Deckblatt

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Dlatt: 1	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt: 1	
9A	35211000				GE	TV	0001	00	Stand: 31.07.2023	

Titel der Unterlage:

PLANUNGSBERICHT ZUR ENTWURFS-, GENEHMIGUNGS- UND AUSFÜHRUNGSPLANUNG FÜR DEN BOHRPLATZ REMLINGEN 18 EINSCHLIEßLICH ZUFAHRT

Ersteller/Unterschrift:
IMN INGENIEURBÜRO MÜLLER U. NÜMANN GMBH;
Prüfer/Unterschrift:
ASE-RH.1

Stempelfeld:

UVST:

O 6. DEZ. 2023

bergrechtlich verantwortliche Person:

atomrechtlich verantwortliche Person:

Datum und Unterschrift

Bereichsleitung:

Freigabe zur Anwendung:

Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Dritten zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zustimmung der BGE.

Revisionsblatt

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Dlatt. O	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt: 2	
9A	35211000				GE	TV	0001	00	Stand: 31.07.2023	

Titel der Unterlage:

PLANUNGSBERICHT ZUR ENTWURFS-, GENEHMIGUNGS- UND AUSFÜHRUNGSPLANUNG FÜR DEN BOHRPLATZ REMLINGEN 18 EINSCHLIEßLICH ZUFAHRT

Rev.	RevStand Datum	Verantwortliche Stelle	Revidierte Blätter	Kat.*	Erläuterung der Revision
00	31.07.2023	ASE-RH.1			Ersterstellung
					p.

 *) Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung mindestens bei der Kategorie S müssen Erläuterungen angegeben werden

Blatt: 1

Rev.

NN

00

Funktion/Thema Komponente Aufgabe Lfd Nr. Projekt **PSP-Element** Baugruppe иииииииии NNAAANN AANNNA AANN AAAA AA ииии NAAN **DECKBLATT** VS5 GE LA 0001 9A 35211000

Stand:

31.07.2023

Kurztitel	der	Unter	lage:
I tui Luitoi	COL	Ollicon	ago.

Planungsbericht Bohrplatz Remlingen 18

Ersteller / Unterschrift:

Prüfer / Unterschrift:

IMN Ingenieurbüro Müller u. Nümann GmbH;

ASE-RH.1/

Titel der Unterlage:

Planungsbericht zur Entwurfs-, Genehmigungs- und Ausführungsplanung für den Bohrplatz Remlingen 18 einschließlich Zufahrt

Freigabevermerk:

DokID: 12018823

Projekt	PSPE	lement	Fun	ktion/Them		
9A	3521		- un	cion/Inem	a	Komponente
Baugrupp	Mary Supplement	ulgabo	UA	Lfd. Nr.	T Rev.	
	G	E	TI	0001	L. CONTRACTOR	1

Freigabedurchlauf							
	Stabsstelle Qualitätssicherung:	Endfreigabe:					
		Bereichsleitung ASE					

Datum: 27.11.2023

Unterschrift

Datum: 0 5, DEZ. 2023

Datum: 1 5. JAN. 2024

Man	ne:	
vaii	ne.	
	47	

Fachbereich: ASE-RH

Name:

Name

2019-07-22_KQM_Deck-Revisionsblatt_REV23

Blatt: 2a

Erläuterung der Revision

	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
REVISIONSBLATT	NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	ииии	NN
REVISIONSDEAT	9A	35211000	VS5			GE	A 12540 E02000	0001	00

Ersterstellung

Kurztitel der Unterlage:

Rev Revisionsstand

00

Datum

31.07.2023

Verantwortl.

Stelle

ASE-RH.1

Planungsbericht Bohrplatz Remlingen 18Planungsbericht zur Entwurfs-, Genehmigungs- und Ausführungsplanung für den Bohrplatz Remlingen 18 einschließlich Zufahrt

Kat. *)

revidierte Blätter

*			

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	li SC
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt 3
9A	35211000	VS5	-	2	GE	LA	0001	00	Diatt 5

Inhaltsve	rzeichnis	Blatt
Impressu	m	6
1	Abkürzungsverzeichnis	7
2	Einleitung	8
3	Baumaßnahmen	9
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8.1 3.8.2 3.8.3 3.8.4	Baufeldfreimachung Bodenaustausch, Bodenentsorgung und Winkelstützwand Zufahrt Oberflächenbefestigungen Zufahrt Mutterbodenabtrag Bohrplatz Lagerfläche Mutterboden Bodenaustausch, Auffüllung und Winkelstützwand Bohrplatz Lagerfläche ungeeigneter Boden Bohrplatz Oberflächenbefestigungen Bohrkeller und Bohranlagengründung Oberflächenentwässerung Sicherheitseinrichtungen	10 10 12 13 14 16 16 16 17 19 22
4	Zusammenfassung	23
5	Mitgeltende Unterlagen	24

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt 4
9A	35211000	VS5	-	-	GE	LA	0001	00	Diatt 4

Verzeichnis der Anhänge

Anhang 1.1:	Übersichtsplan	25
Anhang 1.2:	Bohrplatzplan	26
Anhang 1.3:	Entwässerungsplan	27
Anhang 1.4:	Schalplan Gründung	28
Anhang 1.5:	Bewehrungsplan Bohrkeller	29
Anhang 1.6:	Bewehrungsplan Turmfundamente	30
Anhang 1.7:	Lageplan Zufahrt	31
Anhang 1.8:	Übersichtslageplan	32
Anhang 1.9:	Schnitte	33
Anhang 1.10:	Höhenprofile P1-P22	34
Anhang 1.11:	Höhenprofile P23-P30	35
Anhang 1.12:	Bohrkeller & Fundament-Statische Berechnung	36
Tabellenverz Tabelle 1: Boo	eichnis denmassen(Volumen)Bewegungen pro Bauphase	10
Abbildung 2: E Abbildung 3: A Abbildung 4: S Abbildung 5: S Abbildung 6: S Abbildung 7: S Abbildung 8: E Abbildung 9: E	Schnitt durch Achse P8 (Anhang 1.10) Beispiel Winkelstützwand mit Unterbau (Aufbau hinter L) Ausschnitt Zufahrt zu K513 (Anhang 1.7) Schnitt durch Achse P5 (Anhang 1.10) Schnitt durch Achse P23 (Anhang 1.11) Schnitt durch Achse P23 (Anhang 1.11) Schnitt durch Achse P25 (Anhang 1.11) Beispiel Winkelstützwand mit Unterbau (Aufbau auf L) Beispiel Aufbau für Bauklasse III, RStO	12 13 14 15 15 16 17
Abbildung 10:	Skizze Bohrkeller mit Mauerflansch (Anhang 1.4)	19

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	E
9A	35211000	VS5	=	9746	GE	LA	0001	00	

Blatt 5

Formelverzeichnis

Formal	1 . 1	Volumenha	rochnung	Dyramidan	ctumnf		20
ronnei	1.	volumenbe	rechnung	Pyramiden	istumbi	7	17

Gesamte Blattzahl dieser Unterlage

104

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt 6
9A	35211000	VS5	-	-	GE	LA	0001	00	Diatt 0

Impressum

Die nachstehende Unterlage wurde durch die

Bundesgesellschaft für Endlagerung mbH (BGE) Schachtanlage Asse Am Walde 2 38319 Remlingen

bei Firma:

Ingenieure · Architekten · Sachverständige

IMN Ingenieurbüro Müller u. Nümann GmbH Sudermannstraße 110 29313 Hambühren29313 Hambühren

Telefon: +49 (0) 5084 9801-0 Fax: +49 (0) 5084 9801-29 E-Mail: post@imn-ing.de

bestellt.

Die Bestellnummer der Fa. BGE ist:

45209492.

Die Auftragsnummer der Fa. IMN ist:

42206

Die Unterlage wurde am 31.07.2023 fertiggestellt.

								_	
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	ŗ
9A	35211000	VS5	Ħ.	150	GE	LA	0001	00	ľ

Blatt 7

1 Abkürzungsverzeichnis

AwSV Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen

BGE Bundesgesellschaft für Endlagerung mbH

BUmwS DAfStb-Richtlinie "Betonbau beim Umgang mit wassergefährdenden Stoffen"

DAfStb Deutscher Ausschuss für Stahlbeton e. V.

DIBt Deutsches Institut für Bautechnik (Anstalt öffentlichen Rechts)

DIN Deutsches Institut für Normung e. V.

DIN EN Deutsches Institut für Normung e. V., Europäische Norm

DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.

E_{v1} Verformungsmodul, Ergebnis aus Plattendruckversuch DIN 18134, Erstbelastung Verformungsmodul, Ergebnis aus Plattendruckversuch DIN 18134, Wiederbelas-

tuna

FD-Beton flüssigkeitsdichter Beton FFH Flora-Fauna-Habitat

GK4, LS200 Gauß-Krüger Koordinatensystem, Meridianstreifen 4, Lagestatus 200

GOK Geländeoberkante

LAU-Anlagen Anlagen zum Lagern, Abfüllen und Umschlagen wassergefährdender Stoffe

LBEG Landesamt für Bergbau, Energie und Geologie

LKW Lastkraftwagen

MVV TB Muster-Verwaltungsvorschrift Technische Baubestimmungen

NHN Normalhöhennull

OK Oberkante

RStO Richtlinien für die Standardisierung des Oberbaus von Verkehrsflächen

SLW 60 Schwerlastwagen mit einem Gesamtgewicht von 60 t

STS Schottertragschicht
TDS Asphalttragdeckschicht

TRwS Technische Regel wassergefährdender Stoffe

UK Unterkante

WHG Gesetz zur Ordnung des Wasserhaushalts - Wasserhaushaltsgesetz

Decials	DCD Florest	Fundation (Thomas	I Wassassasta	I n		1		I n	_
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	B
9A	35211000	VS5	**	:: - :	GE	LA	0001	00	

Blatt 8

2 Einleitung

Die Bundesgesellschaft für Endlagerung mbH (BGE) plant den Neubau des Bohrplatzes Remlingen 18 einschließlich Zufahrt sowie die hierfür erforderliche Lagerung von Mutterboden und von Boden, der als Unterbau für Bohrplatz und Zufahrt nicht geeignet ist.

Der Bohrplatz liegt ca. 1,5 km nördlich von Remlingen-Semmenstedt, ca. 700 m östlich der Schachtanlage Asse II im FFH-Gebiet "Asse" im Bereich von Flur 7 auf den Flurstücken 7, 8 und 5/1(EU-Kennzahl 3829-301 des europäischen Schutzgebietes "Natura 2000") (Siehe Anhang 1.8).

Bohransatzpunkt im Gauß-Krüger Koordinatensystem, Meridianstreifen 4, Lagestatus 200 (GK4, LS200):

Rechtswert: RW = 4.409.676,000 Hochwert: HW = 5.777.896,000

Der Bohrplatz wird so hergerichtet, dass eine Kontamination des Untergrundes durch Einsickern von grundwassergefährdenden Stoffen oder durch unkontrolliertes Abschwemmen von kontaminiertem Material mit dem Oberflächenwasser verhindert wird. Eine ausführliche Beschreibung der Bauausführung des Bohrplatzes ist in den Anhängen zusammengefasst bzw. in Abs. 3.8. zu entnehmen.

Das Gelände für den geplanten Bohrplatz weist ein großes Gefälle auf. Die Geländehöhen im Bereich des asphaltierten Bereichs des Bohrplatzes (Kernbereich) liegen zwischen ca. +192,50 m ü. NHN und +199,50 m ü. NHN (Siehe Anhang 1.9).

Um den ökologischen "Fußabdruck" des Bohrplatzes so gering wie möglich zu halten und somit die in Anspruch genommene Fläche zu minimieren, ist an der Nord- und Südseite des Bohrplatzes der Einbau von Winkelstütz-Fertigteilelementen vorgesehen, die für Belastungen aus SLW 60 (Nordseite) bzw. eines weiter ansteigenden Geländes am Kopf der Winkelstützwand (Südseite) zugelassenen sind, siehe auch Abs. 3.2. und Abs. 3.6.

Böschungen, auch wenn diese z. B. mit entsprechenden Steinen zur Vermeidung von Hangabrutschen befestigt würden, sind aufgrund des deutlich höheren Platzbedarfs (FFH-Gebiet) nicht umsetzbar. Darüber hinaus bieten Winkelstützwände den Vorteil, dass diese Fertigteile bereits für unterschiedliche Belastungsszenarien durch Typenstatiken statisch dimensioniert von diversen Anbietern verfügbar sind.

Weitere Betrachtungen, den Höhenunterschied im Gelände durch Spundwände, Rammpfähle, etc. zu realisieren, wurden aufgrund der gemäß /MU°1./ schlechten bis nicht vorhandenen Rammbarkeit in den anstehenden Böden nicht weiter durchgeführt. Es müssten aller Voraussicht nach Zusatzmaßnahmen, wie z. B. Austausch- oder Lockerungsbohrungen, durchgeführt werden, deren Aufwand unverhältnismäßig erscheinen.

Hangbefestigungen aus Schwergewichtsmauern, Trockenmauern aus Naturstein, Gabionen, Holz, Pflanzringen, Ortbeton, Betonpalisaden, etc. wurden ebenfalls als unpraktikabel ausgeschlossen.

Durch den Einsatz der Winkelstützwände wird die Anzahl der zu rodenden Bäume und Sträucher und somit der Eingriff in die Natur minimiert. Nördlich und östlich des Bohrplatzes sowie nördlich des Parkplatzes wird außerhalb der eigentlichen Bohrplatzfläche einschließlich Nebenflächen lediglich ein ca. 10 m breiter zusätzlicher Schutzstreifen von Busch- und Baumbestand freigemacht, um den Bohrplatz herstellen zu können.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	F
9A	35211000	VS5	-	100	GE	LA	0001	00	

Blatt 9

Die Flächengröße des asphaltierten Kernbereichs des Bohrplatzes von ca. 1.500 m² ergibt sich aus dem optimierten Flächenbedarf aus den Erfahrungen bereits durchgeführter Projekte, bei denen ein vergleichbares Bohrgerüst zum Einsatz kam.

Aufgrund der angetroffenen widrigen Bodenverhältnisse, sowohl aus Sicht der Tragfähigkeit als auch aus Sicht der Wasserdurchlässigkeit, ergeben sich erforderliche Maßnahmen hinsichtlich Bodenaustausch und hinsichtlich Oberflächenentwässerung, die in Abs. 3 näher beschrieben werden.

Im Bereich der Zufahrt und des eigentlichen Bohrplatzes mit Nebenflächen ist ein Bodenaustausch vorzunehmen. Der Austausch im Bereich der Zufahrt erfolgt der GOK folgend, der Austausch im Bereich des Bohrplatzes einschließlich Nebenflächen jedoch in Terrassen abgetreppt, siehe auch Abs. 3.2. und Abs. 3.6.

Die für einen späteren Wiedereinbau ungeeigneten Auffüllungen im Bereich der Zufahrt werden abgetragen und einer Wiederverwertung zugeführt bzw. fachgerecht entsorgt.

Abzutragender Mutterboden (Oberboden) und für einen sicheren Lastabtrag ungeeigneter unter dem Mutterboden anstehender Boden im Bereich des Bohrplatzes einschließlich Nebenflächen (Parkund Stellflächen) werden in separaten Mieten für einen späteren Wiedereinbau vor Ort gelagert. Hierbei ist zu beachten, dass vor dem Aufsetzen der Mieten für den ungeeigneten Boden die Mutterbodenschicht darunter ebenfalls abgetragen werden muss und der Boden der Mieten durch ein Vlies von dem freigelegten Planum getrennt werden sollte.

Die Möglichkeit einer Versickerung des Niederschlagswassers ist aufgrund der geringen Durchlässigkeit der anstehenden Böden gemäß /MU°1./ auszuschließen, die Betrachtung der Einleitung des Niederschlagswassers in einen geeigneten Vorfluter ist aufgrund der vorhandenen Oberflächengewässerstruktur in der näheren Umgebung ebenfalls nicht zielführend.

Aufgrund der geringen Durchlässigkeit der anstehenden Böden ist davon auszugehen, dass insbesondere bei Starkregenereignissen das Niederschlagswasser bereits zurzeit über die Geländeoberfläche und über die Böschung Richtung Norden abläuft und somit kaum bis gar nicht versickert.

Daher ist geplant, das unbelastete Niederschlagswasser während der Bohrphase über eine entsprechend ausgelegte Abscheider-Anlage "über den Hang" zu leiten. Für den Zeitraum nach der Bohrphase ist die Abscheider-Anlage nicht mehr erforderlich und das Niederschlagswasser wird direkt "über den Hang" geleitet. Eine ausführliche Beschreibung des Entwässerungskonzeptes der Oberflächenentwässerung ist /MU°2./ bzw. kurz zusammengefasst Abs. 3.8 zu entnehmen.

Angaben zu den in 8 Phasen eingeteilten auszuführenden Baumaßnamen sind in Abs. 3.1 bis 3.8. aufgeführt.

3 Baumaßnahmen

Die geplanten Baumaßnahmen zur Herstellung des Bohrplatzes einschließlich Zufahrt können in folgende Bauphasen unterteilt und entsprechende in Anspruch genommene Flächen zugewiesen werden:

- Phase 1 Baufeldfreimachung
- Phase 2 Bodenaustausch, Bodenentsorgung und Winkelstützwand Zufahrt
- Phase 3 Oberflächenbefestigungen Zufahrt
- Phase 4 Mutterbodenabtrag Bohrplatz

ca. 4.500 m² ca. 820 m²

ca. 820 m²

ca. 2.620 m²

2020-10-26_PM_Textblatt A4 Hochformat_REV02

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt
9A	35211000	VS5	2	-	GE	LA	0001	00	Diati

Blatt 10

Phase 5 Lagerfläche Mutterboden
 Phase 6 Bodenaustausch, Auffüllung und Winkelstützwand Bohrplatz
 Phase 7 Lagerfläche ungeeigneter Boden
 Phase 8 Bohrplatz
 Ca. 1.260 m²
 Ca. 2.620 m²
 Ca. 1.750 m²
 Ca. 2.620 m²
 Ca. 2.620 m²

Während der einzelnen Bauphasen werden nachfolgend aufgeführte Bodenmassen bewegt:

Tabelle 1: Bodenmassen(Volumen)Bewegungen pro Bauphase

Phase	Bodenbewegung	Volumen [m³]	Entfernung zur Lagerfläche [m]
1	· =	72	
2	Aushub ungeeigneter Boden Einbau tragfähiges Kies-Sand-Gemisch Einbau Schottertragschicht	ca. 1.900 ca. 1.500 ca. 400	wird entsorgt wird antransportiert wird antransportiert
3	-		
4	Abtrag Mutterboden	ca. 2.000	max. 200
5	Auftrag Mutterboden (wie Abtrag Bereich Bohrplatz)	ca. 2.000	max. 200
6	Abtrag ungeeigneter Boden Einbau tragfähiges Kies-Sand-Gemisch Einbau Schottertragschicht	ca. 4.600 ca. 8.700 ca. 800	max. 200 wird antransportiert wird antransportiert
7	Auftrag ungeeigneter Boden (wie Abtrag Bereich Bohrplatz)	ca. 4.600	max. 200
8		72	(4)

3.1 Baufeldfreimachung

Im Vorfeld der eigentlichen Baumaßnahme für die Herstellung des Bohrplatzes und der Zufahrt wird eine Baufeldfreimachung durchgeführt.

Hierzu gehören insbesondere die Anbringung eines Schutzes an im Baubereich vorhandenen Bäumen, die durch die örtliche Bauleitung in Absprache mit den zuständigen Genehmigungsbehörden entsprechend gekennzeichnet werden.

Anschließend werden Bäume im Baufeld und im Randbereich des Baufeldes gefällt, die Wurzelstöcke sowie Restholz und Gestrüpp bzw. Sträucher entfernt und einer Wiederverwertung zugeführt bzw. fachgerecht entsorgt. Zum Randbereich gehört nördlich und östlich des Bohrplatzes sowie nördlich des Parkplatzes ein ca. 10 m breiter zusätzlicher Schutzstreifen, siehe auch Übersichtsund Bohrplatzplan (Anhang 1.1 und Anhang 1.2).

In diesem Zuge werden ebenfalls die Bäume sowie Wurzelstöcke und Restholz für die Ausweichstelle im Bereich der Zufahrt entfernt und einer Wiederverwertung zugeführt bzw. fachgerecht entsorgt.

Die beschriebenen Arbeiten können mit den zum Einsatz kommenden Maschinen ohne weitere Ertüchtigungsmaßnahmen der beanspruchten Flächen durchgeführt werden.

3.2 Bodenaustausch, Bodenentsorgung und Winkelstützwand Zufahrt

Gemäß /MU°1./ steht im Bereich des bestehenden Wirtschaftsweges eine ca. 0,20 m bis 4,00 m, im Mittel ca. 1,00 m, mächtige anthropogene Auffüllung an.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	6
9A	35211000	VS5	=	.=:	GE	LA	0001	00	

Blatt 11

Die gemischtkörnige Auffüllung in sandiger bis toniger Zusammensetzung und mit wechselndem Kalkgehalt besitzt eine steife bis halbfeste Konsistenz und weist unter anderem Ziegelstücke und Schlackereste auf.

Die Auffüllung wird bis in eine Tiefe von ca. 1,05 m auf einer Ausbaubreite der geplanten Zufahrt von ca. 3,50 m bis 4,00 m (in den Bereichen der Anbindung an die K513 und der Ausweichstelle entsprechend breiter) ausgehoben, auf LKW geladen und einer Wiederverwertung zugeführt bzw. fachgerecht entsorgt, siehe auch Höhenprofile P1 bis P30 (Anhang 1.10 und Anhang 1.11) und Abbildung 1 als Beispiel aus Anhang 1.10.

Das Volumen sowohl der auszuhebenden Auffüllung als auch des wieder einzubauenden tragfähigen Kies-Sand-Gemisches beträgt jeweils ca. 1.900 m³, siehe auch Tabelle 1.

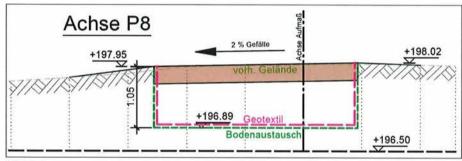


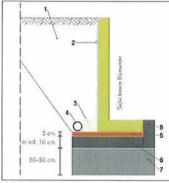
Abbildung 1: Schnitt durch Achse P8 (Anhang 1.10)

Die Höhenprofile sind als Prinzipdarstellungen zu verstehen. Ggf. sind für den Bodenaustausch noch Lastausbreitungs- und Böschungswinkel in Abstimmung mit dem Baugrundsachverständigen zu berücksichtigen.

Gemäß DIN 4124:2012-01 "Baugruben und Gräben - Böschungen, Verbau, Arbeitsraumbreiten" dürfen Baugruben und Gräben bis 1,25 m Tiefe ohne Verbau mit senkrechten Wänden hergestellt werden, bei einer Tiefe bis 1,75 m müssen lediglich die oberen 50 cm geböscht werden.

Nach dem Aushub der Auffüllung ist eine Nachverdichtung des Erdplanums vorzunehmen und in dem jeweiligen Baugrubenabschnitt ein frostsicherer Unterbau aus einem tragfähigen Kies-Sand-Gemisch bis zur Unterkante (UK) der Oberflächenbefestigung der Zufahrt (Schottertragschicht bzw. Asphalttragdeckschicht auf Schottertragschicht, siehe Abbildung 1) einzubauen. Zwischen Erdplanum und Kies-Sand-Gemisch ist ein Vlies zu verlegen.

Das erforderliche Verformungsmodul auf Oberkante (OK) Erdplanum beträgt $E_{v2} \ge 45 \text{ MN/m}^2$, ein Verformungsmodul von $E_{v2} \ge 120 \text{ MN/m}^2$ auf OK Unterbau ist anzustreben. Die Verformungsmodule E_{v2} sowie der Verhältniswert E_{v2}/E_{v1} sind aufgrund der geringen Frequentierung bzw. Nutzungsdauer der Zufahrt mindestens für eine Belastungsklasse Bk1,0 gemäß RStO 12 durch Eigen- und Fremdüberwachung nachzuweisen, siehe auch /MU°1./ Abs. 5.1.2.


Im Zuge der Arbeiten für den Bodenaustausch wird südlich der Zufahrt zwischen Beginn Parkplatz westlich des Bohrplatzes bis Ende Stellfläche östlich des Bohrplatzes eine Winkelstützwand angeordnet, siehe auch Höhenprofile P21 bis P29 (Anhang 1.11).

Der abzufangende Höhenunterschied beträgt maximal 1,50 m, siehe auch Höhenprofile P21 bis P29 (Anhang 1.11).

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt 12
9A	35211000	VS5	(=)	-	GE	LA	0001	00	Diatt 12

Es gibt zahlreiche Fertigteilhersteller von Winkelstützwänden, die u. a. auch für eine Belastung durch ansteigendes Gelände am Kopf der Winkelstützwand dimensioniert sind und für die Typenstatiken vorliegen. Der Unterbau für die Elemente der Winkelstützwand ist entsprechend der jeweiligen Herstellervorschriften auszuführen, Beispiel aus der technischen Broschüre eines Herstellers siehe Abbildung 2.

- 1. Hinterfüllung nichtbindiges Moterial (z.B. mitteldicht gelagerter Kiessand)
- 2. Transportmittel: Standardmäßig mit Ausschalhaken, Alternativ gegen Aufpreis mit Flachstahlanker.
- 3. Ggf. mit Spornausbildung
- 4. Drainage
- 5. Erdfeuchte Estrichmischung
- 6. Beton mind. C 16/20 (XC2) Empfehlung: konstruktiv bewehren
- 7. Frostsicheres Material: z.B. Schotter
- 8. Bewehrtes Widerlager: bei Sicht Innen Elementen notwendigt Empfehlung: mit Pos. 6 konstruktiv verbinden
- 9. Voutenausbildung bei Sicht Aussen Elementen gegeben / bei kleinen Bauhöhen ggf. nicht vorhanden

Abbildung 2: Beispiel Winkelstützwand mit Unterbau (Aufbau hinter L)

3.3 Oberflächenbefestigungen Zufahrt

OK neu befestigte Zufahrt ist möglichst nahe der jetzigen Höhenlage des Feldweges geplant, siehe auch Schnitte Bohrplatz (Anhang 1.10). Die nachfolgend angegebenen Stationen sind den Zeichnungen der Höhenprofile (Anhang 1.10 und Anhang 1.11) zu entnehmen.

Zwangspunkte für OK Zufahrt bilden die K513, die Forderung eines Gefälles von 2% auf 5,00 m Länge von der K513 weg und die geplante Bohrplatzhöhe, Zwangspunkt K513 siehe auch Abbildung 3 als Ausschnitt aus dem Lageplan Zufahrt (Anhang 1.7).

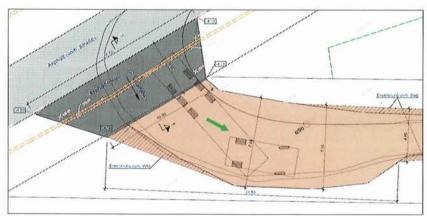


Abbildung 3: Ausschnitt Zufahrt zu K513 (Anhang 1.7)

Die geplanten Ausbaubreiten der Zufahrt im Bereich der Anbindung an die K513 ergeben sich aus den Kurvenradien und Schleppkurven der zu erwartenden Fahrzeuge, die für den Bohrplatzbau und für den Transport des Bohrgerüstes einschließlich Equipment zu erwarten sind.

Für die Oberflächenentwässerung wird die Zufahrt mit einem Quergefälle von ca. 2 % Richtung Norden ausgeführt und bei nördlich der Zufahrt höher anstehendem Gelände eine Mulde zur Ableitung des Regenwassers angeordnet, siehe auch Höhenprofile P1 bis P30 (Anhang 1.10 und Anhang 1.11) und Abbildung 4 als Beispiel eines Höhenprofils.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	B
9A	35211000	VS5	-	-	GE	LA	0001	00	٦

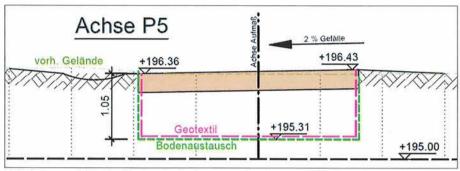


Abbildung 4: Schnitt durch Achse P5 (Anhang 1.10)

Die Anbindung an die K513 wird von Station 0-009.400 bis Station 0-005.700, jeweils gemessen in der Achse der Zufahrt, auf einer Länge von mindestens 5,00 m und mit einer Ausbaubreite von ca. 10,00 m bis ca. 16,50 m mit einer Asphalttragdeckschicht (TDS) befestigt.

Die Stationen 0+000.000 bis 0+290.000 sind als Orientierung dem Grundriss zu entnehmen, der sich auf den Zeichnungen der o. g. Höhenprofile befindet (Anhang 1.10 und Anhang 1.11).

Gewählter Aufbau von oben nach unten:

- 10 cm Asphalttragdeckschicht (TDS) AC 16 TD
- 40 cm Schottertragschicht (STS) Mineralgemisch 0/32
- Unterbau Bodenaustausch gemäß Abs. 3.2.

Die restliche Zufahrt von Station 0-005.700 bis Station 0+299.300 wird mit einer Ausbaubreite von ca. 3,50 m mit einer STS befestigt. Von Station 0-005.700 bis Station 0+016.300 wird die vorhandene Verbreiterung des Feldweges zu einer Ausweichstelle mit einer Ausbaubreite von ca. 5,00 m bis 8,00 m ebenfalls mit einer STS befestigt. Zwischen Station 0+143.700 und Station 0+189.300 wird eine zusätzliche Ausweichstelle mit einer Ausbaubreite von ca. 7,50 m angeordnet, die ebenfalls mit einer STS befestigt wird.

Gewählter Aufbau von oben nach unten:

- 30 cm Schottertragschicht (STS) Mineralgemisch 0/32
- Unterbau Bodenaustausch gemäß Abs. 3.2.

Das erforderliche Volumen der Schottertragschicht für die gesamte Zufahrt einschließlich Ausweichstellen beträgt ca. 400 m³, siehe auch Abs. 3.

3.4 Mutterbodenabtrag Bohrplatz

In allen Bohrungen außerhalb des Feldweges wurde gemäß /MU°1./ Mutterboden mit einer Mächtigkeit von 30 cm bis 60 cm, im Mittel ca. 45 cm, angetroffen, der zunächst im Bereich des Bohrplatzes einschließlich Nebenflächen abgetragen, zur Lagerfläche für Mutterboden transportiert und in Mieten aufgesetzt wird, siehe Abs. 3.5.

Das Volumen des abzutragenden Mutterbodens beträgt ca. 2.000 m³, siehe auch Abs. 3.

3.5 Lagerfläche Mutterboden

Der im Bereich des Bohrplatzes einschließlich Nebenflächen sowie im Bereich der Lagerfläche für ungeeigneten Boden abgetragene Mutterboden wird in Mieten mit einer maximalen Höhe von 2,00

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	Š	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	R	
9A	35211000	VS5	н	=	GE	LA	0001	00	6	

Blatt 14

m aufgesetzt, Lage, Geometrie und Kubatur der Mutterbodenmieten sind dem Übersichts-, Bohrplatz- und Entwässerungsplan (Anhang 1.1, Anhang 1.2 und Anhang 1.3) zu entnehmen.

Die Böschungen sind in einem Winkel von maximal 45° auszuführen, die Oberfläche der Mieten ist mit einer leichten Mulde zu profilieren.

Die Geometrie der Mutterbodenmieten wird an die Geländestruktur angepasst, vom Kronenrand im Norden und Westen ist vom Böschungsfuß der Mieten ein Mindestabstand von 2,00 m einzuhalten.

Das Volumen des in Mieten aufzusetzenden Mutterbodens beträgt ca. 2.000 m³, siehe auch Abs. 3.

3.6 Bodenaustausch, Auffüllung und Winkelstützwand Bohrplatz

Der unterhalb des Mutterbodens für den Lastabtrag ungeeignete anstehende Boden wird in einer Mindeststärke von 1,00 m abgetragen, zur Lagerfläche für ungeeigneten Boden transportiert und in Mieten aufgesetzt, siehe Abs. 3.7.

Der Abtrag erfolgt aufgrund der starken Geländeneigung von ca. 20 % in Süd-Nord-Richtung in Abstimmung mit der Dr. Spang Ingenieurgesellschaft für Bauwesen, Geologie und Umwelttechnik mbH in drei Terrassen abgetreppt, sodass die Gefahr eines Abrutschens der späteren Auffüllung auf dem Erdplanum ausgeschlossen werden kann.

Die Böschungsneigung zwischen den einzelnen Terrassen der Abtreppung kann aufgrund des anstehenden bindigen Bodens gemäß /MU°1./ unter einem Winkel von 60° erfolgen.

Das Erdplanum wird lediglich zur Ableitung von einsickerndem Oberflächenwasser Richtung Norden mit einem geringen Gefälle von 1 bis 2 % ausgeführt, siehe auch Höhenprofile P20 bis P29 (Anhang 1.10 und Anhang 1.11) und Abbildung 5 und Abbildung 6 als Beispiel aus Anhang 1.11.

In West-Ost-Richtung erfolgt der Abtrag aufgrund der Geländeneigung ebenfalls in Terrassen abgetreppt, siehe auch Längsschnitt in Bohrlochachse Anhang 1.11) und Abbildung 7 als Beispiel aus Anhang 1.11 (Ausschnitt aus dem Längsschnitt).

Das Volumen des für einen Lastabtrag ungeeigneten und somit abzutragenden Bodens beträgt ca. 4.600 m³. Zum Herstellen der Auffüllung ist ein tragfähiges Kies-Sand-Gemisch mit einem Volumen von ca. 8.700 m³ erforderlich, siehe auch Abs. 3.

