Fachworkshop Asse: Strahlenschutz und Notfallvorsorge

20./21.11.2012, Landesmusikakademie Niedersachsen, Wolfenbüttel

Impulsvortrag im Arbeitskreis N AK 6

Arbeitskreise im Workshop Strahlenschutz			
S AK 1	Langzeitsicherheit		
S AK 2	Strahlenschutz bei der Rückholung		
S AK 3/4	Rechtfertigung der Rückholung		
Arbeitskreise im Workshop Notfallvorsorge			
N AK 5	Ziele der Notfallplanung und vorgesehene Maßnahmen		
N AK 6	Wirksamkeit der Maßnahmen		
N AK 7	Zusammenwirken der Notfallplanung mit Faktenerhebung und Rückholung		

Wirksamkeit von Einzelmaßnahmen der Notfallplanung

Bundesamt für Strahlenschutz Dr. Jonathan Kindlein

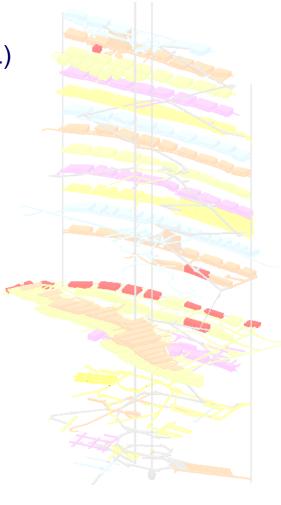
Fachworkshop "Notfallplanung Asse"
- Arbeitskreis N AK 6 "Wirksamkeit der Maßnahmen" - am 20./21.11.2012 in Wolfenbüttel

Überblick

- Grundlagen
 - Vorsorge- und Notfallplanung
 - Berichte zur Konsequenzenabschätzung
- Abschätzung der rad. Konsequenzen (ohne Maßnahmen)
- Abschätzung der Wirksamkeit der geplanten Maßnahmen
 - Vorgehensweise, Randbedingungen
 - Untersuchte Szenarien
 - Zugrundeliegendes Modell
 - Einzelergebnisse
 - Ergebniszusammenstellung
- Schlussfolgerungen, Fragestellungen

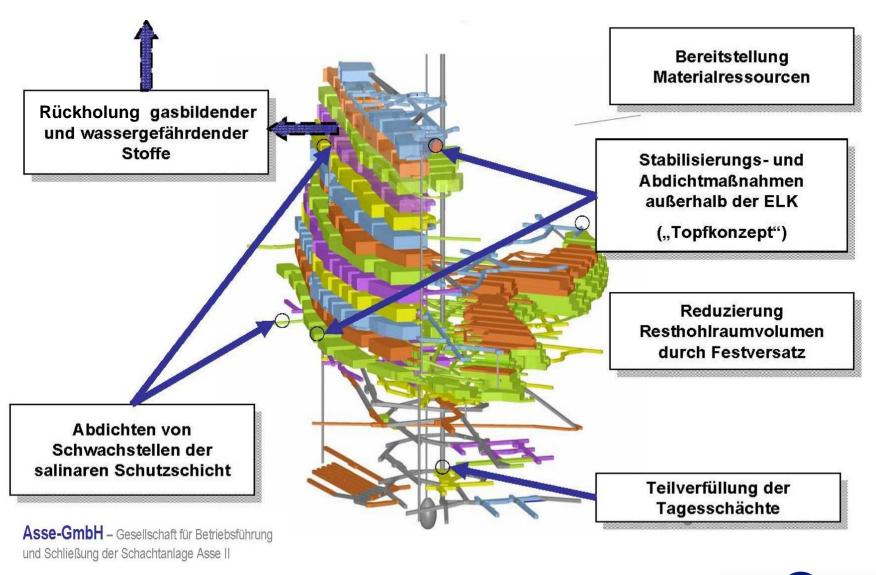
Grundlagen der Notfallplanung

Notwendigkeit (rechtliche Vorgaben)

