual- subrosiv //	Hutgestein
8,30-152,00 3,70 152,00 152,00 Hurgestein 12,00-152,20 0,20 152,20 Tonstein, bankig (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein 12,00-152,20 0,20 152,20 Tonstein, bankig (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein 12,00-152,20 18,30 170,50 Tonstein, bankig (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein 2,20-170,50 18,30 170,50 Sekundär residual-subrosiv / von 160-170 m Saiger-Kluft mit Tonstein Hurgestein 0,50-173,00 2,50 173,00 Tonstein (Letten), durchsetzt mit Fasergips (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hurgestein 3,00-202,00 2,50 173,00 202,00 50:,00 202,00 Sibs, untergeordnet Anhydrit (bläulich) / proretrograd-subrosiv // Hutgestein	1,00-148,30			17,30	148,30		Anhydrit (Residuen 23NA/z4NA der Westmulde/Südmulde) / primär residual-subrosiv)//	Hutgestein
2,00-152,200,20152,20Tonstein, bankig (Residuen z3NA/z4NA der Westmulde/Südmulde) / residual / rot //Hutgestein2,20-170,5018,30170,50Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / sekundär residual-subrosiv / von 160-170 m Saiger-Kluft mit Tonstein (schwarz) //Hutgestein Hutgestein0,50-173,002,50173,00202,00Tonstein (Letten), durchsetzt mit Fasergips (Residuen z3NA/z4NA der NA/z4NA der Westmulde/Südmulde) / residual / rot //Hutgestein Hutgestein3,00-202,00202,00202,00202,00202,00(ips, untergeordnet Anhydrit (blaulich) / proretrograd-subrosiv //(z3AN ?)(3,00-202,00202,00202,00202,00(ips, untergeordnet Anhydrit (blaulich) / proretrograd-subrosiv //(z3AN ?)	8,30-152,00			3,70	152,00		Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / sekundär residual-subrosiv //	Hutgestein
(2,20-170,5018,30170,50Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / Hutgestein sekundär residual-subrosiv / von 160-170 m Saiger-Kluft mit Tonstein (schwarz) //Hutgestein Hutgestein(0,50-173,002,50173,00Tonstein (Letten), durchsetzt mit Fasergips (Residuen z3NA/z4NA der 	2,00-152,20			0,20	152,20		Tonstein, bankig (Residuen z3NA/z4NA der Westmulde/Südmulde) / residual / rot //	Hutgestein
70,50-173,00 2,50 173,00 Tonstein (Letten), durchsetzt mit Fasergips (Residuen z3NA/z4NA der Hutgestein Westmulde/Südmulde) / residual / rot // Hutgestein 73,00-202,00 29,00 202,00 Gips, untergeordnet Anhydrit (bläulich) / proretrograd-subrosiv // Hutgestein	52,20-170,50			18,30	170,50		Anhydrit, Gips (Residuen z3NA/z4NA der Westmulde/Südmulde) / sekundär residual-subrosiv / von 160-170 m Saiger-Kluft mit Tonstein (schwarz) //	Hutgestein
13,00-202,00 29,00 202,00 Gips, untergeordnet Anhydrit (bläulich) / proretrograd-subrosiv // Hutgestein (z3AN ?) (z3AN ?) (z3AN ?)	0,50-173,00			2,50	173,00	5	Tonstein (Letten), durchsetzt mit Fasergips (Residuen z3NA/z4NA der Westmulde/Südmulde) / residual / rot //	Hutgestein
(z 3AN ?)	13,00-202,00			29,00	202,00		Gips, untergeordnet Anhydrit (bläulich) / proretrograd-subrosiv //	Hutgestein
								(¿ NYEZ)

Projek	ct Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ng Hmt 27/- Hut	.gestein/Z4	echstein					Blatt 3 von 3
	Kem- / -st	recke		Absch	mitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[m]	[m]	[m]	Bohrlochachse		Bez.
14	202,00-204,00			2,00	204,00		Gips in Marienglasfazies (Kantenlängen bis 40 cm, verzwillingt) (Residuen des 22NA des Östlichen Schachtsattels bzw. Gipsneubildungen) / Gipsneubildung in Hohlraum an Basis des 23AN bzw. am Top residualer Bildungen //	Hutgestein
15	204,00-270,00			66,00	270,00		Gips (Residuen z2NA des Östlichen Schachtsattels) / sekundär residual- subrosiv //	Hutgestein
16	270,00-278,00	,		8,00	278,00		Gips, durchsetzt mit Ton (Residuen z2NA des Östlichen Schachtsattels) / sekundär residual-subrosiv ? / klüftig //	Hutgestein
17	278,00-285,00			7,00	285,00		Gips, lagenweise hell/dunkel wechsellagernd (Residuen z2NA des Östlichen Schachtsattels) / sekundär residual-subrosiv / klüftig; Salzspiegel bei 285,00 m (= -142 m NN) //	Hutgestein
18	285,00-360,00			75,00	360,00		Steinsalz, Kalisalz, Tonstein, Anhydrit (Östlicher Schachtsattel über Hauptmulde) / sedimentär //	z2/z3/z4
	360,00					5	Endteufe der Bohrung Hmt 27/- bei 360,00 m unter Gelände;	

m u. GOK (NN 143.00) Hmt :	27/-		
0.0				
40.0				
	(
80.0				
	82.60F	Deckgebirge	uber Hutgestein: kmSM 3GT ?, Gips (aerinae Intensität.va	on Anhydrit, Tonstein
	83.00	z, z (schwarz)), re	esidual-subrosiv	
	84.00	z z3AN 7 (Isoli	osiv	inyarit (diaulich),
	01.40	Residuen z3	NA und z4NA (WM bzw.SM), Gip	s (geringe Intensität von
	91.40 z.	Residuen z3	NA und z4NA (WM bzw. SM), An	hydrit, primär
	96.00	residual-subr	osiv NA und z4NA (WM bzw. SM) An	hydrit Gins sekundär
120.0	111.00	z z residual-subr	osiv	nyuni, aps, sekunuai
120.0	2 2	Residuen z3	NA und z4NA (WM bzw. SM), An	hydrit, primär
	127.00	z z residual-subr	osiv VA und z4NA (WM bzw. SM), Ani	hydrit (geringe Intensität von
	131.00	Ton), primär	residual-subrosiv	
	Z	ZA		
	149.20	Residuel subr	VA und z4NA (WM bzw. SM), Ani	hydrit, primär
	146.30	A Residuen z3N	VA und z4NA (WM bzw. SM), Anl	hydrit, Gips, sekundär
	152.00	residual-subr	osiv JA oder z4NA (WM bzw. SM). To	nstein residual rot
160.0	102.20			
	170.50	2 z Residuen z3N	IA und z4NA (WM bzw. SM), Ani	hydrit, Gips, sekundär
	170.50	Residuen z3N	JA oder z4NA (WM bzw. SM), To	instein (Gips:Fasergips),
	173.00/	\residual, rot		
Höhenmaß	Bstab: 1:1000			Blatt 1 von 2
ojekt: Mo	relahan			<u> </u>
		tain/Zachetain		
			Desklauget 4440040	- SGR
ttraggeber: [BIS Braunschwe	eig	Hechtswert: 4440210	Bundesanstalt für Geowissenschaften
arheiter: /	 Dr Balzer		Höhe zu NN: 143.00 m	und Rohstoffe - Außenstelle Berlin -
	JI.DalZel		Datum: 17.06.1996	-
				l

