## GSF-Forschungszentrum für Umwelt und Gesundheit Forschungsbergwerk Asse

Bestimmung des Inventars an chemischen und chemotoxischen Stoffen in den eingelagerten radioaktiven Abfällen der Schachtanlage Asse

Abschlussbericht

**März 2004** 

B. Buchheim Buchheim Engineering

H. Meyer, M. Tholen Forschungsbergwerk Asse

| Projekt | PSP-Element        | Thema            | Aufgabe | UA | Lfd. Nr | Rev |
|---------|--------------------|------------------|---------|----|---------|-----|
| NNAA    | ИИИИИИИИИИ         | NNAAANN          | XAAXX   | AA | NNNN    | NN  |
| 9       | <del>77</del> 7-33 | L <del>2</del> 5 | EG      | BZ | 0110    | 00  |

Forschungszentrum GmbH behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit Zustimmung der GSF - Forschungszentrum GmbH zitiert, ganz oder teilweise vervielfältigt bzw. Dritten zugänglich gemacht werden.

Dieser Bericht wurde im Auftrag und von der GSF - Forschungszentrum GmbH erstellt. Die GSF -

## Inhaltsverzeichnis

| 1     | EINLEITUNG                                                                                     | 1        |
|-------|------------------------------------------------------------------------------------------------|----------|
| 2     | VORGEHENSWEISE                                                                                 | 2        |
| 3     | HERKUNFT UND RAHMENBEDINGUNGEN DER EINGELAGERTEN ABFÄLLE                                       | 5        |
| 4     | GRUNDLAGEN FÜR DIE ABSCHÄTZUNG DES ABFALLINVENTARS                                             | 6        |
| 4.1   | Abfallbehälter der radioaktiven Abfälle                                                        | 7        |
| 4     | 1.1 Abfallbehälter der schwachradioaktiven Abfälle                                             | 7        |
| 4     | 1.2 Abfallbehälter der mittelradioaktiven Abfälle                                              | 8        |
| 4     | 1.3 Berechnungsgrundlagen für die Materialien der Abfallbehälter                               | <b>9</b> |
| 4.2   | Fixierungsmittel der radioaktiven Abfälle                                                      | 10       |
| 4.3   | Radioaktive Abfälle                                                                            | . 12     |
|       | 3.1 Verfestigte Abfälle                                                                        |          |
|       | 3.2 Feste Abfälle                                                                              | 13       |
|       | 3.3 Verbrennungsrückstände                                                                     | 19<br>10 |
| 4.3   | 3.4 Mischkategorien                                                                            | 19       |
| 4.4   |                                                                                                |          |
| 5     | GRUNDLAGE ZUR ERMITTLUNG GRUNDWASSERGEFÄHRDENDER STOFFE SOW                                    | IE       |
| WEITI | ERER CHEMOTOXISCHER STOFFE                                                                     |          |
| 5.1   | Grundwassergefährdende Stoffe                                                                  | 20       |
| 5.2   | Chemotoxische Stoffe                                                                           | 21       |
| 5.2   | 2.1 Organisch chemotoxische Stoffe                                                             | 22       |
| 5.2   | 2.2 Anorganisch chemotoxische Stoffe                                                           | 22       |
| 6     | MATERIALIEN, KOMPONENTEN UND ELEMENTE IM ABFALLINVENTAR DER                                    |          |
|       | CHTANLAGE ASSE                                                                                 | 23       |
|       |                                                                                                |          |
| 6.1   | Systematik der Erfassung und Datenauswertung                                                   | 23       |
|       | 1.2 Überprüfung der Datenbasis                                                                 |          |
|       | 1.3 Zwiebelschalenprinzip                                                                      | 30       |
|       | 1.4 Materialschichtmodell                                                                      | 32       |
|       | ERGEBNISSE                                                                                     |          |
| 7     | ERGEBNISSE                                                                                     | 34       |
| 7.1   | Inventarmassen                                                                                 | 34       |
| 7.2   | Massen der Materialien                                                                         |          |
| 7.3   | Massen der grundwassergefährdenden Stoffe                                                      |          |
| 7.4   | Massen der chemotoxischen Stoffe                                                               |          |
|       | 4.1 Massen der organisch chemotoxischen Stoffe                                                 |          |
|       | 4.2 Massen der anorganisch chemotoxischen Stoffe                                               |          |
| 7.5   | Massen der Spurenelemente Uran- und Thorium                                                    |          |
| 8     | BANDBREITE DES ABFALLINVENTARS                                                                 | 48       |
| 9     | ABFALLINVENTAR AN CHEMISCH UND CHEMOTOXISCHEN STOFFEN FÜR DIE                                  |          |
| EINHA | ALTUNG DER GWVO                                                                                | 51       |
| / ^'  | QUELLENVERZEICHNIS                                                                             |          |
| 10    |                                                                                                |          |
| ANHA  | NG A                                                                                           | 1        |
| A.1   | Grundlagen zur Erstellung der Liste von chemotoxischen Stoffen                                 | 1        |
| A.2   | Organische chemotoxische Stoffe Verbindungsklassen, Verbindungen und typische Klassenvertret   |          |
| A.3   | Anorganische chemotoxische Stoffe Metalle, Metallverbindungen und Nichtmetalle                 |          |
| ANHA  |                                                                                                |          |
| АНПА  |                                                                                                |          |
| B.1.  | Gesamtinventar aus allen Stoffuntergruppen (SUG) und allen Kammern, alle Beiträge; geordnet na | ich      |
|       | Masse der Materialien [kg]                                                                     |          |
| B.2.  | Gesamtinventar aus allen Stoffuntergruppen (SUG) und allen Kammern, alle Beiträge; geordnet na |          |
| D 4   | Masse der Materialien in Abfällen, Abfallbehältern und Fixierungsmitteln [kg]                  |          |
| B.3.  | Anorganische und organische Komponenten gesamt (in kg), sortiert nach Komponenten              |          |
| B.4.  | Elemente in anorganischer bzw. organischer Bindung gesamt (in kg), sortiert nach Elementen     | 13       |

## **Tabellenverzeichnis**

| Tabelle 6-1: | Massenanteile des Inventars (Abfall, Abfallbehälter, Fixierungsmittel)    | 26 |
|--------------|---------------------------------------------------------------------------|----|
| Tabelle 6-2: | Massenanteile der Stoffgruppen (SG) im Abfall                             | 26 |
| Tabelle 6-3: | Massenanteile der Stoffuntergruppen (SUG) im Abfall                       | 28 |
| Tabelle 7-1: | Massenanteile des Inventars aus allen Einlagerungskammern (alle Beiträge) | 35 |
| Tabelle 7-2: | Massenanteile des Inventars (Abfall, Abfallbehälter, Fixierungsmittel)    | 35 |
| Tabelle 7-3: | Massenanteile der Materialien - alle Beiträge                             | 36 |
| Tabelle 7-4: | Massenanteile der Materialien im Abfall                                   | 38 |
| Tabelle 7-5: | Massenanteile der Materialien im Abfallbehälter                           | 39 |
| Tabelle 7-6: | Massenanteile der Materialien im Fixierungsmittel                         | 39 |
| Tabelle 7-7: | Massenanteile grundwassergefährdender Stoffe                              | 40 |
| Tabelle 7-8: | Massenanteile organisch chemotoxischer Stoffe                             | 45 |
| Tabelle 7-9: | Massenanteile anorganischer chemotoxischer Stoffe                         | 47 |
| Ctes C       |                                                                           |    |
| •            |                                                                           |    |

## Abbildungsverzeichnis

| Abbildung 2-1: | Überblick der Arbeiten, die der Ermittlung der Materialien, Komponenten und Elemente zu Grunde liegen                                                            |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abbildung 4-1: | Vorgehensweise bei Abschätzung der Materialien der Abfallgebinde                                                                                                 |
| Abbildung 4-2: | Prozentuale Verteilung der Fixierungsmittel, bezogen auf die Anzahl der eingelagerten Abfallgebinde                                                              |
| Abbildung 4-3: | Prozentuale Verteilung der Abfälle auf die verschiedenen Abfallkategorien, bezogen auf die Anzahl der eingelagerten Abfallgebinde                                |
| Abbildung 4-4: | Prozentuale Verteilung der Abfallarten (Stoffgruppen) in den Abfallgebinden mit verfestigten Abfällen, bezogen auf die Anzahl der eingelagerten Abfallgebinde 14 |
| Abbildung 4-5: | Prozentuale Verteilung der Abfallarten (Stoffgruppen) in den Abfallgebinden mit festen Abfällen, bezogen auf die eingelagerten Abfallgebinde                     |
| Abbildung 6-1: | Zwiebelschalenprinzip am Beispiel der Verdampferkonzentrate (VDK) aus Druck- und Siedewasserreaktoren (DWR/SWR)                                                  |

## Abkürzungsverzeichnis

BTEX Benzol, Toluol, Ethylbenzol, Xylol, Styrol, Cumol

Chelate z. B. EDTA, NTA

DDBSA Dodecylbenzolsulfonat Na-Salz
DDD Dichlordiphenyldichlorethan
DDE Dichlordiphenyldichlorethylen
DDT Dichlordiphenyltrichlorethan

DVGW Deutscher Verein des Gas- und Wasserfaches e.V.

DWR Druckwasserreaktor

EDTA Ethylendiamintetraessigsäure (-acetat)

EPDM Ethylen-Propylen-Dien-Terpolymere (Kautschuk)

FE-Metalle Eisenbasismetalle

FHM Filterhilfsmittel (z. B. Kieselgur, Zellulose)

GFK/KFK Kernforschungszentrum Karlsruhe (jetzt FZ Karlsruhe)

GGG40 Gusseisen mit Kugelgraphit GWVO Grundwasserverordnung

KFA Kernforschungszentrum Jülich (jetzt FZ Jülich)

Komplexbildner z. B. Citronensäure (-citrate), Weinsäure (-tartrate), Oxalsäure (-oxalate)

LAW schwach radioaktive Abfälle
LAWA Länderarbeitsgemeinschaft Wasser

MAW mittelradioaktive Abfälle

NaOH Natronlauge

NE-Metalle Nichteisenmetalle

NTA Nitrilotriessigsäure (-acetat)

PA Nylon

PAK Polycyclische aromatische Kohlenwasserstoffe

PCB Polychlorierte Biphenyle

PCDD Polychlorierte Dibenzodioxin(e)
PCDF Polychlorierte Dibenzofuran(e)

PE Polyethylen

PHB para-Hydroxybenzoesäure

PMMA Plexiglas
PP Polypropylen
PS Polystyrol
PVC Polyvinylchlorid

PZ Portlandzement
SG Stoffgruppe
SUG Stoffuntergruppe
SWR Siedewasserreaktor
TBP Tributylphosphat

TCDD Tetrachlordibenzodioxin(e)
TCDF Tetrachlordibenzofuran(e)

TS Trockensubstanz

VBA Verlorene Betonabschirmung

**VDK** W/Z-Wert Verdampferkonzentrate Wasser-Zement-Wert

WHO

World Health Organization

EXemplar für BMBF und BMI

## 1 Einleitung

Im Rahmen von Forschungs- und Entwicklungsvorhaben wurden in den Jahren von 1967 bis 1978 ca. 126.000 Gebinde mit schwach- und mittelradioaktiven Abfällen in ehemalige Abbaukammern der Schachtanlage Asse eingelagert. Die Einlagerung erfolgte auf der Grundlage der erteilten Umgangsgenehmigungen und unter Beachtung der jeweils gültigen Bedingungen über die Einlagerung von radioaktiven Abfällen in die Schachtanlage Asse.

Diese Bedingungen, die in Abstimmung mit den Behörden und Forschungseinrichtungen erarbeitet wurden, enthalten u. a. Vorgaben für die abzuliefernden Abfallarten und deren Konditionierung sowie Verpackung. Die Abfallprodukte selbst mussten in fester Form vorliegen. Nicht angenommen wurden Flüssigkeiten, faul- und gärfähige, leicht- oder selbstentzündliche Stoffe sowie Abfälle, die chemische Reaktionen erwarten ließen. Quantitative Angaben über die stoffliche Zusammensetzung der Abfälle waren nicht erforderlich; aus den Einlagerungsdokumenten können daher nur allgemeine Aussagen entnommen werden.

Die in der Schachtanlage Asse eingelagerten Abfallgebinde mit radioaktiven Abfällen setzen sich aus einer Vielzahl von organischen und anorganischen Stoffen zusammen. Sie sind Bestandteile des Abfallbehälters, des Fixierungsmittels und des radioaktiven Abfalls und liegen in unterschiedlichster Zusammensetzung vor. Die Massen der Radionuklide wurden bereits durch das Institut für Strahlenschutz der GSF Neuherberg im Zusammenhang mit der Bestimmung des nuklidspezifischen Aktivitätsinventars der Schachtanlage Asse ermittelt [1] und sind gegenüber den Massen der inaktiven Materialien vergleichsweise gering. Die Summe der Fixierungsmittel und der Abfallbehälter machen den größten Massenanteil des Abfallinventars aus. Diese Materialien waren zwingend erforderlich, damit bei der Übergabe und der nachfolgenden Einlagerung eine Gefährdung des Personals und der Lagerstätte ausgeschlossen werden konnte.

Im Rahmen der Schließung der Schachtanlage Asse ist ein Abschlussbetriebsplan zu erstellen, dem ein umfassender Sicherheitsbericht mit einem Langzeitsicherheitsnachweis beizufügen ist. Um diesen Nachweis zu erbringen, sind Angaben bzw. Aussagen über die stoffliche Zusammensetzung des Abfallinventars erforderlich. Aus diesem Grund wurde eine umfangreiche Nacherhebung der stofflichen Zusammensetzung der Materialien der eingelagerten Abfallgebinde durchgeführt.

Um die Auswirkungen des eingelagerten Abfallinventars sowohl auf die Entwicklung des geochemischen Milieus im Grubengebäude als auch auf eine eventuelle schädliche Verunreinigung des Grundwassers oder zu einer sonstigen nachteiligen Veränderung seiner Eigenschaften durch bestimmte gefährliche Stoffe untersuchen zu können, muss die stoffliche Zusammensetzung der Materialien der Abfallgebinde bekannt sein. Während bei den geochemischen Milieubetrachtungen i. d. Regel Angaben über die Mengen der Materialien, wie z. B. Zement, Zellulose und Metalle ausreichen, ist bei einer wasserrechtlichen Prüfung eine weitere Differenzierung der Materialien in einzelne chemische Komponenten (auch Verbindungen) und Elemente erforderlich.

## 2 Vorgehensweise

Zur Ermittlung der chemischen Komponenten (auch Verbindungen) und Elemente wurden alle vorliegenden Informationen über die eingelagerten Abfälle in einer ACCESS-Datenbank [2] erfasst. Diese Datenbank enthält neben Angaben über die Anzahl der eingelagerten Abfallgebinde, Aktivitätsangaben, etc. auch weitere Beschreibungen, z. B. zur Art der verwendeten Behälter (Abfallbehälter), Art des radioaktiven Abfalls und ihrer Behandlung (Fixierungsmittel), die den Einlagerungsdokumenten und dem Schriftverkehr entnommen werden konnten.

Auf dieser Basis wurden von der Fa. Stoller Ingenieurtechnik, Dresden, die Materialien der eingelagerten Abfallgebinde ermittelt [3]. Dazu wurde der Datenbestand der ACCESS-Datenbank umfangreichen Plausibilitäts- und Vollständigkeitsprüfungen unterzogen. Nach der Durchführung von Recherchen bei den Abfallablieferern sowie Literaturrecherchen wurden die Materialmengen (Volumen- und Massenangaben) ermittelt. Die Ergebnisse dieser Arbeit sind die Grundlage für weiterführende Rechnungen, beispielsweise für geochemische Modellrechnungen und die Ermittlung des Gasquellterms der Materialien der Abfallgebinde.

Um die Auswirkungen des eingelagerten Abfallinventars auch auf eine eventuelle schädliche Verunreinigung des Grundwassers oder zu einer sonstigen nachteiligen Veränderung seiner Eigenschaften durch bestimmte gefährliche Stoffe untersuchen zu können, war eine weitere Differenzierung der o. g. Materialmengen bis hin zu den einzelnen chemischen Komponenten und Elementen erforderlich.

Der Datenbestand der Datenbank mit den Ergebnissen von [3] wurde dazu vom Forschungsbergwerk Asse für die Fa. Buchheim aufbereitet. Bei der intensiven Kontrolle der v. g. Ergebnisse wurden einige wenige Zuordnungsfehler festgestellt und korrigiert. Der korrigierte Datenbestand wurde ins EXCEL-Format überführt und vom Forschungsbergwerk Asse an die Fa. Buchheim übergeben. Diese Daten wurden von der Fa. Buchheim einer Dazu zählen u.a. umfangreichen Plausibilitätsprüfung unterzogen. die /Zementverhältnisse aller zementhaltigen Materialien und Wasseranteile der die (Sorptionsgleichgewichte/-isothermen). zellulosehaltigen Materialien abgeschätzten Bleimassen wurden anhand von vorhandenen Zeichnungen bzw. nach Maßgabe der notwendigen Abschirmung der Strahlenquellen überprüft. Es wurden die chemischen Prozesse innerhalb der Abfallgebinde berücksichtigt, die zum Zeitpunkt der Einlagerung abgelaufen sind. Dazu zählt z.B. die thermische Zersetzung von EDTA aufgrund von Temperatur und Verweilzeiten im Verdampfer. Vertiefende Recherchen der Fa. Buchheim ermöglichten dann die Differenzierung der Materialien in einzelne chemische Komponenten und Elemente. Die so ermittelten Massenangaben der einzelnen Stoffe wurden um die Angabe der chemischen Form erweitert (Anorganika/Organika: Salz, Oxid, Legierung, metallisch, mineralisch, etc.). Das Wasser des Abfallinventars wurde in seinen unterschiedlichen Erscheinungsformen berücksichtigt: gebundenes und adsorbiertes Wasser, Poren-, Hydrat- und Kristallwasser.

Die Abbildung 2.1 gibt einen Überblick über die umfangreichen Arbeitsschritte, die zur Ermittlung der Materialien, Komponenten und Elemente führten.

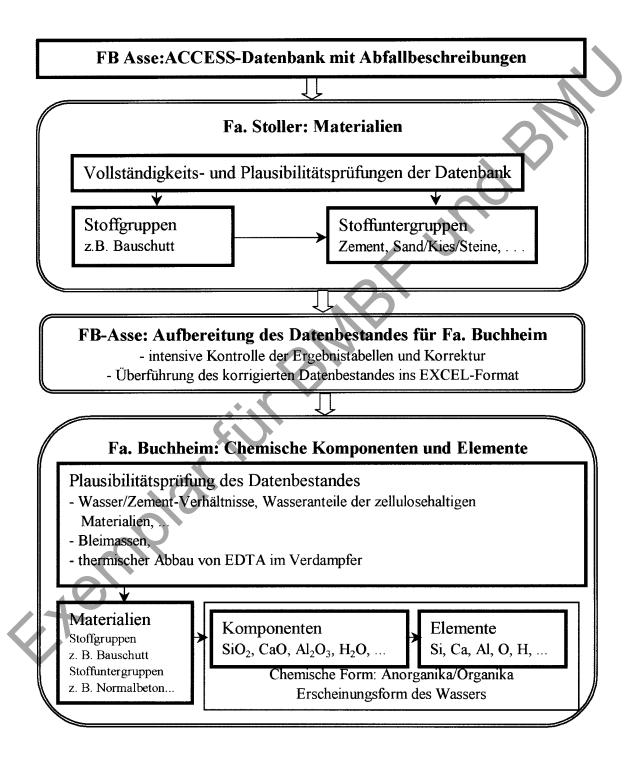



Abb. 2-1: Überblick der Arbeiten, die der Ermittlung der Materialien, Komponenten und Elemente zu Grunde liegen

In diesem Abschlussbericht sind die Berichte der Fa. Stoller [3] und der Fa. Buchheim [4] zusammengefasst und die wesentlichen Ergebnisse zusammengestellt. In Kapitel 4 werden die Grundlagen für die Vorgehensweise der Abschätzung der Materialien der Abfallgebinde durch die Fa. Stoller beschrieben. Darauf aufbauend wird in den Kapiteln 5 und 6 die Ermittlung der chemischen Komponenten und Elemente durch die Fa. Buchheim vorgestellt.

Es sind in Übereinstimmung mit dem Norm-Entwurf DIN 25401 Teil 9 (Stand Februar 1986) und der Empfehlung des Ausschusses Endlagerung der Reaktor-Sicherheits-Kommission (RSK) vom 13. Juli 1984 dieselben Begriffsdefinitionen bei der Ermittlung des Inventars der Schachtanlage Asse verwendet worden, wie auch vom Bundesamt für Strahlenschutz u. a. für die Schachtanlage KONRAD und das Endlager Morsleben (ERAM) angewendet.

Darüber hinaus ist bei der Bezeichnung der zementhaltigen Materialien (PZ-Stein, PZ-Ölschieferstein, PZ-Mörtel, Normalbeton, Hämatitbeton) die in der Bundesrepublik Deutschland maßgebende Zementnorm DIN 1164 (1978) zu Grunde gelegt worden. Das Gleiche gilt für die Bezeichnungen und verwendeten Kurzzeichen wichtiger Kunststoffe gemäß DIN 7728 Teil 1 (Jan. 1988).

## 3 Herkunft und Rahmenbedingungen der eingelagerten Abfälle

Bei den in der Schachtanlage Asse eingelagerten schwach- und mittelradioaktiven Abfällen handelt es sich um radioaktive Abfälle aus den folgenden Verursacher-/Ablieferergruppen:

- Forschungs-/Entwicklungseinrichtungen, z. B. Forschungszentrum Karlsruhe und Jülich
- Betrieb der Kernkraftwerke (Druck- und Siedewasserreaktoren DWR und SWR)
- kerntechnische Industrie, z. B. NUKEM, Transnuklear
- sonstige Ablieferer, z. B. Bundeswehr

rten

Zum Abfallinventar tragen maßgeblich die Abfälle des Forschungszentrums Karlsruhe (50 % der Abfallgebinde), des Forschungszentrums Jülich (10 %) und der Kernkraftwerke (20 %) bei. Die restlichen Abfallgebinde entfallen auf alle übrigen Ablieferer.

Zur Ermittlung der stofflichen Zusammensetzung konnte von einer Reihe bekannter Randbedingungen ausgegangen werden. So wurden die eingelagerten Abfälle überwiegend in Abfallbehältern abgeliefert, die in den jeweiligen Annahmebedingungen beschrieben sind. Von einigen Abfallverursachern/Ablieferern sind lt. Einlagerungsdokumente (Begleitlisten) auch Abfallbehälter verwendet worden, die davon abweichen. Um eine möglichst realistische Volumina bzw. Abschätzung der anteiligen Massen der verschiedenen Abfallbehältermaterialien zu ermöglichen, wurden die damals gültigen Regelwerke herangezogen, zusätzliche Angaben der Abfallverursacher/Ablieferer berücksichtigt und fehlende Angaben durch Vergleich mit heutigen Regelwerken und mit plausiblen Annahmen ergänzt.

Eingelagert wurden vor allem Misch- und Laborabfälle, getrocknete oder verfestigte Verdampferkonzentrate, Schrott/Metall, Bauschutt und zellulosehaltige Materialien.

Die Abfälle wurden bei ihrer Verpackung in die Abfallbehälter teilweise paketiert/verpresst, getrocknet oder durch Zugabe von Fixierungsmitteln (in erster Linie Zementstein, Zementmörtel) verfestigt bzw. stabilisiert.

## 4 Grundlagen für die Abschätzung des Abfallinventars

Basis der Abschätzung der Materialien der in die Schachtanlage Asse eingelagerten Abfallgebinde war eine ACCESS-Datenbank mit Daten über die eingelagerten radioaktiven Abfälle [2]. Diese Daten wurden von der Fa. Stoller geprüft, vervollständigt und durch umfangreiche Recherchen bei den Ablieferern sowie Literaturrecherchen nachbereitet.

Bei der Abschätzung wurde mit den Materialien der Abfallbehälter begonnen. Es wurden früher gültige Regelwerke (z. B. DIN-Normen) herangezogen. Damit waren die Materialdaten der in die Schachtanlage Asse eingelagerten Behältertypen bekannt.

Im Anschluss daran wurden die Materialmengen der Abfälle und der Fixierungsmittel abgeschätzt. Massenangaben zu den Abfallgebinden standen hierzu nicht zur Verfügung. Bei der Ablieferung der Abfallgebinde nach den damals gültigen Annahmebedingungen war ihre Angabe nicht erforderlich. Aus diesem Grunde wurden aus den früher gültigen Regelwerken die Angaben zum Leervolumen je Behältertyp herangezogen. Den Abfällen und Fixierungsmitteln wurden dann Volumenteile am Gebindeleervolumen zugewiesen (Abb. 4-1). Dies erfolgte in Abhängigkeit der Art der Abfallmaterialien und deren Konditionierung.

Die stofflichen Zusammensetzungen der Materialien (Stoffgruppen) wurden auf Grundlage von Literaturangaben und Auskünften der Ablieferer in Form von Stoffvektoren von der Fa. Stoller beschrieben. Durch Verknüpfung der Anteile am Gebindeleervolumen mit den entsprechenden Stoffvektoren erfolgte die Ermittlung der Materialmengen.

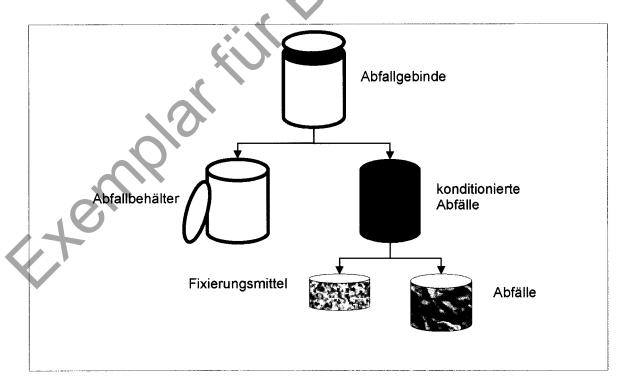



Abb. 4-1: Vorgehensweise bei Abschätzung der Materialien der Abfallgebinde

Für die Abschätzungen der Materialmengen erfolgte eine Einteilung der Materialien aus Abfall, Abfallbehälter und Fixierungsmittel in zusammenfassende Kategorien bis hin zu einzelnen Materialien. Dazu wurden die in den Einlagerungsdokumenten angegebenen Abfallnennungen Stoffgruppen und Stoffuntergruppen zugeordnet. Eine weitere Aufteilung auf einzelne chemische und chemotoxische Stoffe erfolgte durch Festlegung von Stoffvektoren der entsprechenden Stoffuntergruppen in Kapitel 6. Am Beispiel der Abfälle wird das Prinzip der Kategorisierung und Zuordnung zu Stoffgruppen und Stoffuntergruppen verdeutlicht.

Zu den Abfällen gehören die Abfallkategorien: "verfestigte Abfälle", "feste Abfälle gemischter Zusammensetzung", "sortierte feste Abfälle" und "Verbrennungsrückstände". Gemische der v. g. Abfallkategorien werden als "Mischkategorien" bezeichnet. Die Kategorie "feste Abfälle gemischter Zusammensetzung" umfasst u. a. die Stoffgruppen Misch- und Laborabfälle, zu denen die Stoffuntergruppen Zellulose, Kunststoffe, FE-Metalle, NE-Metalle etc. gehören.

In den Kapiteln 4.1 bis 4.3 werden die verwendeten Abfallbehälter, die durchgeführten Konditionierungen mit unterschiedlichen Fixierungsmitteln und die radioaktiven Abfälle selbst näher beschrieben.

## 4.1 Abfallbehälter der radioaktiven Abfälle

Um Aussagen über die stoffliche Zusammensetzung der in die Schachtanlage Asse eingelagerten Abfallbehälter treffen zu können, wurden die verwendeten Behältertypen hinsichtlich ihrer Zusammensetzung beschrieben [3]. Grundlage dieser Abschätzung waren die jeweils gültigen Annahmebedingungen für die in die Schachtanlage Asse eingelagerten schwach- und mittelradioaktiven Abfälle [5, 6, 7] sowie die damals gültigen Regelwerke.

#### 4.1.1 Abfallbehälter der schwachradioaktiven Abfälle

Abfallgebinde mit schwachradioaktiven Abfällen wurden erstmals im Zeitraum von April 1967 bis Juli 1971 während der ersten Versuchseinlagerungsphasen I bis IV eingelagert. Zwischen November 1971 und Dezember 1975 erfolgte die Ablieferung der Abfallgebinde an die Schachtanlage Asse nach den Annahmebedingungen vom Juli 1971 [5]. Für die Beschreibung der Abfallbehälter, die während der ersten Versuchseinlagerungsphasen abgeliefert wurden, sind sinngemäß ebenfalls diese Annahmebedingungen herangezogen worden.

Als Standardverpackungen wurden Blechtrommeln und Fässer mit einem Behältervolumen von 200 Litern verwendet, die teilweise mit einer allseitigen inneren Betonauskleidung versehen worden waren, um die mechanische Stabilität des Gebindes, insbesondere während der Handhabung beim Einlagerungsbetrieb, zu erhöhen und die Strahlenschutzgrenzwerte für das Personal einhalten zu können [3].

Die Annahmebedingungen vom Dezember 1975 [6] waren seit Anfang 1976 bis zum Ende der Einlagerung im Dezember 1978 die Grundlage für die Verpackungen der an die Schachtanlage Asse eingelagerten Abfallgebinde mit schwachradioaktiven Abfällen.

Neben den bereits bis 1975 eingesetzten Abfallbehältern wurden später auch Blechtrommeln und Fässer mit 400 Litern Behältervolumen als Standardverpackungen verwendet, die ebenfalls teilweise mit einer allseitigen inneren Betonauskleidung versehen waren.

Des Weiteren wurden einige Abfälle "Fass-in-Fass" verpackt. Dabei sind 200-Liter-Trommeln mit Abfall in 400-Liter-Fässer/Trommeln eingestellt und der Raum zwischen Innen- und Außenfass mit Zementleim (Wasser-Zement-Gemisch, das in kurzer Zeit hydraulisch zu Zementstein aushärtet) ausgegossen worden.

Schwachradioaktive Abfälle wurden auch in verlorenen Betonabschirmungen (VBA) aus Normal- oder Hämatitbeton verpackt eingelagert. In eine VBA ist standardmäßig ein 200-Liter-Fass mit Abfall eingestellt und der Raum zwischen Abfallfass und der VBA wurde mit Zementleim ausgegossen. Ein geringer Anteil der eingelagerten VBA enthält auch Abfallfässer mit einem Volumen von 250 und 400 Litern.

Von einigen Abfallverursachern/Ablieferern wurden Abfallbehälter verwendet, die von den in den jeweiligen Annahmebedingungen beschriebenen Standardbehältern abweichen. Hierbei handelt es sich um Blechtrommeln bzw. Fässer, die abweichende Volumina aufweisen oder die teilweise mit Beton-, Blei- und/oder Eisengranulatabschirmungen versehen sind, weiterhin sperrige Gegenstände, sowie andere spezielle Behälter und Abschirmungen.

Die Massen und Volumina der Abfallbehälter wurden mit Hilfe zusätzlicher Angaben der Abfallverursacher/Ablieferer berechnet. Prinzipiell wurde bei Gegenständen, die unverpackt eingelagert wurden, beispielsweise Verdampfer und Wärmetauscher, die Materialien als Abfall (Kapitel 4.3) berücksichtigt.

Bei etwa 75 % der Abfallgebinde beträgt das Volumen 200 Liter. Abfallgebinde mit 400 Litern Volumen und VBA haben jeweils einen Anteil von über 10 % an der Summe der eingelagerten LAW-Gebinde. Bei den restlichen Abfallgebinden handelt es sich um Abfallgebinde mit Behältervolumen zwischen 100 und 300 Litern sowie um einige wenige sperrige bzw. unverpackte Gegenstände.

#### 4.1.2 Abfallbehälter der mittelradioaktiven Abfälle

Die Einlagerung von Abfallgebinden mit MAW-Abfällen erfolgte im Zeitraum von August 1972 bis Januar 1977 ausschließlich in die Kammer 8a/511m. Während der MAW-Einlagerung wurden acht Gebinde mit LAW-Abfällen aufgrund von Funktionsprüfungen an Abschirmbehältern in die Kammer 8a/511m eingelagert. Die Bilanzierung dieser Gebinde erfolgte daher bei der MAW-Kammer.

Für die standardmäßige Verpackung der mittelradioaktiven Abfälle wurden ausschließlich 200-Liter-Fässer nach den Annahmebedingungen vom September 1972 [7] verwendet.

Die mittelradioaktiven Abfälle sind entweder zementiert oder bituminiert worden. Die bituminierten Abfälle wurden "Fass-in-Fass" verpackt. Dabei sind 175-Liter-Trommeln mit bituminiertem Abfall in die o. g. 200-Liter-Fässer eingestellt worden; der Raum zwischen Trommel und Fass blieb generell unverfüllt. Die zementierten Abfälle wurden direkt in 200-Liter-Fässer verpackt.

Etwa 30 % der Abfallgebinde liegen als "Fass-in-Fass-Verpackung" vor. Bei 70 % der Abfallgebinde handelt es sich um 200-Liter-Fässer.

## 4.1.3 Berechnungsgrundlagen für die Materialien der Abfallbehälter

Die für die Berechnung der Materialien der Abfallbehälter notwendigen Daten (Blechdicke, Leergewicht, Durchmesser, Höhe etc.) wurden für die unterschiedlichen Behälterarten aus den jeweiligen Regelwerken entnommen, zusätzliche Angaben der Ablieferer, z. B. zu Betonummantelungen oder zu Abschirmungen berücksichtigt und fehlende Angaben durch Vergleich mit heutigen Regelwerken und plausiblen Annahmen ergänzt.