Abbildung 5: Schnitt durch Achse P23 (Anhang 1.11)

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	F
9A	35211000	VS5	-	т.	GE	LA	0001	00	Ĺ

Blatt 15

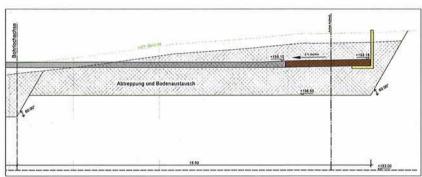


Abbildung 6: Schnitt durch Achse P23 (Anhang 1.11)

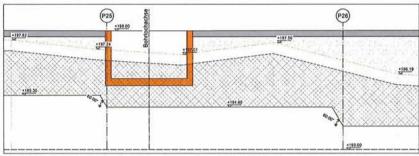


Abbildung 7: Schnitt durch Achse P25 (Anhang 1.11)

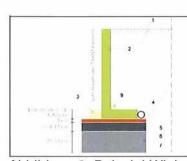
Der erforderliche Verformungsmodul auf OK Erdplanum beträgt $E_{v2} \ge 45$ MN/m², ein Verformungsmodul von $E_{v2} \ge 120$ MN/m² auf OK Unterbau ist anzustreben. Die Verformungsmodule E_{v2} sowie der Verhältniswert E_{v2}/E_{v1} sind aufgrund der geringen Frequentierung bzw. Nutzungsdauer des Bohrplatzes mindestens für eine Belastungsklasse Bk1,0 gemäß RStO 12 durch Eigen- und Fremdüberwachung nachzuweisen, siehe auch /MU°1./ Abs. 5.1.2 (die Hinweise in /MU°1./ für die Zuwegung gelten entsprechend für den Bohrplatz).

Die vorgelegte Planung fordert für den Kernbereich des Bohrplatzes die Erfüllung der Anforderungen an mindestens die Belastungsklasse Bk1,8, siehe auch Abs. 3.8.1., Hinweise zu Abbildung 9.

Durch den großen Höhenunterschied des vorhandenen Geländes ist nach dem Abtrag des ungeeigneten Bodens eine Auffüllung des Geländes erforderlich, dessen Mächtigkeit Richtung Norden zunimmt, siehe auch Höhenprofile P20 bis P29 (Anhang 1.10 und Anhang 1.11).

Zur Herstellung eines verdichtungsfähigen Untergrundes ist die Auffüllung gemäß /MU°1./ mit geeignetem Material vorzusehen, bevorzugt weit gestuftes, verdichtungsfähiges Material, das in Lagen mit einer Stärke von jeweils maximal 30 cm eingebaut werden sollte.

Im Zuge der Arbeiten für den Bodenaustausch wird nördlich des Bohrplatzes auf einer Länge von ca. 80 m eine Winkelstützwand angeordnet.


Der abzufangende Höhenunterschied beträgt maximal 5,00 m, siehe auch Höhenprofile P23 bis P29 (Anhang 1.11).

Es gibt zahlreiche Fertigteilhersteller von Winkelstützwänden, die u. a. auch für eine Belastung durch SLW 60 am Kopf der Winkelstützwand dimensioniert sind und für die Typenstatiken vorliegen. Der Unterbau für die Elemente der Winkelstützwand ist entsprechend der jeweiligen Herstellervorschriften auszuführen, Beispiel aus der technischen Broschüre eines Herstellers siehe Abbildung 8.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	Г
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	l
9A	35211000	VS5	-		GE	LA	0001	00	

Blatt 16	

- 1. Hinterfüllung nichtbindiges Material (z.B. mitteldicht gelagerter Kiessand)
- 2. Transportmittel: Standardmäßig mit Ausschalhaken, Alternativ gegen Aufgreis mit Flachstahlanker
- 3. Gaf. mit Spornausbildung
- 4. Drainage
- 5. Erdfeuchte Estrichmischung
- 6. Beton mind. C. 16/20 (XC2) Empfehlung: konstruktiv bewehren
- 7. Frostsicheres Material: z.B. Schotter
- 8, Bewehrtes Widerlager: bei Sicht Innen Elementen notwendig! Empfehlung: mit Pos. 6 konstruktiv verbinden
- 9. Vautenausbildung bei Sicht Aussen Elementen gegeben / bei kleinen Bauhöhen ggf. nicht vorhanden

Abbildung 8: Beispiel Winkelstützwand mit Unterbau (Aufbau auf L)

3.7 Lagerfläche ungeeigneter Boden

Der im Bereich des Bohrplatzes einschließlich Nebenflächen unterhalb des Mutterbodens für den Lastabtrag ungeeignete anstehende Boden wird in Mieten mit einer maximalen Höhe von 3,50 m aufgesetzt.

Die Böschungen sind in einem Winkel von maximal 45° auszuführen, die Geometrie der Mieten wird an die Geländestruktur angepasst.

Das Volumen des in Mieten aufzusetzenden für einen Lastabtrag ungeeigneten Bodens beträgt ca. 4.600 m³, siehe auch Abs. 3.

Unterhalb der Mieten wird der anstehende Mutterboden zuvor abgetragen und zu den Mutterbodenmieten gemäß Abs. 3.5. gebracht. Vor dem Aufsetzen der Mieten für den ungeeigneten Boden wird auf dem freigelegten Planum ein Trennvlies ausgelegt, um das Abtragen der Mieten für den späteren Wiedereinbau zu erleichtern.

3.8 Bohrplatz

Der gesamte mit Asphalt und Beton befestigte Bohrplatz wird gemäß WHG und AwSV als Dichtfläche geplant und hergestellt, um den Trink- und Grundwasserschutz zu gewährleisten, ausführliche Beschreibung siehe auch /MU°2./ Abs. 4.

Die Ausführung des Bohrplatzes hinsichtlich Oberflächenbefestigungen, Bohrkeller und Bohranlagengründung, Oberflächenentwässerung und Sicherheitseinrichtungen sind den nachfolgenden Abs. 3.8.1 bis 3.8.4 zu entnehmen.

3.8.1 Oberflächenbefestigungen

Es ist geplant, den asphaltierten Kernbereich des Bohrplatzes mit einer Grundfläche von ca. 1.500 m² entsprechend Arbeitsblatt DWA-A 786 - TRwS 786 "Technische Regel wassergefährdender Stoffe - Ausführung von Dichtflächen", Oktober 2020, Tabelle 3 lfd. Nr. 2, aus Gussasphalt mit Eigenschaften gemäß den "Speziellen Zulassungs- und Prüfgrundsätzen für Asphaltdichtschichten zur Verwendung in LAU-Anlagen" des DIBt auszuführen.

Die Dichtschicht besteht aus einer Gussasphaltschicht auf einer Asphaltbinder- und Asphalttragschicht (3-Schicht-System), siehe auch Bohrplatzplan (Anhang 1.2) und Abbildung 9 als <u>Beispiel</u> aus der technischen Broschüre eines Herstellers.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	E
9A	35211000	VS5	=	27	GE	LA	0001	00	

Abbildung 9: Beispiel Aufbau für Bauklasse III, RStO

Hinweise:

Die Bauklasse III gemäß RStO 01 entspricht einer Belastungsklasse > Bk1,8 und ≤Bk3,2 gemäß RStO 12.

Das in Abbildung 8 dargestellte System der DEUTAG GmbH & Co. KG als <u>Beispiel</u> wurde von der Basalt-Aktien-Gesellschaft übernommen und unter dem Namen "DEUGUSS-O Gussasphalt-Dichtschicht zur Verwendung in LAU-Anlagen" durch das DIBt zugelassen, Zulassungs-Nummer Z-75.1-12.

Gewählter Aufbau von oben nach unten:

- 4 cm Gussasphaltschicht (endgültige Kornverteilung und Einbaustärke gemäß Herstellervorschrift)
- 4 cm Asphaltbinderschicht (endgültige Kornverteilung und Einbaustärke gemäß Herstellervorschrift)
- 14 cm Asphalttragschicht (endgültige Kornverteilung und Einbaustärke gemäß Herstellervorschrift)
- 20 cm Schottertragschicht (STS) Mineralgemisch 0/32
- Unterbau Bodenaustausch und Auffüllung gemäß Abs. 3.6.

Die außerhalb des asphaltierten Kernbereichs des Bohrplatzes geplanten Stellflächen und Parkplätze werden mit einer STS befestigt.

Gewählter Aufbau von oben nach unten:

- 30 cm Schottertragschicht (STS) Mineralgemisch 0/32
- Unterbau Bodenaustausch und Auffüllung gemäß Abs. 3.6.

Das erforderliche Volumen der Schottertragschicht für den Kernbereich des Bohrplatzes sowie für Stellflächen und Parkplätze beträgt ca. 800 m³, siehe auch Abs. 3.

3.8.2 Bohrkeller und Bohranlagengründung

Für den Beton des Bohrkellers und der Bohranlagengründung (Windenfundamente) wird gemäß DWA-A 786 - TRwS 786 "Technische Regel wassergefährdender Stoffe - Ausführung von Dichtflächen", Oktober 2020, Tabelle 3 lfd. Nr. 7, ein rechnerischer Nachweis der Dichtheit geführt. Zum Einsatz kommt FD-Beton nach der DAfStb-Richtlinie "Betonbau beim Umgang mit wassergefährdenden Stoffen (BUmwS) des deutschen Ausschusses für Stahlbeton e. V., Ausgabe März 2011, Teil 2, siehe auch Muster-Verwaltungsvorschrift Technische Baubestimmungen (MVV TB), Ausgabe 2021/1, C 2.15.16.

Die Dichtigkeit des Bohrkellers und der Windenfundamente wird nach BUmwS für eine einmalige Beaufschlagung unter Ansatz einer Beaufschlagungsdauer von 72 Stunden bemessen.

020-10-26 PM Textblatt A4 Hochformat REV02

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	E
9A	35211000	VS5	-	171	GE	LA	0001	00	

Blatt 18

Gewählte Baustoffe:

Beton:

C 35/45 FD

Expositionsklassen:

XC4, XF3, XA1

(Bohrkeller)

Expositionsklassen:

XC4, XD2, XF2, XA1 (Windenfundamente)

Feuchtigkeitsklasse:

WF

Erläuterungen:

C 35/45 FD Charakteristische Betondruckfestigkeit im Alter von 28 Tagen unter genormten Laborbedingungen 35 N/mm² (geprüft am Zylinder Durchmesser 150 mm und Höhe 300 mm), 45 N/mm² (geprüft am Würfel Kantenlänge 150 mm), flüssigkeitsdicht Betonkorrosion durch chemischen Angriff: chemisch schwach angreifende Umgebung, z. B. Behälter von Kläranlagen

XC4 Bewehrungskorrosion durch Karbonatisierung: wechselnd nass und trocken, Außenbauteile mit direkter Beregnung
 XD2 Bewehrungskorrosion durch Chloride (außer Meerwasser): nass, selten trocken, z. B. Bauteile, die chloridhaltigen Industrieabwässern ausgesetzt sind

XF2 Betonkorrosion durch Frostangriff mit und ohne Taumittel: mäßige Wassersättigung, mit Taumittel, z. B. Bauteile im Sprühnebel- oder Spritzwasserbereich von taumittelbehandelten Verkehrsflächen

XF3 Betonkorrosion durch Frostangriff mit und ohne Taumittel: hohe Wassersättigung, ohne Taumittel, z. B. offene Wasserbe-

hälte

WF Betonkorrosion infolge Alkali-Kieselsäure-Reaktion: Beton, der während der Nutzung häufig oder längere Zeit feucht ist, z. B. ungeschützte Bauteile

Die erforderlichen Tragfähigkeits- und Gebrauchstauglichkeitsnachweise werden gemäß der Eurocodes DIN EN 1990 EC 0 "Grundlagen der Tragwerksplanung", DIN EN 1991 EC 1 "Einwirkungen auf Tragwerke", DIN EN 1992 EC 2 "Stahlbetonbauten" und DIN EN 1997 EC 7 "Geotechnik" als grundlegende europäische Normen zur Vereinheitlichung der Bemessungsregeln im Bauwesen unter Berücksichtigung der nationalen Anwendungsdokumente (NA) geführt.

Der Bohrkeller ist mit den lichten Abmessungen

Länge: ca. 3,20 m

(A/C-Richtung - Längsrichtung des Bohrplatzes)

• Breite: ca. 3,20 m

(B/D-Richtung - Querrichtung des Bohrplatzes)

Tiefe: ca. 3,00 m

geplant.

Das Standrohr erhält einen 150 mm breiten umlaufenden Mauerflansch aus Stahl (t = ca. 10 mm), der umlaufend flüssigkeitsdicht an das Standrohr angeschweißt wird.

Der Mauerflansch wird mittig in der Bohrkellersohle einbetoniert und gewährleistet somit eine flüssigkeitsdichte Verbindung zwischen Standrohr und Bohrkellersohle, siehe auch Abbildung 10.

									1411
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	P
9A	35211000	VS5	5	127.0	GE	LA	0001	00	_

Blatt 19

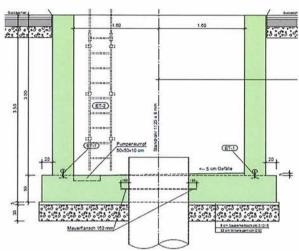


Abbildung 10: Skizze Bohrkeller mit Mauerflansch (Anhang 1.4)

Folgende Dokumente des Bohrkellers sind im Anhang 1.4, 1.5, 1.6 und 1.12 hinterlegt:

- Schalplan der Gründung,
- · Bewehrungsplan,
- · Bewehrungsplan der Turmfundamente,
- Statische Berechnung.

3.8.3 Oberflächenentwässerung

Eine ausführliche Beschreibung, Erläuterung und Darstellung der Oberflächenentwässerung ist dem Entwässerungskonzept der Oberflächenentwässerung (/MU°2./) sowie dem Entwässerungsplan (Anhang 1.3) zu entnehmen, daher wird die Oberflächenentwässerung nachfolgend lediglich im Grundsatz beschrieben.

Das Niederschlagswasser der mit Mineralgemisch befestigten Stellflächen und Parkplätze versickert sowohl in der Bohrphase als auch in der Betriebsphase ungezielt und diffus ohne weiteren Nachweis in den Flächen selbst bzw. über Oberflächengefälle im Seitenraum.

Der jetzige IST-Zustand wird somit nicht verändert.

Zur Sicherstellung der Oberflächenentwässerung im Bereich der Winkelstützwände werden, gemäß Herstellerempfehlung sowie in Absprache mit dem Bauherrn und der Dr. Spang Ingenieurgesellschaft für Bauwesen, Geologie und Umwelttechnik mbH Drainagerohre in einer Ummantelung aus Drainagekies angeordnet, die das Wasser einem Beregnungsschlauch im Hangbereich nördlich des Bohrplatzes zur zeitverzögerten Versickerung oder dem tiefer gelegenen angrenzenden Gelände zuführen, siehe auch Prinzipschnitt B-B und Prinzipschnitt "Winkelstützwand" Bohrplatzplan (Anhang 1.2).

Das anfallende Niederschlagswasser im asphaltierten Kernbereich des Bohrplatzes wird grundsätzlich über Oberflächengefälle, Straßenabläufe und verschweißte PEHD-Grundleitungen gesammelt und weitergeleitet.

Für die Oberflächenentwässerung im Kernbereich bestehen zwei unterschiedliche Konzepte für die Bohrphase, zwischen denen durch Anordnung entsprechender Absperrarmaturen in den Grundleitungen jederzeit gewechselt werden kann, und ein Konzept für die Betriebsphase.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	ь
9A	35211000	VS5	-		GE	LA	0001	00	

Blatt 20	
----------	--

Bohrphase

Während der Bohrphase wird auf der befestigten Fläche des Kernbereichs des Bohrplatzes mit wassergefährdenden Stoffen umgegangen. Daher wird das Niederschlagswasser über die Grundleitungen und einen Pumpenschacht mittels Tauchpumpe zunächst in einen obertägig aufgestellten Container mit einer abschließbaren Abdeckung geleitet.

Die Absperrarmatur in der Grundleitung vom Pumpenschacht zum Beregnungsschlauch ist geschlossen.

Von dem obertätig aufgestellten Container wird das Wasser gedrosselt über eine Abscheider-Anlage in einen weiteren Container mit einer abschließbaren Abdeckung geleitet, in dem das aufgefangene Wasser beprobt wird und nach Vorliegen der Analyseergebnisse in Abhängigkeit der Analyseergebnisse entweder dem Beregnungsschlauch im Hangbereich nördlich des Bohrplatzes zur zeitverzögerten Versickerung zugeführt (Szenario 1) oder abgepumpt, per TKW abgefahren und entsprechend der gemessenen Parameter fachgerecht entsorgt (Szenario 2) wird.

Die Szenarien 1 und 2 sind in Abbildung 11 als Ausschnitt aus dem Entwässerungsplan (Anhang 1.3) dargestellt.

Abbildung 11: Ausschnitt Entwässerungsplan (Anhang 1.3)

Betriebsphase

Nach Beendigung der Bohrarbeiten werden der Kernbereich des Bohrplatzes und die Grundleitungen fachgerecht gereinigt.

Während der anschließenden Betriebshase wird das Niederschlagswasser über die Grundleitungen und den Pumpenschacht direkt dem Beregnungsschlauch im Hangbereich nördlich des Bohrplatzes zur zeitverzögerten Versickerung zugeführt (Szenario 3), siehe Abbildung 12 als Ausschnitt aus dem Entwässerungsplan (Anhang 1.3).

Die Absperrarmatur in der Grundleitung vom Pumpenschacht zum Beregnungsschlauch ist geöffnet.

Die Abscheider-Anlage sowie die obertägig aufgestellten Container, Pumpen und fliegende Leitungen werden außer Betrieb genommen bzw. abgebaut.

2020-10-26_PM_Textblatt A4 Hochformat_REV02

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	Г
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	F
9A	35211000	VS5	5	970	GE	LA	0001	00	,

Blatt 21

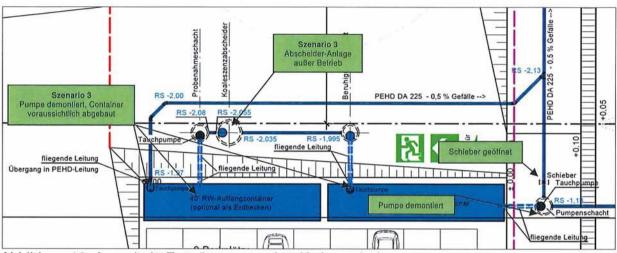


Abbildung 12: Ausschnitt Entwässerungsplan (Anhang 1.3)

Das geplante Oberflächengefälle des Kernbereichs des Bohrplatzes wurde bewusst so gewählt, damit ein zusätzliches Rückhaltevolumen für anfallende Wässer vorhanden ist, falls die Ableitung der Wässer z. B. durch Ausfall einer Pumpe behindert wird oder aus anderen Gründen unterbrochen werden muss.

Die vorgesehenen steuerbaren Pumpen in den Schächten und Containern sowie die bedienbaren Absperrarmaturen in den Grundleitungen verhindern bei Bedarf durch Abschalten bzw. Absperren das Abfließen des Oberflächenwassers aus dem Kernbereich des Bohrplatzes. Das anfallende Wasser staut sich anschließend über das Grundleitungssystem bis in die Fläche des Kernbereichs zurück.

Die Fläche des Kernbereichs bildet ein Rückhaltevolumen in Form von vier "umgedrehten" Pyramidenstümpfen, siehe Abbildung 13 mit eingetragenen Höhenkoten.

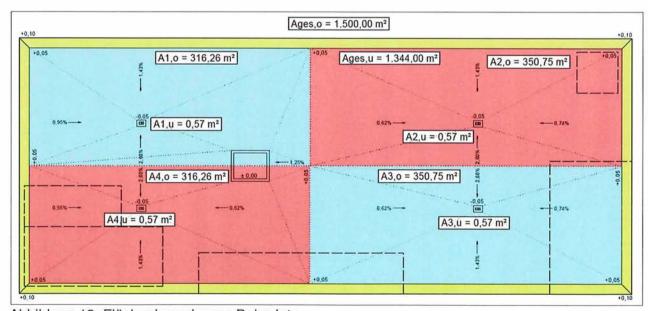


Abbildung 13: Flächenberechnung Bohrplatz

									- 0.0
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	E
9A	35211000	VS5	-	-	GE	LA	0001	00	

Blatt 22

Das Rückhaltevolumen der Fläche des Kernbereichs (ohne Berücksichtigung des Bohrkellers) berechnet sich über die Formel:

Formel 1: Volumenberechnung Pyramidenstumpf

$$V_{Pyramidenstumpf} = \frac{1}{3} * \left(A_o + \sqrt{A_o * A_u} + A_u \right) * h$$

für die Teilbereiche A₁, A₂, A₃, A₄ und A_{ges} zu insgesamt ca. 117 m³.

3.8.4 Sicherheitseinrichtungen

Der Bohrplatz wird während der Bohrphase mit einem umlaufenden Bauzaun gesichert, lediglich im Süden entlang des vorhandenen Wirtschaftsweges ist eine Einfriedung aufgrund der Höhenunterschiede des Geländes nicht erforderlich bzw. möglich, Fluchttüren Richtung Norden, Osten und Westen sind vorgesehen.

Sofern es die Arbeiten in der Bohrphase zulassen, wird bereits vor Bohrbeginn der endgültige Anlagenzaun im Norden, Osten und Westen des Bohrplatzes errichtet.

Richtung Norden und Osten werden für die Fluchtwege die erforderlichen Treppen voraussichtlich mittels Beton-Blockstufen realisiert und mit einem Geländer versehen, Beispiel siehe Abbildung 14.

Es ist jedoch, entgegen der Darstellung in Abbildung 14, ein beidseitiges Geländer vorgesehen, das bis zum Bauzaun bzw. Anlagenzaun geführt wird.

Abbildung 14: Beispiel Fluchtwegtreppe mit Betonstufen

Der Bohrplatz ist nach der Bohrphase für die Betriebsphase vollständig mit einem Anlagenzaun umschlossen, dessen Verlauf dem Bauzaun während der Bohrphase entspricht, lediglich im Süden wird zusätzlich ein Anlagenzaun zwischen Bohrplatz und Wirtschaftsweg errichtet.

Während der Betriebsphase sind somit vier Fluchttüren im Anlagenzaun vorhanden, jeweils eine je Himmelsrichtung.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	B
9A	35211000	VS5	-	i t	GE	LA	0001	00	"

Blatt 23

Die Absturzkante an der Winkelstützwand Richtung Norden ist durch den Bauzaun bzw. Anlagenzaun gesichert, daher wird auf die Anordnung eines Geländers verzichtet.

Während der Bohrphase werden LKW auf dem Bohrplatz rangieren, daher wird im Nord-Westen des Bohrplatzes vor der Winkelstützwand ein Anfahrschutz durch eine Leitplanke installiert, siehe Abbildung 15 als Ausschnitt aus dem Übersichtsplan (Anhang 1.1), ohne Darstellung der Bohranlagenaufstellung.

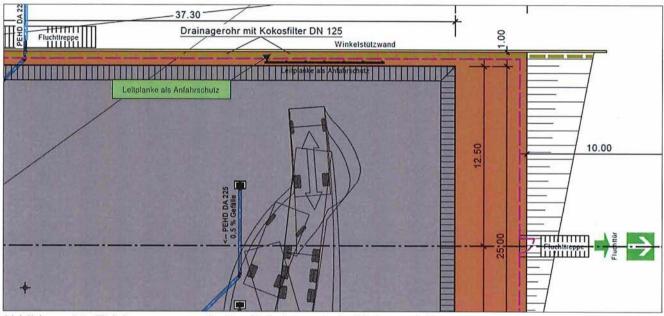


Abbildung 15: Zeichnungsausschnitt mit Anfahrschutz (Anhang 1.1)

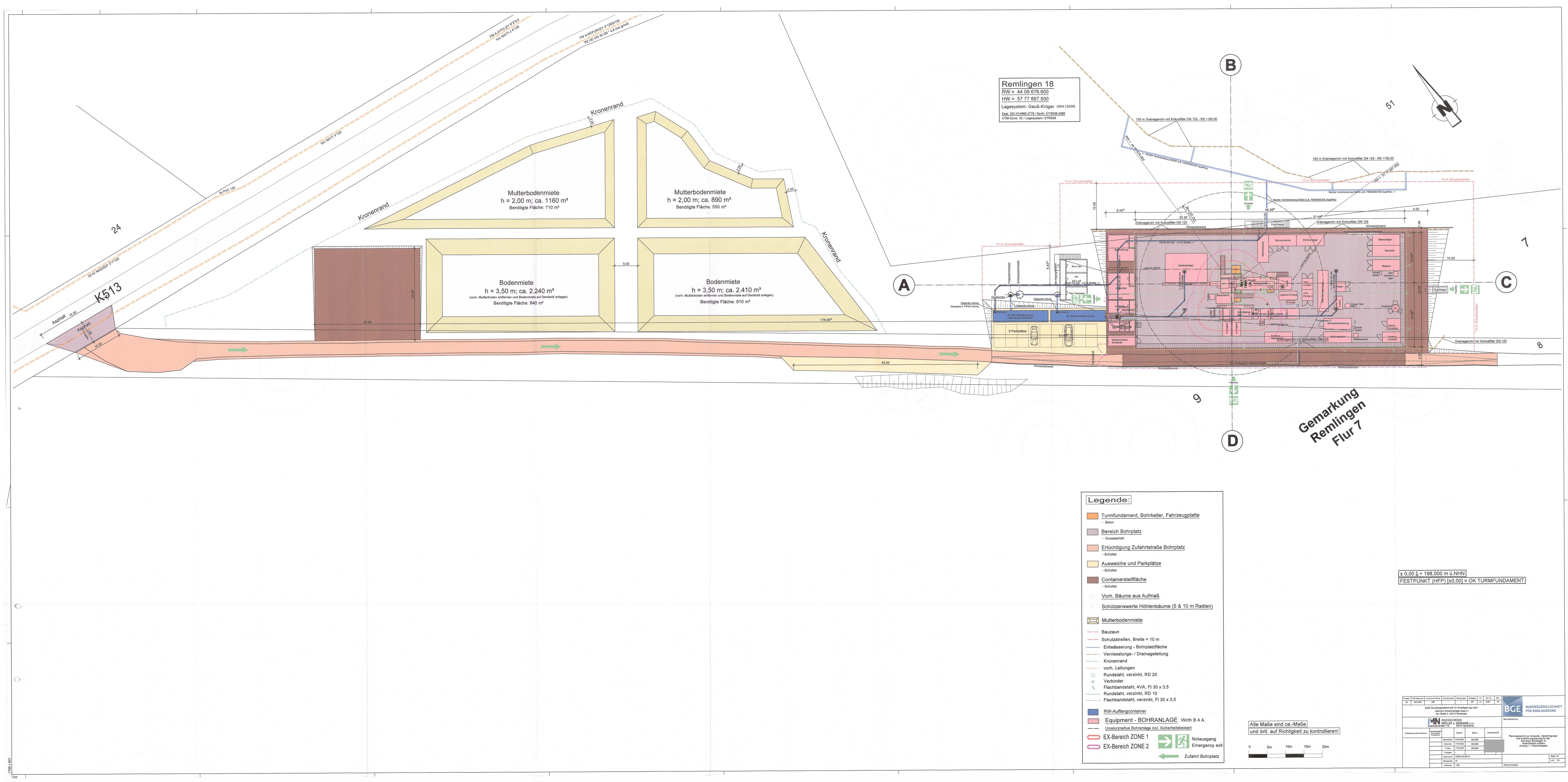
4 Zusammenfassung

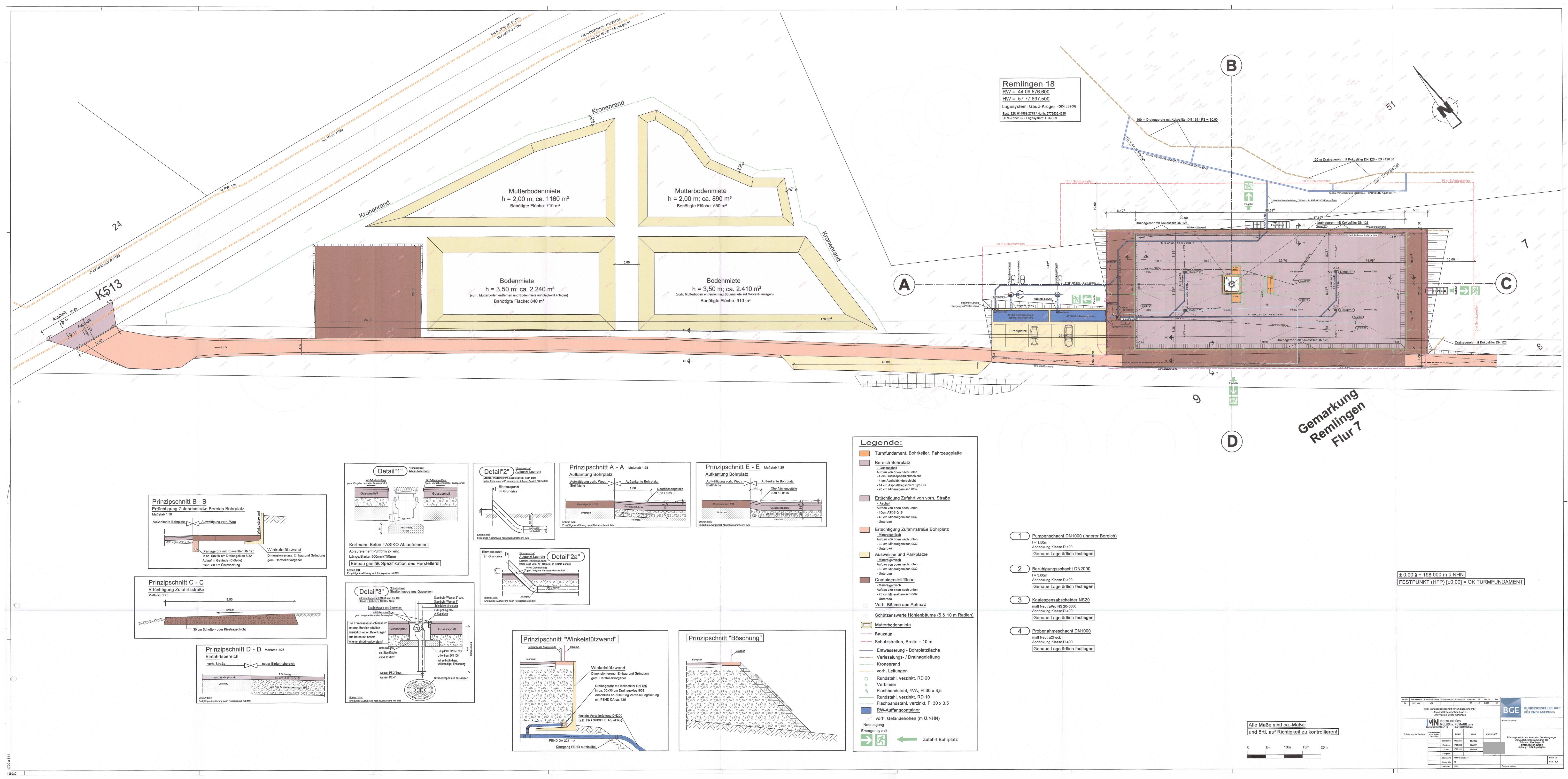
In Zusammenarbeit zwischen Bauherrn, Fachplanern, Sachverständigen und Genehmigungsbehörden sind Unterlagen im Rahmen der Entwurfs- und Genehmigungsplanung zur Herstellung des Bohrplatzes Remlingen 18 einschließlich der Zufahrt erstellt worden, die aufgrund ihres Detaillierungsgrades bereits weit in die Ausführungsplanung hineinreichen.

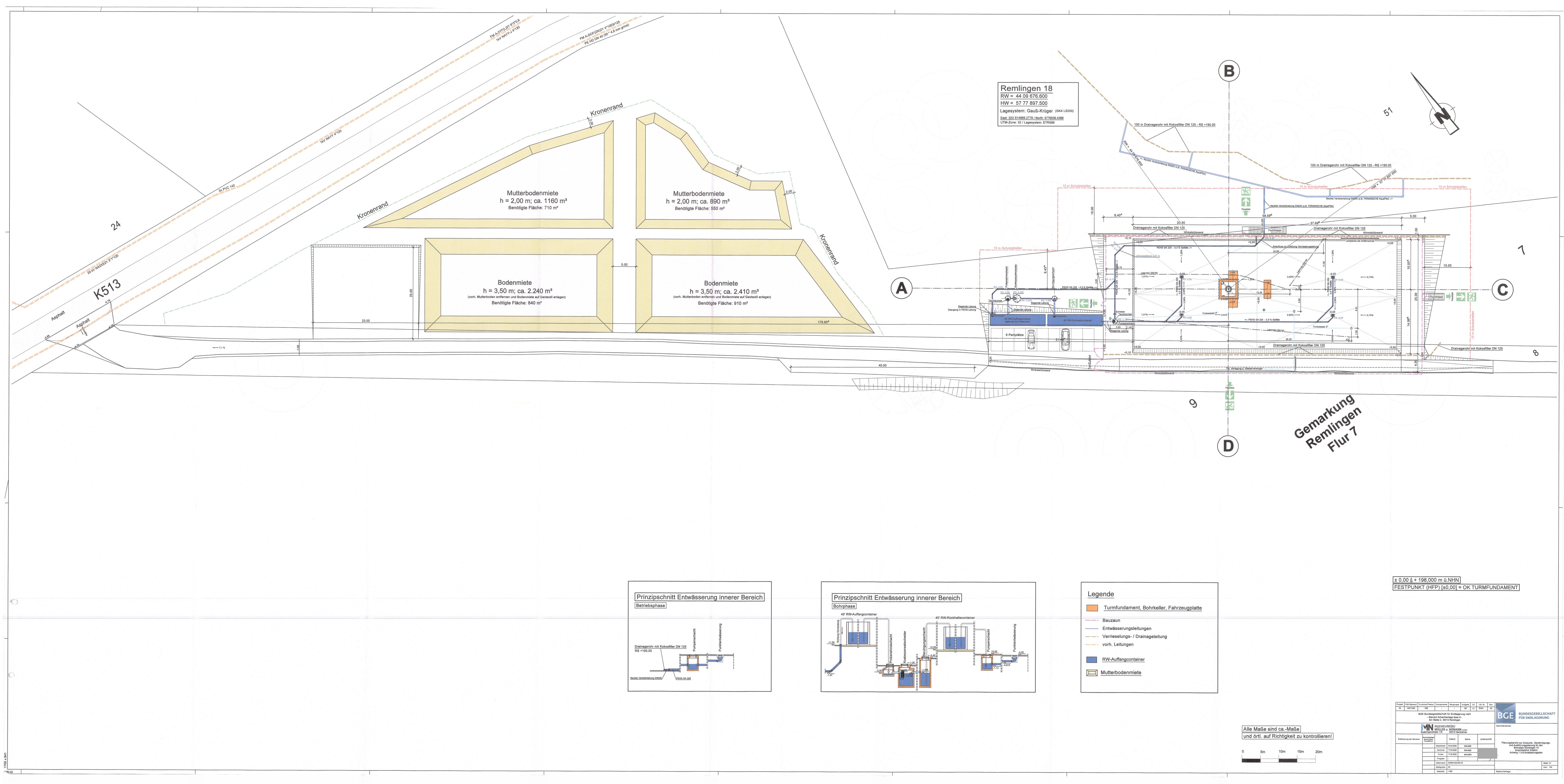
Unter besonderer Berücksichtigung des Umweltschutzes, insbesondere die größtmögliche Reduzierung der in Anspruch genommenen Flächen, u. a. auch, da die Baumaßnahme im FFH-Gebiet "Asse" (EU-Kennzahl 3829-301 des europäischen Schutzgebietes "Natura 2000") liegt, werden mit diesem Bericht einschließlich der beigefügten Anlagen Lösungen für die Umsetzung der Baumaßnahme vorgelegt, die den Eingriff in die Natur minimieren und die Anforderungen an einen Bohrplatz hinsichtlich des Schutzes von Boden, Wasser und Natur, der Arbeitssicherheit, Standsicherheit, Tragfähigkeit sowie der Gebrauchstauglichkeit erfüllen.