Projek	t Morsleben				r	Geologi	sches Schichtenverzeichnis	
Bohru	ng Hmt 28/- Hut	lgestein/Z4	schstein					Blatt 1 von 1
	Kem- / -st	recke		Abscł	nuitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[m]	[m]	[m]	Bohrlochachse		Bez.
1	-194,00						kmSM; Grenze Deckgebirge/Hutgestein bei 194,00 m unter Gelände	kmSM
2	194,00-285,00			00'16	285,00		Gips (mit Marienglaskristallen), Anhydrit, untergeordnet Tonstein (Residuen z3NA/z4NA der Westmulde/Südmulde) / sekundär residual- subrosiv + Gipsneubildungen / stark geklüftet / Salzspiegel bei 285 m (= -141 m NN) //	Hutgestein
ŝ	285,00-612,90			327,90	612,90		Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagerungen (Westmulde bzw. Südmulde über Östlichem Schachtsattel) / sedimentär //	z2/z3/z4
	612,90						Endteufe der Bohrung Hmt 28/- bei 612,90 m unter Gelände;	

	HILLIA OD H	łmt 28/-		
	NN 144.00)			
0.0				
40.0				
80.0		1		
120.0				
120.0				
160.0				
	194.00		Deckaebirae über Hutaestein: kmSM	
200.0		2 2 2		
240.0		2 2		
240.0			Residuen z3NA und z4NA (WM bzw.SM), C	Gips, Anhydrit (geringe
280.0	005.00	Z A Y	Intensität von Tonstein), sekundär residual-	subrosiv + Gipsneubildungen,
200.0	285.00_	$\begin{array}{c} z \\ z \\ z \\ z \\ 0 \end{array}$	_stark kluftig, Salzspiegel bei -141 m NN	
320.0				
360.0		P z D		
400.0				
		ZOZ		
440.0		ZOD		
480.0		2 0 0		
520.0		Z D Z		
500.0				
560.0		z o z		
600.0		0 2 2 0 2 0	z2, z3, z4 (WM bzw. SM über ÖSS), Steinsa	alz, Kalisalz, Anhydrit,
E.	T 612.90	z . z	Tonstein, sedimentär, Endteufe	, , , ,
1156 0	atab. 1-1000			
rionenmaß	stad: 1:4000			_ Βιαπ 1 von 1
ekt: Mo	rsleben			
rung: Hm	it 28/- Hutg	estein/Z	chstein	
aggeber: E	BfS Braunsch	nweig	Rechtswert: 4440100	Bundesanstalt für Geowissenschaften
firma:			Hochwert: 5786550	und Rohstoffe
beiter: E	Dr. Balzer		Hone zu NN: 144.00 m	- AUGOUSTONO 19000 -
			Datum: 17.06.1996	

į,

Projel	¢t Morsleben					Geologi	sches Schichtenverzeichnis		
Bohru	ng Hmt 29/- Hut	gestein/ZA	echstein					Blatt 1 von 1	
	Kem-/-st	recke		Absch	mitts-	Tektonjk/		Strati-	
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.	
	[m]	[ш]	[m]	[m]	[ɯ]	Bohrlochachse		Bez.	
1	-201,00						kmSM; Grenze Deckgebirge/Hutgestein bei 201,00 m unter Gelände;	kmSM	
5	201,00-229,00			28,00	229,00		Gips, schwach durchsetzt mit Ton (Letten: grau) (Residuen z3NA/z4NA der Hauptmulde); im Topbereich Residuen z2NA des Östlichen Schacht- sattels möglich) / sekundär residual-subrosiv //	Hutgestein	
ŝ	229,00-248,00			00'61	248,00		Tonstein (Letten), durchsetzt mit Gips (Residuen z3NA/z4NA der Hauptmulde)/sekundär residual-subrosiv//	Hutgestein	
4	248,00-253,00			5,00	253,00		Gips (Residuen z3NA/z4NA der Hauptmulde) / sekundär residual- subrosiv //	Hutgestein	
5	253,00-263,00			10,00	263,00		Tonstein, durchsetzt mit Gips: brecciös (Residuen z3NA/z4NA der Hauptmulde)/sekundär residual-subrosiv//	Hutgestein	
9	263,00-270,00			7,00	270,00		Tonstein (Letten: rot), durchsetzt mit Gips (Residuen z3NA/z4NA der Hauptmulde) / sekundär residual-subrosiv //	Hutgestein	
7	270,00-281,60			11,60	281,60		Gips (blättrig) (Residuen z3NA/z4NA der Hauptmulde) / sekundär residual-subrosiv + Gipsneubildung / Salzspiegel bei 281,60 (146,60 m NN) //	Hutgestein	
∞	281,60-593,80			312,20	593,80		Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagerungen (Hauptmulde) über 22 / sedimentär //	z2/z3/z4	
	593,80						Endteufe der Bohrung Hmt 29/- bei 593,80 m unter Gelände;		

Projekt Morsleben

Geologisches Schichtenverzeichnis

Techstein
Hutgestein
Hmt 30/-
ohrung

Bohrı	ung Hmt 30/- Hut	tgestein/ZA	echstein					Blatt 1 von 2
	Kem- / -st	recke		Absch	initts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[ш]	[ш]	[m]	Bohrlochachse		Bez.
1	-222,00						kmSM; Grenze Deckgebirge/Hutgestein bei 222,00 m unter Gelände;	kmSM
7	222,00-232,00			10,00	232,00		Gips (Residuen z3NA/z4NA der Hauptmulde; im Topbereich Residuen z2NA des Östlichen Schachtsattels möglich) / sekundär residual-subrosiv / weiß //	Hutgestein
б	232,00-252,00			20,00	252,00		Gips, durchsetzt mit Mergel (rot) (Residuen z3NA/z4NA der Hauptmulde)/sekundär residual-subrosiv//	Hutgestein
4	252,00-257,00			5,00	257,00		Mergel (grünlich), durchsetzt mit Gips (Residuen z3NA/z4NA der Hauptmulde)/sekundär residual-subrosiv//	Hutgestein
S	257,00-261,00			4,00	261,00		Gips (Residuen z3NA/z4NA der Hauptmulde) / sekundär residual- subrosiv/rosa//	Hutgestein
_ و	261,00-283,00			22,00	283,00		Mergel (rot, grau, grün), durchsetzt mit Gips (Residuen z3NA/z4NA der Hauptmulde) / sekundär residual-subrosiv / Auflage Hutgestein auf z3AN (Struktur) bei 283,00 m (= - 162 m NN) //	Hutgestein
7	283,00-308,50			25,50	308,50		Anhydrit / proretrograd-subrosiv / bläulich //	z3AN ?
8	308,5-310,00			1,50	310,00		Steinsalz / sedimentär // ('Endteufe')	z2NA ?

