Deckblatt

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Diatt. 4	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	ииии	NN	Blatt: 1	
9A	55211000				НА	RB	0013	00	Stand: 19.11.2021	

Titel der Unterlage:

ERKUNDUNGSBOHRUNG REMLINGEN R15 - GEOLOGISCHE FACHBETREUUNG ABSCHLUSSBERICHT

Ersteller/Unterschrift:	Prüfer/Unterschrift:
GEOSERVICE GMBH/	

Stempelfeld:

UVST:

25. 10. 25

Datum und Unterschrift

bergrechtlich verantwortliche Person:
0 8. NOV, 2023

atomrechtlich verantwortliche Person:
0 9. NOV, 2023

Bereichsleitung:
0 9. NOV, 2023

Control of the person:
0 9. NOV, 2023

Bereichsleitung:
0 9. NOV, 2023

Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Dritten zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zustimmung der BGE.

Revisionsblatt

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	DI=#4. 0	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt: 2	
9A	55211000				НА	RB	0013	00	Stand: 19.11.2021	

Titel der Unterlage:

ERKUNDUNGSBOHRUNG REMLINGEN R15 - GEOLOGISCHE FACHBETREUUNG **ABSCHLUSSBERICHT**

Rev.	RevStand Datum	Verantwortliche Stelle	Revidierte Blätter	Kat.*	Erläuterung der Revision
00	19.11.2021	ASE-RH.1			Ersterstellung
		,			

Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung mindestens bei der Kategorie S müssen Erläuterungen angegeben werden

Stand:

19.11.2021

Blatt: 1

DECKBLATT

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ииииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	ииии	NN
9A	55211000	GEO			НА	BW	0001	00

Kurztitel der Unterlage:

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Ersteller / Unterschrift:

Prüfer / Unterschrift:

GeoService GmbH/

ASE-RH.1/

Titel der Unterlage:

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung Abschlussbericht

Freigabevermerk:

DokID: 12018893

Projekt PSP Element		kt PSP Element Funktion/Thema				Komponente	
917	55	211000					
Baugrup	ре	Aufgabe	UA	Lfd. Nr.	Rev.		
		HA	RB	0013	00		

Freigabedurchlauf									
Fachbereich: ASE-RH	Stabsstelle	Qualitätssicherung:		Endfreiga ASE - 3	abe: L				
Datum: 15.09.2013	Datum:	12.4. OKT. 2023		Datum:	O 8. NOV. 2023				
Name	Name:			Name:					
/									

2019-07-22_KQM_Deck-Revisionsblatt_REV23

Blatt: 2a

Erläuterung der Revision

Lfd Nr.

ииии

0001

Rev.

NN

00

	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA
REVISIONSBLATT	NAAN	ииииииииии	NNAAANN	AANNNA	AANN	AAAA	AA
REVISIONSBEATT	9A	55211000	GEO [°]			НА	BW

Kurztitel der Unterlage:

Rev Revisionsstand

00

Datum

19.11.2021

Verantwortl.

Stelle

ASE-RH.1

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

revidierte Blätter Kat. *)

	4			
	9			
			5	
b)				
¥				
egorie R = reda				

Ersterstellung

Blatt: 3

Inhaltsverzeichnis

Blatt

N1.1-1.	4
Deckblatt	
Revisionsblatt	
nhaltsverzeichnis	
Freigabeblatt des AuftragnehmersEinleitung	
Einleitung	
Apkurzungen	
3.1 Grund und Stammdaten	
3.2 Geographische Lage der Bohrung	
3.3 Bohrlochdaten	
3.4 Bohrlochabschnitte R15-S1	o
3.5 Bohrlochabschnitte R15-S2	
3.6 Meißeleinsätze R15-S1	
3.7 Meißeleinsätze R15-S2	
Technische Daten	
5 Zeit-Teufe	
5.1 Zeit-Teufe Diagramm R15-S1	
5.2 Zeit-Teufe Diagramm R15-S2	
Geologie	
6.1 Schichtenverzeichnis	
6.1.1 Schichtenverzeichnis R15-S1	
6.1.2 Schichtenverzeichnis R15-S2	
6.2 Stratigraphie	18
6.2.1 Stratigraphisches Profil R15-S1	
6.2.2 Stratigraphisches Profil R15-S2	20
6.3 Kernmarschverzeichnis	20
6.4 Kernqualität R15-S1	21
6.5 Kernqualität R15-S2	22
6.6 Gasüberwachung	
Verlauf der Bohrung	
7.1 Bohrungsverlauf R15-S1	
7.2 Bohrungsverlauf R15-S2	
B Bromidanalytik	
8.1 Bromidanalytik R15-S1	
	42
Kaliumanalytik R15-S1	
9.1 Kaliumprofil R15-S1	
9.2 Kaliumprofil R15-S2	
0 Literaturverzeichnis	56
Javraiakuia day Ankiin ya	
/erzeichnis der Anhänge	E 7
Anhang 1: Bromid- und Kaliumanalysen - Prüfberichte	
Anhang 3: Kernmarschverzeichnis R15-S21 Anhang 4: Litholog R15-S1 1:10001	
Anhang 5: Litholog R15-S1 1:1000	
Alliang 5. Litholog 1(15-52-1.1000	1.1
Tabellenverzeichnis	
Fabelle 1: Bohrlochdaten	9
Tabelle 2: Bohrlochabschnitte R15-S1	
Fabelle 3: Bohrlochabschnitte R15-S2	
Tabelle 4: Meißeleinsätze R15-S1	
Tabelle 5: Meißeleinsätze R15-S2	

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			HA	BW	0001	00

Blatt: 4

Erkundungsbonit	ang Kemingen K15-Geologische Fachbetreuung-Abschlussbencht	
Tabella 6: Techr	nische Daten	
	htenverzeichnis R15-S1	
	htenverzeichnis R15-S2htenverzeichnis R15-S2	
	graphie R15-S1	
	tigraphie R15-S2	
	überwachung	
	reydaten R15-S1	
	reydaten R15-S2	
	nidanalysen R15-S1, nach Entnahmeteufe geordnet	
	nidanalysen R15-S2	
	umanalysen R15-S1, geordnet nach Teufeumanalysen R15-S2	
rabelle 17. Nalii	illialialysell K15-52	
Abbildungsver		
Abbildung 1:	Der blaue Marker zeigt die Bohrlokation nördlich der Gemeinde F	Remlingen, Karte:
Leaflet, OpenStr	reetMapreetMap	8
Abbildung 2:	Regionalgeologischer Überblick im Umfeld der Asse, Höhenmode	el: GTOPO30 9
Abbildung 3:	Zeit-Teufe R15-S1	12
Abbildung 4:	Zeit-Teufe R15-S2	13
Abbildung 5:	RQD und Kernqualität R15-S1	22
Abbildung 6:	RQD-Index und Bohrkernqualität der R15-S2	23
Abbildung 7:	Bohrungsverlauf R15-S1, Horizontalprojektion	
Abbildung 8:	Bohrungsverlauf R15-S1, Vertikalprojektion	
Abbildung 9:	Bohrungsverlauf R15-S1 abgelenkt aus der R15, 3D-Projektion	31
Abbildung 10:	Bohrungsverlauf R15-S2, Horizontalprojektion	
Abbildung 11:	Bohrungsverlauf R15-S2, Vertikalprojektion	
Abbildung 12:	Bohrungsverlauf der R15-S2 abgelenkt aus der R15, 3D-Projektion	on36
Abbildung 13:	Bohrungsverlauf R15-S1 und R15-S2, Teufe in m TVD von Acke	rsohle, Blick nach
SW	37	
Abbildung 14:	Bromidprofil R15-S1, Abszisse logarithmisch	41
Abbildung 15:	Bromidprofil R15-S2	46
Abbildung 16:	Kaliumprofil R15-S1, Abszisse in logarithmischer Skala	50
Abbildung 17:	Kaliumprofil R15-S2	55
	х у	
Anzahl dar Blö	tter dieses Dokumentes	112
Alizaili dei bia	ter dieses bokumentes	112
Verzeichnis de	r Anlagen Anzahl der Bl	ätter der Anlage
Anlage 1: Erkun	dungsbohrung Remlingen 15-S1 - Feldbericht - geologische Kerna	aufnahme,
Fotod	okumentation (BGE-Asse-KZL: 9A/55211000/GEO/-/-/HA/BW/000)2/00; PT:
PT08	5428; DokID: 12018977)	339
Anlage 2: Erkun	dungsbohrung Remlingen 15-S1 - Feldbericht - geologische Kerna	aufnahme,
	ernaufnahmeprotokolle (BGE-Asse-KZL: 9A/55211000/GEO/-/-/HA	
PT: P	T085426; DokID: 12018978)	135
Anlage 3: Erkun	dungsbohrung Remlingen 15-S2 - Feldbericht - geologische Kerna	aufnahme,
	okumentation (BGE-Asse-KZL: 9A/55211000/GEO/-/-/HA/BW/000	
	5427; DokID: 12018979)	
	dungsbohrung Remlingen 15-S2 - Feldbericht - geologische Kerna	
	ernaufnahmeprotokolle (BGE-Asse-KZL: 9A/55211000/GEO/-/-/HA	
	T085425; DokID: 12018980)	
	·	

Gesamte Blattzahl dieser Unterlage821

Proiekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	1
623 (42)	TODAY OF A SECOND		7000000	700074	110			Taranta and Tarant	1
9A	55211000	GEO			HA	BW	0001	00	ı

Blatt: 5

Freigabeblatt des Auftragnehmers

Auftraggeber:

Bundesgesellschaft für Endlagerung mbH (BGE)

ASH-RH Rückholung Straße: Am Walde 2

PLZ ORT: 38319 Remlingen

Telefon: -

Fax: 05336 89

E-Mail: -

Auftragnehmer:

GeoService GmbH

Kreuzstraße 19 D-26603 Aurich

Telefon: -Fax: -E-Mail: -

Bestell-Nr. (AG)

45203088

Auftrag-Nr. (AN)

Ersteller/Bearbeiter (AN)

Name / Unterschrift

Aurich, den 19.11.2021

Prüfer (AN)

Freigabe* (AN)

Name / Unterschrift

Name / Unterschrift

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	55211000	GEO			НА	BW	0001	00	

Blatt: 6

1 Einleitung

Der vorliegende Abschlussbericht fasst die Ergebnisse der geologischen Fachbetreuung und der Aufzeichnung bohrtechnischer Parameter der Sidetrack-Bohrungen Remlingen R15-S1 (00YZZ06/RB719) und R15-S2(00YZZ06/RB726) durch die Firma GeoService GmbH zusammen. Die Firma GeoService GmbH wurde seitens der BGE beauftragt, die lithologische und stratigraphische Erstansprache der Bohrkerne während der laufenden Bohrarbeiten durchzuführen. Zusätzlich sollte unmittelbar nach der Gewinnung der Bohrkerne der Rock Quality Index der Kerne ermittelt werden. Weiterhin sollten die Kerne in Steinsalz dominierten Bereichen für eine Bromid- und Kaliumanalytik beprobt werden. Die Ergebnisse dieser geochemischen Untersuchungen fließen ebenfalls in den vorliegenden Abschlussbericht ein.

Anhand der Ablenkungen R15-S1 und R15-S2 sollten die Gesteinsformationen des Zechstein Salinars Leine bis Staßfurt aufgeschlossen werden. Das Projekt ist ein Teil der Maßnahmen zur Erkundung des östlichen Bereichs des Asse II Bergwerks hinsichtlich der Planung eines neuen Schachts (Schacht Asse 5) für die Rückholung radioaktiver Behälter aus der Schachtanlage Asse.

Zu dem Abschlussbericht bilden die Aufnahmeprotokolle und die Fotodokumentation der Bohrkerne die Anlagen 1-4.

Als Personal wurden vor Ort eingesetzt:

MD:

measured depth true vertical depth

TVD: ROP:

rate of penetration

m ü NHN:

Meter über Normalhöhennull

DMT: BGE: Deutsche Montan Technologie GmbH Bundesgesellschaft für Endlagerung

HCI:

Salzsäure

BaSO₄: BaCl_s: Bariumsulfat Bariumchlorid

RQD:

Rock Quality Index

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN
9A	55211000	GEO	vi		НА	BW	0001	00

Blatt: 7

3 Angaben zur Bohrung

3.1 Grund und Stammdaten

Bohrung:

Remlingen R15-S1, R15-S2

Auftraggeber:

BGE - Bundesgesellschaft für

Endlagerung

Zweck:

Erkundung Zechstein Salinar

Land:

Niedersachsen

Regierungsbezirk:

Braunschweig

Landkreis:

Wolfenbüttel

Gemeinde:

Remlingen-Semmenstedt

Gemarkung:

5672

Anschrift Bohrplatz

Assestraße, 38319 Remlingen-

Semmenstedt

Bohrlochansatzpunkt:

Rechtswert: 44 09 528,6

(Bezugssystem Gauß-Krüger,

Hochwert: 57 77 864,6

Meridianstreifen 4, Lagestatus 200)

Höhe Ansatzpunkt Gelände:

215,3 m ü NHM

Bohrunternehmen:

Daldrup & Söhne AG

Bohranlage:

Daldrup B4A

Bohrbeginn:

19.02.2021

Endteufe R15-S1:

1100,00 m MD

Erreicht am:

19.05.2021

Endteufe R15-S2:

1100,00 m MD

Erreicht am:

21.07.2021

3.2 Geographische Lage der Bohrung

Die Bohrlokation liegt etwa 1 km nördlich der Gemeinde Remlingen, unweit der Schachtanlage Asse II (siehe Abb. 1). Sie liegt damit im südöstlichen Bereich des Asse-Heeseberg-Höhenzuges, an den nördlich die Schöppenstedter Mulde und südlich die Remlinger Mulde grenzt (siehe Abb. 2).

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			HA	BW	0001	00

Blatt: 8

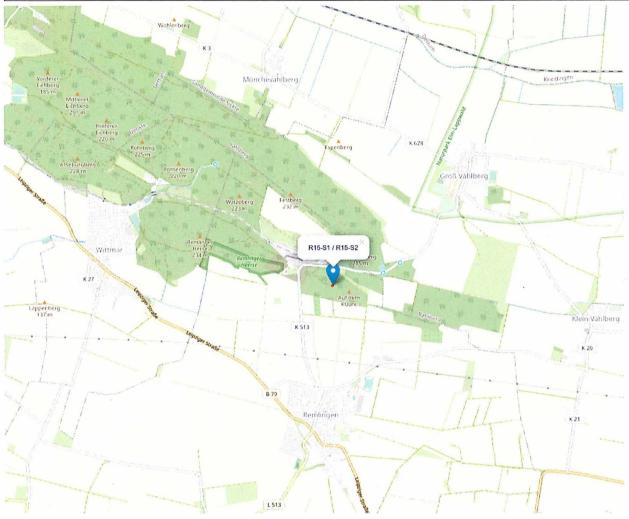


Abbildung 1: Der blaue Marker zeigt die Bohrlokation nördlich der Gemeinde Remlingen, Karte: Leaflet, OpenStreetMap

Zusammen mit dem Elm, Allertaler Störungszone und dem Staßfurt-Oscherslebener Sattel bildet die Asse die wesentlichen morphologischen Strukturmerkmale in dieser Region des subherzynen Beckens. Die Hauptstreichrichtung dieser Strukturen ist NW-SE und steht im Zusammenhang mit mesozoischen Dehnungsprozessen, welche zu einer internen Gliederung in Tief- und Hochschollen des Beckens führte (Ercosplan, 2018) [1].

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN]
9A	55211000	GEO			НА	BW	0001	00	

Blatt: 9

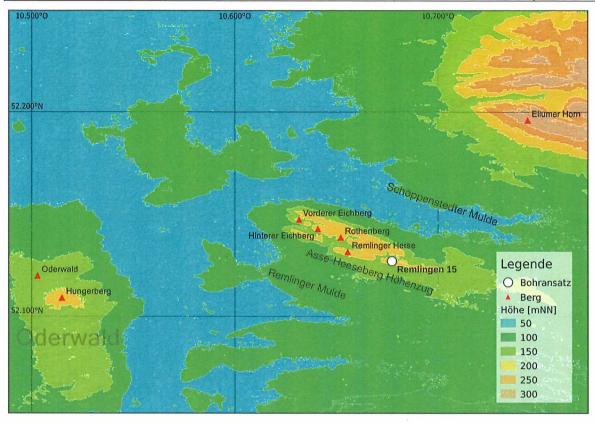


Abbildung 2: Regionalgeologischer Überblick im Umfeld der Asse, Höhenmodel: GTOPO30

3.3 Bohrlochdaten

Tabelle 1: Bohrlochdaten

Höhe Ansatzpunkt Gelände:	215,3 m ü NHN
Bohrtisch (Bohranlage):	3,50 m (über Ackersohle)
13 3/8" und 9 5/8" Casing:	Top window: 265,58 m MD Bottom window 269,56 m MD
7" Liner:	Top Liner Hanger: 231,9 m MD Rohrschuh: 624,0 m MD

3.4 Bohrlochabschnitte R15-S1

Tabelle 2: Bohrlochabschnitte R15-S1

Meißeldurchmesser [in]	Teufe gebohrt von / bis [m MD]
Richtbohren ohne Kernen 8 1/2"	bis 408,0
Nachbohren 8 1/2"	408,0 / 628,0
Kernbohren 6 3/8"	628,0 / 1100,0

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		TOTAL STREET	
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN]		
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkund	ungsbohrung	Remlingen R	15-Geologis	che Fachl	oetreuun	g-Abs	chlussb	ericht		E	3latt: 10

3.5 Bohrlochabschnitte R15-S2

Tabelle 3: Bohrlochabschnitte R15-S2

Meißeldurchmesser [in]	Teufe gebohrt von / bis [m MD]
6 1⁄4"	650,0 / 848,7
6 3/8"	848,7 / 1100,0

3.6 Meißeleinsätze R15-S1

Teufe Einbau	deißeleinsätze R15-S1 Beschreibung	Meißel Nr.	Meißel- einsatz	Тур	gesamt Einsätze	Datum Einbau	Durch- messer [in]	Anzahl Düsen
0,00	SPIBO RM 117; DT3 GMRS; S/N: 8202	1	1	TRICONE	1	18-02-21	8,500	3
272,00	SPIBO RM 117; DT3 GMRS; S/N: 8202	1	2	TRICONE	3	01-03-21	8,500	3
408,00	Core Bit 6,37"x 4", S/N 67987	3	1	COREBIT	4	07-03-21	6,370	0
538,10	Core Bit 6,37"x 4", S/N 67987	3	2	COREBIT	5	24-03-21	6,370	0
628,50	Core Bit 6,37"x4", S/N 67987	3	3	COREBIT	6	29-03-21	6,370	0
268,00	Super 06kmill S/N: 15128	2	1	REAMER	2	29-03-21	8,500	4
628,50	Core Bit 6,37"x4", S/N 67987	3	4	COREBIT	7	31-03-21	6,370	0
510,00	Core Bit 6,37"x4", S/N 67412	4	1	COREBIT	9	10-04-21	6,370	0
510,50	6,25" ZM S/N:D157	5	1	TRICONE	10	11-04-21	6,250	0
510,50	6,25" ZM S/N:D157	5	2	TRICONE	11	12-04-21	6,250	0
510,50	6,25" ZM S/N:D157	5	3	TRICONE	12	12-04-21	6,250	0
520,50	Core Bit 6,37"x4", S/N 67412	4	2	COREBIT	13	14-04-21	6,375	0
408,00	8.5" Undercutter	6	1	REAMER	14	16-04-21	8,500	3
510,00	SPIBO RM 117; DT3 GMRS; S/N: 8202	1	3	TRICONE	15	18-04-21	8,500	3 .
552,50	(reaming)	7	1	INSERT	16	21-04-21	8,500	4
628,50	Core Bit 6,37"x4", S/N 67987	3	5	COREBIT	8	30-04-21	8,500	0
628,50		5	4	TRICONE	13	30-04-21	6,250	0
628,50	Core Bit 6,375"x 4", S/N 67412	4	3	COREBIT	14	03-05-21	6,370	0
633,00	Core Bit 6,375"x 4", S/N 67412	4	1	COREBIT	17	05-05-21	6,375	0
652,50	Core Bit 6,375"x 4", S/N 67412	4	2	COREBIT	18	07-05-21	6,375	0

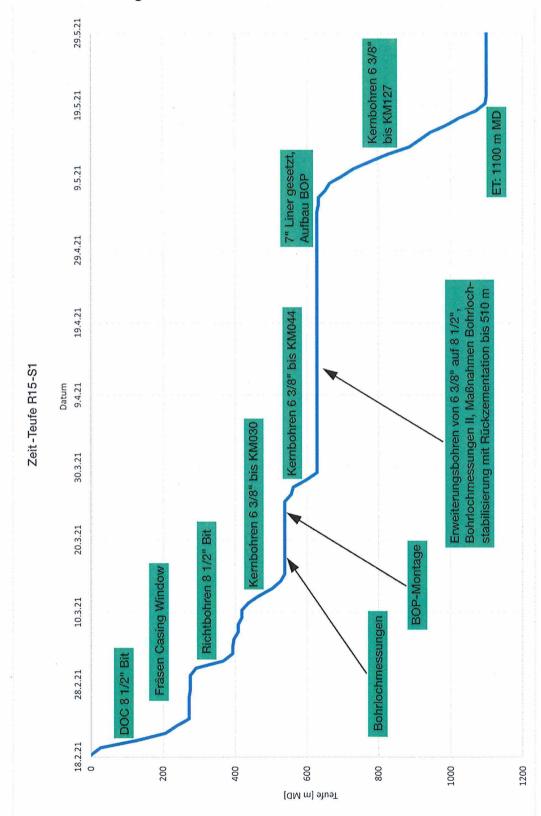
Projekt NAAN	PSP-Element NNNNNNNNNN	Funktion/Thema NNAAANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev. NN		
9A	55211000	GEO			HA	BW	0001	00	BGE	BUNDESGESELLSCHAF FÜR ENDLAGERUNG
Erkundı	ungsbohrung	Remlingen R	15-Geologis	che Fachl	betreuun	ıg-Abs	chlussb	ericht		Blatt: 11

3.7 Meißeleinsätze R15-S2

Tabelle 5: Meißeleinsätze R15-S2

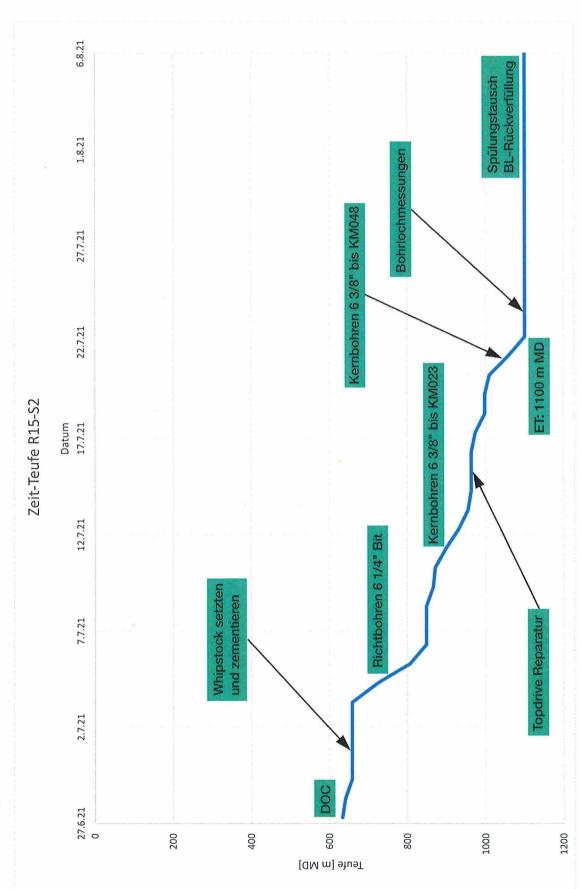
Teufe Einbau	Beschreibung	Meißel Nr.	Meißel- einsatz	Тур	gesamt Einsätze	Datum Einbau	Durch- messer [in]	Anzahl Düsen
633,00	Core Bit 6,375"x 4", S/N 67412	1	4	COREBIT	1	27-06-21	6,375	0
658,00	Whipstock	2	1	OTHER	2	29-06-21	5,315	0
658,00	Mill Tooth Bit 6,25", S/N 8194; Type: DT 1GMRS	3	1	TRICONE	3	01-07-21	6,250	3
848,70	Core Bit 6,375"x 4", S/N 67987	4	3	COREBIT	4	06-07-21	6,375	0
848,70	Core Bit 6,375"x 4", S/N 67412	1	5	COREBIT	5	07-07-21	6,375	0
963,50	Core Bit 6,375"x 4", S/N: 23-691921	5	1	COREBIT	6	16-07-21	6,375	0
997,70	Core Bit 6,375"x 4", S/N: 23-691921	5	2	COREBIT	7	19-07-21	6,375	0

4 Technische Daten


Tabelle 6: Technische Daten

Bezeichnung	R15-S1	R15-S2		
Bohrjahr	2021	2021		
Status	Endteufe, verfüllt	Endteufe, verfüllt		
Erkundungsziel	Zechstein Leine und Staßfurt: Hauptanhydrit bis Grauer Salzton	Zechstein Leine und Staßfurt: Hauptanhydrit bis Grauer Salzton		
Bohranlage	Daldrup B4A	Daldrup B4A		
Bohrverfahren	Gerichtet, Rotary, Seilkernbohrung 5 ½" mit 6 m Innenrohrlänge	Gerichtet, Rotary, Seilkernbohrung 5 ½" mit 6 m Innenrohrlänge		
Spülung	Ton-Wasser, NaCl, MgCl₂	Ton-Wasser, NaCl, MgCl₂		
Endteufe [m MD]	1100,00	1100,00		
Kerndurchmesser Soll [mm]	101,4	101,4		
Kernstrecke gebohrt [m MD]	692,00	251,43		
Kerngewinn [m]	690,30	250,69		
Kerngewinn [%]	99,8	99,7		
Spülprobeninventar Richtbohren	32	44		
Spülprobeninventar Kernen	164	51		
Spülprobeninventar gesamt	196	95		

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	986		
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN			
9A	55211000	GEO			НА	BW	0001	00	D	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundı	Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht Blatt: 12										


5 Zeit-Teufe

5.1 Zeit-Teufe Diagramm R15-S1

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	25		
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN			
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundı	Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht Blatt: 13										

5.2 Zeit-Teufe Diagramm R15-S2

Zeit-Teufe R15-S2

	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	1	
	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN		
	9A	55211000	GEO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
I	Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht Blatt: 14										

6 Geologie

Die geologische Aufnahme seitens des Auftragnehmers umfasst Spülprobenbeschreibungen, Kernansprachen, die stratigraphische Erstansprache und die Aufnahme des Rock Quality Index der Bohrkerne.

6.1 Schichtenverzeichnis

Das Schichtenverzeichnis basiert auf den Befunden der Spülprobenbeschreibung und den Bohrkernaufnahmen. Die Spülproben wurden während des Richtbohrens und begleitend zum Kernbohren kontinuierlich im Abstand von 5 m auftriebskorrigiert vom Schüttelsieb entnommen. Zur Bestimmung der lithologischen Merkmale wurden die Proben nass gesiebt unter Verwendung von Sieben mit einer Maschenweite von 2 mm und 0,63 mm und anschließend auf einer Heizplatte getrocknet. Die semiquantitative Zusammensetzung der Proben in Hinblick auf Haupt- und Nebenbestandteile, sowie Akzessorien wurde unter dem Binokular mit bis zu maximal 50-fache Vergrößerung abgeschätzt. Jede Probe beinhaltet ein Volumen von 100 ml Bohrklein vor dem Schlämmen. Innerhalb der Kernstrecke wurden die Befunde der Bohrkerne für das Schichtenverzeichnis verwendet. Hier dienen die Spülproben auch eher dazu potentielle Kernverluste abzudecken. Die makroskopische Beurteilung der Bohrkerne wurde am ausgelegten Kern im Feldlabor unter gleichbleibenden Lichtverhältnissen durchgeführt.

Beschrieben wurden:

- Farbe im frischen Bruch
- Härte und Form von Mineral- oder Gesteinskomponenten
- Mineralbestand soweit makroskopisch bestimmbar (Hilfsmittel: HCI, BaSO₄, Calcimetrie)
- Korngröße / Kristallgröße
- Matrixbeschaffenheit, Gefüge, Textur
- Porosität
- Geruch (v.a. w\u00e4hrend der Kernentnahme hinsichtlich H2S und Kohlenwasserstoffe)
- tektonische Merkmale

Für die Abschätzung der Kristallgröße wurde folgender Standard verwendet:

	<	0,1 mm	kryptokristallin bis mikrokristallin
0,1 mm	=	5 mm	feinkristallin
5 mm	-	20 mm	mittelkristallin
20 mm	-	60 mm	grobkristallin
	>	60 mm	Großkristalle (meist als Solitärkristalle)

Das Schichtenverzeichnis stellt die Basis für die stratigraphische Gliederung dar. Nachfolgend finden sich die Ergebnisse der Sidetracks R15-S1 und R15-S1.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN
9A	55211000	GEO			HA	BW	0001	00

Blatt: 15

6.1.1 Schichtenverzeichnis R15-S1

Der Sidetrack R15-S1 wurde aus der Bohrung R15 abgelenkt, daher beginnt das Schichtenverzeichnis der R15-S1 bei 272 m MD.

Litholog	Lithologie						
Top [m MD]	Basis [m MD]	Beschreibung					
272	285	Siltstein, rot, brockig, serizitisch, schwach feinsandig, gelegentlich in Übergang zu Siltstein, tonig; daneben Zement, grau, dunkelgrau, körnig schwarze und weiße Fremdpartikel führend; nur wenig Metallspäne, meis plattig, seltener spiralig gedreht, silbrig glänzend.					
285	290	Sandstein, hellgrau bis grünlich, quarzitisch. Quarze splitterig bis kantengerundet, hellgelb bis milchig-weiß, z. T. dolomitisch gebunden Weiterhin Siltstein, rot, brockig, serizitisch, schwach feinsandig, gelegentlich in Übergang zu Siltstein, tonig, wie zuvor.					
290	300	Tonstein, violett-rot, deutlich serizitisch (Biotit), schwach siltig. Siltstein und Sandstein wie zuvor.					
300	310	Tonstein, hellgrau, rötlichgrau, rot bis violett-rot, deutlich serizitisch (Biotit) hart, siltig. Siltstein, grau, rötlichgrau, stark serizitisch, teils feinstsandig. Selter quarzitische Kluftfüllungen vorhanden. Sehr selten matrixgestützte feinstsandige (Körngröße) dolomitisierte (Mineralogie) Ooide.					
310	330	Sandstein, weiß, hellgrau bis grünlich-beigegrau, milchig-trüb, fein- bi feinstkörnig, kanten- bis ungerundet, serizitisch, homogen, gut sortier Tonstein, hellgrau, rötlichgrau, rot bis violett-rot, deutlich serizitisch (Biotit), har siltig. Siltstein, grau, rötlichgrau, stark serizitisch, teils feinstsandig.					
330	350	Tonstein, rot bis violett-rot, deutlich serizitisch, hart, siltig.					
350	355	Sandstein, hellgelb bis cremefarben, milchig-trüb, feinkörnig, kanten- bi angerundet, serizitisch, hart.					
355	375	Siltstein, rotbraun, serizitisch, schwach feinsandig, extrem hart. Z. T. Übergang zu Feinsandstein, hellglimmerführend. Sandstein zum Teil zermahlen zu Feinsand. Wenig Tonstein, violett-rot, wie zuvor.					
375	380	Sandstein, hellgelb bis cremefarben, hellorange, hellbraun, milchig-trüben feinkörnig, kanten- bis angerundet, gut sortiert, schwach serizitisch, selte kantige Quarzkörner innerhalb der Matrix. Siltstein, rotbraun, sehr star serizitisch (Muskowit). Akz.: Gips, reinweiß, opak, plattig, sehr weich.					
380	385	Sandstein, hellgelb bis cremefarben, hellorange, hellbraun, milchig-trübfeinkörnig, kanten- bis angerundet, gut sortiert, schwach serizitisch, selter kantige Quarzkörner innerhalb der Matrix. Deutlich mehr Siltstein als zuvorrotbraun, sehr stark serizitisch (Muskowit).					