Die Materialien der Abfallbehälter werden in den folgenden Abschnitten erläutert. Die detaillierten Berechnungsgrundlagen können [3] entnommen werden.

#### FE-Metall/Stahl

Für die Fässer, Blechtrommeln u. ä. ist im Allgemeinen unlegierter Massenbaustahl eingesetzt worden. Die VBA aus Normal- oder Hämatitbeton enthalten eine Stahlarmierung.

#### Beton

Beton ist ein Gemisch aus Zement, Wasser und Zuschlagstoffen (Sand/Kies und ggf. Hämatit). Der Betonmantel der VBA besteht aus Normal- oder Hämatitbeton. Bei Blechtrommeln/Fässern mit allseitiger innerer Betonauskleidung kam Normalbeton zum Einsatz.

#### Zementstein

Zementleim ist ein Gemisch aus Zement und Wasser, z.B. mit dem Verhältnis Masse Wasser/Zement von 0,4, das in kurzer Zeit hydraulisch zu Zementstein aushärtet. Mit Zementleim wurden Zwischenräume bei "Fass-in-Fass"-Verpackungen (zwischen Außen-und Innenfass) und VBA (zwischen Betonmantel und Innenfass) verfüllt.

## Fassbeschichtungen aus Kunstharz und Zink

Bei Fässern, Blechtrommeln u. ä. Metallverpackungen wurde - bis auf sehr wenige verzinkte Fässer – mindestens außen eine Rostschutzlackierung berücksichtigt. Die Abschätzung der Masse des Kunstharzes (in Form von Beschichtung und EPDM-Dichtung) erfolgte pauschal auf der Grundlage der bekannten Behältermassen.

Von den eingelagerten 200-Liter-Fässern sind nach Angaben einiger Ablieferer maximal 10 % verzinkte Fässer gewesen. Dies betrifft 200-Liter-Rollsicken- und Rollreifenfässer, die auch von anderen Ablieferern verwendet wurden. Die Abschätzung der Zinkmasse erfolgte pauschal über das Gewicht aller in Frage kommenden 200-Liter-Fässer.

## Materialien nicht standardgemäßer Abfallbehälter

Die Materialien der Abfallbehälter (Stahl; Zementstein/Beton), die von den in den jeweiligen Annahmebedingungen beschriebenen Verpackungen abwichen, sowie Abschirmmaterialien, beispielsweise Blei, wurden mit Hilfe zusätzlicher Angaben der Abfallverursacher/Ablieferer ermittelt und in die Datenbank aufgenommen.

## 4.2 Fixierungsmittel der radioaktiven Abfälle

In 46 % der Abfallgebinde sind die Abfälle ohne Zugabe von Fixierungsmitteln in die Abfallbehälter verpackt worden. Feste Abfälle wurden teilweise in die Abfallbehälter eingepresst (meist manuell) oder als paketierter Abfall in die Abfallbehälter eingebracht; verfestigte Abfälle härteten aus oder wurden getrocknet.

Die Abfälle der übrigen Abfallgebinde (54 %) wurden durch Zugabe von Fixierungsmitteln verfestigt bzw. stabilisiert oder mit Adsorptionsmitteln, die im Folgenden ebenfalls als Fixierungsmittel betrachtet werden, versetzt.

Abbildung 4-2 gibt einen Überblick über die verwendeten Fixierungsmittel, die im Folgenden näher erläutert werden. Die Volumenanteile der Fixierungsmittel am Gebindeleervolumen sind von der Art der Abfälle und deren Konditionierung (Paketierung/Verpressung, Trocknung) abhängig. Die verwendeten Fixierungsmittel wurden auf Grundlage von Literaturangaben und Auskünften von Ablieferern in Stoffgruppen und weiter in Stoffuntergruppen unterteilt. Die detaillierten Angaben zu den Volumenanteilen und den Berechnungsgrundlagen können [3] entnommen werden.

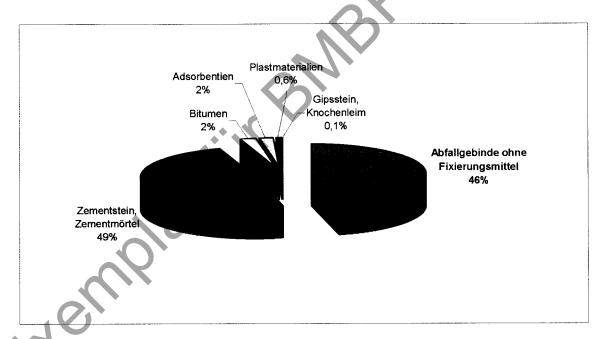



Abb. 4-2: Prozentuale Verteilung der Fixierungsmittel, bezogen auf die Anzahl der eingelagerten Abfallgebinde

Aus den Einlagerungsdokumenten konnten folgende Materialnennungen als Fixierungsmittel entnommen werden:

- Beton, Zementleim (im folgenden Zementmörtel, Zementstein)
- Bitumen
- Polystyrol, PVC
- Gipsleim (im folgenden Gipsstein), Knochenleim
- Aktivkohle, Torf

- Vermiculit
- Diatomit und Warisorb (im folgenden Kieselgur)

Einige wenige Abfallgebinde enthalten Abfälle, die durch die Zugabe mehrerer Fixierungsmittel konditioniert wurden, beispielsweise Bitumen und Zementmörtel bzw. Zementstein. Von der Fa. Stoller ist geprüft und entsprechend berücksichtigt worden, ob und welche der angegebenen Materialien zur Konditionierung der Abfälle verwendet bzw. welches Material zur Verfüllung der Fasszwischenräume oder zum zusätzlichen Verguss konditionierter Abfälle verwendet wurde.

## Zementmörtel und Zementstein

Insgesamt wurden die Abfälle in 49 % aller in die Schachtanlage Asse eingelagerten Abfallgebinde mit Zementstein bzw. Zementmörtel konditioniert. Konzentrate, Schlämme und Harze sind durch Zementierung verfestigt worden. Metalle, Bauschutt und Mischabfälle wurden durch Zementierung fixiert.

Bei dem von den Ablieferern im Zusammenhang der Konditionierung genannten Begriff "Beton" handelt es sich um Zementmörtel (Zuschlagstoff: Sand). Die Anteile von Sand wie auch von anderen teilweise zugesetzten Zuschlagstoffen oder Adsorptionsmitteln (z. B. Vermiculit) wurden nach Angaben der Abfallerzeuger bzw. Konditionierer und nach Literaturangaben berücksichtigt. Für die Zementierung ist im Allgemeinen auf der Basis der Massen ein Wasser-/Zementverhältnis von 0,4 angewendet worden.

#### Bitumen

Für die Abfälle in 2 % der an die Schachtanlage Asse eingelagerten Abfallgebinde ist als Fixierungsmittel Bitumen angegeben worden, davon teilweise in Kombination mit Zementierung. Für diesen Teil ist davon auszugehen, dass die Oberfläche bzw. das Restvolumen der Abfallgebinde mit bituminierten Abfällen mit Zementleim vergossen wurden.

Die Abfallgebinde enthalten überwiegend verfestigte Abfälle wie Verdampferkonzentrate. Nur einige wenige Abfallgebinde enthalten feste Abfälle wie Misch- und Laborabfälle und Schrott/Metall.

## Plastmaterialien (Polystyrol und PVC)

Ionenaustauscherharze wurden mit Polystyrol verfestigt. Bei der Verfestigung von Tributylphosphat/Kerosin wurde generell PVC berücksichtigt, da das auf den Einlagerungsdokumenten angegebene Trosiplast als Plastmaterial auf PVC-Basis anzusehen ist.

Abfälle in etwa 0,6 % der insgesamt eingelagerten Abfallgebinde wurden mit Polystyrol oder PVC teilweise in Kombination mit Zementierung konditioniert.

#### Gipsstein und Knochenleim

Ein geringer Teil der Metaboratabfälle wurde nach der Trocknung mit Knochenleim behandelt. Bei der Umwandlung von Borsäure in Metaborat durch Zusatz von NaOH zur

Herstellung eines festen Abfallkörpers ist kein als Fixierungsmittel einzustufendes Material eingesetzt worden. NaOH wurde daher als Abfall (Kapitel 4.3) berücksichtigt. Nur der Knochenleim ist als Fixierungsmittel bilanziert worden.

Bei einigen wenigen Abfallgebinden mit Schlämmen und Laborabfällen wurde eine Konditionierung mit Gips bzw. Gipsleim, der zu Gipsstein aushärtet, vorgenommen.

Abfälle in etwa 0,1 % der insgesamt eingelagerten Abfallgebinde wurden mit Knochenleim oder Gipsstein konditioniert.

## Adsorptionsmittel: Aktivkohle, Torf, Vermiculit, Kieselgur

Für radiumhaltige Abfälle wurden die zugegebenen Aktivkohlemengen seit dem Beginn der Einlagerung nach [5] unter Berücksichtigung der vom Ablieferer angegebenen Behandlung der Abfälle sowie der in [2] abgeschätzten Radiumaktivität in den Abfällen berücksichtigt. Diese Art der Konditionierung wurde in [6] auf thoriumhaltige Abfälle ausgedehnt. Wenn sich aus den Annahmebedingungen die Zugabe von Adsorptionsmitteln ergab, ist für die Abfälle der entsprechenden Abfallgebinde eine Befüllung mit Adsorptionsmitteln angenommen worden. Dabei wurden die in den Annahmebedingungen festgelegten Mindestmengen für Aktivkohle berücksichtigt. Die übrigen Adsorptionsmittel bestehen im Allgemeinen aus Torf oder in Einzelfällen aus Vermiculit.

Neben den Abfallgebinden mit radium- oder thoriumhaltigen Abfällen ist bei weiteren Abfallgebinden die Zugabe von Adsorptionsmitteln (Aktivkohle, Torf, Vermiculit oder Kieselgur) auf den zugehörigen Einlagerungsdokumenten vermerkt und dementsprechend berücksichtigt worden.

Torf, Vermiculit und Kieselgur wurden entweder in Verbindung mit Aktivkohle oder mit Zementierung verwendet. Kieselgur wurde darüber hinaus als Adsorptionsmittel für Öl eingesetzt. Für weitere Ölbindemittel wurde ebenfalls Kieselgur als Basismaterial berücksichtigt.

Insgesamt wurden 2% der Abfälle der insgesamt eingelagerten Abfallgebinde mit Adsorptionsmitteln versetzt.

## 4.3 Radioaktive Abfälle

Während der Versuchseinlagerungsphasen I bis IV, der Einlagerungen nach LAW-Annahmebedingungen und MAW-Annahmebedingungen, wurden Abfallgebinde mit Abfällen aus Kernkraftwerken, aus Forschungseinrichtungen, aus industriellen Bereichen und von sonstigen Ablieferern (z. B. Bundeswehr) eingelagert.

Die Abfallgebinde enthalten vor allem Misch- und Laborabfälle, verfestigte oder getrocknete Verdampferkonzentrate, Schrott/Metall, Bauschutt und zellulosehaltiges Material.

Anhand der in den Einlagerungsdokumenten (Fragebögen, Begleitlisten) angegebenen Abfallnennungen erfolgte eine Einteilung der einzelnen Abfallchargen in Abfallkategorien und weiter in Stoffgruppen. Eine Abfallcharge umfasst alle Gebinde, die in einer Lieferung an die Schachtanlage Asse abgeliefert wurden und die gleichen Merkmale (Abfallart,

Aktivität, Dosisleistung, Verpackungsart, Einlagerungskammer) hatten. Für Abfallchargen, die aufgrund ihrer Abfallnennungen keiner einzelnen Stoffgruppe zugeordnet werden konnten, wurden kombinierte Stoffgruppen verwendet. Da die einzelnen bzw. kombinierten Stoffgruppen sehr unterschiedliche Zusammensetzungen (Anteile an Stoffuntergruppen) aufweisen konnten, wurde die Zuordnung von Stoffuntergruppen und deren Anteile über die angegebenen Abfallnennungen vorgenommen [3].

Die Abfallgebinde enthalten feste und verfestigte Abfälle sowie Verbrennungsrückstände. sich in die Kategorien "feste Abfälle Abfälle teilen Zusammensetzung", dazu gehören u.a. Mischund Laborabfälle, Bauschutt, Filter/Filterelemente, sowie "sortierte feste Abfälle" (z. B. Schrott/Metalle, zellulosehaltiges Material). Zu den "verfestigten Abfällen" gehören Verdampferkonzentrate, Schlämme, Filterhilfsmittel und -rückstände, Fällschlämme und Harze sowie Öle und Lösemittel.

Den größten Anteil haben Abfallgebinde mit festen Abfällen gemischter Zusammensetzung (53 %), Abfallgebinde mit sortierten festen Abfällen (19 %) und verfestigte Abfälle (26 %). Gemische mit festen bzw. verfestigten Abfällen und/oder Verbrennungsrückständen werden als Mischkategorien bezeichnet (2 %). Abbildung 4-3 gibt einen Überblick über die prozentuale Verteilung der Abfälle auf die verschiedenen Abfallkategorien.

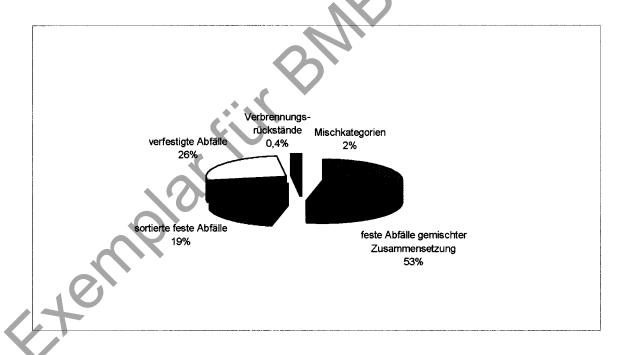



Abb. 4-3: Prozentuale Verteilung der Abfälle auf die verschiedenen Abfallkategorien, bezogen auf die Anzahl der eingelagerten Abfallgebinde

Im Folgenden werden die Abfallmaterialien (Stoffgruppen) der eingelagerten Abfälle kurz beschrieben. Die Volumenanteile der Abfallmaterialien sind in Abhängigkeit der Konditionierung sehr unterschiedlich und können [3] entnommen werden.

## 4.3.1 Verfestigte Abfälle

Zu der Kategorie der verfestigten Abfälle (26 % der eingelagerten Abfallgebinde) gehören Verdampferkonzentrate, Schlämme, Filterhilfsmittel und –rückstände, Fällschlämme und Harze sowie Öle und Lösemittel. Sie wurden mit Fixierungsmitteln oder durch Trocknung konditioniert.

Abbildung 4-4 gibt einen Überblick über die prozentuale Verteilung der Abfallarten (Stoffgruppen) in den Abfallgebinden mit verfestigten Abfällen. Die unterschiedliche Herkunft und Konditionierung hatten insbesondere auf die Zusammensetzung dieser Abfälle entscheidenden Einfluss.

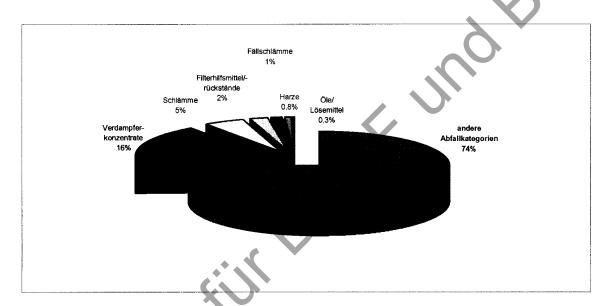



Abb. 4-4: Prozentuale Verteilung der Abfallarten (Stoffgruppen) in den Abfallgebinden mit verfestigten Abfällen, bezogen auf die Anzahl der eingelagerten Abfallgebinde

#### Verdampferkonzentrate

Verdampferkonzentrate fielen beim Betrieb von Siedewasserreaktoren (VDK SWR sulfathaltig) und beim Betrieb von Druckwasserreaktoren (VDK DWR - borsäurehaltig) an. Die Borsäurekonzentrate wurden zum großen Teil durch Zusatz von NaOH behandelt, wobei Borsäure in Metaborate umgesetzt und nach Trocknung ein kristallartiger Feststoff entsteht. Für VDK SWR, die hauptsächlich aus Salzen und Zellulose bestehen, kam meist die Zementierung (Zementstein/Zementmörtel) zur Anwendung. Bei den Konzentraten der Herkunft GFK/KFK handelt es sich zum größten Teil um LAW/MAW-Konzentrate aus der Wiederaufarbeitung von Kernbrennstoffen (Salze und Chelate/Komplexbildner). Bei Verdampferkonzentraten Ablieferern. von sonstigen wässrigen Lösungen Dekontaminationswässern handelt es sich meist um Abwässer aus Wasch- und Dekontaminationseinrichtungen mit niedrigen Feststoff- und unterschiedlichen organischen Anteilen (Salze und Zellulose).

Etwa 16 % der eingelagerten Abfallgebinde enthalten Verdampferkonzentrate.

#### Schlämme

Etwa 5 % der eingelagerten Abfallgebinde enthalten Abwasserschlämme, Dekontaminationsschlämme etc., die mit einem sehr breiten Spektrum hinsichtlich der Zusammensetzung anfielen. Sie wurden mit einer mittleren Zusammensetzung (hauptsächlich Salze, Kieselgur und Zellulose) berücksichtigt.

#### Filterhilfsmittel und Filterrückstände

Etwa 2 % der eingelagerten Abfallgebinde enthalten Filterhilfsmittel und Filterrückstände, die hauptsächlich aus Kernkraftwerken stammen. Sie enthalten hauptsächlich Harze, Kieselgur und Salze. Eine abliefererspezifische Unterscheidung war wegen ähnlicher Herkunft dieser Abfälle nicht erforderlich.

#### Fällschlämme

Fällschlämme, die in etwa 1 % der eingelagerten Abfallgebinde vorliegen, stammen aus der Abwasseraufbereitung (Eisen-Hydroxid-Phosphat- und Nickel-Ferro-Cyanid-Fällung). Sie enthalten hauptsächlich Zellulose (Filterhilfsmittel) und Salze.

#### Harze

Ionenaustauscherharze befinden sich in 0,8 % der eingelagerten Abfallgebinde. Sie kamen als Kugel- oder Pulverharze zum Einsatz (Kugelharze meist in DWR, Pulverharze in SWR).

#### Öle und Lösemittel

Anhand der in den Einlagerungsdokumenten angegebenen Abfallnennungen befinden sich in etwa 0,3 % der eingelagerten Abfallgebinde Öle und Lösemittel (z. B. TBP/Kerosin, BTEX/Lösemittel, Trichlorethan). Diese wurden mit Adsorptionsmitteln (Ölbindemitteln) verfestigt und nachfolgend z. T. zementiert. Für TBP/Kerosin erfolgte eine Verfestigung mit PVC-Pulver oder -Granulat. Einige Öl-Lösemittel-Wasser-Gemische wurden mit Gips konditioniert.

## 4.3.2 Feste Abfälle

Die festen Abfälle teilen sich in die Kategorien "feste Abfälle gemischter Zusammensetzung", dazu gehören u. a. Misch- und Laborabfälle, Bauschutt, Filter/Filterelemente sowie "sortierte feste Abfälle" (z. B. Schrott/Metall, zellulosehaltiges Material).

Abbildung 4-5 zeigt die prozentuale Verteilung der Abfallgebinde mit festen Abfällen auf die jeweiligen Stoffgruppen.

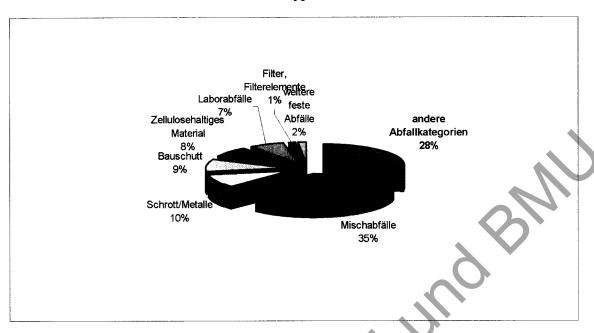



Abb. 4-5: Prozentuale Verteilung der Abfallarten (Stoffgruppen) in den Abfallgebinden mit festen Abfällen, bezogen auf die eingelagerten Abfallgebinde

## 4.3.2.1 Feste Abfälle gemischter Zusammensetzung

Als feste Abfälle gemischter Zusammensetzung (Misch- und Laborabfälle, Bauschutt, Filter/Filterelemente etc.) werden alle Abfälle betrachtet, die unterschiedliche Abfallarten wie Metalle, silikatische Materialien, zellulosehaltige Materialien, Kunststoffe etc. enthalten können. 53 % der eingelagerten Abfallgebinde enthalten solche Abfälle. Bei nicht konditionierten festen Abfällen, die als paketierte/verpresste Abfälle benannt sind, wurde eine Volumenreduktion um den Faktor 2 zu Grunde gelegt.

Die nachfolgenden Abschnitte enthalten allgemeine Erläuterungen der einzelnen Abfallarten (Stoffgruppen).

## Misch- und Laborabfälle

Diese Abfälle, die im Wesentlichen aus Zellulose, Papier, Kunststoffe, FE- und NE-Metalle etc. bestehen, wurden entweder unkonditioniert und teilweise paketiert/verpresst, mit Fixierungsmitteln vergossen oder auch unter Zusatz von Adsorptionsmitteln verpackt. In etwa 35 % der eingelagerten Abfallgebinde befinden sich Mischabfälle; etwa 7 % aller Abfallgebinde beinhalten Laborabfälle.

Für die Zusammensetzung dieser Abfälle wurden die in den Einlagerungsdokumenten genannten Abfallnennungen berücksichtigt; sofern keine Spezifizierung vorlag, wurden Stoffvektoren eingesetzt, die nach Erzeugergruppen spezifiziert sind.

#### **Bauschutt**

Etwa 9 % der eingelagerten Abfallgebinde enthalten Bauschutt, der sich im Wesentlichen aus zementhaltigen Materialien (Normalbeton), FE-Metallen, Mineralwolle, Sand/Kies/Steine, Geräteglas und Erde zusammensetzt. Die Abfälle wurden entweder unkonditioniert in die Abfallbehälter verpackt oder mit Fixierungsmitteln vergossen.

## Filter, Filterelemente

Luftfilter und andere Filterelemente, die in etwa 1 % aller Abfallgebinde vorliegen, können unterschiedliche Zusammensetzungen aufweisen. Es sind u.a. Zellulose, Polyethylen, Stahl und Aluminium berücksichtigt worden.

## U-/Th-haltige Rückstände

Zur Stoffgruppe U-/Th-haltige Rückstände, die in etwa 1 % aller Abfallgebinde enthalten sind, gehören u. a. Kieselgur, Asbest, FE-Metalle, Grafit, Asche und Geräteglas. Das in diesen Abfällen enthaltene Uran und Thorium wurde bereits durch das Institut für Strahlenschutz der GSF Neuherberg im Zusammenhang mit der Bestimmung des nuklidspezifischen Aktivitätsinventars der Schachtanlage Asse ermittelt [1], weshalb die von den Ablieferern deklarierten Uran- und Thoriumaktivitäten bzw. -massen in dem hier vorliegenden Bericht keine Berücksichtigung fanden.

#### <u>Filterkerzen</u>

Zu eingelagerten Filterkerzen (0,05 % aller Abfallgebinde) liegen ebenfalls nur pauschale Angaben zur Zusammensetzung vor. Meist sind keramische Filterkerzen zum Einsatz gekommen, die außerdem Zellulose, Polyethylen, Stahl und Aluminium enthalten können.

## Konservierte Tierkörper

Einige wenige Gebinde mit zementierten Tierkörpern (0,01 % aller Abfallgebinde) wurden eingelagert. Vor dieser Konditionierung wurden die Kadaver mit Formalin behandelt, welches ebenfalls berücksichtigt worden ist.

## 4.3.2.2 Sortierte feste Abfälle

Sortierte feste Abfälle (Schrott/Metall, zellulosehaltiges Material etc.) enthalten lt. Angabe auf den Einlagerungsdokumenten nur Metalle oder zellulosehaltige Stoffe oder Kunststoffe usw. Dies betrifft 19 % aller eingelagerten Abfallgebinde. Bei nicht konditionierten Abfällen, die als paketierte/verpresste Abfälle benannt sind, wurde eine Volumenreduktion um den Faktor 2 zu Grunde gelegt.

Die nachfolgenden Abschnitte enthalten allgemeine Erläuterungen der Abfallarten (Stoffgruppen), die zu den sortierten festen Abfällen gehören.

#### Schrott/Metalle

Zu dieser Stoffgruppe werden alle als Schrott, Metalle, Geräteteile u. ä. angegebenen Abfälle gerechnet. Sofern kein näher spezifiziertes Metall ausgewiesen ist, wurde in den weiteren Berechnungen unabhängig von den Ablieferern von einem allgemeinen Verhältnis von FEzu NE-Metallen ausgegangen. Die Abfälle wurden entweder unkonditioniert in die Abfallbehälter verpackt, paketiert/verpresst oder auch zementiert. Schrott/Metalle befinden sich in etwa 10 % aller Abfallgebinde.

## Zellulosehaltiges Material

An zellulosehaltigem Material, das in 8 % aller Abfallgebinde vorliegt, wurden Zellulose, Papier, Baumwolle (Textilien), Holz und Zellstoff meist unkonditioniert in die Abfallbehälter verpackt oder zementiert.

#### Kunststoffe, Gummi, Leder

Unter der Stoffgruppe Kunststoffe/Gummi/Leder (etwa 0,4 % aller Abfallgebinde) sind PVC, Polyethylen, Polypropylen, Gummi, nicht näher spezifizierte Kunststoffe, Kollagene etc. berücksichtigt worden.

## Aktivkohle, Grafit

Diese (hauptsächlich Kohlenstoff-haltigen) Abfälle, deren Anteil etwa 0,16 % aller Abfallgebinde beträgt, wurden unkonditioniert in die Abfallbehälter verpackt oder zementiert.

## Glas

Geräteglas (0,16 % aller Abfallgebinde) wurde entweder unkonditioniert in die Abfallbehälter verpackt oder zementiert.

## Strahlenguellen-Behälter

Einige wenige Gebinde mit Strahlenquellen-Behältern (0,017 % aller Abfallgebinde) enthalten hauptsächlich Co-60-, Cs-137, Ra-226- und Sr-90-Strahlenquellen sowie nicht näher bezeichnete Quellen. Im Allgemeinen sind diese Quellen einschließlich Abschirmbehältern (Stahl, Blei) in die Abfallbehälter verpackt worden. Es sind damit nicht näher spezifizierte FE- und NE-Metalle, Blei und Stahl berücksichtigt worden.

## Chemikalien

Zur Stoffgruppe "Chemikalien" zählen 0,011% aller Abfallgebinde. Sie enthalten Bariumsulfat bzw. arsenhaltige Abfälle. Da die arsenhaltigen Abfälle von einer landwirtschaftlichen Genossenschaft abgeliefert wurden, wird angenommen, dass Reste von arsenhaltigen Pflanzenschutzmitteln eingelagert wurden.

#### 4.3.3 Verbrennungsrückstände

Etwa 0,4 % aller Abfallgebinde enthalten Aschen aus der Verbrennung von Abfällen, die zementiert wurden.

#### 4.3.4 Mischkategorien

In etwa 2 % der Abfallgebinde befinden sich Gemische der festen bzw. verfestigten Abfälle und/oder Verbrennungsrückstände. Hierzu gehören u. a. VDK und Schrott bzw. Mischabfälle, Schlamm und Mischabfall bzw. Schrott, Asche und Schrott.

Allgemein ist eine gleichmäßige Verteilung der Abfallarten (Stoffgruppen) angenommen worden; Abweichungen ergaben sich aus Ablieferer- oder Literaturangaben. Die Anteile von Stoffgruppen und Stoffuntergruppen wurden aufgrund der in den Einlagerungsdokumenten aufgeführten Abfallnennungen berücksichtigt.

## 4.4 Luft und Wasser in den eingelagerten Abfallgebinden

In [3] werden die getroffenen Annahmen zur Abschätzung von Luft und freiem Wasser (Restfeuchte) in den Abfallgebinden beschrieben. Neben der Restfeuchte befindet sich auch Wasser in gebundener Form in den unterschiedlichen Materialien.

Für die Verpackungsmaterialien wird kein freies Wasser berücksichtigt, weil davon ausgegangen wird, dass die Betonbehälter bei ihrem Einsatz vollständig abgebunden und getrocknet waren. Der Wasseranteil der zementhaltigen Materialien wird als gebundenes Wasser berücksichtigt. Luftanteile ergeben sich aus unverfüllten Hohlräumen von "Fass-in-Fass"-Verpackungen und aus der Porenluft der Betonbehälter, Betonauskleidungen und Zementstein in Behälterzwischenräumen ("Fass-in-Fass"-Verpackung und VBA).

Die Fixierungsmittel Zementstein und Zementmörtel liefern Anteile an Luft und freiem Wasser. Darüber hinaus wird das gebundene Wasser der zementhaltigen Materialien berücksichtigt. Für Bitumen, Polystyrol, PVC, Gipsstein und Knochenleim werden keine Anteile an Luft und freiem Wasser berücksichtigt. Der Wasseranteil dieser Materialien wird als gebundenes Wasser berücksichtigt. Für die Adsorptionsmittel Aktivkohle, Torf, Vermiculit usw. werden neben gebundenem Wasser auch Anteile an Luft und freiem Wasser berücksichtigt.

Für die Abfallmaterialien werden je nach Art und Konditionierungsverfahren unterschiedliche Anteile an Luft, freiem und gebundenem Wasser berücksichtigt. Luftanteile ergeben sich aus unverfüllten Hohlraumvolumina von z. B. paketierten/verpressten Abfällen oder Resthohlräumen zementierter Abfälle.

# 5 Grundlage zur Ermittlung grundwassergefährdender Stoffe sowie weiterer chemotoxischer Stoffe

Das Abfallinventar der Schachtanlage Asse setzt sich aus einer Vielzahl von organischen und anorganischen Stoffen zusammen. Darunter befinden sich auch grundwassergefährdende Stoffe sowie darüber hinaus weitere anorganische und organische chemotoxische Stoffe.

Um den Schutzgedanken aus den einschlägigen Regelwerken zu berücksichtigen, wurden nicht nur die in der Anlage zur Grundwasserverordnung aus dem Jahre 1997 in der Liste I und II genannten Stoffe herangezogen, sondern darüber hinaus auch weitere Stoffe in die Erfassung chemischer und chemotoxischer anorganischer und organischer Stoffe einbezogen, für die in den einschlägigen Verordnungen, Regelwerken und Empfehlungen eine Grenzkonzentration bzw. ein Prüfwert genannt wird.

Welche Stoffe bei der Prüfung des Inventars der Schachtanlage Asse auf Einhaltung der wasserrechtlichen Bestimmungen zu berücksichtigen sind, ist aus einschlägigen Verordnungen, Regelwerken und Empfehlungen qualitativ und quantitativ bekannt. Dazu zählen

- die Anlage zur Grundwasserverordnung (1997), Listen I und II [8]
- die Neufassung der Trinkwasserverordnung von 1990 und deren Novellierung 2001 [9, 10]
- die Empfehlungen der Länderarbeitsgemeinschaft Wasser (LAWA) [11] einschließlich der im Entwurf vorliegenden aktualisierten Prüfwerte [12] und der Geringfügigkeitsschwellen [13]
- das Regelwerk des Deutschen Vereins des Gas- und Wasserfaches e.V. [14]

Ergänzend werden auch internationale Empfehlungen und Regelwerke [15, 16] herangezogen.

## 5.1 Grundwassergefährdende Stoffe

Im Hinblick auf den Schutz des Grundwassers gegen Verschmutzung durch bestimmte gefährliche Stoffe wurden diese Stoffe den Listen I und II der Grundwasserverordnung [8] zugeordnet. Im Einzelnen:

## Liste I der Stofffamilien und Stoffgruppen

Die Liste I umfasst die einzelnen Stoffe der nachstehend aufgeführten Stofffamilien und -gruppen mit Ausnahme der Stoffe, die aufgrund des geringen Toxizitäts-, Langlebigkeits- oder Bioakkumulationsrisikos als ungeeignet für die Liste I angesehen werden. Stoffe, die im Hinblick auf Toxizität, Langlebigkeit oder Bioakkumulation für die Liste II geeignet sind, sind als Stoffe der Liste II zu behandeln.

- 1. Organische Halogenverbindungen und Stoffe, die im Wasser derartige Verbindungen bilden können
- 2. Organische Phosphorverbindungen

- 3. Organische Zinnverbindungen
- 4. Stoffe, die im oder durch Wasser krebserregende, mutagene oder teratogene Wirkung haben; dazu gehören auch Stoffe aus der Liste II, soweit sie diese Wirkungen haben
- 5. Quecksilber und Quecksilberverbindungen
- 6. Cadmium und Cadmiumverbindungen
- 7. Mineralöle und Kohlenwasserstoffe
- 8. Cyanid

## Liste II der Stofffamilien und Stoffgruppen

Die Liste II umfasst die einzelnen Stoffe und die Stoffkategorien aus den nachstehend aufgeführten Stofffamilien und Stoffgruppen, die eine schädliche Wirkung auf das Grundwasser haben können.