Projel	ct Morsleben					Geologi	sches Schichtenverzeichnis	
Bohru	ing Hmt 30/- Hui	tgestein/Z	<i>c</i> hstein					Blatt 2 von 2
	Kem- / -st	trecke		Absch	hnitts-	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[m]	[m]	[m]	[m]	Bohrlochachse		Bez.
							Darstellung des Bohrsäulenprofiles bis 310,00 m unter Gelände;	
							weitere Schichtenfolge nach technischem Schichtenverzeichnis der Gewerkschaft Burbach in SCHMIERER (1914)	
1	294,00-308,96			14,96	308,96		Ton, sandig, durchsetzt mit Gips / subrosiv überprägter 23GT //	Hutgestein
(8)								(z3GT)
5	308,96-683,40			374,44	683,40		Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagcrungen / sedimentär	z2/z3/z4
(6)					2			
3	683,40-684,00			0,60	684,00		Stinkstein (Stinkschiefer) / sedimentär //	z2CA
	684,00					5	Endteufe der Bohrung Hmt 30/- bei 684,00 m unter Gelände;	
		, ,						

	, Hmt 30/-		
	, 		
0.0			
20.0			
40.0			
60.0			
80.0			
100.0			
120.0			
140.0			
160.0			
180.0			
1			
200.0			
000.0			
222.0	Deci Deci Resi	duen z3NA und z4NA (HM) (im 7	opbereich Residuen z2NA des ÖSS
232.0		lich), Gips (weiß), sekundär resid duen z3NA und z4NA (HM), Gins	ual-subrosiv Tonmergel (rot), sekundär
252.0		lual-subrosiv	
257.0		lual-subrosiv	mergel (grun), Gips, sekundar
280.0 261.0		duen z3NA und z4NA (HM), Gips sneubildungen	; (rosa), sekundär residual-subrosiv +
	Resi	duen z3NA und z4NA (HM), Ton	mergel (rot bis grüngrau), Gips, Jutgestein auf z3AN (Struktur) bei
300.0 283.0	0 z z162	.00 m NN	
308.5 ET 310.0	$0 - z^2 - z^3 A = z^$	N ?, Anhydrit (bläulich), proretrog N, Steinsalz, sedimentär, Endteuf	rad-subrosiv e
	5 2		
Höhenmaßstab: 1:2	0000		Blatt 1 von 1
jekt: Morsleber	1		
hrung: Hmt 30/- H	lutgestein/Zechste	bin	RGP
raggeber: BfS Brau	nschweig	Rechtswert: 4440680	
rfirma:		Hochwert: 5786320	und Rohstoffe
rbeiter: Dr.Balze	r	Hôhe zu NN: 121.00 r	n - Autrenstelle Berlin -
		Datum: 17.06.19	30

- Unit.

Proje	kt Morsleben				-	Geologi	sches Schichtenverzeichnis	
Bohrı	ing Hmt 44/- Hut	gestein/Z/	echstein					Blatt 1 von 1
	Kem- / -st	recke		Absch	-sthere	Tektonik/		Strati-
Nr.	Teufe	Gew.	Verl.	Länge	Teufe	Winkel zur	Geologische Beschreibung / Bemerkungen	graph.
	[m]	[ɯ]	[m]	[m]	[ɯ]	Bohrlochachse		Bez.
	- ca. 190,00				190,00		kmSM; Grenze Deckgebirge/Hutgestein bei ca. 190,00 m unter Gelände (bestimmt nach Reflexionsseismik);	kmSM
5	190,00-273,00			83,00	273,00		Tonstein (Letten, rot, grau), durchsetzt mit Gips (Residuen z3NA/z4NA der Hauptmulde/Ostmulde) / sekundär residual-subrosiv / Salzspiegel bei 273 m (= - 154,00 m NN) //	Hutgestein
ŝ	273,00-562,25			289,25	562,25		Steinsalz mit Anhydrit-, Salzton- und Kalisalzeinlagerungen / sedimentär	z2/z3/z4

Endteufe der Bohrung Hmt 44/- bei 562,25 m unter Gelände;

562,25

÷

.

Anlage 5, Blatt 2 von 7:

Probenjournal

(Übersicht über die Daten aller entnommenen bzw. untersuchten Proben im Rahmen der geologischen Bearbeitung des Hutgesteins)

Die Abkürzungen bedeuten:

- KM Kernmarsch (in m unter Gelände)
- DP Deponiebohrung
- A Anschliff
- DS Dünnschliff
- MP Mineralogische Phasenanalyse
- TMP Tonmineralogische Phasenanalyse
- KGA Komgrößenanalyse

Anlage 5, Blatt 3 von 7

Probenummer	Art der Bohrung	Bohrungs- nummer	Teufe des KM	Probe m von Kopf	durchgeführte Untersuchungen
3001	DP	2/89	43.0-44.0	0,5-0,58	DS, MP
3002	DP	2/89	45.9-47.0	0.57-0.69	DS, MP
3003	DP	6/90	120.9-121.7	0.30-0.47	A
3004	DP	6/90	121.7-122.8	0,80-0.95	DS(2x), MP
3005	DP	6/90	126.3-129.2	3,30-3.50	DS, MP
3006	DP	6/90	129.2-132.0	1.87-2.20	A
3007	DP	6/90	132.0-135.0	2,69-2.80	A
3008	DP	6/90	144.1-145.3	0,80-1.06	DS, MP
3009	DP	6/90	145.3-146.4	0.55-0.85	A
3010	DP	7/90	190.5-193.5	2.10-2.22	MP, TMP, KGA
3011	DP	7/90	196.7-199.0	1.90-2.02	MP, TMP, KGA
3012	DP	7/90	199.0-202.2	2.45-2.60	MP, TMP, KGA
3013	DP	7/90	202.2-205.2	1.00-1.10	MP, TMP, KGA
3014	DP	7/90	213.7-216.7	1.78-1.92	DS, MP, TMP
3015	DP	7/90	226.1-228.7	0.75-0.92	DS(2x), MP, TMP, KGA
3016	DP	7/90	230.4-233.4	0.80-0.91	MP, TMP, KGA
3017	DP	7/90	239.2-242.1	0.00-0.12	DS, MP. TMP. KGA
3018	DP	10/88	206.8-208.5	1.18-1.46	DS, MP
3019	DP	10/88	208.5-211.3	0.90-1.10	Á
3020	DP	10/88	208.5-211.3	1.37-1.49	DS
3021	DP	10/88	211.3-214.2	0.65-0.86	DS, MP
3022	DP	10/88	214.4-217.1	1.30-1.50	DS(2x), MP
3023	DP	10/88	217.1-218.7	1.58-1.68	DS, MP
3024	DP .	10/88	218.7-221.7	0.16-0.36	DS(2x)
3025	DP	10/88	224.6-227.5	0.30-0.50	DS, MP
3026	DP	10/88	224.6-227.5	0.55-0.95	DŚ, MP
3027	DP	10/88	227.5-230.4	0.00-0.16	DS, MP
3029	DP	13A/88	161,9-163.9	0.00-0.16	DS(2x)
3030	DP	13A/88	161.9-163.9	0.70-0.82	DS(2x), MP
3031	DP	13A/88	161.9-163.9	1.08-1.28	DS
3032	DP	13A/88	163. 9 -166.7	0.75-0.85	DS(2x), MP
3033	DP	13A/88	163,9-166.7	1.40-1.55	DS, MP
3034	DP	13A/88	163.9-166.7	2.69-2.80	DS
3035	DP	13A/88	166.7-169.4	0.58-0.70	A, MP
3036	DP	13A/88	166.7-169.4	1.40-1.52	DS
3037	DP	13A/88	166.7-169.4	2.15-2.31	DS, MP
3038	DP	13A/88	169.4-171.9	0.06-0.19	A
3039	DP	13A/88	172.0-175.3	0.36-0.52	A,MP
3040	DP	13A/88	172.0-175.3	1.96-2.06	DS, MP
3041	DP	13A/88	172.0-175.3	2.94-3.10	A, MP
3042	DP	14/89	194.9-197.9	1.85-1.92	DS(2x), MP
3043	DP	14/89	194.9-197.9	2.27-2-42	DS(2x), MP
3044	DP	14/89	197.9-200.9	0.13-0.30	DS
3045	DP	14/89	200.9-203.2	0.63-0.83	DS, MP
3046	DP	14/89	200.9-203.2	0.96-1.00	DS
3047	DP	14/89	209.1-210.6	0.57-0.85	DS
3048	DP	14/89	217.1-220.3	0.20-0.32	DS, MP
3049	DP	14/89	217.1-220.3	0.32-0.53	DS
3050	DP	14/89	217.1-220.3	1.50-1.62	A
3051	DP	14/89	217.1-220.3	2.08-2.29	A