1	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
	NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	ı
			GEO			114	253200 20 20		10.55	l
	9A	55211000	GEO			HA	BW	0001	00	l

Blatt: 16

385	390	Gips, weiß bis schmutzig weiß, amorph, opak, sehr weich, teilweise, hellgrau, dann spröde bis hart; daneben selten kristallin und idiomorph vorliegend. Siltstein, wie zuvor beschrieben, rotbraun, sehr stark serizitisch (Muskowit). Bemerkung: Sulfatfällung mittels BaCl ₂ -Auszug fällt positiv aus.
390	400	Anhydrit, hellgrau bis schmutzig weiß, amorph, opak, spröde bis hart, daneben Gips, wie zuvor, selten kristallin und idiomorph vorliegend. Daneben Siltstein und wenig Sandstein, wie zuvor beschrieben.
400	(408)	Gips, weiß, amorph, opak, sehr spröde, teilweise von mikroskopischen rötlichen Tonschlieren durchzogen; im Feinanteil auch kristallin vorliegend, plattig, klar. Wenig Anhydrit, wie zuvor beschrieben. Daneben Siltstein, wie zuvor beschrieben.
408	435,3	Anhydrit, grauweiß bis hellgrau, vereinzelt grau, dicht, massiv, hart, kryptokristallin bis mikrokristallin, z. T. gefaltet, unregelmäßig mit Gipsadern sowie Gips als Wolken durchzogen. Alternierend mit Ton(-stein), plastisch, weich, hellgrau, z. T. laminiert
435,3	452,1	Tonstein, dunkelgrau bis grünlich grau, mäßig fest bis weich, verfaltet, vereinzelt mit Anhydrit-Schlieren.
452,1	613,2	Anhydrit, (Hutgestein) hellgrau bis grau, fest, hart, kryptokristallin, teilweise mit weißen Schlieren und / oder mit dünnen Tonlagen, unregelmäßig verfaltet, bereichsweise als anhydritische Brekzie mit Tonmatrix, Anhydrit- und Tonsteinklasten bis zu einer Größe von 1 cm bis 10 cm gelegentlich Gipsschlieren, daneben in unterschiedlichen Mächtigkeiten Tonsteinbänke, grau, dunkelgrau, oftmals feingeschichteter Tonstein, z. T. mit Anhydritklasten. Gesamte Einheit mitunter tektonisch stark verformt.
613,2	736,50	Am Top Carnallit , dunkelrot, fein- bis grobkristallin, überwiegend xenomorph, massig, stark hygroskopisch, ab 616,65 m Anhydrit , weißgrau bis grau, hart, mikrokristallin, lagig, poröse mit massigen Bereichen alternierend, weiterhin unregelmäßige, dünne, schwarze Tonlagen < 1 mm.
736,50	808,5	Brekzie aus Carnallit, dunkelrot, blass-rot, mittelkristallin, Halit, farblos klar, milchig weiß, teilweise blass rotorange, mittel- bis grobkristallin, mit unregelmäßig geformten Nestern von Anhydrit, weiß hellgrau, mikrokristallin. Insgesamt grob-brekziös, marmoriert. Bohrkerne häufig mit Anlösungserscheinungen an der Oberfläche. An der Basis poröse Bereiche.
808,5	832,5	Dominierend Halit , farblos klar, milchig weiß, teilweise blass rotorange, milchig blass bräunlich, transluzent, mittelkristallin mit nur noch sehr wenig Carnallit , blass-rot, fein- bis mittelkristallin. Daneben wenig unregel-mäßige Einschaltungen sowie Schlieren und Nester von Anhydrit , weiß hellgrau, mikrokristallin. Unter-geordnete Spuren von Tonstein , mittelgrau, fest. Generell nur wenig Anlösungserscheinungen an gesamter Kernoberfläche.
885,9	934,5	Überwiegend Steinsalz , hellgrau, grau, milchig weiß, transluzent, wenig rötlich-orangestichig, mittel- bis grobkörnig, dicht, gelegentlich mit klaren, z. T. idiomorphen Kristallen. Daneben unregelmäßige Anhydrit-einschaltungen , z. T. in Nestern und Schlieren eingelagert, schmutzig weiß bis grauweiß, mikrokristallin, hart, vermehrte Bänderung und massiveres Auftreten im

		basalen Bereich.		
934,5	949,2	Anhydrit, weißgrau bis grau gefleckt, auch blass braunstichig gesprenkelt, mikro- bis feinkristallin, massig, sehr homogen, hart bis sehr hart; mit sehr wenigen dunkelgrauen, mm-dünnen Tonflasern und -schlieren.		
949,2	965,5	Steinsalz, milchig blass bräunlich-grau-weiß, milchig weiß, schwach transparent. Insgesamt fein- bis mittelkristallin, homogen. Vereinzelt Schlieren und kleine Nester von Anhydrit , schmutzig weiß bis hellgrau, mikrokristallin.		
965,5	972,72	Brekzie aus Carnallit , dunkelrot, mittelkristallin, Halit , hellrötlich bis rot, feinbis mittelkristallin, Anhydrit , weißgrau bis grau, mikrokristallin, Tonstein , mittel bis dunkelgrau.		
972,5	1030,8	Steinsalz, milchig trüb, teilweise blass bräunlich-grau und, milchig weiß durchscheinend, insgesamt xeno-morph, fein- bis mittelkristallin, weitestgehend homogen, mit mittel- bis grobkristallinen, transparenteren Zwischenlagen, untergeordnet in unregelmäßiger Anordnung sehr wenig Schlieren, Nester und Bänderung von Anhydrit, schmutzig weiß bis hellgrau, mikrokristallin.		
1030,8	1071,5	Brekzie aus Halit, milchig weiß, grauweiß, farblos-klar, hell- bis mittelgrau, hellrot, fein- und mittelkristallin mit Carnallit, rot, fein- bis mittelkristallin, stark angelöst und Anhydrit, weißgrau, schmutzig weiß bis grau, mikrokristallin, in Schlieren, Nestern und Bändern eingelagert, teilweise auch zerrissene, Boudin-artige Strukturen und kleinräumige Faltung erkennbar.		
1071,5	(1100)	Tonstein, dunkelgrau bis grauschwarz, am Top schwach siltig laminiert. Anhydrit, mikrokristallin, carnallitisch, in Klüften und Lagen von 1 bis 4 cm Mächtigkeit eingeschaltet. Ebenso mit feinkristallinem Carnallit gefüllte Klüfte, vereinzelt mit mittelkristallinem, farblosem Steinsalz. Tonstein und Anhydrit treten in unregelmäßigen Lagen und als brekzierte Bereiche auf.		
(): Basi	s nicht erl	oohrt		

6.1.2 Schichtenverzeichnis R15-S2

Der Sidetrack R15-S2 wurde aus dem Sidetrack R15-S1 abgelenkt, wobei der Kickoff Point der R15-S2 in einer Teufe von 643,0 m MD liegt. Bis zur Teufe von 655 m MD wurde technischer Zement angetroffen, da der Sidetrack R15-S1 für den Einsatz des Whipstocks zurück zementiert werden musste. Proben mit 100 % technischem Zement fließen nicht in das nachfolgende Schichtenverzeichnis ein.

Tabelle 8: Schichtenverzeichnis R15-S2

Lithologie					
Top [m MD]	Basis [m MD]	Beschreibung			
655	740	Anhydrit, weißgrau, klar, kantig, brüchig, z. T. schuppig, mikro- bis feinkristallin, massig, gelegentlich zu Gips, weiß, kryptokristallin, mürbe, umgewandelt, zu Beginn mit wenig techn. Zement, hell bis mittelgrau, fest, bald auslaufend.			

Blatt: 18

740	745	Anhydrit, weiß, klar, mikrokristallin, fest, wie zuvor, daneben selten Steinsalz, farblos, tropfen- bis tränenförmig angelöst, vereinzelt bitter schmeckend (Kalisalzanteile), Feinrückstand durch Polymeranteil leicht bräunlich "karamellisiert".					
745	764	Kalisalz, farblos, kryptokristallin, organoleptisch bitter schmeckend, stark angelaugt, trotz sehr schwachen und kurzen Probenwaschens, daneben wenig Anhydrit, farblos bis selten weiß, fest, mikrokristallin.					
764	775	nhydrit, milchig-klar bis weißgrau, mikrokristallin, fest bis mittelhart, massig, ürfelig, selten auch faserig, meist kantig, brockige Cuttings, zum Teil zerbohrt, aneben etwas Kalisalz und selten (Stein)Salz, wie zuvor.					
775	795	Steinsalz, farblos klar, selten milchig weiß, Cuttings nach dem Spülen größtenteils angelöst, organoleptisch: salzig, gelegentlich Anhydrit, weißgrau, mikrokristallin, massig.					
795	845	Steinsalz, rötlich, orange, farblos klar, selten milchig weiß, Cuttings nach dem Spülen größtenteils angelöst, organoleptische Prüfung: salzig, stellenweise auch leicht bitter schmeckend, vereinzelt größere Zementkrümel, grau, bei 842 - 843 m deutlich geringerer Bohrfortschritt, mutmaßlich Anhydrit, jedoch in den Spülproben nicht verifizierbar.					
845	848,5	Steinsalz , klar bis hellorange, tropfenförmige Cuttings, daneben etwas Kalisalz , orangerot, xenomorph, deutlich bitter schmeckend.					
848,5	875	Steinsalz, klar bis hellorange, sehr fein zermahlen.					
875	915	Steinsalz, farblos-klar, milchig, rötlich-orange. Wenig Anhydrit, weiß, grau, opak, hart.					
915	(1100)	Steinsalz, farblos-klar, milchig, rötlich-orange. Wenig Anhydrit, weiß, grau, opak, hart. Kalisalz, gelblich-orange bis leuchtend-orangerot.					
(): Basi	() : Basis nicht erbohrt						

6.2 Stratigraphie

Die stratigraphische Gliederung wurde von GeoService GmbH in Abstimmung mit dem Auftraggeber BGE erstellt. Sie stellt eine Erstansprache im Feld dar und kann nachfolgend im Rahmen weiterer Untersuchungen revidiert werden. Grundlegend für die Gliederung sind die petrographischen Eigenschaften. Um Anhydritbereiche von Steinsalz zu trennen, wurde zusätzlich der bohrtechnische Parameter Rate of Penetration (ROP) berücksichtigt.

6.2.1 Stratigraphisches Profil R15-S1

Nachfölgend findet sich die stratigraphische Ansprache der R15-S1. Unsichere stratigraphische Elemente sind mit einem Fragezeichen versehen. Wie auch das Schichtenverzeichnis beginnt die Gliederung bei 272,0 m MD.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	55211000	GEO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundı	ungsbohrung	Remlingen R	15-Geologis	che Fachl	oetreuun	g-Abs	chlussb	ericht	E	Blatt: 19

Tabelle 9: Stratigraphie R15-S1

Stratigra	aphie				,		
Top [m MD]	Basis [m MD]	Periode	Serie	Epoche	Stufe	Formation	Gruppe
272	310				Ohovor		Rotbraune Gruppe So3
310	330	Trias	Unter- bis Mitteltrias	Buntsand	Oberer Buntsand	Röt	So2
330	387		Millelinas	stein	stein		So1
387	613,20						sekundäres Hutgestein
613,2	808,5					Z2 / Z3	Z2 bis Z3 (Hauptanhydrit bis Grauer Salzton und Flöz Staßfurt Carnallitit)
808,5	885,9						Orange Salz / Buntes Salz
885,9	949.2			Zechstein		Z3	(Haupt-?)- Anhydrit
949.2	965,5	Perm	Oberperm		×		Orange Salz / Buntes Salz?
965,5	972,72	₫.	Obe	Zec		Z2	Kaliflöz Staßfurt
972,5	1030,8					Z3	Liniensalz ?
1030,8	1071,5					Z2	Kaliflöz Staßfurt
1071,5	(1100)					Z2 / Z3	Z2 bis Z3 (Hauptanhydribis Grauer Salzton und Flöz Staßfurt Carnallitit)
():Bas	is nicht er	bohrt	1	1			1

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	55211000	GEO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundı	ungsbohrung	Remlingen R	15-Geologis	che Fachl	oetreuun	g-Abs	chlussb	ericht	E	Blatt: 20

6.2.2 Stratigraphisches Profil R15-S2

Analog zum Schichtenverzeichnis beginnt die stratigraphische Gliederung der R15-S2 bei 272 m MD, wobei die Gliederung an dieser Stelle bohrlochübergreifend dargestellt ist.

	Stratigraph	nie R15-S2						
Stratigr		•						
Top [m MD]	Basis [m MD]	Periode	Serie	Epoche	Stufe	Formation	Gruppe	
272	310				Oberer		Rotbraune Gruppe (So 3)	
310	330	Trias	Unter- bis	Buntsand	Buntsand	Röt	So2	
330	387		Mitteltrias	stein	stein		So1	
387	613,2						Sekundäres Hutgestein	
613,2	745,0					Z2 / Z3	Z2 bis Z3 (Hauptanhydrit bis Grauer Salzton und Flöz Staßfurt Carnallitit)	
745,0	764,0				Staßfurt	Zechstein 2	Kaliflöz Staßfurt	
764,0	775,0						Hauptanhydrit	
775,0	844,0				Leine	Zechstein 3	Liniensalz bis Orangesalz	
844,0	848,7		Ε	_⊑	Staßfurt	Zechstein 2	Kaliflöz Staßfurt	
848,7	913,9	Ę)er) ste	Leine	Zechstein 3	Liniensalz	
913,9	955,5	Je.	erg	Š			Kaliflöz Staßfurt	
955,5	963,5	Perm	Pe	Oberperm	Zechstein			Kieseritische Übergangsschic hten (Ü-Salz)
963,5	1002,9				Staßfurt	Zechstein 2	Polyhalitbänkche nsalz	
1002,9	1015	æ					Speisesalz	
1015	1032						Polyhalitbänkche nsalz	
1032	1089,5						Speisesalz	
1089,5	(1100)			ij			Hauptsalz	
	is nicht ei	rbohrt					1 Idaptodiz	

6.3 Kernmarschverzeichnis

Aus Gründen der Übersichtlichkeit finden sich die Verzeichnisse der Kernmärsche im Anhang 3. Die Verzeichnisse sind eine vollständige Zusammenstellung der Kernaufnahmeprotokolle.

1	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN]
	9A	55211000	GEO			НА	BW	0001	00	

Blatt: 21

6.4 Kernqualität R15-S1

Im Rahmen der Bohrung R15-S1 wurden insgesamt 127 Kernmärsche mit einem Durchmesser von 101,4 mm und einer Gesamtkernstrecke von 692,0 m MD (Kerngewinn: 690,3 m) erbohrt (siehe 4.3 Kernmarschverzeichnis). Die Bohrkerne weisen zu 95 % eine ausgezeichnete Bohrkernqualität mit einem RQD-Index von mindestens 90 % auf (vgl. Abbildung 3). Nur vier Kernmärsche erbachten eine Kernqualität von schlecht oder sehr schlecht.

In Anwesenheit von Carnallit konnte es aufgrund der Unbeständigkeit des Minerals an Luftfeuchtigkeit zu beträchtlichen Kaliberverlusten und Lösungserscheinungen der Kernoberflächen kommen. Betroffen sind hiervon die Kernmärsche KM042 bis KM043 (610,50 – 622,50 m MD), KM062 (718,50 – 724,50 m MD) und KM064 bis KM077 (726,96 – 808,50 m MD), sowie KM115 bis KM126 (1030,50 – 1096,50 m MD). Der Kaliberverlust der Bohrkerne im Teufenintervall von 726,96 – 808,50 m MD überlappt mit einem Bereich deutlich größerer Bohrlochdurchmesser wie aus der Kalibermessung durch Firma DMT.

Der RQD-Index wurde direkt nach der Kernentnahme nach untenstehender Formel bestimmt:

RQD =
$$\frac{\sum \text{Längen der Kernstücke } ≥ 10 cm}{\text{Gesamtlänge des Bohrkerns}} × 100 [%]$$

Der nach der Formel ermittelte RQD-Index wird in 5 unterschiedliche Stufen klassifiziert, welche einen Grad der Bohrkernqualität wiedergeben.

(1) Ausgezeichnet: 90 bis 100 %(2) Gut: 75 bis 90 %

• (3) Ausreichend: 50 bis 75 %

• (4) Schleicht: 25 bis 50 %

• (5) Sehr schlecht: 0 bis 25 %

Zur Darstellung der RQD-Indizes und der Kernqualität im folgenden Diagramm sei angemerkt, dass die Skala der Bohrkernqualität mit eins beginnt und somit die Bohrkerne von ausgezeichneter Qualität nur per RQD-Index geplottet sind.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN
9A	55211000	GEO			HA	BW	0001	00

Blatt: 22

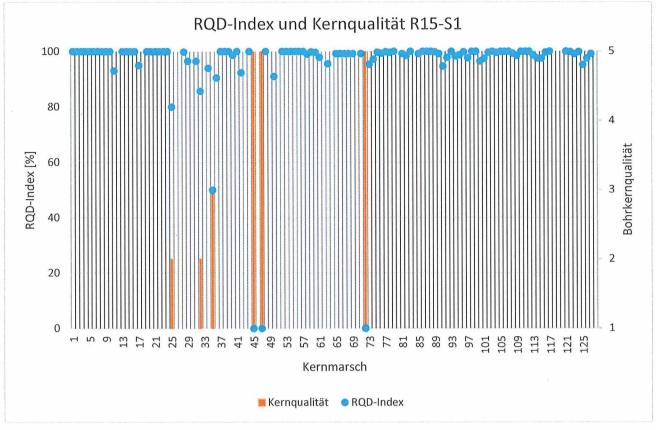


Abbildung 5: RQD und Kernqualität R15-S1

6.5 Kernqualität R15-S2

Die Kernstrecke der R15-S2 erbrachte insgesamt 48 Kernmärsche mit einem Durchmesser von 101,4 mm und einem Gesamtkerngewinn von 250,6 m (siehe Kapitel 4.7). Die Kerne der R15-S2 weisen mit 96 % eine nahezu durchgehend ausgezeichnete Bohrkernqualität auf. Lediglich zwei Bohrkerne mit einem RQD-Index von 50 % und 80 % weisen eine ausreichende respektive gute Kernqualität auf. Der RQD-Index und die Kernqualität der Bohrkerne der R15-S2 sind in Abbildung 4 dargestellt.

Innerhalb der Carnallit-Brekzie und in carnallitischen Bereichen kam es zu z. T. deutlichen Lösungserscheinungen und Kaliberverlusten, welche vorrangig auf die hygroskopischen, bzw. leichtlöslichen Eigenschaften (und der damit einhergehenden Unbeständigkeit) des Carnallits und zurückzuführen sein dürften. Betroffen sind die drei Bereiche der Kernmärsche KM015 bis KM023 (914,17 – 963,50 m MD), KM027 bis KM030 (979,50 – 997,50 m MD) und KM34 bis KM036 (1015,50 – 1031,95 m MD).

Die Berechnung des RQD-Indexes ist in Kapitel 5.4 erläutert.

	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
[NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
	9A	55211000	GEO			НА	BW	0001	00	

Blatt: 23

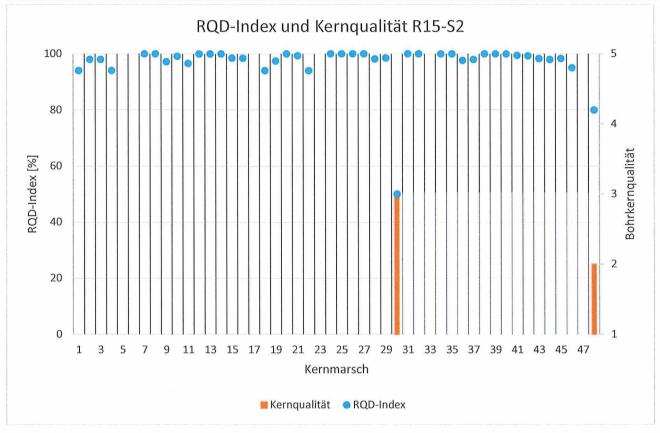


Abbildung 6: RQD-Index und Bohrkernqualität der R15-S2

6.6 Gasüberwachung

Aus Gründen des Gasschutzes wurden auf der R15-S1 und R15-S2 Gasmessungen durchgeführt. Dazu wurden auf der Arbeitsbühne des Bohrturms und an den Schüttelsieben unmittelbar neben der Headerbox Sensoren zur Messung von Methan (CH₄) und Schwefelwasserstoff (H₂S) platziert. Die Messungen wurden mit einem akustischen und optischen Alarm gekoppelt, sodass der Alarm für Methan bei 10 % der unteren Explosionsgrenze (UEG) von 4,4 % und für Schwefelwasserstoff bei 6 ppm ausgelöst wird. Innerhalb der Mud-Logging Unit wurden zusätzlich Gesamtkohlenwasserstoffe kontinuierlich zum Bohrbetrieb gemessen. Zu keiner Zeit der Bohrarbeiten gab es einen Anstieg von CH₄ (gesamt) > 1 eq. % und die Werte von Schwefelwasserstoff erreichten maximal 1 (0,99) ppm gemessen am Rigfloor. Der maximale Wert für H₂S ist vom Hintergrundgas im Litholog nicht deutlich zu unterscheiden (vgl. Kapitel 11, Anhang Litholog). Die nachfolgende Tabelle fasst die Maximalwerte der Messungen zusammen.

Tabelle 11: Gasüberwachung

	R15-S1	R15-S2
H₂S Rigfloor [ppm]	0,80	0,99
H₂S Shaker [ppm]	0,85	0,98
KWG [eq. %]	0,67	0,24

Nach Erreichen der Endteufe kam es im Verlauf des Spülungstausches auf der R15-S1 zu Zuflüssen und einem Druckanstieg. Als Maßnahme wurde das Bohrloch eingeschlossen und um die Zuflüsse zu stoppen eine Fußzementation durchgeführt. Hierbei erreichten die Schwefelwasserstoff-

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	55211000	GEO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkund	ungsbohrung	Remlingen R	15-Geologis	che Fachl	oetreuun	g-Abs	chlussb	ericht	F	Blatt: 24

konzentration einen Maximalwert von 1 ppm und KWG Werte von 0,3 eq % (siehe geologische Tagesberichte vom 29.05.21 bis 31.05.21).

7 Verlauf der Bohrung

7.1 Bohrungsverlauf R15-S1

Die Stammbohrung R15 ist nahezu vertikal abgeteuft worden. Um aus der R15 abzulenken, wurde in einer Teufe von 265,58 bis 269,56 m MD ein Casing Window gefräst. Die Neigung der R15-S1 nimmt im weiteren Verlauf bis zu einer Teufe von ca. 400 m MD bis auf eine Inklination von 30° zu. Der Azimut nimmt dabei von anfänglich ca. 100° auf 141° in Richtung ESE zu. Ab 408 m MD beginnt die Kernstrecke entlang einer Tangente bis auf die Endteufe von 1100,00 m MD. Der Bohrungsverlauf ist in den Abbildungen 5, 6 und 7 dargestellt.

Die Surveydaten wurde durch eine Gyromessung durch die Firma DMT gewonnen und werden u.a. im Litholog für die Berechnung der TVD verwendet. Hierbei wurden die Daten von 0 m bis zum Kick-Off Point von 264 m nicht verwendet, da dieses Teufenintervall dem Stammloch Remlingen 15 zuzurechnen ist.

Gas

GAG

Tabelle 12: Surveydaten R15-S1

Teufe	Neig	Azi	TVD	Nord	Ost	Vertsec	Closure	DLS	Ges. Azi	Ges. Abw
m	0	0	m	m	m	m	m	°/30m	0	m
0,00	0,44	87,31	0,00	0,00	0,00	0,00	0,00	0,000	87,31	0,00
6,00	0,07	115,91	6,00	0,00	0,03	0,00	0,03	1,900	91,13	0,03
12,00	0,09	347,35	12,00	0,00	0,03	0,00	0,03	0,722	85,05	0,03
18,00	0,13	336,90	18,00	0,01	0,02	0,01	0,03	0,223	61,80	0,03
24,00	0,22	307,02	24,00	0,03	0,01	0,03	0,03	0,627	26,11	0,03
30,00	0,30	316,69	30,00	0,04	-0,01	0,04	0,05	0,455	351,18	0,05
36,00	0,42	334,67	36,00	0,08	-0,03	0,08	0,08	0,817	340,39	0,08
42,00	0,51	346,17	42,00	0,12	-0,04	0,12	0,13	0,646	340,61	0,13
48,00	0,52	352,84	48,00	0,17	-0,05	0,17	0,18	0,304	343,23	0,18
54,00	0,59	7,69	54,00	0,23	-0,05	0,23	0,24	0,797	347,40	0,24
60,00	0,62	20,63	60,00	0,29	-0,04	0,29	0,30	0,698	352,93	0,30
66,00	0,57	29,38	66,00	0,35	-0,01	0,35	0,35	0,518	358,31	0,35
72,00	0,46	24,17	72,00	0,40	0,01	0,40	0,40	0,597	2,04	0,40
78,00	0,39	18,11	78,00	0,44	0,03	0,44	0,44	0,415	3,96	0,44
84,00	0,40	10,31	84,00	0,48	0,04	0,48	0,48	0,273	4,83	0,48
90,00	0,43	0,50	90,00	0,52	0,04	0,52	0,52	0,385	4,86	0,52
96,00	0,51	1,49	96,00	0,57	0,05	0,57	0,57	0,402	4,53	0,57
102,00	0,51	11,50	102,00	0,62	0,05	0,62	0,63	0,445	4,70	0,63
108,00	0,49	29,63	108,00	0,67	0,07	0,67	0,68	0,794	5,88	0,68
114,00	0,37	32,16	114,00	0,71	0,09	0,71	0,72	0,607	7,39	0,72
120,00	0,27	13,83	120,00	0,74	0,11	0,74	0,75	0,710	8,13	0,75
126,00	0,41	3,31	126,00	0,78	0,11	0,78	0,78	0,764	8,10	0,78
132,00	0,54	12,77	132,00	0,83	0,12	0,83	0,83	0,757	8,14	0,83
138,00	0,48	33,44	138,00	0,87	0,14	0,87	0,89	0,961	8,98	0,89
144,00	0,30	36,44	144,00	0,91	0,16	0,91	0,92	0,905	10,08	0,92
150,00	0,31	5,27	150,00	0,94	0,17	0,94	0,95	0,821	10,42	0,95

Projekt NAAN	PSP-Element NNNNNNNNNN		n/Thema I AANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev. NN		=
9A	55211000) GI	EO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAF FÜR ENDLAGERUNG
Erkundu	ıngsbohrur	ng Remlir	ngen R15	-Geologis	che Facht	oetreuun	g-Abs	chluss	pericht	E	Blatt: 25
156,00	0,44	23,79	156,00	0,97	0,18	0,97	0	,99	0,881	10,64	0,99
162,00	0,46	59,97	162,00	1,01	0,21	1,01	1	,03	1,401	11,95	1,03
168,00	0,44	99,29	168,00	1,02	0,26	1,02	1	,05	1,517	14,19	1,05
174,00	0,33	100,35	174,00	1,01	0,30	1,01	1	,05	0,551	16,38	1,05
180,00	0,52	83,58	180,00	1,01	0,34	1,01	1	,06	1,126	18,65	1,06
186,00	0,66	99,32	185,99	1,01	0,40	1,01	1	,08	1,065	21,76	1,08
192,00	0,57	110,63	191,99	0,99	0,46	0,99	1	,09	0,754	25,10	1,09
198,00	0,41	97,86	197,99	0,98	0,51	0,98	1	,10	0,964	27,71	1,10
204,00	0,59	83,80	203,99	0,98	0,56	0,98	1	,13	1,083	30,04	1,13
210,00	0,75	89,31	209,99	0,98	0,63	0,98	1	,17	0,862	32,91	1,17
216,00	0,58	92,16	215,99	0,98	0,70	0,98	1	,21	0,866	35,71	1,21
222,00	0,58	67,59	221,99	0,99	0,76	0,99	1	,25	1,234	37,60	1,25
228,00	0,84	71,77	227,99	1,02	0,83	1,02	1	,31	1,325	39,34	1,31
234,00	0,75	84,73	233,99	1,03	0,91	1,03	1	,38	1,002	41,48	1,38
240,00	0,56	57,01	239,99	1,05	0,98	1,05	1	,44	1,820	42,87	1,44
246,00	0,83	48,82	245,99	1,10	1,03	1,10	1	,51	1,435	43,31	1,51
252,00	0,75	65,93	251,99	1,14	1,10	1,14	1	,59	1,240	44,01	1,59
258,00	0,55	66,24	257,99	1,17	1,17	1,17	1	,65	1,000	44,89	1,65
264,00	1,17	89,32	263,99	1,18	1,25	1,18	1	,72	3,491	46,67	1,72
270,00	3,82	115,36	269,98	1,10	1,49	1,10	1	,85	14,080	53,72	1,85
276,00		118,91	275,96	0,87	1,93	0,87		2,12	9,262	65,81	2,12
282,00		117,67	281,93	0,56	2,51	0,56		2,57	5,789	77,39	2,57
288,00	8,06	117,40	287,88	0,20	3,20	0,20	3	3,20	6,302	86,37	3,20
294,00	9,38	119,31	293,81	-0,23	4,00	-0,23	4	1,00	6,756	93,30	4,00
300,00	10,54	121,59	299,72	-0,76	4,89	-0,76	4	1,95	6,125	98,81	4,95
306,00	11,41	122,58	305,61	-1,36	5,86	-1,36		6,01	4,451	103,11	6,01
312,00		123,36	311,48	-2,03	6,88	-2,03		7,17	3,443	106,43	
318,00		123,50	317,34	-2,75	7,97	-2,75		3,43	5,202	109,03	
324,00		123,87	323,16	-3,54	9,16	-3,54		9,82	6,265	111,14	9,82
330,00	15,60	124,35	328,96	-4,41	10,44	-4,41	1	1,34	6,181	112,90	11,34
336,00		125,06	334,72	-5,37	11,83	-5,37		2,99	7,368	114,42	
342,00	18,15	125,65	340,44	-6,42	13,31	-6,42		4,78	5,522	115,76	14,78
348,00		126,01	346,12	-7,55	14,87	-7,55		6,67	4,983	116,91	
354,00		126,43	351,77	-8,74	16,50	-8,74		8,67	5,793	117,92	
360,00		127,03	357,38	-10,02	18,21	-10,02		0,78	5,308	118,82	
366,00		127,56	362,95	-11,37	19,98	-11,37		2,99	5,588	119,64	
372,00		128,12	368,47	-12,81	21,84	-12,81		5,32	6,247	120,40	
378,00		128,14	373,94	-14,33	23,78	-14,33		7,76	5,650	121,08	
384,00		128,29	379,36	-15,92	25,80	-15,92		0,31	5,809	121,69	
390,00		128,22	384,72	-17,59	27,91	-17,59		3,00	7,702	122,22	
396,00		128,20	390,01	-19,34	30,14	-19,34		5,81	6,650	122,69	
402,00		128,36	395,24	-21,16	32,44	-21,16		8,74	4,866	123,12	
408,00		128,40	400,43	-23,03	34,81	-23,03		1,74	3,501	123,50	
414,00		128,56	405,59	-24,94	37,21	-24,94		4,79	2,435	123,84	
420,00		128,58	410,72	-26,88	39,63	-26,88		7,88	1,551	124,14	

Projekt NAAN	PSP-Element		n/Thema AANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev.		
9A	55211000) G	EO			НА	BW	0001	00	BGE	BUNDESGESELLSCHA FÜR ENDLAGERUNG
Erkundu	ngsbohrur	ng Remlii	ngen R1	5-Geologis	che Fachl	betreuun	g-Abs	chlussb	pericht	E	Blatt: 26
426,00	31,34	128,99	415,85	-28,83	42,06	-28,83	5	0,99	1,107	124,43	50,99
432,00	31,34	129,26	420,98	-30,80	44,48	-30,80		4,10	0,702	124,70	54,10
438,00	31,22	129,39	426,10	-32,77	46,89	-32,77		7,21	0,688	124,95	57,21
444,00	31,26	129,41	431,23	-34,75	49,30	-34,75		0,31	0,207	125,18	60,31
450,00	31,43	129,19	436,36	-36,72	51,71	-36,72		3,43	1,025	125,38	63,43
456,00	31,42	129,35	441,48	-38,70	54,13	-38,70		6,55	0,420	125,56	66,55
462,00	31,02	129,64	446,61	-40,68	56,53	-40,68		9,65	2,137	125,74	69,65
468,00	31,00	129,86	451,75	-42,66	58,91	-42,66		2,73	0,575	125,91	72,73
474,00	31,11	129,80	456,89	-44,64	61,29	-44,64		5,82	0,571	126,07	75,82
480,00	31,18	129,94	462,03	-46,63	63,67	-46,63		8,92	0,504	126,22	78,92
486,00	30,96	129,98	467,17	-48,62	66,04	-48,62		2,01	1,105	126,36	82,01
492,00	30,64	129,98	472,32	-50,59	68,40	-50,59		5,07	1,600	126,49	85,07
498,00	30,72	130,07	477,48	-52,56	70,74	-52,56		8,13	0,461	126,61	88,13
504,00	31,05	130,20	482,63	-54,55	73,10	-54,55		1,21	1,683	126,73	91,21
510,00	31,24	130,46	487,76	-56,56	75,46	-56,56		4,30	1,164	126,85	94,30
516,00	31,01	130,93	492,90	-58,58	77,81	-58,58		7,40	1,673	126,97	97,40
522,00	30,55	131,11	498,05	-60,59	80,13	-60,59		0,46	2,346	127,10	100,46
528,00	30,03	131,11	503,24	-62,58	82,41	-62,58		3,48	2,600	127,21	103,48
534,00	29,96	131,04	508,43	-64,55	84,67	-64,55		6,47	0,391	127,32	106,47
540,00	30,12	131,31	513,63	-66,53	86,93	-66,53		9,47	1,047	127,43	109,47
546,00	30,17	131,30	518,81	-68,52	89,19	-68,52		2,48	0,251	127,53	112,48
552,00	30,34	131,31	524,00	-70,52	91,47	-70,52	11	5,49	0,850	127,63	115,49
558,00	30,42	131,31	529,17	-72,52	93,74	-72,52	11	8,52	0,400	127,72	118,52
564,00	30,51	131,50	534,34	-74,53	96,03	-74,53		21,56	0,659	127,82	121,56
570,00	30,36	131,63	539,52	-76,55	98,30	-76,55	12	24,59	0,819	127,91	124,59
576,00	30,50	131,89	544,69	-78,57	100,57	-78,57	12	27,62	0,961	128,00	
582,00	30,73	131,75	549,86	-80,61	102,84	-80,61	13	80,67	1,204	128,09	130,67
588,00	30,73	131,85	555,01	-82,65	105,13	-82,65	13	33,73	0,255	128,17	133,73
594,00	30,63	132,07	560,17	-84,70	107,41	-84,70	13	86,79	0,752	128,26	136,79
600,00	30,77	132,13	565,33	-86,75	109,68	-86,75	13	89,84	0,717	128,34	139,84
606,00	30,73	132,18	570,49	-88,81	111,95	-88,81	14	2,90	0,237	128,42	142,90
612,00	30,66	132,31	575,65	-90,87	114,22	-90,87	14	5,96	0,482	128,50	145,96
618,00	30,69	132,41	580,81	-92,93	116,48	-92,93	14	9,01	0,296	128,58	149,01
624,00	30,59	132,86	585,97	-95,00	118,73	-95,00	15	52,06	1,251	128,67	152,06
630,00	30,62	132,97	591,13	-97,08	120,97	-97,08	15	55,11	0,318	128,75	155,11
636,00	30,62	133,13	596,30	-99,17	123,20	-99,17	15	8,16	0,407	128,83	158,16
642,00	30,54	133,26	601,46	-101,26	125,43	-101,26	16	31,20	0,519	128,91	161,20
648,00	30,58	133,03	606,63	-103,35	127,65	-103,35	16	64,24	0,618	128,99	164,24
654,00	30,48	133,26	611,80	-105,43	129,88	-105,43	16	67,28	0,769	129,07	167,28
660,00	30,44	133,26	616,97	-107,51	132,09	-107,51	17	70,32	0,200	129,14	170,32
666,00	30,50	133,23	622,14	-109,60	134,31	-109,60	17	3,35	0,309	129,22	173,35
672,00	30,50	133,46	627,31	-111,69	136,52	-111,69	17	'6,39	0,584	129,29	176,39
678,00	30,41	133,63	632,48	-113,78	138,73	-113,78	17	9,42	0,623	129,36	179,42
684,00	30,35	133,75	637,66	-115,88	140,92	-115,88	18	32,45	0,427	129,43	182,45
690,00	30,44	134,03	642,84	-117,99	143,11	-117,99	18	35,48	0,839	129,50	185,48

Projekt NAAN	PSP-Element NNNNNNNNNN		n/Thema AANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	AA	Lfd Nr. NNNN	Rev. NN		
9A	55211000	G	EO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAF FÜR ENDLAGERUNG
Erkundu	ngsbohrun	ıg Remliı	ngen R15	-Geologis	che Fachl	petreuung	g-Abs	chlussk	pericht	E	Blatt: 27
696,00	30,34	134,28	648,01	-120,10	145,29	-120,10	18	8,50	0,806	129,58	188,50
702,00	30,38	134,40	653,19	-122,22	147,46	-122,22	19	1,52	0,363	129,65	191,52
708,00	30,40	134,33	658,36	-124,34	149,63	-124,34	19	4,55	0,203	129,73	194,55
714,00	30,42	134,61	663,54	-126,47	151,79	-126,47	19	7,58	0,716	129,80	197,58
720,00	30,40	134,84	668,71	-128,61	153,95	-128,61	20	0,60	0,591	129,87	200,60
726,00	30,49	134,96	673,89	-130,75	156,11	-130,75	20	3,63	0,543	129,95	203,63
732,00	30,30	135,14	679,06	-132,90	158,25	-132,90	20	6,65	1,053	130,02	206,65
738,00	30,19	135,27	684,24	-135,05	160,38	-135,05	20	9,66	0,640	130,10	209,66
744,00	30,26	135,62	689,43	-137,20	162,50	-137,20	21	2,67	0,948	130,17	212,67
750,00	30,48	135,58	694,61	-139,37	164,62	-139,37	21	5,69	1,105	130,25	215,69
756,00	30,52	135,68	699,77	-141,54	166,75	-141,54	21	8,72	0,323	130,33	218,72
762,00	30,40	135,85	704,95	-143,72	168,87	-143,72	22	1,75	0,739	130,40	221,75
768,00	30,54	136,12	710,12	-145,91	170,99	-145,91		4,78	0,979	130,48	
774,00	30,70	136,04	715,28	-148,11	173,11	-148,11	22	7,82	0,826	130,55	227,82
780,00	30,72	136,06	720,44	-150,32	175,23	-150,32		0,87	0,112	130,62	
786,00	30,77	136,17	725,60	-152,53	177,36	-152,53		3,93	0,376	130,70	
792,00	30,87	136,34	730,75	-154,75	179,48	-154,75		6,98	0,663	130,77	
798,00	30,81	136,27	735,90	-156,97	181,61	-156,97		0,05	0,350	130,84	
804,00	30,92	136,43	741,05	-159,20	183,73	-159,20		3,11	0,686	130,91	243,11
810,00	30,94	136,39	746,20	-161,43	185,86	-161,43		6,18	0,143	130,98	
816,00	31,04	136,44	751,34	-163,67	187,99	-163,67		9,26	0,516	131,04	
822,00	31,05	136,72	756,48	-165,92	190,12	-165,92		52,34	0,724	131,11	252,34
828,00	31,06	136,69	761,62	-168,17	192,24	-168,17		5,42	0,092	131,18	
834,00	31,15	136,66	766,76	-170,43	194,37	-170,43		8,50	0,457	131,25	
840,00	31,18	136,56	771,89	-172,68	196,50	-172,68		1,59	0,299	131,31	261,59
846,00	31,28	136,84	777,02	-174,95	198,63	-174,95	A THE OWNER	64,69	0,881	131,37	
852,00	31,44	137,00	782,15	-177,23	200,77	-177,23		57,80	0,902	131,44	
858,00	31,44	137,11	787,27	-179,52	202,90	-179,52		0,91	0,287	131,50	
864,00	31,55	137,35	792,38	-181,82	205,03	-181,82		4,03	0,834	131,57	
870,00	31,69	137,45	797,49	-184,13	207,16	-184,13		7,16	0,747	131,63	
876,00	31,71	137,37	802,60	-186,46	209,29	-186,46		30,30	0,233	131,70	
882,00	31,85	137,28	807,70	-188,78	211,43	-188,78		33,44	0,739	131,76	Maria Commence
888,00	32,00	137,62	812,79	-191,12	213,58	-191,12		86,60	1,171	131,82	
894,00	31,98	137,85	817,88	-193,47	215,71	-193,47		39,76	0,617	131,89	
900,00	31,94	138,04	822,97	-195,83	217,84	-195,83		2,92	0,541	131,95	
906,00	32,10	138,27	828,06	-198,20	219,96	-198,20		6,09	1,006	132,02	
912,00	32,14	138,28	833,14	-200,58	222,09	-200,58		9,26	0,202	132,09	
918,00	32,12	138,77	838,22	-202,97	224,20	-202,97		2,43	1,307	132,15	
924,00	32,04	138,78	843,30	-205,37	226,30	-205,37		5,59	0,401	132,22	
930,00	32,07	138,91	848,39	-207,76	228,40	-207,76		8,76	0,376	132,29	
936,00	31,98	139,20	853,48	-210,17	230,48	-210,17		1,92	0,891	132,36	
942,00	31,96	139,40	858,57	-212,57	232,55	-212,57		5,07	0,539	132,43	
948,00	31,89	139,58	863,66	-214,99	234,61	-214,99		8,22	0,559	132,50	
954,00	31,93	139,70	868,75	-217,40	236,67	-217,40		21,37	0,375	132,57	
960,00	32,03	139,72	873,84	-219,83	238,72	-219,83	32	24,52	0,503	132,64	324,52

Projekt PSP-Element Funktion/Thema Komponente Baugruppe Aufgabe UA Lfd Nr. Rev.