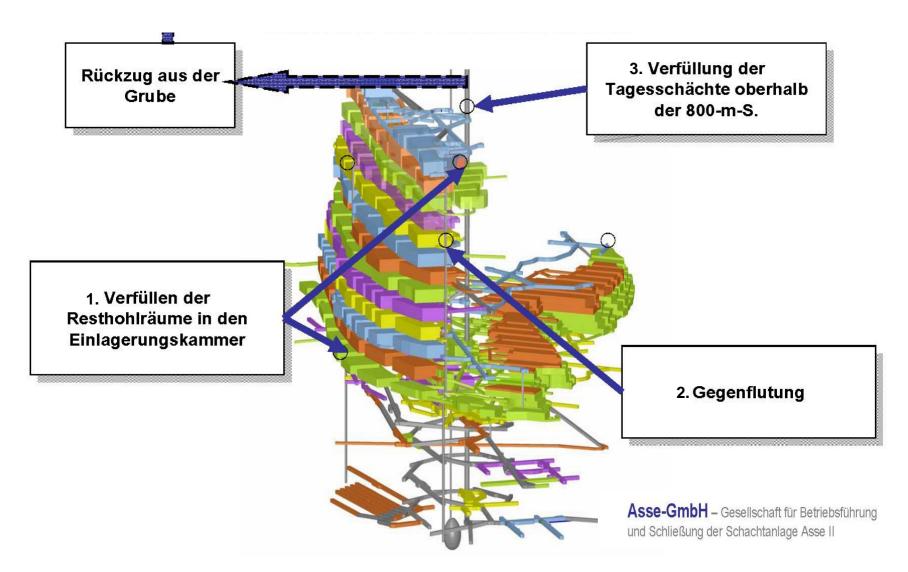

- Auslegungsüberschreitender Lösungszutritt (AÜL)
 - kann nicht ausgeschlossen und
 - nicht prognostiziert werden.
- Schadensvorsorge
 - nach dem Stand von W&T erforderlich.

— Ziele

- Verringerung der Eintrittswahrscheinlichkeit
- Minimierung der Konsequenzen


— Maßnahmen

- Maßnahmen zur Notfallvorsorge
- Maßnahmen im Eintrittsfall



Vorsorgemaßnahmen

Notfallmaßnahmen

Berichte zur Konsequenzenabschätzung

- /1/ AF-Colenco 2009: Schachtanlage Asse II Abschätzung der Trinkwasserdosis bei einem unterstellten Absaufen des Grubengebäudes. AF-Colenco AG, 08.05.2009.
- /2/ GRS 2009: Abschätzung potenzieller Strahlenexpositionen in der Umgebung der Schachtanlage Asse II infolge auslegungsüberschreitender Zutrittsraten der Deckgebirgslösung während der Betriebsphase. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig, 21.04.2009.
- /3/ GRS 2010: Schachtanlage Asse: Stellungnahme zur Wirksamkeit von Einzelmaßnahmen der Notfallplanung. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig, 26.04.2010
- /4/ Öko-Institut 2011: Neuberechnungen zu den Auswirkungen eines auslegungsüberschreitenden Lösungszutritts in der Schachtanlage Asse II, ENTWURF. Öko-Institut e.V. im Auftrag des BMU, 24.05.2011

Abschätzung der Konsequenzen ohne Maßnahmen

	ANNAHMEN	DOSIS ca.
AF-Colenco (2009)	-verzögerte Mobilisierung -keine Sorption im Deckgebirge -geringe Transportverzögerung im Grubengebäude/Deckgebirge -Verdünnung auf Trinkwasserqualität -Dosiskonversionsfaktoren (DKF) nur für den Trinkwasserpfad nach AVV	1 13 mSv/a
GRS (2009)	-instantane Mobilisierung -keine Sorption im Deckgebirge -keine Transportverzögerung im Deckgebirge -Verdünnung auf Trinkwasserqualität -DKF nach AVV (konservativ) -keine Löslichkeitsbegrenzung (konservativ) -versch. "Worst-case"-Szenarien (u. a. Kanalisierung)	500 2.000 mSv/a
Öko-Institut (2011)	-Szenario I: analog zu GRS (2009), jedoch teilweise korrigiert (Inventar, radioökol. Modell statt DKF) -Szenario II: eigene Annahmen, Löslichkeitsgrenzen, Deckgebirgsmodellierung, Sorption im Deckgebirge	(I) 10 500 mSv/a (II) 0,01 0,1 mSv/a

Zusammenfassung der Ergebnisse

- Die Abschätzungen ermitteln (zum Teil erhebliche) radiologische Konsequenzen für den AÜL, sofern keine Vorsorgemaßnahmen ergriffen werden.
- Die abgeschätzten Dosiswerte variieren dabei je nach Szenario und zugrunde gelegten Annahmen – in einer großen Bandbreite von ca. 0,01 bis zu 2.000 mSv/Jahr (5 Größenordnungen).
- Die Ergebnisse stützen vornehmlich auf Plausibilitätsbetrachtungen und verbalargumentativen Überlegungen bzw. stark vereinfachenden Modellen ab.
- Die aufgrund der unsicheren Randbedingungen verwendeten Annahmen sind – in unterschiedlicher Ausprägung – konservativ überschätzend.