Probenummer	Art der Bohrung	Bohrungs- nummer	Teufe des KM	Probe m von Kopf	durchgeführte Untersuchungen
3052	DP	14/89	220.3-223.4	0.69-0.81	DS, MP
3053	DP	14/89	243.2-246.2	0.25-0.36	Α
3054	DP	14/89	243.2-246.2	0.55-0.75	DS
3055	DP	14/89	252.2-255.3	1.43-1.48	DS, MP
3056	DP	14/89	252.2-255.3	1.68-1.86	DS, MP
3057	DP	14/89	252.2-255.3	2.15-2.30	DS(3x)
3059	DP	14/89	203.2-205.7	2.03-2.19	DS, MP, TMP, KGA
3060	DP	14/89	214.0-217.1	1.51-1.71	DS, MP, TMP, KGA
3061	DP	14/89	225.3-226.7	0.54-0.74	DS(2x), MP, TMP, KGA
3062	DP	14/89	229.2-231.5	0.32-0.60	DS, MP, TMP
3063	DP	14/89	233.7-236.2	0.30-0.50	DS, MP, TMP, KGA
3064	DP	14/89	236.2-239.4	1.97-2.10	MP, TMP
3065	DP	14/89	246.2-247.0	0.36-0.53	DS, MP, TMP, KGA
3066	DP	14/89	249.1-252.2	2.06-228	KGA
3067	DP	20/88	165.0-168.0	1.80-1.85	DS, MP, TMP, KGA
3068	DP	20/88	168.0-171.0	2.00-2.10	DS, MP, TMP, KGA
3069	DP	20/88	181.7-184.7	0.58-0.66	MP, TMP, KGA
3070	DP	20/88	188.8-191.8	0.25-0.35	MP, TMP, KGA
3071	DP	20/88	194.8-197.8	1.20-1.30	MP, TMP, KGA
3072	DP	30/90	201,4-204,0	0,05-0,20	Belegprobe
3073	DP	30/90	201,4-204,0	0,87-0,93	Belegprobe
9001	DP	71A/94	69.50-72.00	0,56-0,72	DS
9002	DP	71A/94	69.50-72.00	2,20-2,32	DS, MP
9003	DP	71A/94	72.00-75.00	0,74-0,93	DS
9004	DP	71A/94	72.00-75.00	1,21-1,27	MP
9005	DP	71A/94	72.00-75.00	2,44-2,57	DS
9006	DP	71A/94	75.00-78.00	1,23-1,40	DS, MP
9007	DP	71A/94	78.00-81.00	0,80-0,85	DS, MP
9008	DP	71A/94	78.00-81.00	2,28-2,38	DS, MP
9009	DP	38A/94	203.00-204.00	0.16-0.33	DS (2x), MP
9010	DP	38A/94	206.80-208.30	0.28-0.44	DS
9011	DP	38A/94	212.30-213.80	0.73-0.85	DS, MP
9012	DP	38A/94	215.30-216.80	0.85-1.10	DS
9013	DP	38A/94	218.30-219.80	0.00-0.38	DS, MP
9014	DP	38A/94	219.80-221.00	0.54-1.00	DS
9015	DP	44A/94	52.00-53.00	0.70-0.80	DS, MP
9016	DP	45A/94	204.00-207.00	2.73-3.00	DS, MP
9017	DP	45A/94	207.00-210.00	0.65-0.79	DS
9018	DP	45A/94	207.00-210.00	1.10-1.35	DS, MP
9019	DP	45A/94	210.00-213.00	1.00-1.20	DS, MP
9020	DP	45A/94	213.00-216.00	1.50-1.78	DS
9021	DP	45A/94	213.00-216.00	2.75-2.90	Pollenanalyse
9022	DP	45A/94	216.00-219.00	0.00-0.12	Pollenanalyse
9023	DP	45A/94	216.00-219.00	0.12-0.20	DS, MP, TMP
9024	DP	45A/94	216.00-219.00	0.35-0.40	MP, TMP
9025	DP	45A/94	216.00-219.00	0.50-0.60	MP, TMP
9026	DP	45A/95	240.00-243.00	1.10-1.74	Belegprobe
9027	DP	45A/94	240.00-243.00	2.24-2.57	DS, MP
9028	DP	45A/94	249.00-252.00	2.26-2.56	DS
9029	DP	45A/94	255.00-258.00	0.26-0.60	DS, MP