Projekt NAAN	PSP-Elemer		n/Thema AANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev. NN		
9A	5521100		EO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAF FÜR ENDLAGERUNG
Erkundu	ngsbohru	ng Remli	ngen R15	-Geologis	che Fachl	oetreuunç	g-Abs	chlusst	ericht	E	Blatt: 28
966,00	31,96	139,57	878,93	-222,25	240,78	-222,25	32	7,68	0,530	132,71	327,68
972,00	32,08	139,43	884,02	-224,67	242,85	-224,67	33	0,83	0,706	132,77	330,83
978,00	32,20	139,54	889,10	-227,10	244,92	-227,10	33	4,00	0,668	132,84	334,00
984,00	32,12	139,61	894,18	-229,53	246,99	-229,53	33	7,18	0,441	132,90	337,18
990,00	32,28	139,63	899,25	-231,96	249,06	-231,96	34	0,35	0,802	132,96	340,35
996,00	32,40	139,86	904,32	-234,41	251,14	-234,41	34	3,54	0,859	133,03	343,54
1002,00	32,47	139,79	909,39	-236,87	253,21	-236,87	34	6,74	0,397	133,09	346,74
1008,00	32,58	139,87	914,45	-239,34	255,29	-239,34	34	9,94	0,591	133,15	349,94
1014,00	32,69	139,82	919,50	-241,81	257,38	-241,81	35	3,15	0,566	133,21	353,15
1020,00	32,74	139,81	924,55	-244,29	259,47	-244,29	35	6,37	0,251	133,27	356,37
1026,00	32,87	139,75	929,59	-246,77	261,57	-246,77	35	9,60	0,670	133,33	359,60
1032,00	32,88	139,93	934,63	-249,26	263,67	-249,26	36	2,84	0,491	133,39	362,84
1038,00	32,74	140,08	939,67	-251,75	265,76	-251,75	36	6,07	0,809	133,45	366,07
1044,00	33,10	140,12	944,71	-254,25	267,85	-254,25	36	9,31	1,803	133,51	369,31
1050,00	33,44	140,08	949,72	-256,78	269,97	-256,78	37	2,58	1,704	133,57	372,58
1056,00	33,41	140,20	954,73	-259,31	272,08	-259,31	37	5,86	0,363	133,62	375,86
1062,00	33,56	140,29	959,74	-261,86	274,20	-261,86	37	9,15	0,790	133,68	379,15
1068,00	33,72	140,60	964,73	-264,42	276,32	-264,42	38	32,45	1,174	133,74	382,45
1074,00	33,66	140,75	969,72	-266,99	278,43	-266,99	38	35,76	0,513	133,80	385,76

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			НА	BW	0001	00

Blatt: 29

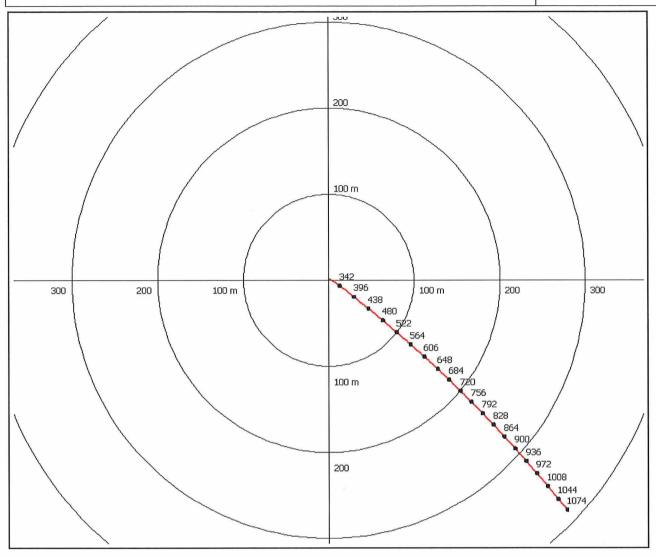


Abbildung 7: Bohrungsverlauf R15-S1, Horizontalprojektion

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			НА	BW	0001	00

Blatt: 30

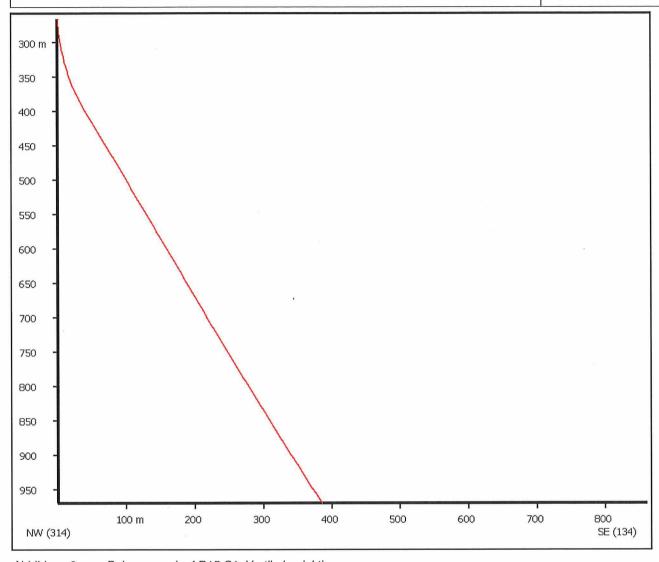


Abbildung 8: Bohrungsverlauf R15-S1, Vertikalprojektion

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		Tel de la	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN			
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht											Blatt: 31

- R15-S1

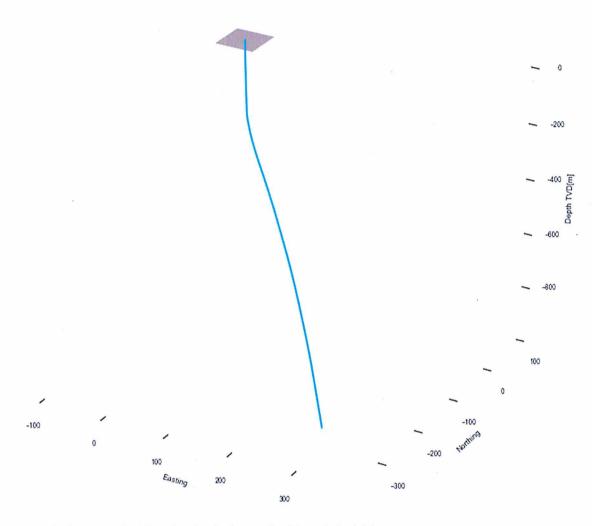


Abbildung 9: Bohrungsverlauf R15-S1 abgelenkt aus der R15, 3D-Projektion

7.2 Bohrungsverlauf R15-S2

Für den Sidetrack S2 wurde der Sidetrack S1 zurück zementiert, um dann mittels Whipstock ab einer Teufe von 643 m MD abzulenken. D.h. die R15-S2 wurde anders als die R15-S1 nicht aus der Bohrung R15 abgelenkt. Die Neigung des Bohrloches R15-S2 beträgt, abgesehen von einem Anstieg auf 39° Inklination (und einer anschließenden Abnahme) im Bereich zwischen 643 m MD bis 758 m MD, im gesamten Verlauf etwa 30°. Im Gegensatz zur R15-S1 erfolgt bis zum Erreichen der Kernteufe von 848,57 m MD eine Abnahme des Azimuts von SE in Richtung ENE. Die Kernstrecke folgt einer Tangente. Der Bohrungsverlauf ist in den Abbildungen 8, 9, 10 und 11 graphisch dargestellt.

Die Surveydaten wurden mittels Gyromessung gewonnen und freundlicherweise von DMT zur Verfügung gestellt. Analog zur R15-S1 fließen nur die Lotungen tiefer als der Kickoff Point (643 m MD) ein.

 Projekt
 PSP-Element
 Funktion/Thema
 Komponente
 Baugruppe
 Aufgabe
 UA
 Lfd Nr.
 Rev.

 NAAN
 NNNNNNNNNNN
 NNAAANN
 AANNNA
 AANN
 AAAA
 AA
 NNNN
 NN

 9A
 55211000
 GEO
 HA
 BW
 0001
 00

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Blatt: 32

Teufe	Neig	<i>laten R15</i> Azi	TVD	Nord	Ost	Vertsec	Closure	DLS	Ges. Azi	Ges. Abw
m	0	0	m	m	m	m	m	°/30m	0	m
648,00	32,60	130,30	606,59	-102,87	127,85	-102,87	164,10	7,500	128,82	164,10
54,00	34,00	130,10	611,61	-104,99	130,37	-104,99	167,39	7,021	128,85	167,39
60,00	34,80	129,30	616,56	-107,16	132,98	-107,16	170,78	4,594	128,86	170,78
666,00	36,20	127,60	621,44	-109,32	135,71	-109,32	174,26	8,565	128,85	174,26
672,00	36,90	125,40	626,26	-111,45	138,58	-111,45	177,83	7,427	128,81	177,83
678,00	38,00	122,90	631,03	-113,49	141,60	-113,49	181,47	9,381	128,71	181,47
684,00	38,10	120,80	635,75	-115,45	144,74	-115,45	185,14	6,491	128,58	185,14
690,00	38,70	118,20	640,46	-117,28	147,98	-117,28	188,82	8,614	128,40	188,82
696,00	38,00	116,10	645,16	-118,98	151,30	-118,98	192,47	7,395	128,18	192,47
702,00	37,00	113,90	649,92	-120,52	154,60	-120,52	196,03	8,356	127,94	196,03
708,00	35,80	111,90	654,75	-121,91	157,88	-121,91	199,47	8,438	127,67	199,47
714,00	34,30	109,70	659,66	-123,13	161,10	-123,13	202,77	9,805	127,39	202,77
720,00	33,90	107,00	664,63	-124,19	164,30	-124,19	205,95	7,828	127,09	205,95
726,00	32,90	104,20	669,64	-125,08	167,48	-125,08	209,03	9,186	126,75	209,03
732,00	32,40	102,40	674,69	-125,83	170,63	-125,83	212,00	5,461	126,41	212,00
738,00	31,70	100,10	679,78	-126,45	173,75	-126,45	214,89	7,034	126,05	214,89
744,00	31,00	98,10	684,90	-126,94	176,83	-126,94	217,68	6,270	125,67	217,68
750,00	30,00	96,20	690,07	-127,32	179,85	-127,32	220,36	6,946	125,30	220,36
756,00	29,20	94,50	695,29	-127,60	182,80	-127,60	222,93	5,799	124,92	222,93
762,00	28,50	93,00	700,54	-127,79	185,69	-127,79	225,41	5,034	124,54	225,41
768,00	28,70	92,00	705,81	-127,91	188,56	-127,91	227,85	2,594	124,15	227,85
774,00	29,10	90,50	711,07	-127,98	191,46	-127,98	230,29	4,140	123,76	230,29
780,00	29,50	88,50	716,30	-127,95	194,39	-127,95	232,72	5,286	123,35	232,72
786,00	29,60	87,40	721,52	-127,84	197,35	-127,84	235,14	2,758	122,94	235,14
792,00	29,40	85,70	726,74	-127,67	200,30	-127,67	237,53	4,303	122,51	237,53
798,00	28,80	83,70	731,98	-127,40	203,21	-127,40	239,84	5,714	122,09	239,84
804,00	28,40	81,60	737,25	-127,03	206,05	-127,03	242,06	5,409	121,65	242,06
810,00	28,30	79,40	742,53	-126,56	208,86	-126,56	244,22	5,247	121,21	244,22
816,00	28,30	77,20	747,81	-125,98	211,65	-125,98	246,31	5,215	120,76	246,31
822,00	28,50	75,10	753,09	-125,30	214,42	-125,30	248,35	5,093	120,30	248,35
828,00	28,70	72,90	758,36	-124,51	217,18	-124,51	250,34	5,359	119,83	250,34
834,00	28,90	71,00	763,62	-123,61	219,93	-123,61	252,29	4,684	119,34	252,29
840,00	29,00	69,10	768,87	-122,62	222,66	-122,62	254,19	4,625	118,84	254,19
846,00	29,40	67,90	774,11	-121,55	225,38	-121,55	256,07	3,545	118,34	256,07
352,00	29,70	67,40	779,33	-120,42	228,12	-120,42	257,95	1,942	117,83	257,95
858,00	29,80	67,50	784,53	-119,28	230,87	-119,28	259,86	0,558	117,32	259,86
864,00	29,90	67,80	789,74	-118,15	233,63	-118,15	261,80	0,899	116,83	261,80
870,00	30,00	67,80	794,94	-117,02	236,40	-117,02	263,78	0,500	116,33	263,78
876,00	30,10	67,80	800,13	-115,88	239,18	-115,88	265,78	0,500	115,85	265,78
882,00	30,30	67,50	805,32	-114,73	241,97	-114,73	267,80	1,253	115,37	267,80
888,00	30,50	67,50	810,49	-113,57	244,78	-113,57	269,84	1,000	114,89	269,84
894,00	30,70	67,50	815,66	-112,40	247,60	-112,40	271,92	1,000	114,42	271,92

0.4 FE044000 OEO 114 DW 0004 00	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
9A 55211000 GEO HA BW 0001 00 BGE BUNDESGESEI	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
	9A	55211000	GEO		1.	HA	BW	0001	00	BGE	BUNDESGESELLS FÜR ENDLAGERU

Erkundun	gsbohru	ıng Rem	lingen R15	5-Geologis	che Fach	betreuung	-Abschluss	sbericht		Blatt: 33
900,00	30,90	67,50	820,81	-111,23	250,44	-111,23	274,03	1,000	113,95	274,03
906,00	31,00	67,70	825,96	-110,05	253,29	-110,05	276,17	0,717	113,48	276,17
912,00	31,20	67,70	831,09	-108,87	256,16	-108,87	278,34	1,000	113,03	278,34
918,00	31,20	67,60	836,23	-107,69	259,03	-107,69	280,53	0,259	112,57	280,53
924,00	31,40	67,70	841,35	-106,51	261,92	-106,51	282,74	1,033	112,13	282,74
930,00	31,50	67,90	846,47	-105,32	264,82	-105,32	284,99	0,723	111,69	284,99
936,00	31,50	67,90	851,59	-104,14	267,72	-104,14	287,26	0,000	111,26	287,26
942,00	31,30	67,70	856,71	-102,96	270,62	-102,96	289,54	1,128	110,83	289,54
948,00	31,50	67,70	861,83	-101,78	273,51	-101,78	291,83	1,000	110,41	291,83
954,00	31,50	67,80	866,94	-100,59	276,41	-100,59	294,14	0,261	110,00	294,14
960,00	31,30	67,70	872,07	-99,41	279,30	-99,41	296,46	1,033	109,59	296,46
966,00	31,20	67,70	877,20	-98,23	282,18	-98,23	298,79	0,500	109,19	298,79
972,00	31,20	67,80	882,33	-97,05	285,06	-97,05	301,13	0,259	108,80	301,13
978,00	31,30	68,00	887,46	-95,88	287,94	-95,88	303,49	0,721	108,42	303,49
984,00	31,30	67,70	892,58	-94,70	290,83	-94,70	305,86	0,779	108,04	305,86
990,00	31,30	67,80	897,71	-93,52	293,71	-93,52	308,24	0,260	107,66	308,24
996,00	31,40	67,70	902,83	-92,34	296,60	-92,34	310,65	0,564	107,29	310,65
1002,00	31,40	67,70	907,96	-91,15	299,50	-91,15	313,06	0,000	106,93	313,06
1008,00	31,40	67,60	913,08	-89,97	302,39	-89,97	315,49	0,261	106,57	315,49
1014,00	31,50	67,90	918,20	-88,78	305,29	-88,78	317,93	0,929	106,21	317,93
1020,00	31,50	67,70	923,31	-87,60	308,19	-87,60	320,39	0,522	105,87	320,39
1026,00	31,40	67,70	928,43	-86,41	311,08	-86,41	322,86	0,500	105,52	322,86
1032,00	31,50	67,60	933,55	-85,22	313,98	-85,22	325,34	0,564	105,18	325,34
1038,00	31,50	67,70	938,66	-84,02	316,88	-84,02	327,83	0,261	104,85	327,83
1044,00	31,60	67,90	943,78	-82,84	319,79	-82,84	330,34	0,724	104,52	330,34
1050,00	31,60	68,10	948,89	-81,66	322,70	-81,66	332,87	0,524	104,20	332,87
1056,00	31,70	68,10	954,00	-80,49	325,62	-80,49	335,42	0,500	103,88	335,42
1062,00	31,80	68,40	959,10	-79,32	328,55	-79,32	337,99	0,934	103,57	337,99
1074,00	31,80	68,80	969,30	-77,01	334,44	-77,01	343,19	0,527	102,97	343,19
1080,00	31,90	69,30	974,39	-75,88	337,40	-75,88	345,83	1,411	102,67	345,83
1086,00	31,80	69,20	979,49	-74,76	340,36	-74,76	348,47	0,565	102,39	348,47

1092,00 31,80 69,20

984,59

-73,63

343,32

-73,63

351,12

0,000

102,11

351,12

I	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
Ì	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	
	9A	55211000	GEO			НА	BW	0001	00	

Blatt: 34

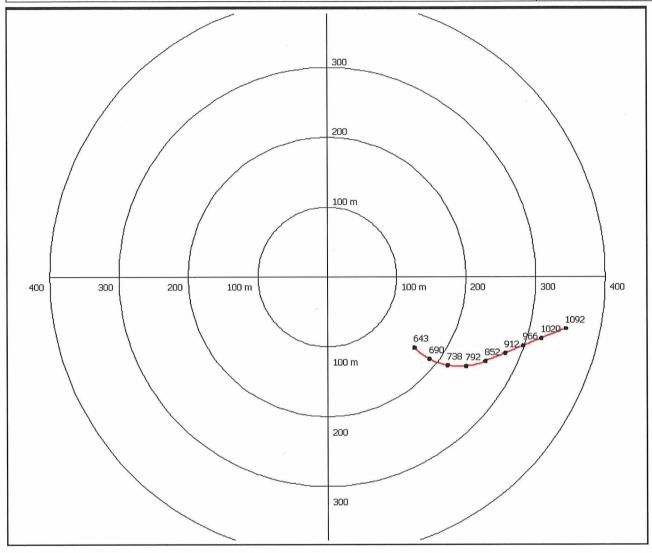


Abbildung 10: Bohrungsverlauf R15-S2, Horizontalprojektion

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN]
9A	55211000	GEO			НА	BW	0001	00	

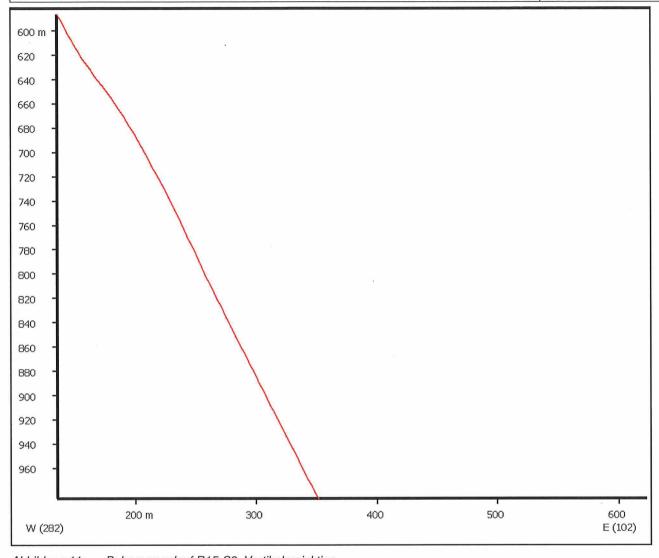


Abbildung 11: Bohrungsverlauf R15-S2, Vertikalprojektion

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			НА	BW	0001	00

Blatt: 36

- R15-S2

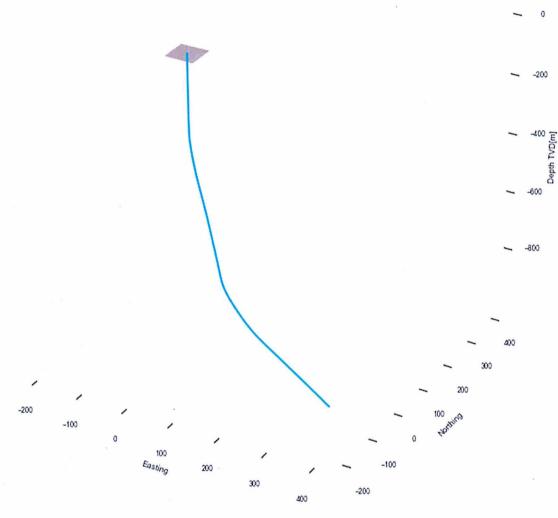


Abbildung 12: Bohrungsverlauf der R15-S2 abgelenkt aus der R15, 3D-Projektion

Projekt NAAN	PSP-Element NNNNNNNNNN	Funktion/Thema NNAAANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev.			
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkung	Erkundungshohrung Remlingen R15-Geologische Fachhetreuung-Abschlusshericht Rlatt: 37										

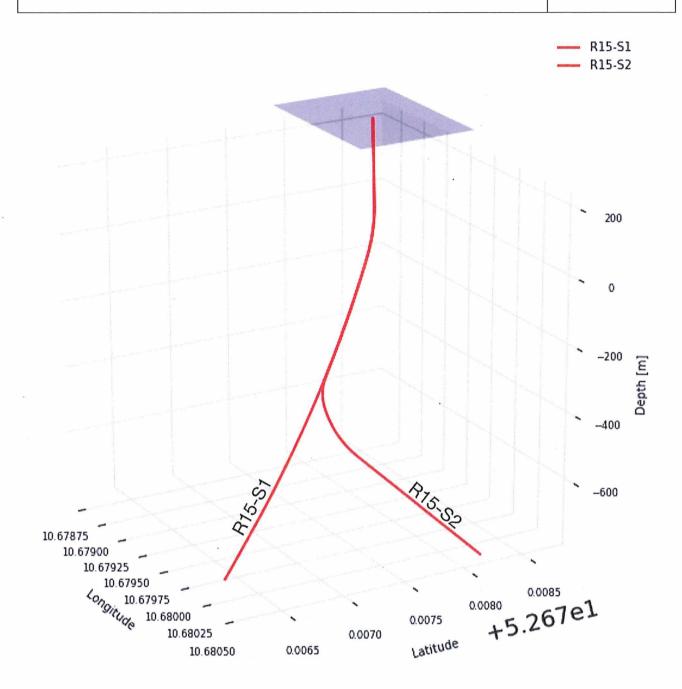


Abbildung 13: Bohrungsverlauf R15-S1 und R15-S2, Teufe in m TVD von Ackersohle, Blick nach SW

8 Bromidanalytik

Neben Chlorid werden im Steinsalz auch Spuren von Bromid während der Mineralgenese eingebaut. Das Verhältnis von Chlorid zu Bromid wird durch die Ionenkonzentration des Meerwassers, aus dem das Salz auskristallisiert, kontrolliert. Bei fortschreitender Eindampfung des Meerwassers nimmt die Konzentration von Bromid zu, wodurch der Anteil an Bromid im Steinsalz sukzessive zunimmt (Pollok, et al., 2016). [2], [3]

Durch diesen Mechanismus lassen sich bestimmte Salinarfolgen wie z.B. die Staßfurt-Folge und die Leine-Folge des Zechsteins anhand des Bromid-Profils geochemisch charakterisieren, wodurch eine stratigraphische Gliederung nach rein petrographischen Kriterien verfeinert werden kann. Für die Staßfurt-Folge gilt dabei, dass die Bromid-Gehalte des Halits stetig in Richtung Hangendes steigen. Im Gegensatz dazu zeichnet sich im Bromid-Standardprofil der Leine-Folge ein sehr viel

Projekt NAAN	PSP-Element NNNNNNNNNN	Funktion/Thema NNAAANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev.	Γ
9A	55211000	GEO	ACININA	ZVANA	HA	BW	0001	00	

Blatt: 38

differenzierteres Bild ab. So sind innerhalb der unteren Leine-Folge (Liniensalz) bereits steile Anstiege der Bromidwerte zu finden, während im Orangesalz ein Plateau im Profil ausgebildet ist. Im folgenden Bank- und Bändersalz steigen die Bromidwerte wieder, um im Bereich der Anhydritmittelsalze wieder zu fallen. Höhere Bromidkonzentrationen werden dann erst wieder in den Tonmittelsalzen gemessen.

Somit lassen sich bei einer entsprechend hoher Probendichte einzelne Gesteinsbereiche z. T. feinstratigraphisch einordnen. Ein erweitertes Bromid-Standardprofil für die Leine-Folge ist in Bornemann, et al. (2008) [3] publiziert.

Die Probenentnahme erfolgte nach makroskopischer Begutachtung im fein- bis mittelkörnigen Halit unter Verwendung einer Bohrmaschine und eines 10 mm Bohrers. Die Probenabstände wurden den lithologischen und bohrkerntechnischen Verhältnissen angepasst. Nach jeder Probenentnahme wurden der Bohrer und die Unterlage mit einer Bürste sorgfältig gereinigt, um einer Verunreinigung der Folgeprobe entgegen zu wirken. Je Probe wurden etwa 6 g Bohrmehl entnommen, in verschließbaren Probenbeuteln abgefüllt und trocken gelagert.

Die genommenen Bromidproben wurden durch die Firma GEOdata GmbH nach der DIN-EN ISO 10304-2 [4] aufbereitet und analysiert. Für die Messungen wurde ein Dionex ICS-1100 Ionenchromatograph mit einer Bestimmungsgrenze von 13 µgBr/gNaCl verwendet. Die Gehalte von Bromid sind in µgBr/gNaCl angegeben.

8.1 Bromidanalytik R15-S1

Insgesamt sind 85 Proben für die Bromidanalytik genommen worden. In der folgenden Tabelle sind die Laborergebnisse der Bromidanalysen der R15-S1 zusammengefasst. Der Verlauf der Bromidgehalte der R15-S1 wird in Abbildung 12 dargestellt.