Wirksamkeit der geplanten Maßnahmen

GRS-Bericht zur Wirksamkeit von Einzelmaßnahmen der Notfallplanung

Stand: 26.04.2010

Allgemeine Zielstellung:

 Untersuchung der Auswirkungen von Vorsorge- und Notfallmaßnahmen auf die Rückhaltung von Radionukliden

Inhalt des Berichtes

- Teil 1: Darstellung von Quelltermen für verschiedene Szenarien (Entwicklung des Milieus in den ELK)
- Teil 2: vergleichende Modellrechnungen zur Wirksamkeit von Einzelmaßnahmen

Zielstellung / Untersuchungsziele

Nachweis der Wirksamkeit von Einzelmaßnahmen der Notfallplanung

konkret:

- Wirksamkeit der Verfüllung von LAW-Kammern, d. h. die Beeinflussung des geochemischen Milieus mit Versatzstoffen von unterschiedlichem Puffervermögen,
- Wirksamkeit der einfachen Verfüllung oder Abdichtung von Grubenbauen zur Begrenzung und Lenkung von Lösungsbewegungen im Nahbereich der LAW-Kammern,
- Auswirkung einer Einkapselung oder einer einfachen Umhüllung der Abfälle in der MAW-Kammer,
- Wirksamkeit der einfachen Verfüllung oder Abdichtung von Grubenbauen im Nahbereich der MAW-Kammer,
- Wirksamkeit der einfachen Verfüllung von vertikal kanalisierenden Grubenbauen im Nahbereich der LAW-Kammern.

Vorgehensweise

Methodik

- keine Deckgebirgsmodellierung
- Bewertungsgröße: kumuliertes Nuklidinventar im Deckgebirge
- differenzierte Modellierung der Gegebenheiten in der Grube
- Einsatz bestehender Modelle zur Ermittlung der sich einstellenden Systemzustände

Annahmen/Randbedingungen

- Umsetzung aller <u>Notfall</u>maßnahmen gemäß Notfallplanung
 - Verfüllung abgedichteter ELK, Gegenfluten, Schachtverschlüsse
- Vernachlässigung von Sorption (konservativ)

ISSE-GMDH – Gesellschaft für Betriebsführun nd Schließung der Schachtanlage Asse II

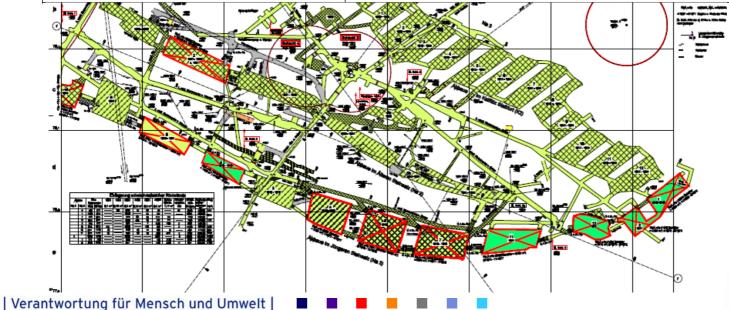
Maßnahmenkomplexe der Notfallplanung zur Konsegenzenminimier

Modellrechnungen – Szenarien

Grenzfall-Szenarien

- "Ohne Abdichtungen": nur Realisierung der Notfallmaßnahmen
- Basisfall: Umsetzung aller Vorsorge- und Notfallmaßnahmen

Vergleichende Rechenfälle


- Sukzessiv weitere Abdichtungen
- Alternativer Versatzstoff Sorelbeton
- Parametervariationen (Konvergenzrate, Quellterm,...)
- What-if-Fälle (fiktiv) für Systemanalyse (z.B. Blindschächte offen)