1. Folgende Metalloide und Metalle und ihre Verbindungen:

| 1.1 Zink   | 1.8 Antimon    | 1.15 Uran     |
|------------|----------------|---------------|
| 1.2 Kupfer | 1.9 Molybdän   | 1.16 Vanadium |
| 1.3 Nickel | 1.10 Titan     | 1.17 Kobalt   |
| 1.4 Chrom  | 1.11 Zinn      | 1.18 Thallium |
| 1.5 Blei   | 1.12 Barium    | 1.19 Tellur   |
| 1.6 Selen  | 1.13 Beryllium | 1.20 Silber   |
| 1.7 Arsen  | 1.14 Bor       | ~             |

- 2. Biozide und davon abgeleitete Verbindungen, die nicht in der Liste I enthalten sind
- 3. Stoffe, die eine für den Geschmack oder den Geruch des Grundwassers abträgliche Wirkung haben, sowie Verbindungen, die im Grundwasser zur Bildung solcher Stoffe führen und es für den menschlichen Gebrauch ungeeignet machen können
- 4. Giftige oder langlebige organische Siliziumverbindungen und Stoffe, die im Wasser zur Bildung solcher Verbindungen führen können, mit Ausnahme derjenigen, die biologisch unschädlich sind oder sich im Wasser rasch in biologisch unschädliche Stoffe umwandeln
- 5. Anorganische Phosphorverbindungen und reiner Phosphor
- 6. Fluoride
- 7. Ammoniak und Nitrite

#### 5.2 Chemotoxische Stoffe

Neben den in der Liste I und II der Grundwasserverordnung genannten Stofffamilien und Stoffgruppen werden aus den in ANHANG A.1 genannten Unterlagen eine Liste der organisch chemotoxischen Stoffe und der anorganischen chemotoxischen Stoffe erstellt.

#### 5.2.1 Organisch chemotoxische Stoffe

Aufgenommen in die Liste organischer chemotoxischer Stoffe wurden solche Stoffe, welche persistent, kanzerogen, teratogen und/oder mutagen sind und für die aufgrund dieser Eigenschaften in der Vergangenheit bereits einschlägige Vorschriften erlassen worden sind.

Die chemotoxischen organischen Stoffe wurden in die nachstehend genannten neun Verbindungsklassen unterteilt. Eine Auswahl typischer Vertreter der jeweiligen Klasse ist (in Klammern) ergänzt:

- 1. Alicyclische und aliphatische Verbindungen (Lindan, Aldrin)
- 2. Halogenierte Benzole und Phenylderivate (Hexachlorbenzol, PCB's)
- 3. Halogenierte Derivate von Diphenylmethan (DDT)
- 4. Anellierte Aromaten (Halogenierte Naphthaline, PAK's)
- 5. Halogenierte Phenole und Phenoxyverbindungen (Trichlorphenol, Diphenylether)
- 6. Heterocyclische Verbindungen (PCDD, PCDF)
- 7. Chelatbildner (EDTA, NTA) und Komplexbildner (Citronensäure, Weinsäure, Oxalsäure),
- 8. Tenside (Alkylsulfonate, Fettalkoholethoxilate, quaternäre Ammoniumverbindungen),
- 9. Halogenierte Triazine (Atrazin, Simazin).

Die Zuordnung zu den jeweiligen Verbindungsklassen erfolgte aufgrund von Ähnlichkeiten der Stoffe bezüglich Struktur und Eigenschaften. Im ANHANG A.2 sind diese neun Verbindungsklassen, die im Rahmen jeder Klasse betrachteten chemotoxischen organischen Verbindungen und deren typische Klassenvertreter, wiedergegeben.

## 5.2.2 Anorganisch chemotoxische Stoffe

Neben den chemotoxischen organischen Stoffen gibt es auch anorganische Stoffe und Verbindungen, die chemotoxisch sind und ebenfalls berücksichtigt wurden.

Die Liste der anorganischen chemotoxischen Stoffe (ANHANG A.3) umfasst die im Folgenden aufgeführten Metalle, Nichtmetalle und deren Verbindungen: Antimon, Arsen, Barium, Beryllium, Blei, Bor, Cadmium, Chrom, Cyanide, Kobalt, Kupfer, Molybdän, Nickel, Plutonium, Quecksilber, Selen, Silber, Tellur, Thallium, Titan, Uran, Vanadium, Wismut, Zink und Zinn.

# 6 Materialien, Komponenten und Elemente im Abfallinventar der Schachtanlage Asse

## 6.1 Systematik der Erfassung und Datenauswertung

#### 6.1.1 Datenbasis

Für die eingelagerten Gebinde mit radioaktiven Abfällen wurden Massenangaben der Materialien aus [3] vom Forschungsbergwerk Asse im EXCEL-Format kammerspezifisch nach Stoffgruppen und Stoffuntergruppen aufbereitet und der Fa. Buchheim übergeben (siehe Kapitel 4.5).

Nach einer gründlichen Überprüfung wurden diese Daten von der Fa. Buchheim aufbereitet und in einem weiteren Schritt mit der jeweiligen chemischen Zusammensetzung (Stoffvektoren) der Materialien und Komponenten verknüpft.

Die in den Basisdaten häufig verwendeten Begriffe wie "Asche", "Aktivkohle", FE-Metalle", "Stahl", "Kunstharz", "Harze", "NE-Metalle", "Zementstein", "Beton", "Schwerbeton", "Sand", "Kies", "Steine", "Erde", "Mineralwolle", "Bauschutt", "Bitumen", "Holz", "Zellstoff", "Textilien", "Glas", "Keramik", "Kieselgur", "Kunststoffe", "Öl", "Lösungsmittel", "Gummi", "Schrott", "Schlämme", "VDK", "PVC" etc. mussten dazu in die Komponenten und anschließend in die chemischen Elemente aufgeschlüsselt werden.

Das Inventar der Schachtanlage Asse wurde wie folgt erfasst:

- Qualitative Identifikation von grundwassergefährdenden Stoffen
- Qualitative Identifikation von organischen chemotoxischen Stoffen geordnet nach Verbindungsklassen und deren typischen Vertretern
- Qualitative Identifikation von anorganischen chemotoxischen Stoffen
- Quantitative Erfassung der Materialien in den Abfällen, Abfallbehältern, und Fixierungsmitteln (SG, SUG)
- Charakterisierung der erfassten Materialien nach anorganischen und organischen Komponenten (SUG) und Elementen (qualitativ und quantitativ)
- Quantitative Erfassung der grundwassergefährdenden Stoffe sowie der organischen und anorganischen chemotoxischen Stoffe

## 6.1.2 Überprüfung der Datenbasis

Das Gesamtinventar nach Stoller beträgt ca. 89.035 Mg. Die detaillierten Ergebnisse sind in einer ACCESS-Datenbank enthalten und in [3] zusammenfassend dargestellt. Ein Vergleich der Ergebnisse der Datenbank [3] mit Ergebnisdarstellungen in [3] zeigte vereinzelt Abweichungen durch Rundungen bzw. Übertragungsfehler.

Vor der Übergabe der Stoller-Daten an die Fa. Buchheim wurden die Ergebnistabellen der Datenbank vom FB Asse einer intensiven Kontrolle unterzogen. Dabei wurden einige wenige Zuordnungsfehler festgestellt, die berichtigt wurden. Beispielsweise war einer Abfallcharge ein falscher Behältertyp zugeordnet worden; durch das abweichende Behältervolumen wirkte sich die Korrektur sowohl auf die Massen der Abfallbehälter als auch auf die Massen der

Abfälle und Fixierungsmittel aus. Auf Basis der korrigierten Stoller-Daten (Gesamtinventar: ca. 89.034 Mg) wurde vom FB Asse eine EXCEL-Datei mit den Massenangaben der Stoffgruppen und Stoffuntergruppen je Einlagerungskammer erstellt. Auf dieser Basis ermittelte die Fa. Buchheim das Inventar chemischer und chemotoxischer Stoffe. Die in diesem Zusammenhang von der Fa. Buchheim durchgeführten zusätzlichen Analogie- und Plausibilitätsbetrachtungen werden im folgenden erläutert.

So wurden z. B. alle Massenverhältnisse von Wasser zu Zement (W/Z-Werte) überprüft, und wo außerhalb des technisch üblichen Bereichs liegend auf erprobte Werte angepasst. Dies gilt hier für alle zementhaltigen Materialien (PZ-Stein, PZ-Ölschieferstein, PZ-Mörtel, Normalbeton, Hämatitbeton), die als Bestandteile von Abfall, Abfallbehälter und Fixierungsmittel vorkommen. Für das Gesamtinventar der Schachtanlage Asse liegt im Mittel ein W/Z-Wert von 0,4 vor. Darüber hinaus wurde das Verhältnis Zement zu Zuschlagstoffen (Sand, Kies, Hämatit) auf ein in der Praxis übliches Verhältnis kontrolliert. Das gleiche Vorgehen erstreckte sich auch auf die Materialzusammensetzung von Gipsstein (Kristallwasser, gebundenes Wasser, Verunreinigungen im technischen Produkt), die unter Beachtung der chemischen Grundsätze neu berechnet wurde.

Bei den zellulosehaltigen Materialien (Papier, Holz, Baumwolle, Zellstoff, Zellulose, pflanzliche Abfälle) wurden deren Wasseranteile, jeweils bezogen auf die Trockensubstanz (TS), über die Sorptionsgleichgewichte und Sorptionsisothermen überprüft und gegebenenfalls angepasst. Das Gleiche gilt auch für die Sorption von Wasserdampf an anderen technischen Stoffen wie z. B. Asbest, Aktivkohle, Gelatine, Gips, Glas, Kieselgur, Mineralwolle, Ziegel sowie hochpolymere Kunststoffe wie Nylon (PA), Polyethylen (PE), Polypropylen (PP), Polystyrol (PS), Plexiglas (PMMA), Polyvinylchlorid (PVC), Leder, Gummi, Knochenleim, Kollagen etc. jeweils bezogen auf die Trockensubstanz.

Es wurden die chemischen Prozesse innerhalb der Abfallgebinde berücksichtigt, die zum Zeitpunkt der Einlagerung abgelaufen sind. Dazu zählt z. B. die thermische Zersetzung von EDTA aufgrund von Temperatur und Verweilzeiten im Verdampfer.

Die chemische Zusammensetzung der VDK aus den Forschungszentren Karlsruhe und Jülich war aus der Fachliteratur und internen Berichten der Forschungszentren sowie aus umfangreichen Versuchen an simulierten und realen VDK zur Verfestigung bzw. Einbindung in Zement und Bitumen bekannt. Besondere Aufmerksamkeit verlangte der Anteil an Chelatbildnern (z. B. EDTA, NTA) und Komplexbildnern (Citrate, Tartrate, Oxalate), an Tensiden (anionische, nichtionische) und anorganischen Salzen. Thermische und katalytische Abbauprozesse von organischen Stoffen, wie z. B. EDTA in Anwesenheit von Fe-, Cu-, Ni-, Cr-Salzen und Nitraten aus Beiz- und Dekontaminationskampagnen, im Verlauf der Eindickung im Verdampfer, waren gesondert zu berücksichtigen. Insbesondere die thermische Zersetzung von EDTA führte aufgrund der Temperatur und Verweilzeiten im Verdampfer zu einer erheblichen Reduzierung der EDTA-Massen. Darüber hinaus war der Eindickungsgrad (flüssig bzw. fest) und eine abschließende Konditionierung und Trocknung (z. B. mit Walzentrocknern) zu bewerten.

VDK aus DWR zeichnen sich durch einen hohen Anteil an Borsäure/Boraten, einen mittleren Anteil an löslichen Nitraten und Sulfaten und einen geringen Anteil an oberflächenaktiven

Stoffen (Tenside), Lösemitteln und thermisch/katalytisch abbaubaren Chelaten und Komplexbildnern aus. VDK aus SWR enthalten im Gegensatz zu den VDK aus DWR nur geringe Borsäure/Boratanteile, während alle anderen gelösten Salze, Chelate/Komplexbildner und suspendierten Feststoffe dem VDK DWR sehr ähnlich sind.

Die chemische Zusammensetzung der Ionenaustauscher (Kugel- und Pulverharze) berücksichtigt die charakteristischen Eigenschaften von (erschöpften) organischen Kationen- und Anionenaustauscherharzen, insbesondere das Polystyrol-Grundgerüst, die funktionellen Gruppen für den Kationen- und Anionenaustausch, die Beladung durch abfiltrierte Feststoffe und Salze sowie den unterschiedlichen Porenwasseranteil von Kugel- und Pulverharzen.

Die bisher pauschal abgeschätzten Bleimassen wurden einer Prüfung und Revision unterzogen. Blei wurde einerseits als Abfall (Bleibleche, Bleiwolle etc.) und andererseits in Form von Abschirmungen, beispielsweise von Strahlenquellen, eingelagert. Bei der Überprüfung der pauschal abgeschätzten Bleimassen wurden u. a. vorhandene Zeichnungen herangezogen und die Bleimassen nach Maßgabe der notwendigen Abschirmung der Strahlenquellen kontrolliert.

Die zusätzliche Plausibilitätsüberprüfung der Fa. Buchheim ergab, dass der von der Fa. Stoller gewählte Ansatz sinnvoll und richtig ist. Insbesondere die Massen der Stoffgruppen werden von der Fa. Buchheim als realistisch angesehen bzw. bewertet. Unter der Maßgabe, dass die Massen der Stoffgruppen i. d. Regel unverändert bleiben, wurden nur in einigen wenigen begründeten Fällen die Berechnungsgrundlagen geändert. Die auf dieser Basis von der Fa. Buchheim durchgeführte Überprüfung ergab eine sehr gute Übereinstimmung mit den Eingangsdaten der Fa. Stoller.

Im Laufe der gesamten Überprüfung ergab sich letztendlich ein um ca. 11 Mg reduziertes Abfallinventar (Stoller-Daten nach [3]: 89.035 Mg). Im Folgenden werden allerdings die bereits durch FB Asse korrigierten Stoller-Daten (ca. 89.034 Mg) den Inventarmassen von Fa. Buchheim [4] gegenübergestellt. So können die Massendifferenzen gezeigt werden, die ausschließlich aus den geänderten Berechnungsgrundlagen resultieren und sich insbesondere durch die Neuberechnung der Bleimassen ergeben. Die hieraus resultierende Massendifferenz von ca. 10,4 Mg (0,01 %), reduziert das revidierte Gesamtinventar auf ca. 89.024 Mg [4]. Die in den nachfolgenden Tabellen enthaltenen gerundeten Werte basieren auf den exakten Werten der Datenbank. Eine Addition der gerundeten Werte kann zu geringfügig abweichenden Ergebnissen gegenüber den exakten Werten der Datenbank führen.

In der Tabelle 6.1 sind die Massenanteile des Inventars jeweils für Abfall, Abfallbehälter und Fixierungsmittel von der Fa. Stoller und der Fa. Buchheim gegenübergestellt. Die Massenangaben der Abfallbehälter und Fixierungsmittel zeigen keinen Unterschied; die v. g. Massendifferenz von ca. 10,4 Mg findet sich vollständig im Abfall wieder (Stoller: 27.096,3 Mg, Buchheim: 27.085,9 Mg).

Tabelle 6-1: Massenanteile des Inventars (Abfall, Abfallbehälter, Fixierungsmittel)

| Fixierungsmittel Σ Alle Einlagerungskammern: | 15.210<br>Σ <b>89.034.3</b> | 15.210<br>Σ 89.023,9      | Σ 10,4            |
|----------------------------------------------|-----------------------------|---------------------------|-------------------|
| Eissiams agmittal                            | 15 210                      | 15 210                    |                   |
| Abfallbehälter                               | 46.728                      | 46.728                    | -                 |
| Abfall                                       | 27.096,3                    | 27.085,9                  | 10,4              |
| ASSE-INVENTAR (Alle Beiträge)                | MASSE<br>Stoller<br>[Mg]    | MASSE<br>Buchheim<br>[Mg] | Differenz<br>[Mg] |

Da die Massendifferenz vollständig auf die Abfälle entfällt, sind in der Tabelle 6.2 die Bezeichnungen der Stoffgruppen (SG) der Abfälle und die zugehörigen Massen von der Fa. Stoller und der Fa. Buchheim gegenübergestellt. In der letzten Spalte ist weiterhin die Massendifferenz der jeweiligen SG ergänzt. In einigen Fällen wird bei der Fa. Buchheim die SG weiter differenziert, z. B. werden die Harze unter Berücksichtigung ihrer Herkunft (insbesondere DWR und SWR) in Kugel- und Pulverharze unterschieden.

Unterschiedliche Massenangaben finden sich aufgrund der Prüfung und Revision der von der Fa. Stoller pauschal abgeschätzten Bleimassen, die in den SG Bauschutt, Labor- und Mischabfälle, Schrott/Metalle und Strahlenquellen-Behälter sowie der von der Fa. Buchheim neu eingeführten SG "Core-Stopfen+Abschirmung" vorliegen. Die Massendifferenz der SG VDK1 und VDK3 haben ihre Ursache in einem Zuordnungsfehler zum Abfallablieferer. In der Tabelle 6.2 ist ebenfalls ersichtlich, dass eine Massendifferenz von ca. 10,4 Mg vorliegt.

Tabelle 6-2: Massenanteile der Stoffgruppen (SG) im Abfall

| ASSE-INVENTAR<br>SG im Abfall<br>Stoller | ASSE-INVENTAR<br>SG im Abfall<br>Buchheim | MASSE<br>Stoller<br>[Mg] | MASSE<br>Buchheim<br>[Mg] | Differenz<br>[Mg] |
|------------------------------------------|-------------------------------------------|--------------------------|---------------------------|-------------------|
| A-Kohle/Grafit                           | Aktivkohle                                |                          | 3,5                       |                   |
|                                          | Grafit                                    | 48,8                     | 45,3                      | -                 |
| Asche                                    | Asche                                     | 96,5                     | 96,5                      | -                 |
| Asche/Harz                               | Asche/Kugelharze/Zellulose                |                          | 1,5                       |                   |
|                                          | Asche/Kugelharze                          | 2,0                      | 0,5                       | _                 |
| Asche/Lösungsmittel                      | Asche/Kerosin/Kieselgur                   | 6,3                      | 6,3                       | _                 |
| Asche/Mischabfall                        | Asche/Mischabfall                         | 11,1                     | 11,1                      | -                 |
| Asche/Schlamm                            | Asche/Schlamm                             | 10,5                     | 10,5                      | -                 |
| Asche/Schrott                            | Asche/Schrott                             |                          | 37,8                      |                   |
|                                          | Asche/Schrott/Salze                       | 40,8                     | 2,9                       | _                 |
| Asche/VDK                                | Asche/VDK                                 | 3,7                      | 3,7                       | -                 |
| Bauschutt                                | Bauschutt                                 | 4.450,0                  | 4.449,4                   | 0,6               |
| Chemikalien                              | Chemikalien                               | 1,0                      | 1,0                       | _                 |
| Fällschlämme                             | Fällschlämme                              | 84,2                     | 84,2                      | -                 |
| Filter/Filterelemente                    | Filter/Filterelemente                     | 266,4                    | 266,4                     | -                 |
| Filterhilfsmittel/-rückstände            | Filterhilfsmittel/-rückstände             | 217,6                    | 217,6                     | -                 |
| Filterkerzen                             | Filterkerzen                              | 12,4                     | 12,4                      | _                 |
| Glas/Keramik                             | Glas                                      | 63,7                     | 63,7                      | -                 |

| ASSE-INVENTAR<br>SG im Abfall | ASSE-INVENTAR<br>SG im Abfall | MASSE<br>Stoller | MASSE<br>Buchheim | Differenz |
|-------------------------------|-------------------------------|------------------|-------------------|-----------|
| Stoller                       | Buchheim                      | [Mg]             | [Mg]              | [Mg]      |
| Harz/Mischabfall              | Kugelharz/Mischabfall         |                  | 0,6               |           |
|                               | Pulverharz/Mischabfall        | 2,8              | 2,2               | _         |
| Harze                         | Harze                         |                  | 0,2               |           |
|                               | Kugelharze                    |                  | 37,4              |           |
|                               | Pulverharze                   | 128,2            | 90,7              | -         |
| Kunststoffe/Gummi/Leder       | Kunststoffe/Gummi/Leder       | 55,2             | 55,2              | M -       |
| Laborabfälle                  | Laborabfälle                  | 1.234,9          | 1.234,2           | 0,7       |
| Lösungsmittel/Schrott         | Lösemittel/Schrott            | 4,8              | 4,8               |           |
| Mischabfälle                  | Mischabfälle                  | 10.993,7         | 10.986,8          | 6,9       |
| Öle/Lösungsmittel             | BTEX/Lösungsmittel            |                  | 2,5               |           |
| · ·                           | Öl                            |                  | 17,7              |           |
|                               | Öle/Trichlorethan             |                  | 0,4               |           |
|                               | TBP/Kerosin                   | 30,2             | 9,6               | -         |
| Schlacke                      | Schlacke                      | 1,9              | 1,9               | -         |
| Schlämme                      | Schlämme                      | 454,9            | 454,9             | -         |
| Schlamm/Lösungsmittel         | Schlamm/Lösemittel            | 3,0              | 3,0               | _         |
| Schlamm/Mischabfall           | Schlamm/Mischabfall           | 63,5             | 63,5              | -         |
| Schlamm/Schrott               | Schlamm/Schrott               | 36,2             | 36,2              | -         |
| Schrott/Metalle               | Schrott/Metalle               | 5.750,2          | 5.746,5           | 3,7       |
| Strahlenquellen               | Strahlenquellen-Behälter      | 10,9             | 10,3              | 0,7       |
| Tierkadaver                   | Tierkörper konserviert        | 0,9              | 0,9               | 1         |
| U-/Th-Rückstände              | U-/Th-Rückstände              | 69,5             | 69,5              | -         |
| VDK/Filterhilfsmittel         | VDK/Filterhilfsmittel         | 64,1             | 64,1              | -         |
| VDK/Harz                      | VDK/Pulverharz                | 40,7             | 40,8              | ı         |
| VDK/Mischabfall               | VDK/Mischabfall               | 28,5             | 28,5              | -         |
| VDK/Schlamm                   | VDK/Schlamm                   | 171,5            | 171,5             | _         |
| VDK/Schrott                   | VDK/Schrott                   | 222,3            | 222,3             | -         |
| VDK1 (SWR)                    | VDK1 (SWR)                    | 21,9             | 20,2              | 1,6       |
| VDK2 (DWR)                    | VDK2 (DWR)                    | 405,1            | 405,1             | _         |
| VDK3 (sonstige)               | VDK3 (sonstige)               | 49,7             | 51,5              | - 1,9     |
| VDK4 (GFK/KFK)                | VDK4 (GFK/KFK)                | 734,4            | 734,4             | -         |
| Wässrige Abfälle              | Wässrige Abfälle              | 2,1              | 2,2               | - 0,1     |
| Zelluløsehaltiges Material    | Zellulosehaltiges Material    | 1.200,2          | 1.200,2           | -         |
|                               | Core-Stopfen+Abschirmung      | -                | 1,8               | - 1,8     |
| Σ Massenanteile Abfälle:      |                               | Σ 27.096,3       | Σ 27.085,9        | Σ 10,4    |

In der Tabelle 6.3 sind die Bezeichnungen der Stoffuntergruppen (SUG) der Abfälle und die zugehörigen Massen von der Fa. Stoller und der Fa. Buchheim gegenübergestellt. In der letzten Spalte ist weiterhin die Massendifferenz der jeweiligen SUG ergänzt. Unterschiedliche Massenangaben finden sich aufgrund der Prüfung und Revision der von der Fa. Stoller pauschal abgeschätzten Bleimassen, die in den SUG FE-Metalle, FE-Metalle1,

NE-Metalle1, SM-Salze<sup>1)</sup> (Schwermetallsalze) sowie der von der Fa. Buchheim neu eingeführten SUG Stahl St-37 vorliegen. Die Massen der SUG Hämatit sowie die Massendifferenzen der SUG Silikate/Aluminate1, freies und gebundenes Wasser und Zement (5,1 Mg + 1.723,0 Mg + 29,2 Mg + 99,3 Mg + 225,2 Mg = 2.081,8 Mg) finden sich in den Massen der von der Fa. Buchheim neu eingeführten SUG Hämatit- und Normalbeton und PZ-Stein (15,3 Mg + 2.065,1 Mg + 2,2 Mg = 2.082,6 Mg) wieder. Weiterhin wurde von der Fa. Buchheim die SUG Berylliumpulver ergänzt. Die Massendifferenzen der SUG Lösungsmittel 1 und Lösungsmittel 2 haben ihre Ursache in einem Zuordnungsfehler von der Fa. Stoller. In einigen Fällen wird bei der Fa. Buchheim die SUG weiter differenziert, insbesondere gebundenes und freies Wasser wird in adsorbiertes, gebundenes, Hydratwasser, Kristallwasser und Porenwasser unterschieden. Bei den mit \* gekennzeichneten Werten handelt es sich um Abweichungen durch Rundungen bzw. Übertragungsfehler gegenüber [3].

Tabelle 6-3: Massenanteile der Stoffuntergruppen (SUG) im Abfall

| ASSE-INVENTAR            | ASSE-INVENTAR             | MASSE<br>Stoller | MASSE<br>Buchheim | Differenz |
|--------------------------|---------------------------|------------------|-------------------|-----------|
| SUG im Abfall<br>Stoller | SUG im Abfall<br>Buchheim | [Mg]             | [Mg]              | [Mg]      |
| A-Kohle                  | Aktivkohle TS             | 15,9             | 15,9              | -         |
| $Al_2O_3$                | $Al_2O_3$                 | 0,0              | 0,0               | _         |
| Asbest                   | Asbest TS                 | 76,7             | 76,7              | -         |
| Asche                    | Asche TS                  | 143,4            | 143,4             | -         |
| As-Verbindungen          | Arsenverbindungen         | 0,7              | 0,7               |           |
| Ba-Bromid                | Bariumbromid              |                  | 0,2               |           |
|                          | Kristallwasser            | 0,3              | 0,0               | -         |
| Bitumen                  | Bitumen                   | 4,3              | 4,3               | -         |
| Borsäure/Borate          | Borate KKS TS             |                  | 31,6              |           |
|                          | Borsäure/Borate TS        | 210,5            | 178,9             | -         |
| CaCO <sub>3</sub>        | CaCO <sub>3</sub>         | 0,1              | 0,1               | -         |
| CaF <sub>2</sub>         | CaF <sub>2</sub>          | 0,7              | 0,7               | -         |
| Collagene                | Kollagene TS              |                  | 2,4               |           |
|                          | Tierkörper TS             | 2,6              | 0,3               | -         |
| EDTA                     | EDTA/Komplexbildner       | 0,6              | 0,6               | -         |
| FE-Metalle               | FE-Metalle                |                  | 12.476,5          |           |
|                          | Stahl 1.4541              |                  | 58,5              |           |
|                          | Stahl 1.4571              | 12.536,7*        | 2,2               | - 0,4     |
| FE-Metalle1 (Stahl)      | Stahl 1                   | 108,5*           | 110,9             | - 2,5     |
| FE-Metalle2 (Fe)         | Stahl 2                   | 474,7            | 474,7             | -         |
| FE-Metalle3 (VA-Stahl)   | VA-Stahl                  | 2,6              | 2,6               | -         |
| Fe-Oxide                 | Korrosionsprodukte        | 30,8             | 30,8              | _         |
| Glas                     | Geräteglas                | 789,6            | 789,6             | -         |
| Grafit                   | Grafit TS                 | 62,1             | 62,1              | -         |
| Gummi                    | Gummi (vulkanisiert)      |                  | 126,9             |           |
|                          | Silikonkautschuk          | 147,9            | 21,0              | -         |
| Hämatit                  |                           | 5,1              |                   | -         |

<sup>&</sup>lt;sup>1)</sup> Die SUG SM-Salze entfällt bei der Fa. Buchheim, da es sich hierbei um einen Zuordnungsfehler von der Fa. Stoller handelt.

| ASSE-INVENTAR<br>SUG im Abfall | ASSE-INVENTAR<br>SUG im Abfall | MASSE<br>Stoller | MASSE<br>Buchheim | Differenz |
|--------------------------------|--------------------------------|------------------|-------------------|-----------|
| Stoller                        | Buchheim                       | [Mg]             | [Mg]              | [Mg]      |
| Huminstoffe                    | Erde                           | 5,2              | 5,2               | 5,1       |
| Keramik                        | Keramik                        |                  | 2,4               |           |
|                                | SIC                            | 5,8              | 3,3               | -         |
| Kieselgur                      | Kieselgur TS                   | 83,6             | 83,6              | -         |
| Komplexbildner                 | Chelate/Komplexbildner         | 39,9             | 39,9              |           |
| Kunststoffe                    | Kunststoffe                    |                  | 1.046,8           |           |
|                                | Polethylen                     | 1.120,8          | 74,0              |           |
| Kunststoffe1 (PVC)             | PVC (weich)                    | 158,3            | 158,3             | -         |
| Kunststoffe2 (PE)              | Polethylen                     | 45,2             | 45,2              | _         |
| Kunststoffe3 (Plexiglas)       | Acrylglas                      | 0,0              | 0,0               | _         |
| Kunststoffe4 (Polypropylen)    | Polypropylen                   | 0,4              | 0,4               | _         |
| LM1 (TBP/Dodecan)              | TBP/Kerosin                    | 11,4             | 22,5              | - 11,1    |
| LM2 (BTEX)                     | BTEX/Lösungsmittel             | 19,9             | 8,8               | 11,1      |
| LM3 (Trichlorethan)            | Trichlorethan                  | 0,3              | 0,3               |           |
| LM4 (Formaldehyd)              | Formalin                       | 0,3              | 0,3               | _         |
| NE-Metall1 (Pb)                | Blei                           | 25,7*            | 10,9              | 14,7      |
| NE-Metall2 (Al)                | Aluminium                      | 68,9             | 68,9              | 14,7      |
| NE-Metall4 (Zr)                | Zircaloy 2                     | 35,8             | 35,8              |           |
| NE-Metall5 (Ti)                | Titan                          | 1,7              | 1,7               | -         |
| ` ,                            | Kupfer                         | 19,6             | 19,6              | -         |
| NE-Metall6 (Cu)                | Kupier                         | <u> </u>         | <u> </u>          | -         |
| NE-Metall7 (Co)<br>NE-Metalle  |                                | 0,3              | 0,3               | -         |
| NE-Metalle                     | Aluminium                      | 1,000,0          | 31,1              | 0.2       |
| NT'.                           | NE-Metalle                     | 1.098,9          | 1.068,0           | - 0,3     |
| Nitrat                         | NaNO <sub>3</sub>              | 0,2              | 0,2               |           |
| Öle                            | Öl                             | 50,9             | 50,9              | -         |
| Polystyrol                     | Kugelharz TS                   | 1,7,4            | 21,2              |           |
|                                | Pulverharz TS                  | 117,4            | 96,2              |           |
| Salze                          | Konzentrat Borat               | -                | 0,2               |           |
|                                | Laborwasser TS                 | -                | 1,6               |           |
|                                | Salze TS                       | 1                | 20,9              |           |
|                                | Salze FHM TS                   | -                | 29,3              |           |
| (())                           | Salzkonzentrat TS              | 1.329,6          | 218,7             | - 0,1     |
|                                | VDK Salz TS                    |                  | 1.059,1           | - 0,1     |
| Schlacke                       | Schlacke TS                    | 1,9              | 1,9               | -         |
| Silikate/Aluminate             | Erdreich                       | 39,1             | 39,1              | -         |
| 1 (Sand, Kies, Steine)         | Kieselgur TS                   |                  | 226,8             |           |
|                                | Sand/Kies/Steine               | 2.383,1          | 433,3             | 1.723,0   |
| 2 (Stein-, Mineralwolle)       | Mineralwolle                   | 321,3            | 321,3             | -         |
| 3 (Ziegel)                     | Ziegel                         | 8,0              | 8,0               | -         |
| SiO <sub>2</sub>               | Siliciumdioxid                 | 0,2              | 0,2               | -         |
| SM-Salze <sup>1)</sup>         | -                              | 0,7              | -                 | 0,7       |
| Wasser, frei                   | Ads. Wasser                    | ]                | 75,3              |           |
|                                | Geb. Wasser                    |                  | 32,9              |           |

<sup>&</sup>lt;sup>1)</sup> Die SUG SM-Salze entfällt bei der Fa. Buchheim, da es sich hierbei um einen Zuordnungsfehler von der Fa. Stoller handelt.

| ASSE-INVENTAR<br>SUG im Abfall<br>Stoller | ASSE-INVENTAR<br>SUG im Abfall<br>Buchheim | MASSE<br>Stoller<br>[Mg] | MASSE<br>Buchheim<br>[Mg] | Differenz<br>[Mg] |
|-------------------------------------------|--------------------------------------------|--------------------------|---------------------------|-------------------|
|                                           | Hydratwasser                               |                          | 467,4                     |                   |
|                                           | Porenwasser                                | 606,3*                   | 1,5                       | 29,2              |
| Wasser, geb.                              | Ads. Wasser                                |                          | 0,1                       |                   |
|                                           | Geb. Wasser                                | 1                        | 168,1                     |                   |
|                                           | Hydratwasser                               | ]                        | 35,1                      |                   |
|                                           | Porenwasser                                | 380,7                    | 78,0                      | 99,3              |
| Zellulose                                 | Zellulose TS                               | 2.847,0                  | 2.847,0                   |                   |
| Zellulose1 (Papier)                       | Papier TS                                  | 852,4                    | 852,4                     | -                 |
| Zellulose2 (Holz)                         | Holz TS                                    | 101,2                    | 101,2                     | -                 |
| Zellulose3 (Baumwolle)                    | Baumwolle TS                               | 449,3                    | 449,3                     | -                 |
| Zellulose4 (Zellstoff)                    | Zellstoff TS                               | 25,5                     | 25,5                      | -                 |
| Zellulose5 (Pflanzen)                     | Pflanzliche Abfälle TS                     | 0,8                      | 0,8                       | -                 |
| Zement                                    | -                                          | 225,2                    |                           | 225,2             |
| -                                         | Hämatitbeton                               |                          | 15,3                      | - 15,3            |
| -                                         | Normalbeton                                | -/                       | 2.065,1                   | - 2.065,1         |
| -                                         | Portlandzementstein                        |                          | 2,2                       | - 2,2             |
| -                                         | Berylliumpulver                            | <b>)</b> -               | 0,000001                  | - 0,000001        |
| _                                         | Stahl ST 37                                | -                        | 0,9                       | - 0,9             |
| Σ Massenanteile Abfälle:                  |                                            | Σ 27.096,3               | Σ 27.085,9                | Σ 10,4            |

## 6.1.3 Zwiebelschalenprinzip

Das Abfallinventar wurde vollständig zerlegt in Materialien, Komponenten (auch Verbindungen) und einzelne Elemente.