Anlage 5, Blatt 4 von 7

Probenummer	Art der Bohrung	Bohrungs- nummer	Teufe des KM	Probe m von Kopf	durchgeführte Untersuchungen
9030	DP	45A/94	255.00-258.00	2.00-2.25	DS, MP
9031	DP	45A/94	264.00-267.00	2.00-2.10	DS
9032	DP	45A/94	312.00-315.00	2.00-2.33	DS, MP
9033	DP	45A/94	327.00-330.00	0.00-0.57	DS
9034	DP	45A/94	327.00-330.00	1.00-1.20	DS, MP
9035	DP	45B/95	198.00-200.00	1.00-2.00	DS
9036	DP	86A/95	207.00-210.00	0.60-0.95	DS
9037	DP	47A/95	221.00-224.00	0.00-0.28	DS, MP
9038	DP	47A/95	231.00-234.00	0.19-0.46	DS, MP
9039	DP	47A/95	231.00-234.00	1.38-1.43	MP, TMP
9040	DP	47A/95	234.00-237.00	0.56.0.77	DS, MP
9041	DP	47A/95	234.00-237.00	2.76-2.88	DS, MP
9042	DP	47A/95	240.00-243.00	2.37-2.79	DS, MP
9043	DP	47A/95	243.00-246.00	0.00-0.49	DŚ, MP
9044	DP	47A/95	243.00-246.00	2.18-2.20	MP
9045	DP	47A/95	246.00-249.00	0.43-0.48	MP, TMP
9046	DP	47A/95	246.00-249.00	0.55-0.70	MP, TMP
9047	DP	47A/95	246.00-249.00	0.53-0.56	MP
9048	DP	47A/95	246.00-249.00	0.97-1.00	MP, TMP
9049	DP	47A/95	246.00-249.00	0.97-1.00	Pollenanalyse
9050	DP	47A/95	246.00-249.00	1.05-1.10	MP, TMP
9054	DP	45B/95	133.00-136.00	0.58-0.63	MP, TMP
9055	DP	45B/95	133.00-136.00	1.15-1.20	MP, TMP
9056	DP	45B/95	133.00-136.00	1.74-2.04	DS, MP, TMP
9057	DP	47A/95	246.00-249.00	2.52-2.65	MP, TMP, KGA
9058	DP	47A/95	249.00-252.00	1.70-1.73	MP, TMP
9059	DP	47A/95	252.00-254.00	0.50-0.62	MP, TMP, KGA
9061	DP	47A/95	254.00-257.00	0.31-0.44	MP, TMP, KGA
9062	DP	47A/95	257.00-260.00	0.50-0.63	MP, TMP, KGA
9063	DP	47A/95	257.00-260.00	2.48-2.67	MP, TMP, KGA
9064	DP	47A/95	264.00-266.30	0.00-0.24	DS, MP
9065	DP	69A/95	198.00-199.00	0.70-0.90	DS, MP, TMP
9066	DP	69A/95	200.00-202.00	0.00-0.20	DS
9067	DP	69A/95	204.00-206.00	0.80-0.86	DS, MP
9068	DP	69A/95	208.00-210.00	1.21-1.27	MP, TMP
9069	DP	69A/95	210.00-212.00	0.08-0.15	MP, TMP
9070	DP	69A/95	212.00-214.00	0.80-0.83	MP
9071	DP	69A/95	212.00-214.00	1.18-1.25	MP
9072	DP	69A/95	214.00-216.00	0.58-0.65	MP, TMP
9073	DP	69A/95	218.00-220.00	1.50-1.55	MP, TMP
9074	DP	69A/95	221.10-223.00	1.72-1.80	DS, MP, TMP
9075	DP	69A/95	229.00-231.00	1.43-1.55	DS, MP
9076	DP	69A/95	235.00-237.00	2.10-2.14	MP, TMP
9077	DP	69A/95	240.90-243.00	1.66-1.70	MP, TMP
9078	DP	69A/95	243.00-244.70	0.00-0.30	DS
9081	DP	40A/95	267.00-270.00	1.20-1.46	DS
9082	DP	40A/95	273.00-276.00	1.53-2.00	DS
9083	DP	40A/95	276.00-279.00	0.22-0.43	DS
9084	DP	43A/95	239.00-242.00	2,72-2.79	MP
9085	DP	43A/95	245.00-248.00	0.00-0.44	DS

Anlage 5, Blatt 5 von 7

Probenummer	Art der Bohrung	Bohrungs- nummer	Teute des KM	Probe m von Kopf	durchgeführte Untersuchungen
9086	DP	43A/95	255.50-258.50	2.85-2.87	Belegprobe
9087	DP	43A/95	258.50-260.00	0.00-0.15	MP, TMP, KGA
9088	DP	72A/95	107.00-110.00	0.73-1.00	Belegprobe
9089	DP	72A/95	110.00-113.00	2.87-3.05	DS, MP, TMP
9090	DP	72A/95	125.00-128.00	1.58-1.61	MP, TMP
9091	DP	72A/95	125.00-128.00	1.61-1.78	Belegprobe
9092	DP	72A/95	125.00-128.00	2.45-2.48	MP, TMP
9093	DP	72A/95	133.00-136.00	2.62-2.87	Belegprobe
9094	DP	72A/95	232.00-235.00	1.95-2.00	MP, TMP
9095	DP	72A/95	235.00-238.00	2.65-2.75	DS
9096	DP	72A/95	238.00-241.00	0.80-0.81	MP, TMP
9097	DP	72A/95	241.00-244.00	1.12-1.58	Belegprobe
9098	DP	72A/95	247.00-250.00	1.10-1.33	Belegprobe
9099	DP	37A/95	251.00-253.00	0.90-1.16	DS
9100	DP	37A/95	253.00-256.00	0.78-0.92	Belegprobe
9101	DP	37A/95	253.00-256.00	1.05-1.23	Belegprobe
9102	DP	37A/95	262.50-265.50	0.35-0.65	DS
9103	DP	37A/95	262.50-265.50	2.35-2.45	Pollenanalyse
9104	DP	37A/95	265.50-268.50	1.00-1.37	DS
9105	DP	65A/95	65.00-68.00	0.80-1.00	DS
9106	DP	65A/95	71.00-74.00	1.30-1.75	Belegprobe
9107	DP	65A/95	86.00-89.00	0.41-0.78	DS
9108	DP	65A/95	137.00-140.00	0.40-0.61	DS
9109	DP	65A/95	144.00-147.00	1.78-1.93	DS
9110	DP	65A/95	156.00-159.00	0.00-0.30	DS, MP
9111	DP	65A/95	159.00-162.00	0.00-0.30	Belegprobe
9112	DP	65A/95	168.00-171.00	0.00-0.16	MP, TMP
9113	DP	65A/95	177.00-178.70	2.60-2.95	DS
9114	DP	65A/95	196.00-199.00	1.00-1.72	DS
9115	DP	65A/95	202.00-205.00	0.33-0.73	Belegprobe
9116	DP	65A/95	208.00-211.00	1.80-1.95	DS
9117	DP	65A/95	208.00-211.00	2.78-2.95	DS, MP
9118	DP	65A/95	211.00-214.00	0.78-0.98	DS
9119	DP	65A/95	214.00-216.50	0.00-0.52	Belegprobe
9120	DP	65A/95	219.50-222.50	1.00-1.20	Belegprobe
9121	DP	65A/95	222.50-225.50	0.66-0.86	DS
9122	DP	65A/95	225.50-228.00	0.68-0.98	Belegprobe
9123	DP	65A/95	237.00-240.00	1.00-1.23	A
9124	DP	42A1/95	36.00-37.80	1.30-1.40	Pollenanalyse
9125	DP	42A1/95	37.80-40.00	0.90-1.00	Pollenanalyse
9126	DP	42A1/95	37.80-40.00	1.00-1.10 (Kerngewinn=2m)	Pollenanalyse
9127	DP	42A1/95	40.00-42.00	1.00-1.10	Dünnschliff
9128	DP	42A1/95	42.00-43.80	0.20-0.22	MP
9129	DP	42A1/95	42.00-43.80	0.30-0.35	Belegprobe
9130	DP	42A1/96	43.80-45.00	0.10-0.12	Belegprobe
9131	DP	42A1/97	43.80-45.01	0.12-0.20	Belegprobe
9132	DP	42A1/95	46.00-48.00	0.10-0.15	MP
9133	DP	42A1/95	51.00-52.80	0.20-0.35	Belegprobe
9134	DP	42A1/95	89.20-90.50	0.88-1.00	Belegprobe