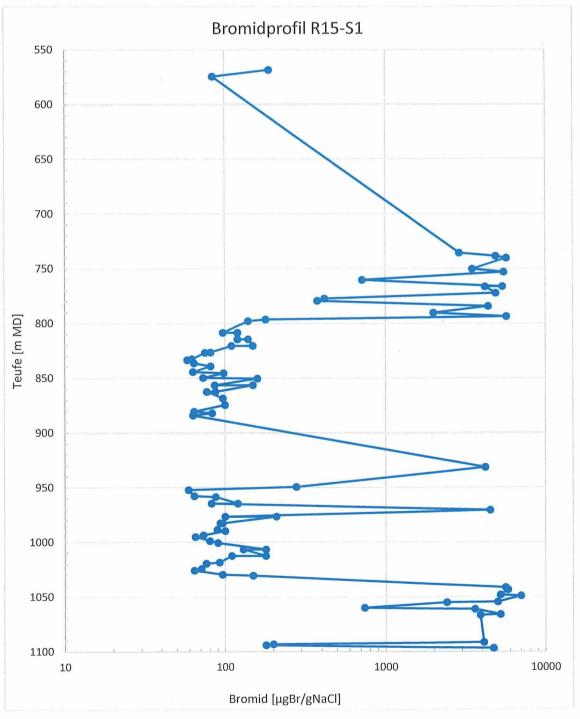
Tabelle 14: Bromidanalysen R15-S1, nach Entnahmeteufe geordnet

Pı	robe	Teufe	Bromid	Analysedatum
Nummer	Bezeichnung	[m]	[µgBr/gNaCl]	
2021-26989	Probe 48	568,5	190	30.07.21-09.08.21
2021-26988	Probe 47	574,5	84	30.07.21-09.08.21
2021-27027	Probe 85	735,79	2900	30.07.21-09.08.21
2021-27026	Probe 84	738,67	4900	30.07.21-09.08.21
2021-27025	Probe 83	740,5	5700	30.07.21-09.08.21
2021-27023	Probe 81	750,5	3500	30.07.21-09.08.21
2021-27024	Probe 82	753,25	5500	30.07.21-09.08.21
2021-27022	Probe 80	760,5	720	30.07.21-09.08.21
2021-27020	Probe 78	766,5	5400	30.07.21-09.08.21
2021-27021	Probe 79	766,61	4200	30.07.21-09.08.21
2021-27019	Probe 77	772,45	4900	30.07.21-09.08.21
2021-27018	Probe 76	777,5	420	30.07.21-09.08.21
2021-27017	Probe 75	779,5	380	30.07.21-09.08.21
2021-27016	Probe 74	784,5	4400	30.07.21-09.08.21
2021-27015	Probe 73	790,5	2000	30.07.21-09.08.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	1
9A	55211000	GEO			НА	BW	0001	00	

	robe	Teufe	Bromid	Analysedatum
Nummer	Bezeichnung	[m]	[µgBr/gNaCl]	
2021-27014	Probe 72	793,81	5700	30.07.21-09.08.21
2021-27013	Probe 71	796,47	180	30.07.21-09.08.21
2021-27012	Probe 70	797,9	140	30.07.21-09.08.21
2021-27010	Probe 68	808,5	97	30.07.21-09.08.21
2021-27011	Probe 69	808,5	120	30.07.21-09.08.21
2021-27009	Probe 67	814,49	120	30.07.21-09.08.21
2021-27008	Probe 66	814,5	140	30.07.21-09.08.21
2021-27006	Probe 64	820,5	150	30.07.21-09.08.21
2021-27007	Probe 65	820,5	110	30.07.21-09.08.21
2021-27005	Probe 63	826,53	81	30.07.21-09.08.21
2021-27004	Probe 62	826,9	75	30.07.21-09.08.21
2021-27003	Probe 61	832,5	62	30.07.21-09.08.21
2021-27002	Probe 60	833,37	58	30.07.21-09.08.21
2021-27001	Probe 59	836,4	64	30.07.21-09.08.21
2021-26999	Probe 58	839,2	81	30.07.21-09.08.21
2021-26998	Probe 57	844,3	63	30.07.21-09.08.21
2021-26997	Probe 56	845,48	98	30.07.21-09.08.21
2021-26996	Probe 55	849,75	73	30.07.21-09.08.21
2021-26995	Probe 54	850,5	160	30.07.21-09.08.21
2021-26994	Probe 53	856,45	86	30.07.21-09.08.21
2021-26993	Probe 52	856,5	150	30.07.21-09.08.21
2021-26991	Probe 50	862,5	87	30.07.21-09.08.21
2021-26992	Probe 51	862,5	77	30.07.21-09.08.21
2021-26990	Probe 49	868,5	97	30.07.21-09.08.21
2021-26987	Probe 46	874,5	100	30.07.21-09.08.21
2021-26986	Probe 45	880,5	64	30.07.21-09.08.21
2021-26985	Probe 44	881,9	83	30.07.21-09.08.21
2021-26984	Probe 43	884,08	63	30.07.21-09.08.21
2021-26983	Probe 42	931,43	4200	30.07.21-09.08.21
2021-26982	Probe 41	949,32	280	30.07.21-09.08.21
2021-26981	Probe 40	951,98	59	30.07.21-09.08.21
2021-26980	Probe 39	957,6	64	30.07.21-09.08.21
2021-26979	Probe 38	958,5	87	30.07.21-09.08.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	55211000	GEO			НА	BW	0001	00	


	robe	Teufe	Bromid	Analysedatum
Nummer	Bezeichnung	[m]	[µgBr/gNaCl]	
2021-26977	Probe 36	964,5	120	30.07.21-09.08.21
2021-26978	Probe 37	964,5	82	30.07.21-09.08.21
2021-26976	Probe 35	970,5	4500	30.07.21-09.08.21
2021-26974	Probe 33	976,5	100	26.07.21-09.08.21
2021-26975	Probe 34	976,5	210	26.07.21-09.08.21
2021-26972	Probe 31	982,5	96	26.07.21-09.08.21
2021-26973	Probe 32	982,5	93	26.07.21-09.08.21
2021-26971	Probe 30	988,5	89	26.07.21-09.08.21
2021-26970	Probe 29	989,52	100	26.07.21-09.08.21
2021-26969	Probe 28	993,49	73	26.07.21-09.08.21
2021-26968	Probe 27	994,97	65	26.07.21-09.08.21
2021-26967	Probe 26	998,78	80	26.07.21-09.08.21
2021-26966	Probe 25	1000,5	90	26.07.21-09.08.21
2021-26963	Probe 22	1006,5	180	26.07.21-09.08.21
2021-26965	Probe 24	1006,5	130	26.07.21-09.08.21
2021-26962	Probe 21	1012,5	180	26.07.21-09.08.21
2021-26964	Probe 23	1012,5	110	26.07.21-09.08.21
2021-26961	Probe 20	1018,5	92	26.07.21-09.08.21
2021-26960	Probe 19	1019,43	76	26.07.21-09.08.21
2021-26959	Probe 18	1024,35	71	26.07.21-09.08.21
2021-26958	Probe 17	1025,78	64	26.07.21-09.08.21
2021-26957	Probe 16	1029,54	96	26.07.21-09.08.21
2021-26956	Probe 15	1030,5	150	26.07.21-09.08.21
2021-26955	Probe 14	1041,33	5600	26.07.21-09.08.21
2021-26954	Probe 13	1043,4	5800	26.07.21-09.08.21
2021-26953	Probe 12	1048	5200	26.07.21-09.08.21
2021-26952	Probe 11	1049	7000	26.07.21-09.08.21
2021-26951	Probe 10	1054,5	5000	26.07.21-09.08.21
2021-26950	Probe 9	1055	2400	26.07.21-09.08.21
2021-26949	Probe 8	1060	740	26.07.21-09.08.21
2021-26948	Probe 7	1061,05	3600	26.07.21-09.08.21
2021-26947	Probe 6	1066	5200	26.07.21-09.08.21
2021-26946	Probe 5	1066,5	3900	26.07.21-09.08.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			HA	BW	0001	00

BGE BUNDESGESELLSCHAFFÜR ENDLAGERUNG

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Pı	obe	Teufe	Bromid	Analysedatum
Nummer	Bezeichnung	[m]	[µgBr/gNaCl]	
2021-26945	Probe 4	1091,43	4100	26.07.21-09.08.21
2021-26944	Probe 3	1093,18	200	26.07.21-09.08.21
2021-26943	Probe 2	1094,05	180	26.07.21-09.08.21
2021-26942	Probe 1	1096,75	4700	26.07.21-09.08.21

KQM_Textblatt_REV11_Stand-2018-04-16

Abbildung 14: Bromidprofil R15-S1, Abszisse logarithmisch

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	50	1	
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN			
9A	55211000	GEO			НА	BW	0001	00	В	GE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht										E	Blatt: 42

8.2 Bromidanalytik R15-S2

Insgesamt sind 116 Proben für die Bromidanalytik genommen worden. In der folgenden Tabelle sind die Laborergebnisse der Bromidanalysen der R15-S2 zusammengefasst. Der Verlauf der Bromidgehalte der R15-S2 wird in Abbildung 13 dargestellt.

Tabelle 15: Bromidanalysen R15-S2

Abelle 15: Bromlo Pi Nummer	obe Bezeichnung	Teufe [m]	Bromid [µgBr/gNaCl]	Analysedatum
2021-32044	Probe 1	850	130	27.08.21-15.09.21
2021-32045	Probe 2	852	140	27.08.21-15.09.21
2021-32046	Probe 3	854	130	27.08.21-15.09.21
2021-32047	Probe 4	856	180	27.08.21-15.09.21
2021-32048	Probe 5	858	310	27.08.21-15.09.21
2021-32049	Probe 6	860	130	27.08.21-15.09.21
2021-32050	Probe 7	862	120	27.08.21-15.09.21
2021-32051	Probe 8	864	140	27.08.21-15.09.21
2021-32052	Probe 9	866	120	27.08.21-15.09.21
2021-32053	Probe 10	868	89	27.08.21-15.09.21
2021-32054	Probe 11	870	98	27.08.21-15.09.21
2021-32055	Probe 12	872	89	27.08.21-15.09.21
2021-32056	Probe 13	874	110	27.08.21-15.09.21
2021-32057	Probe 14	876	120	27.08.21-15.09.21
2021-32058	Probe 15	878	240	27.08.21-15.09.21
2021-32059	Probe 16	880	150	27.08.21-15.09.21
2021-32060	Probe 17	882,25	220	27.08.21-15.09.21
2021-32061	Probe 18	884	110	27.08.21-15.09.21
2021-32062	Probe 19	886	160	27.08.21-15.09.21
2021-32063	Probe 20	888	110	27.08.21-15.09.21
2021-32064	Probe 21	890	170	27.08.21-15.09.21
2021-32065	Probe 22	892	120	27.08.21-15.09.21
2021-32066	Probe 23	894	140	27.08.21-15.09.21
2021-32067	Probe 24	896	110	27.08.21-15.09.21
2021-32068	Probe 25	898	120	27.08.21-15.09.21
2021-32069	Probe 26	900	80	27.08.21-15.09.21
2021-32070	Probe 27	902	91	27.08.21-15.09.21
2021-32071	Probe 28	904	84	27.08.21-15.09.21
2021-32072	Probe 29	906	130	27.08.21-15.09.21

Projekt NAAN Funktion/Thema NNAAANN Komponente AANNNA Baugruppe AANN Aufgabe AAAA UA AA Lfd Nr. NNNN Rev. NN ΗА BW 0001 00 9A 55211000 **GEO**

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

	obe	Teufe	Bromid	Analysedatum
Nummer	Bezeichnung	[m]	[µgBr/gNaCl]	
2021-32073	Probe 30	908	110	27.08.21-15.09.21
2021-32074	Probe 31	910	96	27.08.21-15.09.21
2021-32075	Probe 32	912	110	27.08.21-15.09.21
2021-32076	Probe 33	932	4400	27.08.21-15.09.21
2021-32077	Probe 34	934	4000	27.08.21-15.09.21
2021-32078	Probe 35	936	5600	27.08.21-15.09.21
021-32079 Probe 36 021-32080 Probe 37		938	5400	27.08.21-15.09.21
		940	4400	27.08.21-15.09.21
2021-32081	Probe 38	942	3000	27.08.21-15.09.21
2021-32082	Probe 39	944	3600	27.08.21-15.09.21
2021-32083	Probe 40	946	4600	27.08.21-15.09.21
2021-32084	Probe 41	948	4600	27.08.21-15.09.21
2021-32085	Probe 42	950	4900	27.08.21-15.09.21
2021-32086	Probe 43	952	4200	27.08.21-15.09.21
2021-32087	Probe 44	954	5700	27.08.21-15.09.21
2021-32088	Probe 45	956	5400	27.08.21-15.09.21
2021-32089	Probe 46	958	4000	27.08.21-15.09.21
2021-32090	Probe 47	960	4900	27.08.21-15.09.21
2021-32091	Probe 48	962	3700	27.08.21-15.09.21
2021-32092	Probe 49	964	2600	27.08.21-15.09.21
2021-32093	Probe 50	966	4700	27.08.21-15.09.21
2021-32094	Probe 51	968	4200	27.08.21-15.09.21
2021-32095	Probe 52	970	2200	27.08.21-15.09.21
2021-32096	Probe 53	972	4500	27.08.21-15.09.21
2021-32097	Probe 54	974	2700	27.08.21-15.09.21
2021-32098	Probe 55	976	2400	27.08.21-15.09.21
2021-32099	Probe 56	978	4500	27.08.21-15.09.21
2021-32100	Probe 57	980	5100	27.08.21-15.09.21
2021-32101	Probe 58	982	4300	27.08.21-15.09.21
2021-32102	Probe 59	984	2900	27.08.21-15.09.21
2021-32103	Probe 60	986	2900	27.08.21-15.09.21
2021-32104	Probe 61	988	5700	27.08.21-15.09.21
2021-32105	Probe 62	990	4900	27.08.21-15.09.21

1	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	
	9A	55211000	GEO			НА	BW	0001	00	

	robe	Teufe	Bromid	Analysedatum	
Nummer	Bezeichnung	[m]	[µgBr/gNaCl]		
2021-32106	Probe 63	992	970	27.08.21-15.09.21	
2021-32107	Probe 64	994	1000	27.08.21-15.09.21	
2021-32108	Probe 65	996	840	27.08.21-15.09.21	
2021-32109	Probe 66	998	410	27.08.21-15.09.21	
2021-32110	Probe 67	1000	730	27.08.21-15.09.21	
2021-32111	Probe 68	1002	290	27.08.21-15.09.21	
2021-32112	Probe 69	1004	240	27.08.21-15.09.21	
2021-32113	Probe 70	1006	270	27.08.21-15.09.21	
2021-32114	Probe 71	1008	180	27.08.21-15.09.21	
2021-32115	Probe 72	1010	230	27.08.21-15.09.21	
2021-32116	Probe 73	1012	1012	210	27.08.21-15.09.21
2021-32117	Probe 74	1014	600	27.08.21-15.09.21	
2021-32118	Probe 75	1016	450	27.08.21-15.09.21	
2021-32119	Probe 76	1018	490	27.08.21-15.09.21	
2021-32120	Probe 77	1020	4800	27.08.21-15.09.21	
2021-32121	Probe 78	1022	3900	27.08.21-15.09.21	
2021-32122	Probe 79	1024	3400	27.08.21-15.09.21	
2021-32123	Probe 80	1026	910	27.08.21-15.09.21	
2021-32124	Probe 81	1028	550	27.08.21-15.09.21	
2021-32125	Probe 82	1030	1300	27.08.21-15.09.21	
2021-32126	Probe 83	1032	290	27.08.21-15.09.21	
2021-32127	Probe 84	1034	220	27.08.21-15.09.21	
2021-32128	Probe 85	1036	220	27.08.21-15.09.21	
2021-32129	Probe 86	1038	190	27.08.21-15.09.21	
2021-32130	Probe 87	1040	200	27.08.21-15.09.21	
2021-32131	Probe 88	1042	170	27.08.21-15.09.21	
2021-32132	Probe 89	1044	160	27.08.21-15.09.21	
2021-32133	Probe 90	1046	160	27.08.21-15.09.21	
2021-32134	021-32134 Probe 91 021-32135 Probe 92		150	27.08.21-15.09.21	
2021-32135			150	27.08.21-15.09.21	
2021-32136			160	27.08.21-15.09.21	
2021-32137	Probe 94	1054	190	27.08.21-15.09.21	
2021-32138	Probe 95	1056	160	27.08.21-15.09.21	

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	55211000	GEO			НА	BW	0001	00	

Pı	robe	Teufe	Bromid	Analysedatum
Nummer	Bezeichnung	[m]	[µgBr/gNaCl]	
2021-32139	Probe 96	1058	180	27.08.21-15.09.21
2021-32140	Probe 97	1060	160	27.08.21-15.09.21
2021-32141	Probe 98	1064	170	27.08.21-15.09.21
2021-32142	Probe 99	1066	150	27.08.21-15.09.21
2021-32143	Probe 100	1068	150	27.08.21-15.09.21
2021-32144	Probe 101	1070	150	27.08.21-15.09.21
2021-32145	Probe 102	1072	150	27.08.21-15.09.21
2021-32146	Probe 103	1074	160	27.08.21-15.09.21
2021-32147	Probe 104	1076	160	27.08.21-15.09.21
2021-32148	Probe 105	1078	140	27.08.21-15.09.21
2021-32149	Probe 106	1080	140	27.08.21-15.09.21
2021-32150	Probe 107	1082	140	27.08.21-15.09.21
2021-32151	Probe 108	1084	150	27.08.21-15.09.21
2021-32152	Probe 109	1086	160	27.08.21-15.09.21
2021-32153	Probe 110	1088	170	27.08.21-15.09.21
2021-32154	Probe 111	1090	210	27.08.21-15.09.21
2021-32155	Probe 112	1092	220	27.08.21-15.09.21
2021-32156	Probe 113	1094	200	27.08.21-15.09.21
2021-32157	Probe 114	1096	200	27.08.21-15.09.21
2021-32158	Probe 115	1098	260	27.08.21-15.09.21
2021-32159	Probe 116	1100	200	27.08.21-15.09.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	55211000	GEO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

Blatt: 46

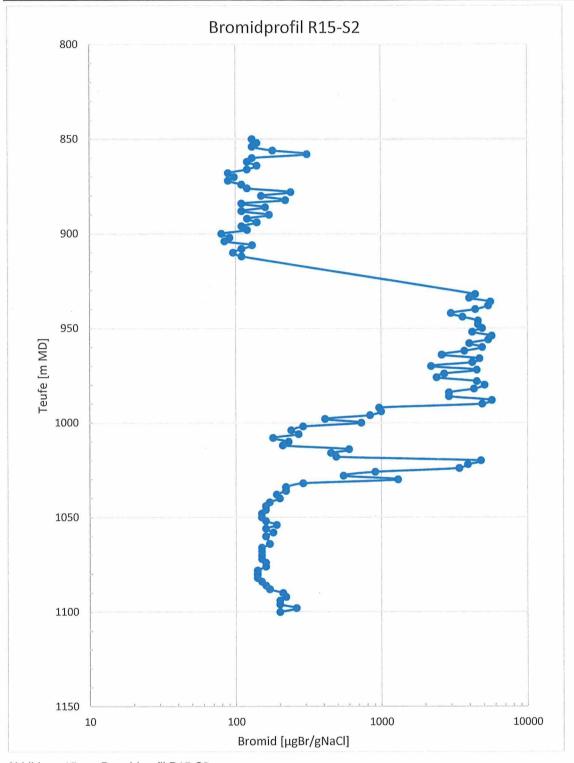


Abbildung 15: Bromidprofil R15-S2

9 Kaliumanalytik R15-S1

Zur quantitativen Identifizierung von Kalisalzen wurden die Bohrkerne für eine Kalium-Analyse beprobt. Die in der Leine-Folge am Standort Remlingen häufig anzutreffenden Kalium-tragenden Salze sind durch die mineralogisch-geochemischen Untersuchungen der Erkundungsbohrung Remlingen 15 bekannt, bedeutend sind hier die Chloride Sylvin und Carnallit und die Sulfate Polyhalit und Langbeinit. Carnallit ist aufgrund seiner hygroskopischen Eigenschaft an Luft sehr instabil und kann schon nach einigen Tagen deutliche Lösungserscheinungen zeigen. Makroskopisch ist eine

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.			
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN			
9A	55211000	GEO			HA	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht											Blatt: 47

Unterscheidung von Kalisalzen und Steinsalz z. T. nur schwer möglich, vor allem, wenn diese als sogenannte Hartsalze in feinkörnigen Gemengen vorliegen. Daher bietet die Kaliumanalytik eine quantitative Methode, das Vorhandensein von Kalisalzen zu bewerten.

Nach der klassischen Einteilung von Evaporiten, folgen die Kalisalze gemäß der Evaporation von rezentem Meerwasser dem Halit und bilden das letzte Glied in der Reihe. Innerhalb der Leine-Folge an der Schachtanlage Asse II sind das Kaliflöz Ronnenberg und das Kaliflöz Riedel nicht entwickelt (Essaid & Klarr, 1982) [5].

Die Probenentnahme erfolgte nach makroskopischer Begutachtung im fein- bis mittelkörnigen Halit unter Verwendung einer Bohrmaschine und eines 10 mm Bohrers im 2 m Abstand. Bei Bedarf wurden die Probenabstände angepasst. Nach jeder Probenentnahme wurden der Bohrer und die Unterlage mit einer Bürste sorgfältig gereinigt, um einer Verunreinigung der Folgeprobe entgegen zu wirken. Je Probe wurden etwa 6 g Bohrmehl entnommen, in verschließbaren Probenbeuteln abgefüllt und trocken gelagert.

Die genommenen Proben wurden durch die Firma GEO-Data nach der DIN-EN ISO 11885 [5] aufbereitet und analysiert. Verwendet wurde ein ThermoScientific iCAP 6000 ICP-OES bei einer Bestimmungsgrenze von 20 µgK/gNaCl.

9.1 Kaliumprofil R15-S1

Für die Analyse von Kalium sind 85 Proben analog zur Beprobung für Bromid entnommen worden. Die Ergebnisse der Kaliumanalysen (siehe nachfolgende Tabelle) sind in µgK/gNaCl angegeben. Der Verlauf der Kaliumgehalte der Bohrung R15-S1 ist anschließend weiter unten graphisch dargestellt. Die Werte für Kalium rangieren zwischen 58 und 240000 µgK/gNaCl.

Tabelle 16: Kaliumanalysen R15-S1, geordnet nach Teufe

Pi	obe	Teufe	Kalium	Analysedatum
Nummer	Bezeichnung	[m]	[µgK / gNaCl]	
2021-26989	Probe 48	568,5	600	30.07.21-09.08.21
2021-26988	Probe 47	574,5	580	30.07.21-09.08.21
2021-27027	Probe 85	735,79	150000	30.07.21-09.08.21
2021-27026	Probe 84	738,67	200000	30.07.21-09.08.21
2021-27025	Probe 83	740,5	210000	30.07.21-09.08.21
2021-27023	Probe 81	750,5	120000	30.07.21-09.08.21
2021-27024	Probe 82	753,25	190000	30.07.21-09.08.21
2021-27022	Probe 80	760,5	21000	30.07.21-09.08.21
2021-27020	Probe 78	766,5	200000	30.07.21-09.08.21
2021-27021	Probe 79	766,61	170000	30.07.21-09.08.21
2021-27019	Probe 77	772,45	180000	30.07.21-09.08.21
2021-27018	Probe 76	777,5	2500	30.07.21-09.08.21
2021-27017	Probe 75	779,5	1100	30.07.21-09.08.21
2021-27016	Probe 74	784,5	160000	30.07.21-09.08.21
2021-27015	Probe 73	790,5	76000	30.07.21-09.08.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	55211000	GEO			НА	BW	0001	00	

	robe	Teufe	Kalium	Analysedatum
Nummer	Bezeichnung	[m]	[µgK / gNaCl]	
2021-27014	Probe 72	793,81	130000	30.07.21-09.08.21
2021-27013	Probe 71	796,47	930	30.07.21-09.08.21
2021-27012	Probe 70	797,9	290	30.07.21-09.08.21
2021-27010	Probe 68	808,5	930	30.07.21-09.08.21
2021-27011	Probe 69	808,5	1300	30.07.21-09.08.21
2021-27009	Probe 67	814,49	760	30.07.21-09.08.21
2021-27008 Probe 66 2021-27006 Probe 64		814,5	980	30.07.21-09.08.21
		820,5	670 3	30.07.21-09.08.21
2021-27007	Probe 65	820,5	950	30.07.21-09.08.21
2021-27005	Probe 63	826,53	330	30.07.21-09.08.21
2021-27004	Probe 62	826,9	640	30.07.21-09.08.21
2021-27003	Probe 61	832,5	290	30.07.21-09.08.21
2021-27002	Probe 60	833,37	180	30.07.21-09.08.21
2021-27001	Probe 59	836,4	350	30.07.21-09.08.21
2021-26999	Probe 58	839,2	810	30.07.21-09.08.21
2021-26998	Probe 57	844,3	100	30.07.21-09.08.21
2021-26997	Probe 56	845,48	190	30.07.21-09.08.21
2021-26996	Probe 55	849,75	820	30.07.21-09.08.21
2021-26995	Probe 54	850,5	250	30.07.21-09.08.21
2021-26994	Probe 53	856,45	930	30.07.21-09.08.21
2021-26993	Probe 52	856,5	270	30.07.21-09.08.21
2021-26991	Probe 50	862,5	160	30.07.21-09.08.21
2021-26992	Probe 51	862,5	1200	30.07.21-09.08.21
2021-26990	Probe 49	868,5	390	30.07.21-09.08.21
2021-26987	Probe 46	874,5	690	30.07.21-09.08.21
2021-26986	Probe 45	880,5	320	30.07.21-09.08.21
2021-26985	Probe 44	881,9	300	30.07.21-09.08.21
2021-26984	Probe 43	884,08	440	30.07.21-09.08.21
2021-26983 Probe 42 2021-26982 Probe 41		931,43	240000	30.07.21-09.08.21
		949,32	1000	30.07.21-09.08.21
2021-26981	Probe 40	951,98	260	30.07.21-09.08.21
2021-26980	Probe 39	957,6	170	30.07.21-09.08.21
2021-26979	Probe 38	958,5	240	30.07.21-09.08.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	ı
9A	55211000	GEO			HA	BW	0001	00	

	obe	Teufe	Kalium	Analysedatum	
Nummer	Bezeichnung	[m]	[µgK / gNaCl]		
2021-26977	Probe 36	964,5	480	30.07.21-09.08.21	
2021-26978	Probe 37	964,5	1200	30.07.21-09.08.21	
2021-26976	Probe 35	970,5	150000	30.07.21-09.08.21	
2021-26974	Probe 33	976,5	940	26.07.21-09.08.21	
2021-26975	Probe 34	976,5	4400	26.07.21-09.08.21	
2021-26972	Probe 31	982,5	980	26.07.21-09.08.21	
2021-26973	Probe 32	982,5	920	26.07.21-09.08.21	
2021-26971	Probe 30	988,5	920	26.07.21-09.08.21	
2021-26970	Probe 29	989,52	380	26.07.21-09.08.21	
2021-26969	Probe 28	993,49	430	26.07.21-09.08.21	
2021-26968	Probe 27	994,97	890	26.07.21-09.08.21	
2021-26967	Probe 26	998,78	1000	26.07.21-09.08.21	
2021-26966	Probe 25	1000,5	200	26.07.21-09.08.21	
2021-26963	Probe 22	1006,5	1900	26.07.21-09.08.21	
2021-26965	Probe 24	1006,5	990	26.07.21-09.08.21	
2021-26962	Probe 21	1012,5	580	26.07.21-09.08.21	
2021-26964	Probe 23	1012,5	370	26.07.21-09.08.21	
2021-26961	Probe 20	1018,5	190	26.07.21-09.08.21	
2021-26960	Probe 19	1019,43	220	26.07.21-09.08.21	
2021-26959	Probe 18	1024,35	110	26.07.21-09.08.21	
2021-26958	Probe 17	1025,78	750	26.07.21-09.08.21	
2021-26957	Probe 16	1029,54	58	26.07.21-09.08.21	
2021-26956	Probe 15	1030,5	110	26.07.21-09.08.21	
2021-26955	Probe 14	1041,33	190000	26.07.21-09.08.21	
2021-26954	Probe 13	1043,4	130000	26.07.21-09.08.21	
2021-26953	Probe 12	1048	180000	26.07.21-09.08.21	
2021-26952	Probe 11	1049	61000	26.07.21-09.08.21	
2021-26951	Probe 10	1054,5	170000	26.07.21-09.08.21	
2021-26950	Probe 9	1055	78000	26.07.21-09.08.21	
2021-26949	Probe 8	1060	21000	26.07.21-09.08.21	
2021-26948	Probe 7	1061,05	140000	26.07.21-09.08.21	
2021-26947	Probe 6	1066	190000	26.07.21-09.08.21	
2021-26946	Probe 5	1066,5	140000	26.07.21-09.08.21	

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			HA	BW	0001	00

Pr	Probe		Kalium	Analysedatum		
Nummer	Bezeichnung	[m]	[µgK / gNaCl]			
2021-26945	Probe 4	1091,43	150000	26.07.21-09.08.21		
2021-26944	Probe 3	1093,18	1900	26.07.21-09.08.21		
2021-26943	Probe 2	1094,05	1300	26.07.21-09.08.21		
2021-26942	Probe 1	1096,75	210000	26.07.21-09.08.21		

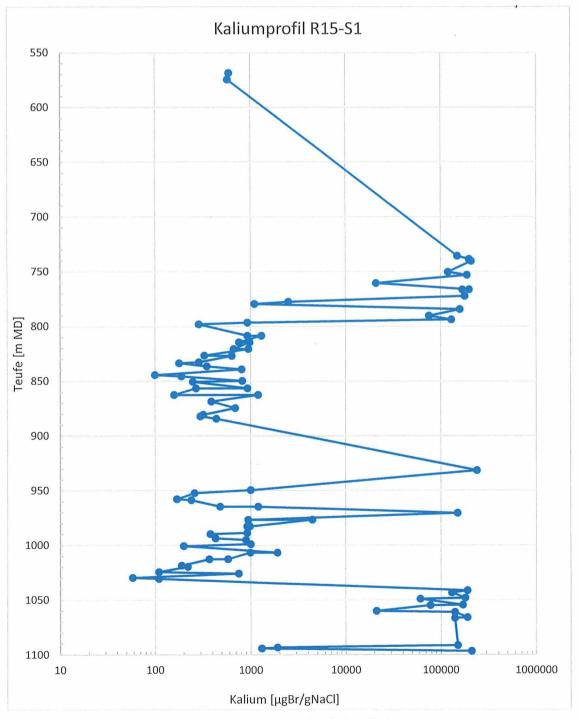


Abbildung 16: Kaliumprofil R15-S1, Abszisse in logarithmischer Skala

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.			
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		-	
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht											3latt: 51

9.2 Kaliumprofil R15-S2

Für die Analyse von Kalium sind 116 Proben analog zur Beprobung für Bromid entnommen worden. Die Ergebnisse der Kaliumanalysen (siehe nachfolgende Tabelle) sind in µgK/gNaCl angegeben. Der Verlauf der Kaliumgehalte der Bohrung R15-S2 ist anschließend weiter unten graphisch dargestellt.

Tabelle 17: Kaliumanalysen R15-S2

	robe	Teufe	Kalium [µgK/gNaCl]	Analysedatum
Nummer	Bezeichnung	[m]		
2021-32044	Probe 1	850	520	27.08.21-15.09.21
2021-32045	Probe 2	852	770	27.08.21-15.09.21
2021-32046	Probe 3	854	430	27.08.21-15.09.21
2021-32047	Probe 4	856	430	27.08.21-15.09.21
2021-32048	Probe 5	858	820	27.08.21-15.09.21
2021-32049	Probe 6	860	340	27.08.21-15.09.21
2021-32050	Probe 7	862	430	27.08.21-15.09.21
2021-32051	Probe 8	864	720	27.08.21-15.09.21
2021-32052	Probe 9	866	470	27.08.21-15.09.21
2021-32053	Probe 10	868	500	27.08.21-15.09.21
2021-32054	Probe 11	870	300	27.08.21-15.09.21
2021-32055	Probe 12	872	360	27.08.21-15.09.21
2021-32056	Probe 13	874	300	27.08.21-15.09.21
2021-32057	Probe 14	876	370	27.08.21-15.09.21
2021-32058	Probe 15	878	430	27.08.21-15.09.21
2021-32059	Probe 16	880	400	27.08.21-15.09.21
2021-32060	Probe 17	882,25	400	27.08.21-15.09.21
2021-32061	Probe 18	884	330	27.08.21-15.09.21
2021-32062	Probe 19	886	730	27.08.21-15.09.21
2021-32063	Probe 20	888	160	27.08.21-15.09.21
2021-32064	Probe 21	890	260	27.08.21-15.09.21
2021-32065	Probe 22	892	360	27.08.21-15.09.21
2021-32066	Probe 23	894	580	27.08.21-15.09.21
2021-32067	Probe 24	896	110	27.08.21-15.09.21
2021-32068	Probe 25	898	300	27.08.21-15.09.21
2021-32069	Probe 26	900	110	27.08.21-15.09.21
2021-32070	Probe 27	902	73	27.08.21-15.09.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	
9A	55211000	GEO			НА	BW	0001	00	

	robe	Teufe	Kalium	Analysedatum
Nummer	Bezeichnung	[m]	[µgK/gNaCl]	
2021-32071	Probe 28	904	86	27.08.21-15.09.21
2021-32072	Probe 29	906	470	27.08.21-15.09.21
2021-32073	Probe 30	908	290	27.08.21-15.09.21
2021-32074	Probe 31	910	390	27.08.21-15.09.21
2021-32075	Probe 32	912	180	27.08.21-15.09.21
2021-32076	Probe 33	932	190000	27.08.21-15.09.21
2021-32077	Probe 34	934	170000	27.08.21-15.09.21
2021-32078	Probe 35	936	240000	27.08.21-15.09.21
2021-32079	Probe 36	938	230000	27.08.21-15.09.21
2021-32080	Probe 37	940	190000	27.08.21-15.09.21
2021-32081	Probe 38	942	130000	27.08.21-15.09.21
2021-32082	Probe 39	944	150000	27.08.21-15.09.21
2021-32083	Probe 40	946	190000	27.08.21-15.09.21
2021-32084	Probe 41	948	190000	27.08.21-15.09.21
2021-32085	Probe 42	950	210000	27.08.21-15.09.21
2021-32086	Probe 43	952	180000	27.08.21-15.09.21
2021-32087	Probe 44	954	240000	27.08.21-15.09.21
2021-32088	Probe 45	956	230000	27.08.21-15.09.21
2021-32089	Probe 46	958	170000	27.08.21-15.09.21
2021-32090	Probe 47	960	210000	27.08.21-15.09.21
2021-32091	Probe 48	962	160000	27.08.21-15.09.21
2021-32092	Probe 49	964	120000	27.08.21-15.09.21
2021-32093	Probe 50	966	200000	27.08.21-15.09.21
2021-32094	Probe 51	968	180000	27.08.21-15.09.21
2021-32095	Probe 52	970	94000	27.08.21-15.09.21
2021-32096	Probe 53	972	190000	27.08.21-15.09.21
2021-32097	Probe 54	974	120000	27.08.21-15.09.21
2021-32098	Probe 55	976	100000	27.08.21-15.09.21
2021-32099	Probe 56	978	200000	27.08.21-15.09.21
2021-32100	Probe 57	980	220000	27.08.21-15.09.21
2021-32101	Probe 58	982	180000	27.08.21-15.09.21
2021-32102	Probe 59	984	130000	27.08.21-15.09.21
2021-32103	Probe 60	986	130000	27.08.21-15.09.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN
9A	55211000	GEO			НА	BW	0001	00

BGE BUNDESGESELLSCHAFT

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

	robe	Teufe	Kalium	Analysedatun
Nummer	Bezeichnung	[m]	[µgK/gNaCl]	
2021-32104	Probe 61	988	240000	27.08.21-15.09.21
2021-32105	Probe 62	990	220000	27.08.21-15.09.21
2021-32106	Probe 63	992	30000	27.08.21-15.09.21
2021-32107	Probe 64	994	41000	27.08.21-15.09.21
2021-32108	Probe 65	996	20000	27.08.21-15.09.21
2021-32109	Probe 66	998	3900	27.08.21-15.09.21
2021-32110	Probe 67	1000	71000	27.08.21-15.09.21
2021-32111	Probe 68	1002	1600	27.08.21-15.09.21
2021-32112	Probe 69	1004	1700	27.08.21-15.09.21
2021-32113	Probe 70	1006	3500	27.08.21-15.09.21
2021-32114	Probe 71	1008	470	27.08.21-15.09.21
2021-32115	Probe 72	1010	3400	27.08.21-15.09.21
2021-32116	Probe 73	1012	520	27.08.21-15.09.21
2021-32117	Probe 74	1014	34000	27.08.21-15.09.21
2021-32118	Probe 75	1016	4900	27.08.21-15.09.21
2021-32119	Probe 76	1018	2100	27.08.21-15.09.21
2021-32120	Probe 77	1020	190000	27.08.21-15.09.21
2021-32121	Probe 78	1022	160000	27.08.21-15.09.21
2021-32122	Probe 79	1024	150000	27.08.21-15.09.21
2021-32123	Probe 80	1026	26000	27.08.21-15.09.21
2021-32124	Probe 81	1028	9700	27.08.21-15.09.21
2021-32125	Probe 82	1030	40000	27.08.21-15.09.21
2021-32126	Probe 83	1032	2400	27.08.21-15.09.21
2021-32127	Probe 84	1034	1600	27.08.21-15.09.21
2021-32128	Probe 85	1036	1300	27.08.21-15.09.21
2021-32129	Probe 86	1038	4800	27.08.21-15.09.21
2021-32130	Probe 87	1040	970	27.08.21-15.09.21
2021-32131	Probe 88	1042	1300	27.08.21-15.09.21
2021-32132	Probe 89	1044	950	27.08.21-15.09.21
2021-32133	Probe 90	1046	860	27.08.21-15.09.21
2021-32134	Probe 91	1048	990	27.08.21-15.09.21
2021-32135	Probe 92	1050	1400	27.08.21-15.09.21
2021-32136	Probe 93	1052	5100	27.08.21-15.09.21