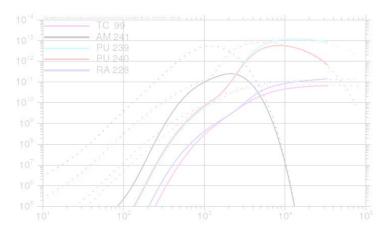
Modellrechnungen – Definition ELB

Einlagerungsbereiche

Einlagerungsbereich	Kammern
LAW1A	1/750, <u>2/750</u> , 3/750 im Na2
LAW1B	6/725, <u>7/725</u> , 8/725 im Na2
LAW2	<u>4/750, 8/750, 9/750, 10/750</u> im Na3
LAW3	<u>5/750, 6/750, 7/750, 11/750</u> im Na3
LAW4	<u>1/750, 2/750, 12/750</u> im Na3
MAW	<u>8a/511</u>

Modellrechnungen – Überblick

Grenzfall-Szenarien


- "Ohne Abdichtungen"
- Basisfall

Vergleichende Rechenfälle

- Variante: nur Sorelbeton
- Szenario: ohne Abdichtung der Blindschächte
- Szenario: ohne Verfüllung der Einlagerungskammern

Nuklidspezifisch

- Pu-239
- Am-241

Einzelergebnis – "ohne Abdichtungen"

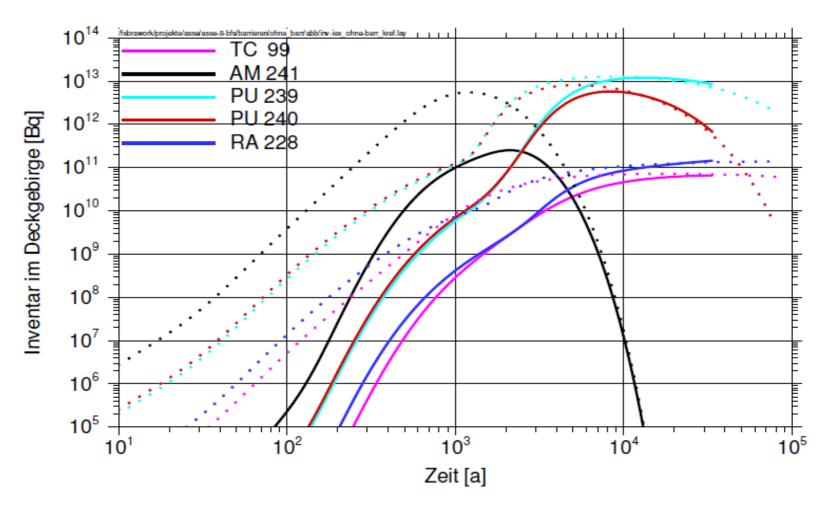


Abb. 2: Radionuklidinventare im Deckgebirge für den Rechenfall "ohne Abdichtungen"; gepunktet: mit um Faktor 10 erhöhter Konvergenzrate

Einzelergebnis – Basisfall

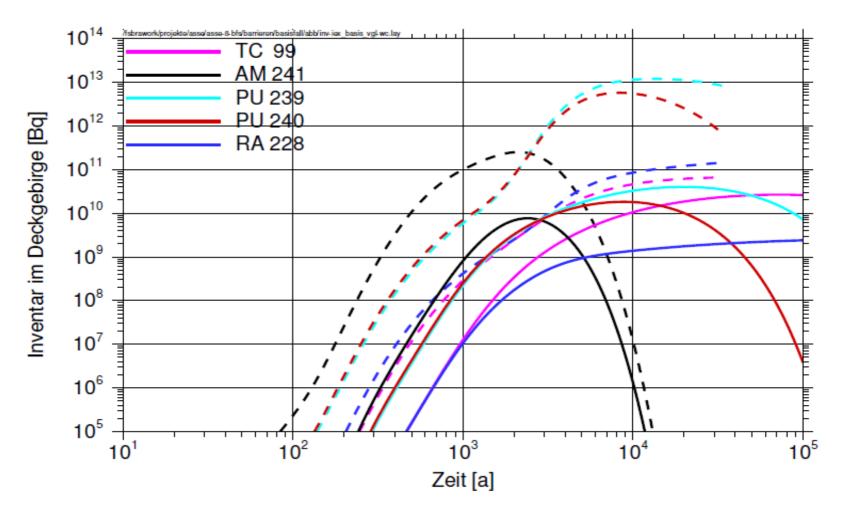


Abb. 12: Radionuklidinventare im Deckgebirge im Basisfall im Vergleich zum Rechenfall "ohne Abdichtungen" (gestrichelt)