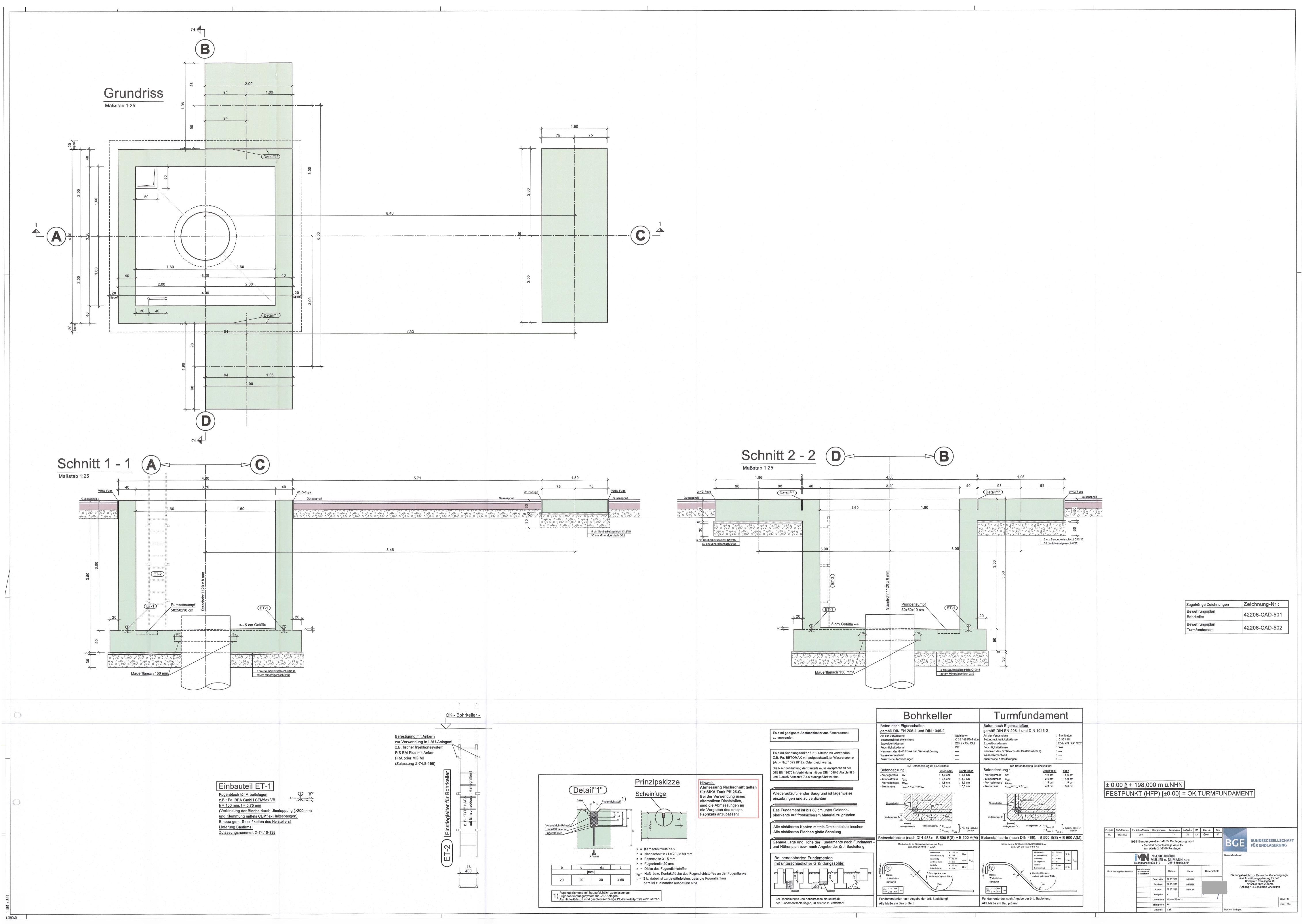
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	LfdNr.	Rev	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	В
9A	35211000	VS5	-	. - .	GE	LA	0001	00	

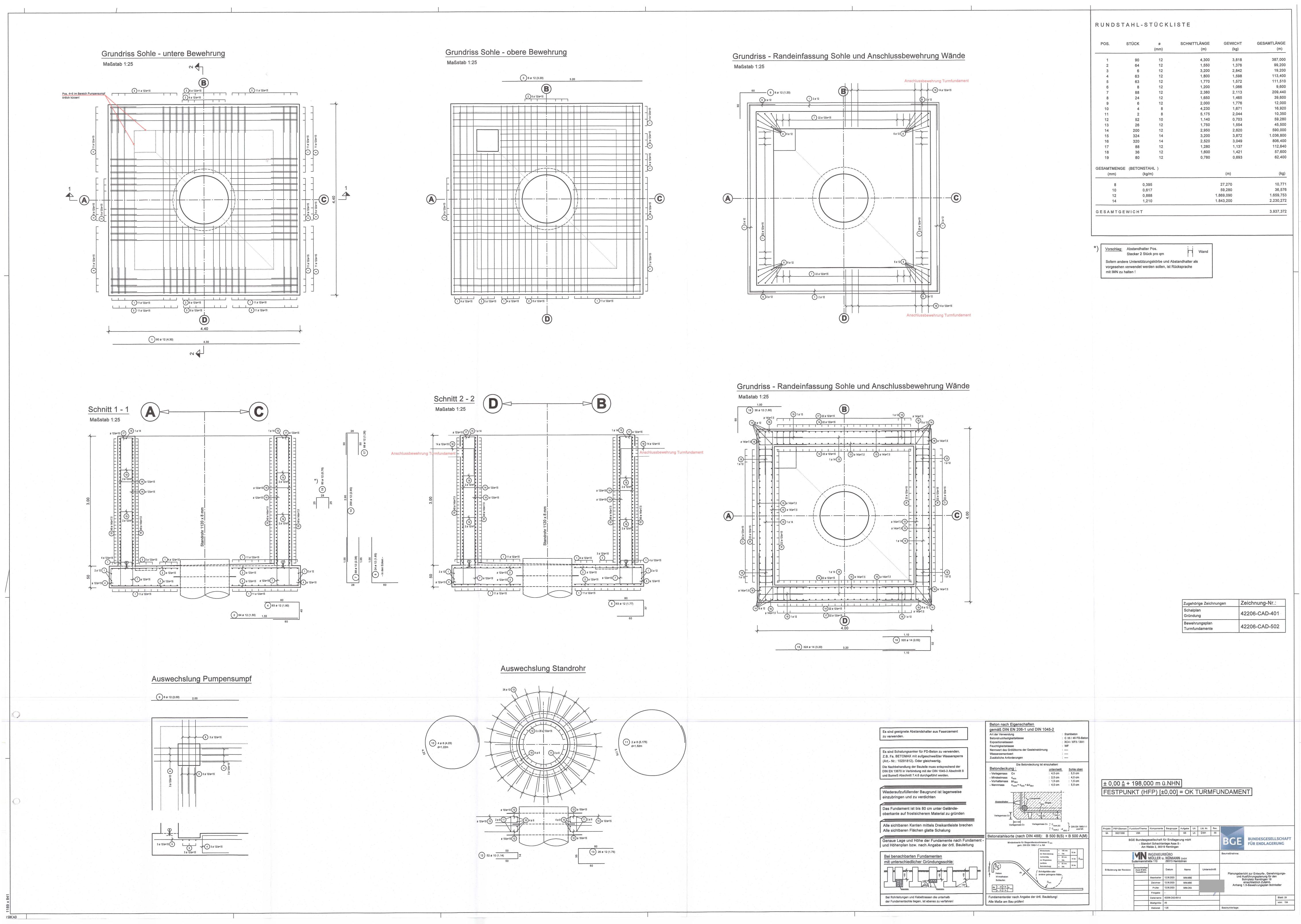
Blatt 24

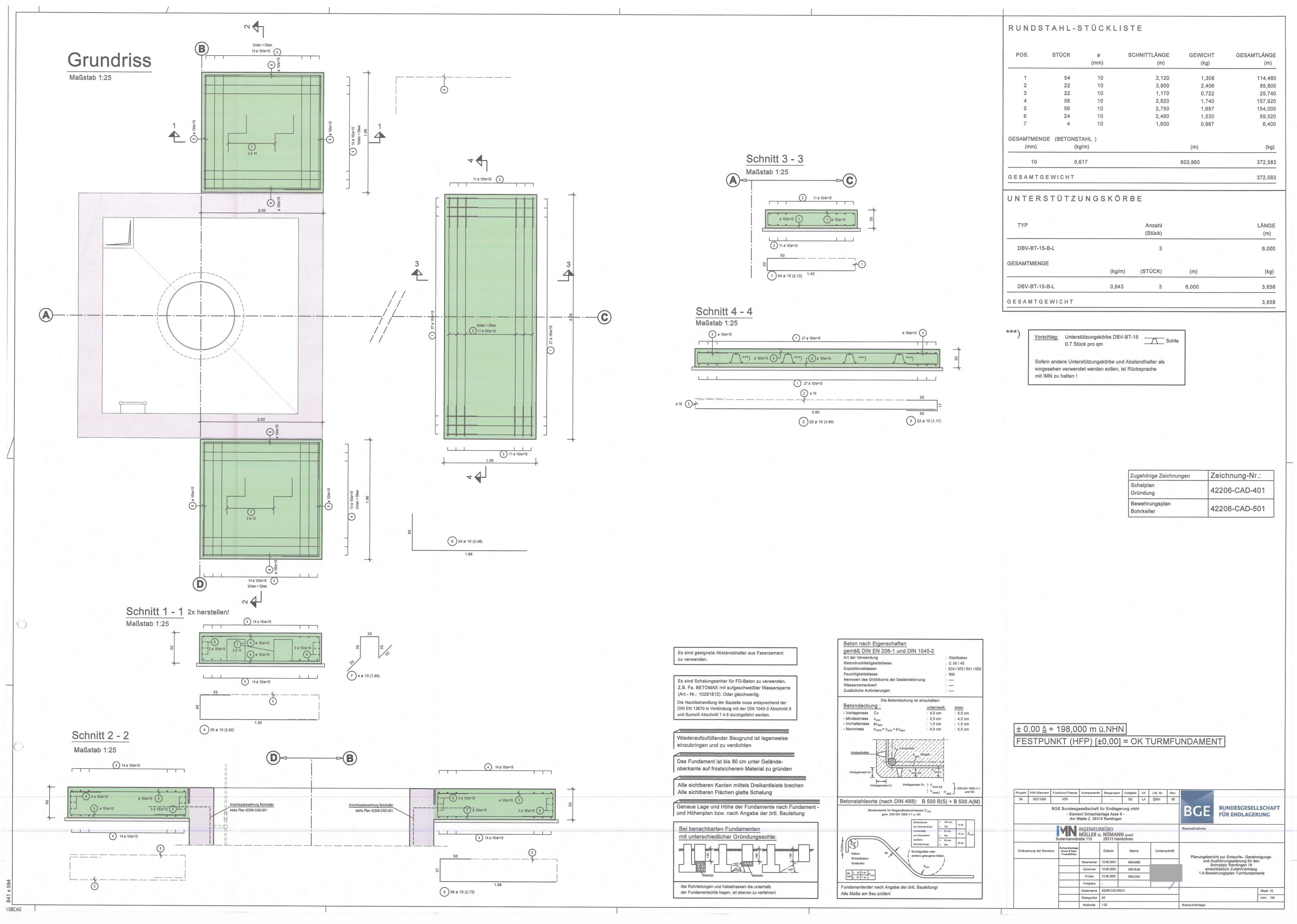

5 Mitgeltende Unterlagen

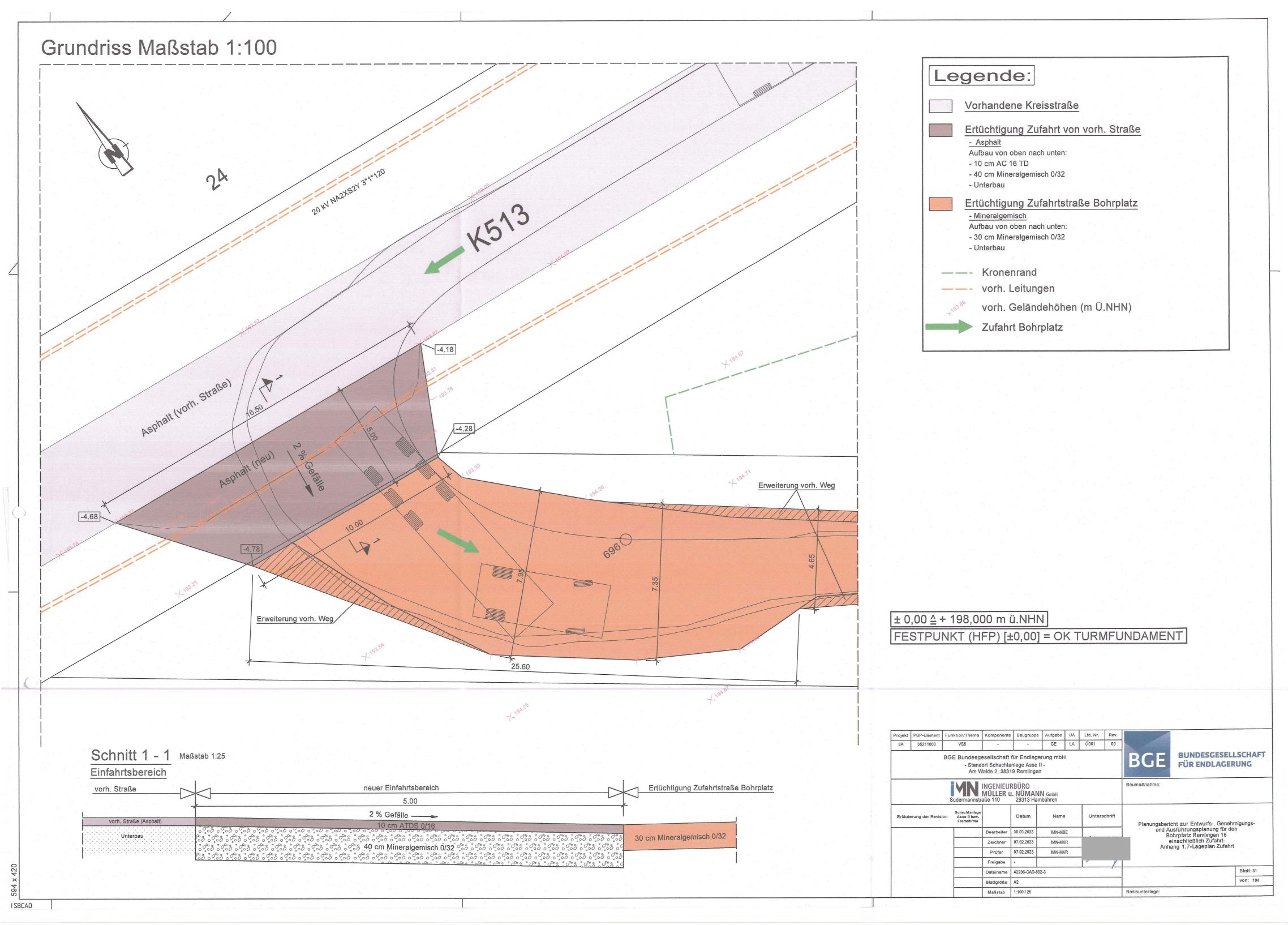

/MU°1./ Baugrunderkundung zur Herrichtung des Bohrplatzes Remlingen 18 und Zuwegung, Gründungsgutachten der Dr. Spang Ingenieurgesellschaft für Bauwesen, Geologie und Umwelttechnik mbH, November 2022 (BGE-Asse-KZL: 9A/45211000/VS5/-/-

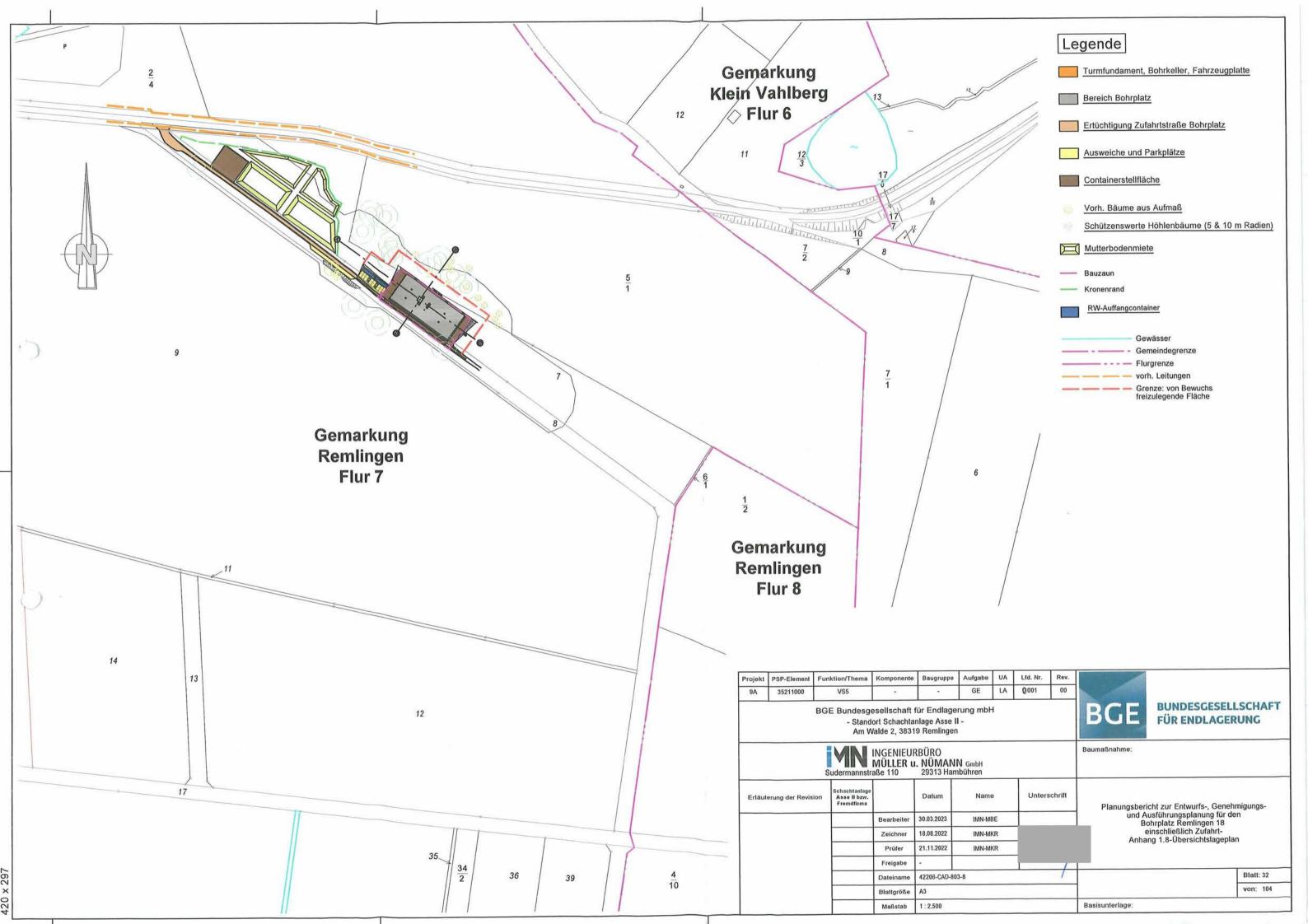

/HB/BN/0001/00, PT-Nummer: PT050030)

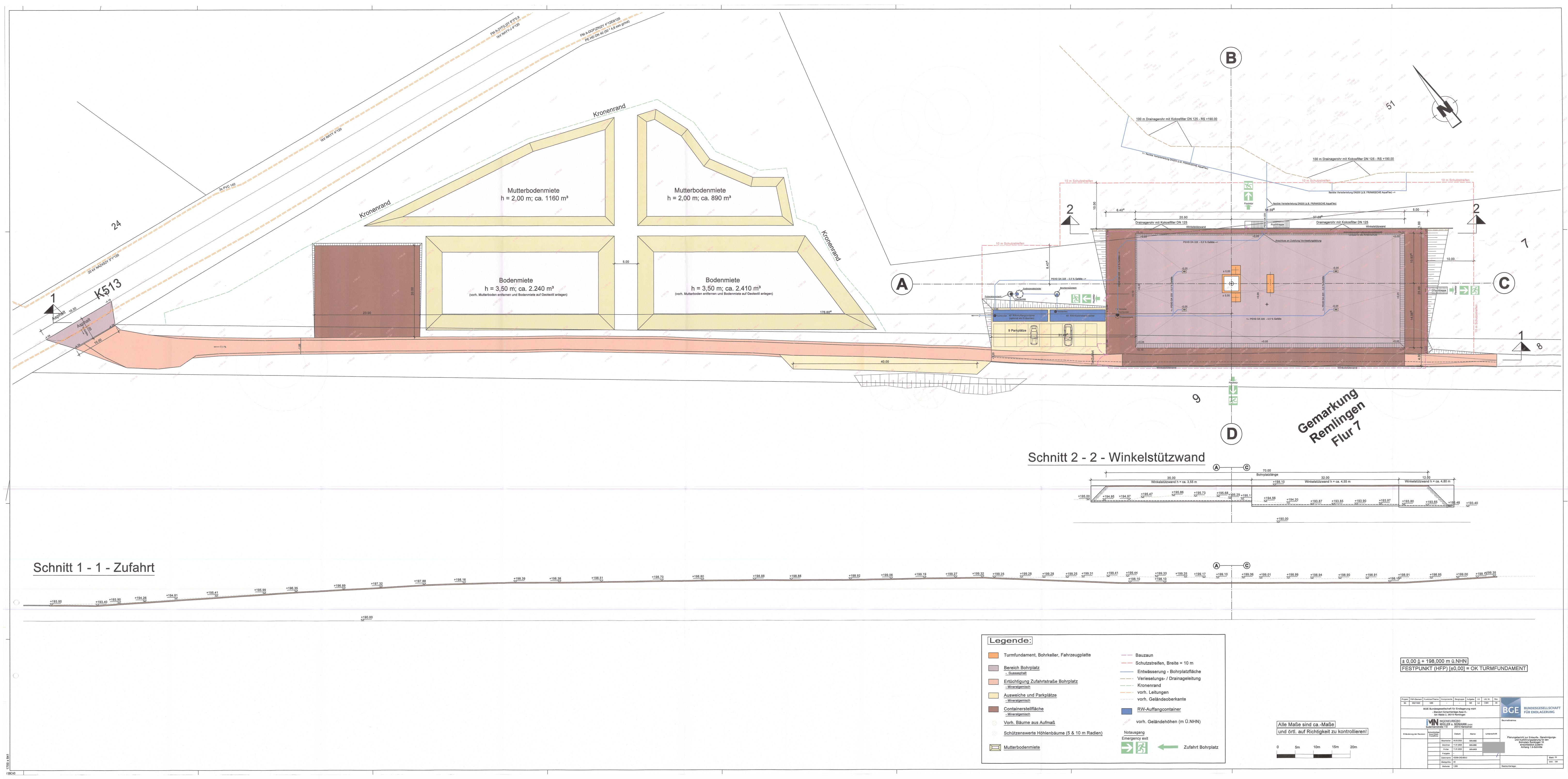

/MU°2./ Entwässerungskonzept Oberflächenentwässerung für den Bohrplatz Remlingen 18, IMN Ingenieurbüro Müller u. Nümann GmbH, März 2023 (BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/RQ/001/00, PT-Nummer: PT050077)

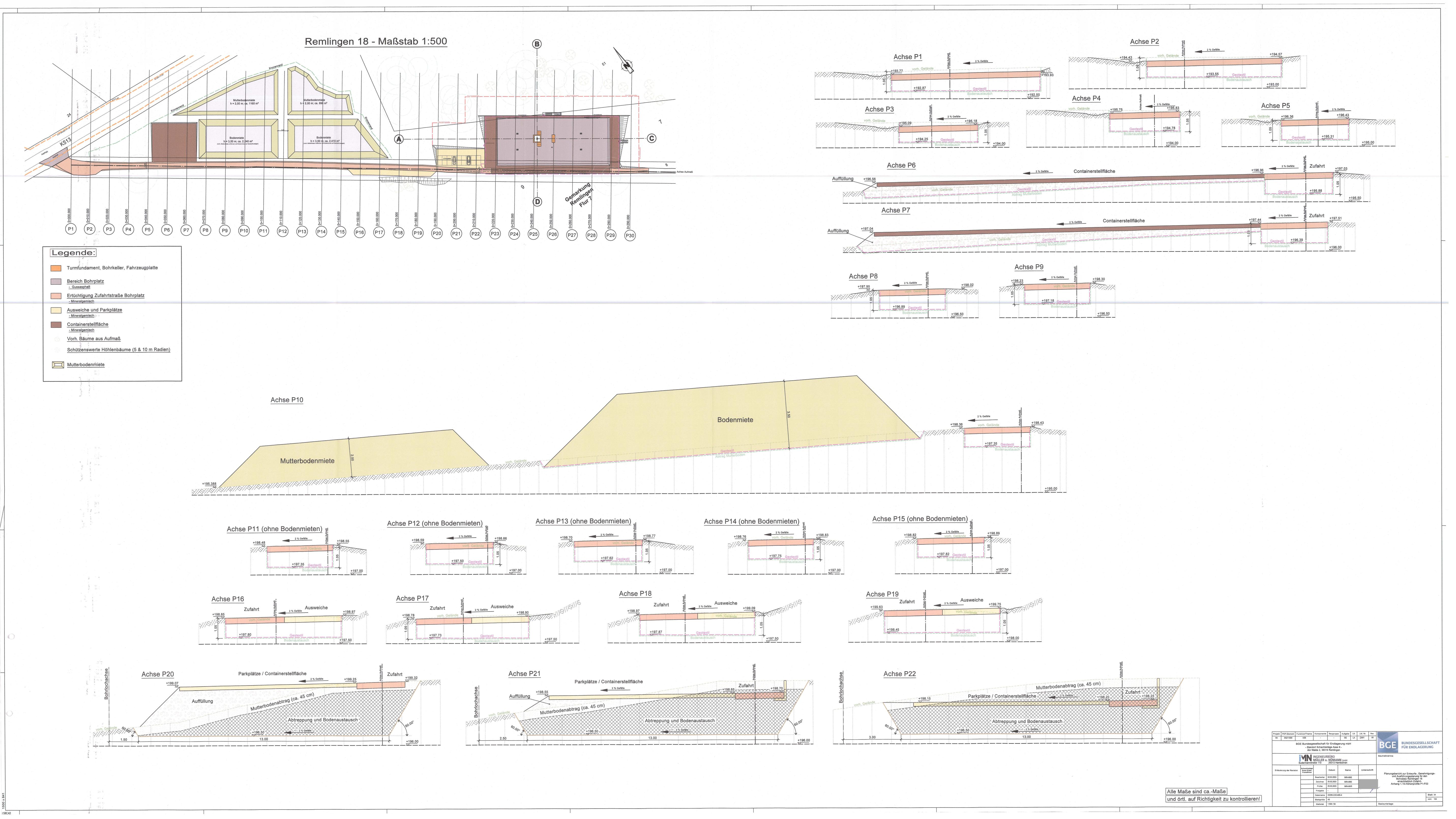

2020-10-26_PM_Textblatt A4 Hochformat_REV02

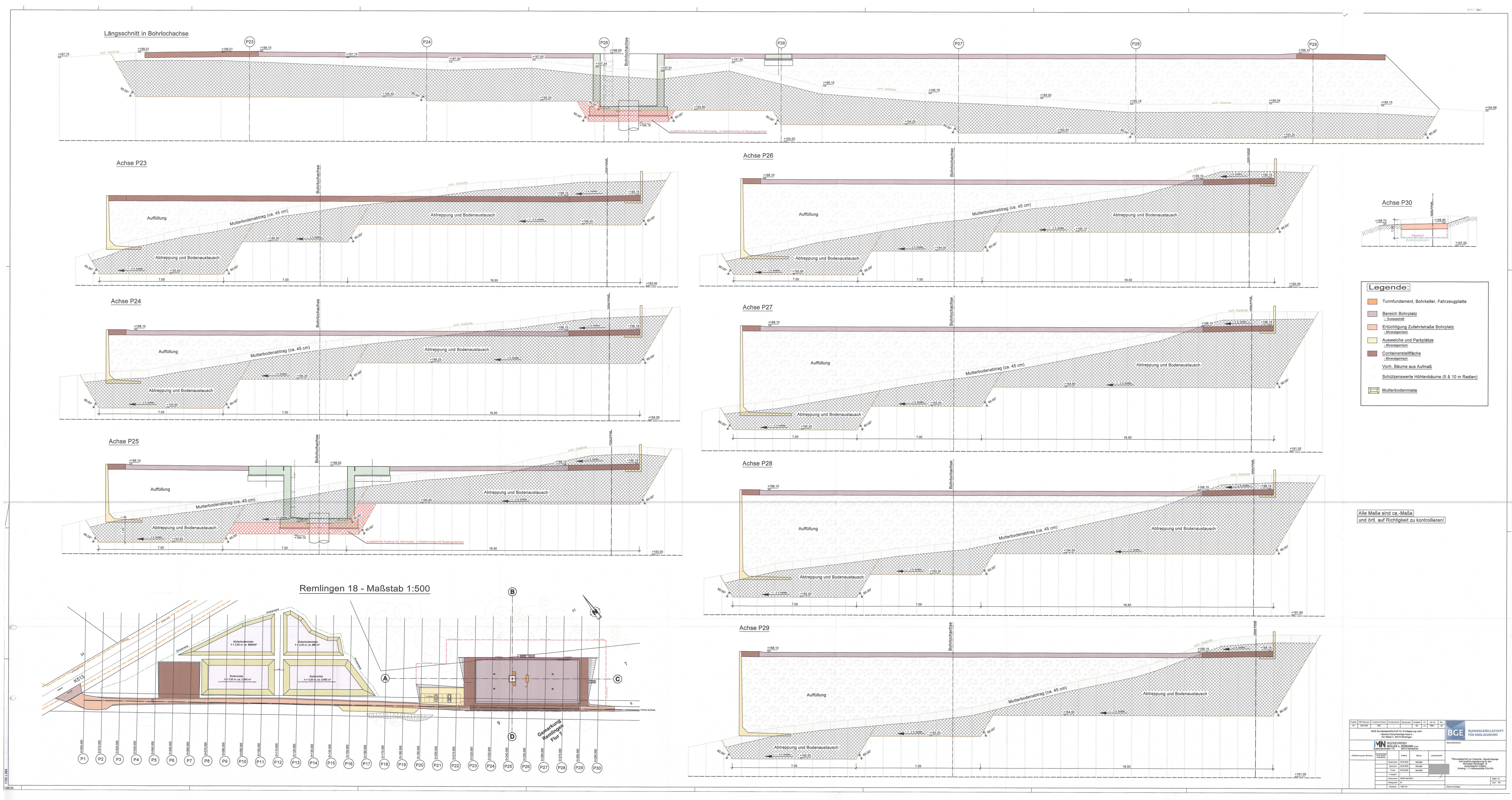












Ingenieure · Architekten · Sachverständige

Sudermannstraße 110 29313 Hambühren

Telefon: +49 (0) 5084 9801-0 Fax +49 (0) 5084 9801-29

E-Mail: post@imn-ing.de Internet: www.imn-ing.de

Amtsgericht Lüneburg
Reg-Nr.: HRB 100955
Steuer-Nr.: 17/201/05399
USt.-IdNr.: DE812712836

Statische Berechnung

für das Bauvorhaben:

Neubau Bohrplatz Remlingen 18 Bohrkeller und Turmfundament für Bohranlage Daldrup & Söhne B4

Bauort:

Gelände des Bohrplatzes Remlingen 18

Bauherr:

Bundesgesellschaft für Endlagerung mbH (BGE)

Asseweg 18

D-38319 Remlingen-Semmenstedt

Dokumentennummer: 42206-CAL-001-0

Aufsteller:

, Dipl.-Ing. (FH)

Geschäftsführer:

Michael Korte Dipl.-Ing. Architekt

Mitglied der Architektenkammer

Geschäftsführer:

Torsten Sander Dipl.-Ing. Beratender Ingenieur

Mitglied der Ingenieurkammer Niedersachsen Bernd Müller Dipl.-Ing.

Sachverständiger für Gebäude und Bewertung von bebauten und unbebauten Grundstücken

atische Berechnung

Hermann Nümann

Dipl.-Ing. Beratender Ingenieur

Mitglied der Ingenieurkammer Niedersachsen Vom LBEG Clausthal-Zellerfeld anerkannter Sachverständiger für Bohr- und Fördergerüste

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 37 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 2

Anmerkung:	Der nachfolgenden statischen	Berechnung liegen die zurzeit gültigen
	technischen Baubestimmungen	zugrunde.
Baustoffe:	Profilstahl:	= :
	Betonstahl:	B500
	Betonfestigkeitsklasse:	C35/45 (Turmfundament) C35/45 FD (Bohrkeller)
	Expositionsklasse:	XC4, XF2, XA1, XD2 (Turmfundament) XC4, XF3, XA1 (Bohrkeller)
	Feuchtigkeitsklasse:	WF (Bohrkeller) WA (Turmfundament)
Grundlagen:	Zulässiger Sohlwiderstand:	siehe Vorbemerkung
	Windlastzone: Geländekategorie: Schneelastzone: Norddeutsche Tiefebene:	- - -

Diese statische Berechnung ist ausschließlich für das oben genannte Objekt erstellt worden. Vervielfältigungen dürfen nur für diesen Betreff angefertigt werden. Jegliche Vervielfältigung, Änderung, Ergänzung oder Weiterleitung, gleich welcher Art der Nutzung für ein anderes, ein ähnliches oder ein gleichartiges Bauvorhaben, sind ohne vorherige ausdrückliche schriftliche Genehmigung des Aufstellers nicht gestattet.