Anlage 5, Blatt 6 von 7

Probenummer	Art der Bohrung	Bohrungs- nummer	Teufe des KM	Probe m von Kopl	durchgeführte Untersuchungen
9135	DP	42A1/95	89.20-90.50	1.00-1.26	DS
9136	DP	42A1/95	103.90-106.00	0.20-0.40	DS
9137	DP	42A1/95	111.00-112.70	0.62-0.84	DS
9138	DP	42A 1/95	114.80-116.00	0.00-0.17	DS
9139	DP	42A1/95	116.00-118.00	0.26-0.30	MP, TMP
9140	DP	42A1/95	124.90-127.00	0.48-0.51	MP, TMP
9141	DP	42A1/95	163.80-165.80	0.00-0.22	Belegprobe
9142	DP	42A1/95	185.80-187.70	1.42-1.77	DS
9143	DP	42A1/95	203.70-205.70	1.55-1.76	Belegprobe
9144	DP	42A1/95	229.00-231.00	0.70-1.00	DS
9145	DP	42A1/95	229.00-231.00	1.30-1.35	MP, TMP
9146	DP	42A1/95	231.00-233.00	1.03-1.56	Belegprobe
9147	DP	46A/95	207.00-210.00	1.55-2.00	А
9148	DP	46A/95	210.00-213.00	1.08-1.10	MP, TMP
9149	DP	46A/95	213.00-216.00	0.48-1.00	DS
9150	DP	46A/95	219.00-221.90	0.50-0.55	MP, TMP, KGA
9151	DP	46A/95	224.00-227.00	1.80-2.00	DS
9152	DP	46A/95	230.00-233.00	1.35-1.60	Belegprobe
9153	DP	46A/95	245.00-248.00	1.00-1.20	Belegprobe
9154	DP	46A/95	245.00-248.00	1.90-2.05	DS

Anlage 5, Blatt 7 von 7

	BGR	Bunde Geowissenscha	sanstalt fü ften und R	r ohstoffe	
luen Leine-/Aller-Steinsolz (+ Roter Salzton)					8
tanhydrit -Karbonat er Salzton anhydrit		Projekt Mor	sleben		
uen Staβfurt-Steinsalz liflöz Staβfurt)	- (Geologischer Schi	nitt A - A	A'	
	durch da	s beckgebirge un	id das Hu	tgestein	
htenfolge Ubergehend vom Isteln in subrosiv nicht flußte Solzstruktur	ul	ber der Allertal-S	Salzstrukt	ur	
ze zwischen residualen I- und Muldenstrukturen Leithorizonte des z2/z3	(La	ge der Schnittspuren vergleic	che Anlagen 1 ur	nd 3)	
htgrenze: sich Trias und Jura tellweise subrasiv tschungsbedigte Verbreitungsgrenze rungschnillahem Charakter		Maøstab: La	inge: 1 : 200	0	
ng sicher vermutet		no	one: 1 : 200	U .	
piegel	Wissenscho	iftliche Bearbeitung:	Dr. D. Be	alzer	
uf im Hutgestein wohrscheinlich	- <u> </u>		Dr. I. Bu Dr. D. Le	irchardt otsch	
gen wurden nur zur Konstruktion der geverhältnisse im Hutgestein verwendet	Technische	Bearbeitung:	U. Maras	chek	
n der Stellung der Bohrungen zu den Juren om Solzspiegel erfolgte tellweise skilon out die Schältlinien entsprechend geologischen Strukturen	Bearbeitun	gsstand:	31.01.199	98	
: Endleufe am Bohrpunkt	2.27.6-1				
estein logernden Schichtenfolgen der Trice durch Subrosion logerungsgestört rzmgszen)					
mbole in Anlehnung on PREUSS et al. (1991)	Archiv-Nr.:	Geologische Bea	rbeitung	Anlage:	
	116622	des Hutgeste AP Nr. 9M 212210150	ins	6	

stein		BGR	Bundesanstalt für Seowissenschaften und Roh	stoffe
Residuen Leine-/Aller-S (+ Roter Salzton	leinsalz)			
Hauptanhydrit Leine-Karbonat Grauer Salzton Deckanhydrit	Leithorizonte des z2/z3	I	Projekt Morsleber	1
Residuen Staßfurt-Steins (+ Kaliflöz Staßfurt)	alz	Ge durch da	eologischer Schnitt B - s Deckgebirge und das H	B' lutgestein
Schichtenfolge Übergehen Hutgestein in subrosiv ni beeinflußte Salzstruktur	nd vom cht	(Loge	er der Allertal-Salzstruk der Schnittspuren vergleiche Anlogen 1 u	tur nd 3)
Grenze zwischen residual Sattel- und Muldenstrukt ohne Leithorizonte des z2/z	uren 3		Maβstab: Länge: 1 : 2000 Höhe: 1 : 2000	
Schichtgrenze; Im Bereich Trias und Jura tellweis und rutschungsbedingte Verbreitun mit störungsähnlichem Charakter	e subrosiv gsgrenze			
Storung sicher vermutet				
Salzspiegel		Wissensch	affliche Bearbeitung: Dr. D. Balze Dr. I. Burch	er hardt
Verlauf im Hutgestein wa	hrscheinlich	1	Dr. D. Lots	ch
		Technisch	e Bearbeitung: U. Marosche	rk.
n: Schrungen wurden nur zur Konstr Logerungsverhällnisse im Hutgestel	uktion der n verwendet	Bearbeitu	ngsstand: 31.01.1998	
igkeit von der Stellung der Bohrung en Strukturen om Solzsplegel erfolg Spe Projektion auf die Schnittlinien shen der geologischen Strukturen	en zu den de fellweise intsprechend	-		
> m NNJ: Encreute am Bohrpunkt lem Hutgestein lagernden Schichtenf und sind durch Subrosien lagerungs	olgen der Trics gesitirt		e Des antes Servers - miller	-
i Versturzmassen) Ische Symbole in Anlehnung an PRI	1055 et al. (1991)	Archiv-Nr.: 116622	Geologische Bearbeitung des Hutgesteins	Anlage: 7