Einzelergebnis – nur Sorelbeton

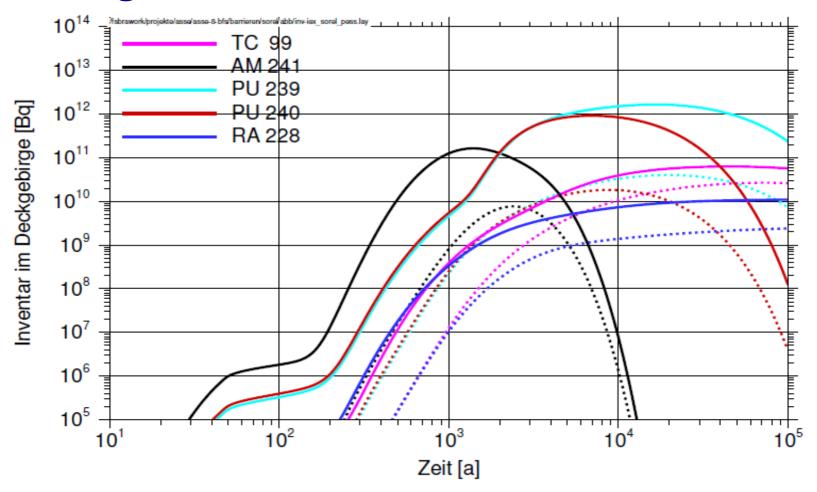


Abb. 10: Radionuklidinventare im Deckgebirge bei einer Verfüllung der Resthohlräume im Nahbereich der LAW-Kammern mit Sorelbeton im Vergleich zum Basisfall (gepunktet) (Anm.: unqualifizierte Verfüllung, d.h. keine "Strömungsbarrieren")

Bundesamt für Strahlenschutz

Einzelergebnis – ex. Abdichtung Blindschächte

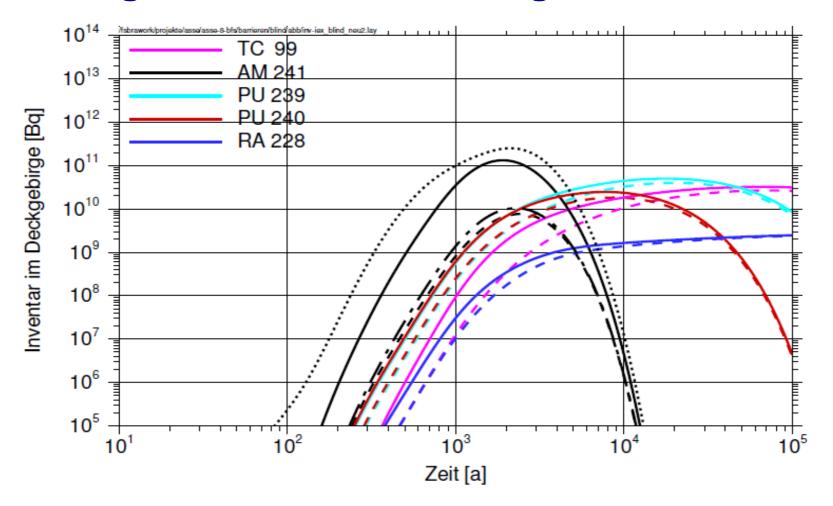


Abb. 14: Radionuklidinventare im Deckgebirge ohne Abdichtung der Blindschächte. gestrichelt: Basisfall. gepunktet: Am-241 im Rechenfall "ohne Abdichtungen", strichpunktiert: Rechenfall mit gering durchlässiger Verbindung H-3.4 (siehe Text)

.