Geschäftsführer:

Michael Korte | Dipl.-Ing. Architekt
Torsten Sander | Dipl.-Ing., Beratender Ingenieur

Bernd Müller | Dipl.-lng. Hermann Nümann | Dipl.-lng., Beratender Ingenieur Dok.-Nr.: 42206-CAL-001-0

Seite 3

INHALTSVERZEICHNIS

Kapitel	Bezeichnung	Seite
	Deckblatt	
	Inhaltsverzeichnis	3
1.	Berechnungsgrundlagen	4
		-
2.	Vorbemerkungen	5
3.	Skizzen	
4.	Turmfundament und Bohrkeller	
4.1	Einwirkungen	
4.1.1	Bohranlage B4	
4.1.2	Bohrkeller	
4.2	EDV-Berechnung	14
	- System- und Lasteingabe	14
	- Ergebnisse - Zusammenfassung	33
	- Knoten - Lagerkräfte	35
	- Sohlspannungen	36
	- Stahlbetonbemessung	39
4.3	Rissbreitennachweis Bohrkeller	50
4.4	Dichtheitsnachweis Bohrkeller	51
	- Sohle	52
	- Wände	55
4.5	Bewehrungsskizzen	58
	- Turmfundament	58
	- Bohrkeller	59
5.	Standsicherheit Fundament für P7 und P8	60
	(Lagesicherheit und klaffende Fuge)	
5.1	Einwirkungen	60
5.2	EDV-Berechnung	60
	Datum und Unterschrift	63
		ľ
Anlage	Anlage zur statischen Berechnung	
A1	Loadplan [3.1]	
A2	Auszüge [3.2]	

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 39 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 4

1. Berechnungsgrundlagen

[1] Einschlägige Normen und Richtlinien, insbesondere:

	DIN EN 1990 EC 0 / NA Grundlagen der Tragwerksplanung
\boxtimes	DIN EN 1991 EC 1 / NA Einwirkungen auf Tragwerke
\bowtie	DIN EN 1992 EC 2 / NA Stahlbetonbauten
	DIN EN 1993 EC 3 / NA Stahlbauten
	DIN EN 1994 EC 4 / NA Stahlbetonverbundbauten
	DIN EN 1995 EC 5 / NA Holzbauten
	DIN EN 1996 EC 6 / NA Mauerwerksbauten
\boxtimes	DIN EN 1997 EC 7 / NA Geotechnik
\boxtimes	Deutscher Ausschuss für Stahlbeton: DAfStb-Richtlinie "Betonbau beim Umgang mit
	wassergefährdenden Stoffen", (nachfolgend Wassergefährdende-Stoffe-Richtlinie
	genannt)
	Deutscher Ausschuss für Stahlbeton: DAfStb-Richtlinie "Wasserundurchlässige Bauwerke
	aus Beton (WU-Richtlinie)",

[2] EDV - Programme:

Name:

RSTAB (Version 8.xx) "3D- Stabwerk"

mit verschiedenen Bemessungsprogrammen

Herausgeber:

Ing.- Software Dlubal GmbH

D - 93464 Tiefenbach

Name:

RFEM (Version 5.xx) "3D FEM-Analyse-Programm"

mit verschiedenen Bemessungsprogrammen

Herausgeber:

Ing.- Software Dlubal GmbH

D - 93464 Tiefenbach

Name:

Nemetschek Frilo, diverse Bemessungsmodule

Herausgeber: Nemets

Nemetschek Frilo GmbH D – 70469 Stuttgart

Name:

pcae - Programmsystem, diverse Bemessungsmodule

Herausgeber:

pcae GmbH

D - 30167 Hannover

Sollte sich vor Ort herausstellen, dass eine in dieser Statik getroffene Annahme nicht zutrifft oder sollten sich die tatsächlichen Gegebenheiten anders darstellen als in der statischen Berechnung berücksichtigt, so ist Rücksprache mit dem Aufsteller dieser Berechnung zu halten.

Geschäftsführer:

Michael Korte | Dipl.-Ing. Architekt
Torsten Sander | Dipl.-Ing., Beratender Ingenieur

Bernd Müller | Dipl.-Ing. Hermann Nümann | Dipl.-Ing., Beratender Ingenieur

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 40 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 5

[3] Bohranlage Daldrup B4

[3.1] Lastplan

Planinhalt:

Lastplan - Bohranlage B4-A60 9-14

aufgestellt:

pollmann.ingenieure GmbH

Ingenieurbüro für Tragwerksplanung

An der Hansalinie 48-50

59387 Ascheberg

Projektnr.:

2019-075

Blattnr.:

TWP-L01, Index a vom 20.03.2020

geprüft:

AHA - Prüfung und Abnahme GmbH

Dipl.-Ing.

Sachverständiger für Tiefbohrungen nach BVOT

Datum Prüfung:

14.05.2020

Auftragsnummer:

S1363-20

[3.2] Standsicherheitsnachweis (Auszüge: Deckblatt und Seite 10)

Projekt:

2019-075 - B4A-60 9-14

aufgestellt:

pollmann.ingenieure GmbH

Ingenieurbüro für Tragwerksplanung

An der Hansalinie 48-50

59387 Ascheberg am 20.03.2020

Projektnr.:

2019-075

geprüft:

AHA - Prüfung und Abnahme GmbH

Dipl.-Ing.

Sachverständiger für Tiefbohrungen nach BVOT

Datum Prüfung:

14.05.2020

Auftragsnummer:

S1363-20

[4] Baugrunderkundung

Titel:

Baugrunderkundung zur Herrichtung des Bohrplatzes Remlingen 18

und Zuwegung

aufgestellt:

Dr. Spang - Ingenieurgesellschaft für Bauwesen,

Geolgie und Umwelttechnik mbH

Projekt-Nr.:

P 42.8323

Revision:

0 vom 17.01.2023

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 41 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 6

2. Vorbemerkungen

Die Bundesgesellschaft für Endlagerung mbH (BGE) plant den Neubau des Bohrplatzes Remlingen 18 ca. 1,5 km nördlich von Remlingen-Semmenstedt. Für die Bohrung soll die Bohranlage Daldrup & Söhne B4 zum Einsatz kommen.

Die statische Berechnung beinhaltet die Nachweise für eine neue Bohranlagengründung, bestehend aus Turmfundament und Bohrkeller.

Baugrund

Eine Baugrunderkundung [4] liegen vor. In Anlehnung an [4] wird von den folgenden Bodenkennwerten ausgegangen:

Steifemodul Auffüllung:

E_s ≈ 50 MN/m² (Annahme)

E-Modul Festgestein:

 $E_k = 250 - 4000 \text{ MN/m}^2$

Bettungsmodul Turmfundament: ks = 30.000 kN/m² (gewählt E_s 50 MN/m³)

Bettungsmodul Bohrkeller:

ks = 30.000 kN/m² bzw. 2.500.000 kN/m² (gewählt)

Sohlwiderstand:

 $\sigma_{Rd.} = 200 \text{ kN/m}^2 \text{ (sichere Seite)}$

Um die Schwankungen der Bodenverhältnisse unter dem Bohrkeller zu berücksichtigen wird das Gesamtsystem mit zwei verschiedenen Bettungen untersucht:

System 1 (weich / steif):

Bettung Turmfundament ks = 30000 kN/m²

Bettung Bohrkeller ks = 2.500.000 MN/m²

System 2 (weich / weich):

Bettung Turmfundament ks = 30.000 kN/m2

Bettung Bohrkeller ks = 30.0000 MN/m²

Dichtheitsnachweis

Die Dichtigkeit des Bohrkellers wird in der statischen Berechnung nach der DAfStb-Richtlinie - Betonbau beim Umgang mit wassergefährdenden Stoffen - für eine einmalige Beaufschlagung, unter Ansatz einer Beaufschlagungsdauer von 72 Stunden, bemessen.

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 42 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 7

Baustoffe

Turmfundament

Beton: C35/45 Betonstahl: B 500

Expositionsklassen XC4, XD2, XF2, XA1

Feuchtigkeitsklasse: WA

Betondeckung: $C_{\text{nom, oben}} = 5,5 \text{ cm}$ $C_{\text{nom, unten}} = 4,0 \text{ cm}$

Bohrkeller

Beton: C35/45 FD Betonstahl: B 500

Expositionsklassen XC4, XF3, XA1

Feuchtigkeitsklasse: WF

Betondeckung: $C_{\text{nom, innen}} = 4,0 \text{ cm}$ $C_{\text{nom, außen}} = 4,0 \text{ cm}$

Einwirkungkombinationen

Nachweis GZT - Grenzzustand der Tragfähigkeit

Einwirkungskombination

$$\gamma_g * G_k + \sum \gamma_Q * Q_k$$

mit
$$y_g = 1,35$$
; $y_Q = 1,35$

Nachweis GZG - Grenzzustand der Gebrauchstauglichkeit

Einwirkungskombination

Der Rissbreitennachweis unter Last wird unter quasi-ständiger Kombination geführt.

$$G_k + \sum \psi_2 * Q_k$$

mit $\psi_2 = 0.8$ für Nutzlast

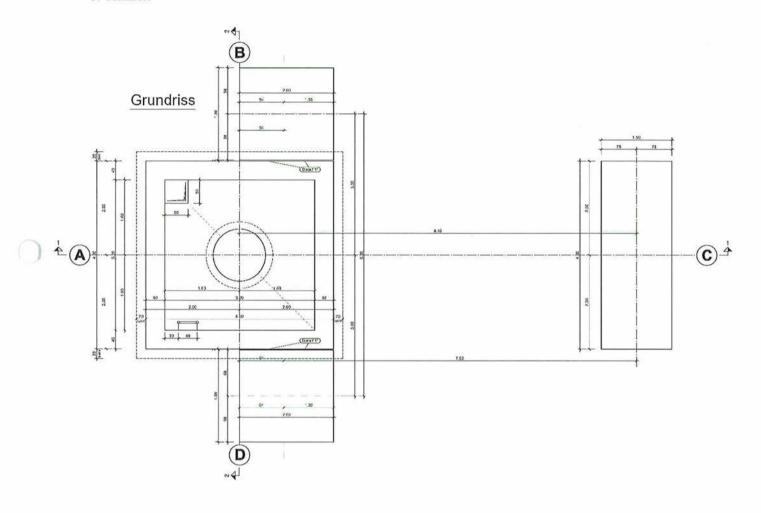
Rechenwert der Rissbreite: wk = 0,1 mm (Bohrkeller)

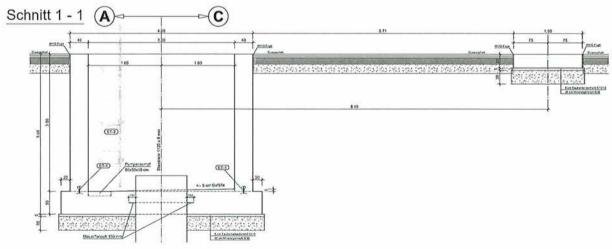
wk = 0,3 mm (Turmfundament)

Nachweis Dichtheit

Einwirkungskombination

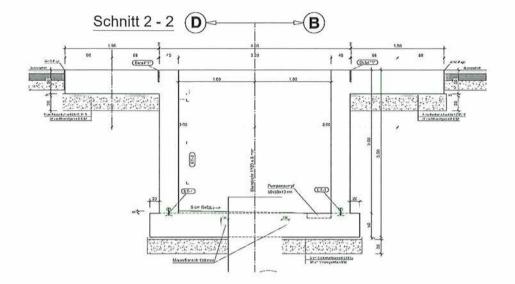
$$G_k + Q_k + \sum \psi_0 * Q_k$$


mit $\psi_0 = 0.8$ für Nutzlast


Dok.-Nr.: 42206-CAL-001-0

Seite 8

3. Skizzen



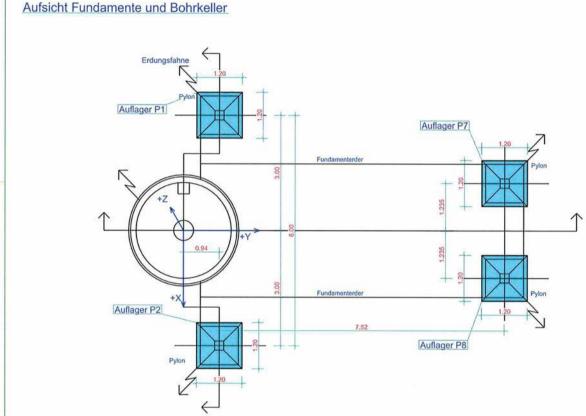
Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 44 von 104

Dok.-Nr.: 42206-CAL-001-0

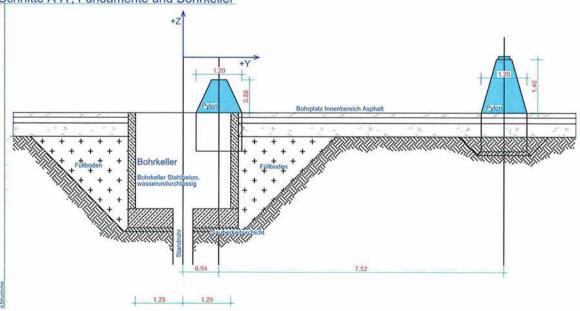
Seite 9

Dok.-Nr.: 42206-CAL-001-0

Seite 10



4. Turmfundament und Bohrkeller


4.1 Einwirkungen

4.1.1 Bohranlage B4

- Auszüge aus [3.1]

Geschäftsführer:

Michael Korte | Dipl.-Ing. Architekt
Torsten Sander | Dipl.-Ing., Beratender Ingenieur

Bernd Müller | Dipl.-Ing. Hermann Nümann | Dipl.-Ing., Beratender Ingenieur

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 46 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 11

Bezeichnung	maßgebend	Rx [kN]	Ry [kN]	Rz [kN]	Rxx [kNm]	Ryy [kNm]	Rzz [kNm]	Lastfall-Kombination
P1	max Rx	38,77	1,56	104,45	0,4	0	0	Lastfallkombination-11
P1	min Rx	-38,69	8,48	33,6	0,45	0	0	Lastfallkombination-10
P1	max Ry	0	12,64	89,87	0,02	0	0	Lastfallkombination-13
P1	min Ry	0,01	-13,35	565,23	-1,4	0	0	Lastfallkombination-27
P1	max Rz	8,14	-13,06	579,62	-1,48	0	0	Lastfallkombination-26
P1	min Rz	-38,69	8,48	33,6	0,45	0	0	Lastfallkombination-10
P2	max Rx	0	12,63	89,86	0,02	0	0	Lastfallkombination-13
P2	min Rx	0	-13,38	565,09	-1,39	0	0	Lastfallkombination-27
P2	max Ry	0	12,63	89,86	0,02	0	0	Lastfallkombination-13
P2	min Ry	0	-13,38	565,09	-1,39	0	0	Lastfallkombination-27
P2	max Rz	0	-12,29	575,44	-1,47	0	0	Lastfallkombination-25
P2	min Rz	0	8,51	33,47	0,45	0	0	Lastfallkombination-11
P7	max Rx	23,56	-9	118,88	0	0	0,01	Lastfallkombination-11
P7	min Rx	-8,06	-1,06	14,1	0	0	-0,96	Lastfallkombination-10
P7	max Ry	5,06	14,53	44,64	0	0	1,38	Lastfallkombination-28
P7	min Ry	10,34	-17,48	87,36	0	0	-1,55	Lastfallkombination-12
P7	max Rz	16,81	-2,83	143,02	0	0	-0,25	Lastfallkombination-70
P7	min Rz	-8,06	-1,06	14,1	0	0	-0,96	Lastfallkombination-10
P8	max Rx	8,07	-1,04	13,9	0	0	0,96	Lastfallkombination-11
P8	min Rx	-23,55	-8,99	118,72	0	0	0	Lastfallkombination-10
P8	max Ry	-5,07	14,54	44,24	0	0	-1,38	Lastfallkombination-28
P8	min Ry	-10,35	-17,48	87,36	0	0	1,55	Lastfallkombination-12
P8	max Rz	-16,81	-2,83	143,02	0	0	0,25	Lastfallkombination-70
P8	min Rz	8,07	-1,04	13,9	0	0	0,96	Lastfallkombination-11

Notiz 1: Das Eigengewicht der Pylone ist hierin nicht enthalten. Diese sind der obigen Tabelle der charakterischen Auflagerreaktionen zu notice 1. Das Sand der Vigens der Pylone ist mem hierte einstellen. Dies sind der Volgen Palaste ist dan Auflagensaktelle einhen Notiz 2: Die Werte dieser Tabelle sind "design Lastert". Die Sicherheits- und Kombonationsbeiwerte sind der Statik auf Seite 10 zu entnehmen.

Notiz 3: Der Lastangriffspunkt befindet sich an Oberkante (OK) Pylon.

Name des Auflagers	Lastfälle
P1	LF11 Konstruktionsgewicht
	zzgl. Pylon
	LF12 Zusatzlasten
	LF13 Ergänzungslasten
	LF22 Personenlasten
	LF31 Regel 60t
	LF32 Tisch 60t
	LF33 Ausnahme 72t
	LF34 Tisch 72t
	LF41 Wind E +X
	LF42 Wind E -X
	LF43 Wind E +Y
	LF44 Wind E -Y
	LF51 Wind B +X
	LF52 Wind B -X
	LF53 Wind B +Y
	LF54 Wind B -Y
	LF61 Sturm +X
	LF62 Sturm -X
	LF63 Sturm +Y
	LF64 Sturm -Y

Siehe Anlage!

- Auflager P1 und P2

Für die Berechnung wir auf der sicheren Seite eine Vertikallast von Rz,d = 600 kN (max. gem. Rz,d [3.1] = 579,62 kN) angesetzt. Die Horizontallast wird o.w. Nachweis über die Bohrkeller abgeleitet. Die beiden Fundamente werden mit Anschlussbewehrung am Bohrkeller angebunden.

Geschäftsführer:

Michael Korte | Dipl.-Ing. Architekt
Torsten Sander | Dipl.-Ing., Beratender Ingenieur

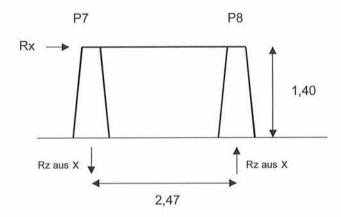
Bernd Müller

Bernd Müller | Dipl.-Ing. Hermann Nümann | Dipl.-Ing., Beratender Ingenieur

Dok.-Nr.: 42206-CAL-001-0

Seite 12

- Auflager P7 und P8


Zusammenstellung der maßgebenden Lasten (sortiert nach Lk's)

		Rx [kN]	Ry [kN]	Rz [kN]
Eigengewicht Pylon	P7	-	-	20,83
	P8	-		20,83
Lastfallkombination-10	P7	-8,06	-1,06	14,1
1,0 x LF 11 + 1,0 x LF 12 + 1,0 x LF13 + 1,35 x LF61	P8	-23,55	-8,99	118,72
	Summe x / y	-31,61	-10,05	
Lastfallkombination-11	P7	23,56	-9,00	118,88
1,0 x LF 11 + 1,0 x LF 12 + 1,0 x LF13 + 1,35 x LF62	P8	8,07	-1,04	13,9
	Summe x / y	31,63	-10,04	
Lastfallkombination-12	P7	10,34	-17,48	87,36
1,0 x LF 11 + 1,0 x LF 12 + 1,0 x LF13 + 1,35 x LF63	P8	-10,35	-17,48	87,36
	Summe x / y	-0,01	-34,96	
Lastfallkombination-28	P7	5,06	14,53	44,64
1,35 x LF 11 + 1,35 x LF 12 + 1,35 x LF13 + 1,15 x LF33 +1,0 x LF54	P8	-5,07	14,54	44,24
	Summe x / y	-0,01	29,07	
Lastfallkombination-70	P7	16,81	-2,83	143,02
1,35 x LF 11 + 1,35 x LF 12 + 1,35 x LF13 + 1,35 x LF22	P8	-16,81	-2,83	143,02
had delta for transfer produced by the company of t	Summe x / y	0	-5,66	

Tragsicherheit

Die Nachweise erfolgen für die maßgebenden Lastfallkombinationen 10 / 11 und 70.

Da sich der Lastangriffspunkt an der Ok der Pylone befindet wird der zusätzliche V-Lastanteil (Rz aus x) aus Rx wie folgt berücksichtigt:

LK 10/11:

Rz aus x = 31,61 kN * 1,4 m / 2,47 m = \pm 17,92 kN

LK 70:

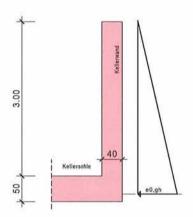
Rz aus x = 5,66 kN * $1,4/2,47 = \pm 3,2$ KN

Der V-Lastanteil (ca. 2,0 kN) aus Ry ist gering und wird nachfolgend nicht berücksichtigt.

Dok.-Nr.: 42206-CAL-001-0

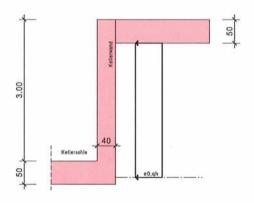
Seite 13

Standsicherheit


Der Standsicherheitsnachweis (siehe Ziffer 5) erfolgt für die zuvor aufgelisteten LK's 10/11, 12, 28 und 70.

Die Höhe der Pylone wird durch ein zus. Moment My für die H-Last Rx (31,6 kN * 1,4 m = 44,24 kNm) in der LK 10 / 11 berücksichtigt.

Für die LK 28 (Ausnahmelast + Wind y) wird, auf der sicheren Seite, nur eine Last Rz von 20 kN berücksichtigt. Die entlastende Komponente aus der H-Last wird hierdurch abgedeckt.


4.1.2 Bohrkeller

- Erddruck

 $E_{0, gh} = 20 \text{ kN/m}^3 * 0.5 * 3.25 \text{ m} = 32.5 \text{ kN/m}^2$

- Auflast B4

σ mittel ≈ 135 kN/m² (127,92 siehe Seite 36)

Unter Berücksichtigung einer Lastausbreitung (Faktor 0,75) unter den Einzelfundament wir für die Kellerwand eine Flächenlast angesetzt:

=> e0, qh = 135 kN/m² * 0,5 * 0,75 = 50 kN/m²

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 49 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Modell: 1.1

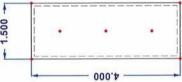
Datum:

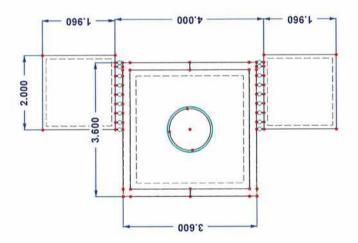
Seite:

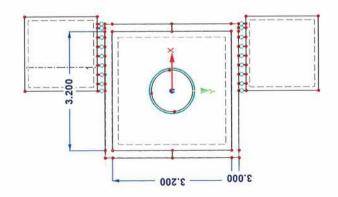
15.06.2023

14

4.2 EDV-BERECHNUNG


Projekt: 42206_BGE Remlingen 18


- oben: Platte für LP 7 und 8


- mitte: System weich / weich

- unten: System weich / steif

■ MODELL

In Z-Richtung

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 50 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

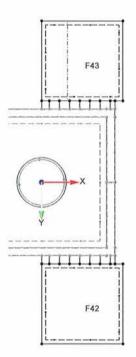
Sudermannstraße 110, 29313 HAMBÜHREN

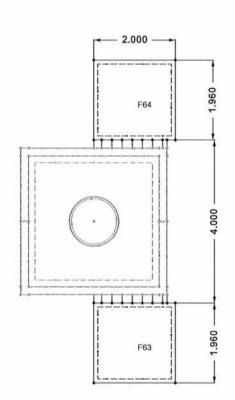
Tel: 05084/9801-0 - Fax: 05084/9801-29

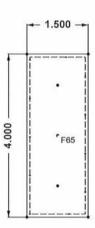
Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:


Seite:


15.06.2023


15

■ MODELL TURMFUNDAMENT

Flächen-Nummerierung Stabnummerierung Lagernummerierung In Z-Richtung

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 51 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

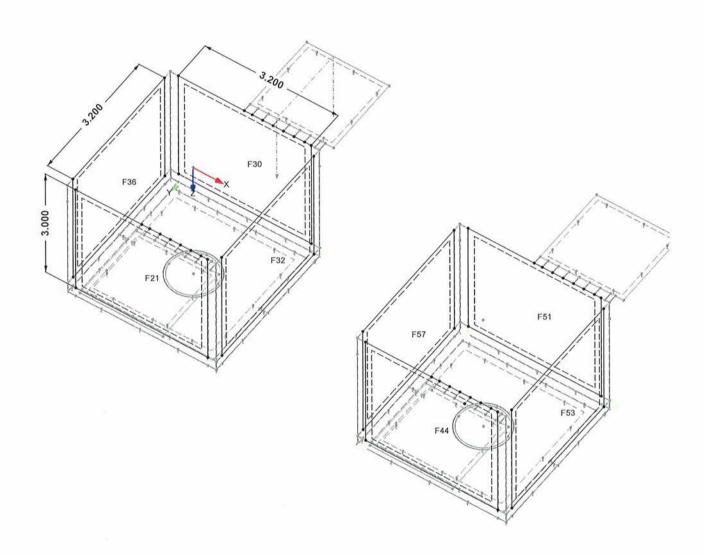
Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Modell: 1.1

Datum: 15,06.2023

Seite:


MODELL WÄNDE

Projekt: 42206_BGE Remlingen 18

Flächen-Nummerierung Stabnummerierung Lagernummerierung

Isometrie

16

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 52 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

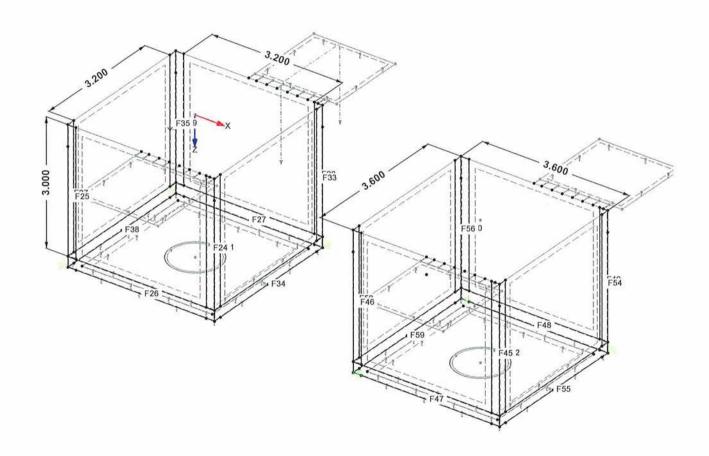
Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:


Seite:

15,06,2023

17

MODELL WÄNDE

Flächen-Nummerierung Stabnummerierung

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 53 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

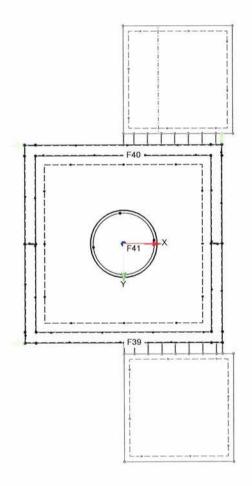
Tel: 05084/9801-0 - Fax: 05084/9801-29

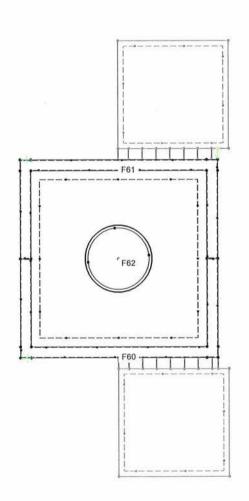
Modell: 1.1

Datum:

Seite:

15.06.2023


18


■ MODELL SOHLE

Projekt: 42206_BGE Remlingen 18

Flächen-Nummerierung Stabnummerierung

In Z-Richtung

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 54 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

19

MODELL

MN

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

KNOTEN Knoten Bezugs-Koordinaten-Knotenkoordinaten Nr Knotentyp Knoten System X [m] Z [m] Kommentar Y [m] 0.000 Standard Kartesisch 0.000 0.000 73 78 79 82 1.800 Standard Kartesisch 1.800 Standard Kartesisch 1 800 -1.800 0.000 0.000 1.800 Kartesisch -1.800 Standard -1.80083 84 85 96 97 98 Standard Kartesisch 1 800 -1 600 0.000 -1.600 1.600 0.000 Standard Kartesisch 1.800 Standard Kartesisch Kartesisch -1 800 1 600 0.000 1.800 0.000 Kartesisch Standard -1.600 99 Standard Kartesisch 1 600 1.800 0.000 100 -1.800 0.000 0.000 Standard Kartesisch -1.800 102 103 104 105 106 107 Standard Kartesisch 1 800 1 800 3.000 1.800 -1.800 1.800 3.000 Standard Kartesisch -1.800 Standard Kartesisch -1 800 -1 800 3.000 -1.600 -1.600 3.000 3.000 Standard Kartesisch -1.800108 Standard Kartesisch Kartesisch 1.800 1 600 3.000 109 110 111 3.000 1.800 1.600 1.800 Standard Kartesisch -1.600Standard Kartesisch -1 600 -1.800 3 000 3.000 112 113 114 115 116 117 118 119 120 121 122 123 124 125 1.800 Standard Kartesisch 1.600 -1.800 3.250 3.250 3.250 Standard Kartesisch Kartesisch 0.000 0.000 1.800 1.800 Kartesisch Abgestützt Standard 1.800 Abgestützt Abgestützt Standard Kartesisch -1 800 1 800 3 250 -1.800 -1.600 Kartesisch 3.250 Standard 1.800 3.250 3.250 3.250 Standard Kartesisch -1 800 -1 600 1.600 1.800 Kartesisch Standard -1.800Standard Kartesisch -1.600 1.800 3.250 -1.600 1.600 -1.800 1.800 3.250 3.250 Standard Kartesisch 3.250 3.250 3.250 126 127 128 129 130 131 Standard Kartesisch 1.600 -1.800 1.600 -1.600 -1.600 Kartesisch 1.600 Standard 3.250 3.250 0.000 Standard Kartesisch -1 600 1.600 1.600 1.600 1.800 Kartesisch Standard 132 Standard Kartesisch 0.940 1.800 0.000 133 134 135 1.800 1.800 0.000 1.690 Kartesisch 0.190 Standard Standard Kartesisch 1 690 2 000 0.000 136 137 Kartesisch Kartesisch 0.190 0.690 2.000 1.800 0.000 Standard 138 Standard Kartesisch 0.440 1 800 0.000 1.190 1.440 1.800 1.800 0.000 139 140 141 142 143 144 Kartesisch Standard Standard Kartesisch 0.940 2.000 0.000 Kartesisch Kartesisch 0.690 2.000 0.000 Standard Standard Standard Kartesisch 1.190 2.000 0.000 145 146 148 1.440 2.000 0.000 Kartesisch Standard Kartesisch Standard Kartesisch -1.600 0.000 3 250 149 150 151 0.000 3.250 3.250 Standard Kartesisch 1.600 Kartesisch Standard Standard Kartesisch 0.556 -0.0643 250 152 153 156 -0.064 -0.556 -0.556 0.064 3.250 3.250 Standard Kartesisch Standard Kartesisch Standard Kartesisch 0.940 -1.800 0.000 157 158 159 Standard Kartesisch 1.690 0.190 -1.800 -1.800 0.000 Kartesisch Standard Standard Kartesisch 0.690 -1.8000.000 160 161 162 Standard Kartesisch 0.440 -1.800 -1.800 0.000 Kartesisch Standard Standard Kartesisch 1.440 -1.800 0.000 163 164 165 Kartesisch Kartesisch 1.690 -2.000 -2.000 0.000 Standard Standard Standard Kartesisch 0.000 3.960 0.000 166 167 Kartesisch Kartesisch -2.000 -2.000 0.000 Standard 0.940 Standard 168 Standard Kartesisch 0.440 -2.000 0.000 169 170 Standard Kartesisch Kartesisch 1.190 1.440 -2.000 -2.000 0.000 Standard 0.000 177 Standard Kartesisch -2 000 0.000 178 180 Kartesisch Kartesisch -1.800 -3.960 0.000 Standard 0.000 Standard 181 Standard Kartesisch 2.000 2.000 0.000 182 183 Kartesisch Kartesisch 2.000 1.800 0.000 Standard 3.960 2.000 Standard 184 Standard Kartesisch 2.000 -2.000 0.000 185 186 Standard Standard Kartesisch Kartesisch 2.000 1.800 -3.960 -2.000 0.000 187 Standard Kartesisch 7.000 0.000 0.000 Standard Standard Kartesisch Kartesisch 8.800 1.800 0.000 190 Standard Kartesisch 5.200 1.800 0.000 191 192 Standard Standard Kartesisch Kartesisch 5.200 8.800 0.000

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 55 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