tein	BGR	Bundesanstalt für Geowissenschaften und Roh	istoffe
Residuen Leine-/Aller-Steinsalz (+ Roter Salzton)			
Hauptanhydrif eine-Karbanat Srauer Salzton Seckanhydrif	Pı	rojekt Morsleben	
tesiduen Staßfurt-Steinsalz + Kalifiöz Staßfurt)	Geo durch da	ologischer Schnitt C - C Is Deckgebirge und das H	utgestein
Schichtenfolge Übergehend vom Hutgestein in subrosiv nicht beeinflußte Solzstruktur	(Loge d	der Allertal-Salzstruktu er Schniffspuren vergleiche Anlogen 1 und	3)
Grenze zwischen residualen Sattel- und Muldenstrukturen ohne Leithorizonte des z2/z3		Maβstab: Lunge: 1 : 2000 Höhe: 1 : 2000	
Schichtgrenze; m Bereich Trios und Jura teilweise subrasiv and rufschungsbedingte Verbreilungsgrenze mil störungsähnlichem Charakter			
törung sicher vermutet			
alzspiegei	Wissensch	affliche Bearbeitung: Dr. D. Bal Dr. I. Bur	zer chardt
erlauf im Hutgestein wahrscheinlich		Dr. D. Lot	sch
	Technisch	e Bearbeitung: U. Marasc	hek
d Johrungen wurden nur zur Konstruktion der "ögerungsverhältnisse im Hutgestein verwendet	Bearbeitu	ngsstand: 31.01.1998	
kell von der Stellung der Bohrungen zu dan Bruckbaren om Satzsplagal erfolgte tellweise e Projektion suf die Schnittlichen entsprechend en der geologischen Strukturen	1 - L		2.1.2
m NVI: Endleute am Bohrpunkt n Hulgestein lagernden Schlichtenfolgen der Trias o sind durch Subrosion lagerungsgestört Versfurzmossen)	Archiv-Nr.:	Geologische Regrheitung	Aplaget
che Symbole in Anlehnung an PREUSS et al. (1991)	116622	des Hutgesteins	8

Hutgestein	BGR	Bunde Geowissenscha	sanstalt für ften und Re	r ohstoffe
Residuen Leine-/Aller-Steinsolz (+ Roter Salzton)				
Houptanhydrit Leine-Karbonat Grauer Solzton Deckanhydrit		Projekt Mor	sleben	
Residuen Staßfurt-Steinsalz (+ Kallfißz Staßfurt)	durch d	Geologischer Schnitt D - D' durch das Deckgebirge und das Hutgestein		
Schichtenfolge übergehend vom Hulgestein in subrosiv nicht beeinflußte Salzstruktur	u	über der Allertal-Salzstruktur		
Grenze zwischen residuolen Sattel- und Muldenstrukturen ohne Leithorizonte des z2/z3			che Anogen i un	u 3)
Schichtgrenze: Im Bereich Tries und Jurg tellweise subrodiv mit attranspäthelichen Charakter		Magstab: Li H	inge: 1 : 2000 She: 1 : 2000	
Storung vermutet				
Salzspiegel	Wissensch	aftliche Bearbeitung:	Dr. D. 80	Izer
 Verlauf im Hutgestein wahrscheinlich 			Dr. I. Bur Dr. D. Lo	rchardt tsch
	Technisch	e Bearbeitung:	U. Marasa	hek
Anmerkongen; -projektris Behrungen wurden nur zur Konstruktion der gennerdlen Logerungeverhöltnisse im Hulgeslein verwendel -in Abdrayligkeit von der Stellung der Behrungen zu den gelogischen Strukture om Stozgelegel antigete teilweise eine schröge Projektion guf die Schöftlichen entgerechend dem Streichen der gelogischen Birukturen.	Bearbeltu	ngsstand:	31.01.199	8
-(ef = -165 m NN): Endeute am Bohrpunkt -die Ober dem Hutgestein logernden Schichtenfolgen der Trias und des Jung sind durch Subroalen logerungsgestert	Archiv-Nr.:	Geologische Bea	rbeitung	Anlage:
-stratigraphische Symbole in Anlehnung an PREUSS et al. (199	116622	des Hutgesteins		9

Hutgestein	BGR	Bundes Geowissenschaf	sanstalt fü ten und R	r ohstoffe
Residuen Leine-/Aller-Steinsalz (+ Roter Salzton)				
Leine-Karbonat Beckanhydrif		Projekt Mor	sleben	
Residuen Staßturt-Steinsolz (+ Kalifikz Staßfurt)	Geologischer Schnitt E – E' durch das Deckgebirge und das Hutgestein			Itgestein
Schichtenfolge übergehend vom Hutgestein in subrosiv nicht beeinflußte Salzstruktur	U) (Le	ber der Allertal-S ge der Schnittspuren vergleici	Salzstrukt	ur d 3)
Grenze zwischen residualen Sattei- und Muldenstrukturen ohne Leithorizonte des z2/z3				
Schichtgrenze: Im Bereich Tries und Jere tellenies subroalv mit sterungsheitsbahe Cherokter		Ma¢stab: Lu Ho	nge: 1 : 2000 he: 1 : 2000	16 16
Störung Störmutet Salzspiegel Verlaut Im Hutgestein wahrscheinlich	Wissensch	aftliche Bearbeitung:	Dr. D. Bo Dr. I. Bu	lzer rchardt
	Technische	Bearbeltung:	U. Maras	chek
rmartungen: prolizierte ledrungen wurden nur zur Konstruktion der gemanise Logensigewehbtnisse im Nubgestein verwendet is Abhöngsteil van der Stellung der Botrungen zu den gesingteins Trukturen om Satzgelige articige teilweise eine gehögte Trukktore om Satzgelige articige teilweise eine gehögte Trukktore of die Scholtlichen entsprechend der Brechban der geologischen Strukturen.	Bearbeitur	igsstand:	31.01.199	8
(et = -165 m NN): Endlaufe am Bohrpunkt	In the second second second			
de Uber dem Hutgestein logernden Schlichtenfolgen der Triss und des Juro sind durch Sübresion logerungegektitri (Galt- und Versturzmassen)	Archiv-Nr.:	Geologische Bear	beitung	Anlage:
trollgraphlache Symbole in Anlehnung an PREUSS et al. (1991)	116622	des Hutgestein AP Nr. 9M 2122101500	ns	10

Hutgestein	BGR	Bunde: Geowissenschaf	sanstalt für 'ten und Rohstoffe
Residuen Leine-/Aller-Steinsolz (+ Roter Salzton)			
Hauptanhydrit Leitharizonte Grauer Salzton Deckanhydrit		Projekt Mor	sleben
Residuen Staffurt-Steinsalz (+ Kallfitz Staffurt)	durch da	Geologischer Schr 18 Deckgebirge un	nitt F – F' d das Hutgestein
Schichtenfolge übergehend vom Hutgestein in subrosiv nicht Beeinflußte Salzstruktur	u	ber der Allertal-S	alzstruktur
Grenze zwischen residualen Sattel- und Muldenstrukturen ohne Leithorizonte des z2/z3	(Le	ige der Schnittspuren vergleich	e Aniogen 1 und 3)
Schichtgrenze:	Ма∦stab: Lжnge: 1 : 2000 Н©he: 1 : 2000		nge: 1 : 2000 he: 1 : 2000
Solzspiegel	Wissensch	affliche Bearbeitung:	Dr. D. Balzer
 Verlauf im Hutgestein wahrscheinlich 			Dr. I. Burchardt Dr. D. Lotsch
	Technisch	e Bearbeitung:	U. Maraschek
Annerkungen -persfülste Bahrungen wurden nur zur Konstruktion der generatien Lögerungenehötisse im fulgestein verwendet -in Abhönglicht nur der Stellung der Bahrungen zu dan gesingestein Strukturen om Solespiege erfolgte telleste das spörtige Projektion ogt die Spörtifichen antsprechend	Bearbeltu	ngsstand:	31.01.1998
-(et = -165 m HN): Endleufe am Botrpunkt			
die über dem Hulgestein logernden Schichtenfolgen der Trics und des Juro sind durch Subrosian logerungsgestürt (Gleit- und Versturzmossen)	Archiv-Nr.:	Geologische Bearl	beitung Anlage
-stratigraphische Symbole in Anishnung an PREUSS et el. (1991)	116622	des Hutgesteins	