Einzelergebnis – ex. Verfüllung LAW-Kammern

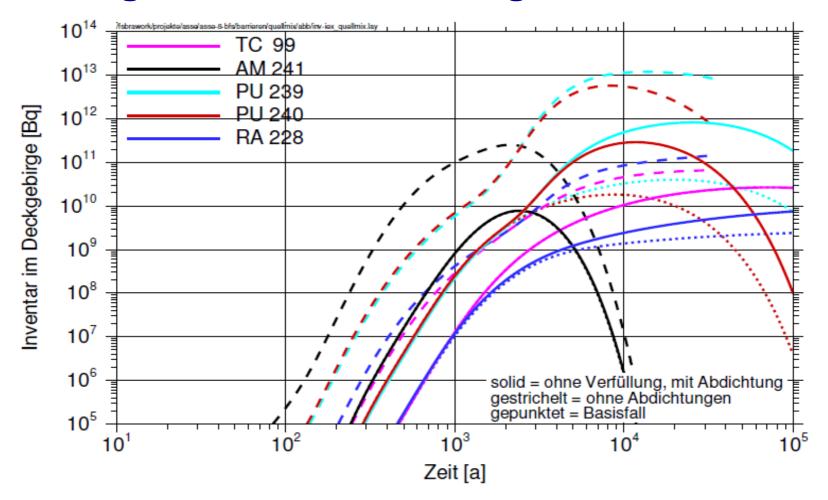
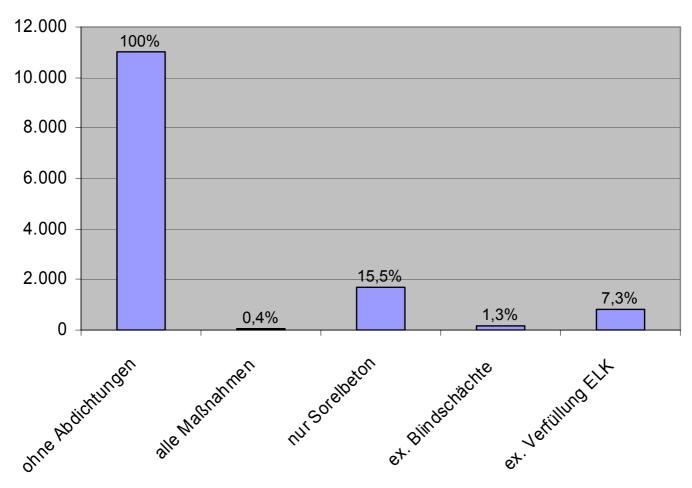
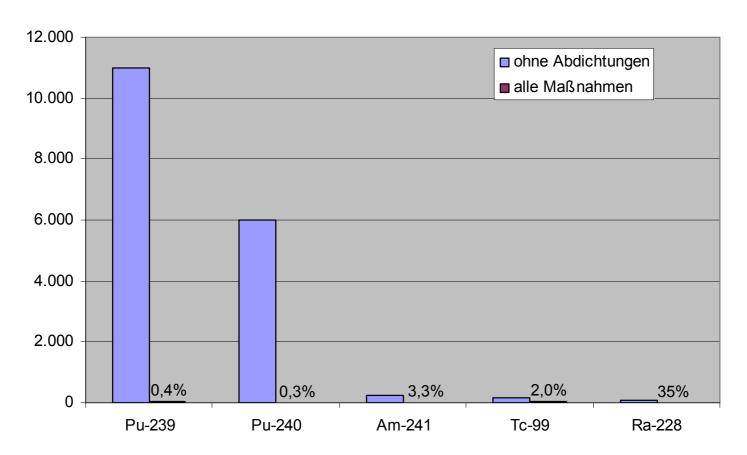



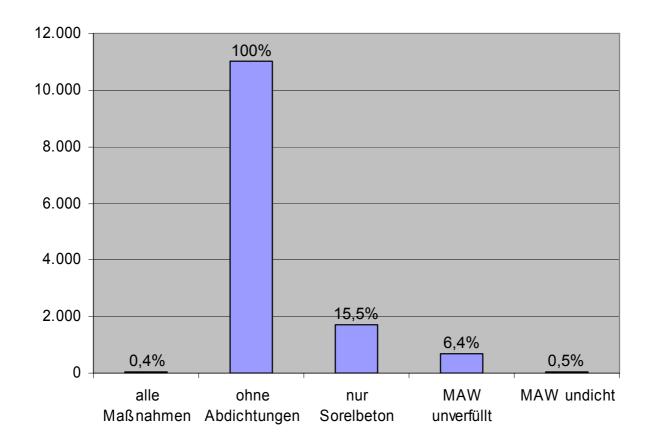
Abb. 17: Radionuklidinventare im Deckgebirge ohne Verfüllung der Resthohlräume in den Einlagerungskammern (Basisfall mit Quellterm *QT5* bei pessimistischen Annahmen) im Vergleich zum Basisfall und zum Rechenfall "ohne Abdichtungen"