ſ	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
Ì	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN
	9A	55211000	GEO			HA	BW	0001	00

Pı	robe	Teufe	Kalium	Analysedatum
Nummer	Bezeichnung	[m]	[µgK/gNaCl]	
2021-32137	Probe 94	1054	680	27.08.21-15.09.21
2021-32138	Probe 95	1056	230	27.08.21-15.09.21
2021-32139	Probe 96	1058	1400	27.08.21-15.09.21
2021-32140	Probe 97	1060	2400	27.08.21-15.09.21
2021-32141	Probe 98	1064	330	27.08.21-15.09.21
2021-32142	Probe 99	1066	790	27.08.21-15.09.21
2021-32143	Probe 100	1068	1000	27.08.21-15.09.21
2021-32144	Probe 101	1070	3000	27.08.21-15.09.21
2021-32145	Probe 102	1072	980	27.08.21-15.09.21
2021-32146	Probe 103	1074	2600	27.08.21-15.09.21
2021-32147	Probe 104	1076	250	27.08.21-15.09.21
2021-32148	Probe 105	1078	1800	27.08.21-15.09.21
2021-32149	Probe 106	1080	970	27.08.21-15.09.21
2021-32150	Probe 107	1082	240	27.08.21-15.09.21
2021-32151	Probe 108	1084	230	27.08.21-15.09.21
2021-32152	Probe 109	1086	580	27.08.21-15.09.21
2021-32153	Probe 110	1088	1000	27.08.21-15.09.21
2021-32154	Probe 111	1090	2100	27.08.21-15.09.21
2021-32155	Probe 112	1092	1100	27.08.21-15.09.21
2021-32156	Probe 113	1094	830	27.08.21-15.09.21
2021-32157	Probe 114	1096	2500	27.08.21-15.09.21
2021-32158	Probe 115	1098	2100	27.08.21-15.09.21
2021-32159	Probe 116	1100	1100	27.08.21-15.09.21

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN]
9A	55211000	GEO			HA	BW	0001	00	

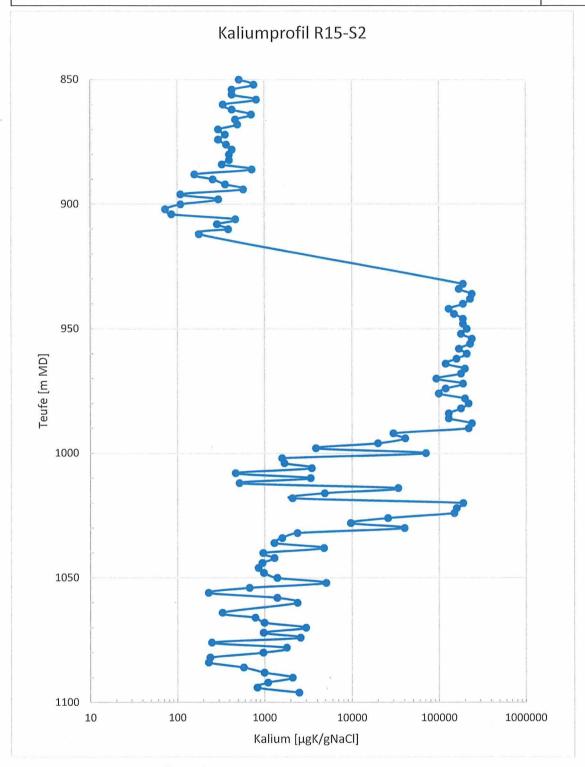


Abbildung 17: Kaliumprofil R15-S2

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	17815	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		١.
9A	55211000	GEO			HA	BW	0001	00	BGE	F

BGE BUNDESGESELLSCHAF

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Blatt: 56

10 Literaturverzeichnis

- [1] Ercosplan. I. G. u. B. mbH, "Bericht zur Revisionskartierung (M 1:5.000) der Salzstruktur Asse im Bereich zwischen Groß Denkte und Klein Vahlberg," Bundesgesellschaft für Endlagerung, 2018, BGE-SZ-KZL: 9A/56223000/HA/RA/0002/01
- [2] L. Pollok, M. Saßnowski, J. Hammer, M. Schramm, M. Mertineit und M. Pusch, "Projekt Asse, Geologische Bearbeitung Salzstruktur, Geowissenschaftliche Ergebnisse zu den Salinargesteinen der Erkundungsbohrung Remlingen 15," Hannover, 2016 BGE-SZ-KZL: 9a/5632000/H/RB/0006/00
- [3] O. Bornemann, J. Behlau, R. Fischbeck, R. Hammer, W. Jairitz, S. Keller, G. Mingerzahn und M. Schramm, Standortbeschreibung Gorleben Teil 3. Ergebnisse der über- und untertägigen geologischen Erkundung des Salinars, Hannover:, 2008.
- [4] DIN EN ISO 10304-2:1996-11. Wasserbeschaffenheit Bestimmung der gelösten Anionen mittels Ionenchromatographie Teil 2: Bestimmung von Bromid, Chlorid, Nitrat, Nitrit, Orthophosphat und Sulfat in Abwasser (ISO 10304-2:1995);, Deutsche Fassung EN ISO 10304-2:1996.
- [5] S. Essaid und K. Klarr, "Zum Innenbau der Salzstruktur Asse," Z. dt. geol. Ges. Hannover, 1982.
- [6] "DIN-EN ISO 11885. Wasserbeschaffenheit von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom-Emmissionsspektroskopie (ICP-OES) (ISO 11885:2007); Deutsche Fassung EN ISO 11885:2009.".

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN
9A	55211000	GEO			НА	BW	0001	00

Blatt: 57

Anhang 1: Bromid- und Kaliumanalysen - Prüfberichte

GEO-data Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Projekt-Nr.: 03442

GeoService GmbH

Bearbeiter:

Durchwahl: (0 51 31) 70 99-Sekretariat: (0 51 31) 70 99-0

Telefax:

(0 51 31) 70 99-60

GEO-data GmbH, Carl-Zeiss-Straße 2, 30827 Garbsen

Altlastenerkundung Sanierungsplanung

Hydrogeologie/Wasserrecht

Umweltanalytik Projektmanagement

Kreuzstraße 19 26603 Aurich

Ihre Nachricht vom

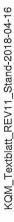
Ihre Zeichen

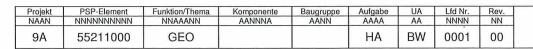
Unsere Zeichen

Datum

le-com

29.09.2021


Bestätigung


Sehr geehrter

hiermit bestätigen wir Ihnen, dass wir einer Veröffentlichung unserer Prüfberichte zustimmen.

Wir freuen uns auf eine gute Zusammenarbeit.

Mit freundlichen Grüßen

Blatt: 58

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Bearbeiter: Durchwahl:

05131-7099 05131-7099-0

Sekretariat: Telefax:

05131-7099-60

Prüfbericht Nr. 2021-03442005

Hydrogeologie Altlastenerkundung Umweltanalytik Bodenluftuntersuchungen

> Seite 1 von 9 Datum: 10.08.2021

Projekt-Nr.

A1060-03442

Auftraggeber:

GeoService GmbH

Kreuzstraße 19 26603 Aurich

Probennahmeort:

R15-S1

Probenart:

Feststoff

Probenanzahl:

85 Proben

Entnahmedatum:

Eingangsdatum:

18.06.2021

Probenahme:

erfolgte durch Auftraggeber

Probenvorbereitung:

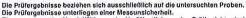
entsprechend den durchgeführten DIN-Vorschriften

Die Proben wurden getrocknet und gemahlen

und ein Aliquot in Wasser gelöst

Bemerkung:

die Bromid-und Kalium-Gehalte sind in µg/g NaCl angegeben


diese Angabe erfolgte unter der Annahme, dass Hallit das einzige chloridhaltige

Mineral in den Proben ist

Verantwortlich für den Prüfbericht: Garbsen, 10.08.2021

Blatt: 59

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442005

Seite 2 von 9 Datum: 10.08.2021

Probennummer	2021-26942	2021-26943	2021-26944	2021-26945
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 1	Probe 2	Probe 3	Probe 4
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1096,75	1094,05	1093,18	1091,43
Entnahmedatum				
Entnahmezeit				Was as a second-
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	4700	180	200	4100	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009 09	210000	1300	1900	150000	μgK/gNaCl

Probennummer	2021-26946	2021-26947	2021-26948	2021-26949
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 5	Probe 6	Probe 7	Probe 8
Entnahmestelle	1			
Entnahmepunkt / -tiefe (m)	1066,5	1066,0	1061,05	1060,0
Entnahmedatum	1			
Entnahmezeit	1			and their brane is
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21

	Messverfahren*)					Einhelt
Bromld	DIN EN ISO 10304-1:2009-07	3900	5200	3600	740	μgBr/gNaCl
Kallum	DIN EN ISO 11885-2009-09	140000	190000	140000	21000	μgK/gNaCl

Probennummer	2021-26950	2021-26951	2021-26952	2021-26953
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 9	Probe 10	Probe 11	Probe 12
Entnahmestelle				2000
Entnahmepunkt / -tiefe (m)	1055,0	1054,5	1049,0	1048,0
Entnahmedatum				
Entnahmezeit			600 000 a 200 0	VACOU TRIVETTICATIONS
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21

	Messverfahren')					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	2400	5000	7000	5200	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	78000	170000	61000	180000	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz ^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

*) Die Bestimmungsgrenzen und Vertrauensintervalle des Verfahrens entsprechen den in der Norm angegebenen Werten.

Blatt: 60

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442005

Seite 3 von 9 Datum: 10.08.2021

Probennummer	2021-26954	2021-26955	2021-26956	2021-26957
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 13	Probe 14	Probe 15	Probe 16
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1043,4	1041,33	1030,5	1029,54
Entnahmedatum	,			
Entnahmezeit				1
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	5800	5600	150	96	μgBr/gNaCl
Kalium	DIN EN ISO 11885-2009 09	130000	190000	110	58	μgK/gNaCl

Probennummer	2021-26958	2021-26959	2021-26960	2021-26961
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 17	Probe 18	Probe 19	Probe 20
Entnahmestelle			>	
Entnahmepunkt / -tlefe (m)	1025,78	1024,35	1019,43	1018,5
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06,2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	64	71	76	92	μgBr/gNaCl
Kallum	DIN EN ISO 11885:2009-09	750	110	220	190	μgK/gNaCl

Probennummer	2021-26962	2021-26963	2021-26964	2021-26965
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 21	Probe 22	Probe 23	Probe 24
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1012,5	1006,5	1012,5	1006,5
Entnahmedatum				
Entnahmezeit	1		1	1
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	180	180	110	130	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	580	1900	370	990	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

^{*)} Die Bestimmungsgrenzen und Vertrauensintervalle des Verfahrens entsprechen den in der Norm angegebenen Werten.

Blatt: 61

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442005

Seite 4 von 9 Datum: 10.08.2021

Probennummer	2021-26966	2021-26967	2021-26968	2021-26969
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 25	Probe 26	Probe 27	Probe 28
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1000,5	998,78	994,97	993,49
Entnahmedatum			1	
Entnahmezeit	1		1	1
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009 07	90	80	65	73	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009 09	200	1000	890	430	μgK/gNaCl

Probennummer	2021-26970	2021-26971	2021-26972	2021-26973
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 29	Probe 30	Probe 31	Probe 32
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	989,52	988,5	982,5	982,5
Entnahmedatum	-			
Entnahmezeit	1			1
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21	26.07.21-09.08.21

	Messverfahren*)			Al .		Einheit
Bromld	DIN EN ISO 10304-1:2009-07	100	89	96	93	μgBr/gNaCl
Kallum	DIN EN ISO 11885:2009-09	380	920	980	920	μgK/gNaCl

Probennummer	2021-26974	2021-26975	2021-26976	2021-26977
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 33	Probe 34	Probe 35	Probe 36
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	976,5	976,5	970,5	964,5
Entnahmedatum	1			
Entnahmezeit	1			
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	26.07.21-09.08.21	26.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	100	210	4500	120	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	940	4400	150000	480	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

KQM_Textblatt_REV11_Stand-2018-04-16

n.n. = nicht nachweisbar

TS = Trockensubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

OS = Originalsubstanz Leerzeile = nicht bestimmt

Blatt: 62

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442005

Seite 5 von 9 Datum: 10.08.2021

Probennummer	2021-26978	2021-26979	2021-26980	2021-26981
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 37	Probe 38	Probe 39	Probe 40
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	964,5	958,5	957,6	951,98
Entnahmedatum	3 2 3		100	
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009 07	82	87	64	59	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009 09	1200	240	170	260	μgK/gNaCl

Probennummer	2021-26982	2021-26983	2021-26984	2021-26985
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 41	Probe 42	Probe 43	Probe 44
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	949,32	931,43	884,08	881,90
Entnahmedatum				37
Entnahmezeit	1			
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

	Messverfahren*)			59		Einheit
Bromld	DIN EN ISO 10304-1:2009-07	280	4200	63	83	μgBr/gNaCl
Kallum	DIN EN ISO 11885:2009-09	1000	240000	440	300	μgK/gNaCl

Probennummer	2021-26986	2021-26987	2021-26988	2021-26989
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 45	Probe 46	Probe 47	Probe 48
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	880,5	874,5	574,5	568,5
Entnahmedatum		î .		
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	64	100	84	190	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	320	690	580	600	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt TS = Trockensubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

KQM_Textblatt_REV11_Stand-2018-04-16

Blatt: 63

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442005

Seite 6 von 9 Datum: 10.08.2021

Probennummer	2021-26990	2021-26991	2021-26992	2021-26993
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 49	Probe 50	Probe 51	Probe 52
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	868,5	862,5	862,5	856,5
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	97	87	77	150	μgBr/gNaCl
Kalium	DIN EN ISO 11885.2009 09	390	160	1200	270	μgK/gNaCl

Probennummer	2021-26994	2021-26995	2021-26996	2021-26997
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 53	Probe 54	Probe 55	Probe 56
Entnahmestelle	1			
Entnahmepunkt / -tiefe (m)	856,45	850,5	849,75	845,48
Entnahmedatum	1000			
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

Messverfahren*)						
Bromld	DIN EN ISO 10304-1:2009-07	86	160	73	98	μgBr/gNaCl
Kallum	DIN EN ISO 11885-2009-09	930	250	820	190	μgK/gNaCl

Probennummer	2021-26998	2021-26999	2021-27001	2021-27002
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 57	Probe 58	Probe 59	Probe 60
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	844,3	839,2	836,4	833,37
Entnahmedatum	**	37	7	
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	63	81	64	58	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	100	810	350	180	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar

TS = Trockensubstanz OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

^{*)} Die Bestimmungsgrenzen und Vertrauensintervalle des Verfahrens entsprechen den in der Norm angegebenen Werten.

Blatt: 64

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442005

Seite 7 von 9 Datum: 10.08.2021

Probennummer	2021-27003	2021-27004	2021-27005	2021-27006
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 61	Probe 62	Probe 63	Probe 64
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	832,5	826,9	826,53	820,5
Entnahmedatum	·]			
Entnahmezeit	1			
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	62	75	81	150	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009 09	290	640	330	670	μgK/gNaCl

Probennummer	2021-27007	2021-27008	2021-27009	2021-27010
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 65	Probe 66	Probe 67	Probe 68
Entnahmestelle		1		1
Entnahmepunkt / -tiefe (m)	820,5	814,5	814,49	808,5
Entnahmedatum				
Entnahmezeit	1			
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	110	140	120	97	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	950	980	760	930	μgK/gNaCl

Probennummer	2021-27011	2021-27012	2021-27013	2021-27014
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 69	Probe 70	Probe 71	Probe 72
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	808,5	797,90	796,47	793,81
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	120	140	180	5700	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	1300	290	930	130000	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

KQM_Textblatt_REV11_Stand-2018-04-16

Blatt: 65

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442005

Seite 8 von 9 Datum: 10.08.2021

Probennummer	2021-27015	2021-27016	2021-27017	2021-27018
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 73	Probe 74	Probe 75	Probe 76
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	790,5	784,5	779,5	777,5
Entnahmedatum	1			
Entnahmezeit	1			
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009 07	2000	4400	380	420	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009 09	76000	160000	1100	2500	μgK/gNaCl

Probennummer	2021-27019	2021-27020	2021-27021	2021-27022
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 77	Probe 78	Probe 79	Probe 80
Entnahmestelle	(NO) 12 15 70 00 170m			
Entnahmepunkt / -tiefe (m)	772,45	766,5	766,61	760,5
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	4900	5400	4200	720	μgBr/gNaCl
Kallum	DIN EN ISO 11885-2009-09	180000	200000	170000	21000	μgK/gNaCl

Probennummer	2021-27023	2021-27024	2021-27025	2021-27026
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 81	Probe 82	Probe 83	Probe 84
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	750,5	753,25	740,5	738,67
Entnahmedatum	1		1	
Entnahmezeit				
Eingangsdatum	18.06.2021	18.06.2021	18.06.2021	18.06.2021
Analysedatum	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.21	30.07.21-09.08.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	3500	5500	5700	4900	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	120000	190000	210000	200000	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

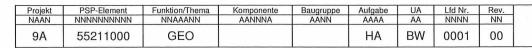
TS = Trockensubstanz OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

Blatt: 66

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht


Nr. 2021-03442005

Seite 9 von 9 Datum: 10.08.2021

Probennummer	2021-27027	
Probenart	Feststoff	l l
Probenbezeichnung	Probe 85	
Entnahmestelle		
Entnahmepunkt / -tiefe (m)	735,79	
Entnahmedatum		
Entnahmezeit		
Eingangsdatum	18.06.2021	
Analysedatum	30.07.21-09.08.21	

	Messverfahren*)			Einheit
Bromid	DIN EN ISO 10304-1:2009-07	2900		μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009 09	150000		ugK/gNaCl

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

Blatt: 67

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Bearbeiter: Durchwahl:

05131-7099-05131-7099-0

Sekretariat: Telefax:

05131-7099-60

Prüfbericht Nr. 2021-03442007

Hydrogeologie Altlastenerkundung Umweltanalytik Bodenluftuntersuchungen

> Seite 1 von 11 Datum: 20.09.2021

Projekt-Nr.

A1060-03442

Auftraggeber:

GeoService GmbH

Kreuzstraße 19 26603 Aurich

Probennahmeort:

Bohrung Remlingen 15-S2

Probenart:

Feststoff

Probenanzahl:

116 Proben

Entnahmedatum:

Eingangsdatum:

27.07.2021

Probenahme:

erfolgte durch Auftraggeber

Probenvorbereitung:

entsprechend den durchgeführten DIN-Vorschriften Die Proben wurden getrocknet und gemahlen

und ein Aliquot in Wasser gelöst

Bemerkung:

die Kalium- und Bromid-Gehalte sind in µg/g NaCl angegeben

diese Angabe erfolgte unter der Annahme, dass Hallit das einzige chlorid-haltige Mineral in den Proben ist

Verantwortlich für den Prüfbericht: Garbsen, 20.09.2021

Laborleiterin

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Proben. Die Prüfergebnisse unterliegen einer Messunsicherheit. Eine auszugsweise Vervielfältigung der Veröffentlichung des Prüfberichts darf nur mit schriftlicher Genehmigung der GEO-data GmbH erfolgen.

Blatt: 68

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 2 von 11 Datum: 20.09.2021

Probennummer	2021-32044	2021-32045	2021-32046	2021-32047
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 1	Probe 2	Probe 3	Probe 4
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	850,0	852,0	854,0	856,0
Entnahmedatum	***			
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	130	140	130	180	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	520	770	430	430	μgK/gNaCl

Probennummer	2021-32048	2021-32049	2021-32050	2021-32051
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 5	Probe 6	Probe 7	Probe 8
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	858,0	860,0	862,0	864,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	310	130	120	140	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	820	340	430	720	μgK/gNaCl

Probennummer	2021-32052	2021-32053	2021-32054	2021-32055
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 9	Probe 10	Probe 11	Probe 12
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	866,0	868,0	870,0	872,0
Entnahmedatum	1			
Entnahmezeit	1			
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	120	89	98	89	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	470	500	300	360	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen

u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz
OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

*) Die Bestimmungsgrenzen und Vertrauensintervalle des Verfahrens entsprechen den in der Norm angegebenen Werten.

Blatt: 69

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 3 von 11 Datum: 20.09.2021

Probennummer	2021-32056	2021-32057	2021-32058	2021-32059
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 13	Probe 14	Probe 15	Probe 16
Entnahmestelle	1			
Entnahmepunkt / -tiefe (m)	874,0	876,0	878,0	880,0
Entnahmedatum	-			
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	110	120	240	150	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	300	370	430	400	μgK/gNaCl

Probennummer	2021-32060	2021-32061	2021-32062	2021-32063
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 17	Probe 18	Probe 19	Probe 20
Entnahmestelle	1			
Entnahmepunkt / -tiefe (m)	882,25	884,0	886,0	888,0
Entnahmedatum				1
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.2

Messverfahren*)					Einheit	
Bromid	DIN EN ISO 10304-1:2009-07	220	110	160	110	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	400	330	730	160	μgK/gNaCl

Probennummer	2021-32064	2021-32065	2021-32066	2021-32067
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 21	Probe 22	Probe 23	Probe 24
Entnahmestelle		1		
Entnahmepunkt / -tiefe (m)	890,0	892,0	894,0	896,0
Entnahmedatum				
Entnahmezeit		l		
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	170	120	140	110	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	260	360	580	110	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

Blatt: 70

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 4 von 11 Datum: 20.09.2021

Probennummer	2021-32068	2021-32069	2021-32070	2021-32071
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 25	Probe 26	Probe 27	Probe 28
Entnahmestelle		8		
Entnahmepunkt / -tiefe (m)	898,0	900,0	902,0	904,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromld	DIN EN ISO 10304-1:2009-07	120	80	91	84	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	300	110	73	86	μgK/gNaCl

Probennummer	2021-32072	2021-32073	2021-32074	2021-32075
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 29	Probe 30	Probe 31	Probe 32
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	906,0	908,0	910,0	912,0
Entnahmedatum				
Entnahmezeit	I			
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	130	110	96	110	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	470	290	390	180	μgK/gNaCl

Probennummer	2021-32076	2021-32077	2021-32078	2021-32079
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 33	Probe 34	Probe 35	Probe 36
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	932,0	934,0	936,0	938,0
Entnahmedatum				
Entnahmezeit				1
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	4400	4000	5600	5400	μgBr/gNaCl
Kallum	DIN EN ISO 11885:2009-09	190000	170000	240000	230000	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar

TS = Trockensubstanz OS = Originalsubstanz ^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

*) Die Bestimmungsgrenzen und Vertrauensintervalle des Verfahrens entsprechen den in der Norm angegebenen Werten.

Blatt: 71

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 5 von 11 Datum: 20.09.2021

Probennummer	2021-32080	2021-32081	2021-32082	2021-32083
Probenart ·	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 37	Probe 38	Probe 39	Probe 40
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	940,0	942,0	944,0	946,0
Entnahmedatum				
Entnahmezeit			İ	
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	4400	3000	3600	4600	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	190000	130000	150000	190000	μgK/gNaCl

Probennummer	2021-32084	2021-32085	2021-32086	2021-32087
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 41	Probe 42	Probe 43	Probe 44
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	948,0	950,0	952,0	954,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.2

	Messverfahren*)					
Bromid	DIN EN ISO 10304-1:2009-07	4600	4900	4200	5700	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	190000	210000	180000	240000	μgK/gNaCl

Probennummer	2021-32088	2021-32089	2021-32090	2021-32091
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 45	Probe 46	Probe 47	Probe 48
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	956,0	958,0	960,0	962,0
Entnahmedatum		S W 1440		
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)			Н		Einheit
Bromid	DIN EN ISO 10304-1:2009-07	5400	4000	4900	3700	μgBr/gNaCl
Kallum	DIN EN ISO 11885:2009-09	230000	170000	210000	160000	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz

^≖ nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

*) Die Bestimmungsgrenzen und Vertrauensintervalle des Verfahrens entsprechen den in der Norm angegebenen Werten.

Blatt: 72

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 6 von 11 Datum: 20.09.2021

Probennummer	2021-32092	2021-32093	2021-32094	2021-32095
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 49	Probe 50	Probe 51	Probe 52
Entnahmestelle		4		
Entnahmepunkt / -tiefe (m)	964,0	966,0	968,0	970,0
Entnahmedatum	1			
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	2600	4700	4200	2200	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	120000	200000	180000	94000	μgK/gNaCl

Probennummer	2021-32096	2021-32097	2021-32098	2021-32099
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 53	Probe 54	Probe 55	Probe 56
Entnahmestelle		_		
Entnahmepunkt / -tiefe (m)	972,0	974,0	976,0	978,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	4500	2700	2400	4500	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	190000	120000	100000	200000	μgK/gNaCl

Probennummer	2021-32100	2021-32101	2021-32102	2021-32103
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 57	Probe 58	Probe 59	Probe 60
Entnahmestelle	1			
Entnahmepunkt / -tiefe (m)	980,0	982,0	984,0	986,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	5100	4300	2900	2900	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	220000	180000	130000	130000	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

^{*)} Die Bestimmungsgrenzen und Vertrauensintervalle des Verfahrens entsprechen den in der Norm angegebenen Werten.

Blatt: 73

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 7 von 11 Datum: 20.09.2021

Probennummer	2021-32104	2021-32105	2021-32106	2021-32107
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 61	Probe 62	Probe 63	Probe 64
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	988,0	990,0	992,00	994,0
Entnahmedatum				
Entnahmezeit	1		1	
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	5700	4900	970	1000	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	240000	220000	30000	41000	μgK/gNaCl

Probennummer	2021-32108	2021-32109	2021-32110	2021-32111
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 65	Probe 66	Probe 67	Probe 68
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	996,0	998,0	1000,0	1002,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	840	410	730	290	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	20000	3900	71000	1600	μgK/gNaCl

Probennummer	2021-32112	2021-32113	2021-32114	2021-32115
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 69	Probe 70	Probe 71	Probe 72
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1004,0	1006,0	1008,0	1010,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	240	270	180	230	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	1700	3500	470	3400	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

KQM_Textblatt_REV11_Stand-2018-04-16

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz

^
 nicht akkreditiertes Verfahren
 ² = Untervergabe
 ³ = Fremdvergabe

Blatt: 74

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 8 von 11 Datum: 20.09.2021

Probennummer	2021-32116	2021-32117	2021-32118	2021-32119
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 73	Probe 74	Probe 75	Probe 76
Entnahmestelle		i		
Entnahmepunkt / -tiefe (m)	1012,0	1014,0	1016,0	1018,0
Entnahmedatum				
Entnahmezeit			1	
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	210	600	450	490	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	520	34000	4900	2100	μgK/gNaCl

Probennummer	2021-32120	2021-32121	2021-32122	2021-32123
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 77	Probe 78	Probe 79	Probe 80
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1020,0	1022,0	1024,0	1026,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	4800	3900	3400	910	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	190000	160000	150000	26000	μgK/gNaCl

Probennummer	2021-32124	2021-32125	2021-32126	2021-32127
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 81	Probe 82	Probe 83	Probe 84
Entnahmestelle	I			
Entnahmepunkt / -tiefe (m)	1028,0	1030,0	1032,0	1034,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	550	1300	290	220	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	9700	40000	2400	1600	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

KQM_Textblatt_REV11_Stand-2018-04-16

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz

^≖ nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

Blatt: 75

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 9 von 11 Datum: 20.09.2021

Probennummer	2021-32128	2021-32129	2021-32130	2021-32131
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 85	Probe 86	Probe 87	Probe 88
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1036,0	1038,0	1040,0	1042,0
Entnahmedatum	1			
Entnahmezeit	1			
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	220	190	200	170	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	1300	4800	970	1300	μgK/gNaCl

Probennummer	2021-32132	2021-32133	2021-32134	2021-32135
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 89	Probe 90	Probe 91	Probe 92
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1044,0	1046,0	1048,0	1050,0
Entnahmedatum				
Entnahmezeit	1			
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.2	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.2

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	160	160	150	150	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	950	860	990	1400	μgK/gNaCl

Probennummer	2021-32136	2021-32137	2021-32138	2021-32139
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 93	Probe 94	Probe 95	Probe 96
Entnahmestelle	l l	1		
Entnahmepunkt / -tiefe (m)	1052,0	1054,0	1056,0	1058,0
Entnahmedatum				
Entnahmezeit	l l	ı	1	
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

Messverfahren*)						Einheit
Bromid	DIN EN ISO 10304-1:2009-07	160	190	160	180	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	5100	680	230	1400	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen u.B. = unterhalb Bestimmungsgrenze

KQM_Textblatt_REV11_Stand-2018-04-16

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt

TS = Trockensubstanz OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

Blatt: 76

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 10 von 11 Datum: 20.09.2021

Probennummer	2021-32140	2021-32141	2021-32142	2021-32143
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 97	Probe 98	Probe 99	Probe 100
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1060,0	1064,0	1066,0	1068,0
Entnahmedatum	1			
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromld	DIN EN ISO 10304-1:2009-07	160	170	150	150	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	2400	330	790	1000	μgK/gNaCl

Probennummer	2021-32144	2021-32145	2021-32146	2021-32147
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 101	Probe 102	Probe 103	Probe 104
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1070,0	1072,0	1074,0	1076,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	150	150	160	160	μgBr/gNaCl
Kalium	DIN EN ISO 11885:2009-09	3000	980	2600	250	μgK/gNaCl

Probennummer	2021-32148	2021-32149	2021-32150	2021-32151
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 105	Probe 106	Probe 107	Probe 108
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1078,0	1080,0	1082,0	1084,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	140	140	140	150	μgBr/gNaCl
Kallum	DIN EN ISO 11885:2009-09	1800	970	240	230	μgK/gNaCl

Bemerkungen: n.b. = nicht bestimmbar wegen Matrixstörungen

u.B. = unterhalb Bestimmungsgrenze

n.n. = nicht nachweisbar Leerzeile = nicht bestimmt TS = Trockensubstanz OS = Originalsubstanz

^= nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

*) Die Bestimmungsgrenzen und Vertrauensintervalle des Verfahrens entsprechen den in der Norm angegebenen Werten.