Die stofflichen Anteile

- 1. der Abfälle
- 2. der Abfallbehälter
- 3. der verwendeten Fixierungsmittel

wurden qualitativ und quantitativ für die Erfassung des Gesamtinventars gemäß "Zwiebelschalenprinzip" in drei Bearbeitungsschritten systematisch erfasst. Diese sind:

- a) das Material (Stoffgruppe/Stoffuntergruppe), z. B. "Bauschutt" (anorganischer Abfall) bzw. "Kugelharze" (organischer Abfall)
- b) die Komponenten, z. B. für das Material "Bauschutt" (SiO<sub>2</sub>, CaO, Al<sub>2</sub>O<sub>3</sub>, H<sub>2</sub>O etc.) bzw. für das Material "Kugelharze" (Polystyrol, Porenwasser etc.)
- c) die chemischen Elemente aus den Komponenten für das Material "Bauschutt" (Si, Ca, Al, O, H etc.) bzw. für das Material "Kugelharze" (C, H, O, N, S etc.)

In jedem einzelnen Material wurde nach der anorganischen bzw. organischen Natur der darin enthaltenen Komponenten und daraus abgeleitet der betreffenden Elemente unterschieden, so

dass im Gesamtinventar der anorganische bzw. organische Anteil der Abfälle, der Abfallbehälter und der Fixierungsmittel ermittelt werden konnte ("Zwiebelschalenprinzip" für mehrere Zwiebeln). Die graphische Darstellung des Zwiebelschalenprinzips ist aus Abbildung 6-1 ersichtlich.

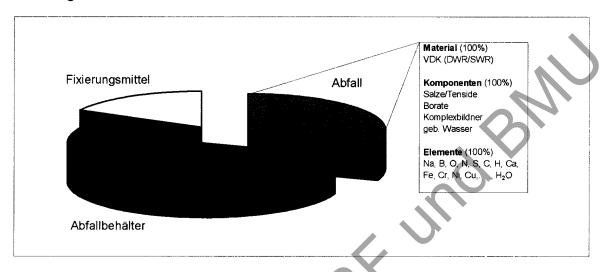



Abb. 6-1: Zwiebelschalenprinzip am Beispiel der Verdampferkonzentrate (VDK) aus Druck- und Siedewasserreaktoren (DWR/SWR)

Am Beispiel der Verdampferkonzentrate (VDK) aus DWR bzw. SWR wurden in der angegebenen Reihenfolge die Materialien und ihre typischen Komponenten und Elementen, zu jeweils 100 % charakterisiert. Wasser ist nicht in die Elemente Wasserstoff und Sauerstoff zerlegt worden, weil damit ein Informationsverlust der verschiedenen Erscheinungsformen des Wassers verbunden wäre.

Für generische Bezeichnungen von Materialien (z. B. "Anionische Tenside") wurden die Auswertungen mit einem repräsentativen Vertreter durchgeführt, in diesem Fall "Dodecylbenzolsulfonat Na-Salz (DDBSA)".

Wie bereits erwähnt, ist die chemische Form der Komponenten im Material generell unterschieden worden nach ihrer anorganischen bzw. organischen Natur und wenn möglich nach zusätzlichen Angaben, und zwar für:

Anorganika: Salz, Oxid, Glas, Legierung, metallisch, mineralisch, elementar, Carbid Salz

Darüber hinaus sind die unterschiedlichen Erscheinungsformen des Wassers im Inventar qualitativ und quantitativ berücksichtigt worden. Es ist zwischen "Kristallwasser" bei Gips, Talkum, Glaubersalz, Borax und Natriummetaborat, "Porenwasser" bei Pulver- und Kugelharzen, PZ-Stein, PZ-Mörtel, Normal- und Hämatitbeton, PZ-Ölschieferstein, "Adsorbiertes Wasser" bei Sand, Kies, Steine, Kieselgur, Glas und Schlacke unterschieden worden. "Gebundenes Wasser" ist bei PZ-Stein, PZ-Mörtel, Normal- und Hämatitbeton, PZ-Ölschieferstein, Knochenleim, Kollagen und VDK berücksichtigt worden. "Hydratwasser" ist für die zellulosehaltigen Materialien Holz, Papier, Baumwolle, Zellulose,

Zellstoff und pflanzliche Abfälle berücksichtigt worden.

Um diese bis ins Detail gehende Charakterisierung zu ermöglichen, wurden von der Fa. Buchheim umfangreiche Literaturrecherchen vorgenommen, Produkt- und Firmeninformationen verwendet, in- und ausländische Fachzeitschriften, Tagungsbände, Standardwerke der chemischen und physikalischen Fachliteratur, der Bau- und Werkstoffkunde sowie DIN-Vorschriften konsultiert und dieses Informationsangebot über einen weiten Zeithorizont ausgewertet. So wurden z. B. für die chemische Charakterisierung von PZ-Mörtel, Normalbeton und Hämatitbeton die folgenden Elemente berücksichtigt: Si, Ca, O, Fe, Al, Mg, S, K, C, Sr, Ti, Ba, Zn, Na, F, Mn, Zr, Co, Ni, Rb, V, Cu, Pb, Ce, Th, Li, La, Bi, Cl, Nd, Sn, Cr, Hf, Tm, Sc, Nb, Sm, Cs, U, Yb, Ho, Eu, Cd, Ag, Tl, Se, Te, Sb, As, Be, B, Hg sowie die Komponenten "Porenwasser" und "Gebundenes Wasser".

Die Charakterisierung erfolgte für das komplette Abfallinventar bis hin zu einzelnen Elementen und kann so für die Prüfung auf Einhaltung der wasserrechtlichen Bestimmungen herangezogen werden. Der so berechnete Datenbestand ermöglicht außerdem die Prüfung auf Vollständigkeit im Rahmen der Qualitätskontrolle.

#### 6.1.4 Materialschichtmodell

Bei der Beschreibung der radioaktiven Abfälle wurden neben einfachen Beschreibungen mit eindeutig zu interpretierenden Begriffen auch Beschreibungen verwendet, welche eine Mischung aus mehreren Materialien beinhalten, z.B. "Mischabfälle". Solche Abfälle enthalten Bestandteile (z.B. Kunststoffe) welche ihrerseits wiederum aus verschiedenen Materialien (z.B. Polyvinylchlorid, Polyethylen usw.) bestehen. Dies kann zu komplizierten Materialabhängigkeiten führen. Zudem stellte sich die Frage, wie die chemische Zusammensetzung eines Materials dargestellt werden soll: enthält der oben betrachtete Mischabfall nun 25 % Kunststoffe oder 15 % Polyvinylchlorid, 5 % Polyethylen und 5 % Polypropylen?

Ferner war bei der Beschreibung des Abfallinventars zu beachten, dass es sich bei den betrachteten Materialien um technische Produkte handelt, die neben den Hauptbestandteilen i. d. Regel z. B. Legierungsbestandteile (nichtrostende Stähle), Spurenelemente (Baustähle, nichtrostende Stähle und zementhaltige Materialien), Verunreinigungen und/oder Additive bzw. (inerte) Füllstoffe (Kunststoffe) bzw. Additive (waschaktive Substanzen - Tenside) enthalten, um ihren technischen Verwendungszweck bei einem wirtschaftlich attraktiven Preis erfüllen zu können.

Das Materialschichtmodell wurde eingeführt, um eine eindeutige Darstellungsweise der Materialien bzw. Abfallbestandteile ohne Informationsverlust zu erreichen, Datenkonsistenz bei den Materialzusammensetzungen und -abhängigkeiten zu gewährleisten und um Inventare einzelner Materialien richtig berechnen und interpretieren zu können.

Abfallbestandteile bzw. Materialien können bis auf die Stufe Elemente zerlegt werden. Elemente gehören in dem hier verwendeten Modell zur Schicht 0. Materialien bzw. Komponenten/Grundsubstanzen, welche nur noch in Elemente zerlegt werden können,

gehören zur Schicht 1. Materialien, welche aus Elementen und mindestens einem Schicht-1-Material aufgebaut sind, gehören zur Schicht 2.

Wasser (H<sub>2</sub>O) wird nicht in die Elemente H und O zerlegt (Sonderfall). H<sub>2</sub>O gehört zur Schicht 0. Wasser mit Zusatzinformationen gehört zur Schicht 1 (d. h. Erscheinungsformen des Wassers wie "Gebundenes Wasser", "Porenwasser", "Adsorbiertes Wasser", "Hydratwasser", "Kristallwasser").

Anhand des Materials "Gips" mit der Schichtzugehörigkeit 2 (Szg 2) soll der Schichtzufbau von Materialien gezeigt werden. In Klammern ist jeweils die Schichtzugehörigkeit des Abfallbestandteils bzw. Materials angegeben. Gips (Szg 2) besteht zu 79,1 % aus CaSO<sub>4</sub> und zu 20,9 % aus Kristallwasser. CaSO<sub>4</sub> lässt sich letztlich in die Elemente O, Ca und S (alle Szg 0) zerlegen.

Das Materialschichtmodell erlaubt, das Inventar jedes in der Schachtanlage Asse vorkommenden Materials vollständig und korrekt wiederzugeben.



## 7 Ergebnisse

Das komplette Abfallinventar wurde vollständig als Materialien, Komponenten (auch Verbindungen) und einzelne chemische Elemente erfasst. Dies erfolgte unabhängig davon, ob diese Stoffe chemotoxisch sind oder nicht, da auch nicht-chemotoxische Stoffe für die Prüfung auf Einhaltung der wasserrechtlichen Bestimmungen herangezogen werden. In diesem Kapitel sind die wesentlichen Ergebnisse dieser Auswertung zusammengestellt.

In den folgenden Tabellen sind die Massenanteile aus allen Einlagerungskammern sowie aus Abfall, Abfallbehälter und Fixierungsmitteln zusammengestellt (Kapitel 7.1). Die Massenanteile aus allen Materialien und die Massenanteile jeweils für Abfall, Abfallbehälter und Fixierungsmittel sind in Kapitel 7.2 zusammengestellt. Die Massen der grundwassergefährdenden Stoffe (Stofffamilien und Stoffgruppen der Liste I und II der Grundwasserverordnung) sind in Kap. 7.3 aufgeführt. Die chemotoxischen Anteile der organischen und anorganischen Materialien sind in Kapitel 7.4 aufgelistet. Die Uran- und Thorium-Anteile, die als Spurenelemente in den zementhaltigen Materialien des Abfallinventars vorkommen, werden ebenfalls dargestellt (Kapitel 7.5).

Die Datenbasis, die der Ermittlung der o. g. Massenanteile zu Grunde lag, sind die von der Fa. Buchheim überprüften und geringfügig geänderten Massenangaben der Materialien (Kapitel 6.1.1 und 6.1.2). Als Ergebnis der detaillierten Überprüfung des gesamten Datenbestandes der eingelagerten Abfallgebinde ist herauszustellen, dass das nunmehr vorliegende Abfallinventar, aufgeschlüsselt nach Materialien, Komponenten und einzelnen Elementen, als das bestmögliche realistische Inventar anzusehen und für die Prüfung auf Einhaltung der wasserrechtlichen Bestimmungen zu Grunde zulegen ist.

### 7.1 Inventarmassen

Die Gesamtmasse des Inventars beträgt 89.024 Mg. In Tabelle 7-1 sind die Massenanteile aus allen Einlagerungskammern zusammengestellt. Der geringste Massenanteil entfällt auf die MAW-Kammer 8a/511m (731 Mg). In die MAW-Kammer wurden ausschließlich 200-Liter-Fässer eingelagert, deren Anteil nur etwa 1 % der eingelagerten Abfallgebinde ausmachen. Der größte Massenanteil entfällt auf die Kammer 2/750mNa2 (15.968 Mg). In diese Kammer wurden Fässer eingelagert, deren Anteil etwa 30 % aller eingelagerten Abfallgebinde entspricht. Die großen Massenanteile in den restlichen Kammern (6/750m, 11/750m, 7/750m) resultieren aus dem relativ hohen Anteil an eingelagerten VBA.

In Tabelle 7-2 sind die Massenanteile jeweils für Abfall, Abfallbehälter und Fixierungsmittel zusammengestellt. 52,5 % der Massenanteile am Inventar entfallen auf die Abfallbehälter (Verpackung). Diese resultieren hauptsächlich aus VBA sowie Fässern, Metallverpackungen und Behälterauskleidungen. Der Anteil der Fixierungsmittel (17,1 %) resultiert hauptsächlich aus der Zementierung der radioaktiven Abfälle. Der restliche Massenanteil von 30,4 % am Inventar entfällt auf die eigentlichen Abfallmaterialien.

Tabelle 7-1: Massenanteile des Inventars aus allen Einlagerungskammern (alle Beiträge)

| ASSE-INVENTAR                 | MASSE IM ASSE-INVENTAR | MASSE IM ASSE-INVENTAR |
|-------------------------------|------------------------|------------------------|
| (Alle Einlagerungskammern)    | [Mg]                   | [%]                    |
| Σ Einl. Kammer 1/750m:        | Σ 4.269                | Σ 4,80                 |
| Σ Einl. Kammer 2/750m:        | Σ 3.564                | Σ 4,00                 |
| Σ Einl. Kammer 2/750mNa2:     | Σ 15.968               | Σ 17,94                |
| Σ Einl. Kammer 4/750m:        | Σ 2.271                | Σ 2,55                 |
| Σ Einl. Kammer 5/750m:        | Σ 7.027                | Σ7,89                  |
| Σ Einl. Kammer 6/750m:        | Σ 15.754               | Σ 17,70                |
| Σ Einl. Kammer 7/725mNa2:     | Σ 3.536                | Σ 3,97                 |
| $\Sigma$ Einl. Kammer 7/750m: | Σ 9.860                | Σ 11,08                |
| Σ Einl. Kammer 8/750m:        | Σ 4.646                | Σ 5,22                 |
| Σ Einl. Kammer 8a/511m:       | Σ 731                  | Σ 0,82                 |
| Σ Einl. Kammer 10/750m:       | Σ 1.855                | Σ 2,08                 |
| Σ Einl. Kammer 11/750m:       | Σ 15.172               | Σ 17,04                |
| Σ Einl. Kammer 12/750m:       | Σ 4.370                | Σ 4,91                 |
| Σ Alle Einlagerungskammern:   | Σ 89.024               | Σ 100,00               |

Tabelle 7-2: Massenanteile des Inventars (Abfall, Abfallbehälter, Fixierungsmittel)

| ASSE-INVENTAR                       | MASSE IM ASSE-INVENTAR | MASSE IM ASSE-INVENTAR |
|-------------------------------------|------------------------|------------------------|
| (Alle Beiträge)                     | [Mg]                   | [%]                    |
| Abfall                              | 27.086                 | 30,4                   |
| Abfallbehälter                      | 46.728                 | 52,5                   |
| Fixierungsmittel                    | 15.210                 | 17,1                   |
| $\Sigma$ Massenanteile im Inventar: | Σ 89.024               | Σ 100,0                |

## 7.2 Massen der Materialien

Die Erfassung und Auswertung des gesamten Abfallinventars der Schachtanlage Asse führt in Bezug auf das durch Abfall, Abfallbehälter und Fixierungsmittel zusammengesetzte Inventar zu folgenden Ergebnissen:

Zu den häufigsten Massenanteilen aus allen Materialien (Tabelle 7-3), d. h. der Gesamtmasse der eingelagerten Abfallgebinde in der Schachtanlage Asse bestehend aus Abfall, Abfallbehältern und Fixierungsmitteln, tragen bei mit ca. 64,4 % die zementhaltigen Materialien (Normalbeton, PZ-Stein, Hämatitbeton, PZ-Mörtel, PZ-Ölschieferstein), mit ca. 21,5 % FE-Metalle/Stahl (Baustähle und nichtrostende Stähle), mit ca. 5,4 % zellulosehaltige Materialien (Papier, Holz, Baumwolle, Zellstoff, Zellulose, pflanzliche Abfälle), weiterhin Kunststoffe, nicht näher spezifizierte NE-Metalle, der Salzanteil (Trockensubstanz) der VDK

etc. Im ANHANG B.1 sind die Massen der einzelnen Stoffuntergruppen des Gesamtinventars aufgelistet. Im Folgenden werden die Stoffgruppen ähnlicher Materialien (z. B. zementhaltige Materialien, zellulosehaltige Materialien, Kunststoffe) der besseren Übersicht wegen zusammenfassend betrachtet.

Tabelle 7-3: Massenanteile der Materialien - alle Beiträge

| Alle Materialien (Auswahl) [Mg] [%]  Zementhaltige Materialien 57.350 64.42  FE-Metalle / Stahl 19.179 21,34  Zellulosehaltige Materialien 4.779 5.37  Kunststoffe 1.593 1.79  NE-Metalle (nicht näher spezifizien) 1.068 1.20  VDK Salz TS 1.063 1.19  Geräteglas 792 0,89  Sand/Kies/Steine 433 0,49  Mineralwolle 321 0,36  Kieselgur 316 0,35  Bitumen 305 0,34  Wasser 271 0,30  Salzkonzentrat TS 2.19 0,25  Salzkonzentrat TS 2.11 0,24  Pulverharze 160 0,18  Tort/Aktivkohle 147 0,16  Asche 145 0,16  Aluminium 100 0,11  Asbest 77 0,09  Grafit 63 0,07  Ol 51 0,06  Chelate/Komplexbildner 40 0,04  Erdreich 39 0,03  Kugellharze 36 0,04  Kugellharze 37 0,03  Salze FIM TS 29 0,03  Kupfer 20 0,03  Salze TS 17 0,002  Zink 14 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                        |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|------------------------|
| Zementhaltige Materialien         57.350         64,42           FE-Metalle / Stahl         19.179         21,54           Zellulosehaltige Materialien         4.779         \$,37           Kunststoffe         1.593         1,79           NE-Metalle (nicht näher spezifiziert)         1.068         1,20           VDK Salz TS         1.063         1,19           Geräteglas         792         0,89           Sand/Kies/Steine         433         0,49           Mineralwolle         321         0,36           Kieselgur         316         0,33           Bitumen         305         0,34           Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsauer/Borate TS         211         0,24           Pulverharze         160         0,18           Tort/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Ol         51         0,06           Chelate/Komplexbilcher         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASSE-INVENTAR                         | MASSE IM ASSE-INVENTAR | MASSE IM ASSE-INVENTAR |
| FE-Metalle   Stahl   19.179   21,54   Zellulosehaltige Materialien   4.779   5,37   Kunststoffe   1.593   1,79   NE-Metalle (nicht näher spezifiziert)   1.068   1,20   VDK Salz TS   1.063   1,19   Geräteglas   792   0,89   Sand/Kies/Steine   433   0,49   Mineralwolle   321   0,36   Kieselgur   316   0,35   Bitumen   305   0,34   Wasser   271   0,30   Salzkonzentrat TS   219   0,25   Borsäure/Borate TS   211   0,24   Pulverharze   160   0,18   Tort/Aktivkohle   147   0,16   Asche   145   0,16   Aluminium   100   0,11   Asbest   77   0,09   Grafit   63   0,07   Ol   51   0,06   Chelate/Komplexbildner   40   0,04   Erdreich   39   0,04   Kügelharze   36   0,04   Kügelharze   36   0,04   Kürelharze   36   0,04   Kügelharze   36   0,04   Kürelharze   37   0,03   TBP/Kerosin   22   0,03   TBP/Kerosin   22   0,03   Küreler   20   0,02   Salze TS   17   0,02   Zink   14   0,02   Zink   14   0,02   Zink   2   Zink   Zink   2   Zink   Zink   2   Zink   2   Zink   2   Zink   2   Zink   2   Zink   Z | Alle Materialien (Auswahl)            | [Mg]                   | [%]                    |
| Zellulosehaltige Materialien         4.779         \$,37           Kunstatoffe         1.593         1,79           NE-Metalle (nicht näher spezifiziert)         1.068         1,20           VDK Salz TS         1.063         1,19           Geräteglas         792         0,89           Sand/Kies/Steine         433         0,49           Mineralwolle         321         0,36           Kieselgur         316         0,35           Bitumen         305         0,34           Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsaure/Borate TS         211         0,24           Pulverharze         160         0,18           Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Ol         51         0,06           Chelate/Komplexbildner         40         0,04           Kürgelharze         36         0,04           Ziroalov 2         36         0,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zementhaltige Materialien             | 57.350                 | 64,42                  |
| Kunststoffe         1.593         1,79           NE-Metalle (nicht näher spezifiziert)         1.068         1,20           VDK Salz TS         1.063         1,19           Geräteglas         792         0,89           Sand/Kies/Steine         433         0,49           Mineralwolle         321         0,36           Kieselgur         316         0,35           Bitumen         305         0,34           Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsäure/Borate TS         211         0,24           Pulverharze         160         0,18           Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           OI         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Korrosionsprodukte         31         0,03 <t< td=""><td>FE-Metalle / Stahl</td><td>19.179</td><td>21,54</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FE-Metalle / Stahl                    | 19.179                 | 21,54                  |
| NE-Metalle (nicht näher spezifiziert)         1.068         1,20           VDK Salz TS         1.063         1,19           Geräteglas         792         0,89           Sand/Kies/Steine         433         0,49           Mineralwolle         321         0,36           Kieselgur         316         0,35           Bitumen         305         0,34           Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsäure/Borate TS         211         0,24           Pulverharze         160         0,18           Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Öl         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zellulosehaltige Materialien          | 4.779                  | 5,37                   |
| VDK Salz TS         1.063         1,19           Geräteglas         792         0,89           Sand/Kies/Steine         433         0,49           Mineralwolle         321         0,36           Kieselgur         316         0,35           Bitumen         305         0,34           Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsäure/Borate TS         211         0,24           Pulverharze         160         0,18           Tort/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           OI         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kunststoffe                           | 1.593                  | 1,79                   |
| Geräteglas         792         0,89           Sand/Kies/Steine         433         0,49           Mineralwolle         321         0,36           Kieselgur         346         0,35           Bitumen         305         0,34           Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsäure/Borate TS         211         0,24           Pulverharze         160         0,18           Tort/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Ol         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22 <td>NE-Metalle (nicht näher spezifiziert)</td> <td>1.068</td> <td>1,20</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NE-Metalle (nicht näher spezifiziert) | 1.068                  | 1,20                   |
| Sand/Kies/Steine         433         0,49           Mineralwolle         321         0,36           Kieselgur         316         0,35           Bitumen         305         0,34           Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsäure/Borate TS         211         0,24           Pulverharze         160         0,18           Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Ol         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zirealoy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VDK Salz TS                           | 1.063                  | 1,19                   |
| Mineralwolle       321       0,36         Kieselgur       346       0,35         Bitumen       305       0,34         Wasser       271       0,30         Salzkonzentrat TS       219       0,25         Borsäure/Borate TS       211       0,24         Pulverharze       160       0,18         Torf/Aktivkohle       147       0,16         Asche       145       0,16         Aluminium       100       0,11         Asbest       77       0,09         Grafit       63       0,07         Ol       51       0,06         Chelate/Komplexbildner       40       0,04         Erdreich       39       0,04         Kugelharze       36       0,04         Zircaloy 2       36       0,04         Korrosionsprodukte       31       0,03         Vermiculit       29       0,03         Salze FHM TS       29       0,03         TBP/Kerosin       22       0,03         Kupfer       20       0,02         Salze TS       17       0,02         Zink       14       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Geräteglas                            | 792                    | 0,89                   |
| Kieselgur       346       0,35         Bitumen       305       0,34         Wasser       271       0,30         Salzkonzentrat TS       219       0,25         Borsäure/Borate TS       211       0,24         Pulverharze       160       0,18         Torf/Aktivkohle       147       0,16         Asche       145       0,16         Aluminium       100       0,11         Asbest       77       0,09         Grafit       63       0,07         Öl       51       0,06         Chelate/Komplexbildner       40       0,04         Erdreich       39       0,04         Kugelharze       36       0,04         Ziroaloy 2       36       0,04         Korrosionsprodukte       31       0,03         Vermiculit       29       0,03         Salze FHM TS       29       0,03         TBP/Kerosin       22       0,03         Kupfer       20       0,02         Zink       14       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sand/Kies/Steine                      | 433                    | 0,49                   |
| Bitumen         305         0,34           Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsäure/Borate TS         211         0,24           Pulverharze         160         0,18           Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Öl         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mineralwolle                          | 321                    | 0,36                   |
| Wasser         271         0,30           Salzkonzentrat TS         219         0,25           Borsäure/Borate TS         211         0,24           Pulverharze         160         0,18           Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Öl         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kieselgur                             | 316                    | 0,35                   |
| Salzkonzentrat TS         219         0,25           Borsäure/Borate TS         211         0,24           Pulverharze         160         0,18           Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Öl         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bitumen                               | 305                    | 0,34                   |
| Borsäure/Borate TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wasser                                | 271                    | 0,30                   |
| Pulverharze         160         0,18           Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Öl         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Salzkonzentrat TS                     | 219                    | 0,25                   |
| Torf/Aktivkohle         147         0,16           Asche         145         0,16           Aluminium         100         0,11           Asbest         77         0,09           Grafit         63         0,07           Öl         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borsäure/Borate TS                    | 211                    | 0,24                   |
| Asche       145       0,16         Aluminium       100       0,11         Asbest       77       0,09         Grafit       63       0,07         Öl       51       0,06         Chelate/Komplexbildner       40       0,04         Erdreich       39       0,04         Kugelharze       36       0,04         Zircaloy 2       36       0,04         Korrosionsprodukte       31       0,03         Vermiculit       29       0,03         Salze FHM TS       29       0,03         TBP/Kerosin       22       0,03         Kupfer       20       0,02         Salze TS       17       0,02         Zink       14       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pulverharze                           | 160                    | 0,18                   |
| Aluminium       100       0,11         Asbest       77       0,09         Grafit       63       0,07         Öl       51       0,06         Chelate/Komplexbildner       40       0,04         Erdreich       39       0,04         Kugelharze       36       0,04         Zircaloy 2       36       0,04         Korrosionsprodukte       31       0,03         Vermiculit       29       0,03         Salze FHM TS       29       0,03         TBP/Kerosin       22       0,03         Kupfer       20       0,02         Salze TS       17       0,02         Zink       14       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Torf/Aktivkohle                       | 147                    | 0,16                   |
| Asbest       77       0,09         Grafit       63       0,07         Öl       51       0,06         Chelate/Komplexbildner       40       0,04         Erdreich       39       0,04         Kugelharze       36       0,04         Zircaloy 2       36       0,04         Korrosionsprodukte       31       0,03         Vermiculit       29       0,03         Salze FHM TS       29       0,03         TBP/Kerosin       22       0,03         Kupfer       20       0,02         Salze TS       17       0,02         Zink       14       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Asche                                 | 145                    | 0,16                   |
| Grafit         63         0,07           Öl         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aluminium                             | 100                    | 0,11                   |
| Öl         51         0,06           Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Asbest                                | 77                     | 0,09                   |
| Chelate/Komplexbildner         40         0,04           Erdreich         39         0,04           Kugelharze         36         0,04           Zircaloy 2         36         0,04           Korrosionsprodukte         31         0,03           Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grafit                                | 63                     | 0,07                   |
| Erdreich       39       0,04         Kugelharze       36       0,04         Zircaloy 2       36       0,04         Korrosionsprodukte       31       0,03         Vermiculit       29       0,03         Salze FHM TS       29       0,03         TBP/Kerosin       22       0,03         Kupfer       20       0,02         Salze TS       17       0,02         Zink       14       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Öl                                    | 51                     | 0,06                   |
| Kugelharze       36       0,04         Zircaloy 2       36       0,04         Korrosionsprodukte       31       0,03         Vermiculit       29       0,03         Salze FHM TS       29       0,03         TBP/Kerosin       22       0,03         Kupfer       20       0,02         Salze TS       17       0,02         Zink       14       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chelate/Komplexbildner                | 40                     | 0,04                   |
| Zircaloy 2     36     0,04       Korrosionsprodukte     31     0,03       Vermiculit     29     0,03       Salze FHM TS     29     0,03       TBP/Kerosin     22     0,03       Kupfer     20     0,02       Salze TS     17     0,02       Zink     14     0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Erdreich                              | 39                     | 0,04                   |
| Korrosionsprodukte       31       0,03         Vermiculit       29       0,03         Salze FHM TS       29       0,03         TBP/Kerosin       22       0,03         Kupfer       20       0,02         Salze TS       17       0,02         Zink       14       0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kugelharze                            | 36                     | 0,04                   |
| Vermiculit         29         0,03           Salze FHM TS         29         0,03           TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zircaloy 2                            | 36                     | 0,04                   |
| Salze FHM TS     29     0,03       TBP/Kerosin     22     0,03       Kupfer     20     0,02       Salze TS     17     0,02       Zink     14     0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Korrosionsprodukte                    | 31                     | 0,03                   |
| TBP/Kerosin         22         0,03           Kupfer         20         0,02           Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vermiculit                            | 29                     | 0,03                   |
| Kupfer     20     0,02       Salze TS     17     0,02       Zink     14     0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Salze FHM TS                          | 29                     | 0,03                   |
| Salze TS         17         0,02           Zink         14         0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TBP/Kerosin                           | 22                     | 0,03                   |
| Zink 14 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kupfer                                | 20                     | 0,02                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Salze TS                              | 17                     | 0,02                   |
| Gipsstein 14 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zink                                  | 14                     | 0,02                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gipsstein                             | 14                     | 0,02                   |

| ASSE-INVENTAR                  | MASSE IM ASSE-INVENTAR | MASSE IM ASSE-INVENTAR |
|--------------------------------|------------------------|------------------------|
| Alle Materialien (Auswahl)     | [Mg]                   | [%]                    |
| Blei                           | 13                     | 0,01                   |
| BTEX/Lösemittel                | 9                      | 0,01                   |
| Ziegel                         | 8                      | 0,01                   |
| Erde                           | 5                      | 0,01                   |
| Σ o.g. Materialien:            | Σ 89.005               | Σ 99,98                |
| Σ Restliche Materialien:       | Σ 19                   | Σ 0,02                 |
| Σ Massenanteile des Inventars: | Σ 89.024               | Σ 100,0                |

Im Folgenden wird auf die einzelnen Bestandteile von Abfall, Abfallbehälter und Fixierungsmittel eingegangen. Dem ANHANG B.2 können die Massen der einzelnen Stoffuntergruppen entnommen werden, geordnet nach Abfall, Abfallbehälter und Fixierungsmittel.

Zu den häufigsten Massen von Materialien im Abfall (Tabelle 7-4) gehören vor allem FE-Metalle/Stahl (Baustähle und nichtrostende Stähle), zellulosehaltige Materialien (Papier, Holz, Baumwolle, Zellstoff, Zellulose, pflanzliche Abfälle), zementhaltige Materialien (Normal- und Hämatitbeton, PZ-Stein), Kunststoffe (nicht näher spezifizierte Kunststoffe sowie PVC, Gummi, Polyethylen, Silikonkautschuk), nicht näher spezifizierte NE-Metalle, Salzanteile der VDK berechnet als Trockensubstanz (TS), Geräteglas und in geringerem Umfang Sand/Kies/Steine, Mineralwolle, Kieselgur, Salzkonzentrat TS, Borsäure/Borate TS, Pulverharze, Asche, Aluminium etc. Die Feststoffanteile der Salze werden differenziert hinsichtlich der Abfallmaterialien: VDK Salz TS stammen aus Verdampferkonzentraten, Salzkonzentrat TS aus Schlämmen, Salze FHM TS aus Filterhilfsmitteln/Filterrückständen, Salze TS aus Fällschlämmen und weiter aus Misch- und Laborabfällen, Bauschutt etc. Bei den 271 Mg Wasser handelt es sich hauptsächlich um gebundenes Wasser der v. g. Feststoffanteile der Salze und adsorbiertes Wasser.

Zu den häufigsten Massen der Abfallbehälter (Tabelle 7-5) zählen zementhaltige Materialien (Normal- und Hämatitbeton insbesondere der VBA sowie PZ-Stein bei der "Fass-in-Fass"- Verpackung zwischen Außen- und Innenfass bzw. für den Ringraum zwischen VBA und eingestelltem Abfallgebinde), FE-Metalle/Stahl (Baustahl der Blechtrommeln, der Rollreifenund Rollsickenfässer, Armierungsstahl für die VBA in Normalbeton- und Hämatitbeton-Ausführung, Gussabschirmungen), Kunststoffe (Kunstharzbeschichtung und EPDM-Dichtung der Abfallbehälter), Zink (Verzinkung der Behälter aus Baustahl) sowie die bei einigen Behältern verwendete Bleiabschirmung (beispielsweise für umschlossene Strahlenquellen).

Als Fixierungsmittel (Tabelle 7-6) für die radioaktiven Abfälle dienten im Wesentlichen zementhaltige Materialien (PZ-Mörtel, PZ-Stein, PZ-Ölschieferstein), in geringem Umfang Bitumen, Torf/Aktivkohle, Kunststoffe (Polystyrol, PVC), Vermiculit, Gipsstein, Kieselgur und Knochenleim.