20

MODELL

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

■ KNOTEN

Knoten		Bezugs-	Koordinaten-	Kn	otenkoordinaten		
Nr.	Knotentyp	Knoten	System	X [m]	Y [m]	Z [m]	Kommentar
193	Standard	•	Kartesisch	5.200	-1.600	0.000	
194	Standard		Kartesisch	8.800	1.600	0.000	
195	Standard	2	Kartesisch	5.200	1.600	0.000	
196	Standard	:+:	Kartesisch	5.400	1.800	0.000	
197	Standard	3	Kartesisch	5.400	-1.800	0.000	
198 199	Standard		Kartesisch	8.600	1.800	0.000	
199	Standard Standard		Kartesisch Kartesisch	8.600 5.200	-1.800 0.000	0.000 3.250	
200	Standard	2	Kartesisch	8.800	1.800	3.250	
201	Standard	9	Kartesisch	8.800	-1.800	3.000	
203	Standard	1 0	Kartesisch	5.200	1.800	3.000	
204	Standard		Kartesisch	5.200	-1.800	3.000	
205	Standard		Kartesisch	8.800	-1.600	3.000	
206	Standard		Kartesisch	5.200	-1.600	3.000	
207	Standard	-	Kartesisch	8.800	1.600	3.000	
208	Standard	2	Kartesisch	5.200	1.600	3.000	
209	Standard		Kartesisch	5.400	1.800	3.000	
210	Standard		Kartesisch	5.400	-1.800	3.000	
211	Standard	8	Kartesisch	8.600	1.800	3.000	
212	Standard	-	Kartesisch	8.600	-1.800	3,000	
213	Standard		Kartesisch	7.000	0.000	3.250	
214	Standard		Kartesisch	8.800	1.800	3.250	*************
215	Standard		Kartesisch	8.800	-1.800	3.250	Abgestützt
216 217	Standard Standard		Kartesisch	5.200	1.800	3.250	Abgestützt
217	Standard	- 5	Kartesisch Kartesisch	5.200 8.800	-1.800 -1.600	3.250 3.250	Abgestützt
218	Standard		Kartesisch	5.200	-1.600	3.250	
220	Standard	0	Kartesisch	8.800	1.600	3.250	
221	Standard	0	Kartesisch	5.200	1.600	3.250	
222	Standard		Kartesisch	5.400	1.800	3.250	
223	Standard	*	Kartesisch	5.400	-1.800	3.250	
224	Standard	-	Kartesisch	8.600	1.800	3,250	
225	Standard		Kartesisch	8.600	-1.800	3.250	
226	Standard		Kartesisch	5.400	-1.600	3.250	
227	Standard		Kartesisch	8.600	-1.600	3.250	
228	Standard		Kartesisch	5.400	1.600	3.250	
229	Standard	-	Kartesisch	8.600	1.600	3.250	
230	Standard		Kartesisch	7.000	1.800	0.000	
231	Standard		Kartesisch	7.940	1.800	0.000	
232	Standard		Kartesisch	8.690	1.800	0.000	
233	Standard	-	Kartesisch	7.190	1.800	0.000	
234 235	Standard Standard	0	Kartesisch Kartesisch	8.690 7.190	2.000	0.000	
236	Standard		Kartesisch	7.690	1.800	0.000	
237	Standard	0	Kartesisch	7.440	1.800	0.000	
238	Standard	1 0	Kartesisch	8.190	1.800	0.000	
239	Standard		Kartesisch	8.440	1.800	0.000	
240	Standard		Kartesisch	7.940	2.000	0.000	
241	Standard		Kartesisch	7.690	2.000	0.000	
242	Standard	2	Kartesisch	7.440	2.000	0.000	
243	Standard	~	Kartesisch	8.190	2.000	0.000	
244	Standard	-	Kartesisch	8.440	2.000	0.000	
245	Standard		Kartesisch	7.000	2.000	0.000	
247	Standard		Kartesisch	5.400	0.000	3.250	
248	Standard		Kartesisch	8.600	0.000	3.250	
249	Standard	-	Kartesisch	8.800	0.000	3.250	
250	Standard	-	Kartesisch	7.556	-0.064	3.250	
251	Standard		Kartesisch	6.936	-0.556	3.250	
252	Standard		Kartesisch	6.444	0.064	3.250	
255	Standard		Kartesisch	7.940	-1.800	0.000	
256	Standard		Kartesisch	8.690	-1.800	0.000	
257 258	Standard Standard	- 8	Kartesisch Kartesisch	7.190 7.690	-1.800	0.000	
258	Standard	-	Kartesisch	7.440	-1.800 -1.800	0.000	
260	Standard	0	Kartesisch	8.190	-1.800	0.000	
261	Standard	2	Kartesisch	8.440	-1.800	0.000	
262	Standard	0	Kartesisch	8.690	-2.000	0.000	
263	Standard		Kartesisch	7.190	-2.000	0.000	
264	Standard		Kartesisch	7.000	3.960	0.000	
265	Standard	2	Kartesisch	7.940	-2.000	0.000	
266	Standard		Kartesisch	7.690	-2.000	0.000	
267	Standard		Kartesisch	7.440	-2.000	0.000	
268	Standard	2	Kartesisch	8.190	-2.000	0.000	
269	Standard		Kartesisch	8.440	-2.000	0.000	
274	Standard		Kartesisch	9.000	2.000	0.000	
275	Standard		Kartesisch	9.000	3.960	0.000	
276	Standard		Kartesisch	8.800	2.000	0.000	
277	Standard		Kartesisch	9.000	-2.000	0.000	
278 279	Standard Standard	2	Kartesisch Kartesisch	9.000 8.800	-3.960	0.000	
280	Standard		Kartesisch	7.000	-2.000 1.800	0.400	
281	Standard		Kartesisch	7.000	-2.000	0.400	
282	Standard	1 2	Kartesisch	7.000	-1.800	0.000	
283	Standard	-	Kartesisch	7.000	-3.960	0.000	
286	Standard		Kartesisch	1.800	1.800	0.500	
287	Standard	1 0	Kartesisch	1.800	-1.800	0.500	
288	Standard	0	Kartesisch	-1.800	1.800	0.500	
289	Standard		Kartesisch	-1.800	-1.800	0.500	
290	Standard		Kartesisch	8.800	1.800	0.500	
291	Standard		Kartesisch	8.800	-1.800	0.500	
292	Standard	2	Kartesisch	5.200	1.800	0.500	
	Standard		Kartesisch	5.200	-1.800	0.500	
293 295	Standard	1	Kartesisch	14.000	0.000	0.000	

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 56 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

21

MODELL

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

Seite:

15.06.2023

■ KNOTEN

Knoten		Bezugs-	Koordinaten-	Kno	otenkoordinaten		
Nr.	Knotentyp	Knoten	System	X [m]	Y [m]	Z [m]	Kommentar
297	Standard	2	Kartesisch	13.250	2.000	0.000	
298	Standard		Kartesisch	14.750	-2.000	0.000	
299	Standard		Kartesisch	14.750	2.000	0.000	
300	Standard		Kartesisch	14.000	1.235	0.000	
301	Standard	[2	Kartesisch	14.000	-1.235	0.000	
302	Standard		Kartesisch	-10.000	-6.000	0.000	

nie r.	Linientyp	Knoten Nr.	Linienlänge L [m]		Kommentar
17	Polylinie	79,97	0.200	X	nominandi
18	Polylinie	73,85	0.200	X	
19	Polylinie	78,157	0.110	X	
20	Polylinie	82,84	0.200	X Y X Y	
21	Polylinie	104,110	0.200	X	
22	Polylinie	102,108	0.200	Y	
23	Polylinie	103,113	0.200	X	
24	Polylinie	105,107	0.200	Y	
25	Polylinie	131,134	0.190	X	
26	Polylinie	73,102	3.000	Z	
27	Polylinie	78,103	3.000	Z	
28	Polylinie	79,104	3.000	X Z Z Z Z Z Z	
29	Polylinie Polylinie	82,105	3.000 3.000	2	
30 31	Polylinie	83,106 84,107	3.000	7	
32	Polylinie	85,108	3.000	7	
33	Polylinie	96,109	3.000	7	
34	Polylinie	97,110	3.000	Z	
35	Polylinie	98,111	3.000	Z Z Z Z	
36	Polylinie	99,112	3.000	Z	
37	Polylinie	100,113	3.000	Z	
38	Polylinie	97,131	1.600	X	
39	Polylinie	99,133	0.090	X X Y	
40	Polylinie	85,83	3.200	Y	
41	Polylinie	83,78	0.200	Y	
12	Polylinie	100,162	0.160	X	
13	Polylinie	98,82	0.200	X X Y	
14	Polylinie	84,96	3.200	Y.	
45	Polylinie	96,79	0.200	Y	
16	Polylinie	102,115	0.250	Y Z Z Z X Y	
47 18	Polylinie	103,116	0.250	7	
18 19	Polylinie Polylinie	104,117 117,123	0.250 0.200	×	
50	Polylinie	115,121	0.200	Ŷ	
51	Polylinie	116,126	0.200	x	
52	Polylinie	118,120	0.200	X	
53	Polylinie	105,118	0.250	Z	
54	Polylinie	101,148	0.200	Z X Y	
55	Polylinie	101,122	1.600	Y	
56	Polylinie	148,129	1.600	Y	
57	Polylinie	149,150	0.200	X Y	
58	Polylinie	150,119	1.600	Y	
59	Polylinie	149,130	1.600	Y	
30	Polylinie	157,100	0.090	X	
31	Polylinie	162,161	0.250	0	
52	Polylinie	110,112	3.200	Y X X X Y	
53 54	Polylinie Polylinie	112,102 108,106	0.200 3.200	Ç	
35	Polylinie	106,106	0.200	Y	
36 36	Polylinie	113,111	3.200	×	
67	Polylinie	111,105	0.200	X X Y	
38	Polylinie	107,109	3.200	Y	
59	Polylinie	109,104	0.200	Y	
70	Polylinie	121,150	1.600	Ÿ	
71	Polylinie	119,116	0.200	Y	
72	Polylinie	123,125	3.200	X	
73	Polylinie	125,115	0.200	X	
74	Polylinie	126,124	3.200	X X X Y	
75	Polylinie	124,118	0.200	X	
76	Polylinie	120,101	1.600	Y	
77	Polylinie	122,117	0.200	Ţ	
78	Polylinie	127,128	3.200	X	
79 30	Polylinie Polylinie	127,148 128.149	1.600 1.600	Y	
31	Polylinie	129,130	3.200	X	
32	Polylinie	132,137	0.250	x	
33	Polylinie	132,141	0.200	X	
34	Polylinie	133,73	0.110	X	
35	Polylinie	133,135	0.200	X	
36	Polylinie	134,136	0.200	Y	
37	Polylinie	137,138	0.250	×	
88	Polylinie	138,134	0.250	X	
39	Polylinie	132,139	0.250	X	
90	Polylinie	137,142	0.200	Y	
91	Polylinie	139,140	0.250	X X Y	
92	Polylinie	140,99	0.160	X	
93	Polylinie	138,143	0.200	Y	
94	Polylinie	139,144	0.200	Y	
95 96	Polylinie Polylinie	140,145	0.200	×	
		136,143	0.250	X	

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 57 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

22

MODELL

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

nie			Linienlänge		La de Carlos de
lr.	Linientyp	Knoten Nr.	L [m]		Kommentar
98 99	Polylinie Polylinie	142,141 141,144	0.250 0.250	X	
99	Polylinie	141,144	0.250	X X X	
01	Polylinie	145,135	0.250	X	
02	Polylinie	181,182	1.960	Y	
03	Polylinie	131,146	0.200	Y	
04 05	Polylinie Kreis	165,182 151-153	2.000	X	
06	Polylinie	166,156	3.519 0.200	Ϋ́	
07	Polylinie	163,157	0.200	Ý	
80	Polylinie	164,158	0.200	Y	
09	Polylinie	167,159	0.200	Υ	
10	Polylinie	168,160	0.200	Y	
11 12	Polylinie Polylinie	169,161 170,162	0.200 0.200	Y	
13	Polylinie	168,164	0.250	X	
14	Polylinie	167,168	0.250	X	
15	Polylinie	166,167	0.250	X	
16	Polylinie	169,166	0.250	×	
17 18	Polylinie Polylinie	170,169 163,170	0.250 0.250	X	
19	Polylinie	185,184	1.960	Ŷ	
20	Polylinie	177,178	0.200	Y	
27	Polylinie	185,180	2.000	X	
28	Polylinie	161,156	0.250	X	
29 30	Polylinie Polylinie	156,159 159,160	0.250 0.250	X	
31	Polylinie	160,158	0.250	x	
32	Polylinie	158,178	0.190	X	
33	Polylinie	146,165	1.960	Y	
35	Polylinie	136,146	0.190	X	
36 37	Polylinie Polylinie	180,177 177,164	1.960 0.190	Y X	
38	Polylinie	178,98	1.600	ŷ.	
39	Polylinie	73,183	0.200	X	
10	Polylinie	135,183	0.110	X X Y	
1	Polylinie	183,181	0.200	X	
3	Polylinie Polylinie	186,78 186,163	0.200 0.110	Y	
4	Polylinie	184,186	0.200	×	
5	Polylinie	190,196	0.200	X	
6	Polylinie	188,194	0.200	Y	
7	Polylinie	189,256	0.110	X	
8	Polylinie Polylinie	191,193 203,209	0.200 0.200	X	
0	Polylinie	201,207	0.200	Ŷ	
1	Polylinie	202,212	0.200	X	
52	Polylinie	204,206	0.200	Y	
3	Polylinie	230,233	0.190	X Z	
54	Polylinie Polylinie	188,201 189,202	3.000 3.000	Z	
6	Polylinie	190,203	3,000	Z	
7	Polylinie	191,204	3.000	Z Z	
8	Polylinie	192,205	3.000	Z	
59 50	Polylinie	193,206 194,207	3,000	Z Z	
61	Polylinie Polylinie	195,208	3.000	Z	
2	Polylinie	196,209	3.000	ž	
3	Polylinie	197,210	3.000	Z Z	
34	Polylinie	198,211	3.000	Z	
55	Polylinie	199,212	3,000	Z X	
66 67	Polylinie Polylinie	196,230 198,232	1.600	X	
88	Polylinie	194,192	3.200	Ŷ	
9	Polylinie	192,189	0.200	Y	
0	Polylinie	199,261	0.160	X	
1	Polylinie	197,191	0.200	X	
2	Polylinie Polylinie	193,195 195,190	3,200 0.200	Y	
4	Polylinie	201,214	0.250	Z	
5	Polylinie	202,215	0.250	Z	
6	Polylinie	203,216	0.250	Z	
7	Polylinie	216,222	0.200	X	
8	Polylinie Polylinie	214,220 215,225	0.200 0.200	Y	
0	Polylinie	217,219	0.200	X	
1	Polylinie	204,217	0.250	Z	
2	Polylinie	200,247	0.200	X	
3	Polylinie	200,221	1.600	Y	
14	Polylinie	247,228 248,249	1.600	Y X	
6	Polylinie Polylinie	249,218	0.200 1.600	X	
7	Polylinie	248,229	1,600	Y	
88	Polylinie	256,199	0.090	X	
9	Polylinie	261,260	0.250	X	
90	Polylinie	209,211	3.200	X	
91	Polylinie Polylinie	211,201 207,205	0.200 3.200	X	
33	Polylinie	205,202	0.200	Ý	
14	Polylinie	212,210	3.200	X	
95	Polylinie	210,204	0.200	X	
16	Polylinie	206,208	3.200	Y	
7	Polylinie	208,203	0.200	Y	

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 58 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

MODELL

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

Seite:

15.06.2023

23

■ LINIEN

Linie			Linienlänge		
Nr.	Linientyp	Knoten Nr.	L [m]		Kommentar
99	Polylinie	218,215	0.200	Y	
300	Polylinie	222,224	3.200		
			0.200	0	
301 302	Polylinie	224,214	3.200	0	
	Polylinie	225,223		÷.	
303	Polylinie	223,217	0.200	O.	
304	Polylinie	219,200	1.600	Y.	
305	Polylinie	221,216	0.200	Y	
306	Polylinie	226,227	3.200	X	
307	Polylinie	226,247	1.600	Y	
308	Polylinie	227,248	1.600	Y	
309	Polylinie	228,229	3,200	X	
310	Polylinie	231,236	0.250	X	
311	Polylinie	231,240	0.200	Y	
312	Polylinie	232,188	0.110	X	
313	Polylinie	232,234	0.200	Y	
314	Polylinie	233,235	0.200	Y	
315	Polylinie	236,237	0.250	X	
316	Polylinie	237,233	0.250	X	
317	Polylinie	231,238	0.250	X	
318	Polylinie	236,241	0.200	0	
319	Polylinie	238,239	0.250	Ý	
			0.160	0	
320	Polylinie	239,198		0	
321	Polylinie	237,242	0.200	1	
322	Polylinie	238,243	0.200	Ţ	
323	Polylinie	239,244	0.200	Y	
324	Polylinie	235,242	0.250	X	
325	Polylinie	242,241	0.250	X	
326	Polylinie	241,240	0.250	X	
327	Polylinie	240,243	0.250	X	
328	Polylinie	243,244	0.250	X	
329	Polylinie	244,234	0.250	X	
330	Polylinie	274,275	1.960	Y	
331	Polylinie	230,245	0.200	Y	
332	Polylinie	264,275	2.000	X	
333	Kreis	250-252	3.519	XXXXYYXYYXXYXXYYYXXXXXXYYXXXXXXXXXXXXX	
334	Polylinie	265,255	0.200	Y	
335	Polylinie	262,256	0.200	Ý	
336	Polylinie	263,257	0.200	Ÿ	
337	Polylinie	266,258	0.200	÷	
338	Polylinie		0.200	·	
		267,259		\$	
339	Polylinie	268,260	0.200	2	
340	Polylinie	269,261	0.200	3	
341	Polylinie	267,263	0.250	S	
342	Polylinie	266,267	0.250	X	
343	Polylinie	265,266	0.250	X	
344	Polylinie	268,265	0.250	X	
345	Polylinie	269,268	0.250	X	
346	Polylinie	262,269	0.250	X	
347	Polylinie	278,277	1.960	Y	
348	Polylinie	281,282	0.200	Y	
349	Polylinie	278,283	2.000	X	
350	Polylinie	260,255	0.250	X	
351	Polylinie	255,258	0.250	X	
352	Polylinie	258,259	0.250	X	
353	Polylinie	259,257	0.250	X	
354	Polylinie	257,282	0.190	X	
355	Polylinie	245,264	1.960	Ÿ	
357	Polylinie	235,245	0.190	¥	
35 <i>1</i> 358		283,281	1.960	X	
	Polylinie	203,201		\$	
359	Polylinie	281,263	0.190	X X Y	
360	Polylinie	282,197	1.600	S	
361	Polylinie	188,276	0.200	Y	
362	Polylinie	234,276	0.110	X X Y	
363	Polylinie	276,274	0.200	X	
364	Polylinie	279,189	0.200	Y	
365	Polylinie	279,262	0.110	X X X Y	
366	Polylinie	277,279	0.200	X	
367	Polylinie	297,299	1.500	X	
368	Polylinie	299,298	4.000	Y	
369	Polylinie	298,296	1.500	X	
370	Polylinie	296,297	4.000	X	
3,0	1 Olymnie	200,201	4.000		

■ MATERIALIEN

Mat. Nr.	Modul E [kN/cm²]	Modul G [kN/cm²]	Querdehnzahl v [-]	Spez. Gewicht γ [kN/m³]	Wärmedehnz. α [1/°C]	TeilsichBeiwert γ _M [-]	Material- Modell
1	Beton C35/45 DIN 3400.00	I EN 1992-1-1/NA/A 1416.67	1:2015-12 0.200	25.00	1.00E-05	1.00	Isotrop linear elastisch
2	Beton C35/45 DIN 3400.00	I EN 1992-1-1/NA/A 1416.67	1:2015-12 0.200	0.00E+00	1.00E-05	1.00	Isotrop linear elastisch

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 59 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

24

MODELL

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

■ FLÄCHEN

Fläche	Fläck	hentyp	12 72356 1001	Mat.	Dicke	1242 55	Fläche	Gewich
Nr.	Geometrie	Steifigkeit	Begrenzungslinien Nr.	Nr.	Тур	d [mm]	A [m ²]	G [kg]
21	Eben	Standard	192,191,189,182,187, 188,125,138,134,162,	1	Konstant	400.0	9.600	9600
12.00	220	V25 18 18	136	8		200	10/21/20	
24	Eben	Standard	126,184,139,136,163	1	Konstant	400.0	0.600	600
25	Eben	Standard	117,128,121,134	1	Konstant	400.0	0.600	600
26	Eben	Standard	146,163,162,121,148, 149,172,173	1	Konstant	400.0	0.900	900
27	Eben	Standard	151,174,175,153,167, 166,123,147	1	Konstant	400.0	0.900	900
28	Eben	Standard	127,123,137,160,119	1	Konstant	400.0	0.600	600
29	Eben	Standard	135,143,129,167	1	Konstant	400.0	0.600	600
30	Eben	Standard	166,135,238,232-228, 161,142,137	1	Konstant	400.0	9.600	960
31	Eben	Standard	118,126,122,132	1	Konstant	400.0	0.600	600
32	Eben	Standard	140,132,164,130	1	Konstant	400.0	9.600	960
33	Eben	Standard	141,130,165,127	1	Konstant	400.0	0.600	60
34	Eben	Standard	165,164,122,146,150,	1	Konstant	400.0	0.900	90
			170,158,171,147	18	35000000000000	572750	200000000	
35	Eben	Standard	129,120,131,124	1	Konstant	400.0	0.600	60
36	Eben	Standard	144,131,168,133	1	Konstant	400.0	9.600	960
37	Eben	Standard	133,145,128,169	1	Konstant	400.0	0.600	60
38	Eben	Standard	177,148,169,168,124, 153,152,176,155	1	Konstant	400.0	0.900	90
39	Eben	Standard	150,170,157,159,181,	1	Konstant	500.0	1.360	170
			156,154,155,177,149, 172,173					
40	Eben	Standard	152,176,154,179,178, 180,157,158,171,151, 174,175	1	Konstant	500.0	1.360	170
41	Eben	Standard	180,178,179,156,181, 159	1	Konstant	500.0	9.299	1162
42	Eben	Standard	201-196,235,233,204, 202,241,240	1	Konstant	500.0	3.920	490
43	Eben	Standard	218-213,237,236,227, 219,244,243	1	Konstant	500.0	3.920	490
44	Eben	Standard	320,319,317,310,315, 316,253,266,262,290, 264	1	Konstant	400.0	9.600	960
45	Eben	Standard	254,312,267,264,291	1	Konstant	400.0	0.600	600
46	Eben	Standard	245,256,249,262	i	Konstant	400.0	0.600	60
47	Eben	Standard	274,291,290,249,276,	1	Konstant	400.0	0.900	90
48	Eben	Standard	277,300,301 279,302,303,281,295,	1	Konstant	400.0	0.900	90
			294,251,275	1 0	William March	VALUE VA	2000000000	
49	Eben	Standard	255,251,265,288,247	1	Konstant	400.0	0.600	60
50 51	Eben Eben	Standard Standard	263,271,257,295 294,263,360,354-350,	1	Konstant	400.0 400.0	0.600	60
21	coen	Standard	289,270,265		Konstant	400.0	9.600	960
52	Eben	Standard	246,254,250,260	1	Konstant	400.0	0.600	60
53	Eben	Standard	268,260,292,258	1	Konstant	400.0	9.600	960
54	Eben	Standard	269,258,293,255	1	Konstant	400.0	0.600	60
55	Eben	Standard	293,292,250,274,278, 298,286,299,275	1	Konstant	400.0	0.900	90
56	Eben	Standard	257,248,259,252	1	Konstant	400.0	0.600	60
57	Eben	Standard	272,259,296,261	i	Konstant	400.0	9.600	960
58	Eben	Standard	261,273,256,297	1	Konstant	400.0	0.600	60
59	Eben	Standard	305,276,297,296,252,	i	Konstant	400.0	0.900	90
60	Eben	Standard	281,280,304,283 278,298,285,287,309,	1	Konstant	500.0	1.360	170
			284,282,283,305,277, 300,301					
61	Eben	Standard	280,304,282,307,306, 308,285,286,299,279, 302,303	1	Konstant	500.0	1.360	1700
62	Eben	Standard	308,306,307,284,309, 287	1	Konstant	500.0	9.299	1162
63	Eben	Standard	329-324,357,355,332, 330,363,362	1	Konstant	500.0	3.920	4900
64	Eben	Standard	346-341,359,358,349, 347,366,365	1	Konstant	500.0	3.920	4900
	Eben	Standard	367-370	1	Konstant	300.0	6,000	450

FLÄCHEN - INTEGRIERTE OBJEKTE

Fläche		Integrierte Objekte Nr.		
Nr.	Knoten	Linien	Öffnungen	Kommentar
41			2	
62			3	

■ ÖFFNUNGEN

Öffnung Nr.	Begrenzungslinien Nr.	In Fläche Nr.	Fläche A [m²]	Kommentar	
2	205 333	41 62	0.979 0.979		

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 60 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

25

MODELL

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

ager			Stütze		L	agerung l	ozw. Fede	er	
Nr.	Knoten Nr.	Achsensystem	in Z	u_X	uy	uz	φχ	φγ	φz
1	118,217	Global X,Y,Z		×	×				
2	116,215	Global X,Y,Z			⋈				
3	117,216	Global X,Y,Z		×					_ E

■ FLÄCHENLAGER

Bettung		Federkonstanten	Stützu	ng bzw. Fede	er [kN/m³]	Schubfed	ler [kN/m]
Nr.	Flächen Nr.	RF-SOILIN	u_x	u _y	uz	V xz	V yz
1	39-41				2500000.000		
2	42,43,63-65	(Sec.			30000.000		
3	60-62				30000,000		

FLÄCHENLAGER - AUSFALL

Bettung Nr.	Flächen Nr.	Ausfall des Lagers bei σ _z	Fließen ab Kontaktspannung σ _{z'} [kN/m²]	Reibungszahl μz [-]
1	39-41	Negativ		
2	42,43,63-65	Negativ		
3	60-62	Negativ		

Quers.	Mater.	I _T [cm ⁴]	l _y [cm ⁴]	I _z [cm ⁴]	Hauptachsen	Drehung	Gesamtabmess	ungen (mm)
Nr.	Nr.	A [cm ²]	A _y [cm ²]	A _z [cm ²]	α[°]	α' [°]	Breite b	Höhe h
1	Rechteck 25	50/1000		0.0000000000000000000000000000000000000	1 20.00	.0100000	200102000	1001011011011
	2	438828.53 2500.00	2083333.38 2083.33	130208.33 2083.33	0.00	0.00	250.0	1000.0
2	Rechteck 30	00/300	rewalling to early	27554477857	v sess	12.156-1		
	2	113940.00 900.00	67500.00 750.00	67500.00 750.00	0.00	0.00	300.0	300.0

STABENDGELENKE

Gelenk	Bezugs-	Axial/Quer-	Gelenk bzw. F	eder[kN/m]	Momenteng	jelenk bzw. Fe	eder[kNm/ra	
Nr.	system	u _x	u _y	uz	φx	φγ	φz	Kommentar
1	Lokal x,y,z	0				×	S	

■ STÄBE

Stab	Linie		Dre	hung	Quers	chnitt	Gelen	k Nr.	Exz.	Teilung	Länge	
Nr.	Nr.	Stabtyp	Тур	β [°]	Anfang	Ende	Anfang	Ende	Nr.	Nr.	L [m]	
17	183	Balkenstab	Winkel	0.00	1	1		1	- 5	-	0.200	Y
18	185	Balkenstab	Winkel	0.00	1	1	2 1	1	3	2	0.200	Y
19	186	Balkenstab	Winkel	0.00	1	1		1	#	*	0.200	Y
20	190	Balkenstab	Winkel	0.00	1	1		1	-		0.200	Y
21	193	Balkenstab	Winkel	0.00	1	1		1	-	-	0,200	Y
22	194	Balkenstab	Winkel	0.00	1	1	2	1	20		0.200	Y
23	195	Balkenstab	Winkel	0.00	1	1	-	1		200	0.200	Y
24	206	Balkenstab	Winkel	0.00	1	1	1				0.200	Y
25	207	Balkenstab	Winkel	0.00	1	1	1 1	- 52	2	22	0.200	Y
26	208	Balkenstab	Winkel	0.00	1	1	1	196	×	-	0.200	Y
27	209	Balkenstab	Winkel	0.00	1	1	1	~	-		0.200	Y
28	210	Balkenstab	Winkel	0.00	1	1	1	72	2	47.	0.200	Y
31	211	Balkenstab	Winkel	0.00	1	1	1			343	0.200	Y
32	212	Balkenstab	Winkel	0.00	1	1	1	3.00	- 8		0.200	Y
33	203	Balkenstab	Winkel	0.00	1	1		1	8	- 1	0.200	Y
34	220	Balkenstab	Winkel	0.00	1	1	1	-	2		0.200	Y
35	239	Balkenstab	Winkel	0.00	1	1		1		(*2	0.200	Y
36	242	Balkenstab	Winkel	0.00	1	1	1	1.70	- 4		0.200	Y
37	311	Balkenstab	Winkel	0.00	1	1	2	1	2	100	0.200	Y
38	313	Balkenstab	Winkel	0.00	1	1	100	1	8	540	0.200	Y
39	314	Balkenstab	Winkel	0.00	1	1	-	1	-		0.200	Y
40	318	Balkenstab	Winkel	0.00	1	1	(0)	1	2	2	0.200	Y
41	321	Balkenstab	Winkel	0.00	1	1		1	-		0.200	Y
42	322	Balkenstab	Winkel	0.00	1	1	-	1	*	100	0.200	Y
43	323	Balkenstab	Winkel	0.00	1	1		1	- 2	4	0.200	Y
44	334	Balkenstab	Winkel	0.00	1	1	1	-	2	2.	0.200	Y
45	335	Balkenstab	Winkel	0.00	1	1	1 1	1960	*		0.200	Y
46	336	Balkenstab	Winkel	0.00	1	1	1	1000	-		0.200	Y
47	337	Balkenstab	Winkel	0.00	1	1	1	345		- 25	0.200	Y
48	338	Balkenstab	Winkel	0.00	1	1	1	-	-		0.200	Y
49	339	Balkenstab	Winkel	0.00	1	1	1	5000	*	0.00	0.200	Y
50	340	Balkenstab	Winkel	0.00	4	1	1	22		150	0.200	Y
51	331	Balkenstab	Winkel	0.00	d d	1	1 2 1	1		92	0.200	Y
52	348	Balkenstab	Winkel	0.00	1	1	1		*		0.200	Y
53	361	Balkenstab	Winkel	0.00	1	1		1	-		0.200	Y

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 61 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

26

MODELL

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

■ STÄBE

Stab	Linie		Drei	nung	Quers	chnitt	Gelen	k Nr.	Exz.	Teilung	Länge	
Nr.	Nr.	Stabtyp	Тур	β [°]	Anfang	Ende	Anfang	Ende	Nr.	Nr.	L [m]	
54	364	Balkenstab	Winkel	0.00	1	1	1		-		0.200	Y

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 62 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

27

LASTEN

MN

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

■ LASTFÄLLE

Last-	LF-Bezeichnung	EN 1990 DIN	Eig	engewicht - Fa	ktor in Richtur	ng
fall	576	Einwirkungskategorie	Aktiv	X	Y	Z
LF1	NA ANNO A SPASSAGO ARRESTA AND A PROPERTY.	Ständig	⊠	0.000	0.000	1,000
LF10	Daldrup B4 (faktorisirt, LP 1+2)	Ständig/Nutzlast		125550	0.000,000	
LF11	Daldrup B4 LP 7 und 8, LK 10/11	Ständig/Nutzlast				
LF12	Daldrup B4 LP 7 und 8, LK 70	Ständig/Nutzlast		2000	0.0007	
LF20	aus Auflast Daldrup B4	Stāndig/Nutzlast		0.000	0.000	1.E-04

I ASTKOMBINATIONEN

Last- ombin.	BS	Lastkombination Bezeichnung	Nr.	Faktor	r.	Lastfall
LK1		1.35*LF1 + LF10	1	1.35	LF1	
			2	1.00	LF10	Daldrup B4 (faktorisirt, LP 1+2)
LK2		1.35*LF1 + LF10 + 1.35*LF20	1	1.35	LF1	WE ANY DISTRICT OF THE SAME OF
		TO SEPARATE THE SAME STORES STORES ARE SAME AND A STORES ARE SAME AS A STORES AND A STORES ARE SAME AS A STORES AND A STORES AND A STORES ARE SAME AS A STORES AND A STORES AN	2	1.00	LF10	Daldrup B4 (faktorisirt, LP 1+2)
			3	1.35	LF20	aus Auflast Daldrup B4
LK3		1.35*LF1 + 1.35*LF20	1	1.35	LF1	N. A. Charles Sec.
			2	1.35	LF20	aus Auflast Daldrup B4
LK4		1.35*LF1 + 1.35*LF11	1	1.35	LF1	
			2	1.35	LF11	Daldrup B4 LP 7 und 8, LK 10/11
LK5		1.35*LF1 + 1.35*LF12	1 1	1.35	LF1	CONTRACTOR INTO A STATE OF CONTRACTOR OF CON
		The base of the second of the	2	1.35	LF12	Daldrup B4 LP 7 und 8, LK 70
LK10		LF1 + LF10	1	1.00	LF1	
		USAC (TASAC) - 883943	2	1.00	LF10	Daldrup B4 (faktorisirt, LP 1+2)
LK11		LF1 + LF10 + LF20	1 1	1.00	LF1	
			2	1.00	LF10	Daldrup B4 (faktorisirt, LP 1+2)
		The said	3	1.00	LF20	aus Auflast Daldrup B4
LK12		LF1 + LF20	1 1	1.00	LF1	THE TANK TO A SECRET WHEN THE PROPERTY OF
		STANGE WAS ASSOCIATED	2	1.00	LF20	aus Auflast Daldrup B4
LK13		LF1 + LF11	1	1.00	LF1	
		WAR 12/2024	2	1.00	LF11	Daldrup B4 LP 7 und 8, LK 10/11
LK14		LF1 + LF12	1	1.00	LF1	CANTON TO COMPANY CONTROL OF THE CON
			2	1.00	LF12	Daldrup B4 LP 7 und 8, LK 70

■ ERGEBNISKOMBINATIONEN

Ergebn			
kombin.	Bezeichnung	Belastung	
EK1		LK10 oder bis LK14	

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 63 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

LASTEN

Projekt: 42206_BGE Remlingen 18

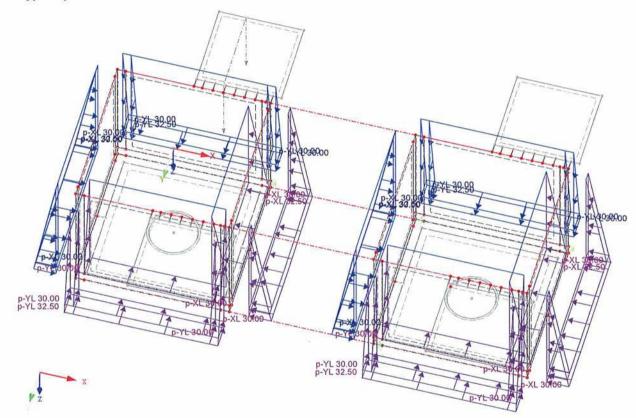
Modell: 1.1

Datum:

Seite:

15.06.2023

LF1


FREIE RECHTECKLASTEN

LF1

			Last-	Last-		Lastgröße			Lastposition	
Nr.	An Flächen Nr.	Projekt.	verteilung	Richtung	Symbol	Wert	Einheit	X [m]	Y [m]	Z [m]
1	35-38,56-59	YZ	Linear Z	XL	p ₁	0.00	kN/m²		-1.800	0.000
					p ₂	32.50	kN/m ²		1.800	3.25
		9 8		20	= 1		5 5	20 kN/m	* 0,5 * 3,25 m	= 32,5 kN/m
2	31-34,52-55	YZ	Linear Z	XL	P ₁	0.00	kN/m²		-1.800	0.000
					P ₂	-32.50	kN/m ²		1.800	3.250
	V-0-10-10-10-10-10-10-10-10-10-10-10-10-1							20 kN/m	* 0,5 * 3,25 m	= 32,5 kN/n
3	21,24-26	XZ	Linear Z	YL	p ₁	0.00	kN/m ²	-1.800	100000000000000000000000000000000000000	0.000
		l			p ₂	-32.50	kN/m ²	1.800		3.250
5	44-47	XZ	Linear Z	YL	P ₁	0.00	kN/m²	5.200		0.000
					P ₂	-32.50	kN/m ²	8.800		3.250
6	48-51	XZ	Linear Z	YL	P ₁	0.00	kN/m ²	5.200		0.000
		1		A-150	P ₂	32.50	kN/m²	8.800		3.250
8	27-30	XZ	Linear Z	YL	P ₁	0.00	kN/m²	-1.800		0.000
					P ₂	32.50	kN/m²	1.800		3.250

■ LF1

LF1 Belastung [kN/m^2]

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 64 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Konstant

Konstant

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite

29

LASTEN

-3.250 0.000 Aus Knotenlast 600.0 kN 2.750 0.000

-3.250 0.000 -3.250 0.000 Aus Knotenlast 600.0 kN

0.000

0.000

0.000

st 600.0 kN 0.000

2.750

3.250

3.250 Aus Knoten -2.750

-2.750 -3.250

Projekt: 42206_BGE Remlingen 18

5

6

FDEIE DOLVOONI ACTENI

Modell: 1.1

Datum: 1540 D 11 D4 (C 11 11 1 1 D 4 10)

0.690

7.690

8.190

8.190 7.690

7,690

8.190 8.190

7.690

15 06 2023

LF10 Daldrup B4 (faktorisirt, LP 1+2)

			Last-	Last-	La	stparamete	r	L	astposition	
Nr.	An Flächen Nr.	Projekt.	verteilung	Richtung	Symbol	Wert	Einheit	X [m]	Y [m]	Z [m]
3	42	XY	Konstant	ZP	р	2400.01	kN/m²	0.690	2.750	0.000
					р	2400.01	kN/m ²	1.190	2.750	0.000
					p	2400.01	kN/m ²	1.190	3.250	0.000
		1		1 3	р	2400.01	kN/m²	0.690	3.250	0.000
	179-17	10 10 10 10 10 10 10 10 10 10 10 10 10 1		100			BY COMPANY OF THE	AND THE PROPERTY AND ADDRESS OF THE PARTY AND	Aus Knotenla	st 600.0 kN
4	43	XY	Konstant	ZP	p	2400.01	kN/m ²	0.690	-2.750	0.000
					р	2400.01	kN/m ²	1.190	-2.750	0.000
					р	2400.01	kN/m²	1.190	-3.250	0.000

ZP

ZP

2400.01 kN/m²

kN/m²

kN/m²

kN/m² kN/m²

kN/m²

kN/m² kN/m²

2400.01

2400.01

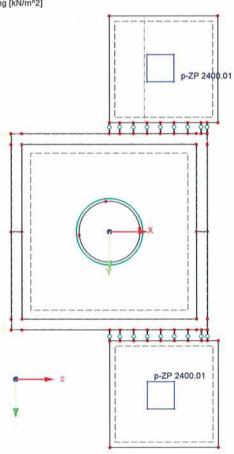
2400.01 2400.01

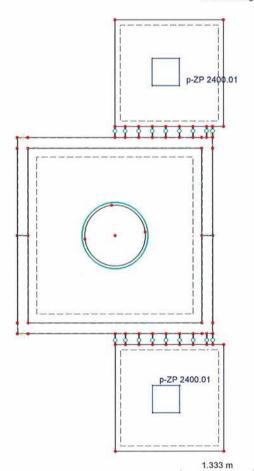
2400.01

2400.01 2400.01

2400.01 kN/m²

LF10: DALDRUP B4 (FAKTORISIRT, LP 1+2)


XY


63 XY

64

LF10 : Daldrup B4 (faktorisirt, LP 1+2) Belastung [kN/m^2]

In Z-Richtung

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 65 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

30

LASTEN

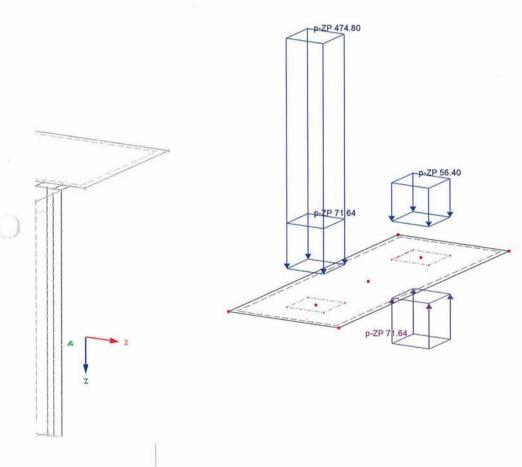
Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

LF11


Daldrup B4 LP 7 und 8, LK 10/11 FREIE POLYGONLASTEN

LF11: Daldrup B4 LP 7 und 8, LK 10/11

		1	Last-	Last-	La	astparamete	r		Lastposition	
Nr.	An Flächen Nr.	Projekt.	verteilung	Richtung	Symbol	Wert	Einheit	X [m]	Y [m]	Z [m]
1	65	XY	Konstant	ZP	р	71.64	kN/m ²	13.750	0.985	0.000
	02701)			1000	p	71.64	kN/m ²	14.250	0.985	0.000
					р	71.64	kN/m²	14.250	1.485	0.000
		1			p	71.64	kN/m ²	13.750	1.485	0.000
				70 10	01 28 00	aus H-Last:	31,6 * 1,4/	2,47 m = 17,91	(Aus Knotenlas	st 17.91 kN)
2	65	XY	Konstant	ZP	р	474.80	kN/m ²	13.750	0.985	0.000
			р	474.80	kN/m ²	14.250	0.985	0.000		
		1	р	474.80	kN/m ²	14.250	1.485	0.000		
				р	474.80	kN/m ²	13.750	1.485	0,000	
	200000								Aus Knotenla	st 118.7 kN
3	65	XY	Konstant	ZP	p	-71.64	kN/m ²	13.750	-1.485	0.000
					р.	-71.64	kN/m ²	14.250	-1.485	0.000
					р	-71.64	kN/m ²	14.250	-0.985	0.000
				1	р	-71.64	kN/m ²	13.750	-0.985	0.000
	9,970	21 2001 M				aus H-Last: 3	1,6 * 1,4 / 2	,47 m = 17,91	(Aus Knotenlas	t-17.91 kN)
4	65	XY	Konstant	ZP	р	56.40	kN/m ²	13.750	-1.485	0.000
					р	56.40	kN/m ²	14.250	-1.485	0.000
					р	56.40	kN/m ²	14.250	-0.985	0.000
					р	56.40	kN/m ²	13.750	-0.985	0.000
									Aus Knoten	last 14.1 kN

LF11: DALDRUP B4 LP 7 UND 8, LK 10/11

LF11 : Daldrup B4 LP 7 und 8, LK 10/11 Belastung [kN/m^2]

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 66 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

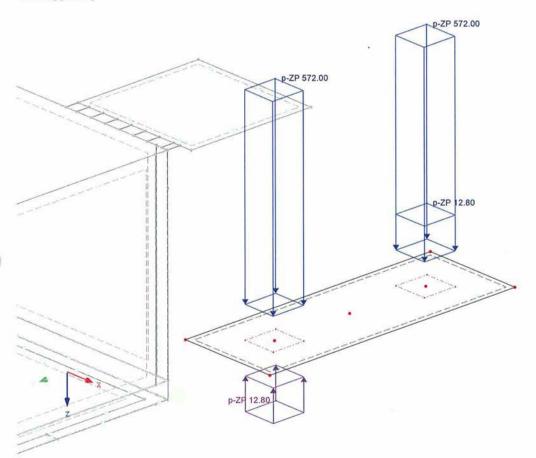
31

Seite:

LASTEN

Projekt: 42206_BGE Remlingen 18

Modell: 1.1


15.06.2023 Datum:

Daldrup B4 LP 7 und 8, LK

	astposition	L	r	stparameter	La	Last-	Last-			
Z [m]	Y [m]	X [m]	Einheit	Wert	Symbol	Richtung	verteilung	Projekt.	An Flächen Nr.	Nr.
0.000	0.985	13.750	kN/m ²	572.00	р	ZP	Konstant	1 65 XY Kons		
0.000	0.985	14.250	kN/m ²	572.00	p	1000000				
0.000	1.485	14.250	kN/m²	572.00	р					
0.000	1.485	13.750	kN/m²	572.00	р					
st 143.0 kN	Aus Knotenla							0 0		
0.000	-1.485	13.750	kN/m ²	572.00	p	ZP	65 XY Konstant	2		
0.000	-1.485	14.250	kN/m²	572.00	р					
0.000	-0.985	14.250	kN/m ²	572.00	р					
0.000	-0.985	13.750	kN/m²	572.00	р					
st 143.0 kN	Aus Knotenla									
0.000	-1.485	13.750	kN/m²	12.80	p	ZP	Konstant	XY	65	3
0.000	-1.485	14.250	kN/m²	12.80	p					
0.000	-0.985	14.250	kN/m ²	12.80	р					
0.000	-0.985	13.750	kN/m ²	12.80	р	1 1				
	66 * 1,4 / 2,47		DPSCOLE IV							
0.000	0.985	13.750	kN/m²	-12.80	р	ZP	Konstant	XY	65	4
0.000	0.985	14.250	kN/m²	-12.80	p					
0.000	1.485	14.250	kN/m²	-12.80	p	1 1				
0.000	1.485	13.750	kN/m ²	-12.80	р					

LF12: DALDRUP B4 LP 7 UND 8, LK 70

LF12 : Daldrup B4 LP 7 und 8, LK 70 Belastung [kN/m^2]

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 67 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

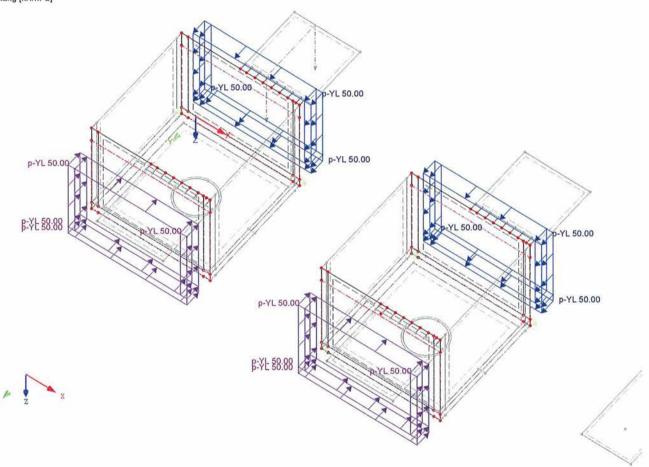
LASTEN

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

Seite:


15.06.2023

LF20 aus Auflast Daldrup B4

			Last-	Last-		Lastgröße		L	astposition	
٧r.	An Flächen Nr.	Projekt.	verteilung	Richtung	Symbol	Wert	Einheit	X [m]	Y [m]	Z [m]
1	21,24-26	XZ	Konstant	YL	р	-50,00	kN/m ²	-1.800		0.500
	The state of the s			173297	100-01		10000000	1.800		3.250
3	44-47	XZ	Konstant	YL	р	-50.00	kN/m ²	5.200		0.500
					6 61			8.800		3.250
4	27-30	XZ	Konstant	YL	р	50.00	kN/m ²	-1.800		0.500
	ALUE			1000	S		SANGES I	1.800))	3.250
6	48-51	XZ	Konstant	YL	р	50.00	kN/m ²	5.200		0,500
		1.00						8 800		3 250

LF20: AUS AUFLAST DALDRUP B4

LF20 : aus Auflast Daldrup B4 Belastung [kN/m^2]

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 68 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

ERGEBNISSE

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Seite:

15.06.2023

33

■ ERGERNISSE - 71 ISAMMENEASSING

Bezeichnung	Wert	Einhe	Kommentar
astfall LF1 Summe Belastung in Richtung X Summe Lagerkräfte in X Summe Belastung in Richtung Y Summe Belastung in Richtung Y Summe Belastung in Richtung Z Summe Lagerkräfte in Y Summe Belastung in Richtung Z Summe Lagerkräfte in Z Resultierende der Reaktionen um X Resultierende der Reaktionen um Z Max. Verschiebung in X Max. Verschiebung in X Max. Verschiebung in Z Max. Verschiebung in Z Max. Verschiebung um Z Max. Verdrehung um X Max. Verdrehung um X Max. Verdrehung um Z Max. Verdrehung um Z Maximale Stabverzerrung Berechnungstheorie Steifigkeitsreduzierung Anzahl der Laststufen Anzahl der Iterationen Maximaler Wert des Elementes der Steifigkeitsmatrix auf der Diagonale Minimaler Wert des Elementes der Steifigkeitsmatrix auf der Diagonale Determinante der Steifigkeitsmatrix Unendlich-Norm	0.00 0.00 0.00 0.00 1477.48 1477.48 0.025 0.000 0.005 -0.4 -0.0 1.8 1.8 -0.8 0.1 -0.0 0.000 I. Ordnung 1 4 1.477E+14 2.726E+07 1.803E+1460 43 2.953E+14	kN kN kN kN kN kNm kNm mm mm mm mm mrad mrad mrad %	Abweichung 0.00% Im Schwerpunkt des Modells (X:3.952, Y:0.000, Z:1.690 m) Im Schwerpunkt des Modells Im Schwerpunkt des Modells FE-Netzknoten Nr. 275 (X: 9.000, Y: 3.960, Z: 0.000 m) FE-Netzknoten Nr. 1797 (X: 7.000, Y: 3.400, Z: 0.000 m) FE-Netzknoten Nr. 190 (X: 5.200, Y: 1.800, Z: 0.000 m) FE-Netzknoten Nr. 190 (X: 5.200, Y: 1.800, Z: 0.000 m) FE-Netzknoten Nr. 235 (X: 7.190, Y: 2.000, Z: 0.000 m) FE-Netzknoten Nr. 1698 (X: 5.703, Y: 0.112, Z: 3.250 m) FE-Netzknoten Nr. 2255 (X: -1.800, Y: -1.018, Z: 1.200 m) Stab Nr. 0, X: 0.000 m FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) GE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) Theorie I. Ordnung (linear) Querschnitte, Stäbe, Flächen
Lastfall LF10 - Daldrup B4 (faktorisirt, LP 1+2) Summe Belastung in Richtung X Summe Lagerkräfte in X Summe Belastung in Richtung Y Summe Belastung in Richtung Y Summe Belastung in Richtung Z Resultierende der Reaktionen um X Resultierende der Reaktionen um Z Max. Verschiebung in X Max. Verschiebung in X Max. Verschiebung in Z Max. Verschiebung in Z Max. Verdrehung um X Max. Verdrehung um Y Max. Verdrehung um Z Maximale Stabverzerrung Maximale Flächenverzerrung Berechnungstheorie Steifigkeitsreduzierung Anzahl der Laststufen Anzahl der Iterationen Maximaler Wert des Elementes der Steifigkeitsmatrix auf der Diagonale Minimaler Wert des Elementes der Steifigkeitsmatrix auf der Diagonale Determinante der Steifigkeitsmatrix Unendlich-Norm	0.00 0.00 0.00 2399.99 0.000 -1170.100 0.000 -1.11 -0.0 7.8 7.8 4.0 -0.3 -0.0 0.000 0.000 I. Ordnung 1.4 1.477E+14 2.726E+07 1.677E+1460 43 2.953E+14	kN kN kN	Abweichung 0.00% Im Schwerpunkt des Modells (X:3.952, Y:0.000, Z:1.690 m) Im Schwerpunkt des Modells Im Schwerpunkt des Modells Im Schwerpunkt des Modells FE-Netzknoten Nr. 275 (X: 9.000, Y: 3.960, Z: 0.000 m) FE-Netzknoten Nr. 892 (X: 0.000, Y: 3.680, Z: 0.000 m) FE-Netzknoten Nr. 814 (X: 0.444, Y: 3.960, Z: 0.000 m) FE-Netzknoten Nr. 142 (X: 0.444, Y: 3.960, Z: 0.000 m) FE-Netzknoten Nr. 142 (X: 0.690, Y: 2.000, Z: 0.000 m) FE-Netzknoten Nr. 248 (X: 8.600, Y: 0.000, Z: 3.250 m) FE-Netzknoten Nr. 248 (X: 8.690, Y: 2.000, Z: 0.000 m) Stab Nr. 0, x: 0.000 m FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) Theorie 1. Ordnung (linear) Querschnitte, Stäbe, Flächen
astfall LF11 - Daldrup B4 LP 7 und 8, LK 10/11 Summe Belastung in Richtung X Summe Belastung in Richtung Y Summe Belastung in Richtung Y Summe Belastung in Richtung Z Summe Lagerkräfte in Z Resultierende der Reaktionen um X Resultierende der Reaktionen um X Resultierende der Reaktionen um Z Max. Verschiebung in X Max. Verschiebung in X Max. Verschiebung in Z Max. Verschiebung in Z Max. Verschiebung wat X Max. Verdrehung um X Max. Verdrehung um X Max. Verdrehung um Z Maximale Stabverzerrung Maximale Flächenverzerrung Berechnungstheorie Steifigkeitsreduzierung Anzahl der Laststufen Anzahl der Laststufen Maximale Wert des Elementes der Steifigkeitsmatrix auf der Diagonale Minimaler Wert des Elementes der Steifigkeitsmatrix auf der Diagonale Determinante der Steifigkeitsmatrix	0.00 0.00 0.00 132.80 132.80 132.80 132.81 0.000 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 1. Ordnung 1 7 1.477E+14 2.726E+07 6.570E+1460 44 2.953E+14	kN kN kN kN kNm kNm kNm mm mm mm mm mrad mrad mrad %	Abweichung 0.00% Im Schwerpunkt des Modells (X:3.952, Y:0.000, Z:1.690 m) Im Schwerpunkt des Modells Im Schwerpunkt des Modells FE-Netzknoten Nr. 2017 (X: 13.850, Y: -2.000, Z: 0.000 m) FE-Netzknoten Nr. 2017 (X: 13.850, Y: -2.000, Z: 0.000 m) FE-Netzknoten Nr. 296 (X: 13.250, Y: -2.000, Z: 0.000 m) FE-Netzknoten Nr. 1950 (X: 13.550, Y: 1.385, Z: 0.000 m) Stab Nr. 0, x: 0.000 m FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) Theorie I. Ordnung (linear) Querschnitte, Stäbe, Flächen

Lastfall LF12 - Daldrup B4 LP 7 und 8, LK 70 Summe Belastung in Richtung X

0.00 kN

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 69 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

ERGEBNISSE

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

Seite:

15.06.2023

■ ERGEBNISSE - ZUSAMMENFASSUNG

Bezeichnung	Wert	Einhe	Kommentar	
Summe Lagerkräfte in X Summe Belastung in Richtung Y Summe Lagerkräfte in Y Summe Belastung in Richtung Z Summe Lagerkräfte in Z Resutlierende der Reaktionen um X	0.00 0.00 0.00 286.00 286.00 -7.904	kN kN kN kN kN	Abweichung 0.00% Im Schwerpunkt des Modells (X:3.952, Y:0.000, Z:1.690 m)	
Resultierende der Reaktionen um Y Resultierende der Reaktionen um Z	-2873.590 0.000	kNm kNm	Im Schwerpunkt des Modells Im Schwerpunkt des Modells	
Max, Verschiebung in X Max, Verschiebung in Y	0.0	mm mm		
Max. Verschiebung in Z Max. Verschiebung vektoriell	1.8 1.8	mm	FE-Netzknoten Nr. 2017 (X: 13.850, Y: -2.000, Z: 0.000 m) FE-Netzknoten Nr. 2017 (X: 13.850, Y: -2.000, Z: 0.000 m)	
Max. Verdrehung um X Max. Verdrehung um Y	-0.2 -0.1	mrad	FE-Netzknoten Nr. 1999 (X: 13.850, Y: -1.077, Z: 0.000 m) FE-Netzknoten Nr. 1997 (X: 13.250, Y: -1.077, Z: 0.000 m)	
Max. Verdrehung um Z Maximale Stabverzerrung	0.0	mrad	Stab Nr. 0, x: 0.000 m	
Maximale Flächenverzerrung	0.000	%o	FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)	
Berechnungstheorie Steifigkeitsreduzierung	I. Ordnung		Theorie I. Ordnung (linear) Querschnitte, Stäbe, Flächen	
Anzahl der Laststufen Anzahl der Iterationen	1 2			
Maximaler Wert des Elementes der Steifigkeitsmatrix auf der Diagonale	1.477E+14			
Minimaler Wert des Elementes der Steifigkeitsmatrix auf der Diagonale	2.726E+07			
Determinante der Steifigkeitsmatrix	2.843E+1460 43			
Unendlich-Norm	2.953E+14			

Berechnungsstatus:			
Die Summe der Lasten und die Summe der Lage			Gleichgewicht (Abweichung -11.69%).
Summe Belastung in Richtung X	0.00		
Summe Lagerkräfte in X	0.00	kN	
Summe Belastung in Richtung Y	0.00	kN	
Summe Lagerkräfte in Y	0.00	kN	
Summe Belastung in Richtung Z	0.15	kN	
Summe Lagerkräfte in Z	0.15	kN	Abweichung 0.00%
Resultierende der Reaktionen um X	0.000	kNm	Im Schwerpunkt des Modells (X:3.952, Y:0.000, Z:1.690 m)
Resultierende der Reaktionen um Y	0.000	kNm	Im Schwerpunkt des Modells
Resultierende der Reaktionen um Z	0.000	kNm	Im Schwerpunkt des Modells
Max. Verschiebung in X	-0.2	mm	FE-Netzknoten Nr. 275 (X: 9.000, Y: 3.960, Z: 0.000 m)
Max. Verschiebung in Y	0.2	mm	FE-Netzknoten Nr. 892 (X: 0.000, Y: -3.680, Z: 0.000 m)
Max. Verschiebung in Z	-0.0	mm	FE-Netzknoten Nr. 146 (X: 0.000, Y: 2.000, Z: 0.000 m)
Max. Verschiebung vektoriell	0.3	mm	FE-Netzknoten Nr. 283 (X: 7.000, Y: -3.960, Z: 0.000 m)
Max. Verdrehung um X	-0.1	mrad	FE-Netzknoten Nr. 981 (X: 7.019, Y: 1.800, Z: 2.700 m)
Max. Verdrehung um Y	0.0	mrad	FE-Netzknoten Nr. 1567 (X: 5.200, Y: 0.145, Z: 2.100 m)
Max. Verdrehung um Z	0.1	mrad	FE-Netzknoten Nr. 98 (X: -1.600, Y: -1.800, Z: 0.000 m)
Maximale Stabverzerrung	0.000	%0	Stab Nr. 0, x: 0.000 m
Maximale Flächenverzerrung	0.000	%0	FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)
Berechnungstheorie	I. Ordnung		Theorie I. Ordnung (linear)
Steifigkeitsreduzierung	200024000071		Querschnitte, Stäbe, Flächen
Anzahl der Laststufen	1		
Anzahl der Iterationen	11		
Maximaler Wert des Elementes der	1.477E+14		
Steifigkeitsmatrix auf der Diagonale	8335-345-00-00-00-00-00-00-00-00-00-00-00-00-00		
Minimaler Wert des Elementes der	2.726E+07		
Steifigkeitsmatrix auf der Diagonale	5. 0000 0000 00 00000000000000000000000		
Determinante der Steifigkeitsmatrix	1.897E+1460		
1150	23		
Unendlich-Norm	2.953E+14		

Berechnungsstatus: Problem in LF20		111	White a series of the series o
Max. Verschiebung in X	1.1	mm	LF10, FE-Netzknoten Nr. 275 (X: 9.000, Y: 3.960, Z: 0.000 m)
Max. Verschiebung in Y	0.2	mm	LF20, FE-Netzknoten Nr. 892 (X: 0.000, Y: -3.680, Z: 0.000 m)
Max. Verschiebung in Z	7.8	mm	LF10, FE-Netzknoten Nr. 814 (X: 0.444, Y: 3.960, Z: 0.000 m)
Max. Verschiebung vektoriell	7.8	mm	LF10, FE-Netzknoten Nr. 814 (X: 0.444, Y: 3.960, Z: 0.000 m)
Max, Verdrehung um X	4.0	mrad	LF10, FE-Netzknoten Nr. 142 (X: 0.690, Y: 2.000, Z: 0.000 m)
Max. Verdrehung um Y	-0.3	mrad	LF10, FE-Netzknoten Nr. 248 (X: 8.600, Y: 0.000, Z: 3.250 m)
Max. Verdrehung um Z	0.1	mrad	LF20, FE-Netzknoten Nr. 98 (X: -1.600, Y: -1.800, Z: 0.000 m)
Sonstige Einstellungen:			
Anzahl 1D-Finite-Elemente	540		
Anzahl 2D-Finite-Elemente	1975		
Anzahl 3D-Finite-Elemente	0		
Anzahl FE-Netzknoten	2524		
Anzahl der Gleichungen	15144		
Maximale Anzahl Iterationen	100		
Anzahl der Stabteilungen für Ergebnisverläufe	10		
Stabteilung Seil-, Bettungs- und Voutenstäbe	10		
Anzahl der Stabteilungen für das Suchen der	10		
Maximalwerte	1961		
Unterteilungen des FE-Netzes für grafische	0		
Ergebnisse	3227	23	
Prozentuelle Anzahl der Iterationen der Methode	5	%	
nach Picard kombiniert mit der Methode nach			
Newton-Raphson			
Ausgefallene Lager aktivieren	×		
Optionen:	598.7		
Schubsteifigkeit (Ay, Az) der Stäbe aktivieren	×		
Stäbe bei Theorie III. Ordnung bzw. Durchschlagproblem teilen	(X)		

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 70 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

ERGEBNISSE

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15.06.2023

1	FRGFRNISSI	_ 71	IO A B AB	AFRIFA	COLINIC

Die eingestellten Steifigkeitsänderungen aktivieren	⊠	
Rotationsfreiheitsgrade ignorieren		
Kontrolle der kritischen Kräfte der Stäbe	N N	
Unsymmetrischer direkter Gleichungslöser, falls	⊠ □	
für nichtlineares Modell erfordert		
Lösungsmethode für das Gleichungssystem	Gerade	
Platten-Biegetheorie	Mindlin	
Solver-Version	64-bit	
Solidi Valdidii	50.50	
Genauigkeit und Toleranz:		
Standardeinstellung ändern		
Nichtlineare Effekte - Aktivieren:		
Lager und elastische Bettungen		

■ KNOTEN - LAGERKRÄFTE

Knoten		Lagerkräfte [kN]			Lagermomente [kNm]			
Nr.	LF/LK	P _{X'}	P _Y	Pz'	M _X	My	$M_{Z'}$	
116	LF1	0.00	0.16	0.00	0.00	0.00	0.00	
	LF10	0.00	1.54	0.00	0.00	0.00	0.00	Daldrup B4 (faktorisirt, LP 1+2)
	LF11	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 10/11
	LF12	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 70
	LF20	0.00	0.03	0.00	0.00	0.00	0.00	aus Auflast Daldrup B4
117	LF1	0.16	0.00	0.00	0.00	0.00	0.00	
	LF10	1.54	0.00	0.00	0.00	0.00	0.00	Daldrup B4 (faktorisirt, LP 1+2)
	LF11	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 10/11
	LF12	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 70
	LF20	0.03	0.00	0.00	0.00	0.00	0.00	aus Auflast Daldrup B4
118	LF1	-0.16	-0.16	0.00	0.00	0.00	0.00	The State of Section 19 (1997) and the Section 1997 (1997)
1,0770	LF10	-1.54	-1.54	0.00	0.00	0.00	0.00	Daldrup B4 (faktorisirt, LP 1+2)
	LF11	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 10/11
	LF12	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 70
	LF20	-0.03	-0.03	0.00	0.00	0.00	0.00	aus Auflast Daldrup B4
215	LF1	0.00	-0,40	0.00	0.00	0.00	0.00	
	LF10	0.00	1.16	0.00	0.00	0.00	0.00	Daldrup B4 (faktorisirt, LP 1+2)
	LF11	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 10/11
	LF12	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 70
	LF20	0.00	0.03	0.00	0.00	0.00	0.00	aus Auflast Daldrup B4
216	LF1	-0.40	0.00	0.00	0.00	0.00	0.00	
	LF10	1.16	0.00	0.00	0.00	0.00	0.00	Daldrup B4 (faktorisirt, LP 1+2)
	LF11	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 10/11
	LF12	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 70
	LF20	0.03	0.00	0.00	0.00	0.00	0.00	aus Auflast Daldrup B4
217	LF1	0.40	0.40	0.00	0.00	0.00	0.00	The second secon
	LF10	-1.16	-1.16	0.00	0.00	0.00	0.00	Daldrup B4 (faktorisirt, LP 1+2)
	LF11	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 10/11
	LF12	0.00	0.00	0.00	0.00	0.00	0.00	Daldrup B4 LP 7 und 8, LK 70
	LF20	-0.03	-0.03	0.00	0.00	0.00	0.00	aus Auflast Daldrup B4
Σ Lager	LF1	0.00	0.00	0.00				
Σ Lasten	LF1	0.00	0.00	1477.48				
Σ Lager	LF10	0.00	0.00	0.00				
Σ Lasten	LF10	0.00	0.00	2399.99				
Σ Lager	LF11	0.00	0.00	0.00				
Σ Lasten	LF11	0.00	0.00	132.80				
Σ Lager	LF12	0.00	0.00	0.00				
ΣLasten	LF12	0.00	0.00	286.00				
Σ Lager	LF20	0.00	0.00	0.00				
ΣLasten		0.00	0.00	0.15				

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 71 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

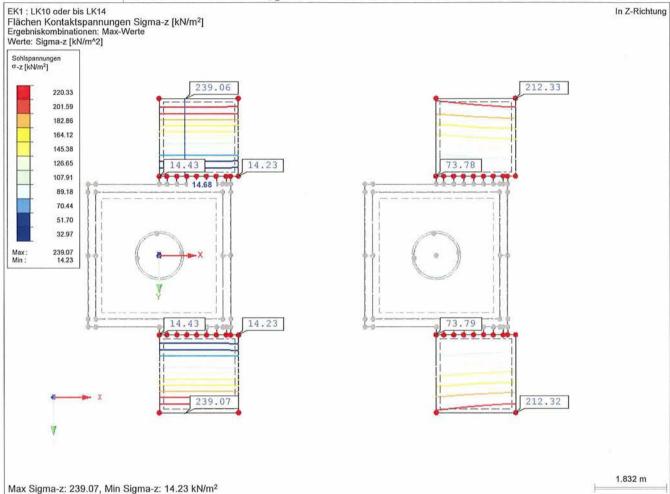
Sudermannstraße 110, 29313 HAMBÜHREN

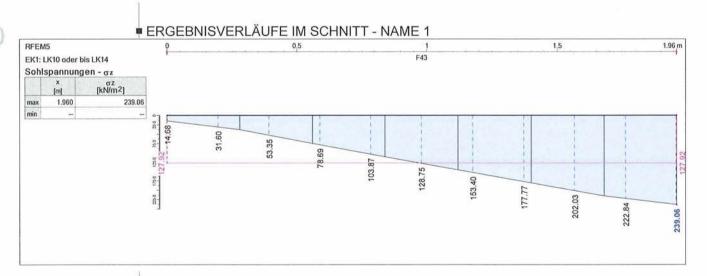
Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

36

ERGEBNISSE


Projekt: 42206_BGE Remlingen 18


Modell: 1.1

Datum:

15.06.2023

\blacksquare SOHLSPANNUNGEN σ_z TURMFUNDAMENT H = 50 CM

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 72 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

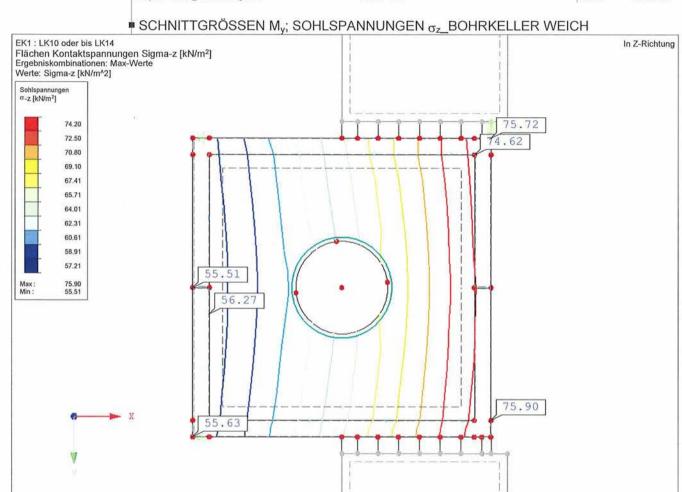
Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite.

27

ERGEBNISSE


0.876 m

Projekt: 42206_BGE Remlingen 18

Modell: 1,1

Datum:

15.06.2023

Sigma ≤ 200 kN/m² => o.w. Nachweis

Max Sigma-z: 75.90, Min Sigma-z: 55.51 kN/m2

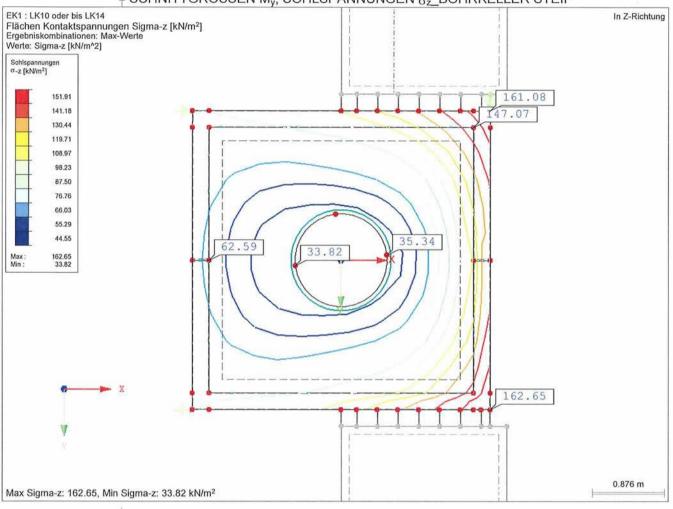
BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 73 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

ERGEBNISSE

Projekt: 42206_BGE Remlingen 18


Modell: 1.1

Datum:

Seite:

15.06.2023

=> NICHT MASSGEBEND

Bodenpressung Fundament d = 30 cm (LP 7 und 8) siehe Ziffer 5!