estein		BGR	Bund Geowissensch	lesanstalt f	Ur Robstoffe
Residuen Leine-/ (+ Roter	Aller-Steinsalz Salzton)				Konsione
Hauptanhydrit Leine-Karbonat Grauer Salzton Deckanhydrit	Leithorizonte des z2/z3		Projekt Mo	rsleber	ı
Residuen Staßturf (+ Kalifikz Staßtur Schichtenfolge Ub Hutgestein in sub beeinflußte Salzst Grenze zwischen Sattei- und Muldu	-Steinsolz rt) regehend vom rosiv nicht ruktur residualen mstrukturen	durch da t	Geologischer Sch as Deckgebirge u Iber der Allertal- age der Schnittspuren vergle	nnitt G – nd das Hu -Salzstruk Niche Anlogen 1 u	G' itgestein ttur und 3)
ohne Leithorizonte Schichtgrenze; Im Bereich Triss und Ju und ruhschungsbedingte mit sittrungsähnlichem (Störung Sicher vermute	des z2/z3 ra tellweise subrosiv Verbreitungsgrenze Therakter		Maøstab: L	Minge: 1 : 200 öhe: 1 : 200	00
Salzspiegel /erlauf im Hutges	fein wahrscheinlich	Wissensch	affliche Bearbeitung:	Dr. D. 8 Dr. I. 8 Dr. D. L	lalzer urchardt .otsch
hi Bohrungen wurden nur Cogerungsverhöltnisse in gleit von der Stellung di n Strukturen am Solzsp er Projektion gud die So ren der geologischen St m NYD: Entlaufe am B	zur Konstruktion der n Hulgestein verwendel regel erfogte tellweise nytttinken entsprechend ukturen	Technisch Bearbeitu	e Bearbeitung: ngsstand:	U. Mara 31.01.19	schek 98
em Hulgestein logernden ris sind durch Subroslo I Versturzmossen) Ische Symbole in Arlehn	Schichlanfolgen der Trica hogerungsgestitt ung an PREUSS et al. (1991)	Archiv-Nr.: 116622	Geologische Bea des Hutgeste	rbeitung ins	Anlage: 12

estein		BGR	Bunde	esanstalt fü	Jr Robstoffe
Residuen Leine-// (+ Roter S	Aller—Steinsalz Salzton)				ionsione.
Hauptanhydrit Leine-Karbonat Grauer Salzton Deckanhydrit	Leithorizonte des z2/z3]	Projekt Mors	sleben	
Residuen Staßturt (+ Kalifikz Staßtur Schichtenfolge Ub Hutgestein in subr beeinflußte Solzstr Grenze zwischen Sattel- und Mulde	-Steinsaiz rt) ergehend vom rosiv nicht uktur residualen nstrukturen	Ge durch da Ube (Loge	eologischer Schni as Deckgebirge ur er der Allertal-Sa der Schnittspuren vergleiche	tt H -H' 1d das Hu Izstruktur Anlogen 1 und 3	tgestein r
Schichtgrenze: m Bereich Tries und Jur nd rutschungsballingen unt eldrungsbhallchem C itt eldrung sicher vermutet	ng fellvelae subrosiv Verbreilungsgrenze Norditer		Maβstab: La Hα	inge: 1 : 200 5he: 1 : 200	0
Salzspiegel Yerlauf im Hutgestein wahrscheinlich		Wissensch	aftliche Beorbeltung:	Dr. D. Bo Dr. I. Bu Dr. D. Lo	alzer irchardt otsch
ni Behrungen wurden nur Lagerungswerhältnisse im Keit von der Stellung de n Strukturen am Salzspis e Projektion auf die Sab hen der geologischen Str with restauten auf	zur Konstrüktion der hlutgestein verwendet regelnerfolgte nichteites signi erfolgte nichteites signi erfolgte nichteites signi erfolgte nichteites signi erfolgte nichteites signi erfolgte sichteites sichtes sichtes sichtes sichtesi	Technisch Bearbeitu	e Bearbeitung: ngsstand:	U. Maras 31.01.199	ichek 98
er dem Hudgestein logernden Schlichtenfolgen der Trias e Jura sind durch Schorskin logerungsgestörf um Versturzmessen) raphische Symbole in Anlehnung an PREUSS et al. (1991)		Archiv-Nr.: 116622	Geologische Bear des Hutgeste AP Nr. 941 212210130	beitung ins	Anlage: 13

estein		BGR	Bund Geowissensche	esanstalt f	Ur Rohstoffe	
Residuen Leine-/Aller-Steinsalz (+ Roter Salzton)						
Hauptanhydrit Leine-Karbonat Grauer Salzton Deckanhydrit	auptanhydrit eine-Karbonat rauer Salzton sckanhydrit		Projekt Morsleben			
Residuen Staffurt-Steinsalz (+ Kalifitiz Staffurt) Schichtenfolge Übergehend vom Hulgestein in subrosiv nicht beeinfulge Salzstruktur		Geologischer Schnitt I -l' durch das Deckgebirge und das Hutgestein über der Allertal-Salzstruktur				
Grenze zwischen residualen Sattel- und Muldenstrukturen ohne Leithorizonte des z2/z3		(Lage der Schnittspuren vergleiche Anlagen 1 und 3)				
Schichtgrenze: Im Beräch Triss und Aura tellweise subrasiv und rutschungsdeinigte Verbratungsgrenze mit störungstehelichen Cvarakter Störung sicher Störung vermutet		Magstab: Linge: 1 : 2000 Huhe: 1 : 2000				
Salzspiegel Verlauf im Hutgestein wahrscheinlich		Wissenschaftliche Bearbeitung: Dr. D. Dr. l. E Dr. D.		alzer urchardt otsch		
gen In bishrungen wurden nur zur Konstruktion der In Spärungerechtlichtes im Holgestein werwendet späcelt von der Stellung der bekongen zu den Instruktionen der Schlagege erfolge Herbeite erfolgen der geologischen Strukturen Weiter der geologischen Strukturen der mittig geologischen Strukturen		Technische Bearbeitung: Bearbeitungsstand:		U. Maraschek 31.01.1998		
er dem Hulgestein Ingernöm Schlichtenfalgen der Trias A Jare eind derein Supereich Ingerungsgestört und Versturzensen) raphösche Symbole in Anlehnung on PREUSS ei ol. (1991)		Archiv-Nr.: 116622	Geologische Bearbeitung des Hutgesteins		Anlage: 14	