Tabelle 7-4: Massenanteile der Materialien im Abfall

| ASSE-INVENTAR                         | MASSE IM ASSE-INVENTAR | MASSE IM ASSE-INVENTAR |
|---------------------------------------|------------------------|------------------------|
| Materialien im Abfall (Auswahl)       | [Mg]                   | [%]                    |
| FE-Metalle / Stahl                    | 13.126                 | 14,74                  |
| Zellulosehaltige Materialien          | 4.779                  | 5,37                   |
| Zementhaltige Materialien             | 2.083                  | 2,34                   |
| Kunststoffe                           | 1.472                  | 1,65                   |
| NE-Metalle (nicht näher spezifiziert) | 1.068                  | 1,20                   |
| VDK Salz TS                           | 1.063                  | 1,19                   |
| Geräteglas                            | 792                    | 0,89                   |
| Sand/Kies/Steine                      | 433                    | 0,49                   |
| Mineralwolle                          | 321                    | 0,36                   |
| Kieselgur                             | 310                    | 0,35                   |
| Salzkonzentrat TS                     | 219                    | 0,25                   |
| Borsäure/Borate TS                    | 211                    | 0,24                   |
| Pulverharze                           | 160                    | 0,18                   |
| Asche                                 | 145                    | 0,16                   |
| Aluminium                             | 100                    | 0,11                   |
| Asbest                                | 77                     | 0,09                   |
| Grafit                                | 63                     | 0,07                   |
| Öl                                    | 51                     | 0,06                   |
| Chelate/Komplexbildner                | 40                     | 0,04                   |
| Erdreich                              | 39                     | 0,04                   |
| Kugelharze                            | 36                     | 0,04                   |
| Zircaloy 2                            | 36                     | 0,04                   |
| Korrosionsprodukte                    | 31                     | 0,03                   |
| Salze FHM TS                          | 29                     | 0,03                   |
| TBP/Kerosin                           | 22                     | 0,03                   |
| Kupfer                                | 20                     | 0,02                   |
| Salze TS                              | 17                     | 0,02                   |
| Aktivkohle                            | 16                     | 0,02                   |
| Blei                                  | 11                     | 0,01                   |
| BTEX/Lösungsmittel                    | 9                      | 0,01                   |
| Ziegel                                | 8                      | 0,01                   |
| Erde                                  | 5                      | 0,006                  |
| Bitumen                               | 4                      | 0,005                  |
| $\Sigma$ o.g. Abfälle:                | Σ 27.068               | Σ 30,41                |
| Σ Restliche Abfälle:                  | Σ 18                   | Σ 0,02                 |
| Σ Massenanteile Abfälle:              | Σ 27.086               | Σ 30,43                |
| $\Sigma$ Massenanteile des Inventars: | Σ 89.024               | Σ 100,0                |

Tabelle 7-5: Massenanteile der Materialien im Abfallbehälter

| ASSE-INVENTAR                   | MASSE IM ASSE-INVENTAR | MASSE IM ASSE-INVENTAR |
|---------------------------------|------------------------|------------------------|
| Materialien im Abfallbehälter   | [Mg]                   | [%]                    |
| Zementhaltige Materialien       | 40.605                 | 45,61                  |
| FE-Metalle / Stahl              | 6.052                  | 6,80                   |
| Kunststoffe                     | 55                     | 0,06                   |
| Zink                            | 14                     | 0,02                   |
| Blei                            | 2                      | 0,002                  |
| Σ Massenanteile Abfallbehälter: | Σ 46.728               | Σ 52,49                |
| Σ Massenanteile des Inventars:  | Σ 89.024               | Σ 100,0                |

Tabelle 7-6: Massenanteile der Materialien im Fixierungsmittel

| ASSE-INVENTAR                     | MASSE IM ASSE-INVENTAR | MASSE IM ASSE-INVENTAR |
|-----------------------------------|------------------------|------------------------|
| Materialien im Fixierungsmittel:  | [Mg]                   | [%]                    |
| Zementhaltige Materialien         | 14.663                 | 16,47                  |
| Bitumen                           | 300                    | 0,34                   |
| Torf/Aktivkohle                   | 131                    | 0,15                   |
| Kunststoffe                       | 65                     | 0,07                   |
| Vermiculit                        | 29                     | 0,03                   |
| Gipsstein                         | 14                     | 0,02                   |
| Kieselgur                         | 6                      | 0,01                   |
| Knochenleim                       | 1                      | 0,002                  |
| Σ Massenanteile Fixierungsmittel: | Σ 15.210               | Σ 17,09                |
| Σ Massenanteile des Inventars:    | Σ 89.024               | Σ 100,0                |

## 7.3 Massen der grundwassergefährdenden Stoffe

Die in den Listen I und II Grundwasserverordnung [8] genannten Stofffamilien und Stoffgruppen (siehe Kap. 5.1), die zu einer schädlichen Verunreinigung des Grundwassers oder zu einer sonstigen nachteiligen Veränderung seiner Eigenschaften führen können, werden für die Prüfung auf Einhaltung der wasserrechtlichen Bestimmungen herangezogen. In Tabelle 7-7 sind die Stoffe der jeweiligen Stofffamilien und Stoffgruppen zusammengestellt. Dabei ist im Hinblick auf die Prüfung auf Einhaltung der wasserrechtlichen Bestimmungen und Schutzziele die Umrechnung in die wasserrechtlich relevante Erscheinungsform (Parameter) berücksichtigt.

Organische Bromverbindungen (Liste I, lfd. Nr. 1) und organische Zinnverbindungen (Liste I, lfd. Nr. 3) sind im Abfallinventar nicht vorhanden.

Entsprechen die wasserrechtlich relevanten Stoffe (Parameter) den Komponenten bzw. Elementen, z. B. Liste I, lfd. Nr. 4, sind die Massenangaben mit denen im ANHANG B.3. (Komponenteninventar) bzw. ANHANG B.4. (Elementeninventar) identisch.

Werden die wasserrechtlich relevanten Stoffe (Parameter in Form von Elementen) aus den Komponenten rechnerisch ermittelt, entsprechen die Summen der Massen der ausgewiesenen Parameter denen im ANHANG B.4. (Elementeninventar), z. B. CL der organischen Chlorverbindungen (Liste I, lfd. Nr. 1).

Die Genauigkeit der Massenangaben mit 5 Stellen nach dem Komma in Tabelle 7-7 dienen vornehmlich der Qualitätskontrolle und der Vergleichbarkeit der Angaben in den Anhängen. Die Bandbreite des Inventars mit seinen Materialien, Komponenten und Elementen wird in Kap. 8 dargestellt.

Tabelle 7-7: Massenanteile der grundwassergefährdenden Stoffe

| ASSE-INVENTAR<br>GRUNDWASSER-<br>GEFÄHRDENDE<br>STOFFE | KOMPONENTE                                  | PARAMETER         | MASSE<br>PARAMETER<br>[kg] |
|--------------------------------------------------------|---------------------------------------------|-------------------|----------------------------|
| Liste I, lfd. Nr. 1                                    |                                             |                   |                            |
| Organische Halogenverbi                                | ndungen und Stoffe, die im Wasser derartige | Verbindungen bild | en können                  |
| Org. Bromverbindungen                                  | Org. Bromverbindungen                       | Br                | 0,00000                    |
| Org. Chlorverbindungen                                 | DICHLORMETHAN CH2CL2                        | C1                | 735,36349                  |
|                                                        | DODECYL.DIM.B.AM.CL                         | C1                | 0,67796                    |
|                                                        | NEOPREN [C4H5CL]                            | C1                | 13.642,17075               |
|                                                        | PUR                                         | C1                | 1.269,08261                |
|                                                        | PVC                                         | C1                | 171.051,89105              |
|                                                        | TRICHLORETHAN                               | C1                | 215,26216                  |
|                                                        | Summe                                       |                   | 186.914,44802              |
| Org. Jodverbindungen                                   | TIERKOERPER TS                              | I                 | 5,38E-05                   |

| A COL THURSTEAD           | T                                             | T                 | <u> </u>            |
|---------------------------|-----------------------------------------------|-------------------|---------------------|
| ASSE-INVENTAR             |                                               |                   | MASSE               |
| GRUNDWASSER-              | KOMPONENTE                                    | PARAMETER         | PARAMETER           |
| GEFÄHRDENDE<br>STOFFE     |                                               |                   | [kg]                |
| Liste I, lfd. Nr. 2       |                                               |                   |                     |
| Organische Phosphorver    | hindungen                                     |                   |                     |
| Organisene i nespiter (e. | DIBUTYLPHOSPHAT                               | PO4               | 51,26804            |
|                           | HEDP-NA                                       | PO4               | 324,58601           |
|                           | MONOBUTYLPHOSPHAT                             | PO4               | 69,93406            |
|                           | MONOSTEARYLPHOSPHAT                           | PO4               | 404,75961           |
|                           | TRIBUTYLPHOSPHAT                              | PO4               | 2.566,16581         |
|                           | Summe                                         | 101               | 3.416,71354         |
| Liste I, lfd. Nr. 3       | Samino                                        |                   |                     |
| Organische Zinnverbind    | ungen                                         |                   |                     |
|                           | Org. Zinnverbindungen                         | Sn                | 0,00000             |
| Liste I, lfd. Nr. 4       |                                               |                   |                     |
|                           | n Wasser krebserregende, mutagene oder terate | ogene Wirkung hab | en [16, 17, 18, 19, |
| 20, 21]                   |                                               |                   |                     |
|                           | DIBUTYLPHOSPHAT                               |                   | 113,47572           |
|                           | TOLUOL (C6H5CH3)                              | $\rightarrow$     | 880,83386           |
|                           | TRIBUTYLPHOSPHAT                              | <b>→</b>          | 7.195,91924         |
|                           | XYLOL                                         | $\rightarrow$     | 433,37026           |
|                           | AG                                            | <b>→</b>          | 437,96334           |
|                           | AS                                            | <b>→</b>          | 496,39074           |
|                           | AU                                            | <b>→</b>          | 2,69E-05            |
|                           | В                                             | <b>→</b>          | 49.984,39523        |
|                           | BA                                            | <b>→</b>          | 54.329,13586        |
|                           | BE                                            | <b>→</b>          | 11,40454            |
|                           | CD                                            | <b>→</b>          | 54,32567            |
|                           | co                                            | <b>→</b>          | 4.103,94475         |
|                           | CR                                            | <b>→</b>          | 25.756,03528        |
|                           | CS                                            | <b>→</b>          | 195,32310           |
|                           | CU                                            | →                 | 856.808,77571       |
|                           | FE                                            | <b>→</b>          | 24.305.309,17711    |
|                           | HG                                            | $\rightarrow$     | 1,12019             |
|                           | L                                             | <b>→</b>          | 2.886,96202         |
|                           | MN                                            | <b>-</b> →        | 72.194,96286        |
|                           | MO                                            | $\rightarrow$     | 887,60276           |
|                           | NI                                            | $\rightarrow$     | 22.214,06799        |
|                           | PB                                            | <b>→</b>          | 14.771,84964        |
| 10                        | RB                                            | <b>→</b>          | 3.580,92455         |
|                           | SB                                            | <b>→</b>          | 1.371,85914         |
|                           | SE                                            | $\rightarrow$     | 2,44791             |
|                           | SR                                            | <b> </b> →        | 40.726,58419        |
|                           | TE                                            | <b>→</b>          | 1,62769             |
|                           | TL                                            | <b>→</b>          | 3,26707             |
|                           | V                                             | $\rightarrow$     | 1.039,96897         |
|                           | ZN                                            | <b>→</b>          | 232.293,36893       |
|                           | Summe                                         | <b>→</b>          | 25.698.087,08434    |
| Liste I, lfd. Nr. 5       |                                               |                   |                     |
| Quecksilber und Quecks    | silberverbindungen                            |                   |                     |
|                           | PORTLANDZEMENTSTEIN                           | Hg                | 0,51279             |
|                           | PORTL.ZEMENTMOERTEL                           | Hg                | 0,20200             |
|                           | NORMALBETON                                   | Hg                | 0,19835             |
|                           | KUNSTSTOFFE                                   | Hg                | 0,07705             |

|                           |                          | ·             |               |
|---------------------------|--------------------------|---------------|---------------|
| ASSE-INVENTAR             |                          |               | MASSE         |
| GRUNDWASSER-              | KOMPONENTE               | PARAMETER     | PARAMETER     |
| GEFÄHRDENDE               | ROWN ONLIVIE             | TARGEVILLIER  | [kg]          |
| STOFFE                    |                          |               | [Kg]          |
|                           | PVC (WEICH)              | Hg            | 0,06456       |
|                           | HAEMATITBETON            | Hg            | 0,05744       |
|                           | PZ-OELSCHIEFERSTEIN      | Hg            | 0,00720       |
|                           | CHEMIEGIPS TS            | Hg            | 0,00069       |
|                           | SALZKONZENTRAT TS        | Hg            | 0,00010       |
|                           | Summe                    | ""            | 1,12019       |
| Liste I, lfd. Nr. 6       | Summe                    |               | 1,12013       |
| Cadmium und Cadmium       | workindungen             |               |               |
| Cadillulli und Cadillulli |                          |               | 1715055       |
|                           | VDK I SALZ TS            | Cd            | 17,16056      |
|                           | ZINK                     | Cd            | 15,73211      |
|                           | VDK KFA SALZ TS          | Cd            | 6,42051       |
|                           | PULVERHARZ TS            | Cd            | 4,37218       |
|                           | PORTLANDZEMENTSTEIN      | Cd            | 3,41862       |
|                           | VDK F SALZ TS            | Cd            | 1,43295       |
| •                         | PORTL.ZEMENTMOERTEL      | Cd            | 1,34666       |
|                           | NORMALBETON              | Cd            | 1,32235       |
|                           | KUGELHARZ TS             | Cd            | 0,84748       |
|                           | VDK U SALZ TS            | Cd            | 0,73848       |
|                           | HAEMATITBETON            | Cd            | 0,38293       |
|                           | SALZE KFA TS             |               | 1 '           |
|                           | KUNSTSTOFFE              | Cd            | 0,34249       |
|                           | PVC (WEICH)              | Cd            | 0,33499       |
|                           | BITUMEN                  | Cd            | 0,28070       |
|                           | SALZKONZENTRAT TS        | Cd            | 0,06092       |
|                           |                          | Cd            | 0,05722       |
|                           | PZ-OELSCHIEFERSTEIN      | Cd            | 0,05189       |
|                           | ZIRCALOY 2               | Cd            | 0,01791       |
|                           | CHEMIEGIPS TS            | Cd            | 0,00415       |
|                           | TORF TS                  | Cd            | 0,00039       |
|                           | TIERKOERPER TS           | Cd            | 0,00019       |
|                           | Summe                    | l Cu          | 54,32567      |
| Liste I, lfd. Nr. 7       |                          |               | 34,32307      |
| Mineralöle und Kohlenw    | vasserstoffe [13]        |               |               |
| Willierarote und Romenw   |                          |               | 52 577 70620  |
|                           | OEL (C10H22)<br>PARAFFIN | <b>→</b>      | 52.577,70629  |
|                           | N .                      | $\rightarrow$ | 1.951,18759   |
|                           | Summe                    |               | 54.528,89389  |
| Liste I, lfd. Nr. 8       |                          |               |               |
| Cyanide                   |                          |               |               |
|                           | FE4[FE(CN)6]3            | <b>→</b>      | 1.049,41554   |
| Liste II, lfd. Nr. 1      |                          |               |               |
| Metalle, Metalloide und   | ihre Verbindungen        |               |               |
| V                         | AG                       | $\rightarrow$ | 437,96334     |
|                           | AS                       | <b>→</b>      | 496,39074     |
|                           | В                        | $\rightarrow$ | 49.984,39523  |
|                           | BA                       | <b> </b> →    | 54.329,13586  |
|                           | BE                       |               | 11,40454      |
|                           | CO                       |               | 4.103,94475   |
|                           | 1                        | <b> </b> →    | · ·           |
|                           | CR                       | _ <del></del> | 25.756,03528  |
|                           | CU                       | <b>→</b>      | 856.808,77571 |
|                           | MO                       | <b>→</b>      | 887,60276     |
|                           | NI                       | <b>→</b>      | 22.214,06799  |
|                           | PB                       | <u>→</u>      | 14.771,84964  |

|                                         | 1                                            | l .             | I                |
|-----------------------------------------|----------------------------------------------|-----------------|------------------|
| ASSE-INVENTAR                           |                                              |                 | MASSE            |
| GRUNDWASSER-                            | KOMPONENTE                                   | PARAMETER       | PARAMETER        |
| GEFÄHRDENDE                             |                                              |                 | [kg]             |
| STOFFE                                  |                                              |                 |                  |
|                                         | SB                                           | <del>&gt;</del> | 1.371,85914      |
|                                         | SE                                           | $\rightarrow$   | 2,44791          |
|                                         | SN                                           | <b>→</b>        | 9.828,69205      |
|                                         | TE                                           | →               | 1,62769          |
|                                         | TI                                           | <b>→</b>        | 37.761,01699     |
|                                         | TL                                           | $\rightarrow$   | 3,26707          |
|                                         | U                                            |                 | 67,05166         |
|                                         | v                                            |                 | 1.039,96897      |
|                                         | ZN                                           |                 | 232.293,36893    |
|                                         |                                              | $\rightarrow$   |                  |
|                                         | Summe                                        | İ               | 1.312.170,86625  |
| Liste II, lfd. Nr. 2                    |                                              |                 |                  |
| Biozide                                 |                                              |                 |                  |
|                                         | PHB-METHYLESTER                              | $\rightarrow$   | 116,96732        |
| Liste II, lfd. Nr. 3                    |                                              |                 |                  |
|                                         | ck oder Geruch von Wasser beeinträchtigen [1 | 6, 221          |                  |
|                                         | OEL (C10H22)                                 | ,,,,,           | 52.577,70629     |
|                                         | DODECAN C12H26                               |                 | 15.776,76952     |
|                                         |                                              |                 |                  |
|                                         | CACO3                                        | CO3             | 512.522,33816    |
|                                         | MGCO3                                        | CO3             | 99,25914         |
|                                         | BASO4                                        | SO4             | 17.243,61818     |
|                                         | CASO4                                        | SO4             | 535.925,60848    |
|                                         | NA2SO4                                       | SO4             | 56.300,59251     |
|                                         | SULFAMINSAEURE                               | SO4             | 4,97177          |
|                                         | SO4                                          | <b>→</b>        | 7.113,61437      |
|                                         | SO3                                          | SO4             | 1.227,60365      |
|                                         | AL                                           | <b>→</b>        | 1.766.293,79815  |
|                                         | CA                                           | →               | 7.825.393,39092  |
|                                         | CL                                           |                 | 223.578,70590    |
|                                         | CU                                           |                 | 856.808,77571    |
|                                         |                                              | <b>→</b>        | •                |
|                                         | FE                                           | <b>→</b>        | 24.305.309,17711 |
|                                         | K/                                           | <b>→</b>        | 484.470,90500    |
|                                         | MG                                           | <b>→</b>        | 154.487,56102    |
|                                         | MN                                           | $\rightarrow$   | 72.194,96286     |
| -17                                     | NA                                           | <b>→</b>        | 955.545,77523    |
|                                         | ZN                                           | $\rightarrow$   | 232.293,36893    |
|                                         | Summe                                        |                 | 38.075.168,50289 |
| Liste II, Ifd. Nr. 4                    |                                              |                 |                  |
|                                         | organische Siliziumverbindungen              |                 |                  |
| 0 0000000000000000000000000000000000000 | POLYDIMETHYLSILOXANE                         | $\rightarrow$   | 2.162,00936      |
|                                         | SI-KAUTSCHUK                                 | $\rightarrow$   | 59.344,49864     |
|                                         | Summe                                        |                 | 61.506,50800     |
| V                                       | Buillie                                      |                 | 01.500,50800     |
| Liste II, lfd. Nr. 5                    | 1 ' 1                                        |                 |                  |
| Anorganische Phosphory                  |                                              |                 | T                |
|                                         | ALPO4                                        | PO4             | 101,06890        |
|                                         | CA10(PO4)6(OH)2                              | PO4             | 336,42499        |
|                                         | CA3(PO4)2                                    | PO4             | 5,13849          |
|                                         | CRPO4                                        | PO4             | 362,25317        |
|                                         | FEPO4                                        | PO4             | 7.456,68227      |
|                                         | K4P2O7                                       | PO4             | 48,12730         |
|                                         | NA-HEXAMETAPHOSPHAT                          | PO4             | 483,89972        |
|                                         | 1                                            |                 | · ·              |
|                                         | NA-PYROPHOSPHAT                              | PO4             | 1.855,64847      |

| <u> </u>                                               |                          |           |                            |
|--------------------------------------------------------|--------------------------|-----------|----------------------------|
| ASSE-INVENTAR<br>GRUNDWASSER-<br>GEFÄHRDENDE<br>STOFFE | KOMPONENTE               | PARAMETER | MASSE<br>PARAMETER<br>[kg] |
|                                                        | NA2HPO4                  | PO4       | 14.340,65667               |
|                                                        | NA5-TRIPOLYPHOSPHAT      | PO4       | 9.967,35259                |
|                                                        | PO4                      | PO4       | 6.297,21124                |
|                                                        | P2O5                     | PO4       | 21.970,36356               |
|                                                        | ZN3(PO4)2                | PO4       | 1.444,50060                |
|                                                        | Summe                    |           | 64.669,32797               |
| Liste II, lfd. Nr. 6                                   |                          |           |                            |
| Organischen und anorgai                                | nische Fluorverbindungen |           |                            |
|                                                        | CAF2                     | F         | 892,11327                  |
|                                                        | CHEMIEGIPS TS            | F         | 19,38762                   |
|                                                        | HAEMATITBETON            | F         | 670,12297                  |
|                                                        | NAF                      | F         | 1.232,25571                |
|                                                        | NORMALBETON              | F         | 2.314,12092                |
|                                                        | PORTL.ZEMENTMOERTEL      | F         | 2.356,65639                |
|                                                        | PORTLANDZEMENTSTEIN      | F         | 5.982,58488                |
|                                                        | PZ-OELSCHIEFERSTEIN      | E         | 70,36176                   |
|                                                        | SALZE KFA TS             | F         | 17,99404                   |
|                                                        | SALZKONZENTRAT TS        | F         | 944,34274                  |
|                                                        | TIERKOERPER TS           | F         | 0,00996                    |
|                                                        | VDK F SALZ TS            | F         | 75,28535                   |
|                                                        | VDK I SALZ TS            | F         | 901,59509                  |
|                                                        | VDK KFA SALZ TS          | F         | 337,32579                  |
|                                                        | VDK U SALZ TS            | F         | 38,79872                   |
|                                                        | VERMICULIT TS            | F         | 2,75471                    |
|                                                        | PTFE                     | F         | 4.778,92180                |
|                                                        | PVC (GRANULAT)           | F         | 61,61426                   |
|                                                        | Summe                    |           | 20.696,24598               |
| Liste II, lfd. Nr. 7                                   | XV                       |           |                            |
| Ammoniak, Ammoniakv                                    | erbindungen und Nitrite  |           |                            |
| Ammoniak und                                           | NH4                      | NH4       | 36.348,82294               |
| Ammoniak-                                              | NH4CL                    | NH4       | 557,20372                  |
| verbindungen                                           | -N(CH3)3                 | NH4       | 4.025,46878                |
|                                                        | (NH4)2HC6H5O7            | NH4       | 47,26030                   |
|                                                        | FE(NH4)-EDTA             | NH4       | 2,30588                    |
|                                                        | Summe                    |           | 40.981,06163               |
| Nitrite                                                | SALZKONZENTRAT TS        | NO2       | 8.159,88555                |
|                                                        | 1                        | L         | ,                          |

## 7.4 Massen der chemotoxischen Stoffe

Neben den in der Liste I und II GWVO genannten Stofffamilien und Stoffgruppen können aus den im ANHANG A.1 genannten Unterlagen chemotoxische Stoffe quantifiziert werden, die ebenfalls für die Prüfung auf Einhaltung der wasserrechtlichen Bestimmungen herangezogen werden (siehe Kap. 5.2).

Die Genauigkeit der Massenangaben mit 5 Stellen nach dem Komma in den Tabellen 7-8 und 7-9 dienen vornehmlich der Qualitätskontrolle und der Vergleichbarkeit der Angaben in den Anhängen. Die Bandbreite des Inventars mit seinen Materialien, Komponenten und Elementen wird in Kap. 8 dargestellt.

## 7.4.1 Massen der organisch chemotoxischen Stoffe

Von den neun Verbindungsklassen der Liste organisch chemotoxischer Stoffe können nur Stoffe aus den Verbindungsklassen 7 und 8 zugeordnet werden (Tabelle 7-8); ihre Massen können ANHANG B.3 (Komponenteninventar) entnommen werden. Die Stoffe der übrigen Klassen befinden sich nicht im Abfallinventar der Schachtanlage Asse.

Zu den organisch chemotoxischen Stoffen im Inventar der Schachtanlage Asse zählen der Chelatbildner EDTA und die Komplexbildner Citronensäure, Weinsäure, Oxalsäure und ihre jeweiligen Natrium-, Kalium-, Calcium-, Magnesium- und Eisen-Salze. Na<sub>3</sub>-Citrat (Na<sub>3</sub>C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>), Na<sub>2</sub>-Tartrat (Na<sub>2</sub>C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>) und Na<sub>2</sub>-Oxalat (Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>) befinden sich wie das EDTA hauptsächlich in den VDK des Forschungszentrums Karlsruhe. Na<sub>2</sub>-EDTA aus Fällschlämmen, K<sub>3</sub>-Citrat (K<sub>3</sub>C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>) hauptsächlich aus Filterhilfsmitteln und Filterrückständen, Na<sub>2</sub>-Hydrogencitrat aus VDK von DWR und (NH<sub>4</sub>)<sub>2</sub>-Hydrogencitrat ((NH<sub>4</sub>)<sub>2</sub>HC<sub>6</sub>H<sub>5</sub>O<sub>7</sub>) aus einer Mischung von Salzen, Pulver- und Kugelharzen gehören ebenfalls zur Verbindungsklasse der Chelate-Komplexbildner.

Zur Verbindungsklasse der Tenside gehören anionische Tenside aus Schlämmen und VDK der DWR und nichtionische Tenside (einschließlich Marlophen und Marlox), die hauptsächlich in Schlämmen und VDK des Forschungszentrums Karlsruhe und aus DWR stammen sowie kationische Tenside (Benzalkoniumchlorid) aus Fällschlämmen.

Tabelle 7-8: Massenanteile organisch chemotoxischer Stoffe

| ASSE-INVENTAR                                   | MASSE IM ASSE-INVENTAR | VERBINDUNGSKLASSE |
|-------------------------------------------------|------------------------|-------------------|
| ORGANISCH CHEMOTOXISCHE                         | [kg]                   | GEMÄSS ANHANG A.1 |
| STOFFE                                          |                        |                   |
| Chelat- / Komplexbildner:                       |                        | 7                 |
| Fe(NH <sub>4</sub> )-EDTA                       | 46,28694               |                   |
| Na <sub>2</sub> -EDTA                           | 0,08593                |                   |
| Na <sub>3</sub> -Citrat                         | 13.808,02213           |                   |
| K <sub>3</sub> -Citrat                          | 113,42847              |                   |
| Na <sub>2</sub> -Hydrogencitrat                 | 324,77419              |                   |
| (NH <sub>4</sub> ) <sub>2</sub> -Hydrogencitrat | 296,29831              |                   |
| Na <sub>2</sub> -Tartrat                        | 13.287,55949           |                   |
| Na <sub>2</sub> -Oxalat                         | 13.521,68556           |                   |
| Tenside:                                        |                        | 8                 |
| Nichtionische Tenside (NIT)                     | 17.264,16160           |                   |
| Anionische Tenside (ANT)                        | 6.121,76102            |                   |
| Kationische Tenside (KAT)                       | 6,50156                |                   |
| (hier: Benzalkoniumchlorid)                     |                        |                   |

## 7.4.2 Massen der anorganisch chemotoxischen Stoffe

Von den im Inventar der Schachtanlage Asse vorkommenden anorganischen chemotoxischen Stoffen entfallen die meisten auf die in Liste II Punkt 1 der GWVO genannten Metalloide, Metalle und ihre Verbindungen. Unabhängig davon werden alle anorganisch chemotoxischen Stoffe die sich im Abfallinventar der Schachtanlage Asse befinden in der Tabelle 7-9 aufgeführt.

Von den im Inventar der Schachtanlage Asse vorkommenden anorganischen chemotoxischen Stoffen entfallen die größten Massenanteile auf Kupfer (ca. 857 Mg - vor allem aus nicht näher spezifizierten NE-Metallen und Altkabeln) und Zink (ca. 232 Mg - vor allem aus nicht näher spezifizierten NE-Metallen und der Verzinkung der Behälter). Barium (ca. 54 Mg) liegt hauptsächlich als Bariumsulfat in zementhaltigen Materialien vor. Die eingelagerten VDK aus DWR mit hohen Anteilen an Borsäure/Borate liefern den Hauptanteil des Bor (ca. 50 Mg). Ca. 38 Mg Titan wurden als Abfallbestandteil selbst, als Nebenbestandteil (TiO<sub>2</sub>) von Asche und Mineralwolle sowie als Spurenelement der zementhaltigen Materialien berücksichtigt. Chrom-gesamt (ca. 26 Mg) liegt hauptsächlich in FE-Metallen/Stahl vor und wird auch als Spurenelement der zementhaltigen Materialien berücksichtigt. Aus Stahl, NE-Metallen, Harzen und als Spurenelement der zementhaltigen Materialien errechnen sich ca. 22 Mg Nickel. Blei (ca. 15 Mg) wurden als Abfallbestandteil selbst, als Abschirmmaterial, aus nicht näher spezifizierten NE-Metallen sowie als Spurenelemente zementhaltiger Materialien berücksichtigt.

Uran wird als chemotoxischer anorganischer Stoff hier nur als Spurenelement in zementhaltigen Fixierungsmitteln und Abfällen sowie in den Abfällbehältern aus Beton mit insgesamt ca. 67 kg berücksichtigt. Ebenfalls nur als Spurenelement wird Thorium in zementhaltigen Materialien mit insgesamt ca. 223 kg bilanziert (Kapitel 7.5). Beiträge von Uran- und Thorium-Massen als primäre Bestandteile radioaktiver Abfälle sind hier nicht berücksichtigt.

Tabelle 7-9: Massenanteile anorganisch chemotoxische Stoffe

| KUMULIERTE MASSE IM ASSE-INVENTAR     |
|---------------------------------------|
|                                       |
| [kg]                                  |
| 437,96334                             |
| 496,39074                             |
| 49.984,39523                          |
| 54.329,13586                          |
| 11,40454                              |
| 336,85514                             |
| 54,32567                              |
| 1.049,41554 (CN-Anteil: 571,97319     |
| 4.103,94475                           |
| 25.756,03528                          |
| 20,83446                              |
| 856.808,77571                         |
| 1,12019                               |
| 887,60276                             |
| 22.214,06799                          |
| 14.771,84964                          |
| 1.371,85914                           |
| 2,44791                               |
| 9.828,69205                           |
| 1,62769                               |
| 37.761,01699                          |
| 3,26707                               |
| 67,05166 (als Spurenelementanteile U) |
| 1.039,96897                           |
| 232.293,36893                         |
|                                       |

## 7.5 Massen der Spurenelemente Uran- und Thorium

Uran und Thorium kommen als Spurenelemente der zementhaltigen Materialien (Normalbeton, PZ-Stein, Hämatitbeton, PZ-Mörtel, PZ-Ölschieferstein) im Abfall, Abfallbehälter und Fixierungsmittel vor. Dieser Anteil beziffert sich auf ca. 67 kg Uran (siehe Tabelle 7-7) und ca. 223 kg Thorium.

### 8 Bandbreite des Abfallinventars

Die Abschätzungen zu den eingelagerten Materialmengen von Abfall, Abfallbehältern und Fixierungsmitteln besitzen Bandbreiten, die vom verfügbaren und nachrecherchierbaren Datenbestand abhängen. Die Bewertung der Qualität dieser Daten erfolgte stets auf der Grundlage der Vollständigkeit, Konsistenz und Belastbarkeit. Den Stoffgruppen und Stoffuntergruppen wurden deshalb je nach Genauigkeit der vorgelegenen Daten Bandbreiten zugeordnet, die als Richtgröße anzusehen sind [3].

Am genauesten waren die Materialien der Abfallbehälter zu bewerten, da hierzu umfangreiche Unterlagen (DIN-Normen, Konstruktionszeichnungen u. ä.) vorlagen. Zu den Fixierungsmitteln lagen zum großen Teil ebenfalls recht genaue Beschreibungen zur Zusammensetzung vor, wobei hier größere Schwankungen z. B. durch die Verwendung von Zementmörtelmischungen unterschiedlicher Zusammensetzungen auftraten. Die Materialien der Abfälle selbst sind nur zum Teil mengenmäßig relativ genau benannt worden. Bei einem großen Teil der Gebinde lagen jedoch nur pauschale Angaben vor, wie z. B. Mischabfälle, Laborabfälle, Bauschutt usw., ohne dass die Zusammensetzung näher dargelegt worden ist. Zudem war seinerzeit die Angabe von Abfallgebindemassen nach LAW- und MAW-Bedingungen nicht verlangt worden, so dass diese für genauere Abschätzungen ebenfalls nur teilweise zur Verfügung stehen.