BUNDESGESELLSCHAF FÜR ENDLAGERUNG

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Blatt: 77

GEO-data, Dienstleistungsgesellschaft für Geologie, Hydrogeologie und Umweltanalytik mbH Carl-Zeiss-Straße 2, 30827 Garbsen

Prüfbericht

Nr. 2021-03442007

Seite 11 von 11 Datum: 20.09.2021

Probennummer	2021-32152	2021-32153	2021-32154	2021-32155
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 109	Probe 110	Probe 111	Probe 112
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1086,0	1088,0	1090,0	1092,0
Entnahmedatum				1
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.2

Einheit Messverfahren*) 210 220 μgBr/gNaCl Bromid DIN EN ISO 10304-1:2009-07 160 170 1000 2100 1100 μgK/gNaCl DIN EN ISO 11885:2009-09 580 Kalium

Probennummer	2021-32156	2021-32157	2021-32158	2021-32159
Probenart	Feststoff	Feststoff	Feststoff	Feststoff
Probenbezeichnung	Probe 113	Probe 114	Probe 115	Probe 116
Entnahmestelle				
Entnahmepunkt / -tiefe (m)	1094,0	1096,0	1098,0	1100,0
Entnahmedatum				
Entnahmezeit				
Eingangsdatum	27.07.2021	27.07.2021	27.07.2021	27.07.2021
Analysedatum	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21	27.08.21-15.09.21

	Messverfahren*)					Einheit
Bromid	DIN EN ISO 10304-1:2009-07	200	200	260	200	μgBr/gNaCl
Vallum	DIN EN ISO 11885-2009-09	830	2500	2100	1100	unK/nNaCl

^{^≖} nicht akkreditiertes Verfahren ² = Untervergabe ³ = Fremdvergabe

Projekt NAAN	PSP-Element NNNNNNNNNN	Funktion/Thema NNAAANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev.	
9A	55211000	GEO			НА	BW	0001	00	B

BGE BUNDESGESELLSCHAFT

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Blatt: 78

Anhang 2: Kernmarschverzeichnis R15-S1

Kernbeschreibungen

Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung
408	412,6	1	4,65 / 101	100	Anhydrit, hellgrau, im Anschnitt beinah schwarz, deutlich von laminierenden Tonschlieren durchzogen, die in etwa 120 Grad zur Bohrrichtung einfallen. Teilweise sind die Schlieren verfaltet.
412,6	418,6	2	6,00 / 100	100	Im ersten Meter Anhydrit, wie im Kern zuvor, hellgrau, deutlich von laminierenden Tonschlieren durchzogen, die in etwa 120 Grad zur Bohrrichtung einfallen. Bis ca. 414,5 m zunehmend breite Tonbänke. Anschließend über ca. 1 m Länge Anhydritbrekzien in Tonmatrix. Ab 415,5 m folgt eine längs laufende Zweiteilung Anhydrit/Ton. Der Ton ist weich und dunkelgrau. In 417,2m ein Übergang zu Ton, weich, grau/hellgrau laminiert, vereinzelt mit Anhydritbrekzien durchsetzt.
418,6	424,6	3	6,00 / 100	100	In den ersten 30 cm Tonstein wie zuvor, Bis 422,3 m Anhydrit, hellgrau bis grau, dicht, massiv, hart, kryptokristallin, unregelmäßig mit Adern von hellgrau bis weißen Gipsadern durchzogen. Danach Anhydrit durchmengt mit Tonstein, grau bis dunkelgrau, bis 422,7. Danach bis Kernende Anhydrit wie zuvor.
424,6	430,6	4	6,00 / 100	96	Anhydrit, grauweiß bis hellgrau, vereinzelt grau, dicht, massiv, hart, kryptokristallin bis mikrokristallin, verfaltet. unregelmäßig mit Gipsadern sowie Gips als Wolken durchzogen. Die letzten 30 cm etwas tonig wie zuvor.
418,6	424,6	3	6,00 / 100	100	In den ersten 30 cm Tonstein wie zuvor, Bis 422,3 m Anhydrit, hellgrau bis grau, dicht, massiv, hart, kryptokristallin, unregelmäßig mit Adern von hellgrau bis weißen Gipsadern durchzogen. Danach Anhydrit durchmengt mit Tonstein, grau bis dunkelgrau, bis 422,7. Danach bis zum Kernende Anhydrit wie zuvor.
424,6	430,6	4	6,00 / 100	96	Anhydrit, grauweiß bis hellgrau, vereinzelt grau, dicht, massiv, hart, kryptokristallin bis mikrokristallin, gefaltet, unregelmäßig mit Gipsadern sowie Gips als Wolken durchzogen. Die letzten 30 cm etwas Tonig wie zuvor.
430,6	436,6	5	6,00 / 100	99	Anhydrit, grauweiß bis hellgrau, vereinzelt grau, dicht, massiv, hart, kryptokristallin bis mikrokristallin, verfaltet. Ab 435.3 m Tonstein,

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.			
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN			
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht										E	Blatt: 79

Erkundun	gsbornung	IXCIIII	ngen K15-Geol	ogische i	achibetredurig-Abscrittassbericht Blatt. 70
					dunkelgrau bis grünlich grau, mäßig fest bis weich, verfaltet, vereinzelt mit Anhydrit-Schlieren.
436,6	442,6	6	6,00 / 100	100	Tonstein, dunkelgrau bis grünlich-grau, mäßig fest bis weich, verfaltet, vereinzelt mit Anhydrit- Schlieren. Zur Krone hin zwei 5 – 7 cm mächtige Anhydritbänke.
442,6	448,6	7	6,00 / 100	97	Tonstein, dunkelgrau bis grünlich-grau, mäßig fest bis weich, verfaltet. Vom Kopf bis etwas über die Mitte des Kernes mehrere angeschnittene elliptische, teils tonig laminierte Anhydritlinsen von etwa 20 cm bis maximal 40 cm großer Halbachse. Linsen sind stark verfaltet. Im unteren Teil des Kerns anhydritische Kluftfüllungen von 1-2 cm Mächtigkeit, teils als in sich abgeschlossene Brekzien vorliegend und verfaltet und abgeschert.
448,6	454,6	8	6,00 /100	97,8	Tonstein, dunkelgrau bis grünlich-grau, mäßig fest bis weich, mürbe, verfaltet. Ab 452,1 m Anhydrit, hellgrau bis grau, fest, hart, kryptokristallin, mit regelmäßigen Einlagerungen von Tonstein und Schlieren von Gips.
456,6	460,47	9	5,87 / 100	99,3	Anhydrit, hellgrau bis grau, fest, hart, kryptokristallin, mit weißen Schlieren, unregelmäßig verfaltet. Ab 457,4 m Tonstein/Anhydrit brekziös zerrüttet, mürbe bis fest, Tonstein überwiegend plastisch. Ab 459 m Anhydrit weiterhin brekziös, hellgrau bis schmutzig weiß, deutlich fester, kaum Ton/Tonstein.
460,47	466,6	10	6,13 / 100	99,3	Anhydrit, grau, kryptokristallin, fest, durchwirkt von Gips- und Tonschlieren. Ab 461,4 m anhydritische Brekzie mit Tonmatrix. Ab 462,5 m Tonstein, dunkelgrau, weich, durchsetzt mit Anhydriteinschlüssen. Ab 463,3m wieder überwiegend Anhydrit wie zuvor. Nach 20 cm wieder Brekzie wie zuvor.
460,47	466,6	10	6,13 / 100	99,3	Anhydrit, grau, kryptokristallin, fest, durchwirkt von Gips- und Tonschlieren. Ab 461,4 m anhydritische Brekzie mit Tonmatrix. Ab 462,5 m Tonstein, dunkelgrau, weich, durchsetzt mit Anhydriteinschlüssen. Ab 463,3m wieder überwiegend Anhydrit wie zuvor. Nach 20 cm wieder Brekzie wie zuvor.
466,60	472,60	11	5,60 / 93		Brekzie aus Tonmatrix mit eingebackenen Anhydrit- und Tonsteinklasten. Im mittleren Bereich durchgängig tektonisch verformter Anhydrit. Entlang der tektonischen Flächen sind oft dünne bis dünnste Tonlagen eingeschaltet.
472,60	478,60	12	6,14 / 102	92	Brekzie aus Tonmatrix mit eingebackenen Anhydrit- und Tonsteinklasten. Im mittleren Bereich und oberhalb der Krone stark tektonisch

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	55211000	GEO			HA	BW	0001	00	

					verformter Anhydrit. Entlang der tektonischen Flächen sind oft dünne Tonlagen eingeschaltet.
478,60	484,60	13	6,00 / 100	99,2	Brekzie aus Tonmatrix mit eingebackenen Anhydrit- und Tonsteinklasten in einer Größe von 1 cm bis 10 cm, dunkelgrau, massiv, fest bis 480,9 m. Danach stark verfaltete Tonstein- und Anhydritlagen. Anhydrit ist hellgrau bis grau, kryptokristallin, fest und hart, und der Tonstein dunkelgrau, weich und plastisch. Ab 482 m wieder anhydritischen Brekzie mit Tonmatrix.
484,60	490,60	14	6,00 / 100	95,3	Anhydrit-Tonstein-Brekzie mit Matrix aus Ton mit Anhydritklasten in einer Größe von < 1 cm bis 10 cm, dunkelgrau, massiv, fest bis 486,4 m. Danach zunehmend Anhydrit mit erkennbaren Faltenstrukturen, jedoch weiterhin brekziös. Ab 489,8 überwiegend Tonstein, dunkelgrau, mürbe bis fest, mit ca. 30 % Anhydritklasten wie zuvor beschrieben.
490,6	496,0	15	5,40 / 100	100	Tonstein, dunkelgrau, mürbe bis fest, mit ca. 30 % Anhydritklasten, schmutzig-weiß, bis hellgrau, teilweise bis zu 15 cm groß. Ab 491.75 m Anhydrit mit Steinsalzeinlagerungen, Grenzanhydrit, dunkelgrau, bis hellgrau, Steinsalz farblos klar bis rötlich, orange klar, transparent, grobkristallin als Zwickelfüllung/ Rekristallisate im Anhydrit.
496,0	499,6	16	3,60 / 100	100	Grenzanhydrit, dunkelgrau, bis hellgrau, zunehmend Steinsalz farblos klar bis rötlichorange klar, transparent, grobkristallin, als Zwickelfüllung/ Rekristallisate im Anhydrit.
499,60	502,65	17	2,95 / 97	100	Anhydrit, dunkelgrau, bis hellgrau, zur Krone zunehmend Steinsalz, farblos klar bis beige, selten orange-klar, transparent, grobkristallin als Zwickelfüllung/ Rekristallisate im Anhydrit. Im Anhydrit gewachsene Salzkristalle beim Bohrvorgang leicht angelöst, so dass sich deutliche Oberflächenstrukturen herausgebildet haben.
502,65	505,60	18	3,05 / 103	99	Tonstein bis Tonschiefer, schwarz, mit dunkelgrauen Laminierungen entlang der geschieferte Spaltflächen. Vereinzelte Spaltflächen sind mit Anhydrit verfüllt. Am Kopf finden sich an einer Bruchstelle Großkristalle von Halit.
505,60	508,60	19	3,00 / 100	92	Tonstein bis Tonschiefer, schwarz, mit dunkelgrauen Laminierungen entlang der geschieferte Spaltflächen, die ihrerseits teils mit Anhydrit verfüllt sind. Vereinzelt Einschlüsse von Halit.
508,60	511,60	20	3,00 / 100	100	Wie zuvor Tonstein bis Tonschiefer, schwarz, mit dunkelgrauen Laminierungen entlang der geschieferte Spaltflächen, die ihrerseits teils mit

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	100000	DUMPECC
9A	55211000	GEO			HA	BW	0001	00	BGE	BUNDESG FÜR ENDL

Erkundun	gsbornung	Kellili	ngen K15-Geol	ogische i	achibetredurig-Abschidssbericht Diatt. 01
					hellgrauem Anhydrit verfüllt sind. Vereinzelt Einschlüsse von Halit.
511,60	517,60	21	6,00 / 100	100	Tonstein, schwarz, wie zuvor, im Wechsel mit sehr steil einfallenden Anhydritlagen, schmutzig-weiß bis hellgrau, kryptokristallin, dicht, fest. Keine Einschlüsse von Halit mehr.
517,60	520,63	22	3,03 / 100	97,4	Tonstein, schwarz, spröde, durchsetzt mit Anhydrit, wie zuvor, allerdings ist der Anhydritgehalt wieder abnehmend. Vereinzelt an Bruchflächen auch rotes, toniges Material.
517,60	520,63	22	3,03 / 100	97,4	Tonstein, schwarz, spröde, durchsetzt mit Anhydrit, wie zuvor, allerdings ist der Anhydritgehalt wieder abnehmend. Vereinzelt an Bruchflächen auch rotes, toniges Material.
520,63	526,60	23	5,97 / 100	82,6	Tonstein, schwarz, sehr spröde, durchsetzt mit Anhydrit, wie zuvor. Vereinzelt an Bruchflächen auch rotes, toniges Material. Sehr selten Halitgroßkristalle eingewachsen.
526,60	529,61	24	3,01 / 100	100	Tonstein, schwarz, spröde, durchsetzt mit Anhydrit, teilweise Spaltflächen folgend, wie zuvor. Vereinzelt an Bruchflächen auch rotes, härteres toniges Material.
529,61	535,60	25	4,80 / 80		Tonstein, schwarz, extrem spröde, stark geschiefert, ca. 2,00 m und 3,50 m oberhalb der Krone wurden zwei jeweils 2- 3 cm breite Adern rötlich-klaren Halits durchteuft. Ansonsten ist der Kern durchsetzt mit Anhydrit, teilweise Spaltflächen folgend, jedoch weniger als zuvor. Selten tauchen dünne Halitadern auf. Vereinzelt an Bruchflächen auch rotes, härteres toniges Material. Kern ist 1,20 m oberhalb der Krone abgerissen.
535,60	538,10	26	3,70 / 148		Tonstein, schwarz, sehr spröde, wie zuvor. Bei 537 m eine mehrere cm mächtige, rötliche Halitader, die mit einem Kaliberverlust einhergeht. Ansonsten vereinzelt dünne Halitäderchen in mm-Bereich.
538,10	538,60	27	0,50 / 100	100	Tonstein, dunkelgrau, innen grau, stark anhydritisch, z. T. silikatisch überrägt, sehr hart, kompakt, mit reliktischem Schichtungsgefüge, vereinzelte Vererzungsspuren, sowie einer sekundär erzgefüllten Kluft von 6-7 mm Weite
538,60	544,50	28	5,99 / 102	100	Tonstein, am Top bis ca. 538,80 m, wie zuvor, dann Anhydrit, weißgrau bis grau, hart, mikrokristallin, lagig, porös, klüftig, mit Halit und Carnallit verfüllt, Kluft i. T. 539,90 m ca. 8 cm mächtig, Einschluss von klarem Halit bei 540,60 m, bei 543,40 m eine 1 cm dünne Carnallitlage
544,50	550,50	29	5,94 / 99	96,5	Anhydrit, weißgrau bis grau, hart, mikrokristallin, lagig, porös, Poren z.T. mit Halit und Carnallit

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	55211000	GEO			НА	BW	0001	00	

		*			season and any and the destroy.
					verfüllt, unregelmäßige, dünne, schwarze Tonlagen < 1 mm
550,50	556,45	30	5,95 / 100	100,0	Anhydrit, weißgrau bis grau, hart, mikrokristallin, lagig, poröse mit massigen Bereichen alternierend, des Weiteren unregelmäßige, dünne, schwarze Tonlagen < 1 mm, bei 307 cm vom Top mit hellbraunen Tonflasern, zur Basis in 50 bis 60 cm Abständen auftretend
556,45	562,45	31	5,85 / 96,7	95,7	Anhydrit, weißgrau bis grau, hart, mikrokristallin, z. T. lagig, sonst massig, unregelmäßige, dünne, mit hellbraunen Tonflasern
562,45	566,42	32	3,57 / 88,1	85,7	Anhydrit, weißgrau bis grau, hart, mikrokristallin, z. T. lagig, sonst massig, unregelmäßige, dünne, mit hellbraunen Tonflasern
566,42	568,5	33	2,09 / 107	100	Anhydrit, wie zuvor, weißgrau (außen) bis grau, dunkelgrau (innen), hart, mikrokristallin, meist massig; unregelmäßige, dünne braun- bis grünlichgraue Tonflasern; offene Fiederbrüche im mm-Bereich bei 567,30 m.
568,50	574,50	34	5,95 / 99	94	Anhydrit, wie zuvor, weißgrau (außen) bis grau, dunkelgrau (innen), hart, mikrokristallin, meist massig; unregelmäßige, dünne mm- bis cm-mächtige braun- bis grünlichgraue Tonflasern, schlieren und -linsen; bei 573,3 — 573,8 m Carnallit-Einschaltung, dunkelorangerot, feinkristallin, überwiegend homogen, mit hülsenartiger "Anhydrit-Ton-Ummantelung" (mutmaßlich technisch initiiert).
574,50	574,70	35	0,1 / 50	50	Anhydrit, wie zuvor, weißgrau (außen) bis grau, dunkelgrau (innen), hart, mikrokristallin, meist massig; unregelmäßige, dünne mm-mächtige braun- bis grünlichgraue Tonflasern.
574,70	580,50	36	5,9 /102	91	Anhydrit, wie zuvor, weißgrau (außen) bis grau, dunkelgrau (innen), hart, mikrokristallin, meist massig; unregelmäßige, dünne mm- bis cm-mächtige braun- bis grünlichgraue Tonflasern, schlieren und -linsen; carnallitverheilte Klüfte bei 577,7 und 579,85 m; eine überwiegend unverheilte Kluft bei 575,0 m; Kern mit deutlich mehr tektonischer Überprägung.
580,50	586,50	37	6,0 / 100	100	Anhydrit, weißgrau bis dunkelgrau, hart, kryptobis mikrokristallin, meist massig, z. T. lagig, von unregelmäßigen, hellbraun- bis grünlich grauen Tonflasern durchzogen
586,50	592,50	38	6,0 / 100	100	Anhydrit, weißgrau bis dunkelgrau, hart, kryptobis mikrokristallin, meist massig, z. T. lagig, von unregelmäßigen, hellbraun- bis grünlich grauen Tonflasern durchzogen, Klüfte mit Carnallit verheilt i.T. 591,95 m und 588,05 m

Projekt NAAN	PSP-Element NNNNNNNNNN	Funktion/Thema NNAAANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev. NN			
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHA FÜR ENDLAGERUNG
Erkundu	ngsbohrung	Remlingen F	R15-Geologis	che Fach	betreuun	g-Abs	chlussb	ericht		ı	Blatt: 83
592,50	598,50	39 6,0 /	100 1	bi uı	s mikrol	kristal äßige	lin, me n, helll	ist ma oraun-	assig	, z. T.	art, krypto- lagig, von ch grauen
598,50	604,50	40 6,0 /	100 1	ha la g u T	art, kryp gig, von rauen To	to- bis unreç onflas 602, m	mikrol gelmäß ern dur 5 -600	kristall ligen, chzog	lin, m hellb gen (n, d	ieist m raun- k vor alle ort ge	unkelgrau, assig, z. T. bis grünlich em am Top eschichtete ektonischer
604,50	610,50	41 6,0 /	100 1	h u o se	art, kryp nregelm	to- bis äßige achse du Brud	s mikro n, helll enparal rchzog chfläch	kristal oraun- lelen en. en b	llin, n - bis Tor Vere	neist m	Carnallit
610,50	616,50	42 5,54	/92,3 9	h u o s C ü h	art, kryp nregelm ft kern chlieren carnallit, berwieg ygrosko	to- bis äßige achse durc dur end pisch	s mikro en, helli enparal hzoger nkelrot, xeno , alte	krista braun- lelen , ab fein morpl rniere	llin, r - bis To: 613; - b n, nd	neist n grünli nflaser ,20 m is gr mass mit	Teufe MD obkristallin,
616,50	622,50	43 6,09	/ 101,5 1	g s T w n u s	tark hyg onstein, reißgrau nikrokris nregelm	allin, rosko mit bis tallin, äßige el zu	pisch, telhart, dunk n en, hell einand	egend altern ab elgrau neist braun er an	ieren 616 u, h - bis	nomorp nd mit s 6,65 m art, k massig grünli	
622,50	628,50	44 6,00)/100 1	b u s	is mi inregelm	krokri iäßige el zu	stallin, en, hell einand	me braun er an	eist - bis	mas grünli	art, krypto- sig, von ch grauen, n Tonlagen
628,50	633,00	45 4,99	9 / 100 1	b		krista iäßige	allin, m en, g	eist m grau	nassi bis	g. Ver du	art, krypto- einzelt von nkelgrauen
633,00	634,50	46 1,54	1/103 1	la a	NAME AND POST OF THE OWNER OF THE OWNER, WHEN	porös end,	e m des	it n Weite	nassi eren	igen unre	krokristallin, Bereichen gelmäßige,

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.			
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	1		
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Erkundı	ungsbohrung	Remlingen R	15-Geologis	che Fachl	oetreuun	g-Abs	chlussb	ericht		E	Blatt: 84

Erkundun	gsbohrung	Remli	ngen R15-Geold	gische F	Fachbetreuung-Abschlussbericht Blatt: 84
634,50	640,50	47	6,03 / 100,5	100	Anhydrit, weißgrau bis grau, hart, mikrokristallin überwiegend dicht, selten schwache Porosität. M Carnallit verheilte Kluft (2-5 mm) mit 40° gegen die Kernachse geneigt.
640,50	646,5	48	6,00/ 100	100	Anhydrit, weißgrau bis grau, hart, mikrokristallin überwiegend dicht, selten schwache Porosität.
646,5	652,5	49	6,11 / 102	100	Anhydrit, weißgrau bis grau, hart, mikrokristallir wolkig, massig.
652,50	655,5	50	2,73 / 91	100	Anhydrit, weißgrau bis grau, hart, mikrokristallir wolkig, massig, vereinzelt schwache Porosität.
655,5	658,5	51	3,10 / 103	100	Anhydrit, weißgrau bis grau, mikrokristallir abwechselnd poröse und massige Bereiche Poren bis zu 10 mm, mit Carnallit gefüllt.
658,5	664,50	52	6,00 / 100	100	Anhydrit, wie zuvor beschrieben.
664,50	670,50	53	6,00 / 100	100	Anhydrit, weißgrau bis grau, mikrokristallir poröse und massige Bereiche, Poren bis zu 1 mm, mit Carnallit und Steinsalz gefüllt.
670,50	676,50	54	6,08 / 102	100	Anhydrit, weißgrau bis grau, mikrokristallir poröse und massige Bereiche, Poren bis zu 1 mm, mit Carnallit und Steinsalz gefüllt.
676,50	682,50	55	6,04 / 101	100	Anhydrit, weißgrau bis grau, mikrokristallir poröse und massige Bereiche, Poren bis zu 1 mm, mit Carnallit und Steinsalz gefüllt.
682,50	688,50	56	5,96 / 99	100	Anhydrit, weißgrau bis grau, mikrokristallir poröse und massige Bereiche, Poren bis zu 4 mm, mit Carnallit und Steinsalz gefüllt. Kluftfüllun aus Carnallit.
688,50	694,50	57	6,05 / 101	100	Anhydrit, weißgrau bis grau, mikrokristallir poröse und massige Bereiche, Poren bis zu 4 mm, mit Carnallit und Steinsalz gefüllt. Kluftfüllun aus Carnallit.
694,50	700,50	58	5,94 / 99	99	Anhydrit, weißgrau bis grau, mikrokristallir zunehmend poröse Bereiche, Poren bis zu 4 mm, mit Carnallit und Steinsalz gefüllt. Kluftfüllun aus Carnallit.
700,50	706,50	59	5,99 / 100	100	Anhydrit, weißgrau bis grau, hart, mikrokristallir zunehmend poröse Bereiche, Poren bis zu 4 mm, mit Carnallit, Steinsalz gefüllt. Kluftfüllung be 705,35 m mit Carnallit (30 mm mächtig).
706,50	712,50	60	5,98 / 100	100	Anhydrit, weißgrau bis grau, hart, mikrokristallir poröse Bereiche, Poren bis zu 50 mm, m Carnallit, Steinsalz gefüllt. Kluftfüllung m Carnallit.
712,50	718,50	61	5,87 / 98	100	Anhydrit, weißgrau bis grau, hart, mikrokristallir poröse Bereiche, Poren bis zu 20 mm, m Carnallit, Steinsalz gefüllt.

Projekt NAAN	PSP-Element NNNNNNNNNN				gruppe Aufgabe UA Lfd Nr. Rev. NNN AAAA AA NNNN NN
9A	55211000		EO		HA BW 0001 00 BGE BUNDESGESELLSCHAF
Erkundu	ngsbohrung	Remlii	ngen R15-Ge	ologische	Fachbetreuung-Abschlussbericht Blatt: 85
718,50	724,50	62	6,13 / 100	100	Anhydrit, weißgrau bis grau, hart, mikrokristallin, poröse Bereiche, Poren bis zu 50 mm, mit Carnallit, Steinsalz gefüllt. Kluftfüllung mit Carnallit.
724,50	726,96	63	2,35 / 96	100	Anhydrit, weißgrau bis grau, hart, mikrokristallin, poröse Bereiche, Poren bis zu 20 mm, mit Carnallit, Steinsalz gefüllt. Kluftfüllung mit Carnallit.
726,96	730,50	64	3,65 / 103	100	Anhydrit, weißgrau bis grau, hart, mikrokristallin, poröse Bereiche, Poren bis zu 20 mm, mit Carnallit, Steinsalz gefüllt. Kluftfüllung (110 cm) mit Carnallit, Ton sowie Anhydritbruchstücken.
730,50	736,50	65	6,04 / 101	99	Anhydrit, weißgrau bis grau, hart, mikrokristallin, wenige poröse Bereiche, mit Carnallit und Steinsalz gefüllt. Kluftfüllung (20-40 mm) mit Carnallit. Ab 733,09 m Brekzie aus Carnallit, dunkelrot, fein- bis mittelkristallin, Halit, farblos bis rotorange, mittelkristallin, Anhydrit, weißgrau bis grau, mikrokristallin, Tonstein, dunkelgrau.
736,50	742,50	66	5,95 / 99	99	Brekzie aus Carnallit, dunkelrot, fein- bis mittelkristallin, Halit, farblos bis rotorange, mittelkristallin, Anhydrit, weißgrau bis grau, mikrokristallin, Tonstein, dunkelgrau.
742,50	748,50	67	5,92 / 99	99	Brekzie aus Carnallit, hell- bis dunkelrot, mittelkristallin, Halit, farblos bis rotorange, mittelkristallin, Anhydrit, weißgrau bis grau, mikrokristallin, Tonstein, dunkelgrau.
748,5	754,5	68	6,00/100	100	Brekzie aus Carnallit, dunkelrot, mittelkristallin, Halit, farblos bis rotorange, mittelkristallin, Anhydrit, weißgrau bis grau, mikrokristallin, Tonstein, dunkelgrau.Von 748,5 m bis 750,5 m dunkelrot, feinbrekziös, Carnallit mit Halit und Anhydrit. Von 750,94 m bis 751,54 m hellrötlichbraune, schwach transparente, mittelkristalline Halitlage.
754,5	760,5	69	5,95 / 99,2	2 99	Brekzie aus Carnallit, dunkelrot, mittelkristallin, Halit, farblos bis rotorange, mittel- bis grobkristallin, Anhydrit, weißgrau bis grau, mikrokristallin, Tonstein, dunkelgrau.
760,5	766,5	70	6,11 / 101	,8 102	Brekzie aus Carnallit, dunkelrot, mittelkristallin, Halit, farblos klar bis blass rotorange, mittel- bis grobkristallin, tlw. anhydritwolkig, Anhydrit, weißgrau bis grau, mikrokristallin, wenig Tonstein, mittel- bis dunkelgrau. Anlösungserscheinungen an Kernoberfläche.
766,5	772.5	71	5,95 / 99,1	17 99	Brekzie aus Carnallit, dunkelrot, mittelkristallin, Halit, farblos klar bis blass rotorange, mittel- bis grobkristallin, tlw. anhydritwolkig und -schlierig, Anhydrit, weißgrau bis grau, mikrokristallin, wenig Tonstein, mittel- bis dunkelgrau. Anlösungserscheinungen an Kernoberfläche.

Projekt NAAN	PSP-Element NNNNNNNNNN		on/Thema NAANN	Komponente AANNNA	Baugru AAN		Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev. NN		1	Control of Control
9A	55211000		EO				НА	BW	0001	00		BGE	BUNDESGESELLSO FÜR ENDLAGERUN
Erkundu	ıngsbohrung	Remli	ngen R	15-Geolog	ische F	acht	oetreuur	ng-Abs	chlussb	ericht		F	Blatt: 86
772,5	778.5	72	6,00/	100	100	gr Vo we Ar se	alit, farl obkrista on 777 eiß, r nhydrit,	olos kl allin, t 30 m nittelk weil nig To erten	lar bis lw. an bis 77 ristallir 3grau onstein	blass hydritv 78,20 i, so bis , mitte	rotoi wolki m Ha chwad grau grau el- bi	range, g und alit-Laç ch tr , mik is dun	elkristallin mittel- bis -schlierig ge, milchig ansparent rokristallin kelgrau ir Schlieren fläche.
778,5	784.5	73	6,00/	100	95	m ro ar 77 gr we ur	79,75 r obkrist eißgrau	e, m volkig n Hal allin, ı bi näßige	Halit, nittel- und -s it-Lage schwa is g en, kan	bis schlier e, mild ich tr irau, tig abç	olos gro ig. V chig ansp mi gegre	klar obkrista on 779 weiß, parent. krokris enzten	9,22 m bis mittel- bis Anhydrit tallin ir Nestern.
784,5	790.5	74	5,90 /	98,3	97	m te m Ai	ilweise it unr	blass egelm weiß kziös,	Halit, rotorai äßig hellgra marmo	farblo nge, m gefor u, mik oriert.	s kla nittel- mten rokris	bis gro Nes stallin.	chig weiß bkristallin tern von Insgesam
790,5	796.5	75	6,00/	100	100	ro m ur N m m tra	alit, far otorango it vere nd du estern iikrokris armorio	blos les, milos inzelte irchge vor stallin. ert. An ent-du	klar, mehig-bra en inte hend n. A In der Ba ll-milch rchsch	ilchig aun, m nsiv ro unre nhydri sgesa asis vo nig b einen	weiß nittel- oten gelm t, mt on 790 raun d.	B, teilw bis gro Carna äßig weiß gro 6,05 m und	ristallin mi reise blass bkristallin llit-Nestern geformten hellgrau b-brekziös bis 796,50 schwach
796,5	802,5	76	6,00/	100	99	bi w vo la ha T A w di	is mitte reiß, te nittelkris on. Ar genwe artem onstein n der B reiß b	elkrista ilweise stallin, hydrit se in Fonste -Klast asis v is so neinen en einf	Illin mi e blas unreç , wei einer ein, so en. on 800 chwach d, mit fallend	t Halits rotogelmä ß hel ß Matri wie ui 0,60 m n brä 30° z	, farl rang ßig Ilgrau x au nrege 802, aunlic zur B	blos kl e, mile geform ı, mik s dun s dun belmäßie 5 m H ch un cohrrich	ntung/ zun
802,5	808,5	77	6,00/	100	100	Н	arnallit	, blas blos l	s-rot, klar, m	fein-	bis r weiß	3, teilw	ekzie au ristallin m reise blas telkristallir

1	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
	9A	55211000	GEO			НА	BW	0001	00	
										Г

BGE BUNDESGESELLSCHAFT

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Blatt: 87

unregelmäßig geformte Nester von. Anhydrit, weiß hellgrau, mikrokristallin, lagenweise in einer

Matrix aus mittel- bis dunkelgrauem, hartem Tonstein, sowie unregelmäßig geformte Tonstein-

					Klasten. 45 % Basisbereich überwiegend Halit, milchig weiß bis schwach bräunlich und orangestichig durchscheinend. Teilweise mit Anlösungserscheinungen an der Kernoberfläche im Topbereich.
808,5	814,5	78	5,99 / 99,8	100	Dominierend Halit, farblos klar, milchig weiß, teilweise blass rotorange, milchig blass bräunlich, transluzent, mittelkristallin mit nur noch sehr wenig Carnallit, blass-rot, fein- bis mittelkristallin. Daneben wenig unregelmäßige Einschaltungen sowie Schlieren und Nester von Anhydrit, weiß hellgrau, mikrokristallin. Untergeordnete Spuren von Tonstein, mittelgrau, fest. Generell nur wenig Anlösungserscheinungen an gesamter Kernoberfläche.
814,5	820,5	79	6,00/ 100	100	Dominierend nahezu durchgängig Halit, farblos klar, milchig weiß, blass rotorange, milchig blass bräunlich, transluzent, mittelkristallin mit nur noch sehr wenig Carnallit, blass-rot, fein- bis mittelkristallin. Daneben sehr wenig Einschaltungen sowie Schlieren und kleine Nester von Anhydrit, schmutzig weiß bis hellgrau, mikrokristallin. Nur vereinzelte Spuren von Tonstein, grau. Generell nur sehr wenig Anlösungserscheinungen an gesamter Kernoberfläche.
820,5	826,5	80	6,00/100	100	Dominierend nahezu durchgängig Halit, farblos klar, milchig weiß, blass rotorange, milchig blass bräunlich, transluzent, mittelkristallin. Daneben sehr selten Einschaltungen sowie Schlieren und kleine Nester von Anhydrit, schmutzig weiß bis hellgrau, mikrokristallin. Nur vereinzelte Spuren von Tonstein, grau. Generell nur sehr wenig Anlösungserscheinungen an gesamter Kernoberfläche.
826,5	832,5	81	6,00/ 100	99	Dominierend nahezu durchgängig Steinsalz, farblos klar, milchig weiß, von 828 m bis 832,5 m dominierend blass rotorange, milchig blass bräunlich, transluzent, mittelkristallin. Daneben sehr selten Einschaltungen sowie Schlieren und kleine Nester von Anhydrit, schmutzig weiß bis hellgrau, mikrokristallin. Wenig Anlösungserscheinungen an gesamter Kernoberfläche.
832,5	838,5	82	6,00/ 100	99	Steinsalz, farblos klar, milchig weiß, transluzent, mittelkristallin, durchgehend sehr homogen. Schlierige, wolkige, sehr fein verteilte

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.			
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN			
9A	55211000	GEO			HA	BW	0001	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Edward washahawang Damlingan D15 Caalagiasha Eashhatrawang Abashlusaharisht Platt 99											

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht Blatt: 88								
					Einlagerungen von Anhydrit, sch weiß, mikrokristallin, sehr unregelmäßigen Wenig Anlösungserscheinunge Kernoberfläche.	vereinzelt in Nestern.		
838,5	844,5	83	6,00/ 100	100	Steinsalz, farblos klar, milchig hellgrau, transluzent, mittelkrist wolkige, sehr fein verteilte Eir Anhydrit, schmutzig weiß bis wei sehr vereinzelt in unregelmä Einzelne weiße Anhydrit-Ade Bohrrichtung/ zum Liegenden eir	tallin, Schlierige, nlagerungen von ß, mikrokristallin, äßigen Nestern. rn mit 30° in		
844,5	850,5	84	6,00/ 100	100	Steinsalz, hellgrau, grau, milchig grobkörnig, dicht, gelegentlich idiomorphen und hypidiomor Anhydritlage von 845,65 m grauweiß, mikrokristallin, hart, s und Schlieren eingelagerter, grau	mit klaren, z.T. phen Kristallen. bis 846,89 m, sowie in Nestern		
850,5	856,5	85	5,95 / 99,2	99	Steinsalz, hellgrau, grau, milc orangestichig, mittel- bis gr gelegentlich mit klaren, z. Kristallen. Wenig Anhydriteinschaltungen, und Schlieren eingelagert, sch grauweiß, mikrokristallin, hart.	obkörnig, dicht, T. idiomorphen z. T. in Nestern		
856,5	862,5	86	6,00/ 100	100	Überwiegend Steinsalz, hellgraweiß, transluzent, wenig rötlimittel- bis grobkörnig, dicht, klaren, z. T. idiomorphen Kristall Daneben unregelmäßige Anhydra. T. in Nestern und Schlieschmutzig weiß bis grauweiß, mit vermehrte Bänderung und mas im basalen Bereich.	ch-orangestichig, gelegentlich mit en. riteinschaltungen, ren eingelagert, ikrokristallin, hart,		
862,5	868,5	87	6,00/ 100	100	Überwiegend Steinsalz, hellgraweiß, transluzent, rötlich-orange grobkörnig, dicht, gelegentlich idiomorphen Kristallen. Daneben unregelmäßige Anhydiz. T. in Nestern und Schlie schmutzig weiß bis grauweiß, mvermehrte Bänderung und mas im zentralen Bereich bis zu 50 c	stichig, mittel- bis mit klaren, z. T. riteinschaltungen, eren eingelagert, ikrokristallin, hart, siveres Auftreten		
868,5	874,5	88	6,00/ 100	100	Überwiegend Steinsalz, meis selten hellgrau, grau, milchig we Untergeordnet Anhydritnester schmutzig weiß bis grauweiß, m gelegentliche Anhydritbände Mächtigkeit.	iß, transluzent. und -schlieren, ikrokristallin, hart,		
874,5	880,5	89	5,99 / 99,8	100	Überwiegend Steinsalz, meis selten milchig weiß bis hellg anhydritschlierig und -wolkig.	t rötlich-orange, rau, transluzent,		

1	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
	NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
	9A	55211000	GEO	a		НА	BW	0001	00	

BGE BUNDESGESELLSCHAFT

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

					Untergeordnet Anhydritnester, schmutzig weiß bis grauweiß, mikrokristallin, hart, gelegentlich sehr feine bis feine Anhydritbänderung.
880,5	886,5	90	6,0 / 100	99	Überwiegend Steinsalz, blass rötlich-orange, selten milchig weiß bis hellgrau, transluzent, von 880,5 m bis 882,8 m fein bis mittelkristallin, von 882,8 bis 885,9 m mittel- bis grobkristallin mit milchig transparenten, hypidiomorphen Kristallen, anhydritschlierig und -wolkig Von 885,9 m bis 886,5 m Anhydrit, schmutzig weiß bis grauweiß, mikrokristallin, hart.
886,5	892,5	91	5,90 / 98,3	95	Anhydrit, weißgrau bis grau gefleckt, mikrokristallin, massig, homogen; u, mit dunkelgrauen bis schwarzen, mm dünnen Tonflasern und -schlieren, netzartig im Anhydrit eingelagert. Bei 888,10 m mit 30° in Bohrrichtung einfallende Bruchfläche mit schwarzem Tonstein < 1 mm. Bei 889,90 m sehr dünne Carnallit-Rissfüllung, intensiv-rot, 1 mm mächtig, unregelmäßig steil und fiederförmig zur Bohrrichtung einfallend.
892,5	898,5	92	6,0 / 100	98	Anhydrit, weißgrau bis grau gefleckt, mikrokristallin, massig, durchgehend sehr homogen; mit dunkelgrauen bis schwarzen, mm dünnen Tonflasern und -schlieren, netzartig im Anhydrit eingelagert.
898,5	904,5	93	6,00 / 100	100	Anhydrit, weißgrau bis grau gefleckt, mikrokristallin, massig, durchgehend sehr homogen; mit dunkelgrauen bis schwarzen, mmdünnen Tonflasern und -schlieren, netzartig im Anhydrit eingelagert. Selten Spuren von linsen- und tropfenförmigen Carnalliteinlagerungen im Millimeterbereich, rötlich, tw. braunstichig.
904,5	910,5	94	5,90 / 98,3	98	Anhydrit, weißgrau bis grau gefleckt, auch blass braunstichig und kandisfarben marmoriert bzw. gesprenkelt, mikrokristallin, massig, durchgehend sehr homogen, sehr hart; nur noch sehr selten mit Spuren von dunkelgrauen bis schwarzen, mmdünnen Tonflasern und -schlieren netzartig im Anhydrit eingelagert.
910,5	916,5	95	5,95 / 99,2	99	Anhydrit, weißgrau bis grau gefleckt, teilweise blass braunstichig gesprenkelt, mikrokristallin, massig, durchgehend sehr homogen; vereinzelt mit fein verteilten Spuren von dunkelgrauen bis schwarzen, mm-dünnen Tonflasern und -schlieren.
916,5	922,5	96	6,00 / 100	100	Anhydrit, weißgrau bis grau gefleckt, mikrokristallin, massig, homogen; mit dunkelgrauen, mm-dünnen Tonflasern und -schlieren; Spuren von nest- bis zwickelförmigen Carnalliteinlagerungen im Millimeterbereich,