Bundesamt für Strahlenschutz

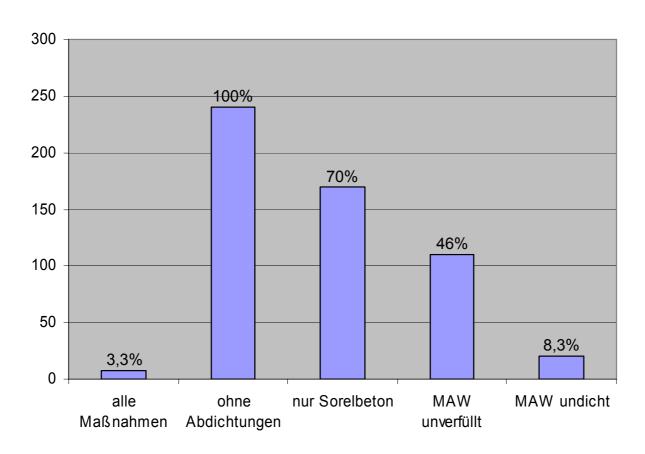
Gesamtdarstellung


Belastung im Deckgebirge [GBq] (Leitnuklid)

Gesamtdarstellung nuklidspezifisch


Belastung im Deckgebirge [GBq] (nuklidspezifisch)

Gesamtdarstellung der Maßnahmen für Pu-239



Gesamtdarstellung der Maßnahmen für Am-241

Am-241 im Deckgebirge [GBq]

Ergebniszusammenstellung

- Die alleinige Abdichtung/Verfüllung von LAW2 + LAW3 ist nahezu wirkungslos.
- Die Abdichtung aller Einlagerungsbereiche auf der 750-m-Sohle verringert das Nuklidinventar im DG um eine Größenordnung.
- Bei Umsetzung aller Vorsorgemaßnahmen beträgt die Reduktion der maximal freigesetzten Inventare bis zu drei Größenordnungen.
- Von besonderer Bedeutung sind die Abdichtungen um den LAW1B, speziell die vertikalen Abdichtungen zur 700-m-Sohle, sowie die Abdichtung des Blindschachtes 3 im Bereich LAW3/LAW4.
- Die Verfüllung der LAW-Kammern mit Brucitmörtel ist in jedem Falle deutlich sicherheitsgerichtet (eine Größenordnung bei Fehlen).
- Bei Abdichtung der MAW-Kammer (intakte Sorelbetonglocke) ist deren Anteil am freigesetzten Inventar vernachlässigbar gering.

Schlussfolgerungen

- Die Berechnungen belegen die Wirksamkeit der geplanten Vorsorge- und Notfallmaßnahmen, insbesondere die hohe Bedeutung der Maßnahmen im Bereich der LAW.
- Die vollständige und noch rechtzeitige Umsetzung aller Notfallmaßnahmen ist erforderlich um prognostizierbaren Zustand zu erreichen und die Wirksamkeit der Vorsorgemaßnahmen (im Notfall) zu erhalten.
- Herstellung der "Notfallbereitschaft" ist dringendes Betriebsziel, um das bestmögliche Sicherheitsniveau zu erreichen.
- Eine Ergänzung der Modelle und Aktualisierung der Berechnungen ermöglicht eine noch höhere Beurteilungssicherheit für die Steuerung der Maßnahmen der Notfallvorsorge.
- Eine jeweils angepasste Notfallplanung für die geplante Rückholung ist erforderlich. Für die konkrete Ausgestaltung sind angepasste Berechnungen notwendig.
- Realisierung der Vorsorgemaßnahmen und Herstellung der Notfallbereitschaft sind notwendige Grundlage für geordnete Stilllegung.

Bundesamt für Strahlenschutz

Fragestellungen

- Sind die bisherigen Betrachtungen zum Notfallszenario ausreichend? Welche weiteren Untersuchungen sind ggf. erforderlich?
- Ist die Wirksamkeit der Einzelmaßnahmen hinreichend belegt? Für welche Maßnahmen bestehen ggf. Zweifel an ihrer Wirksamkeit?
- Kann die Wirksamkeit der Vorsorge- und Notfallmaßnahmen noch verbessert werden?
- Gibt es wirksamere Alternativen? Wie können die Einzelmaßnahmen im Hinblick auf ihre Wirksamkeit ggf. weiter optimiert werden?
- Ist die Einstufung der Einzelmaßnahmen (Kategorie Vorsorge- oder Notfallmaßnahmen) nachvollziehbar und angemessen?