Aus den v. g. Gründen konnten folgende Bandbreiten den Materialien der eingelagerten Abfallgebinde zugeordnet werden:

- ± 10 % bei genau festlegbaren Daten,
- $\pm$  30 % bei relativ genauen Angaben, aber nur pauschal bestimmbaren Zusammensetzungen,
- $\pm$  50 % bei ungenauen Angaben, zu denen Annahmen auf Grundlage von Plausibilitätsbetrachtungen getroffen wurden.

Die Bandbreiten in den Eingangsdaten wurden abhängig von der Abfallart (Stoffgruppe), von vorhandenen Unterlagen zu Abfallzusammensetzungen, von Angaben der Ablieferer auf den Einlagerungsdokumenten und auch auf der Grundlage von Recherchen und Befragungen von der Fa. Stoller [3] festgelegt. Für die Materialien der Abfallbehälter wurden den einzelnen Stoffuntergruppen Bandbreiten zugeordnet; die Zuordnung der Bandbreiten erfolgte für die Fixierungsmittel über die Stoffgruppen und für die Abfälle über die in den Stoffgruppen enthaltenen Materialien.

Da die stoffliche Zusammensetzung der Materialien der Abfallgebinde sehr unterschiedlich sein kann und die Anzahl der eingelagerten Abfallgebinde hinreichend hoch ist, können die v. g. Bandbreiten hinsichtlich des Gesamtinventars als zufällig und normalverteilt betrachtet werden. Bei Anwendung der Fehlerfortpflanzung lassen sich aus den festgelegten Bandbreiten von Abfall, Abfallbehälter und Fixierungsmittel der einzelnen Abfallgebinde für die Materialien und damit für das Gesamtinventar resultierende Bandbreiten berechnen. Die berechneten Bandbreiten sind kleiner als die v. g. Bandbreiten der einzelnen Abfallgebinde. Nachfolgend werden für die zementhaltigen Materialien (64,4 Ma.-%), FE-Metalle/Stahl

(21,5 Ma.-%) und die zellulosehaltige Materialien (5,4 Ma.-%), die zusammen einen Anteil von über 90 Ma.-% am Gesamtinventar besitzen, die resultierenden Bandbreiten mittels der Fehlerfortpflanzung ermittelt.

Zementhaltige Materialien setzen sich aus Hämatitbeton, Normalbeton, PZ-Mörtel, PZ-Stein und PZ-Ölschieferstein zusammen. Hämatit- und Normalbeton der Abfallbehälter sowie PZ-Stein (Abfallbehälter, Fixierungsmittel) werden Bandbreiten von  $\pm 10\,\%$  zugeordnet, da umfangreiche Unterlagen mit genauen Angaben bzw. eindeutigen Zusammensetzungen vorliegen. Den zementhaltigen Materialien der Abfälle (Hämatit- und Normalbeton, PZ-Stein) und der Fixierungsmittel (PZ-Mörtel, PZ-Ölschieferstein) werden Bandbreiten von  $\pm 30\,\%$  zugeordnet, da es sich hierbei um pauschal bestimmte Zusammensetzungen handelt. Hieraus berechnet sich für alle zementhaltigen Materialien eine mittlere Bandbreite von  $\pm 6\,\%$ . Der reine Zementanteil dieser Materialien liegt zwischen ca. 9 Ma.-% bei Hämatitbeton und ca. 71 Ma.-% bei PZ-Stein und beträgt insgesamt 16.281 Mg. Unter Berücksichtigung der v. g. Bandbreiten errechnet sich auch für den Zement eine mittlere Bandbreite von  $\pm 8\,\%$ .

Metalle der Abfallbehälter (Metallverpackungen, Armierungsstahl, Stahl-Abschirmungen) werden Bandbreiten von  $\pm$  10 % zugeordnet, da genaue Angaben (z. B. DIN-Normen) vorliegen. Den FE-Metallen der Abfälle werden Bandbreiten von  $\pm$  50 % zugeordnet, da zur Zusammensetzung der Abfälle nur pauschale Angaben vorliegen. Die Stahlanteile in den Abfällen werden Bandbreiten von  $\pm$  30 % zugeordnet, da recht genaue Beschreibungen zur Zusammensetzung vorlagen. Hieraus berechnet sich für alle Metalle eine mittlere Bandbreite von  $\pm$  33 %.

Die zellulosehaltigen Materialien setzen sich aus Zellulose, Papier, Holz, Baumwolle, Zellstoff und pflanzliche Abfälle zusammen. Den einzelnen zellulosehaltigen Materialien werden Bandbreiten von  $\pm 30\,\%$  zugeordnet, da recht genaue Beschreibungen zur Zusammensetzung vorlagen. Hieraus berechnet sich für alle zellulosehaltigen Materialien eine mittlere Bandbreite von  $\pm 21\,\%$ .

Diese orientierenden Fehlerfortpflanzungsrechnungen zeigen, dass für über 90 Ma.-% des Gesamtinventars die Bandbreite der Materialien zwischen  $\pm 6$  % und  $\pm 33$  % liegt. Die restlichen Materialien, die einen Massenanteil von weniger als 10 % am Gesamtinventar besitzen, werden, da sie den gleichen statistischen Schwankungen unterliegen, nicht wesentlich von den vorgenannten Bandbreiten verschieden sein.

Auf der Basis des Zwiebelschalenprinzips wurde die Ermittlung des gesamten Abfallinventars nach Materialien, Komponenten und Elementen durchgeführt. Während bei den Bandbreiten der Materialien aufgrund ihrer unterschiedlichen Komponenten größere Schwankungen auftreten können, variieren die Bandbreiten der einzelnen Komponenten nur sehr gering.

Bei Normzementen (z. B. Portlandzement) weisen die Hauptbestandteile CaO, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>/FeO Bandbreiten von minimal 1,5 % bis maximal 3 % vom Mittelwert auf [23, 24]. Das Gleiche gilt für die Bandbreiten der Baustähle (niedrig legierte Stähle) und der nichtrostenden Stähle mit den Legierungselementen Cr, Ni, Mo, Ti, Nb. Hingegen folgen die Bandbreiten der Spurenelemente im Zement, im Baustahl und den nichtrostenden Stählen

einer Gauss-Verteilung (Normalverteilung). Dies ist anhand des Chrom- und Chromatgehaltes im Portlandzement, Eisenportlandzement und Hochofenzement in [25] gezeigt. Industrieprodukte, die aus den Rohstoffen der Erdkruste erzeugt werden, weisen Elemente fast des ganzen periodischen Systems als Spurenbestandteile auf. Daher ist eine Gauss-Verteilung dieser Spurenelemente ganz natürlich. Bei der Akkumulation über viele gleichartige Abfallgebinde mitteln sich die Abweichungen statistisch aus.

Werden die v.g. Überlegungen über die Bandbreite mit in die Fehlerfortpflanzung einbezogen, so ist dieser Beitrag vernachlässigbar klein im Vergleich zu den berechneten Bandbreiten der Materialien. Aus diesem Grunde kann die max. Bandbreite der Eingangsdaten von  $\pm 50\,\%$  für die Materialien, Komponenten und Elemente im Gesamtinventar nicht überschritten werden.

exemplar in philip

## 9 Abfallinventar an chemisch und chemotoxischen Stoffen für die Einhaltung der GWVO

Auf Basis einer ACCESS-Datenbank mit Informationen über die eingelagerten Abfälle wurden die Massen der Materialien der Abfallgebinde abgeschätzt. Aus diesen Ergebnissen erfolgte die Ermittlung der Massen der chemischen Komponenten und Elemente. Der gewählte Ansatz führt zu einem bestmöglichen realistischen Abfallinventar.

Die Ergebnisse der Materialien der Abfallgebinde sind die Grundlage für weiterführende Rechnungen, beispielsweise für geochemische Modellrechnungen und die Ermittlung des Gasquellterms der Materialien der Abfallgebinde.

Mit der Differenzierung der Materialien in Komponenten (Verbindungen) und Elemente war die qualitative und quantitative Identifikation der grundwassergefährdenden Stoffe sowie weiterer chemotoxischer Stoffe möglich. Die entsprechenden Ergebnisse werden für die Prüfung auf Einhaltung der wasserrechtlichen Bestimmungen herangezogen.

Die Abschätzung zu den eingelagerten Materialmengen besitzen Bandbreiten, die vom verfügbaren und nachrecherchierbaren Datenbestand abhängen. Die Bewertung der Qualität dieser Daten erfolgte stets auf der Grundlage der Vollständigkeit, Konsistenz und Belastbarkeit. Den Materialien wurden deshalb je nach Genauigkeit der vorgelegenen Daten Bandbreiten zugeordnet, die hinsichtlich des Gesamtinventars als zufällig und normalverteilt betrachtet werden. Während bei den Bandbreiten der Materialien aufgrund der unterschiedlichen Komponenten größere Schwankungen auftreten können, variieren die Bandbreiten der einzelnen Komponenten nur sehr gering. Bei der Akkumulation über viele gleichartige Abfallgebinde mitteln sich jedoch die Abweichungen aus.

Bei Anwendung der Fehlerfortpflanzung lassen sich aus den festgelegten Bandbreiten von Abfall, Abfallbehälter und Fixierungsmittel der einzelnen Abfallgebinde für die Materialien und damit für das Gesamtinventar resultierende Bandbreiten berechnen. Die berechneten Bandbreiten sind kleiner als die v. g. Bandbreiten der einzelnen Abfallgebinde. Der Beitrag der Bandbreiten einzelner Komponenten ist vernachlässigbar klein im Vergleich zu den berechneten Bandbreiten der Materialien. Aus Erkenntnissen den Bandbreitenbetrachtungen kann daher abgeleitet werden, dass sich das bestmöglich abgeschätzte Abfallinventar mit seinen Materialien, Komponenten und Elementen max. um 50 % erhöhen kann. Für die Prüfung des Abfallinventars der Schachtanlage Asse auf Einhaltung der wasserrechtlichen Bestimmungen ist somit das bestmögliche realistische Abfallinventar unter Beachtung einer max. Bandbreite von 50 % zu verwenden.

## 10 Quellenverzeichnis

- [1] Gerstmann, M.; Meyer, H.; Tholen, M.:

  Bestimmung des nuklidspezifischen Aktivitätsinventars der Schachtanlage Asse
  GSF-Forschungszentrum für Umwelt und Gesundheit, Abschlussbericht, August 2002
- [2] Hoff, M.; Meyer, H.; Tholen, M.:

  Erstellung einer Datenbank zur Aktualisierung des Radionuklidinventars im Forschungsbergwerk Asse,

  GSF mbH, Forschungsbergwerk Asse, Interner Bericht Nr. 1/2000
- [3] Herzog, C.; Schneider, L.:

  Bestimmung der stofflichen Hauptbestandteile der in die Schachtanlage Asse eingelagerten Abfälle

  Stoller Ingenieurtechnik GmbH, Abschlussbericht, 01.11.2001
- [4] Buchheim, B.:
  Inventar chemischer und chemotoxischer Stoffe von radioaktiven Abfällen in der Schachtanlage Asse
  Buchheim Engineering, Abschlussbericht, Dezember 2002
- [5] Bedingungen für die Lagerung von schwachradioaktiven Abfallstoffen in der Schachtanlage Asse, GSF mbH, Juli 1971
- [6] Bedingungen für die Lagerung von schwachradioaktiven Abfällen in der Schachtanlage Asse, GSF mbH, Dezember 1975
- [7] Vorläufige Bedingungen für die Versuchseinlagerung mittelradioaktiver Abfallstoffe in der Schachtanlage Asse, GSF mbH, September 1972
- [8] "Verordnung zur Umsetzung der Richtlinie 80/68/EWG des Rates vom 17. Dezember 1979 über den Schutz des Grundwassers gegen Verschmutzung durch bestimmte gefährliche Stoffe (Grundwasserverordnung) vom 18. März 1997" Bundesgesetzblatt, Jahrgang 1997, Teil I, Nr. 18, S. 542-544
- [9] "Bekanntmachung der Neufassung der Trinkwasserverordnung vom 5. Dezember 1990", Bundesgesetzblatt, Jahrgang 1990, Teil I, Nr. 66, S. 2612-2629
- [10] "Verordnung zur Novellierung der Trinkwasserverordnung vom 21. Mai 2001", Bundesgesetzblatt, Jahrgang 2001, Teil I, Nr. 24, S. 959-980
- [11] Länderarbeitsgemeinschaft Wasser (LAWA):
  "Empfehlungen für die Erkundung, Bewertung und Behandlung von
  Grundwasserschäden", Stand: Oktober 1993
- [12] LAWA-Arbeitsgruppe 'Grundwasserschutz bei Abfallverwertung und Produkteeinsatz' "Aktualisierte Prüfwerte der LAWA-Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden", Stand: 02. Dezember 1996

- [13] Länderarbeitsgemeinschaft Wasser (LAWA):
  "Geringfügigkeitsschwellen (Prüfwerte) zur Beurteilung von Grundwasserschäden und
  ihre Begründung", Stand: 21. Dezember 1998
- [14] Deutscher Verein des Gas- und Wasserfaches e.V.:
  "Eignung von Fliessgewässern für die Trinkwasserversorgung"
  DVGW-Regelwerk, Technische Mitteilung, Merkblatt W 251, Stand: August 1996
- [15] U.S. Environmental Protection Agency: "Drinking Water Regulations and Health Advisories" Report EPA 822-B-96-002, October 1996
- [16] World Health Organization (WHO):
  "Guidelines for Drinking-Water Quality", 2<sup>nd</sup> Edition, Volume 1 (1983 + 1993/96) and
  Addendum to Volume 1, Recommendations (1998)
- [17] RÖMPP Lexikon Chemie:9. erweiterte und neubearbeitete Auflage, Verlag Thieme, Stuttgart/New York (1991)
- [18] E. Merian (Hrsg.):
   "Metalle in der Umwelt Verteilung, Analytik und biologische Relevanz", Verlag Chemie, Weinheim/Deerfield Beach/Basel (1984); darin enthalten
   E. Gebhart, "Mutagenität, Karzinogenität, Teratogenität", S. 237 247
- [19] H. G. Seiler; H. Sigel:
  "Handbook on Toxicity of Inorganic Compounds", (1988), Verlag Marcel Dekker Inc.,
  New York/Basel
- [20] R. Koch:
  "Umweltchemikalien Physikalisch-chemische Daten, Toxizitäten, Grenz- und Richtwerte,
  Umweltverhalten", 3. Auflage, Verlag Chemie, Weinheim/New York (1995)
- [21] Beratergremium für Umweltrelevante Altstoffe (BUA) der Gesellschaft Deutscher Chemiker (GDCh); BUA-Stoffbericht Nr. 108: "Tributylphosphat/Dibutylphosphat" (Stand: Dezember 1992); Verlag S. Hirzel, Stuttgart
- [22] K. Höll; Hrsg. A. Grohmann:
   "Wasser Nutzung im Kreislauf, Hygiene, Analyse und Bewertung", 8. Auflage, Verlag
   Walter de Gruyter, Berlin/New York (2002)
- [23] F. W. Locher: "Zement" in Ullmann's Encyclopädie der technischen Chemie, 4. neubearbeitete und erweiterte Auflage, Band 24, S. 545-547
- [24] Verein Deutscher Zementwerke; Forschungsinstitut der Zementindustrie: Tätigkeitsbericht 1990-93. Düsseldorf: Verein Deutscher Zementwerke e.V.
- [25] H. Pisters (Forschungsinstitut der Zementindustrie, Düsseldorf): "Chrom im Zement und Chromatekzem" Zement-Kalk-Gips, Heft 10, Oktober 1966, S. 467-472

## **ANHANG A**

## A.1 Grundlagen zur Erstellung der Liste von chemotoxischen Stoffen

Aufgenommen in die Liste chemotoxischer Stoffe wurden solche Stoffe, welche gleichzeitig

- persistent und hochtoxisch für den Menschen oder für andere lebende Organismen und
- kanzerogen bzw. teratogen

sind und für die aufgrund dieser Eigenschaften in der Vergangenheit bereits Vorschriften erlassen worden sind.

Als Grundlage zur Erstellung der Liste dienten folgende Unterlagen:

- Liste des "International Register of Potentially Toxic Chemicals" (IRPTC) über "Products whose consumption and/ or sale have been banned, withdrawn, severely restricted or not approved by governments"
- Arbeitsliste des "International Program on Chemical Safety" (IPCS)
- Länderarbeitsgemeinschaft Wasser (LAWA) "Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden" Stand: Oktober 1993"
- LAWA-Arbeitsgruppe 'Grundwasserschutz bei Abfallverwertung und Produkteinsatz' "Aktualisierte Prüfwerte der LAWA-Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden" Stand: 02. Dezember 1996"
- Länderarbeitsgemeinschaft Wasser (LAWA) "Geringfügigkeitsschwellen (Prüfwerte) zur Beurteilung von Grundwasserschäden und ihre Begründung" Stand: 21. Dezember 1998"
- Eignung von Oberflächenwasser als Rohstoff für die Trinkwasserversorgung DVGW-Regelwerk, Arbeitsblatt W 151, Juli 1975
- Eignung von Fliessgewässern für die Trinkwasserversorgung DVGW-Regelwerk,
   Technische Mitteilung, Merkblatt W 251, Stand August 1996
- Übereinkommen über die Verhütung der Meeresverschmutzung durch das Versenken von Abfällen und anderen Stoffen
- Klärschlammverordnung vom 25. Juni 1982, Bundesgesetzblatt, Jahrgang 1982, Teil I, S. 734-736
- Liste der kanzerogenen Stoffe der "International Agency for Research on Cancer" (IARC)
   Erklärung der Minister der dritten internationalen Nordseeschutz-Konferenz, Den Haag, 8.
   März 1990
- Bekanntmachung der Neufassung der Trinkwasserverordnung vom 5. Dezember 1990,
   Bundesgesetzblatt, Jahrgang 1990, Teil I, Nr. 66, S. 2612-2629
- Verordnung zur Novellierung der Trinkwasserverordnung vom 21. Mai 2001,
   Bundesgesetzblatt, Jahrgang 2001, Teil I, Nr. 24, S. 959-980
- World Health Organization "Guidelines for Drinking-Water Quality, Vol. 1:
   Recommendations" WHO-Publications, Geneva (1984 + 1993)
- Einschlägige Literatur zur Ökologie

## A.2 Organische chemotoxische Stoffe Verbindungsklassen, Verbindungen und typische Klassenvertreter

Liste bekannter chemotoxischer organischer Stoffe in neun Verbindungsklassen:

## Klasse 1 ALICYCLISCHE UND ALIPHATISCHE VERBINDUNGEN

y-Hexachlorcyclohexan (Lindan)

Aldrin

Chlordan

Dieldrin

Endrin

Heptachlor

Heptachlor-Epoxid

Telodrin

Stroban

Toxaphen

Mirex

Kelevan

Kepone

Halogenierte Kohlenwasserstoffe (Paraffine)

## Klasse 2 HALOGENIERTE BENZOLE UND PHENYLDERIVATE

Hexachlorbenzol®

Chlorierte Benzole

Polychlorierte Biphenyle (PCB's)

Andere halogenierte Biphenyle

Halogenierte Terphenyle

## Klasse 3 HALOGENIERTE DERIVATE VON DIPHENYLMETHAN

DDT

seine Abbauprodukte DDE und DDD

Methoxychlor

Dicofol

Perthane

## Klasse 4 ANELLIERTE AROMATEN

Halogenierte Naphthaline

Polykondensierte aromatische Kohlenwasserstoffe

(PAK's mit 4 und mehr Ringen)

## Klasse 5 HALOGENIERTE PHENOLE UND PHENOXYVERBINDUNGEN

Pentachlorphenol

Tetrachlorphenol

Trichlorphenol

Halogenierte Diphenylether

## Klasse 6 HETEROCYCLISCHE VERBINDUNGEN

Halogenierte Dibenzodioxine (TCDD)

Halogenierte Dibenzofurane (TCDF)

### Klasse 7 KOMPLEXBILDNER

**EDTA** 

NTA

Citronensäure

Oxalsäure

Weinsäure

Harnstoff

### Klasse 8 TENSIDE

Fettaminethoxylat (C<sub>16</sub> - C<sub>18</sub>, Oelsäuretyp); (nichtionische Tenside)

Fettalkoholethoxylat (C<sub>16</sub> - C<sub>18</sub>, Oelsäuretyp)

Alkylsulfonat; (anionisches Tensid)

Alkylphenolpolyglykolether

Diethylenglykolmonobutylether

Ethylendiaminpropylenoxid (Blockpolymerisat)

Quaternäre Ammoniumverbindungen; (kationische Tenside)

## Klasse 9 HALOGENIERTE TRIAZINE

Atrazin

Simazin

## A.3 Anorganische chemotoxische Stoffe Metalle, Metallverbindungen und Nichtmetalle

Antimon und Antimonverbindungen

Arsen und Arsenverbindungen

Barium und Bariumverbindungen

Beryllium und Berylliumverbindungen

Bismut und Bismutverbindungen

Blei und Bleiverbindungen

Bor und Borverbindungen

Cadmium und Cadmiumverbindungen

Chrom und Chromverbindungen

Cyanide

Kobalt und Kobaltverbindungen

Kupfer und Kupferverbindungen

Molybdän und Molybdänverbindungen

Nickel und Nickelverbindungen

Plutonium und Plutonium verbindungen

Quecksilber und Quecksilberverbindungen

Selen und Selenverbindungen

Silber und Silberverbindungen

Tellur und Tellurverbindungen

Thallium und Thalliumverbindungen

Titan und Titanverbindungen

Uran und Uranverbindungen

Vanadium und Vanadiumverbindungen

Zink und Zinkverbindungen

Zinn und Zinnverbindungen

## ANHANG B DETAILLIERTE ERGEBNISTABELLEN

## B.1. Gesamtinventar aus allen Stoffuntergruppen (SUG) und allen Kammern, alle Beiträge; geordnet nach Masse der Materialien [kg]

| Kammer          | Beitrag         | Material (SUG)       |             |     | lasse<br>[kg] | Anteil   |
|-----------------|-----------------|----------------------|-------------|-----|---------------|----------|
|                 |                 |                      |             |     |               |          |
| T               | ${f T}$         | NORMALBETON          |             |     | 864.83508     | 0.300333 |
| T               | T               | FE-METALLE           |             |     | 476.94201     | 0.140147 |
| T               | T               | PORTLANDZEMENTSTEIN  |             |     | 190.65040     | 0.135528 |
| T               | T               | HAEMATITBETON        |             |     | 088.69200     | 0.119463 |
| T               | T               | PORTL.ZEMENTMOERTEL  |             |     | 820.64962     | 0.087244 |
| ${f T}$         | T               | STAHL MRST37-2       |             |     | 060.00000     | 0.060838 |
| ${f T}$         | T               | ZELLULOSE TS         |             |     | 960.95959     | 0.031980 |
| T               | T               | NE-METALLE           | 1           |     | 015.43384     | 0.011997 |
| ${f T}$         | ${f T}$         | KUNSTSTOFFE          | 1           |     | 835.57476     | 0.011759 |
| T               | T               | PAPIER TS            |             |     | 390.20010     | 0.009575 |
| T               | T               | VDK GFK/KFK SALZ TS  |             |     | 559.40570     | 0.008948 |
| T               | T               | GERAETEGLAS          |             | 789 | 591.31075     | 0.008869 |
| T               | T               | ARM. STAHL           |             | 594 | 600.00000     | 0.006679 |
| T               | T               | STAHL 2              |             | 474 | 700.74210     | 0.005332 |
| ${f T}$         | T               | BAUMWOLLE TS         | ク           |     | 335.88730     | 0.005047 |
| ${f T}$         | T               | SAND/KIES/STEINE     |             | 433 | 289.66467     | 0.004867 |
| T               | T               | MINERALWOLLE         | <b>V</b>    | 321 | 266.04380     | 0.003609 |
| ${f T}$         | T               | KIESELGUR TS         | <b>&gt;</b> | 315 | 882.41308     | 0.003548 |
| ${f T}$         | T               | BITUMEN              |             | 304 | 610.99240     | 0.003422 |
| ${f T}$         | T               | HYDRATWASSER ZELLHMA |             | 245 | 394.45676     | 0.002757 |
| Т               | T               | HYDRATWASSER ZELLUL. |             | 220 | 829.07457     | 0.002481 |
| T               | Т               | SALZKONZENTRAT TS    |             | 208 | 049.03435     | 0.002337 |
| Т               | T               | BORSAEURE/BORATE TS  |             | 178 | 911.62529     | 0.002010 |
| ${f T}$         | T               | PVC (WEICH)          |             | 175 | 438.22044     | 0.001971 |
| T               | T               | VDK DWR SALZ TS      |             | 159 | 526.11683     | 0.001792 |
| T               | T               | PZ-OELSCHIEFERSTEIN  |             | 146 | 411.68000     | 0.001645 |
| Т               | T               | ASCHE TS             |             | 143 | 427.16064     | 0.001611 |
| Т               | T               | GUMMI (VULKANISIERT) |             | 126 | 884.05581     | 0.001425 |
| T               | T               | POLYETHYLEN          |             | 119 | 113.76225     | 0.001338 |
| T               | T               | GEB. WASSER VDK DWR  |             | 114 | 294.22847     | 0.001284 |
| T               | Т.              | STAHL 1              |             |     | 915.68961     | 0.001246 |
| T               | T               | HOLZ TS              |             |     | 164.76800     | 0.001136 |
| T               | T               | ALUMINIUM            |             |     | 966.40218     | 0.001123 |
| T               | T               | PULVERHARZ TS        |             | 96  | 187.89427     | 0.001080 |
| T               | T               | TORF TS              |             |     | 796.08603     | 0.000885 |
| T               | T               | ASBEST TS            |             |     | 679.05360     | 0.000861 |
| T               | T               | ADS. WASSER          |             |     | 626.51368     | 0.000782 |
| T               | T               | PORENWASSER PULVERHZ |             |     | 947.12477     | 0.000718 |
| T               | T               | GRAFIT TS            |             | 62  | 119.26336     | 0.000698 |
| T               | T               | STAHL 1.4541         |             |     | 466.60040     | 0.000657 |
| T T             | T               | OEL                  |             |     | 886.27582     | 0.000572 |
| T               | T               | POLYSTYROL           |             |     | 312.00000     | 0.000543 |
| T               | $ar{	extbf{T}}$ | AKTIVKOHLE TS        |             |     | 251.03379     | 0.000531 |
| $ar{	extbf{T}}$ | ${f T}$         | VDK SWR SALZ TS      |             |     | 320.32864     | 0.000520 |
|                 |                 |                      |             |     |               |          |

| Kammer   | Beitrag       | Material (SUG)                      | Masse<br>[kg]                | Anteil               |
|----------|---------------|-------------------------------------|------------------------------|----------------------|
| T        | Т             | KUNSTHARZ                           | 44 122.07200                 | 0.000496             |
| T        | T             | STAHL GGG40                         | 41 723.00000                 | 0.000469             |
| T        | T             | CHELATE/KOMPLEXBILD.                | 39 908.57332                 | 0.000448             |
| T        | T             | ERDREICH                            | 39 084.73440                 | 0.000439             |
| T        | T             | VDK I SALZ TS                       | 36 175.95487                 | 0.000406             |
| T        | T             | ZIRCALOY 2                          | 35 822.67000                 | 0.000402             |
| T        | T             | GEB. WASSER VDK GFK                 | 31 934.50625                 | 0.000359             |
| Т        | ${f T}$       | BORATE KKS TS                       | 31 569.94531                 | 0.000355             |
| Т        | T             | KORROSIONSPRODUKTE                  | 30 806.06215                 | 0.000346             |
| T        | T             | SALZE FHM K TS                      | 29 129.17828                 | 0.000327             |
| T        | T             | ZELLSTOFF TS                        | 25 489.74800                 | 0.000286             |
| T        | T             | GEB. WASSER SALZKONZ                | 24 492.85849                 | 0.000275             |
| T        | ${f T}$       | VERMICULIT TS                       | 24 462.65297                 | 0.000275             |
| ${f T}$  | T             | HYDRATWASSER PAPIER                 | 24 050.91692                 | 0.000270             |
| ${f T}$  | T             | GEB. WASSER                         | 23 275.82860                 | 0.000261             |
| ${f T}$  | T             | TBP/KEROSIN                         | 22 473.39939                 | 0.000252             |
| ${f T}$  | ${f T}$       | KUGELHARZ TS                        | 21 187.00002                 | 0.000238             |
| T        | T             | SILIKONKAUTSCHUK                    | 20 988.01040                 | 0.000236             |
| T        | T             | KUPFER                              | 19 641.96379                 | 0.000221             |
| T        | Ť             | ADS. WASSER TORF                    | 17 296.70181                 | 0.000194             |
| T        | T             | PORENWASSER KUGELHZ                 | 15 133.13294                 | 0.000170             |
| T        | T             | ZINK                                | 14 301.91800                 | 0.000161             |
| <b>T</b> | T             | VDK KFA SALZ TS                     | 13 534.99232                 | 0.000152             |
| T        | T             | BLEI                                | 12 574.05927                 | 0.000141             |
| T        | T             | EPDM (DICHTUNG)                     | 11 030.51800<br>10 882.58740 | 0.000124<br>0.000122 |
| T        | T             | CHEMIEGIPS TS                       | 8 808.33856                  | 0.000122             |
| T        | T<br>T        | BTEX/LOESUNGSMITTEL                 | 8 714.32256                  | 0.000099             |
| T<br>T   | T             | HYDRATWASSER BAUMW.<br>ZIEGEL       | 8 014.35600                  | 0.000090             |
| T        | T             | SALZE TS                            | 7 815.07624                  | 0.000038             |
| T        | T             | SALZKONZENTR. DWR TS                | 5 955.36358                  | 0.000067             |
| T        | T             | SALZE K TS                          | 5 241.01847                  | 0.000059             |
| T        | T             | ERDE                                | 5 183.99693                  | 0.000058             |
| T        | T             | GEB. WASSER VERMICU.                | 4 919.66403                  | 0.000055             |
| T        | T             | SALZKONZENTR. SWR TS                | 4 707.14907                  | 0.000053             |
| T        | T             | SALZE VDK GFK/KFK TS                | 3 974.79100                  | 0.000045             |
| T        | T             | PORENWASSER AK                      | 3 582.70509                  | 0.000040             |
| Т        | T             | SIC                                 | 3 339.36000                  | 0.000038             |
| T        | T             | VDK F SALZ TS                       | 3 020.77880                  | 0.000034             |
| Ť        | T             | KRISTALLWASSER                      | 2 856.69913                  | 0.000032             |
| Т        | T             | SALZE F TS                          | 2 817.88837                  | 0.000032             |
| Т        | T             | HYDRATWASSER HOLZ                   | 2 719.88640                  | 0.000031             |
| T        | T             | VA-STAHL                            | 2 639.39000                  | 0.000030             |
| T        | ${f T}$       | GEB. WASSER SALZE                   | 2 625.21160                  | 0.000029             |
| T        | ${f T}$       | KERAMIK                             | 2 422.47904                  | 0.000027             |
| T        | T             | VDK KWU SALZ TS                     | 2 393.18122                  | 0.000027             |
| Т        | T             | KOLLAGENE TS                        | 2 375.15976                  | 0.000027             |
| T        | <b>T</b><br>_ | STAHL 1.4571                        | 2 170.58400                  | 0.000024             |
| T        | Т             | ADS. WASSER GLAS                    | 2 135.47600                  | 0.000024             |
| T        | Т             | SCHLACKE TS                         | 1 920.00000                  | 0.000022             |
| T        | T             | GEB. WASSER VDK SWR                 | 1 753.77319                  | 0.000020             |
| T        | T             | TITAN                               | 1 685.88000                  | 0.000019             |
| T        | T             | LABORABWASSER TS                    | 1 559.82300<br>1 556.77500   | 0.000018<br>0.000017 |
| T        | T             | VDK U SALZ TS                       | 1 319.85600                  | 0.000017             |
| T<br>T   | T<br>T        | ADS. WASSER ASCHE<br>KNOCHENLEIM TS | 1 035.64500                  | 0.000013             |
| T        | T<br>T        | STAHL ST 37                         | 869.60000                    | 9.77E-06             |
| T        | 1             | SIVUD SI 21                         | 005.00000                    | J. 11E-00            |

| Kammer  | Beitrag  | Material (SUG)                          | Masse<br>[kg]    | Anteil   |
|---------|----------|-----------------------------------------|------------------|----------|
| Т       | T        | ADS. WASSER GRAFIT                      | 846.06400        | 9.50E-06 |
| Т       | T        | HYDRATWASSER ZELLST.                    | 790.00800        | 8.87E-06 |
| T       | T        | PFLANZL. ABFAELLE TS                    | 781.50000        | 8.78E-06 |
| T       | T        | GEB. WASSER EDTA                        | 722.85600        | 8.12E-06 |
| Т       | T        | SALZE KFA TS                            | 722.00000        | 8.11E-06 |
| T       | T        | ARSENVERBINDUNGEN                       | 720.00000        | 8.09E-06 |
| T       | T        | CAF2                                    | 675.40480        | 7.59E-06 |
| T       | T        | ADS. WASSER U-OXIDE                     | 673.44000        | 7.56E-06 |
| T       | T        | GEB. WASSER VDK I                       | 589.86186        | 6.63E-06 |
| T       | T        | EDTA/KOMPLEXBILDNER                     | 560.11022        | 6.29E-06 |
| T       | T        | ADS. WASSER ASBEST                      | 472.56000        | 5.31E-06 |
| T       | T        | PORENWASSER                             | 396.82000        | 4.46E-06 |
| T       | T        | GEB. WASSER KOLLAGEN                    | 393.50660        | 4.42E-06 |
| T       | T        | POLYPROPYLEN                            | 384.00000        | 4.31E-06 |
| T       | T        | GEB. WASSER K.LEIM                      | 371.77000        | 4.18E-06 |
| T       | T        | GEB. WASSER VDK KFA                     | 361.31060        | 4.06E-06 |
| T       | T        | KOBALT                                  | 316.80000        | 3.56E-06 |
| T       | T        | SALZE I TS                              | 316.31691        | 3.55E-06 |
| T       | T        | FORMALIN                                | 299.18694        | 3.36E-06 |
| T       | T        | TRICHLORETHAN                           | 270.00000        | 3.03E-06 |
| T       | Ť        | TIERKOERPER TS                          | 269.17800        | 3.02E-06 |
| T       | T        | SILICIUMDIOXID                          | 246.33000        | 2.77E-06 |
| T       | T        | NANO3                                   | 246.28500        | 2.77E-06 |
| T       | T        | BARIUMBROMID                            | 224.74620        | 2.52E-06 |
| T       | T        | GEB. WASSER ERDREICH                    | 222.00000        | 2.49E-06 |
| T       | T        | SALZE FHM I TS                          | 201.33608        | 2.26E-06 |
| T       | T        | ADS. WASSER S/K/S                       | 158.06600        | 1.78E-06 |
| T       | T        | KONZENTRAT BORAT                        | 156.00000        | 1.75E-06 |
| T       | T        | GEB. WASSER C.GIPS                      | 136.26727        | 1.53E-06 |
| T       | Ť        | ADS. WASSER KIESELG.                    | 88.60005         | 9.95E-07 |
| T       | T        | CACO3                                   | 87.50000         | 9.83E-07 |
| T       | T        | GEB. WASSER VDK F                       | 81.64267         | 9.17E-07 |
| T       | T        | GEB. WASSER VDK U                       | 81.60000         | 9.17E-07 |
| T       | T        | GEB. WASSER LABORABW                    | 67.00000         | 7.53E-07 |
| T       | T        | ADS. WASSER STRQ.BEH                    | 56.94400         | 6.40E-07 |
| T       | T        | AL203                                   | 45.04500         | 5.06E-07 |
| ${f T}$ | T        | ACRYLGLAS                               | 40.50000         | 4.55E-07 |
| T       |          | ADS. WASSER AS-VERB                     | 40.00000         | 4.49E-07 |
| T       | T        | GEB. WASSER U-VERB.                     | 30.00000         | 3.37E-07 |
| T       | T        | ADS. WASSER U+U-OXID                    | 29.40000         | 3.30E-07 |
| T       | T        | GEB. WASSER CHEMIKAL                    | 25.00000         | 2.81E-07 |
| T T     | T        | ADS. WASSER SCHLACKE                    | 19.20000         | 2.16E-07 |
| T       | T        | GEB. WASSER U-TH-VER                    | 11.58400         | 1.30E-07 |
| 14      | T        | ADS. WASSER BA-BR.                      | 5.00000          | 5.62E-08 |
| uh.     | T        | ADS. WASSER BA BR. ADS. WASSER UOX+U-VB | 4.00000          | 4.49E-08 |
| T       | T        | SALZE FHM F TS                          | 2.54064          | 2.85E-08 |
| T       | T        | BERYLLIUMPULVER                         | 0.00100          | 1.12E-11 |
| 1       | <b>±</b> | DEIGHER ON CHARLE                       |                  |          |
| Gesamts | summe    |                                         | 89 023 925.34157 | 1.000000 |