9A	55211000	GEO			I IIA	DVV	0001	1 00		FOR ENDLAGERONG
9A	55211000	GEO			НА	BW	0001	00	BGF	BUNDESGESELLSCHAF FÜR ENDLAGERUNG
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		

Erkunduı	ngsbohrung	g Remlir	ngen R15-Geol	ogische F	achbetreuung-Abschlussbericht	Blatt: 90
					teilweise auch angelöst, ab 920, leicht zunehmender Carnallitgeh	
922,5	928,5	97	5,89 / 98,2	98	Anhydrit, weißgrau bis grau gefeinkristallin, massig, homogedunkelgrauen, mm-dünnen Toschlieren; am Top von 922,5 minest- bis zwickelförmige Carna im Millimeterbereich, teilweise auweggelöst, von 925 m bis 928,5 Spuren.	n; mit wenigen onflasern und - bis 925,0 m rote, alliteinlagerungen uch angelöst und
928,5	934,5	98	6,00 / 100	100	dunkelgrauen, mm-dünnen To schlieren. Zusätzlich im zentralen Kernberd bis 931,6 m Einschaltung als Klur hälftig Carnallit, gelblich rot, dunkelrot bernsteinfarben, transparent, n bis opak, mittelkristallin sow	marmoriert bzw. ristallin, massig, rt; mit wenigen onflasern und - eich von 931,4 m ftfüllung von etwa bis blutrot, auch neist transluzent rie etwa hälftig wasserklar, tw.
934,5	940,5	99	6,00 / 100	100	Anhydrit, weißgrau bis grau gef braunstichig und kandisfarben gesprenkelt, mikro- bis feink homogen, hart bis sehr hart; r dunkelgrauen, mm-dünnen To schlieren.	marmoriert bzw. ristallin, massig, nit sehr wenigen
940,5	946,5	100	5,92 / 98,7	97	Anhydrit, weißgrau bis grau gef braunstichig gesprenkelt, mikro- massig, sehr homogen, hart bis s wenigen dunkelgrauen, mm-dü und -schlieren.	bis feinkristallin, sehr hart; mit sehr
946,5	952,5	101	5,96 / 99,3	98	Anhydrit, weißgrau bis grau gef braunstichig gesprenkelt, mikromassig, sehr homogen, hart bis swenigen dunkelgrauen, mm-düund -schlieren. Von 948,95 mAnhydrit, hellgrau, mikro- bis kry Von 949,16 m bis 952,5 m Steins seltener milchig weiß oder far fein- bis mittelkristallin, bei bräunlich bis farblos transparent mit hypidiomorphen Kristallen; n schwach anhydritschlierig und - Schichtgrenze Anhydrit – Steins begrenzt, mit ca 25° bis 30° einfallend.	bis feinkristallin, sehr hart; mit sehr hart; mit sehr innen Tonflasern in bis 949,16 m retokristallin, hart. salz, blass orange blos transparent, 950,5 m blass und grobkristallin ur sehr vereinzelt wolkig. alz unregelmäßig

Projekt NAAN	PSP-Element NNNNNNNNNN	Funktion	n/Thema AANN	Komponen		augruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev.				
9A	55211000	GE					НА	BW	0001	00		BGE	BUNDES FÜR ENI	GESELLSCHA DLAGERUNG
Erkundu	ungsbohrung	Remlir	ngen R	15-Geold	gische	e Fachl	oetreuun	g-Abs	chlussb	ericht	(6)		Blatt:	91
952,5	958,5	102	6,00	/ 100	100	m fe Se sc Se	teinsalz, ilchig bi ilchig win- bis chlieren chwachesamter	räunlie veiß, mitte und g weiß	ch-weiß schwad elkrista I klein B bis he Anlösu	B, ab ch tra Ilin, I e Ne Ilgrau	955,0 anspa homo ester , mik	om barent. Ogen. Von rokrist	is 958 Insge Vere Anh	3,5 m esamt inzelt
958,5	964,5	103	6,00	/ 100	100	m fe So So So	teinsalz, ilchig w in- bis chlieren chmutzig chwach esamter	veiß, mitt unc g weiß e	schwad elkrista d klein d bis he Anlösu	ch tra Ilin, l e N Ilgrau	anspa homo ester ı, mik	arent. ogen. von rokrist	Insge Vere Anh tallin.	esamt inzelt
964,5	970,5	104	6,00	/ 100	100	no Si bl tra m vo m K B H A T	erntop-Eoch teinsalz ass lanspare ittelkrist on Anhikrokrist ernbasis rekzie a alit, hel nhydrit, onstein, eutliche asisbere	mit oräun ent bis callin, nydrit, tallin. s aus C lrötlic wei Anlös	Übergä lich-gra s transli verein schm at Carnallit h bis r ßgrau mittel sungse oßen	ingen iu-wei uzent zelt S utzig c, dun ot, fe bis rsche Lösun	zu ß, ebe Schlie wei ikelro in- b grau bis inung	Carna milch nso ro eren u g bis 965,5 ot, mit is mit , mik gen mi	llit, m ig ot, fei und N telkris telkris trokris dunke t linse	milchig weiß, n- bis lester Igrau, m stallin, stallin, stallin, Igrau.
970,5	976,5	105	6,00	/ 100	100	B H A T B Ü Sı b m B h	erntop-la rekzie a alit, hel nhydrit, onstein, asal al bergangonst gräunlich nittelkriständerur ellgrau, reutliche opberei	aus C Irötlic wei o 973 gsberd au-we , tran tallin, ng vo mikro e Anlö rbsen	Carnallith bis ragrau mittel 2,72 neich naeiß, minsluzen gelege nacht kristallisungse	t, dur tot, fe bis n Steach B dichig t bis ntlich ydrit, n. rsche	in- b grau bis einsa rekzi weil trans Schli schi	ot, mit is mit , mik dz, ar e rötli 3, mil sparen ieren, mutzig	telkristelkristelkristerokristelen Toch or chig tt, fein Nestelen tilnsettlinset	stallin, stallin, stallin, lgrau. p im ange, blass n- bis er und ß bis
976,5	982,5	106	6,00	/100	100	S m fe U v	teinsalz nilchig v ein- bis r Intergeo on Anh nikrokris opberei	, mil weiß, mittelk ordnet nydrit, tallin,	Ichig I schwa cristallir Schlie schm	olass ch tra n, weit ren, N nutzig öhte	anspa estge Veste wei Ar	arent. ehend r und	Insgo homo Bänd hel erung	ogen.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	
9A	55211000	GEO			HA	BW	0001	00	

Blatt: 92

Erkundun	gsponrung	Remiii	ngen K15-Geol	ogische Fa	achbetredung-Abschlussbericht Blatt. 92
					Schwache Anlösungserscheinungen am gesamten Kern.
982,5	988,5	107	6,00 / 100	100	Steinsalz, milchig trüb, blass bräunlich-grau-weiß, milchig weiß, transluzent bis schwach transparent, insgesamt fein- bis mittelkristallin, weitestgehend homogen. Untergeordnet in unregelmäßiger Anordnung sehr wenig Schlieren, Nester und Bänderung von Anhydrit, schmutzig weiß bis hellgrau, mikrokristallin. Schwache Anlösungserscheinungen an gesamter Kernoberfläche.
988,5	994,5	108	5.97 / 99,5	99	Steinsalz, milchig trüb, teilweise blass bräunlichgrau und, milchig weiß durchscheinend; insgesamt fein- bis mittelkristallin, weitestgehend homogen, mit mittelkristallinen, transparenteren Zwischenlagen Untergeordnet in unregelmäßiger Anordnung sehr wenig Schlieren, Nester und Bänderung von Anhydrit, schmutzig weiß bis hellgrau, mikrokristallin.
					Kernoberfläche.
994,5	1000,5	109	6,0 / 100	100	Steinsalz, milchig weiß, teilweise blass bräunlichweiß und milchig- transparent, mit grauen Zwischenlagen von 2 cm bis 25 cm Mächtigkeit; insgesamt mittelkristallin, teilweise auch grobkristallin mit klaren, hypidiomorphen Kristallen weitestgehend homogen, Zwischenlagen vorwiegend mittel- bis grobkristallin, stärker durchscheinend und mit 40 in Bohrrichtung einfallend. Steinsalz insgesamt etwas brüchiger und mürber als im Hangenden. In unregelmäßiger Anordnung sehr wenig Schlieren und Nester von Anhydrit, schmutzig
					weiß bis hellgrau, mikrokristallin. Nur sehr vereinzelt kleine dunkelgraue Tonflasern erkennbar.
1000,5	1006,5	110	6,0 / 100	100	Steinsalz, überwiegend milchig weiß, teilweise blass bräunlich-weiß und milchig-transparent, mit gräulichen Zwischenlagen von geringen cm-Mächtigkeiten; insgesamt mittelkristallin, häufig

aber

auch

hypidiomorphen

grobkristallin

homogen, Zwischenlagen vorwiegend mittel- bis grobkristallin, stärker durchscheinend und in Bohrrichtung einfallend. Steinsalz insgesamt etwas brüchiger und mürber sowie häufig in deutlich gröberer Kristallinität als im Hangenden.

Kristallen,

In unregelmäßiger Anordnung - teilweise gebändert oder wolkig - sehr wenig Schlieren und

klaren,

weitestgehend

mit

KQM_Textblatt_REV11_Stand-2018-04-16

9A	55211000	GE		INA AANI	N AAAA HA	BW	0001	00	BGE BUNDESGESELLSCHA
Erkundu	ngsbohrung	Remlin	gen R15-Geo	ologische Fa	chbetreuur	ng-Abs	chlussb	ericht	Blatt: 93
					Nester vo mikrokris dunkelgra erkennba	tallin. aue	Nur		weiß bis hellgrau, vereinzelt kleine makroskopisch
1006,5	1012,5	111	6,0 / 100	100	blass brä gräuliche Mächtigk aber hypidiom homoger grobkrista Bohrricht etwas bi deutlich g In unre gebände	unlich n Zw eiten; auch orphe n, Zwi allin, ung rüchig gröber gelma rt ode on Anl tallin. aue	n-weiß u vischen insges grol en K schenla stärker einfalle er und rer Krist äßiger r wolkig hydrit, s	und milch lagen ver samt mit bkristallin (ristallen, agen vorv r durchs end. Ste d mürber tallinität a Anordn y - sehr w schmutzig	
1012,5	1018,5	112	6,0 / 100		Steinsalz	und /	Anhydri	t, wie zuv	vor beschrieben.
1018,5	1024,5	113	6,0	99	blass Zwischer insgesan klaren, h homoger Zwischer grobkrist: Bohrricht etwas b deutlich g In unre gebände	braur nlager nt mitt ypidio n, nlager allin, rüchig gröber gelmä rt ode on Anl tallin. aue	nstichig n bis m relkrista morphe schv stärker einfalle ger und rer Kris äßiger r wolkig hydrit, s Nur	, grau naximal 5 Illin, häuf en Kristal vach orwiegend r durchs end. Ste d mürbei tallinität a Anordn g - sehr w schmutzig	ig grobkristallin mit len, weitestgehend anhydrit-wolkig. mittel- bis scheinend und in einsalz insgesamt sowie häufig in als im Hangenden.
1012,5	1018,5	112	6,0 / 100	100	bis schw deutlich teilweise	arzen erke au orphe	Zwisch nnbar; ch g en Hali	nenlagen insgesa robkristal t-Kristalle	ig weiß, mit grauen , v.a. im Durchlicht mt mittelkristallin, lin mit klaren, en, Zwischenlagen
1018,5	1024,5	113	6,0 / 100	99	Steinsalz blass Zwischer insgesan	z, übe braur nlager nt mitt ypidio	erwiege nstichig n bis m elkrista morphe	nd milch , grau naximal s Illin, häuf	ig weiß, teilweise e, transparente 50 cm-Mächtigkeit; ig grobkristallin mit len, weitestgehend anhydrit-wolkig.

Pro	iekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
	AN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	1
9	Α	55211000	GEO			НА	BW	0001	00	

BGE BUNDESGESELLSCHAFT

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Blatt: 94

Zwischenlagen vorwiegend mittelgrobkristallin, stärker durchscheinend und in Bohrrichtung einfallend. Steinsalz insgesamt etwas brüchiger und mürber sowie häufig in deutlich gröberer Kristallinität als im Hangenden. In unregelmäßiger Anordnung - teilweise gebändert oder wolkig - sehr wenig Schlieren und Nester von Anhydrit, schmutzig weiß bis hellgrau, Nur sehr vereinzelt mikrokristallin. Tonflasern makroskopisch dunkelgraue erkennbar.

1024,5 1030,5 114 5,95 / 99,2 98

Steinsalz, milchig weiß, teilweise sehr blass braun- und graustichig, milchig- transparent, mit Zwischenlagen diffus-grauen Mächtigkeit; insgesamt mittelkristallin, teilweise auch grobkristallin mit klaren, hypidiomorphen Kristallen weitestgehend homogen, Zwischenlagen vorwiegend mittelgrobkristallin, stärker durchscheinend und mit 25° -30° Bohrrichtung einfallend. Steinsalz insgesamt etwas brüchiger und mürber als im Hangenden. Sehr wenige, mm dünne Schlieren und Nester von Anhydrit, schmutzig weiß bis hellgrau, mikrokristallin.

1030,5 1036,5 115 5,84 / 97,3 98

Am Top: Steinsalz, milchig weiß, schwach braunstichig, fein- bis mittelkristallin, brüchig. Ab 1030,8 m Brekzie aus Carnallit, dunkelrot, mittelkristallin, Halit, milchig weiß, grauweiß, farblos-klar, hell- bis mittelgrau, hellrötlich bis rot, fein- und mittelkristallin. Anhydrit, weißgrau, schmutzig weiß bis grau, mikrokristallin, in Schlieren, Nestern und Bändern eingelagert.

1036,5 1042,5 116 6,0 / 100 100

Brekzie aus Halit, milchig weiß, grauweiß, farblosklar, hell- bis mittelgrau, hellrot, fein- und mittelkristallin mit Carnallit, rot, fein- bis mittelkristallin, stark angelöst und Anhydrit, weißgrau. schmutzia weiß bis mikrokristallin, in Schlieren, Nestern und Bändern eingelagert, teilweise auch zerrissene, eckige, Boudin-artige Strukturen erkennbar, gelegentlich sehr unregelmäßige, engräumige Kleinfältelung in 1 bis cm dünnen Anhydritbändern.

Bei 1042,1 m Schichteinfallen in Bohrrichtung mit 45° gemessen.

1042,5 1048,5 117 5.99 / 99.8 100

Brekzie aus Halit, milchig weiß, grauweiß, farblosklar, hell- bis mittelgrau, hell- bis dunkel-rosarot, fein- und mittelkristallin mit Carnallit, rot, fein- bis mittelkristallin, stark angelöst und Anhydrit, weißgrau, schmutzig weiß bis grau, mikrokristallin, in Schlieren, steilstehenden gestreiften Linsen und Bändern eingelagert. Teilweise auch zerrissene, eckige, Boudin-artige

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	55211000	GEO			НА	BW	0001	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
						•				

					Strukturen in unregelmäßiger, steiler Lagerur erkennbar, sowie sehr unregelmäßigengräumige Kleinfältelung. Anhydritanteil zu Liegenden zunehmend.	e,
1048,5	1054.5	118	6,0 / 100	100	Brekzie aus Steinsalz, milchig weiß bis grauwei fein- bis mittelkristallin, mit Anhydrit, hellgrau, b beigebraun, hart, mikrokristallin, geschichtet, z. tonig, stark brekziiert, mit Einschaltungen vorötlichem Carnallit, welcher stark Lösungsersscheinungen aufweist und schwarze Tonsteinlagen; der Carnallit wird bis zu 7 c mächtig.	ois T. on ke en
1054,5	1060,5	119	5,99 / 99,8	100	am Top grauweißer Anhydrit mit schwarze Tonstein, dann Carnallit, kräftig rot, sta angelöst, mittel- bis grobkristallin, Steinsal milchig weiß bis grauweiß, fein- bis mittelkristall und Anhydrit, hellgrau, bis beigebraun, ha mikrokristallin, geschichtet, z. T. tonig, sta brekziiert ode r als Residualgestein Halit/Carnallit.	ırk Iz, Iin ırt,
1060,5	1066,5	120	6,0 / 100	100	grobkristallin, alternierend mit Steinsalz, milch weiß bis grauweiß, fein- bis mittelkristallin ur Anhydrit, hellgrau, bis beigebraun, ha mikrokristallin, geschichtet, z. T. tonig, sta	nd ırt,
1066,5	1067,36	121	0,86 / 100	100	Top 20 cm schwarzer, stark carnallitisch durchsetzter Tonstein, gefolgt von Carnall kräftig rot, stark angelöst, mittel- bis grobkristall mit Fragmenten von weißgrau bis dunkelgraue Anhydrit.	lit, Iin
1067,36	1072,5	122	5,12/99,6%	100	Top bis 1068,9 m: Anhydrit, hellgrau – grauwe gefleckt, mikrokristallin, hart, mit Tonsteinlins hellbraun-grau mit grauweißer Anhydr bänderung im mm-Bereich; von 1068,9 m b 1071,55 m: Brekzie bzw. stark brekziiert Bereich aus grauweißem, geflecktem Anhydr teilweise in eckig-kantigen Trümmer hellbraunem, schwach gebändertem Tonste und rotem angelöstem Carnallit, vorwieger feinkristallin, untergeordnet mittelkristalli brüchig. Von 1071,55 bis 1072,5 m Anhydr hellgrau-grauweiß gefleckt mit angeschnitten kleiner Linse aus hellbraunem, fein gebänderte Tonstein mit sehr dünner, schwarz Kontaktfläche an der Grenze Tonstein-Anhydr Keine Harnisch-Striemen erkennbar.	se, rit- rit, rrn, ein nd in, rit, ner en
1072,5	1078,25	123	5,75 / 100	99	Am Top Tonstein, hellgrau-braun laminiert, silti mit mm dünnen, anhydritischen Zwischenlage die unregelmäßig steil mit ca. 30° bis 40° z Bohrrichtung einfallen. Von 1073,2 m bis 1076	en, zur

					A Company of the same of the s					
	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
1	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
	9A	55211000	GEO			НА	BW	0001	00	

Blatt: 96

m fleckiger, teilweise gestreifter, grauweißer Anhydrit, mikrokristallin, hart, mit zahlreichen Tonsteineinschlüssen in Form unregelmäßiger Klasten und wenige mm dünner, paralleler bis subparalleler Zwischenlagen, am Top und an der Basis carnallitisch durchsetzt. Von 1076,5 m bis 1078,25 m Tonstein, hellgrau-braun laminiert, mit mm dünnen, dunkelgrauen grauschwarzen tonigen Zwischenlagen und 1 bis 7 cm mächtigen Lagen von rotem, feinkristallinem Carnallit und farblosem, mittelkristallinem Steinsalz, die mit 30° bis 35° zur Bohrrichtung einfallen.

1078,25 1084,5 124 6,35 / 101,6 99

Tonstein, dunkelgrau bis grauschwarz, am Top schwach siltig laminiert. Anhydrit, mikrokristallin, carnallitisch, in Klüften und Lagen von 1 bis 4 cm Mächtigkeit eingeschaltet. Ebenso mit feinkristallinem Carnallit gefüllte Klüfte, vereinzelt mit mittelkristallinem, farblosem Steinsalz.

1084,5 1090,5 125 5,72 / 95,3 95

Tonstein, dunkelgrau, laminiert mit einer mmdünnen Siltlage im Winkel von ca. 45° (1084,5-1085,8 m)

Halit-Carnallit Übergangszone von 1085,8 m bis 1086,25 m MD, grau bis dunkelgrau-pink, mikrokristallin

Brekzie von Carnallit mit streifenartig eingebetteten Anhydritklasten, Matrix-Carnallit fein- bis mittelkörnig, oberflächlich angelöst, Anhydrit meist weißgrau, grau, mikrokristallin, z. T. tonig laminiert, ab 1088,96 m bis 1089,25 m MD deutlich höherer Halitgehalt.

1090,5 1096,5 126 6,45 / 107,5 98

Top bis 1090,9 m carnallitischer Tonstein, laminiert mit Silt- und Anhydritlagen im mm-Bereich, dunkelgrau, mit max. 3 cm mächtigen grauweißen Anhydritlagen, teilweise mit vertikalem Versatz durch 2 tekt. Bruchflächen. 1090,9 m bis 1091,9 m Carnallitbrekzie,

dunkelrot, ziegelrot, feinkristallin mit unregelmäßig eingelagerten, grauweißen Anhydrittrümmern, eckig, meist bis 4 cm, vereinzelt 8 cm Durchmesser.

1091,9 m bis 1094,66 m Steinsalz, hellorange, fein- bis mittelkristallin, am Top von 1092,20 m bis 1092,50 m stark anhydritische, eng laminierte Tonsteinlage, dunkelgrau bis grauweiß; bis zur auftretende Basis verstärkt Anhydrit-Zwischenlagen, grauweiß, laminiert, und intern gradiert mit feinen, dunkelgrauen sehr Tonsteinbändern am Top der Anhydritlagen ("fining up").

1094,66 m bis 1095,0 m Tonstein, dunkelgrau bis grauschwarz, bituminös, teilweise schwach siltig, hart, plattig brechend. 1095,0 m bis 1095,9 m

Projekt NAAN	PSP-Element NNNNNNNNNN	Funktion/Thema NNAAANN	Komponente AANNNA	Baugruppe AANN	Aufgabe AAAA	UA AA	Lfd Nr. NNNN	Rev.			
9A	55211000	GEO			НА	BW	0001	00		BGE	BUNDESGESELLSCHA FÜR ENDLAGERUNG
Erkundı	ıngsbohrung	Remlingen	R15-Geologis	sche Fach	betreuun	g-Abs	chlussb	ericht			Blatt: 97
				m V gı w Tı	ikrokrist on 1095 rauweiß ellenföri onsteinb	allin, i,9 m , bräu mig bände nfaller	hart. bis zur nlichgra ge rn. n gene	Basis au ges fältelt rell z	s (109 streiff en,	96,5 m t mit m h	eckt, tonig,) Anhydrit, m dünnen, ellbraunen so und 40°
1096,5	1100,0	127 3,5	/ 100 9	m ui m A bi m	iit hellg nregelm ım-dünn m Top	raubra äßig en, su Carna ,78 m	aunen, begren ubparal allit-Zwi n, kräft mit	wen zten l lelen scher ig rot sehr	ige Fleck Streit nlage :, du	cm m cen, Ne fen vor von nkelrot	tallin, hart, lessenden, estern und n Tonstein. 1096,69 m s, fein- bis farblosem

Endteufe: 1100,00 m MD

(): Basis nicht erbohrt

ı	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN]
	9A	55211000	GEO			HA	BW	0001	00	

BGE BUNDESGESELLSCHAFT

Erkundungsbohrung Remlingen R15-Geologische Fachbetreuung-Abschlussbericht

Blatt: 98

Anhang 3: Kernmarschverzeichnis R15-S2

Kernbe	schreibu	ngen			
Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung
848,57	850,42	1	1,85 / 100	94	Steinsalz, rosarot, teils dunkelgrau-schlierig klar, mittelkristallin bis grobkristallin, dazu rekristallisierte Riesenkristalle.
850,42	856,42	2	6,00 / 100	98	Steinsalz, rosarot, im gesamten Kernmarsch vor dunkelgrau-schlierig Wolken durchzogen, klar bis schwach milchig, mittelkristallin bis grobkristallin an der Krone auch rekristallisierte Riesenkristalle
856,42	862,42	3	6,00 / 100	98	Steinsalz, rosarot, im in den unteren 2/3 des Kernmarsches von dunkelgrau-schlierig Wolker durchzogen, klar bis schwach milchig mittelkristallin bis grobkristallin, das obere Dritte am Kopf besteht aus rekristallisierter Riesenkristallen, hier ist der Kern schmutzig-weiß bis gelblich, Kristalle sind schwach milchig getrübt.
862,42	866,79	4	4,22 / 96,5	94	Steinsalz, dunkelrosarot, klar bis schwach milchig, mittelkristallin bis grobkristallin, der gesamte Kernmarsch von dunkelgrau-schlierig Wolken durchzogen, sehr vereinzel- unregelmäßig verteilt Anhydritschlieren.
866,79	868,32	5	1,67 / 109	97,5	Steinsalz, dunkelrosarot, klar bis schwach milchig, mittelkristallin bis grobkristallin, de gesamte Kernmarsch von dunkelgrau-schlierig Wolken durchzogen, sehr vereinzel unregelmäßig verteilt Anhydritschlieren.
868,32	871,42	6	3,12 / 101	100	Steinsalz, dunkelrosarot, wenig klare Bereiche im Bereich der Krone dunkel bis lila gefärbt mittelkristallin bis grobkristallin, sehr vereinzel unregelmäßig verteilt Anhydritschlieren.
871,42	877,46	7	6,04 / 100	100	Steinsalz, meist mittel- bis untergeordnet fein selten grobkristallin; gelegentlich mm-mächtige feinflaserige Anhydritbändchen; vereinzelt cm bis knapp dm-mächtige Einschaltungen mi lagigem Mischaufbau aus überwiegend Anhydrit, sowie geringen Anteilen von Kalisalz (organoleptisch nachgewiesen) und Ton; wenig drehende Lagerung der Bänderung mit oft 50 - 60° Einfallen zur Bohrachse.
877,46	881,51	8	4,04 / 100	100	Steinsalz, hell orange rötlich bis dunkel gräulich rötlich, fein- bis grobkristallin. Helle, weißliche Anhydritlagen im mm bis cm Bereich Anhydritlagen z. T. mit Kalisalz Verwachsungen Z. T. klare Halit Kristalle, max 4-5 cm in Durchmesser. Ab 881,28 m klare Halit-Kristalle, durchsichtig. Ab 881,881,41m hell- bis dunkelgrauer Anhydrit

i										_
ı	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
	9A	55211000	GEO		*	НА	BW	0001	00	

Kernbe	schreibu	ngen			
Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung
881,51	883,30	9	1,79 / 100	97	Anhydrit, hellgrau bis grau, fest, hart, kryptokristallin, mit weißen Schlieren, unregelmäßig verfaltet, ab 882,0 m Übergang in klares, riesenkristallines und rekristallisiertes Strinsalz. Ab 882,2 m Steinsalz, orange-rot, grobkristallin, darunter unmittelbar eingeschaltet eine ca. 5 cm mächtige Lage Tonstein. Der Tonstein ist überwiegend plastisch. Ab einer Teufe von 882,4 m wieder Steinsalz, orange-rot, wenig hellrote Bereiche, im Ganzen regelmäßig verteilt Anhydritlagen von variabler Mächtigkeit (Boudinage).
883,30	889,30	10	6,00 / 100	99,2	Ab Kopf: Steinsalz , orange-rot, mittel- bis grobkristallin, wenig hellrote Bereiche, im Ganzen regelmäßig verteilt Anhydritlagen von variabler Mächtigkeit (Boudinage). Daneben im Steinsalz eingelagert zwei Anhydrit bänke (885,00 m und 885,50 m), grau, fest, kryptokristallin, durchwirkt von Halitschlieren. Ab 886,10 m ein ca. 20 – 25 cm mächtiger Übergang vom oben beschriebenen Steinsalz zu reinweißem Steinsalz, klar bis milchig, fein- bis mittelkristallin, frei von Anhydrit oder Ton.
889,30	895,27	11	5,88 / 98	96,6	Steinsalz, klar bis milchig, fein- bis mittelkristallin, selten Riesenkristalle vorhanden, frei von Anhydrit oder Ton, allerdings vereinzelt schattige Bereiche.
895,27	901,20	12	5,93 / 100	100	Steinsalz, milchig trüb, fein- bis mittelkristallin mit farblos klaren, mittel- bis grobkristallinen Zwischenlagen von wenigen cm Mächtigkeit. Vereinzelt schattige, schwach anhydritische Bereiche und ganz vereinzelt unregelmäßige, mm dünne Einlagerungen von Tonstein, grauschwarz.
901,20	907,20	13	6,00 / 100	100	Steinsalz, milchig trüb, fein- bis mittelkristallin, vorwiegend homogenes Erscheinungsbild mit farblos klaren, mittel- bis grobkristallinen Zwischenlagen von wenigen cm Mächtigkeit im Top- und Basisbereich. Sehr vereinzelt schattige, schwach anhydritische Bereiche.
907,20	913,17	14	5,97 / 100	100	Steinsalz, milchig trüb, fein- bis mittelkristallin, vorwiegend homogenes Erscheinungsbild mit farblos klaren, mittel- bis grobkristallinen Zwischenlagen von wenigen cm Mächtigkeit. Sehr vereinzelt schattige, schwach anhydritische Bereiche.
913,17	919,16	15	5,99 / 100	98,5	Steinsalz von 913,17 m bis 913,90 m: milchig trüb, fein- bis mittelkristallin, vorwiegend homogenes Erscheinungsbild mit farblos klaren, mittel- bis grobe Kristalle. Danach ab 913,90 m:

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			НА	BW	0001	00

Kernbe	schreibu	ngen			
Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung
					Brekzie aus Halit, milchig weiß, grauweiß, farblos-klar, hell- bis mittelgrau, hell- bis dunkelrosarot, fein- und mittelkristallin mit Carnallit, rot, fein- bis mittelkristallin, stark angelöst und Anhydrit, weißgrau, schmutzig weiß bis grau, mikrokristallin, in Schlieren, steilstehenden gestreiften Linsen und Bändern eingelagert. Teilweise auch zerrissene, eckige, Boudin-artige Strukturen in unregelmäßiger, steiler Lagerung erkennbar, sowie sehr unregelmäßige, engräumige Kleinfältelung.
919,16	925,10	16	5,94 / 100	98,5	Brekzie aus Halit, milchig weiß, grauweiß, farblos-klar, hell- bis mittelgrau, hell- bis dunkelrosarot, fein- und mittelkristallin mit deutlich abnehmendem Gehalt an Carnallit, rot, fein- bis mittel-kristallin, stark angelöst und Anhydrit, weißgrau, schmutzig weiß bis grau, mikrokristallin, in Schlieren, steilstehenden gestreiften Linsen und Bändern eingelagert. Teilweise auch zerrissene, eckige, Boudin-artige Strukturen in unregelmäßiger, steiler Lagerung erkennbar, sowie sehr unregelmäßige, engräumige Kleinfältelung.
925,10	931,10	17	6,13 / 102	100	Brekzie aus Halit, milchig weiß, grauweiß, farblos-klar, hell- bis mittelgrau, hell- bis dunkelrosarot, fein- und mittelkristallin mit Carnallit, schwachhellrot bis hellrot, fein- bis mittelkristallin, stark angelöst und Anhydrit bis Gips, weißgrau, schmutzig weiß bis grau, Gips rein weiß, mikrokristallin, in Schlieren, steilstehenden gestreiften Linsen und Bändern eingelagert. Teilweise auch zerrissene, eckige, Boudin-artige Strukturen in unregelmäßiger, steiler Lagerung erkennbar, sowie sehr unregelmäßige, engräumige Faltung. Teilweise sind kleine Tonlinsen eingeschaltet, grau, sehr weich und plastisch. Von ca. 928,00 bis 928 50 m reiner Halit, wie oben beschrieben, danach wieder stark brekziös.
931,10	937,50	18	6,02 / 94,0	94	Brekzie aus Halit, milchig weiß, grauweiß, farblos-klar, hell- bis mittelgrau, hell- bis dunkelrosarot, z. T. schwach violettstichig, fein- und mittelkristallin mit Carnallit, schwachhellrot bis hellrot, fein- bis mittelkristallin, stark angelöst und Anhydrit bis Gips, schmutzigweiß sowie Polyhalit, weißgrau, schmutzig weiß, mikrokristallin, in Schlieren, steilstehenden gestreiften Linsen und Bändern eingelagert. Teilweise auch zerrissene, eckige, Boudin-artige

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	55211000	GEO			НА	BW	0001	00	

Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung
					Strukturen in unregelmäßiger, steiler Lagerungerkennbar, sowie sehr unregelmäßige engräumige Kleinfältelung.
937,5	943,5	19	5,85 / 97,5	97,5	Brekzie aus Halit, milchig weiß, grauweiß farblos-klar, hell- bis mittelgrau, hell- bi dunkelrosarot, z. T. schwach violettstichig, feir und mittelkristallin mit Carnallit, hellrot, fein- bi mittelkristallin, stark angelöst und Anhydrit bi Gips, schmutzig weiß, teilweise hell- bi mittelgrau und schwach tonig; sowie Polyhali weiß, schmutzig weiß, mikrokristallin, i Schlieren, steilstehenden gestreiften Linsen un Bändern eingelagert. Teilweise auch zerrissene eckige, Boudin-artige Strukturen i unregelmäßiger, steiler Lagerung erkennba sowie sehr unregelmäßige, engräumig Kleinfältelung Von 939,74 – 940,46 m Steinsalz, grauweiß bräunlich-weiß, mittel- bis grobkristallin, m deutlich angelöster Oberfläche.
943,5	949,5	20	6,00 / 100	97,5	Brekzie aus Halit, milchig weiß, grauweiß farblos-klar, hell- bis mittelgrau, hell- bis dunkelrosarot, z. T. schwach violettstichig, feir und mittelkristallin mit Carnallit, hellrot, fein- bis mittelkristallin, stark angelöst und Anhydrit bis Gips, schmutzigweiß, teilweise hell- bis mittelgrau und schwach tonig; sowie Polyhalisweiß, schmutzig weiß, mikrokristallin, is Schlieren, steilstehenden gestreiften Linsen un Bändern eingelagert. Teilweise auch zerrissens eckige, Boudin-artige Strukturen in unregelmäßiger, steiler Lagerung erkennbassowie sehr unregelmäßige, engräumig Kleinfältelung
949,5	955,5	21	6,00 / 100	97,5	Brekzie aus Halit, milchig weiß, grauweiß farblos-klar, hell- bis mittelgrau, hell- bidunkelrosarot, z. T. schwach violettstichig, feir und mittelkristallin mit Carnallit, hellrot, fein- bid mittelkristallin, stark angelöst und Anhydrit bid Gips, schmutzigweiß, teilweise hell- bid mittelgrau und schwach tonig; sowie Polyhalid weiß, schmutzig weiß, mikrokristallin, is Schlieren, steilstehenden gestreiften Linsen un Bändern eingelagert. Teilweise auch zerrissen eckige, Boudin-artige Strukturen in unregelmäßiger, steiler Lagerung erkennbassowie sehr unregelmäßige, engräumig Kleinfältelung. Zwischen ca. 951,00 m un 951,80 m Halit, von einer dünnen Kalisalzlag