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 74 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

39

RF-BETON Flächen

RF-BETON Flächen

Stahlbeton-Bemessung

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

Datum:

15 06 2023

BASISANGABEN

Bemessung nach Norm:

DIN EN 1992-1-1/NA/A1:2015-12

TRAGFĀHIGKEIT
Zu bemessende Lastkombinationen:

LK1 1.35*LF1 + LF10

LK3

1.35*LF1 + LF10 Ständig und vorübergehend 1.35*LF1 + LF10 + 1.35*LF20 Ständig und vorübergehend 1.35*LF1 + 1.35*LF20 Ständig und vorübergehend 1.35*LF1 + 1.35*LF11 LK4

Ständig und vorübergehend 1.35*LF1 + 1.35*LF12 Ständig und vorübergehend

LK5

Definition der vorhandenen Zusatzbewehrung

Automatische Anordnung nach Vorgaben in Maske 1.4

DETAILEINSTELLUNGEN Nachweisverfahren für Bewehrungsumhüllende Ansatz von Schnittgrößen ohne Rippenanteil

Gemischte

LK2

Einstellungen der Bemessungssituation für GZG-Nachweise Lastkombination; Charakteristisch mit Direktlast Charakteristisch mit Zwangsverformung

Nachweise: k₁*f_{ck}, k₃*f_{yk} Nachweise: k₁*f_{ck}, k₄*f_{yk}

Häufig Quasi-ständig

Nachweise: w_k
Nachweise: k₂*f_{ck}, w_k, u_I

MATERIALIEN

Material	Materi	Materialbezeichnung		
Nr.	Beton-Festigkeitsklasse	Stahl-Bezeichnung	Kommentar	
1	Beton C35/45	B 500 S (A)	3634034034034036	

MATERIALKENNWERTE

Material Nr.	Bezeichnung	Symbol	Größe	Einhei
1	Beton-Festigkeitsklasse: Beton C35/45	1		
	Charakteristische Zylinderdruckfestigkeit	fck	35.00	N/mm^2
	5%-Quantil der zentrischen Zugfestigkeit	f _{ctk,0.05}	2.20	N/mm^2
	Charakteristische für nichtlineare Berechnungen	12772777		
	Mittelwert des Elastizitätsmoduls	E _{cm}	34000.00	N/mm^2
	Mittelwert der Zylinderdruckfestigkeit	f _{em}	43.00	N/mm^2
	Mittelwert der zentrischen Zugfestigkeit	f _{stm}	3.20	N/mm^2
	Grenzdehnung bei zentrischem Druck	Ec1	-2.250	%o
	Bruchdehnung	Ectu	-3.500	% 0
	Schubmodul	G	14166.70	N/mm^2
	Querdehnzahl	v	0.200	:e0
	Charakteristische Dehnungen für Parabel-Rechteck-Diagramm			
	Grenzdehnung bei zentrischem Druck	€c2	-2.000	%0
	Mittelwert der zentrischen Zugfestigkeit Grenzdehnung bei zentrischem Druck Bruchdehnung Schubmodul Querdehnzahl Charakteristische Dehnungen für Parabel-Rechteck-Diagramm Grenzdehnung bei zentrischem Druck Bruchdehnung Exponent der Parabel Spezifisches Gewicht Betonstahl: B 500 S (A) Elastizitätsmodul	Ecu2	-3.500	%
	Exponent der Parabel	n	2.000	+
	Mittelwert der zentrischen Zugfestigkeit Grenzdehnung bei zentrischem Druck Bruchdehnung Schubmodul Querdehnzahl Charakteristische Dehnungen für Parabel-Rechteck-Diagramm Grenzdehnung bei zentrischem Druck Bruchdehnung Exponent der Parabel Spezifisches Gewicht Betonstahl: B 500 S (A)	γ	25.00	kN/m^3
	Elastizitätsmodul	E _s	200000.00	N/mm^2
	Mittelwert der Streckgrenze	f _{ym}	550.00	N/mm^2
	Charakteristischer Wert der Streckgrenze	f _{yk}	500.00	N/mm^2
	Mittelwert der Zugfestigkeit	f _{tm}	551.25	N/mm^2
	Charakteristischer Wert der Zugfestigkeit	f _{EK}	525.00	N/mm^2
	Stahldehnung unter Höchstlast	ELOK	25.000	%00

■ FLÄCHEN

Fläche Nr.	Mat. Nr.	Dicke Typ	Dicke [mm]	Anmer- kungen	Kommentar
21	1	Konstant	400.00		
30	1	Konstant	400.00		
32	1	Konstant	400.00		
36	1	Konstant	400.00		
41	1	Konstant	500.00		
42	1	Konstant	500.00		
43	1	Konstant	500.00		
44	1	Konstant	400.00		
51	1	Konstant	400.00		
53	1	Konstant	400.00		
57	1	Konstant	400.00		
62	1	Konstant	500.00		
63	1	Konstant	500.00		
64	1	Konstant	500.00		
65	1	Konstant	300.00		1

BEWEHRUNGSSATZ NR. 1

Angewendet auf Flächen:

21,30,32,36,41-44,51,53,57,62-65

BEWEHRUNGSGRAD Mindest-Querbewehrung

20.0 %

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 75 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Modell: 1.1

RF-BETON Flächen

BEWEHRUNGSSATZ NR. 1

Mindest-Bewehrung generell Mindest-Druckbewehrung Mindest-Zugbewehrung Maximaler Bewehrungsgrad Minimaler Schubbewehrungsgrad

Projekt: 42206 BGF Remlingen 18

Betondeckung nach Norm

ANORDNUNG DER GRUNDBEWEHRUNG - OBEN (-z)

Anzahl der Bahnen Achsmaßdeckungen Stabdurchmesser Bewehrungsrichtungen Bewehrungsfläche

ANORDNUNG DER GRUNDBEWEHRUNG - UNTEN (+z)

Anzahl der Bahnen Achsmaßdeckungen Stabdurchmesser Bewehrungsrichtungen Bewehrungsfläche

ANORDNUNG DER ZUSATZBEWEHRUNG - OBEN (-z) Anzahl der Bahnen

Achsmaßdeckungen Stabdurchmesser Bewehrungsrichtungen Bewehrungsfläche

ANORDNUNG DER ZUSATZBEWEHRUNG - UNTEN (+z)

Anzahl der Bahnen Achsmaßdeckungen Stabdurchmesser

0.0 % 0.0 % 0.0 % 4.0 % 0.0 %

Datum:

Seite:

15.06.2023

40

ds-1: 10.00, ds-2: 10.00 mm Phi-1: 0.000°, Phi-2: 90.000° As-1,-z (oben): 0.00, As-2,-z (oben): 0.00 cm²/m

2 d-1: 40.00, d-2: 50.00 mm

d-1: 40.00, d-2: 50.00 mm ds-1: 10.00, ds-2: 10.00 mm Phi-1: 0.000°, Phi-2: 90.000°

As-1,+z (unten): 0.00, As-2,+z (unten): 0.00 cm²/m

d-1: 30.00, d-2: 40.00 mm d-1: 10.00, ds-2: 10.00 mm Phi-1: 0.000°, Phi-2: 90.000° Ansatz der erforderlichen Zusatzbewehrung nach

Tabelle 2.1, 2.2, 2.3

Bewehrungsrichtungen Bewehrungsfläche

2d-1: 30.00, d-2: 40.00 mm ds-1: 10.00, ds-2: 10.00 mm Phi-1: 0.000°, Phi-2: 90.000° Ansatz der erforderlichen Zusatzbewehrung nach

Tabelle 2.1, 2.2, 2.3

LÄNGSBEWEHRUNG FÜR QUERKRAFTNACHWEIS

Ansatz des jeweils größeren Wertes aus erforderlicher oder vorhandener Längsbewehrung (Grund- und Zusatzbewehrung) pro Bewehrungsrichtung.

EINSTELLUNGEN ZU DIN EN 1992-1-1/NA/A1:2015-12

Mindestlängsbewehrung für Platten nach 9.3.1 Mindestlängsbewehrung für Wände nach 9.6 Mindestschubbewehrung

Verhältnis b/h
Begrenzung der Druckzone
Veränderliche Druckstrebenneigung - Min Veränderliche Druckstrebenneigung - Max Teilsicherheitsbeiwert γ_s

Teilsicherheitsbeiwert γ_c
Berücksichtigung von Langzeitwirkungen Alpha-cc Berücksichtigung von Langzeitwirkungen Alpha-ct

> 5 18.434

18.434 ° 45.000 ° ST+V 1.15, AU 1.00, GZG 1.00 ST+V 1.50, AU 1.30, GZG 1.00 ST+V 0.85, AU 0.85, GZG 1.00

GZG 1.00

DEWELIDING EL XOLIENIMEIOE

Fläche	Punkt	Punkt-k	Coordinate	n [m]		Erford. Bewehrung	Basis	Zusätzliche E	Bewehrung		Anmer
Nr.	Nr.	X	Υ	Z	Symbol	GZT	Bewehr.	Erforderlich	Vorhanden	Einheit	kunger
21	N97	-1.600	1.800	0.000	a _{s,1,-z} (oben)	1.55	0.00	1.55	1.55	cm ² /m	
	N8	-0.800	1.800	3.000	a _{s,2,-z} (oben)	1.35	0.00	1.35	1.35	cm ² /m	
	N131	0.000	1.800	0.000	a _{s,1,+z} (unten)	3.90	0.00	3.90	3.90	cm ² /m	
	N86	0.371	1.800	1.200	a _{s,2,+z} (unten)	1.54	0.00	1.54	1.54	cm²/m	
	N134	0.190	1.800	0.000	a _{sw}	6.14	-	4		cm ² /m ²	
30	N98	-1.600	-1.800	0.000	a _{s,1,-z} (oben)	1.53	0.00	1.53	1.53	cm ² /m	
1.00	N1106	-1.018	-1.800	3,000	a _{s,2,-z} (oben)	1.31	0.00	1.31	1.31	cm ² /m	
	N158	0.190	-1.800	0.000	a _{s,1,+z} (unten)	3.90	0.00	3.90	3.90	cm ² /m	
	N2532	0.322	-1.800	1.200	a _{s,2,+z} (unten)	1.55	0.00	1.55	1.55	cm ² /m	
	N158	0.190	-1.800	0.000	a _{sw}	6.14	-			cm ² /m ²	
32	N85	1.800	1.600	0.000	a _{s,1,-z} (oben)	1.57	0.00	1.57	1.57	cm ² /m	
	N2110	1.800	-1.018	0.900	a _{s,2,-z} (oben)	0.45	0.00	0.45	0.45	cm ² /m	
	N85	1.800	1.600	0.000	a _{s,1,+z} (unten)	1.21	0.00	1.21	1.21	cm ² /m	
	N83	1.800	-1.600	0.000	a _{s,2,+z} (unten)	0.26	0.00	0.26	0.26	cm²/m	
	N83	1,800	-1.600	0.000	a _{sw}	0.00			-	cm ² /m ²	
36	N2211	-1.800	-1.600	0.600	a _{s,1,-z} (oben)	1.20	0.00	1.20	1.20	cm ² /m	
	N2255	-1.800	-1.309	0.900	a _{s,2,-2} (oben)	0.62	0.00	0.62	0.62	cm ² /m	
	N2225	-1.800	-0.145	0.000	a _{s,1.+z} (unten)	0.39	0.00	0.39	0.39	cm ² /m	
	N2312	-1.800	1.309	2.700	a _{s,2,+z} (unten)	0.21	0.00	0.21	0.21	cm ² /m	
	N84	-1.800	-1.600	0.000	a _{sw}	0.00		-		cm ² /m ²	
41	N152	-0.064	-0.556	3.250	a _{s,1,-z} (oben)	2.17	0.00	2.17	2.17	cm ² /m	
	N152	-0.064	-0.556	3.250	a _{s,2,-z} (oben)	0.43	0.00	0.43	0.43	cm²/m	
	N152	-0.064	-0.556	3.250	a _{s,1,+z} (unten)	1.57	0.00	1.57	1.57	cm ² /m	
	N128	1.600	-1.600	3.250	a _{s,2,+z} (unten)	0.60	0.00	0.60	0.60	cm ² /m	
	N127	-1.600	-1.600	3.250	a _{sw}	0.00	~			cm ² /m ²	
42	N135	1.690	2.000	0.000	a _{s,1,-z} (oben)	0.86	0.00	0.86	0.86	cm ² /m	
	N183	1.800	2.000	0.000	a _{s,2,-z} (oben)	1.37	0.00	1.37	1.37	cm ² /m	
	N843	0.911	3.120	0.000	a _{s,1,+z} (unten)	4.07	0.00	4.07	4.07	cm ² /m	
	N853	0.918	2.840	0.000	a _{s,2,+z} (unten)	4.80	0.00	4.80	4.80	cm ² /m	
	N833	0.903	3.400	0.000	a _{sw}	6.14		-		cm ² /m ²	
43	N163	1.690	-2.000	0.000	a _{s,1,-z} (oben)	0.89	0.00	0.89	0.89	cm ² /m	
0.00	N177	0.000	-2.000	0.000	a _{s,2,-z} (oben)	1.36	0.00	1.36	1.36	cm²/m	

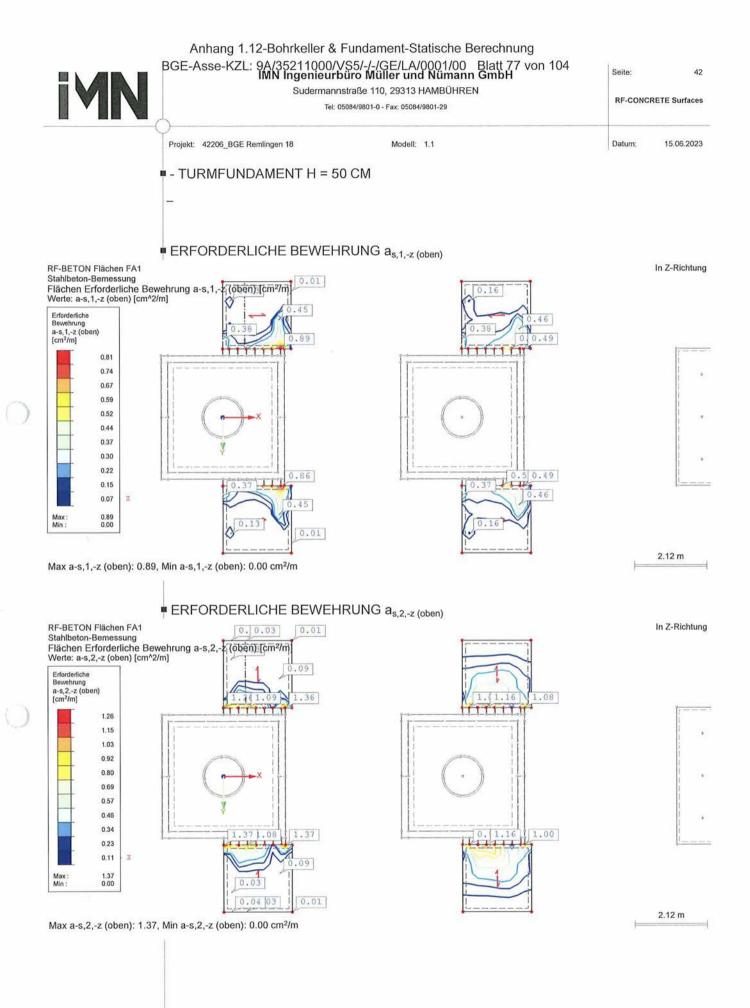
BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 76 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

RF-BETON Flächen

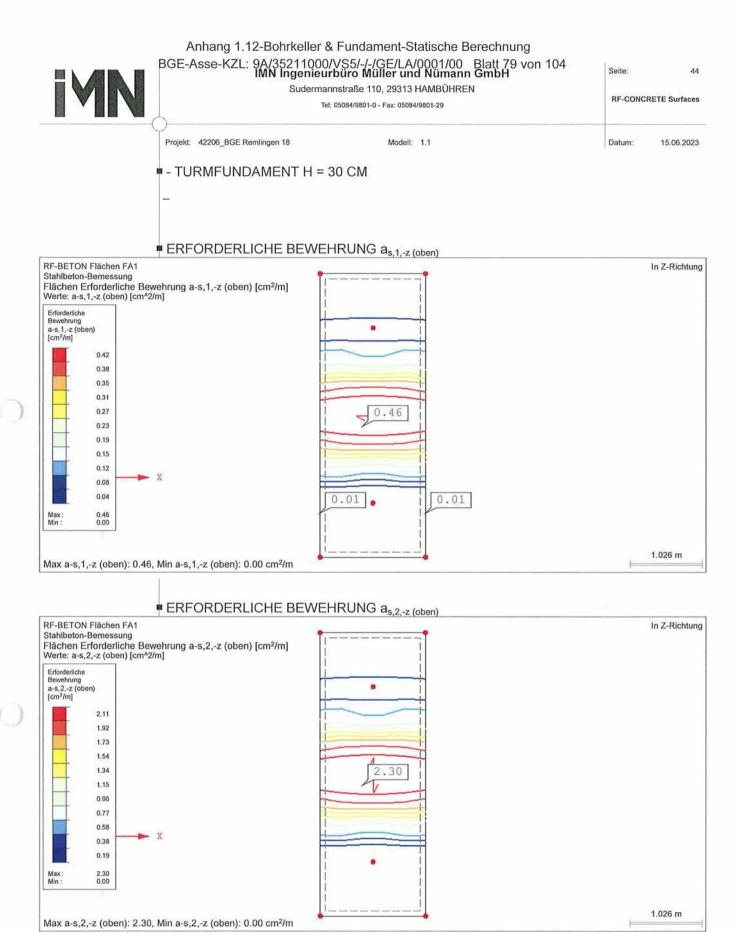

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

15.06.2023

■ ERFORDERLICHE BEWEHRUNG FLÄCHENWEISE

Fläche	Punkt	Punkt-k	Coordinate	n [m]		Erford. Bewehrung	Basis	Zusätzliche E	Bewehrung		Anmer-
Nr.	Nr.	X	Y	Z	Symbol	GZT	Bewehr.	Erforderlich	Vorhanden	Einheit	kunger
	N923	0.911	-3.120	0.000	a _{s,1,+z} (unten)	4.07	0.00	4.07	4.07	cm²/m	
	N933	0.918	-2.840	0.000	a _{s,2,+z} (unten)	4.79	0.00	4.79	4.79	cm ² /m	
	N913	0.903	-3.400	0.000	a _{sw}	6.14	(1700.0)	A885		cm ² /m ²	
44	N196	5.400	1.800	0.000	a _{s,1,-z} (oben)	1.61	0.00	1.61	1.61	cm²/m	
	N233	7.190	1.800	0.000	a _{s,2,-z} (oben)	1.75	0.00	1.75	1.75	cm²/m	
	N233	7.190	1.800	0.000	a _{s,1,+z} (unten)	4.19	0.00	4.19	4.19	cm²/m	
	N1054	7.371	1.800	1,200	a _{s,2,+z} (unten)	1.67	0.00	1.67	1.67	cm²/m	Ĭ.
	N233	7.190	1.800	0.000	a _{sw}	6.14	0.00	1.01		cm ² /m ²	
51	N197	5.400	-1.800	0.000	a _{s,1,-z} (oben)	1.59	0.00	1.59	1.59	cm²/m	
· .	N257	7.190	-1.800	0.000	2s,1,-z (oben) 2s,2,-z (oben)	1.73	0.00	1.73	1.73	cm²/m	
	N257	7.190	-1.800	0.000		4.19	0.00	4.19	4.19	cm²/m	
	N1275	7.322	-1.800	1.200	a _{s,1,+z} (unten)	1.68	0.00	1.68	1.68	cm²/m	
	N257	7.190	-1.800	0.000	a _{s,2,+z} (unten) a _{sw}	6.14	0.00	1.00	1.00	cm²/m²	
53	N1334	8.800	1,600	1.200		1.19	0.00	1.19	1.19	cm²/m	
33	N1335	8.800	1.600	1.500	a _{s.1,-z} (oben)	0.69	0.00	0.69	0.69	cm²/m	
	N1354	8.800	0.145	0.000	a _{s,2,-z} (oben)	0.44	0.00	0.44	0.44	cm²/m	
	N1424	8.800	0.145	2.100	a _{s,1,+z} (unten)	0.20	0.00	0.20	0.20	cm²/m	
		8.800	-1.600	0.000	a _{s.2,+z} (unten)	0.20	0.00	0.20	0.20	cm²/m²	
57	N192				a _{sw}		0.00	4.04	404		
57:	N1482	5.200	-1.600	0.600	a _{s.1,-z} (oben)	1.24	0.00	1.24	1.24	cm²/m	
	N1528	5.200	-1.309	0.900	a _{s,2,-z} (oben)	0.63	0.00	0.63	0.63	cm²/m	
	N1498	5.200	-0.145	0.000	a _{s,1,+z} (unten)	0.35	0.00	0.35	0.35	cm²/m	
	N1585	5.200	1.309	2.700	a _{s,2,+z} (unten)	0.24	0.00	0.24	0.24	cm²/m	
	N193	5.200	-1.600	0.000	a _{sw}	0.00				cm ² /m ²	
62	N251	6.936	-0.556	3.250	a _{s.1z} (oben)	2.42	0.00	2.42	2.42	cm²/m	
	N1692	7.514	0.223	3.250	a _{s.2,-z} (oben)	0.76	0.00	0.76	0.76	cm²/m	
	N1690	7.064	0.556	3.250	a _{s,1,+z} (unten)	1.61	0.00	1.61	1.61	cm ² /m	
	N228	5.400	1.600	3.250	a _{s,2,+z} (unten)	0.61	0.00	0.61	0.61	cm ² /m	
50000	N226	5.400	-1.600	3.250	a _{sw}	0.00				cm ² /m ²	
63	N243	8.190	2.000	0.000	a _{s,1,-z} (oben)	0.52	0.00	0.52	0.52	cm ² /m	
	N241	7.690	2.000	0.000	a _{s,2,-z} (oben)	1.16	0.00	1.16	1.16	cm²/m	
	N1811	7.911	3.120	0.000	a _{s,1,+z} (unten)	4.09	0.00	4.09	4.09	cm²/m	
	N1821	7.918	2.840	0.000	a _{s,2,+z} (unten)	4.31	0.00	4.31	4.31	cm²/m	
II	N234	8,690	2.000	0.000	asw	0,00				cm ² /m ²	
64	N269	8.440	-2.000	0.000	a _{s,1,-z} (oben)	0.52	0.00	0.52	0.52	cm ² /m	
	N266	7.690	-2.000	0.000	a _{s,2,-z} (oben)	1.16	0.00	1.16	1.16	cm ² /m	
	N1891	7.911	-3.120	0.000	a _{s,1,+z} (unten)	4.09	0.00	4.09	4.09	cm ² /m	
	N1901	7.918	-2.840	0.000	a _{s.2.+z} (unten)	4.31	0.00	4.31	4.31	cm ² /m	
	N262	8.690	-2.000	0.000	a _{sw}	0.00	-			cm ² /m ²	
65	N1975	13.850	0.154	0.000	a _{s,1,-z} (oben)	0.46	0.00	0.46	0.46	cm ² /m	
4.50	N1975	13.850	0.154	0.000	a _{s.2,-z} (oben)	2.30	0.00	2.30	2.30	cm ² /m	
	N2005	13.850	-1.385	0.000	a _{s,1,+z} (unten)	1.55	0.00	1.55	1.55	cm ² /m	
	N1957	13.850	1.077	0.000	a _{s,2,+z} (unten)	1.58	0.00	1.58	1.58	cm ² /m	
	N296	13.250	-2.000	0.000	a _{sw}	0.00	-	*		cm ² /m ²	



Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 78 von 104 IMN Ingenieurbüro Müller und Nümann GmbH Seite: 43 Sudermannstraße 110, 29313 HAMBÜHREN RF-CONCRETE Surfaces Tel: 05084/9801-0 - Fax: 05084/9801-29 Projekt: 42206_BGE Remlingen 18 Modell: 1.1 Datum: 15.06.2023 ERFORDERLICHE BEWEHRUNG as,1,+z (unten) RF-BETON Flächen FA1 In Z-Richtung Stahlbeton-Bemessung Flächen Erforderliche Bewehrung a-s,1 Werte: a-s,1,+z (unten) [cm^2/m] Erforderliche Bewehrung a-s,1,+z (unten) [cm²/m] 3.76 3.42 3.09 2.75 2.42 2.08 1.75 1.41 1.08 1.05 1.18 0.74 Х 0.41 4.09 0.07 2.034 m Max a-s,1,+z (unten): 4.09, Min a-s,1,+z (unten): 0.07 cm²/m ERFORDERLICHE BEWEHRUNG as,2,+z (unten) RF-BETON Flächen FA1 In Z-Richtung Stahlbeton-Bernessung Flächen Erforderliche Bewehrung a-s,2 z (untern) [cm²/n] Werte: a-s,2,+z (unten) [cm^2/m] Erforderliche Bewehrung a-s,2,+z (unten) [cm²/m] 11111 4.40 4.00 3,60 3.20 2.81 2.41 2.01 1.21 0.82

2.034 m

0.42 X 4.80 0.02

Max a-s,2,+z (unten): 4.80, Min a-s,2,+z (unten): 0.02 cm²/m

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 80 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

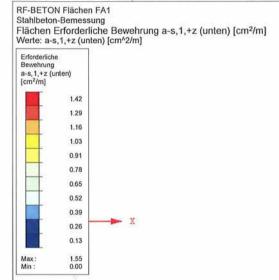
45

RF-CONCRETE Surfaces

Projekt: 42206_BGE Remlingen 18

Modell: 1.1

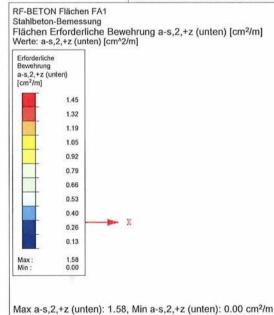
Datum:

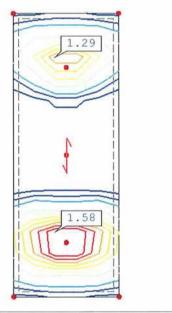

15.06.2023

In Z-Richtung

1.026 m

In Z-Richtung


■ ERFORDERLICHE BEWEHRUNG a_{s,1,+z (unten)}



Max a-s,1,+z (unten): 1.55, Min a-s,1,+z (unten): 0.00 cm²/m

1.46

ERFORDERLICHE BEWEHRUNG as,2,+z (unten)

1.026 m

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 81 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

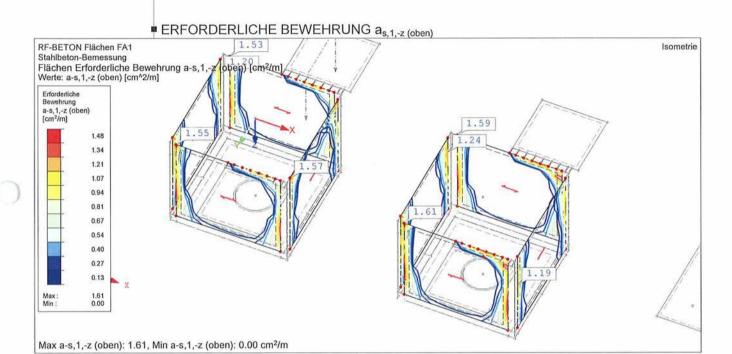
Sudermannstraße 110, 29313 HAMBÜHREN

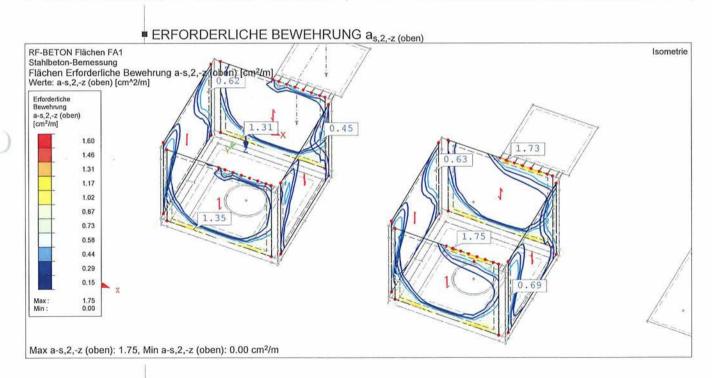
Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

46

RF-CONCRETE Surfaces


Projekt: 42206_BGE Remlingen 18


Modell: 1.1

Datum:

15.06.2023

- BOHRKELLERWÄNDE

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 82 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

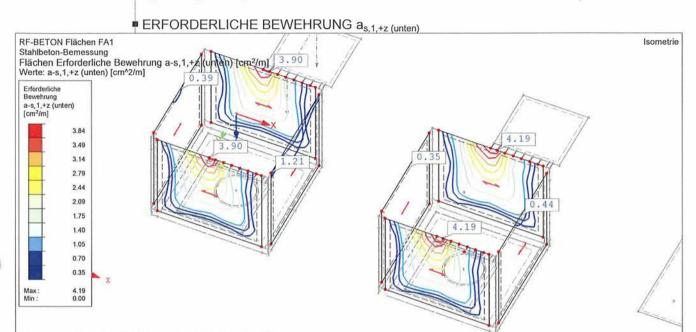
Sudermannstraße 110, 29313 HAMBÜHREN

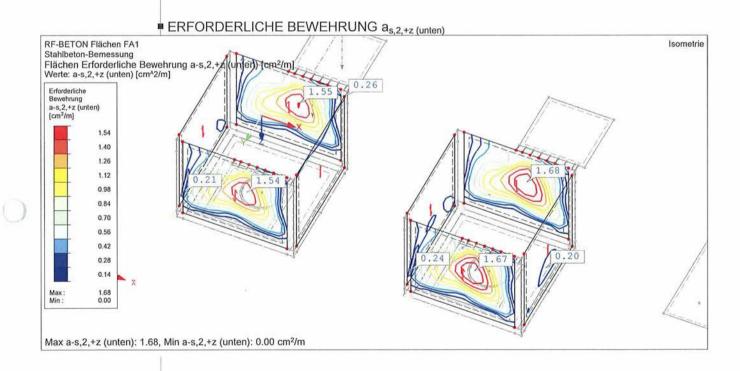
Tel: 05084/9801-0 - Fax: 05084/9801-29

RF-CONCRETE Surfaces

Projekt: 42206_BGE Remlingen 18

Max a-s,1,+z (unten): 4.19, Min a-s,1,+z (unten): 0.00 cm²/m


Modell: 1.1


Datum:

Seite:

15.06.2023

47

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 83 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

Sudermannstraße 110, 29313 HAMBÜHREN

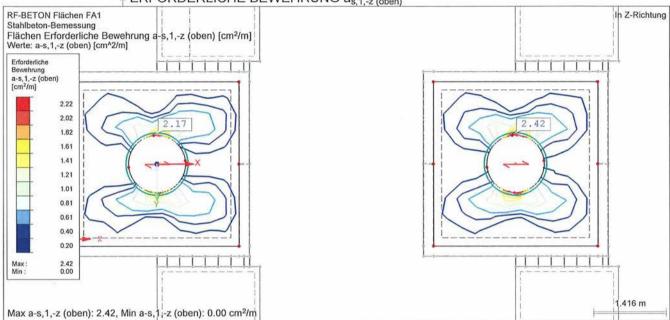
Tel: 05084/9801-0 - Fax: 05084/9801-29

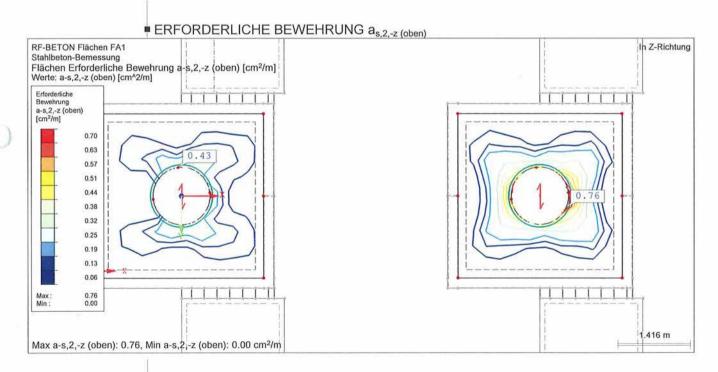
Seite:

48

RF-CONCRETE Surfaces

Projekt: 42206_BGE Remlingen 18


Modell: 1.1


Datum:

15.06.2023

- BOHRKELLERSOHLE

ERFORDERLICHE BEWEHRUNG as,1,-z (oben)

BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 84 von 104 IMN Ingenieurbüro Müller und Nümann GmbH

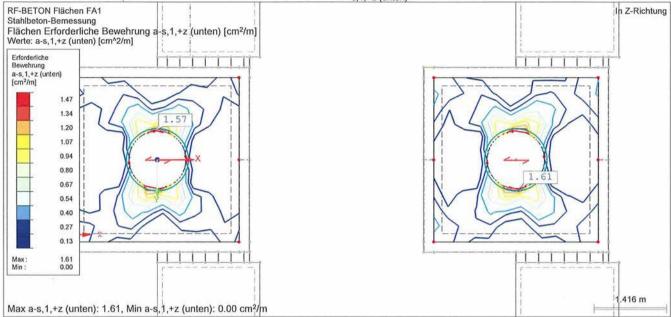
Sudermannstraße 110, 29313 HAMBÜHREN

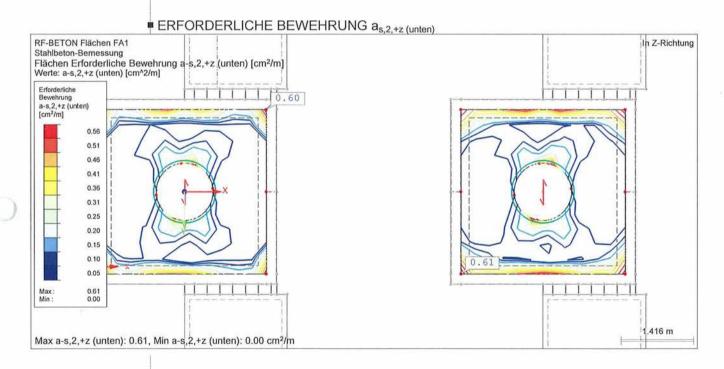
Tel: 05084/9801-0 - Fax: 05084/9801-29

Seite:

49

RF-CONCRETE Surfaces


Projekt: 42206_BGE Remlingen 18


Modell: 1.1

Datum:

15.06,2023

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 85 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 50

4.3 Rissbreitennachweis

- Bohrkellerwand (Zwang aus Hydratation)

$$A_{s,min} = k_c * k * f_{ct,eff} * A_{ct} / \sigma_s$$
 = 1,0 * 0,74 * 1,6 * 0,40 / 120 = 3,95 * 10⁻³ m²/m = 39,5 cm²/m

gew.: 2 * Ø 14/7,5 = 41,06 cm²/m

mit: kc = 1,0

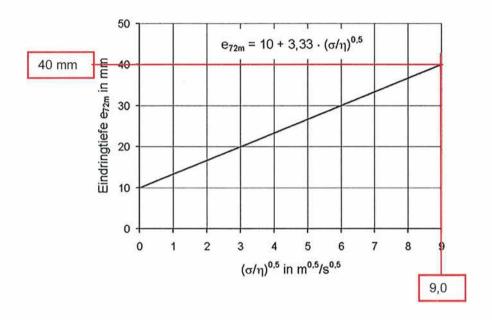
k = 0,74 (für h= 40 cm)

 $F_{ct,eff} = 1,6 \text{ MN/m}^2 = 0,5 * 3,2$

 $A_{ct} = 1.0 * 0.40 = 0.40 \text{ m}^2/\text{m}$

 $\sigma_s = 120 \text{ MN/m}^2 \text{ (gewählt)}$

Nachweis des gew. Durchmessers (für wk = 0,1 mm)


 $\varnothing_s = \varnothing_s^* * (f_{ct,eff} / f_{cto}) = 25 * 1,6 / 2,9 = 13,8 \text{ mm} \approx \text{vorh. } \varnothing_s$

Dok.-Nr.: 42206-CAL-001-0

Seite 51

4.4 Dichtheitsnachweis Bohrkeller

$$e_{tm} = 40.0 \text{ mm} * \sqrt{\frac{72}{72}} = 40 \text{ mm} \text{ (für 72 Std.)}$$

Nachweis im ungerissenen Bereich

$$h \ge \gamma_e * e_{tk}$$

mit:
$$e_{tk} = 54$$
 mm; $y_e = 1,5$

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 87 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 52

- Sohle

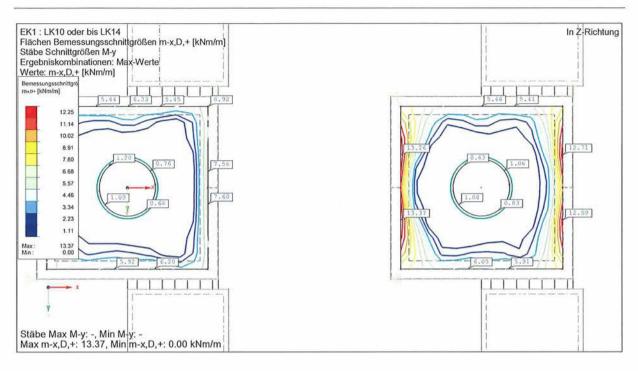
Nachweis für Zustand 1 (Bohrkellersohle)

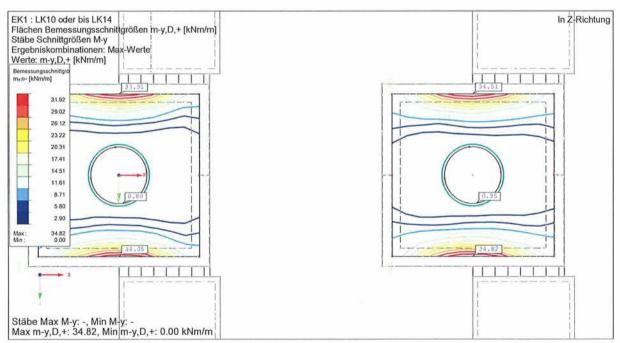
 $f_{cbk;0,05}$ darf bei elastischer Bettung um 30% erhöht werden (s. DAfStb-Richtlinie BUmwS Teil 1, 5.1.3 (3)

$$f_{cbk;0,05} = 1.3 \left(1 + 0.13 \sqrt{\left(\frac{l}{h}\right)}\right) * f_{ctk;0,05}$$

$$f_{cbk;0,05} = 1.3 \left(1 + 0.13 \sqrt{\left(\frac{1}{0.5}\right)}\right) * 2.25 = 3.46 N/mm^2$$

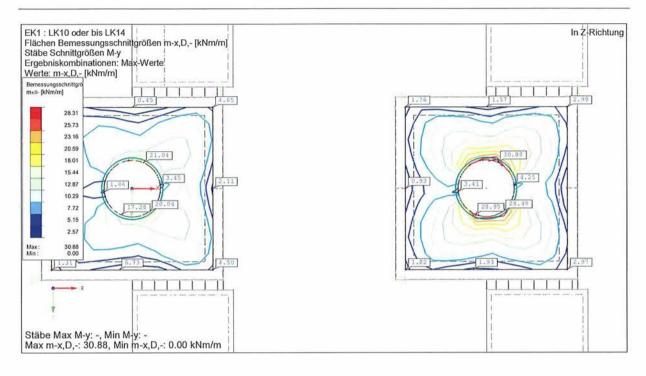
$$zul.M = \frac{0,346*100*50^2}{6*1,25} = 11533 \ kNcm \triangleq 115,33kNm$$

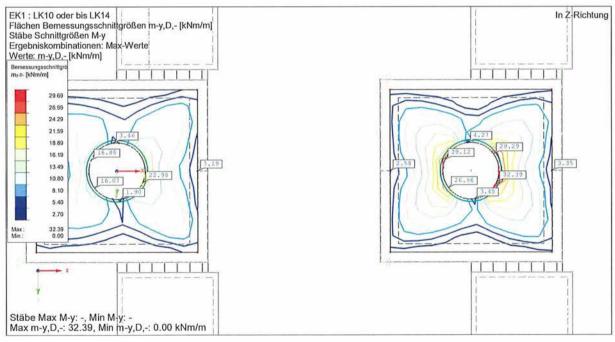

=> Nachweis s. folgend


Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 88 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 53





Dok.-Nr.: 42206-CAL-001-0

Seite 54

max. m = 34,82 kNm/m ≤ 115,33 => ungerissen!

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 90 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 55

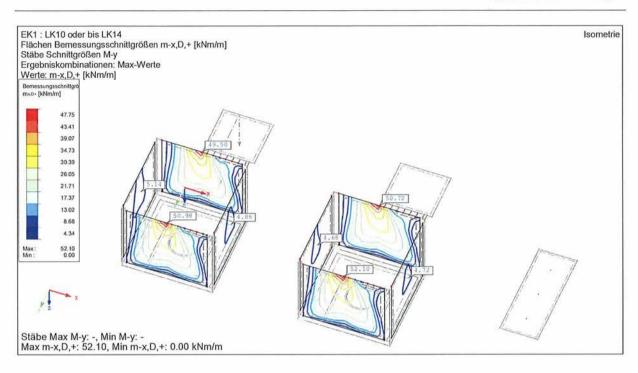
- Wände

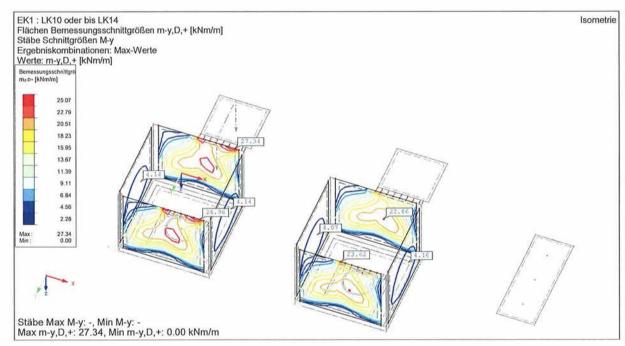
Nachweis für Zustand 1 (Bohrkellerwände h = 40 cm)

$$f_{cbk;0,05} = \left(1 + 0.13\sqrt{\left(\frac{l}{h}\right)}\right) * f_{ctk;0,05}$$

$$f_{cbk;0,05} = \left(1 + 0.13\sqrt{\left(\frac{1}{0.4}\right)}\right) * 2.25 = 2.71N/mm^{2}$$

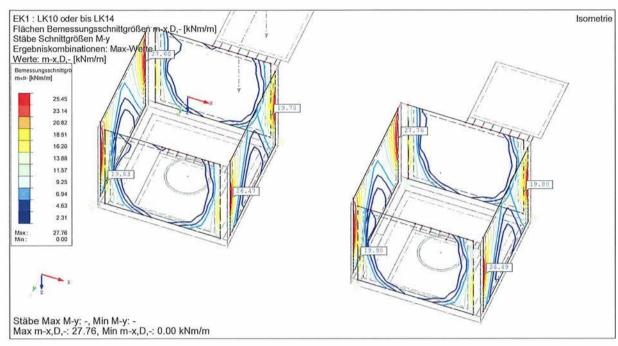
zul.
$$M = \frac{0.271*100*40^2}{6*1,25} = 5781,3 \text{ kNcm} \triangleq 57,87\text{kNm}$$

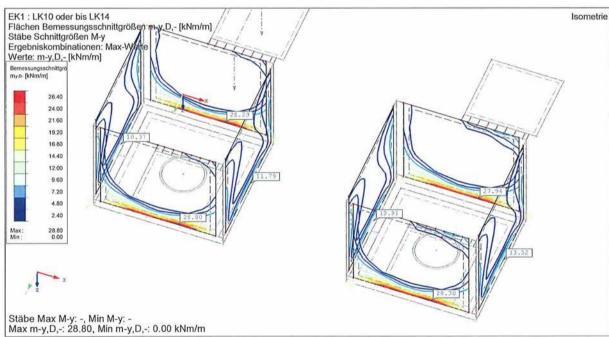

=> Nachweis s. folgend


Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 91 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 56



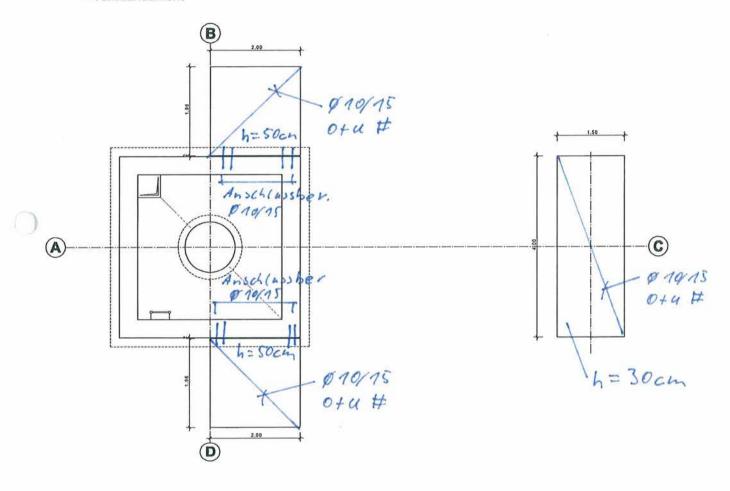


Dok.-Nr.: 42206-CAL-001-0

Seite 57

max. m = 52,1 kNm/m ≤ 57,87 => ungerissen!

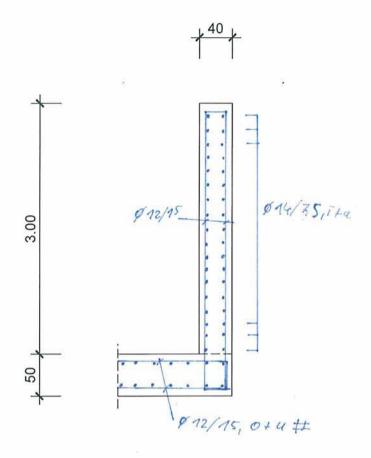
Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 93 von 104


Dok.-Nr.: 42206-CAL-001-0

Seite 58

4.5 Bewehrungsskizzen

- Turmfundament


Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 94 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 59

- Bohrkeller

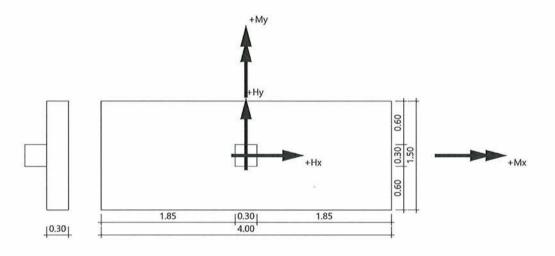
Dok.-Nr.: 42206-CAL-001-0

Seite 60

5. Standsicherheit Fundament für P7 und P8 (Lagesicherheit und klaffende Fuge)

5.1 Einwirkungen

Siehe Seite 13


5.2 EDV-Berechnung

Position: FD+-001

Fundament (x64) FD+ 02/2023A (FRILO R-2023-2/P03)

System

Draufsicht

Fundament nach DIN EN 1992-1-1/NA/A1:2015-12 und DIN EN 1997-1/NA:2010-12

Bauteil

Bauteil	Beton	Betonstahl	Breite (x)	Breite (y) m	Höhe (z) m
Fundament Stütze	C 25/30 C 25/30	B500A B500A	4.00 0.30	1.50 0.30	0.30 0.00

Einbindetiefe des Fundamentes in den Baugrund $0.30\,m$. Ohne Grundwasser. Bemessungswert des Sohldruckwiderstands $\sigma_{R,d}=210.00\,kN/m^2$.

Boden

Nr	Bezeichung	d m	von m	bis m	γ kN/m³	γ' kN/m³	φ'	c' kN/m²
1		1.50	0.30	-1.20	18.50	11.00	30.0	0.00

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 96 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 61

Lasten

Stützenlasten - charakteristisch

Nr	Ew	Bezeichnung	N kN	M _x kNm	M _v kNm	H _x kN	H _v kN	Zus	Alt
1	g	g Fund. + Pylon	20.8	0.00	0.00	0.0	0.0	0	0
2	A	LK10 / 11	0.0	0.00	44.24	31.6	10.1	0	1
3	Α	LK12	0.0	0.00	0.00	0.0	35.0	0	1
4	Α	LK28	0.0	0.00	0.00	0.0	29.1	0	1
5	Α	LK70	0.0	0.00	0.00	0.0	5.7	0	1

Eigengewicht ist bei den Nachweisen berücksichtigt. Wichte Beton: γ = 25.00 kN/m³. Gesamtfundament ohne Sockel bzw. Stütze 1.800 m³ / 45.00 kN. Horizontallasten greifen an der Oberkante des Sockels bzw. der Stütze an. Torsion aus Horizontallasten wird nicht berücksichtigt.

Einzellasten - charakteristisch

Nr	wirksam in Lastfall	N kN	ax m	ay m
1	2	118.7	1.24	0.00
2	2	14.1	-1.24	0.00
3	3	87.0	1.24	0.00
4	3	87.0	-1.24	0.00
5	4	20.0	1.24	0.00
6	4	20.0	-1.24	0.00
7	5	143.0	1.24	0.00
8	5	143.0	-1.24	0.00

Überlagerung

Nr	BS	Überlagerung
1	Р	$1.35 \times (1) + 1.5 \times (2)$
1 2	P	$0.9 \text{ bzw. } 1.1 \times (1) + 1.5 \times (5)$
3	P	0,9 bzw. 1,1 x (1) + 1.5 x (2)
4	P	0,9 bzw. 1,1 x (1) + 1.5 x (4)
4 5 6	P	0,95 bzw. 1,05 x (1) + 1.5 x (5)
6	P	$1.35 \times (1) + 1.5 \times (4)$
7	P	1.0 x (1)
8	Р	$1.0 \times (1) + 1.0 \times (2)$
9	P	$1.0 \times (1) + 1.5 \times (2)$
10	Р	$1.35 \times (1) + 1.5 \times (5)$
11	Р	$1.0 \times (1) + 1.5 \times (5)$
12	perm	$1.0 \times (1) + 0.3 \times (5)$
13	perm	$1.0 \times (1) + 0.3 \times (2)$

BS: Bemessungssituation P: ständig

Die Lastfallnummern stehen in den Klammern.

Ergebnisse

Übersicht Nachweise

Nachweis	Überlagerung	η
klaffende Fuge nur ständige Lasten SLS charakteristisch	7	0.00
klaffende Fuge ständige und veränderliche Lasten SLS charakteristisch	8	0.48
Lagesicherheit	3	0.25
Vereinfachter Nachweis ULS	1	0.43
Gleitsicherheit	6	0.79
Grundbruch	1	0.52

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 97 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 62

Lagesicherheit nach DIN 1054:2021 Überlagerung

Nr	bei		m	M _{Ed.dst} kNm	M _{Ed.st} kNm	η
3	x	=	2.00	80.58	322.36	0.25
2	×	=	-2.00	0.00	976.49	0.00
4	У	=	0.75	13.08	89.44	0.15
2	У	=	-0.75	0.00	368.73	0.00

Lagesicherheit: stabilisierende und destabilisierende Momente um Aussenkanten Die Teilsicherheitsbeiwerte der Überlagerungen sind Lastfallweise konstant. Die vertikale Erddruckkomponente aus Fundamenteinbindung ist nicht berücksichtigt.

Bemessungswert des Sohldruckwiderstands $\sigma_{R,d} = 210.00 \text{ kN/m}^2$

 σ_{Rd} = 210.00 kN/m². Der Bemessungswert des Sohldruckwiderstands ist direkt vorgegeben worden.

Vereinfachter Nachweis Überlagerung

Nr	GZ	BS	N _d kN	R ₀ kN	a' m	b' m	σ _d kN/m²	σ_{Rd} kN/m ²	n	
1	GEO	Р	288.1	0.0	2.15	1.47	91.05	210.00	0.43	

Der Sohldruck ist mit Sicherheitsbeiwerten behaftet.

Gleitsicherheit nach DIN 1054:2021 Überlagerung

Nr	T _{Edx} kN	T _{Edv} kN	N _k kN	δ_{SK}	R _{tk} kN	R _{td} kN	YRh	n	
6	0.0	43.6	105.8	30.00	61.1	55.5	1.1	0.79	

Der Sohlreibungswinkel ist aus der Bodenschicht in Höhe der Fundamentsohle prozentual entnommen und auf 35° begrenzt worden. Der prozentuale Anteil am inneren Reibungswinkel beträgt: 100%.

Grundbruch

Grundbruch nach DIN 4017:2006 Überlagerung

Grundbruchnachweis Überlagerung 1 - System

			·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
a' m	b' m	d m	s m	β	γ ₁ kN/m³	γ ₂ kN/m³	c' kN/m²	φ'	α	p _v kN/m²	
2.15	1.47	0.30	0.00	0.0	18.50	18.50	0.00	30.0	0.0	0.00	

DIN 4017:2006 - Grundbruchnachweis Überlagerung 1

d' m	N _{Ek} kN	T _{Ekx} kN	T _{Ekv} kN	δ	ω	N _{Ed} kN	T _{Edx} kN	T _{Edv} kN	R _{nk}	R _{nd} kN	η
0.30	198.7 kN	31.6 kN	10.1 kN	9.5	17.6	288.1 kN	47.4 kN	15.1 kN	775.7 kN	554.1 kN	0.52

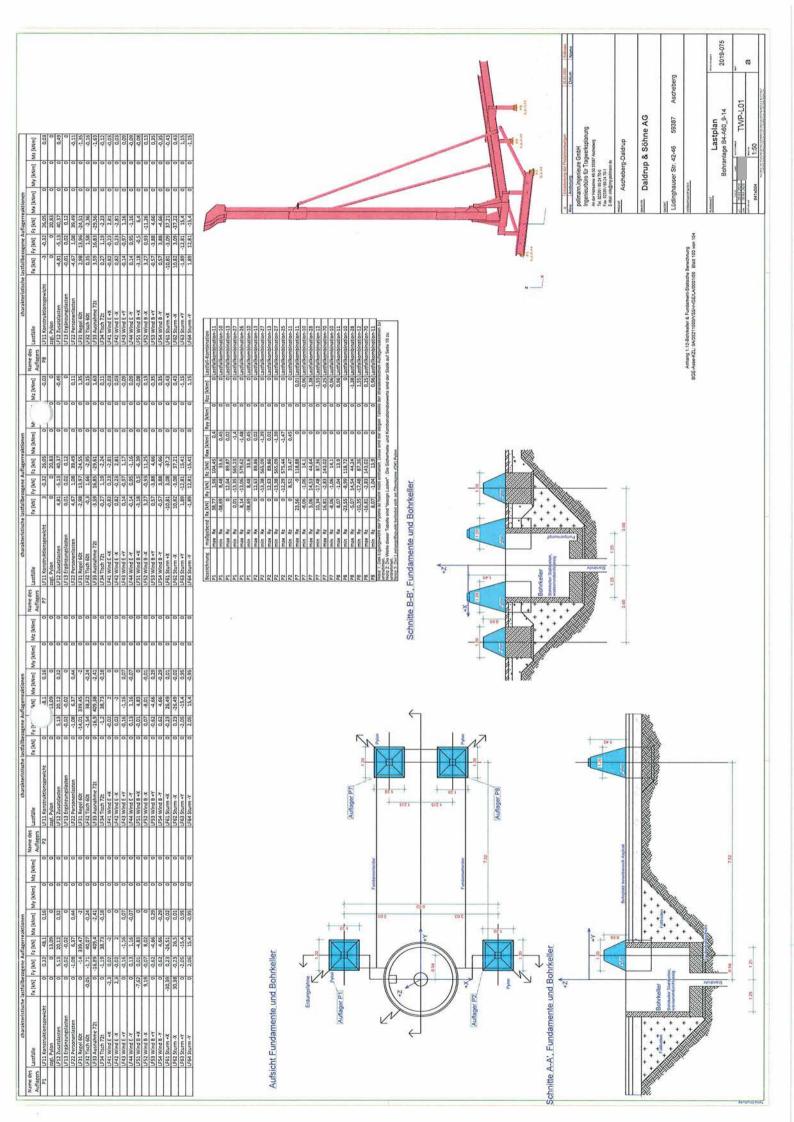
klaffende Fuge nach DIN 1054:2021 Überlagerung

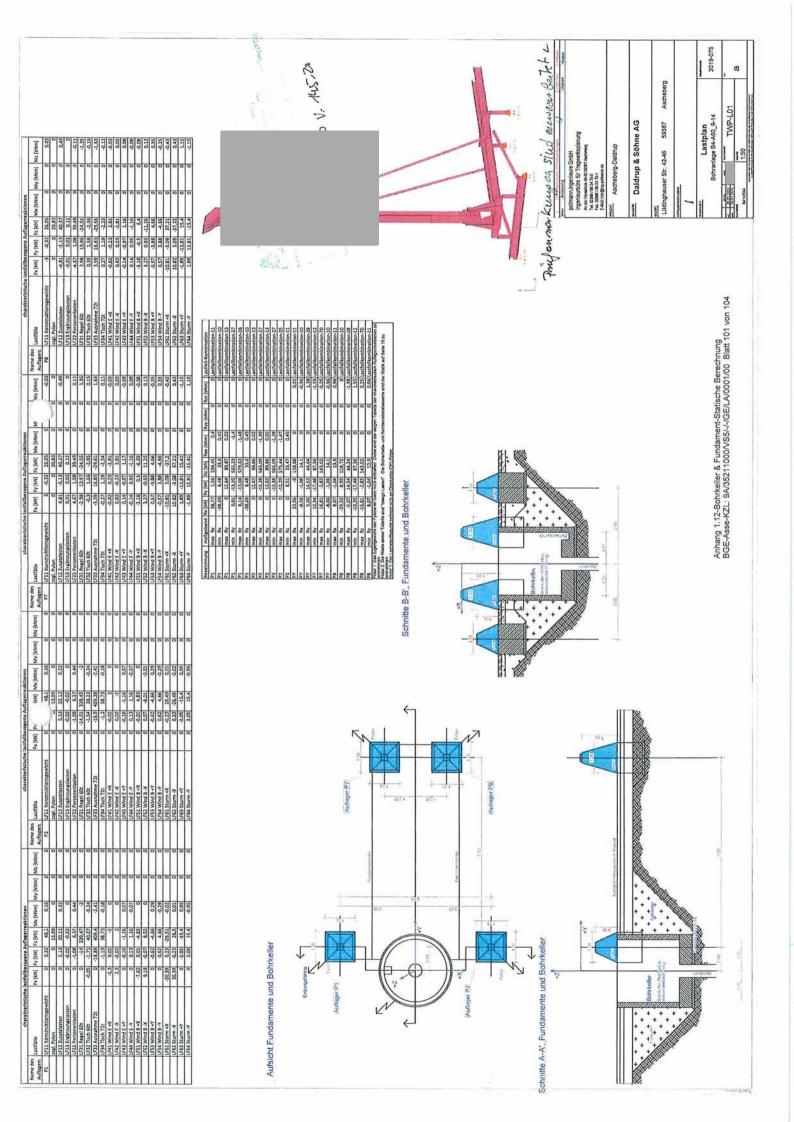
Nr	GZ	BS	N kN	ex m	ey m	a*/(1/6)	b*/(1/9)	ηG	ηG,Q
7	SLS	Р	65.8	0.00	0.00	0.000/0.167		0.00	
8	SLS	P	198.7	0.92	0.02		0.053/0.111		0.48

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 98 von 104

Dok.-Nr.: 42206-CAL-001-0

Seite 63




Die statische Berechnung ist abgeschlossen.	
Hambühren, 15.06.2023	
Unterschrift Aufsteller	

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 99 von 104

Anlage 1

Loadplan [3.1]

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 102 von 104

Anlage 2

Auszüge [3.2]

\$1363-20. Sesp. 2005/4-frace. stahk

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 103 von 104

Standsicherheitsnachweis

Projekt

2019-075 B4A-60 9-14

Nutzer

Daldrup & Söhne AG

Lüdinghauser Straße 42-46

59387 Ascheberg

Auftraggeber

Daldrup & Söhne AG

Lüdinghauser Straße 42-46

59387 Ascheberg

20.03.2020

Aufsteller

Softmank ingunitation ingenieurbüro für Tragwerksplanung

pollmann.ingenieure GmbH An der Hansalinie 48-50 59387 Ascheberg Tel. +49 2599 89 24 70-0 Fax. +49 2599 89 24 70-1

www.ing-pollmann.de

Aufsteller Niehen

Dipl.-Ing.(TU)

(IWE)

Tel. +49 2599 89 24 70

@ing-pollmann.de

20.03.2020

Die Statik darf nur für das o. g. Projekt auf Grundlage der in den Vorbemerkungen genannten Annahmen und Unterlagen verwendet werden. Für im Grundriss bzw. Ausführung ähnliche Projekte muss eine eigenständige Berechnung erfolgen. Die Berechnung umfasst die im Inhaltsverzeichnis aufgeführten Seiten bzw. Pläne und Änlagen.

-Z1-12N-200514

1

Mep

Anhang 1.12-Bohrkeller & Fundament-Statische Berechnung BGE-Asse-KZL: 9A/35211000/VS5/-/-/GE/LA/0001/00 Blatt 104 von 104

Proj-Nr: 2019-075

Projekt: Ascheberg - Ascheberg - Daldrup

Seite 10 04.03.2020

Globale Lastannahmen

1.3.3 Lastfallkombinationen

tome	Grenzustand Littl Earstand	Uli Konstable. Uli Zuurduten Uli Egintung. Uli Emcheluten	Ullfrancongs	- Uzi Imchelum	in U.2 Personenias	- Util Regel GX	Unting	HAusnahme - 1534	Tech The Livery	ME-X LF42Wed1	-x UNIWALL-Y	Utawas f.y	USIWMet-X U	St Wedt - X USS W	ind B -Y LPH Wind	B-Y Udi Sum-X	Ust Sum-X	1543 Sturm - Y LP6	M. Sum .?
antellambaston 1000	Tordibular w				-	- remainded	No.	The state of the s	Parameter Familia	Percent Amende	Max. Asmendances	C. Kemandishilak.	Acministrantist. Ka	mbranentic. Kambe	Attended Lambings	mysk., Kentineland	A. Kemberstanifal.	Combination (st.)	maintenative.
	GUST Tackington - 1		. 0					9		. 0				9 6	2.5	0 4	6 6	0 1	Ī
	Beginbakel = 1		٥	0	0	a	0	a	0	-	. 0			. 0					
	Tagishupled v 1	-	0	0	0	0	0	0	o	u	-	a	0						
	Tagishipest 1			0	0	0	0		0	o	0		0	ú				0	
	Tagfaheghat -1		٥	133	a	o	0	0		a	0	0		•	9		a	0	
Lattistembination-7 (U.S.	Dagishajare _1		0	113	0	0	0	•	0	-	0	•	0	0	0		a	0	
Lamenta management (VL)	Depthylated 21			0.1						0			0	0	0	0	۰	0	
	They they are			220	. 0				9	9 6	9 0		9 6	0 6	0 4		0 6		Ì
Lanfalliambination-TI (UKS	Institution - 1																		
Lamisticonhousen-17 (23.5	Destablished - 1		ļ.														3 .		
Leitfellombeation-13 (US	Bertshoken - 1										. 0							3.	
Lastfallsenbersten-14 (U.S.	Tapübişket = 135	1,35	tis	o	0	1.15			9	۰	0							5	
LettleBombinsten-15 (U.S.	Suprahipped _ 125	5	20	0	0	(3)	0	9		9	0	e							
Lattistambinatur-16 (U.S.	GAS) Topishepent - 123	5	133	0	•	135	0	•	0	•	0					. 0			
Lettfalkonbination-17 (ULS	(ALL) Legithques _ 113	1,11	1,13	0	0	1.15	0	0	•	9	0		0			. 0			
	OCO hardshoper with	1.18	118	•		114													7
	1100 Landshoton will be	118	1.16																
	Landshides with																		
	Will of the Control of the		177																
	and a second second	3 :													9			•	1
	tone and and and	3 :	3 :					9		9	9		0		0	•	٠	•	
	C' Sendentina Com	3 :	8 :	0						0	0		0	0		۰		•	
	aspendent Line	3 3	3 :			0	2			•	0	0		G.	0	•	۰	0	
	(UC) Supramptor (US)	3	5	0	0	9	2	9	۰	0	0	•	-	9	a	a	0	0	
	Supply of The	25	5	0	0	0		0	•	3	0	•		0	0	10		•	
	Taglibigae - U.	5	(3)	0	0	0	0	9	•	0			0		o	۰		0	
	(ULS) Suprabagain 1 1,15	5	133	0	6		0	0	0	•	e			٥		۰		0	
	Tagetalopel - 1.33	25	5	0		0		60	o	٥	۰	•		0	0	0	0	0	
	(ULS) Testangleit all 1,35	CS.	(3)	0		ø		0	۰	a	a	0	•	0	0	٥		0	
	(UCS) Tepfohlytest - US	5	1,15		0	0		•	0	0		0		0		•	0		
1	(ULS) Teaplehighest (2) 135	53	53	0				0		0	•				9	0			
	(ULS) Teglengier 1,35	CR	172	0	0	e	0	0	۰	0	0	0	0	0			0	•	
Lenfaltambhatten-M (ULS)	(ULS) Tapfablighen 21		_	0	0			•	ŋ	q				0	0			0	
	(ULS) Tesplategles		_		0		0	0	•	Ŋ	e	0	0		9	۰		0	
	(ULS) Teaplehopiant = 1	-		0	0	0	0	•		٥	3	•		0	٠			0	
	(ULS) Tesplateplant = 1				٥		0	9	•			ŋ	9	0	•	a		۵	
	(ULS) Teaplategy or -1		_	0	٥	a	0	•	۰	٥		9	0 27	0	o	۰	a	0	
				0	0		0		0	۰	٥		2	•	a	0		•	
1	(ULS) Teaplinishes 11				0		0	0	•		0	•	0	en.	0	۰	•	0	10
7.0	(ULS) Teopla National 11			0	0	0	0	9	0	9	•	0	0	0	ų	0		•	
7	(UC) september 1				0		0		0	0	0	0	0	9		22		•	
	and Todayana ale					9 4			0 .		0	0	0		0	0	n	•	
	and and and						0								0	•	•	n	
	The state of the s												9	•	0	•	•	3	
	The state of the s			200					- •		9 :			0 .				0	
	ARS Townships with										٠.		9 5					0	1
	and Darkships of							2.5							9 4			0	
	1													,				9	
	1	5	63		0	0	1,15	0	0	0	•	۵	0	q	9)	0		0	
	ग	3	9	0	a	0	5	٥	9.	•	0	•	2	0	•	0		0	
	(ULS) Traylehinghest 2 133	3	3		0	0	in in	•		•	0			•	0	9		0	
Last allamenten-31 (UL	(U.S. Traplabytion	5 :	5 :	о .	a e		2 .	0	0		0	0	0	-	0	•	•	•	
	Contraction of the	3 :	3 5		0 4		9.	0 .	0 4	0	0	0 1	0		-	0			-
T	All Charles and a line	35.	3 11				5 6	0 4		•	n e				0 .				
	D. Tambibudges will be	3 5	3 :		3 6		9 6		9 4	8 4	0 4				0	0		0	
	(ULS) Tagfabletan - 135	6	5				. 0		. 0	. 0									
	(ULS) Englanghen = (35	172	5	0	0		0	•	0	0	. 0				-				
Leafing ambination-60 (35)	(U.S. Topfehopken 2 135	Ca.	5	0	a	0	0	1,15	0	a	0	•	0	•					
	(W.S) Taylologlast 1.35	172	B	0	2	•	0	1,15	0	4	0			0	0	0	a	0	
Lastfaltembrateo-C (III.)	A Tapfebiptur - 135	5	US.		0	0	0	1,15	9	0	0				0	•	0	0	
Laitfalliambination-67 (UC)	(UCS) Employees = 1.35	5	r,	٥	0	0	0	105	0	•	0		0	-	0		0	0	
CutteRembertien-64 (TL)	D Taplanguet - 1.35	n	5	a	0	0	0	1.15		o	0		0	0		9	۰	0	
Lettellumbination-65 (V.	Dagishapter 1135	3 :	9 :	0	0 (0	0	0	9	a	٥		0	•	0	•	a	0	
Lettellambiogram (7)	(U.S. Daytangue - 135	9 1	3 5	0 0	0 6	0 0	0 0	0.0				6 (0 (0 1	•			
Lettfalltambination-43 (UL)	Stapfangker = 135	3	25	0							. 0								
Laufallambination-69 (UL)	O Dapfahapter - US	(38	133	٥				0	۰	0	9	0	0	0	17		6	0	
Lettellombnation-TO (DC	Dagahagest 135	135	1,35	0	133	0	0	0	9		0	0	0	0	ø		•	0	