# B.2. Gesamtinventar aus allen Stoffuntergruppen (SUG) und allen Kammern, alle Beiträge; geordnet nach Masse der Materialien in Abfällen, Abfallbehältern und Fixierungsmitteln [kg]

|         |                         | - (ara)                              | Mas <b>se</b>                | Anteil               |
|---------|-------------------------|--------------------------------------|------------------------------|----------------------|
| Kammer  | Beitrag                 | Material (SUG)                       | [kg]                         | WILCELL              |
|         |                         |                                      | [79]                         |                      |
| Т       | ABFALL                  | FE-METALLE                           | 12 476 476.94201             | 0.460627             |
| T       | ABFALL                  | ZELLULOSE TS                         | 2 846 960.95959              | 0.105109             |
| T       | ABFALL                  | NORMALBETON                          | 2 065 112.03508              | 0.076243             |
| T       | ABFALL                  | NE-METALLE                           | 1 068 015.43384              | 0.039431             |
| T       | ABFALL                  | KUNSTSTOFFE                          | 1 046 835,57476              | 0.038649             |
| T       | ABFALL                  | PAPIER TS                            | 852 390.20010                | 0.031470             |
| T       | ABFALL                  | VDK GFK/KFK SALZ TS                  | 796 559.40570                | 0.029409             |
| T       | ABFALL                  | GERAETEGLAS                          | 789 591.31075                | 0.029151             |
| Т       | ABFALL                  | STAHL 2                              | 474 700.74210                | 0.017526             |
| T       | ABFALL                  | BAUMWOLLE TS                         | 449 335.88730                | 0.016589             |
| T       | ABFALL                  | SAND/KIES/STEINE                     | 433 289.66467                | 0.015997             |
| T       | ABFALL                  | MINERALWOLLE                         | 321 266.04380                | 0.011861             |
| T       | ABFALL                  | KIESELGUR TS                         | 310 430.93312                | 0.011461             |
| T       | ABFALL                  | HYDRATWASSER ZELLHMA                 | 245 394.45676                | 0.009060             |
| T       | ABFALL                  | HYDRATWASSER ZELLUL.                 | 220 829.07457                | 0.008153             |
| T       | ABFALL                  | SALZKONZENTRAT TS                    | 208 049.03435                | 0.007681             |
| T       | ABFALL                  | BORSAEURE/BORATE TS                  | 178 911.62529                | 0.006605             |
| T       | ABFALL                  | VDK DWR SALZ TS                      | 159 526.11683                | 0.005890             |
| ${f T}$ | ABFALL                  | PVC (WEICH)                          | 158 289.06044                | 0.005844             |
| T       | ABFALL                  | ASCHE TS                             | 143 427.16064                | 0.005295             |
| T       | ABFALL                  | GUMMI (VULKANISIERT)                 | 126 884.05581                | 0.004685             |
| T       | ABFALL                  | POLYETHYLEN                          | 119 113.76225                | 0.004398             |
| ${f T}$ | ABFALL                  | GEB. WASSER VDK DWR                  | 114 294.22847                | 0.004220             |
| T       | ABFALL                  | STAHL 1                              | 110 915.68961                | 0.004095             |
| T       | ABFALL                  | HOLZ TS                              | 101 164.76800                | 0.003735             |
| T       | ABFALL                  | ALUMINIUM                            | 99 966.40218                 | 0.003691             |
| T       | ABFALL                  | PULVERHARZ TS                        | 96 187.89427                 | 0.003551             |
| T       | ABFALL                  | ASBEST TS                            | 76 679.05360                 | 0.002831             |
| ${f T}$ | ABFALL                  | ADS. WASSER                          | 69 626.51368                 | 0.002571             |
| ${f T}$ | ABFALL                  | PORENWASSER PULVERHZ                 | 63 947.12477                 | 0.002361             |
| T       | ABFALL                  | GRAFIT TS                            | 62 119.26336                 | 0.002293             |
| T       | ABFALL                  | STAHL 1.4541                         | 58 466.60040                 | 0.002159             |
| T       | ABFALL                  | OEL                                  | 50 886.27582                 | 0.001879             |
| T       | ABFALL                  | VDK SWR SALZ TS                      | 46 320.32864                 | 0.001710             |
| T       | ABFALL                  | CHELATE/KOMPLEXBILD.                 | 39 908.57332                 | 0.001473             |
| T       | ABFALL                  | ERDREICH                             | 39 084.73440<br>36 175.95487 | 0.001443<br>0.001336 |
| T       | ABFALL                  | VDK I SALZ TS                        | 35 822.67000                 | 0.001338             |
| T       | ABFALL                  | ZIRCALOY 2                           | 31 934.50625                 | 0.001323             |
| T       | ABFALL                  | GEB. WASSER VDK GFK<br>BORATE KKS TS | 31 569.94531                 | 0.001179             |
| T       | ABFALL                  | KORROSIONS PRODUKTE                  | 30 806.06215                 | 0.001137             |
| T       | ABFALL<br>ABFALL        | SALZE FHM K TS                       | 29 129.17828                 | 0.001075             |
| T       | ABFALL                  | ZELLSTOFF TS                         | 25 489.74800                 | 0.000941             |
| T       | ABFALL                  | GEB. WASSER SALZKONZ                 | 24 492.85849                 | 0.000904             |
| T       | ABFALL                  | HYDRATWASSER PAPIER                  | 24 050.91692                 | 0.000888             |
| T       | ABFALL                  | GEB. WASSER                          | 23 275.82860                 | 0.000859             |
| T       | ABFALL                  | TBP/KEROSIN                          | 22 473.39939                 | 0.000830             |
| T       | ABFALL                  | KUGELHARZ TS                         | 21 187.00002                 | 0.000782             |
| T       | ABFALL                  | SILIKONKAUTSCHUK                     | 20 988.01040                 | 0.000775             |
| T       | ABFALL                  | KUPFER                               | 19 641.96379                 | 0.000725             |
| T       | ABFALL                  | AKTIVKOHLE TS                        | 15 882.64000                 | 0.000586             |
| T       | ABFALL                  | HAEMATITBETON                        | 15 336.19200                 | 0.000566             |
| T       | ABFALL                  | PORENWASSER KUGELHZ                  | 15 133.13294                 | 0.000559             |
| _       | a many as a sound shall |                                      |                              |                      |

|         |                  | <b>B</b> 3                           |                            |                      |
|---------|------------------|--------------------------------------|----------------------------|----------------------|
| Kammer  | Beitrag          | Material (SUG)                       | Masse                      | Anteil               |
|         |                  |                                      | [kg]                       |                      |
| T       | ABFALL           | VDK KFA SALZ TS                      | 13 534.99232               | 0.000500             |
| T       | ABFALL           | BLEI                                 | 10 941.05927               | 0.000404             |
| T       | ABFALL           | BTEX/LOESUNGSMITTEL                  | 8 808.33856                | 0.000325             |
| T       | ABFALL           | HYDRATWASSER BAUMW.                  | 8 714.32256                | 0.000322             |
| T       | ABFALL           | ZIEGEL                               | 8 014.35600                | 0.000296             |
| T       | ABFALL           | SALZE TS                             | 7 815.07624                | 0.000289             |
| T       | ABFALL           | SALZKONZENTR. DWR TS                 | 5 955.36358                | 0.000220             |
| T       | ABFALL           | SALZE K TS                           | 5 241.01847                | 0.000193             |
| ${f T}$ | ABFALL           | ERDE                                 | 5 183.99693                | 0.000191             |
| ${f T}$ | ABFALL           | SALZKONZENTR. SWR TS                 | 4 707.14907                | 0.000174             |
| T       | ABFALL           | BITUMEN                              | 4 302.31240                | 0.000159             |
| ${f T}$ | ABFALL           | SALZE VDK GFK/KFK TS                 | 3 974.79100                | 0.000147             |
| T       | ABFALL           | SIC                                  | 3 339.36000                | 0.000123             |
| ${f T}$ | ABFALL           | VDK F SALZ TS                        | 3 020.77880                | 0.000112             |
| T       | ABFALL           | SALZE F TS                           | 2 817.88837                | 0.000104             |
| T       | ABFALL           | HYDRATWASSER HOLZ                    | 2 719.88640                | 0.000100             |
| ${f T}$ | ABFALL           | VA-STAHL                             | 2 639.39000                | 0.000097             |
| T       | ABFALL           | GEB. WASSER SALZE                    | 2 625.21160                | 0.000097             |
| T       | ABFALL           | KERAMIK                              | 2 422.47904                | 0.000089             |
| T       | ABFALL           | VDK KWU SALZ TS                      | 2 393.18122                | 0.000088             |
| T       | ABFALL           | KOLLAGENE TS                         | 2 375.15976                | 0.000088             |
| ${f T}$ | ABFALL           | PORTLANDZEMENTSTEIN                  | 2 217.05520                | 0.000082             |
| T       | ABFALL           | STAHL 1.4571                         | 2 170.58400                | 0.000080             |
| T       | ABFALL           | ADS. WASSER GLAS                     | 2 135.47600                | 0.000079             |
| T<br>-  | ABFALL           | SCHLACKE TS                          | 1 920.00000                | 0.000071             |
| T<br>—  | ABFALL           | GEB. WASSER VDK SWR                  | 1 753.77319                | 0.000065             |
| T       | ABFALL           | TITAN                                | 1 685.88000                | 0.000062             |
| T       | ABFALL           | LABORABWASSER TS                     | 1 559.82300                | 0.000058<br>0.000057 |
| T       | ABFALL           | VDK U SALZ TS                        | 1 556.77500<br>1 319.85600 | 0.000037             |
| T       | ABFALL           | ADS. WASSER ASCHE STAHL ST 37        | 869.60000                  | 0.000049             |
| T<br>T  | ABFALL<br>ABFALL | ADS. WASSER GRAFIT                   | 846.06400                  | 0.000032             |
| T       | ABFALL           | HYDRATWASSER ZELLST.                 | 790.00800                  | 0.000031             |
| T       | ABFALL           | PFLANZL. ABFAELLE TS                 | 781.50000                  | 0.000029             |
| T       | ABFALL           | GEB. WASSER EDTA                     | 722.85600                  | 0.000027             |
| T       | ABFALL           | SALZE KFA TS                         | 722.00000                  | 0.000027             |
| T       | ABFALL           | ARSENVERBINDUNGEN                    | 720.00000                  | 0.000027             |
| T       | ABFALL           | CAF2                                 | 675.40480                  | 0.000025             |
| T       | ABFALL           | ADS. WASSER U-OXIDE                  | 673.44000                  | 0.000025             |
| Т       | ABFALL           | GEB. WASSER VDK I                    | 589.86186                  | 0.000022             |
| T       | ABFALL           | EDTA/KOMPLEXBILDNER                  | 560.11022                  | 0.000021             |
| T       | ABFALL           | ADS. WASSER ASBEST                   | 472.56000                  | 0.000017             |
| T       | ABFALL           | PORENWASSER                          | 396.82000                  | 0.000015             |
| T       | ABFALL           | GEB. WASSER KOLLAGEN                 | 393.50660                  | 0.000015             |
| T       | ABFALL           | POLYPROPYLEN                         | 384.00000                  | 0.000014             |
| T       | ABFALL           | GEB. WASSER VDK KFA                  | 361.31060                  | 0.000013             |
|         | ABFALL           | KOBALT                               | 316.80000                  | 0.000012             |
| T       | ABFALL           | SALZE I TS                           | 316.31691                  | 0.000012             |
| T       | ABFALL           | FORMALIN                             | 299.18694                  | 0.000011             |
| Т       | ABFALL           | TRICHLORETHAN                        | 270.00000                  | 9.97E-06             |
| T       | ABFALL           | TIERKOERPER TS                       | 269.17800                  | 9.94E-06             |
| T       | ABFALL           | SILICIUMDIOXID                       | 246.33000<br>246.28500     | 9.09E-06<br>9.09E-06 |
| T       | ABFALL           | NANO3<br>BARIUMBROMID                | 224.74620                  | 8.30E-06             |
| T       | ABFALL           | BARTUMBROMID<br>GEB. WASSER ERDREICH | 222.00000                  | 8.30E-06<br>8.20E-06 |
| T<br>T  | ABFALL<br>ABFALL | SALZE FHM I TS                       | 201.33608                  | 7.43E-06             |
| T       | ABFALL           | ADS. WASSER S/K/S                    | 158.06600                  | 5.84E-06             |
| T<br>T  | ABFALL           | KONZENTRAT BORAT                     | 156.00000                  | 5.76E-06             |
| T       | ABFALL           | PORENWASSER AK                       | 97.32800                   | 3.59E-06             |
| T       | ABFALL           | CACO3                                | 87.50000                   | 3.23E-06             |
| 1       | ' TLUIT          | 0.1000                               | 57.50000                   | J. ZJI 00            |

| Kammer          | Beitrag                              | Material (SUG)                    | Masse<br>[kg]                | Anteil               |
|-----------------|--------------------------------------|-----------------------------------|------------------------------|----------------------|
| Т               | ABFALL                               | GEB. WASSER VDK F                 | 81.64267                     | 3.01E-06             |
| T               | ABFALL                               | GEB. WASSER VDK U                 | 81.60000                     | 3.01E-06             |
| T               | ABFALL                               | GEB. WASSER LABORABW              | 67.00000                     | 2.47E-06             |
| T               | ABFALL                               | ADS. WASSER STRQ.BEH              | 56.94400                     | 2.10E-06             |
| T               | ABFALL                               | AL203                             | 45.04500                     | 1.66E-06             |
| T               | ABFALL                               | ACRYLGLAS                         | 40.50000                     | 1.50E-06             |
| T               | ABFALL                               | ADS. WASSER AS-VERB               | 40.00000                     | 1.48E-06             |
| T               | ABFALL                               | ADS. WASSER KIESELG.              | 34.48000                     | 1.27E-06             |
| $\dot{	ext{T}}$ | ABFALL                               | GEB. WASSER U-VERB.               | 30.00000                     | 1.11E-06             |
| T               | ABFALL                               | ADS. WASSER U+U-OXID              | 29.40000                     | 1.09E-06             |
| T               | ABFALL                               | KRISTALLWASSER                    | 27.25380                     | 1.01E-06             |
| T               | ABFALL                               | GEB. WASSER CHEMIKAL              | 25.00000                     | 9.23E-07             |
| T               | ABFALL                               | ADS. WASSER SCHLACKE              | 19.20000                     | 7.09E-07             |
| T               | ABFALL                               | GEB. WASSER U-TH-VER              | 11.58400                     | 4.28E-07             |
| T               | ABFALL                               | ADS. WASSER BA-BR.                | 5.00000                      | 1.85E-07             |
| T               | ABFALL                               | ADS. WASSER UOX+U-VB              | 4.00000                      | 1.48E-07             |
| T               | ABFALL                               | SALZE FHM F TS                    | 2.54064                      | 9.38E-08             |
| T               | ABFALL                               | BERYLLIUMPULVER                   | 0.00100                      | 3.69E-11             |
|                 |                                      | DENTEETONI OEVEN                  | <b>\</b>                     |                      |
| Summe           | ABFALL                               |                                   | 27 085 883.57803             | 1.000000             |
| T               | ABFALLBEHAELTER                      | NORMALBETON                       | 24 671 752.80000             | 0.527985             |
| T               | ABFALLBEHAELTER                      | HAEMATITBETON                     | 10 619 752.50000             | 0.227267             |
| T               | ABFALLBEHAELTER                      | STAHL MRST37-2                    | 5 416 060.00000              | 0.115906             |
| T               | ABFALLBEHAELTER                      | PORTLANDZEMENTSTEIN               | 5 313 129.00000              | 0.113703             |
| T               | ABFALLBEHAELTER                      | ARM. STAHL                        | 594 600.00000                | 0.012725             |
| T               | ABFALLBEHAELTER                      | KUNSTHARZ                         | 44 122.07200                 | 0.000944             |
| <u>T</u>        | ABFALLBEHAELTER                      | STAHL GGG40                       | 41 723.00000                 | 0.000893             |
| T               | ABFALLBEHAELTER                      | ZINK                              | 14 301.91800                 | 0.000306             |
| T               | ABFALLBEHAELTER                      | EPDM (DICHTUNG)                   | 11 030.51800                 | 0.000236             |
| T               | ABFALLBEHAELTER                      | BLEI                              | 1 633.00000                  | 0.000035             |
| Summe           | ABFALLBEHAELTER                      |                                   | 46 728 104.80800             | 1.000000             |
|                 |                                      |                                   | 7 766 000 64060              | 0 510644             |
| T               | FIXIERUNGSMITTEL                     | PORTL.ZEMENTMOERTEL               | 7 766 820.64962              | 0.510641             |
| T               | FIXIERUNGSMITTEL                     | PORTLANDZEMENTSTEIN               | 6 749 844.59520              | 0.443779             |
| T               | FIXIERUNGSMITTEL                     | BITUMEN                           | 300 308.68000                | 0.019744             |
| T               | FIXIERUNGSMITTEL                     | PZ-OELSCHIEFERSTEIN               | 146 411.68000                | 0.009626             |
| T               | FIXIÈRUNGSMITTEL                     | TORF TS                           | 78 796.08603                 | 0.005181             |
| T               | FIXIERUNGSMITTEL                     | POLYSTYROL                        | 48 312.00000                 | 0.003176             |
| T               | FIXIERUNGSMITTEL<br>FIXIERUNGSMITTEL | AKTIVKOHLE TS                     | 31 368.39379                 | 0.002062             |
| T               | FIXIERUNGSMITTEL                     | VERMICULIT TS<br>ADS. WASSER TORF | 24 462.65297<br>17 296.70181 | 0.001608<br>0.001137 |
| T<br>T          | FIXIERUNGSMITTEL                     | PVC (WEICH)                       | 17 149.16000                 | 0.001137             |
| T               | FIXIERUNGSMITTEL                     | CHEMIEGIPS TS                     | 10 882.58740                 | 0.000715             |
| T               | FIXIERUNGSMITTEL                     | KIESELGUR TS                      | 5 451.47995                  | 0.000713             |
| T               | FIXIERUNGSMITTEL                     | GEB. WASSER VERMICU.              | 4 919.66403                  | 0.000338             |
| T               | FIXIERUNGSMITTEL                     | PORENWASSER AK                    | 3 485.37709                  | 0.000323             |
| T               | FIXIERUNGSMITTEL                     | KRISTALLWASSER                    | 2 829.44533                  | 0.000186             |
| T               | FIXIERUNGSMITTEL                     | KNOCHENLEIM TS                    | 1 035.64500                  | 0.000188             |
| T               | FIXIERUNGSMITTEL                     | GEB. WASSER K.LEIM                | 371.77000                    | 0.000024             |
| T               | FIXIERUNGSMITTEL                     | GEB. WASSER C.GIPS                | 136.26727                    | 8.96E-06             |
| T               | FIXIERUNGSMITTEL                     | ADS. WASSER KIESELG.              | 54.12005                     | 3.56E-06             |
| Summe           | FIXIERUNGSMITTEL                     |                                   | 15 209 936.95554             | 1.000000             |
|                 |                                      |                                   |                              |                      |
| Gesamt          | summe                                |                                   | 89 023 925.34157             | 1.000000             |
|                 |                                      |                                   |                              |                      |

## B.3. Anorganische und organische Komponenten gesamt (in kg), sortiert nach Komponenten

| Komponente           | Org/<br>Anorg |    |     | sse Gesamt<br>[kg] | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|----------------------|---------------|----|-----|--------------------|------------------------------------|
| ADS. WASSER          | А             |    | 95  | 683.86738          | 1.07E-03                           |
| AG                   | A             |    |     | 3.43931            | 3.86E-08                           |
| AGCL                 | A             |    |     | 563.93492          | 6.33E-06                           |
| AGJ                  | A             |    |     | 20.93806           | 2.35E-07                           |
| AL                   | A             |    | 1   | 468.46538          | 1.65E-05                           |
| AL(NO3)3             | A             |    |     | 680.84879          | 7.65E-06                           |
| AL(OH)3              | Α             |    | 14  | 004.72358          | 1.57E-04                           |
| ALPO4                | A             |    |     | 129.78276          | 1.46E-06                           |
| ALUMINIUM            | Α             |    | 99  | 966.40218          | 1.12E-03                           |
| AL203                | A             | 2  | 999 | 689.39512          | 3.37E-02                           |
| ARM. STAHL           | Α             |    | 891 | 770.60773          | 1.00E-02                           |
| AS                   | A             |    |     | 235.19819          | 2.64E-06                           |
| AS203                | A             |    |     | 72.00000           | 8.09E-07                           |
| AU                   | A             |    |     | 2.69E-05           | 3.02E-13                           |
| В                    | A             |    |     | 630.78598          | 7.09E-06                           |
| BA                   | A             |    | 1   | 951.03601          | 2.19E-05                           |
| BABR2                | A             |    |     | 224.74620          | 2.52E-06                           |
| BAO                  | A             |    | 30  | 794.06112          | 3.46E-04                           |
| BASO4                | A             |    | 4.1 |                    | 4.71E-04                           |
| BAUSTAHL             | A             |    |     | 840.00123          | 7.14E-03                           |
| BA3 (ASO4) 2         | A             |    |     | 72.00000           | 8.09E-07                           |
| BE (125 1) 2         | A             | <  | 力   | 11.40354           | 1.28E-07                           |
| BERYLLIUMPULVER      | A             |    |     | 0.00100            | 1.12E-11                           |
| BI                   | A             | j. |     | 325.53848          | 3.66E-06                           |
| BLEI                 | A             |    | 12  | 574.05927          | 1.41E-04                           |
| BR                   | A             |    |     | 0.00078            | 8.77E-12                           |
| B2O3                 | A             |    | 36  | 321.20029          | 4.08E-04                           |
| C                    | A             |    |     | 525.51527          | 2.38E-03                           |
| CA                   | A             |    |     | 641.35914          | 2.54E-04                           |
| CA(NO3)2             | A             |    |     | 827.23602          | 5.42E-05                           |
| CACO3                | A             |    |     | 819.40191          | 9.60E-03                           |
| CAF2                 | A             |    |     | 833.09013          | 2.06E-05                           |
| CAO                  | A             | 10 |     | 502.55645          | 1.14E-01                           |
| CASO4                | A             |    |     | 515.25678          | 8.53E-03                           |
| CA10 (ASO4) 6 (OH) 2 | A             |    |     | 72.00000           | 8.09E-07                           |
| CA10(PO4)6(OH)2      | A             |    |     | 593.12658          | 6.66E-06                           |
| CA3 (ASS3) 2         | A             |    |     | 72.00000           | 8.09E-07                           |
| CA3 (PO4) 2          | A             |    |     | 8.39116            | 9.43E-08                           |
| CD                   | A             |    |     | 38.57565           | 4.33E-07                           |
| CE                   | A             |    | 2   | 278.76938          | 2.56E-05                           |
| CHRYSOTIL            | A             |    |     | 612.65026          | 7.93E-04                           |
| CL                   | A             |    |     | 719.08111          | 4.18E-05                           |
| CO                   | A             |    | 2   | 399.92688          | 2.70E-05                           |
| CR                   | A             |    |     | 8.08E-06           | 9.07E-14                           |
| CR (III)             | A             |    | 1   | 252.62118          | 1.41E-05                           |
| CR (VI)              | A             |    | _   | 20.83446           | 2.34E-07                           |
| CR (NO3) 3           | A             |    |     | 226.94971          | 2.55E-06                           |
| CR (OH) 3            | A             |    |     | 130.47491          | 1.47E-06                           |
| CRPO4                | A             |    |     | 560.58404          | 6.30E-06                           |
|                      | 4.1           |    |     |                    | 0.000                              |

| Komponente              | Org/<br>Anorg |   |     | sse Gesamt<br>[kg] | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|-------------------------|---------------|---|-----|--------------------|------------------------------------|
| CR203                   | A             |   | 4   | 986.88236          | 5.60E-05                           |
| CS                      | A             |   |     | 195.32310          | 2.19E-06                           |
| CU                      | A             |   | 2   | 897.50106          | 3.25E-05                           |
| CU(ASO2)2               | A             |   |     | 72.00000           | 8.09E-07                           |
| CU(NO3)2                | A             |   |     | 453.89943          | 5.10E-06                           |
| CUO                     | A             |   | 1   | 614.89958          | 1.81E-05                           |
| CU3 (ASO3) 2            | A             |   |     | 72.00000           | 8.09E-07                           |
| CU3 (ASO4) 2            | A             |   |     | 62.40168           | 7.01E-07                           |
| CU4 (ASO2) 6 (CH3COO) 2 | A             |   |     | 72.00000           | 8.09E-07                           |
| EU                      | A             |   |     | 58.59693           | 6.58E-07                           |
| F                       | A             |   | 13  | 731.34094          | 1.54E-04                           |
| FE                      | A             |   | 5   | 077.35368          | 5.70E-05                           |
| FE (NO3) 3              | A             |   |     | 907.79850          | 1.02E-05                           |
| FE (OH) 3               | A             |   | 2   | 193.40740          | 2.46E-05                           |
| FEO                     | A             |   | 81  | 827.33465          | 9.19E-04                           |
| FEOOH                   | A             |   |     | 550.64346          | 6.19E-06                           |
| FEPO4                   | Α             |   | 11  | 841.35589          | 1.33E-04                           |
| FE203                   | A             | 7 | 535 | 495.40078          | 8.46E-02                           |
| FE4[FE(CN)6]3           | Α             |   | 1   | 049.41554          | 1.18E-05                           |
| GEB. WASSER             | A             | 4 | 277 | 772.02404          | 4.81E-02                           |
| HF                      | A             |   |     | 472,03080          | 5.30E-06                           |
| HG                      | A             |   |     | 1.12019            | 1.26E-08                           |
| но                      | A             |   |     | 104.17231          | 1.17E-06                           |
| HYDRATWASSER            | A             |   | 502 | 498.66522          | 5.64E-03                           |
| нзвоз                   | A             |   | 155 | 702.38917          | 1.75E-03                           |
| K                       | A             |   | 3   | 433.60015          | 3.86E-05                           |
| KCL                     | A             |   |     | 910.80379          | 1.02E-05                           |
| KN03                    | Α             |   |     | 226.94971          | 2.55E-06                           |
| KOBALT                  | A             |   |     | 316.80000          | 3.56E-06                           |
| KRISTALLWASSER          | A             |   | 15  | 956.41511          | 1.79E-04                           |
| KUPFER                  | Α             |   | 19  | 641.96379          | 2.21E-04                           |
| K20                     | A             |   | 578 | 678.67861          | 6.50E-03                           |
| K4P2O7                  | Α             |   |     | 83.69999           | 9.40E-07                           |
| LA                      | A             |   | 1   | 285.87701          | 1.44E-05                           |
| LI                      | A             |   | 2   | 886.96202          | 3.24E-05                           |
| MG                      | A             |   | 7   | 939.67879          | 8.92E-05                           |
| MG (NO3)2               | A             |   | 2   | 042.54672          | 2.29E-05                           |
| MG (OH) 2               | A             |   | 4   | 178.31884          | 4.69E-05                           |
| MGC03                   | A             |   |     | 139.46141          | 1.57E-06                           |
| MGO                     | Α             |   | 205 | 279.97926          | 2.31E-03                           |
| MGSIO3                  | A             |   | 5   | 824.11350          | 6.54E-05                           |
| MN                      | A             |   |     | 6.08525            | 6.84E-08                           |
| MN (NO3)2               | Α             |   |     | 226.94971          | 2.55E-06                           |
| MNO                     | Α             |   |     | 801.01523          | 7.64E-05                           |
| MNO2                    | Α             |   | 7   | 552.07562          | 8.48E-05                           |
| MO                      | Α             |   |     | 26.25419           | 2.95E-07                           |
| M003                    | A             |   |     | 480.67828          | 5.40E-06                           |
| NA                      | A             |   | 26  | 995.30206          | 3.03E-04                           |
| NA-HEXAMETAPHOS PHAT    | A             |   |     | 519.51717          | 5.84E-06                           |
| NA-PYROPHOSPHAT         | A             |   | 2   | 597.73778          | 2.92E-05                           |
| NAAL (OH) 2CO3          | A             |   |     | 278.92281          | 3.13E-06                           |
| NABO2                   | A             |   | 32  | 728.76733          | 3.68E-04                           |
| NACL                    | A             |   |     | 559.67984          | 5.79E-04                           |
| NAF                     | A             |   | 2   | 723.39551          | 3.06E-05                           |

| Komponente                         | Org/<br>Anorg |    |     | sse Gesamt<br>[kg]     | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|------------------------------------|---------------|----|-----|------------------------|------------------------------------|
| NANO3                              | A             |    | 908 | 809.68051              | 1.02E-02                           |
| NAOH                               | A             |    |     | 611.99631              | 5.18E-05                           |
| NA2B407                            | A             |    |     | 464.60212              | 2.86E-04                           |
| NA2CO3                             | A             |    |     | 975.59380              | 1.10E-05                           |
| NA2HPO4                            | A             |    | 21  | 435.75683              | 2.41E-04                           |
| NA2M004                            | A             |    |     | 907.79850              | 1.02E-05                           |
| NA20                               | A             |    | 791 | 683.10853              | 8.89E-03                           |
| NA2S                               | A             |    |     | 17.28000               | 1.94E-07                           |
| NA2SIO3                            | A             |    | 1   | 434.15108              | 1.61E-05                           |
| NA2SO4                             | A             |    |     | 248.10795              | 9.35E-04                           |
| NA5-TRIPOLYPHOSPHAT                | A             |    |     | 869.25336              | 1.45E-04                           |
| NB                                 | A             |    |     | 227.87694              | 2.56E-06                           |
| ND                                 | A             |    | 1   | 139.38469              | 1.28E-05                           |
| NE-METALLE                         | A             | 1  |     | 015.43384              | 1.20E-02                           |
| NH4                                | A             |    | 36  | 348.82294              | 4.08E-04                           |
| NH4CL                              | А             |    |     | 652.32673              | 1.86E-05                           |
| NI                                 | A             |    |     | 212.86035              | 1.36E-05                           |
| NI-TITANGELB                       | A             |    |     | 456.02838              | 1.64E-05                           |
| NI (NO3) 2                         | A             |    |     | 226.94971              | 2.55E-06                           |
| NIO                                | A             |    | 4   | 356.60566              | 4.89E-05                           |
| NO2                                | A             |    | 8   | 159.88555              | 9.17E-05                           |
| 0                                  | Α             |    | 586 | 004.40955              | 6.58E-03                           |
| P                                  | Α             |    |     | 212.79764              | 2.39E-06                           |
| PB                                 | A             |    |     | 898.18140              | 1.01E-05                           |
| PBHASO4                            | A             |    |     | 72.00000               | 8.09E-07                           |
| PBO                                | A             |    |     | 13.10318               | 1.47E-07                           |
| PB4(PBOH)(ASO4)3                   | A             |    |     | 72.00000               | 8.09E-07                           |
| PORENWASSER                        | A             | 2  | 575 | 080.02280              | 2.89E-02                           |
| PO4                                | Α             |    | 6   | 297.21124              | 7.07E-05                           |
| P205                               | A             |    | 16  | 418.49038              | 1.84E-04                           |
| RB                                 | A             |    | 3   | 580.92455              | 4.02E-05                           |
| RUNO(NO3)3                         | A             |    |     | 453.89943              | 5.10E-06                           |
| S                                  | A             |    |     | 100.29988              | 1.13E-06                           |
| SB                                 | A             |    | 1   | 279.05225              | 1.44E-05                           |
| SC                                 | A             |    |     | 374.36926              | 4.21E-06                           |
| SE                                 | A             |    |     | 2.44791                | 2.75E-08                           |
| SI                                 | Α             |    | 1   | 102.54989              | 1.24E-05                           |
| SIC                                | A             |    |     | 339.36000              | 3.75E-05                           |
| SIO2                               | A             | 28 | 017 | 616.73243              | 3.15E-01                           |
| SM                                 | A             |    |     | 227.87694              | 2.56E-06                           |
| SN                                 | A             |    |     | 145.30526              | 1.29E-05                           |
| S03                                | A             |    |     | 023.14617              | 1.15E-05                           |
| SO4                                | A             |    | 7   | 113.61437              | 7.99E-05                           |
| SR                                 | A             |    | 4.0 | 6.16495                | 6.93E-08                           |
| SRO                                | A             |    | 48  | 155.96221              | 5.41E-04                           |
| STAHL GGG40                        | A             | ^  | 41  |                        | 4.69E-04                           |
| STAHL MRST37-2                     | A             | 8  | 522 | 702.75856              | 9.57E-02                           |
| STAHL RST37-2                      | A             |    |     | 952.95388              | 2.80E-04<br>7.15E-03               |
| STAHL ST 12.03                     | A<br>A        | 2  |     | 300.32404<br>389.48063 | 2.75E-03                           |
| STAHL ST 1303<br>STAHL ST 37       | A             | ۷  |     | 756.68932              | 6.82E-04                           |
| STAHL ST 37<br>STAHL ST 37-2 W 22  | A             | Λ  |     | 155.33020              | 5.27E-02                           |
| STAHL ST 37-2 W 22<br>STAHL STW 22 | A             | 1  |     | 901.74323              | 1.25E-02                           |
| STAHL 1.4301                       | A             | _  |     | 187.29654              | 5.97E-04                           |
| DIMIL I. TOUL                      |               |    | 55  |                        | 3.3,5 04                           |