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			HA	BW	0001	00

Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung
					durchzogen, im Hangenden schnell in Brekzi- übergehend und im Liegenden in Gips / Anhyd auslaufend. Zwischen 952,90 m und 953,50 r drei ca. 10 cm mächtig Lagen aus Hali- unterbrochen durch ähnlich mächtige Brekzie.
955,50	960,82	22	5,00 / 94	94	Brekzie aus Halit, milchig weiß, grauweiß farblos-klar, hell- bis mittelgrau, hell- bi dunkelrosarot, z. T. schwach violett stichig, fein und mittelkristallin mit Carnallit, blassrot-violett fein- bis mittelkristallin, stark angelöst und Anhydrit bis Gips, schmutzig weiß, teilweise hell bis mittelgrau und schwach tonig; sowie Polyhalit weiß, schmutzig weiß, mikrokristallin, i Schlieren, steilstehenden gestreiften Linsen und Bändern eingelagert. Teilweise auch zerrissene eckige, Boudin-artige Strukturen i unregelmäßiger Lagerung erkennbar, sowi unregelmäßige, engräumige Kleinfältelung. Vo 955,5 m bis 955,8 m Halit, im Liegenden schne in Brekzie übergehend. Bei 958,95 m ca 6 cm mächtige Zwischenlage aus blass rot-violettem angelöstem Kalisalz.
960,82	963,50	23	2,88 / 107,5	100	Brekzie aus Halit, milchig weiß, grauweiß farblos-klar, hell- bis mittelgrau, hell- bi dunkelrosarot, z. T. schwach violett stichig, feir und mittelkristallin mit Carnallit, blassrot-violet fein- bis mittelkristallin, stark angelöst un Anhydrit bis Gips, schmutzig weiß, teilweise hel bis mittelgrau und schwach tonig; sowie Polyhali weiß, schmutzig weiß, mikrokristallin, i Schlieren, steilstehenden gestreiften Linsen un Bändern eingelagert. Teilweise auch zerrissene eckige, Boudin-artige Strukturen i unregelmäßiger Lagerung erkennbar, sowi unregelmäßige, engräumige Kleinfältelung. Vo 962,8 m bis 963,0 m Halit, an den Kontaktfläche schnell in Brekzie übergehend.
963,50	967,50	24	4,0 / 100	100	Steinsalz, milchig-weiß, über grauweiß bis kla überwiegend mittelkristallin, im Wechsel m Anhydrit-Kalisalz-Lagen, der Anhydrit ist gra bis hellgrau, Kalisalz ist blaß-violett bis violett. Di Anhydrit-Kalisalz-Bereiche haben eine brekziösen Charakter.
967,50	973,5	25	6,0 / 100	100	Steinsalz, milchig-weiß, grau durchscheinen bis klar, überwiegend mittel- bis mikrokristallin, ir Wechsel mit Anhydrit-Kalisalz-Lagen, Anhydr grauweiß, schmutzig weiß, mikro- bi kryptokristallin, Kalisalz blass-violet Wechsellagerung überwiegend mit 60° zu Bohrachse einfallend, vereinzelt noch brekziös

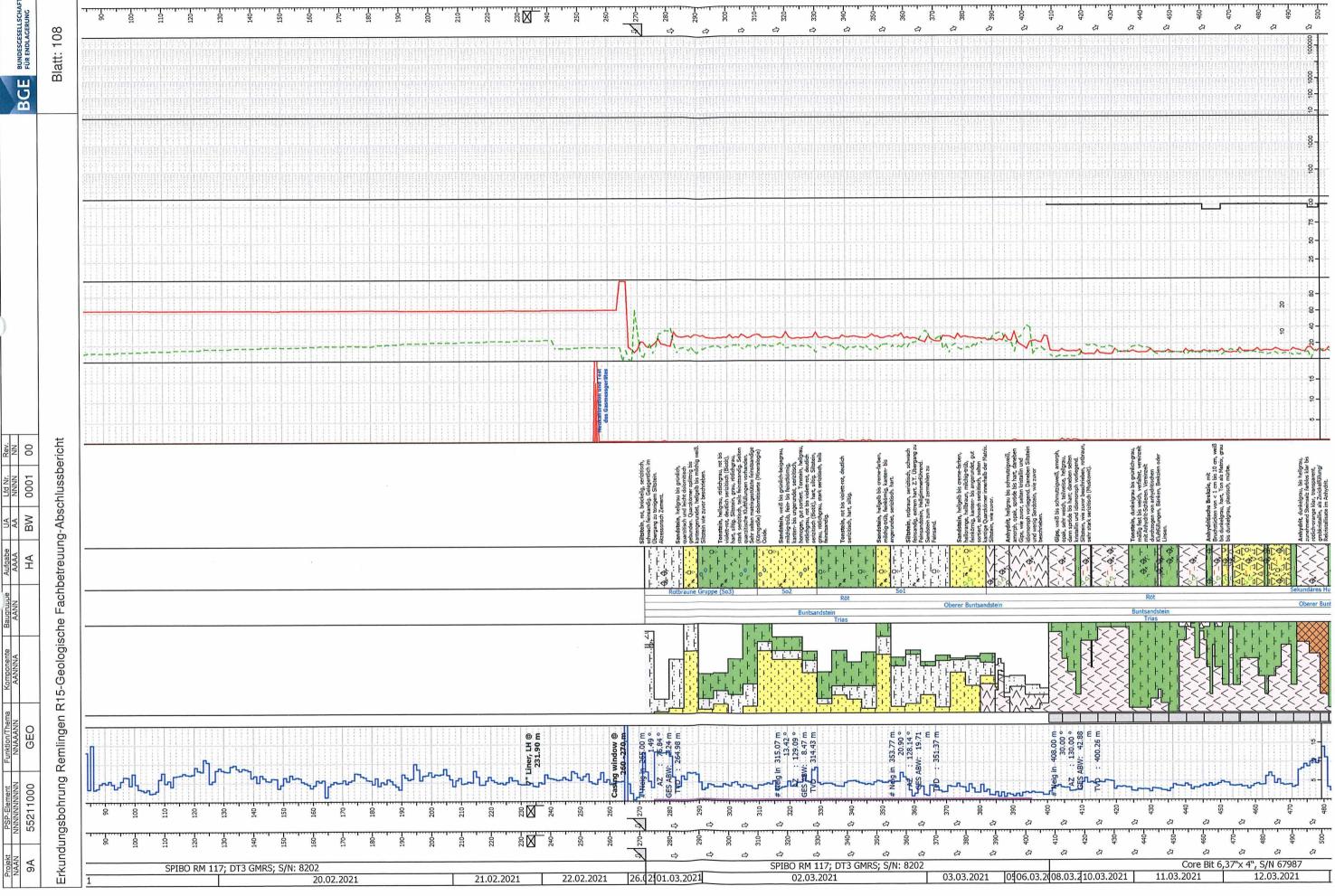
	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
1	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	
	9A	55211000	GEO			НА	BW	0001	00	

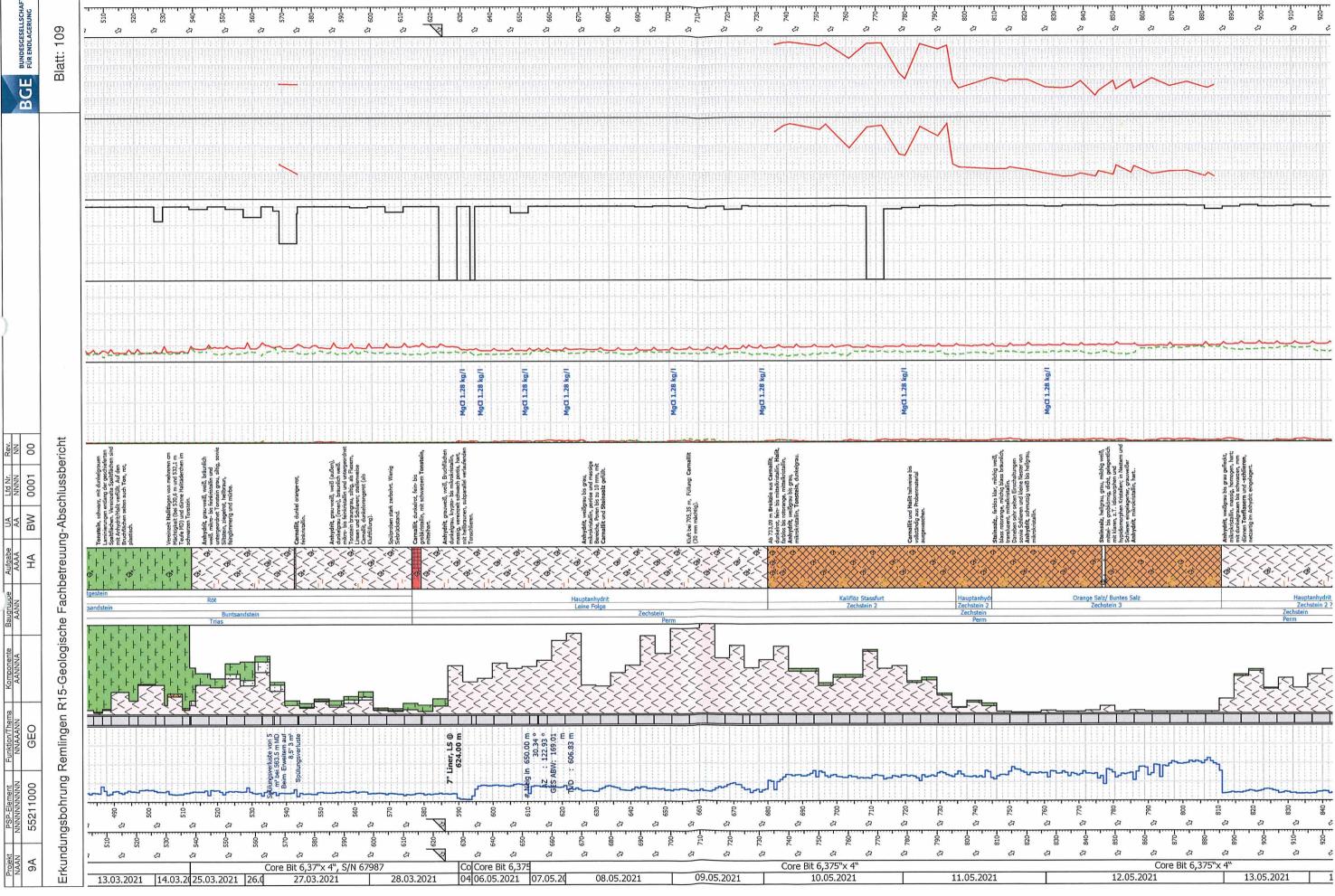
Kernbe	schreibui	ngen			
Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung
					Zwischenlagen.
973,5	979,5	26	6,0 / 100	100	Steinsalz, milchig-weiß, grau durchscheinend bis klar, überwiegend mittel- bis mikrokristallin, im Wechsel mit Anhydrit-Lagen, grauweiß schmutzig weiß, mikro- bis kryptokristallin vorwiegend lagig, teilweise mit Polyhalitbänderung, einzelne Horizonte brekziiert in halitischer Matrix. Kalisalz, kräftig rote Nester in halitischer Matrix.
979,5	985,5	27	6,0 / 100	100	Steinsalz, milchig-weiß, grau durchscheinend bis klar, überwiegend mittel- bis mikrokristallin, im Wechsel mit teilweise engräumig gefalteten und verwürgten Anhydrit-Lagen, grauweiß schmutzig weiß, mikro- bis kryptokristallin vorwiegend lagig, teilweise mir Polyhalitbänderung, einzelne Horizonte brekziiert in halitischer Matrix. Kalisalz, kräftig rote Nester in halitischer Matrix. Kieserit in Streifen und Nestern.
985,5	991,5	28	5,89 / 98,2	98,2	Steinsalz, milchig-weiß, grau durchscheinend bis klar, überwiegend mittelkristallin, vereinzel grobkristallin, im Wechsel mit teilweise engräumig gefalteten und verwürgten Anhydrit und Polyhalit-Lagen. Anhydrit grauweiß schmutzig weiß, mikro- bis kryptokristallin vorwiegend lagig, einzelne Horizonte brekziiert ir halitischer Matrix. Kalisalz, kräftig rote Nester und brekziierte Zwischenlagen in halitischer bis polyhalitischer Matrix. Kieserit in Streifen und Nestern. Von 985,7 m bis 986,3 m rote Kalisalzlage mikleinen Polyhalit-Trümmern und umschlosser von 2 cm mächtiger, unregelmäßig verfalteter schmutzig weißer bis hellgrauer Polyhalitlage.
991,5	997,5	29	6,0 / 100	98	Steinsalz, milchig-weiß, grau durchscheinend bis klar, überwiegend mittelkristallin, vereinzel grobkristallin, im Wechsel mit teilweise engräumig gefalteten und verwürgten Anhydrit und Polyhalit-Lagen. Anhydrit grauweiß schmutzig weiß, mikro- bis kryptokristallin vorwiegend lagig, einzelne Horizonte brekziiert ir halitischer Matrix. Kalisalz, kräftig rote Nester und brekziierte Zwischenlagen in halitischer bis polyhalitischer Matrix. Das Kalisalz ist teils angelöst.
997,5	997,7	30	0,12 / 60	50	Steinsalz, grauweiß, schwach beige-stichig teilweise schwach transparent, fein- bis mittelkristallin, fest bis mittelhart.

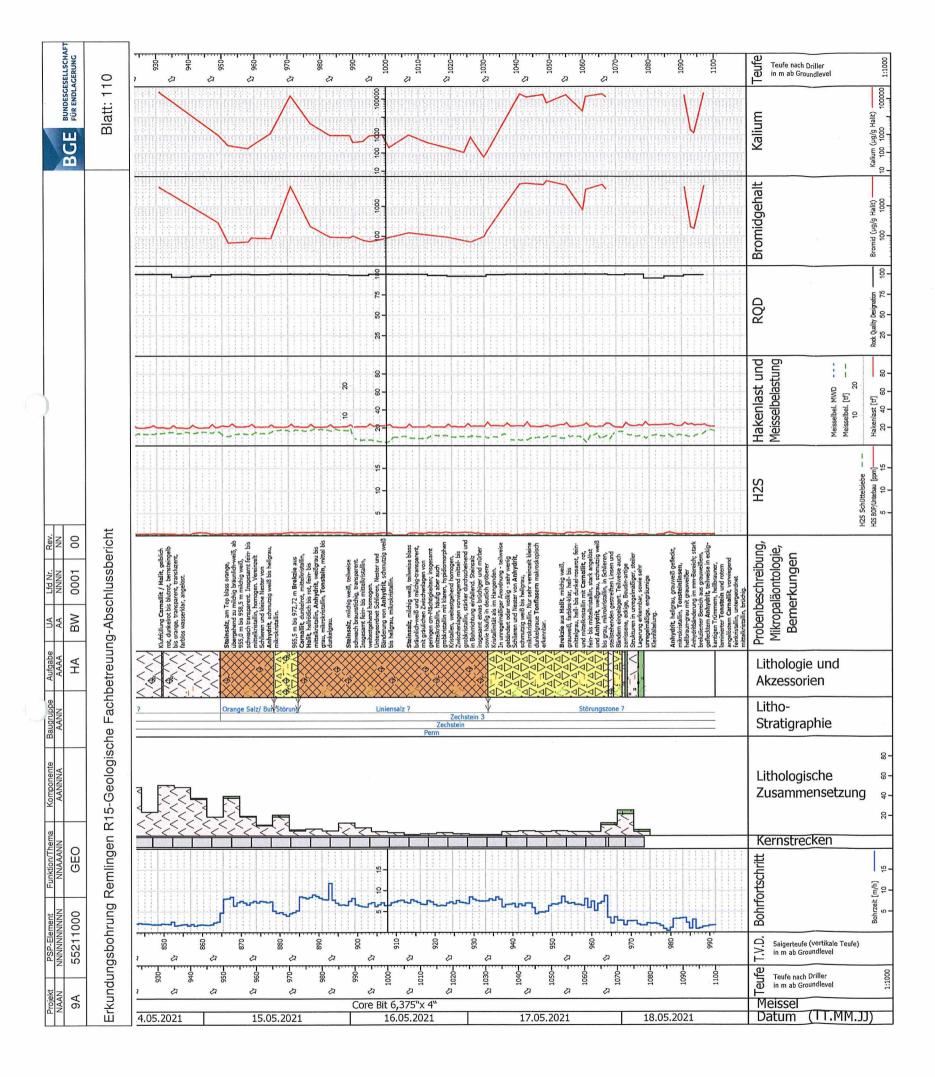
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	55211000	GEO			HA	BW	0001	00

Kernbe	schreibu	ngen							
I op Basis Ifo		KM Ifd. Nr.	fd. Kerngewinn		Beschreibung				
997,7	1003,5	31	5,8 / 100	100	Steinsalz, überwiegend milchig-weiß, teils auch bis hin zu klar, mikrokristallin, fest. Auf die erster 5,2 m durchwirkt von Anhydritbändchen und schlieren, teils auch diffus abgegrenzte Anhydritlagen, die ihrerseits Kalisalz in halitischer bis polyhalitischer Matrix zeigen, wie zuvor. Ab 5,2 m deutlich reiner, mit nur noch einer vereinzelten, diffus abgegrenzter Anhydritschliere am Top.				
1003,5	1009,5	32	6,0 / 100	100	Steinsalz, milchig-weiß bis klar, überwiegend mittelkristallin, von 425 cm bis 556 cm auch groß- bis hin zu riesenkristallin, mit nur vereinzelten diffusen Anhydritschlieren und -bändern im mm- Bereich auf die ersten circa 100 cm.				
1009,5	1015,5	33	6,04 / 100,7	100,7	Steinsalz, milchig weiß, lagenweise hellgraugum Liegenden schwach braunstichig; Top bis 1009,7 m feinkristallin, bis 1010,3 m mittelkristallin, von 1010,3 m bis 1010,85 m Lage mit halbtransparenten Riesenkristallen bis 8 cm Durchmesser. Steinsalz zum Liegenden grauweiß, streifig, mit hellgrauen und grauweißen Polyhalitlagen bis maximal 10 cm Mächtigkeit, daneben grauweiße Streifen von Anhydrit und Kieseritbänder. Von 1014,2 m bis 1014,35 m hellbräunlich-grauweiße brekziierte Zwischenlage mit Anhydrit und Polyhalittrümmern, teilweise boudiniert. Bis zur Krone grauweiß bis hellbraun gestreiftes Steinsalz, mittel- bis feinkristallin, mit löchrig angelöster Oberflache.				
1015,5	1021,5	34	6,0 / 100	100	Steinsalz, bestehend aus einer unregelmäßiger Abfolge von angelösten Carnallit-Bänkchen im cm-Bereich, z. T. auch als Nester ausgebildet wechsellagernd mit hellgrauen bis weißer Polyhalit und Steinsalz Lagen. Mikro- bis Feinkristallin. Keine grobkristallinen Abschnitte.				
1021,5	1027,5	35	6,0 / 100	100	Steinsalz, grauweiß bis hellgrau, streifig vorwiegend feinkristallin, mit grauen bis weißer Polyhalitlagen. Am Top bis 1022,7 m unregelmäßige Nester aus rotem angelöstem Carnallit und stärker deformierter Polyhalitbändern. Ab 1023,9 m bis zur Krone ir unregelmäßigem Abstand eingeschaltete Bänkchen aus rotem, farblosem und blass violettem Carnallit im cm-Bereich, untergeordne auch als Nester ausgebildet. und z. T. mit eingelagerten, feinen Polyhalitflocken bis 1 cm Durchmesser.				

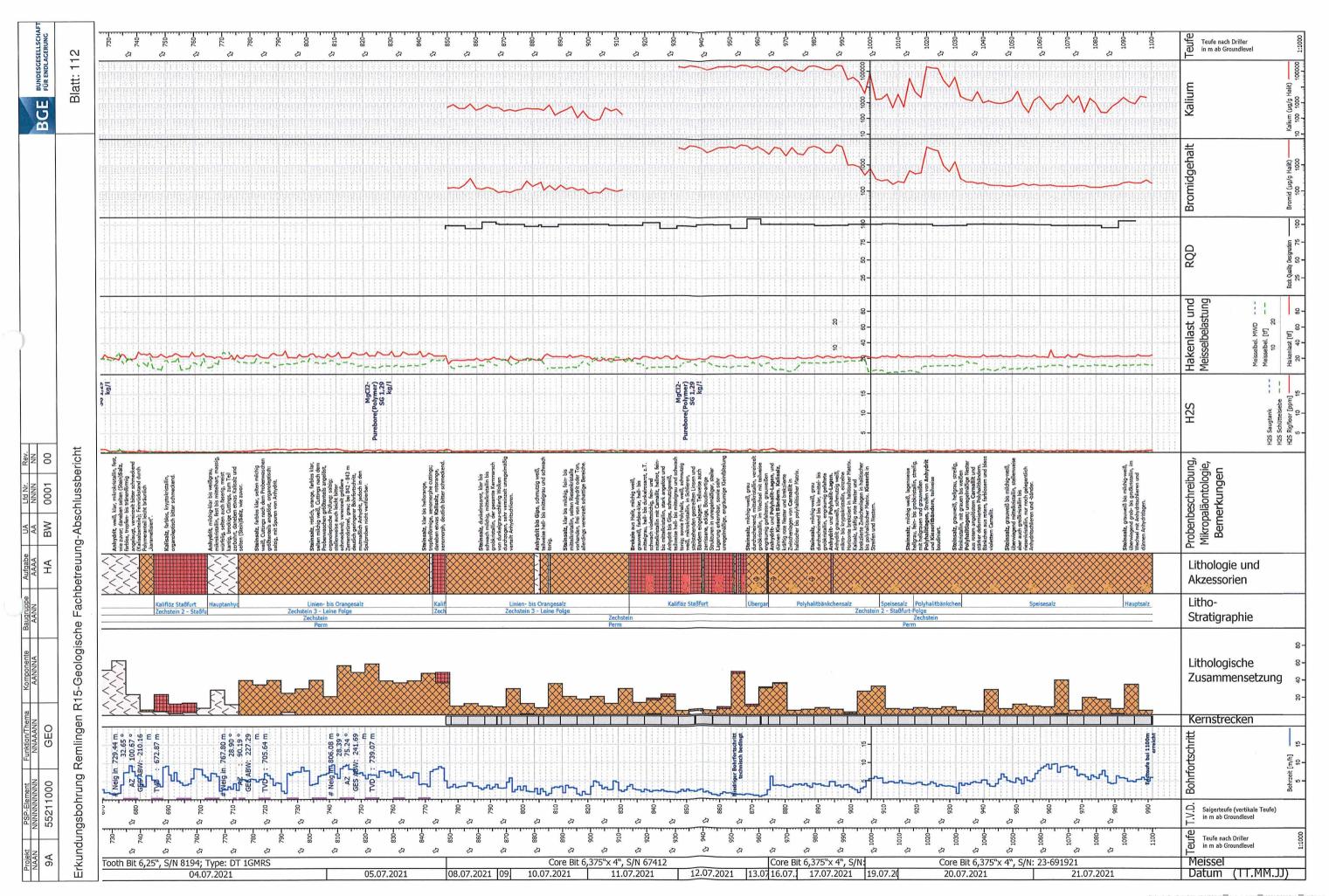
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN]
9A	55211000	GEO			НА	BW	0001	00	


Kernbe	schreibu	ngen						
Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung			
1027,5	1033,5	36	6,0 / 100	97,7	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, stellenweise aber auch riesenkristallin, regelmäßig durchwirkt von diffusen Anhydrit-Polyhalitlagen, wie zuvor. Ab 1032 m deutlich reiner, mit kaum noch Anhydrit. An den Bruchflächen ist ein scharfer, beißender Geruch feststellbar. Es riecht allerdings nicht faul. Messungen durch den Gasschutz haben keine erhöhten H₂S-Werte angezeigt.			
1033,5	1039,5	37	6,0 / 100	98	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, stellenweise aber auch großkristallin bis riesenkristallin, nur noch gelegentlich diffus abgegrenzte Anhydritschlieren. Weiterhin der gleiche Geruch an den			
1039,5	1045,5	38	6,0 / 100	100	Bruchflächen. Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, stellenweise aber auch großkristallin bis riesenkristallin, nur noch gelegentlich diffus abgegrenzte Anhydritschlieren.			
1045,5	1051,5	39	6,0 / 100	100	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, stellenweise aber auch großkristallin bis riesenkristallin, nur noch gelegentlich etwas Anhydrit.			
1051,5	1057,5	40	6,0 / 100	100	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, stellenweise aber auch großkristallin bis riesenkristallin, nur noch gelegentlich etwas Anhydrit. Im Großen unverändert, wie zuvor.			
1057,5	1063,5	41	5,97 / 99,5	99,5	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, stellenweise aber auch großkristallin bis riesenkristallin, nur noch gelegentlich etwas Anhydrit.			
1063,5	1069,5	42	5,96 / 99,3	99,3	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, lagenweise großkristallin bis riesenkristallin, nur noch gelegentlich etwas Anhydrit.			
1069,5	1075,5	43	5,95 / 99,5	98,3	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, lagenweise großkristallin bis riesenkristallin, nur noch gelegentlich etwas Anhydrit.			
1075,5	1081,5	44	6,0 / 100	98	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, bei 1078,10 m MD Kristallbrocken, riesenkristallin, an der Basis eine etwas 1 cm dicke Anhydritlage.			


ì				r						_
ı	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
١	NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
	9A	55211000	GEO			НА	BW	0001	00	



Kernbe	Kernbeschreibungen								
Top [m MD]	Basis [m MD]	KM Ifd. Nr.	Kerngewinn [m] / [%]	RQD [%]	Beschreibung				
1081,5	1087,5	45	6,0 / 100	98,3	Steinsalz, grauweiß bis milchig-weiß, überwiegend mittelkristallin, lagenweise großkristallin bis riesenkristallin, sonst homogen, dicht, massig.				
1087,5	1093,5	46	6,0 / 100	100	Steinsalz, grauweiß bis milchig-weiß, überwiegend grob- bis großkristallin, homogen, dicht, massig, ab circa 1089,5 m Teufe im Wechsel mit Anhydritschlieren und dünnen Anhydritlagen, die abgerissen und intern verfaltet sind, und umgeben sind von diffus abgegrenzten Dunkelbereichen.				
1093,5	1099,5	47	6,28 / 105	100	Steinsalz, grauweiß bis milchig-weiß, überwiegend grob- bis großkristallin, dicht, massig, im Wechsel mit Anhydritschlieren und dünnen Anhydritlagen, die abgerissen und intern verfaltet sind, und umgeben sind von diffus abgegrenzten Dunkelbereichen.				
1099,5	1100,0	48	0,4 / 80	80	Steinsalz, grauweiß bis milchig-weiß, überwiegend grob- bis großkristallin, dicht, massig, im Wechsel mit Anhydritschlieren im mm-Bereich, die umgeben sind von diffus abgegrenzten Dunkelbereichen.				
(): Bas	is nicht er	bohrt			Endteufe: 1100,00 m MD				


BUNDESGESELLSCHAFT FÜR ENDLAGERUNG Blatt: 107	SERVICE	ervices GmbH Bohrung Remlingen 15		Fenkristallin Kristallin Matrix-supported	Schusskern (Verloren) Ölspuren FIT / Leakofftest Richtbohren	Bromid (ug/g Halit) Realium (ug/g Halit) Teure Too 1000 Too 10
	Mudlogging:	Dienstleistungen: Spülung: Akros Olifield Servit Mud Engineers: Bemerkungen: Ablenkung aus der vollverfüllten Bot Druckdatum: 18.11.2021 11:37		Textur Kryptokristallin Mikrokristallin	Technische Symbole Rehrschuth Zuflüsse Verluste	RQD Reck Quality Designation 25 50 75 100
)	15 - S1 ' Deutschland og, 1:1000		400 SE (134)	Zement Zt Zt Zt Zt	ner (unspez.) Laminiert Ooide	H2S Hakenlast und Meisselbelastung Meisselbel i MWD
AAAA AA NNNN NN HA BW 0001 00 reuung-Abschlussbericht	Remlingen 1. Niedersachsen / D. Technisches Log,	Projektdauer: Erster Bohrtag: 18.02.2021 Anfangsteufe (Tie-in): 265.00 m Endteufe: 1100.00 m Anlage: 100.00 m Anlage: 1100.00 m Anlage: 126.00 m Georgenise (GmbH Georging: Georgenise GmbH Beutschland: Mudlogger: Mudlogger: 1100.00 m	V-Projektion 300 m - 400 - 40	Künstliche Bestandteile Metalispäne Metalispäne ア・ユ・ユ・ユー	Akzessorien Anhydrisch Gipshaltig Glimmer (un Quarzitsch Sillig Tonig	Probenbeschreibung, Mikropaläontologie, Bemerkungen
omponente Baugrupue A AANN AANNNA AANN AANN AANN AANN AAN	olog R15-S1 1:1000 BUNDESGESELLSCHAFT FÜR ENDLAGERUNG	mbH N 52° 7' 42.43" 77864.60	V-PI 300 m 300 m 300 m 300 m 300 m 400 c 400 c 500 c 600 c 6	Steinsalt Keir	Siltstein Transara	Akzessorien Litho- Stratigraphie Lithologische Zusammensetzung 8- 8-
PSP-Element Funktion/Thema K NINNINNINNINN NINAAANN 55211000 GEO gsbohrung Remlingen R15-	Litholog R15-S1 BUNDESGES FÜR ENDLA	indesgesellschaft für Endlager indesgesellschaft für Endlager indesgesellschaft für Endlager in Remlingen 15 - S1 Remlingen 15 Remlingen Remlingen Fitz reite: E 10° 40′ 43 hwert: 4409528.60 Elev. Drehtisch: 215.30 m / 3 hirung (A1)	300 m 100 m 100 m 100 m 100 m 300 200 200 300 m 300 300 m 30	Gips Kalisalz	0, 0	Kernstrecken Salgerteufe (vertikale Teufe) Some of the standard of the st
Projekt PSP-Element NAAN NINININININININININININININININININ	Anhang 4:	Auftraggeber: Auftraggeber: Bundesgesells Operator: Bundesgesells Projekt: Bohrlochabschnitt: Remlinge Bohrungsname: Remlinge Lokation: Land: Region oder Ölfeld: Schacht Lokation: Ronzession: Koordinaten: Geogr. Länge / Breite: Rechtswert / Hochwert: Meßüschblatt: Höhe über NN. / Elev. Drehti Bohrungstyp: Untersuchungsbohrung (A1)	H-Projektion	Evaporite Anhydrit	Klastische Bretzie/Fanglome A A A A A A A A A A A A A A A A A A	Teufe nach Driller in m ab Groundlevel Meissel Datum (TT.MM.JJ) 18.02.2021 19.02.202

BGE FÜR ENDLAGERUNG Blatt: 111		SERVICE G m b H	es GmbH		Laskern (Verloren) Ölspuren eakofftest Richtbohren	Kalium (us/g H	
		Mudlogging:	Dienstleistungen: Spülung: Akros Oilfield Service Mud Engineers: Bemerkungen: Druckdatum: 18.11.2021 11:44		Rohrschuh Linerkopf Schussk Zuflüsse Verluste FTT / Leak	RQD Brond Rock Quality Designation	
AA NNNN NN BW 0001 00		Remlingen 15 - S2 iersachsen / Deutschland Technisches Log, 1:1000	6.2021 0.00 m 0.00 m	300 400 500 600 E (102)		reibung, H2S Hakenlast und Meisselbelastung Meisselbel. MWD	inveise Itteliart, SG 1,20 kg/I SG 1,20 kg/I Swell, wwith the control of the cont
ANN AAAA HA Fachbetreuung		Nied	Projektdauer: Erster Bohrtag: Anfangsteufe (Tie-in): 624.00 m Endteufe: DALDRUP B4A DALDRUP B4A DALDRUP Team: Company Man: Toolpusher: Supervisor: Projekt- und Operationsgeologe: Geservice GmbH Kreuzstraße 19 D-26603 Aurich Germany Germany Mudlogger: @geoservice.de	V-Projektion 300 m - 400 - 400 - 400 - 50	Akzessorien Anhydritsch Textur Kristellin	Akzessorien Litho- Stratigraphie	T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Projekt PSF-Eignent Funktion nema konporente bat naan ninnnninninn ninaaann Aannina Aannina 9A 55211000 GEO Erkundungsbohrung Remlingen R15-Geologische	olog R15-S2 1:10	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG	Auftraggeber: Auftraggeber: Bundesgesellschaft für Endlagerung mbH Operator: Bundesgesellschaft für Endlagerung mbH Projekt: Bohrlochabschnitt: Remlingen 15 - S2 Bohrungsname: Remlingen 15 Lokation: Land: Niedersachsen / Deutschland Region oder Ölfeld: Schachtanlage Asse II Lokation: Konzession: Koordinaten: Geogr. Länge / Breite: Rechtswert / Hochwert: 4409528.60 / 5777864.60 Meßtschlatt: Höhe über NN. / Elev. Drehtisch: 215.30 m / 3.50 m Bohrungstyp: Untersuchungsbohrung (A1)	H-Projektion 300 200 200 200 200 200 200 20	Evaporite Anhydrit Anhydrit Kalsalz Steinsalz Künstliche Bestandteile Keine Probe Zement Zi Zi Zi Zi Zi Zi Vartikale Achse ist gehühtte Tenfe		Core Bit 6,375"x 4 Core Bit 6,375"x 4 27.0d 28.06.2021 03.07.2021