B10

| Komponente            | Org/<br>Anorg |        | sse Gesamt<br>[kg] | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|-----------------------|---------------|--------|--------------------|------------------------------------|
| STAHL 1.4306          | A             |        | 80.50140           | 9.04E-07                           |
| STAHL 1.4541          | A             | 59     | 691.27736          | 6.71E-04                           |
| STAHL 1.4571          | A             |        | 170.58400          | 2.44E-05                           |
| SULFAMINSAEURE        | A             | _      | 5.02513            | 5.64E-08                           |
| TE                    | A             |        | 1.62769            | 1.83E-08                           |
| TH                    | A             |        | 222.96090          | 2.50E-06                           |
| TI                    | A             |        | 27.60912           | 3.10E-07                           |
| TIO2                  | A             | EO     | 424.48446          |                                    |
|                       |               |        |                    | 6.56E-04                           |
| TITAN                 | A             | T      | 685.88000          | 1.89E-05                           |
| TL                    | A             |        | 3.26707            | 3.67E-08                           |
| TM                    | A             |        | 472.03080          | 5.30E-06                           |
| U                     | A             |        | 66.89046           | 7.51E-07                           |
| V                     | A             | 1      | 034.97065          | 1.16E-05                           |
| Y                     | A             |        | 240.84476          | 2.71E-06                           |
| YB                    | Α             |        | 113.93847          | 1.28E-06                           |
| ZINK                  | Α             | 14     | 301.91800          | 1.61E-04                           |
| ZIRCALOY 2            | Α             | 35     | 822.67000          | 4.02E-04                           |
| ZN                    | A             | 8      | 007.67337          | 8.99E-05                           |
| ZN(NO3)2              | A             |        | 453.89943          | 5.10E-06                           |
| ZN (OH) 2             | A             |        | 58.72059           | 6.60E-07                           |
| ZNO                   | A             | 4      | 941.26459          | 5.55E-05                           |
| ZN3 (PO4)2            | A             | 2      | 936.35919          | 3.30E-05                           |
| ZRO                   | А             | 6      | 887.40141          | 7.74E-05                           |
| ZRO(NO3)2             | А             |        | 226.94971          | 2.55E-06                           |
| ,                     |               |        |                    |                                    |
| Summe anorganisch     |               | 82 537 | 402.87844          | 0.927137                           |
| -N (CH3)3             | 0             | 13     | 191.04512          | 1.48E-04                           |
| (NH4)2HC6H5O7         | 0             |        | 296.29831          | 3.33E-06                           |
| ABIETINSS.ETHYLESTER  | •0            |        | 192.61614          | 2.16E-06                           |
| ACETON (C3H6O)        | 0             | 1      | 321.25078          | 1.48E-05                           |
| ACRYLGLAS             | 0             | ,      | 418.32204          | 8.25E-04                           |
| ARYLAMIDGELB •        | 0             |        | 882.44144          | 9.91E-06                           |
| BAUMWOLLFASER         | 0             | 449    | 335.88730          | 5.05E-03                           |
| BENZOYLPEROXID        | 0             |        | 903.33802          | 1.01E-05                           |
| BENZYLALKOHOL         | 0             |        | 324.77419          | 3.65E-06                           |
| BISPH.DGL.E           | 0             | 12     | 706.27429          | 1.43E-04                           |
| BUTYLDIGLYKOL         | Ö             |        | 298.79294          | 1.46E-05                           |
| BUTYLGLYKOL           | Ö             | -      | 357.13008          | 4.01E-06                           |
| C                     | 0             | 322    | 291.07176          | 3.62E-03                           |
| CA                    | 0             | 522    | 3.84925            | 4.32E-08                           |
| CARBOXYMETHYLCELL.    | 0             |        | 177.45939          | 1.99E-06                           |
| CH3COONA              | 0             | 3      | 249.99276          | 3.65E-05                           |
| CU                    | 0             | 5      | 0.00027            | 3.03E-03<br>3.02E-12               |
| DDBSA NA-SALZ         | 0             | c      | 121.76102          | 6.88E-05                           |
| <b>^</b>              |               | 0      |                    |                                    |
| DIAETHYLENGLYKOL      | 0             |        | 39.03974           | 4.39E-07                           |
| DIBUTYLPHOSPHAT       | 0             |        | 113.47572          | 1.27E-06                           |
| DICHLORMETHAN CH2CL2  | 0             |        | 880.83386          | 9.89E-06                           |
| DIOCTYLPHTHALAT (DOP) | 0             |        | 017.82811          | 8.65E-04                           |
| DIOXAN (C4H8O2)       | 0             |        | 761.66771          | 1.98E-05                           |
| DIVINYLBENZOL         | 0             |        | 806.67604          | 2.03E-05                           |
| DODECAN C12H26        | 0             | 15     | 776.76952          | 1.77E-04                           |
| DODECYL.DIM.B.AM.CL   | 0             |        | 6.50156            | 7.30E-08                           |
| DODECYLPOLYGLY.7 ÄO   | 0             | 11     | 817.37057          | 1.33E-04                           |

| Komponente                    | Org/<br>Anorg |     | sse Gesamt<br>[kg]     | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|-------------------------------|---------------|-----|------------------------|------------------------------------|
| EPDM-KAUTSCHUK                | 0             | 5   | 404.95382              | 6.07E-05                           |
| ETHANOL (C2H5OH)              | 0             |     | 880.83386              | 9.89E-06                           |
| ETHYLACETAT (C4H8O2)          | 0             | 1   | 761.66771              | 1.98E-05                           |
| ETHYLBENZOL C6H5C2H5          | 0             |     | 440.41693              | 4.95E-06                           |
| ETHYLEN-VA-KAUTSCHUK          | 0             | 52  | 412.73003              | 5.89E-04                           |
| ETHYLENGLYKOL                 | 0             | 2   | 542.15086              | 2.86E-05                           |
| F                             | 0             |     | 61.61426               | 6.92E-07                           |
| FE                            | 0             |     | 0.01615                | 1.81E-10                           |
| FE (HCOO) 3                   | 0             |     | 29.29376               | 3.29E-07                           |
| FE(NH4)-EDTA                  | 0             |     | 46.28694               | 5.20E-07                           |
| FORMALDEHYD                   | 0             |     | 164.55282              | 1.85E-06                           |
| FULVOSAEUREN R.V.             | 0             |     | 014.59852              | 1.12E-04                           |
| GELATINE                      | 0             |     | 035.64500              | 1.16E-05                           |
| Н                             | 0             | 36  | 957.15985              | 4.15E-04                           |
| HEDP-NA                       | 0             |     | 389.63788              | 4.38E-06                           |
| HUMINE R.V.                   | 0             |     | 011.67475              | 1.12E-04                           |
| HUMINSAEUREN R.V.             | 0             | 10  | 116.62972              | 1.14E-04                           |
| I                             | 0             | 0   | 5.38E-05               | 6.05E-13                           |
| KOLLAGENE TS R.V.<br>K3C6H5O7 | 0             | 2   | 375.15976              | 2.67E-05<br>1.27E-06               |
| LIGNIN                        | 0             | 2.2 | 113.42847<br>129.97664 | 3.72E-04                           |
| MARLOPHEN 812                 | 0             |     | 723.39551              | 3.72E-04<br>3.06E-05               |
| MARLOX FK 64                  | 0             |     | 723.39551              | 3.06E-05                           |
| METHANOL (CH3OH)              | 0             | 2   | 470.33562              | 5.28E-06                           |
| MG                            | Ö             |     | 0.07268                | 8.16E-10                           |
| MN                            | 0             |     | 5.38E-05               | 6.05E-13                           |
| MONOBUTYLPHOSPHAT             | 0             |     | 113.47572              | 1.27E-06                           |
| MONOSTEARYLPHOSPHAT           | 0             | 1   | 493.68783              | 1.68E-05                           |
| N                             | 0             | 2   | 332.18291              | 2.62E-05                           |
| NA-ABIETAT                    | <b>*</b> O    | 1   | 733.54529              | 1.95E-05                           |
| NA-PALMITAT                   | 0             | 6   | 297.21124              | 7.07E-05                           |
| NA-TOLUOLSULFONAT             | 0             |     | 259.75859              | 2.92E-06                           |
| NA2-EDTA                      | 0             |     | 0.08593                | 9.65E-10                           |
| NA2-HYDROGENCITRAT            | 0             | 1.0 | 324.77419              | 3.65E-06                           |
| NA2C2O4                       | 0             |     | 521.68556              | 1.52E-04                           |
| NA2C4H4O6                     | 0             |     | 287.55949              | 1.49E-04                           |
| NA3C6H5O7                     | 0             |     | 808.02213<br>068.27452 | 1.55E-04                           |
| NEOPREN [C4H5CL]              | 0             |     | 433.78472              | 3.83E-04<br>6.56E-04               |
| OEL (C10H22)                  | 0             |     | 577.70629              | 5.91E-04                           |
| P (CIONZE)                    | 0             | 32  | 3.06863                | 3.45E-08                           |
| PA NYLON 6 [C6H11ON]          | 0             | 50  | 316.22083              | 5.65E-04                           |
| PALMITINS.MYRICYLEST          | 0             |     | 724.65404              | 3.06E-05                           |
| PARAFFIN                      | 0             |     | 951.18759              | 2.19E-05                           |
| PE                            | 0             |     | 272.30273              | 3.22E-03                           |
| PETP                          | 0             | 52  | 412.73003              | 5.89E-04                           |
| PHB-METHYLESTER               | 0             |     | 116.96732              | 1.31E-06                           |
| PHTHALSAEUREANHYDRID          | 0             |     | 795.38063              | 4.26E-05                           |
| POLYDIMETHYLSILOXANE          | 0             |     | 162.00936              | 2.43E-05                           |
| POLYESTER                     | 0             |     | 412.73003              | 5.89E-04                           |
| POLYISOPREN                   | 0             |     | 124.04008              | 2.47E-03                           |
| POLYSTYROL                    | 0             | 188 | 348.51799              | 2.12E-03                           |
| POPOP<br>PP                   | 0             | ~~  | 0.44042<br>473.70448   | 4.95E-09                           |
| СС                            | 0             | 90  | 4/3./0448              | 7.47E-04                           |
|                               |               |     |                        |                                    |

B12

| Komponente                                                                                                                                                                     | Org/<br>Anorg |    |                                  | sse Gesamt<br>[kg]                                                                                                                                                                                                    | Anteil am<br>Gesamtinv.<br>[kg/kg]                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PPO PROPYLENGLYKOL PTFE PUR PVC S SI-KAUTSCHUK SO3 TOLUOL (C6H5CH3) TRIBUTYLPHOSPHAT TRICHLORETHAN TRIETHANOLAMINOLEAT XYLOL ZELLSTOFF ZELLULOSE (C6H10O5) ZELLULOSE PAPIER ZN |               | 2  | 50<br>301<br>21<br>59<br>14<br>7 | 6.60625<br>162.38709<br>289.52760<br>012.22700<br>539.44277<br>521.07366<br>344.49864<br>999.52719<br>880.83386<br>195.91924<br>270.00000<br>324.77419<br>433.37026<br>489.74800<br>198.51474<br>390.20010<br>0.00888 | 7.42E-08<br>1.82E-06<br>7.06E-05<br>5.62E-04<br>3.39E-03<br>2.42E-04<br>6.67E-04<br>1.68E-04<br>9.89E-06<br>8.08E-05<br>3.03E-06<br>3.65E-06<br>4.87E-06<br>2.86E-04<br>3.20E-02<br>9.57E-03<br>9.98E-11 |
| Summe organisch                                                                                                                                                                |               | 6  | 486                              | 522.46313                                                                                                                                                                                                             | 0.072863                                                                                                                                                                                                 |
| Summe Gesamt                                                                                                                                                                   |               | 89 | 023                              | 925.34157                                                                                                                                                                                                             | 1.000000                                                                                                                                                                                                 |

B13

## **B.4.** Elemente in anorganischer bzw. organischer Bindung gesamt (in kg), sortiert nach Elementen

|          | Element | Form    | Ма       | sse Gesamt<br>[kg] | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|----------|---------|---------|----------|--------------------|------------------------------------|
|          | AG      | A ANORG |          | 52.08497           | 5.85E-07                           |
|          | AG      | A LEG   |          | 0.46720            | 5.25E-09                           |
|          | AG      | A MIN   |          | 3.25538            | 3.66E-08                           |
|          | AG      | A SALZ  |          | 382.15578          | 4.29E-06                           |
|          | AL      | A ANORG | 8        | 239.95161          | 9.26E-05                           |
|          | AL      | A LEG   | 99       | 601.11322          | 1.12E-03                           |
|          | AL      | A MET   | 72       |                    | 8.16E-04                           |
|          | AL      | A MIN   | 1 574    | 948.19754          | 1.77E-02                           |
|          | AL      | A OXID  | 10       | 387.05599          | 1.17E-04                           |
|          | AL      | A SALZ  |          | 492.43028          | 5.53E-06                           |
|          | AS      | A ANORG |          | 0.10678            | 1.20E-09                           |
|          | AS      | A LEG   |          | 0.12574            | 1.41E-09                           |
|          | AS      | A MIN   |          | 235.09141          | 2.64E-06                           |
|          | AS      | A OXID  |          | 54.53211           | 6.13E-07                           |
|          | AS      | A SALZ  |          | 206.53470          | 2.32E-06                           |
|          | AU      | A ANORG |          | 2.69E-05           | 3.02E-13                           |
|          | В       | A ANORG | 26       | 903.24700          | 3.02E-04                           |
|          | В       | A LEG   |          | 0.01791            | 2.01E-10                           |
|          | В       | A MIN   | 11       | 443.07284          | 1.29E-04                           |
|          | В       | A OXID  |          | 466.63673          | 5.24E-06                           |
|          | В       | A SALZ  | 11       | 171.42075          | 1.25E-04                           |
|          | BA      | A ANORG | 5        | 175.50339          | 5.81E-05                           |
|          | BA      | A MIN   | 47       | 125.16115          | 5.29E-04                           |
|          | BA      | A OXID  | 1        | 881.59970          | 2.11E-05                           |
|          | BA      | A SALZ  | <b>•</b> | 146.87162          | 1.65E-06                           |
|          | BE      | A ANORG |          | 1.35E-07           | 1.51E-15                           |
|          | BE      | A MET   |          | 0.00100            | 1.12E-11                           |
|          | BE      | A MIN   |          | 11.40354           | 1.28E-07                           |
|          | BI      | A LEG   |          | 11.31665           | 1.27E-07                           |
|          | BI      | A MIN   |          | 325.53848          | 3.66E-06                           |
|          | BR      | A ANORG |          | 0.00078            | 8.77E-12                           |
|          | BR      | A SALZ  |          | 120.87516          | 1.36E-06                           |
|          | С       | A ANORG |          | 111.96815          | 5.07E-04                           |
|          | C       | A ELEM  |          | 088.17267          | 6.97E-04                           |
|          | C       | A LEG   |          | 409.03787          | 3.19E-04                           |
|          | C       | A MIN   |          | 545.18040          | 2.29E-03                           |
| 4        | C       | A OXID  | 4        | 515.83928          | 5.07E-05                           |
| 4        | C       | A SALZ  |          | 267.45792          | 3.00E-06                           |
|          | CA      | A ANORG | 4        |                    | 4.89E-05                           |
| <u> </u> | CA      | A LEG   |          | 0.99966            | 1.12E-08                           |
|          | CA      | A MIN   |          | 580.78611          | 8.76E-02                           |
|          | CA      | A OXID  |          | 923.85911          | 2.01E-04                           |
|          | CA      | A SALZ  | 5        |                    | 6.21E-05                           |
|          | CD      | A ANORG |          | 5.95406            | 6.69E-08                           |
|          | CD      | A LEG   |          | 15.75002           | 1.77E-07                           |
|          | CD      | A MIN   |          | 6.52661            | 7.33E-08                           |
|          | CD      | A SALZ  | ^        | 26.09498           | 2.93E-07                           |
|          | CE      | A MIN   | 2        | 278.76938          | 2.56E-05                           |
|          | CL      | A ANORG |          | 261.52751          | 2.94E-06                           |

B14

| Element  | Form              | Masse Gesamt<br>[kg]        | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|----------|-------------------|-----------------------------|------------------------------------|
| CL       | A MIN             | 1 144.89411                 | 1.29E-05                           |
| CL       | A SALZ            | 35 257.83626                | 3.96E-04                           |
| CO       | A ANORG           | 317.18524                   | 3.56E-06                           |
| CO       | A LEG             | 1 387.21787                 | 1.56E-05                           |
| CO       | A MIN             | 1 304.41863                 | 1.47E-05                           |
| CO       | A SALZ            | 1 095.12301                 | 1.23E-05                           |
| CR       | A ANORG           | 198.33087                   | 2.23E-06                           |
| CR       | A LEG             | 20 756.77780                | 2.33E-04                           |
| CR (III) | A ANORG           | 1.08135                     | 1.21E-08                           |
| CR (III) | A MIN             | 85.43307                    | 9.60E-07                           |
| CR (III) | A OXID            | 3 412.03700                 | 3.83E-05                           |
| CR (III) | A SALZ            | 1 281.54072                 | 1.44E-05                           |
| CR (VI)  | A MIN             | 20.83446                    | 2.34E-07                           |
| CS       | A ANORG           | 5.38E-06                    | 6.05E-14                           |
| CS       | A MIN             | 195.32309                   | 2.19E-06                           |
| CU       | A ANORG           | 36.28050                    | 4.08E-07                           |
| CU       | A LEG             | 76 996.81038                | 8.65E-04                           |
| CU       | A MET             | 775 379.20497               | 8.71E-03                           |
| CU       | A MIN             | 814.04008                   | 9.14E-06                           |
| CU       | A OXID            | 2 253.94800                 | 2.53E-05                           |
| CU       | A SALZ            | 1 328.49151                 | 1.49E-05                           |
| EU       | A LEG             | 0.00380                     | 4.27E-11                           |
| EU       | A MIN             | 58.59693                    | 6.58E-07                           |
| F        | A ANORG           | 328.71043                   | 3.69E-06                           |
| F        | A MIN             | 11 415.98924<br>4 111.01024 | 1.28E-04                           |
| F        | A SALZ<br>A ANORG | 3 347.31091                 | 4.62E-05<br>3.76E-05               |
| FE<br>FE | A ANORG           | 18 959 529.62246            | 2.13E-01                           |
| FE       | A MIN             | 662 957.21290               | 7.45E-03                           |
| FE       | A OXID            | 4 673 211.49196             | 5.25E-02                           |
| FE       | A SALZ            | 6 247.81442                 | 7.02E-05                           |
| Н        | A ANORG           | 8 298.79707                 | 9.32E-05                           |
| H        | A LEG             | 0.89557                     | 1.01E-08                           |
| H        | A MIN             | 796.40502                   | 8.95E-06                           |
| Н        | A SALZ            | 8 599.67970                 | 9.66E-05                           |
| HF       | A LEG             | 3.58227                     | 4.02E-08                           |
| HF       | A MIN             | 472.03080                   | 5.30E-06                           |
| HG       | A ANORG           | 0.14171                     | 1.59E-09                           |
| HG       | A MIN             | 0.97848                     | 1.10E-08                           |
| НО       | A LEG             | 0.00380                     | 4.27E-11                           |
| НО       | A MIN             | 104.17231                   | 1.17E-06                           |
| H20      | A ANORG           | 7 466 990.99454             | 8.39E-02                           |
| I        | A SALZ            | 11.31790                    | 1.27E-07                           |
| K        | A ANORG           | 1 383.70426                 | 1.55E-05                           |
| K        | A MIN             | 480 234.57049               | 5.39E-03                           |
| K        | A OXID            | 632.21750                   | 7.10E-06                           |
| K        | A SALZ            | 2 176.98973                 | 2.45E-05<br>1.44E-05               |
| LA<br>LI | A MIN<br>A MIN    | 1 285.87701<br>1 791.83901  | 1.44E-05<br>2.01E-05               |
| LI       | A MIN<br>A SALZ   | 1 095.12301                 | 1.23E-05                           |
| MG       | A ANORG           | 4 402.57678                 | 1.23E-05<br>4.95E-05               |
| MG       | A ANORG<br>A LEG  | 26.14309                    | 2.94E-07                           |
| MG       | A MIN             | 142 535.39302               | 1.60E-03                           |
| MG       | A OXID            | 5 952.86679                 | 6.69E-05                           |
| - 1-0    |                   | 5 5 5 2 2 2 6 6 7 5         | 0.001 00                           |

B15

| Element  | Form             | Masse Gesamt<br>[kg]       | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|----------|------------------|----------------------------|------------------------------------|
| MG       | A SALZ           | 1 570.50866                | 1.76E-05                           |
| MN       | A ANORG          | 25.03651                   | 2.81E-07                           |
| MN       | A LEG            | 61 118.50347               | 6.87E-04                           |
| MN       | A MET            | 961.21389                  | 1.08E-05                           |
| MN       | A MIN            | 8 224.98809                | 9.24E-05                           |
| MN       | A OXID           | 886.79121                  | 9.96E-06                           |
| MN       | A SALZ           | 978.42962                  | 1.10E-05                           |
| MO       | A ANORG          | 1.83880                    | 2.07E-08                           |
| MO       | A LEG            | 118.00172                  | 1.33E-06 ◀                         |
| MO       | A MIN            | 24.41539                   | 2.74E-07                           |
| MO       | A OXID           | 320.38940                  | 3.60E-06                           |
| MO       | A SALZ           | 422.95745                  | 4.75E-06                           |
| N        | A ANORG          | 167.17926                  | 1.88E-06                           |
| N        | A LEG            | 1 322.28772                | 1.49E-05                           |
| N        | A SALZ           | 182 937.95851              | 2.05E-03                           |
| NA       | A ANORG          | 10 090.27858               | 1.13E-04                           |
| NA       | A LEG            | 0.39284                    | 4.41E-09                           |
| NA       | A MIN            | 587 357.42652              | 6.60E-03                           |
| NA       | A OXID           | 556.95351                  | 6.26E-06                           |
| NA       | A SALZ           | 343 952.17975              | 3.86E-03                           |
| NB       | A LEG            | 9.54041                    | 1.07E-07                           |
| NB       | A MIN            | 227.87694                  | 2.56E-06                           |
| ND       | A MIN            | 1 139.38469                | 1.28E-05                           |
| NI       | A ANORG          | 64.12695                   | 7.20E-07                           |
| NI       | A LEG            | 12 118.53553               | 1.36E-04                           |
| NI       | A MET            | 5 340.07717                | 6.00E-05                           |
| NI       | A MIN            | 1 141.77403                | 1.28E-05                           |
| NI       | A OXID           | 2 392.81078                | 2.69E-05                           |
| NI       | A SALZ           | 1 156.74353                | 1.30E-05                           |
| 0        | A ANORG          | 172 591.78908              | 1.94E-03                           |
| 0        | A LEG            | 48.87979                   | 5.49E-07                           |
| 0        | A MIN            | 21 259 085.44329           | 2.39E-01                           |
| 0        | A OXID           | 2 078 045.22089            | 2.33E-02                           |
| 0        | A SALZ           | 622 500.53337              | 6.99E-03                           |
| P        | A ANORG          | 4 970.17766                | 5.58E-05                           |
| P        | A LEG            | 8 136.97659                | 9.14E-05                           |
| P        | A MIN            | 7 171.04150                | 8.06E-05                           |
| P        | A SALZ           | 9 162.69782                | 1.03E-04                           |
| PB       | A ANORG          | 116.17734                  | 1.31E-06                           |
| PB       | A LEG            | 12 699.76115               | 1.43E-04                           |
| PB       | A MET            | 1 068.01543                | 1.20E-05                           |
| PB       | A MIN            | 651.52916                  | 7.32E-06                           |
| PB       | A OXID           | 12.16392                   | 1.37E-07                           |
| PB       | A SALZ           | 224.20265                  | 2.52E-06                           |
| RB       | A ANORG          | 0.00124                    | 1.39E-11                           |
| RB<br>RU | A MIN<br>A SALZ  | 3 580.92332<br>144.67651   | 4.02E-05                           |
| s<br>S   | A ANORG          |                            | 1.63E-06                           |
| s<br>S   | A ANORG<br>A LEG | 1 509.00169<br>7 925.57814 | 1.70E-05<br>8.90E-05               |
| s<br>S   | A MIN            | 182 767.65290              | 2.05E-03                           |
| S        | A SALZ           | 22 087.49102               | 2.48E-04                           |
| SB       | A ANORG          | 92.55541                   | 1.04E-06                           |
| SB       | A LEG            | 0.25148                    | 2.82E-09                           |
| SB       | A MIN            | 183.92924                  | 2.07E-06                           |
| 20       | T IIII           | 100.92924                  | 2.076-00                           |

B16

| Element       | Form    | Masse Gesamt<br>[kg] | Anteil am<br>Gesamtinv.<br>[kg/kg] |
|---------------|---------|----------------------|------------------------------------|
| SB            | A SALZ  | 1 095.12301          | 1.23E-05                           |
| SC            | A MIN   | 374.36926            | 4.21E-06                           |
| SE            | A MIN   | 2.44791              | 2.75E-08                           |
| SI            | A ANORG | 16 995.78309         | 1.91E-04                           |
| SI            | A LEG   | 20 667.08118         | 2.32E-04                           |
| SI            | A MIN   | 13 065 270.19405     | 1.47E-01                           |
| SI            | A OXID  | 33 246.50484         | 3.73E-04                           |
| SI            | A SALZ  | 1 095.12301          | 1.23E-05                           |
| SM            | A LEG   | 0.00380              | 4.27E-11                           |
| SM            | A MIN   | 227.87694            | 2.56E-06                           |
| SN            | A ANORG | 5.92057              | 6.65E-08                           |
| SN            | A LEG   | 566.46949            | 6.36E-06                           |
| SN            | A MET   | 8 116.91730          | 9.12E-05                           |
| SN            | A MIN   | 1 139.38469          | 1.28E-05                           |
| SR            | A ANORG | 6.16495              | 6.93E-08                           |
| SR            | A MIN   | 40 720.41923         | 4.57E-04                           |
| TA            | A LEG   | 0.01999              | 2.25E-10                           |
| TE            | A MIN   | 1.62769              | 1.83E-08                           |
| TH            | A MIN   | 222.96090            | 2.50E-06                           |
| TI            | A ANORG | 6 202.39102          | 6.97E-05                           |
| TI            | A LEG   | 249.61803            | 2.80E-06                           |
| TI            | A MIN   | 23 396.05807         | 2.63E-04                           |
| TI            | A OXID  | 7 912.94987          | 8.89E-05                           |
| TL            | A MIN   | 3.26707              | 3.67E-08                           |
| TM            | A MIN   | 472.03080            | 5.30E-06                           |
| U             | A ANORG | 2.69E-07             | 3.02E-15                           |
| Ū             | A LEG   | 0.16120              | 1.81E-09                           |
| Ŭ             | A MIN   | 66.89046             | 7.51E-07                           |
| V             | A ANORG | 56.06131             | 6.30E-07                           |
| V             | A LEG   | 4.99832              | 5.61E-08                           |
| V             | A MIN   | 978.90934            | 1.10E-05                           |
| W             | A LEG   | 3.58227              | 4.02E-08                           |
| Y             | A OXID  | 240.84476            | 2.71E-06                           |
| YB            | A MIN   | 113.93847            | 1.28E-06                           |
| ZN            | A ANORG | 2 334.26332          | 2.62E-05                           |
| ZN            | A LEG   | 14 103.61853         | 1.58E-04                           |
| ZN            | A MET   | 204 524.95558        | 2.30E-03                           |
| ZN            | A MIN   | 4 884.60518          | 5.49E-05                           |
| ZN            | A OXID  | 5 094.88488          | 5.72E-05                           |
| ZN            | A SALZ  | 1 351.03255          | 1.52E-05                           |
| ZR            | A LEG   | 35 095.41438         | 3.94E-04                           |
| ZR            | A MIN   | 5 859.69393          | 6.58E-05                           |
| ZR            | A SALZ  | 89.53409             | 1.01E-06                           |
|               |         |                      |                                    |
| Summe anorgan | nisch   | 82 537 402.87844     | 0.927137                           |
| С             | O ORG   | 3 431 323.84478      | 3.85E-02                           |
| C             | O SALZ  | 10 762.30865         | 1.21E-04                           |
| CA            | O ORG   | 3.84925              | 4.32E-08                           |
| CL            | O ORG   | 186 914.44802        | 2.10E-03                           |
| CA            | O ORG   | 0.00027              | 3.02E-12                           |
| F             | O ORG   | 4 840.53607          | 5.44E-05                           |
| FE            | O ORG   | 0.01615              | 1.81E-10                           |
| 1 II          | O ONG   | 0.01013              | 1.015-10                           |

**B17** 

| E.                                                             | lement           | Form                                                                           |   | Mas                        | sse Gesamt<br>[kg]                                                                                                                                             | G   | anteil am<br>Gesamtinv.<br>[kg/kg]                                                                                                                                   |
|----------------------------------------------------------------|------------------|--------------------------------------------------------------------------------|---|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FI<br>H<br>H<br>I<br>K<br>M<br>M<br>M<br>N<br>N<br>N<br>N<br>N | G<br>N<br>A<br>A | O SALZ O ORG O SALZ O ORG O SALZ O ORG O ANORG O ORG O SALZ O ORG O SALZ O ORG | 2 | 16<br>1<br>12<br>283<br>20 | 15.70831<br>784.64627<br>696.72030<br>5.38E-05<br>43.42303<br>0.07268<br>5.38E-05<br>292.80854<br>42.07587<br>136.06810<br>452.47593<br>403.85956<br>664.71545 |     | 1.76E-07<br>5.22E-03<br>7.83E-06<br>6.05E-13<br>4.88E-07<br>8.16E-10<br>6.05E-13<br>1.83E-04<br>4.73E-07<br>1.28E-05<br>1.40E-04<br>2.56E-02<br>2.32E-04<br>1.26E-05 |
| P<br>S                                                         |                  | O ORG<br>O ORG                                                                 |   |                            | 117.38844<br>732.15138                                                                                                                                         |     | 3.23E-04                                                                                                                                                             |
| Si                                                             | I                | O ORG                                                                          |   | 23                         | 295.33711                                                                                                                                                      | . ( | 2.62E-04                                                                                                                                                             |
| Zī                                                             | Ŋ                | O ORG                                                                          |   |                            | 0.00888                                                                                                                                                        |     | 9.98E-11                                                                                                                                                             |
| Sı                                                             | umme organisch   |                                                                                | 6 | 486                        | 522.46313                                                                                                                                                      |     | 0.072863                                                                                                                                                             |
|                                                                | umme Gesamt      |                                                                                |   |                            | 925.34157                                                                                                                                                      |     | 1.000000                                                                                                                                                             |