Deckblatt

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt: 1
9A	56113000				HF	RB	0033	00	Stand: 20.05.2020

Titel der Unterlage:

ERGEBNISSE DER NAHLINIENMESSUNGEN IM RAHMEN DER 3D-SEISMISCHEN MESSUNGEN IM GEBIET DER SCHACHTANLAGE ASSE II

Ersteller/Unterschrift:	Prüfer/Unterschrift:
GEOFIZYKA TORUN S.A.	
Stempelfeld:	

IIVST-	bergrechtlich verantwortliche Person:	atomrechtlich	Bereichsleitung:	Freigabe zur Anwendung:
J Datum und Unterschnit	Datum und Unterschrift	Datum und Unterschrift	Datum und Unterschrift	Datum und Unterschrift

Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Dritten zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zustimmung der BGE.

Revisionsblatt

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	DI # 0	
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt: 2	
9A	56113000				HF	RB	0033	00	Stand: 20.05.2020	

Titel der Unterlage:

ERGEBNISSE DER NAHLINIENMESSUNGEN IM RAHMEN DER 3D-SEISMISCHEN MESSUNGEN IM GEBIET DER SCHACHTANLAGE ASSE II

Rev. Rev Stand Datum Verantwortliche Stelle Revidlerte Blätter Kat.* Erläuterung der Revision 00 20.05.2020 TEK-GI.4/2 Image: Stelle Blätter Stellung						
00 20.05.2020 TEK-GI.4/2 Ersterstellung	Rev.	RevStand Datum	Verantwortliche Stelle	Revidierte Blätter	Kat.*	Erläuterung der Revision
	00	20.05.2020	TEK-GI.4/2			Ersterstellung
				,		
					SI.	
						÷

 ^{*)} Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung mindestens bei der Kategorie S müssen Erläuterungen angegeben werden

P1037578_/			Stand:	20.05.2	2020	Blatt: 1			
	Projekt	Projekt PSP-Element Fur		Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
DECKBLATT	NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
DEGREEATT	9A	56100000	SMÜ			HF	KD	0010	00
Kurztitel der Unterlage:	•								

Kurztitel der Unterlage:

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

Ersteller / Unterschrift:	Prüfer / Unterschrift:
Geofizyka Toruń S.A.	
Titel der Unterlage:	

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-seismischen Messung im Gebiet der Schachtanlage Asse II

Freigabevermerk:		

Freigabedurchlauf											
Fachbereich: TEK-GI	Stabsstelle Qualitätssicherung:	Endfreigabe:									
		Bereichsleitung ASE									
Datum:	Datum:	Datum									
Name:	Name:	Name:									
Unterschrift	Unterschrift	Unterschrift									

2019-07-22_KQM_Deck-Revisionsblatt_REV23

Blatt: 2a

Erläuterung der Revision

	Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
REVISIONSBLATT	NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
	9A	56100000	SMÜ			HF	KD	0010	00

Neuerstellung

Kurztitel der Unterlage:

Revisionsstand

Datum

20.05.2020

00

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

revidierte Blätter Kat. *)

Verantwortl.

Stelle

TEK-GI.4/2

	۸	
4		
0		

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN]
9A	56100000	SMÜ			HF	KD	0010	00	

Inhaltsverzeichnis B	latt
Deckblatt	1
Revisionsblatt	
Inhaltsverzeichnis	
Freigabeblatt	
1 Einleitung	
2.1 Test der Seismischen Quelle	
2.2 Auswertung der Nahlinienmessungen	
3 Ergebnisse der Nahlinienmessungen und statische Korrektur	. 18
4 Schlussfolgerung	. 23
Verzeichnis der Anhänge	
Anhang 1: Ergebnisse der Nahlinien-Messung	. 24
Tabellenverzeichnis	
Tabelle 1: Nahlinienparameter	7
Abbildungsverzeichnis	
Abbildung 1: Lage der Nahlinien	6
Abbildung 2: Messgeometrie der Nahlinien	7
Abbildung 3: Beschleunigtes Fallgewicht AF450 auf LKW als Trägerfahrzeug	8
Abbildung 4: Hammerschlag als seismische Quelle	8
Abbildung 5: Beschleunigtes Fallgewicht-maximale Stärke (1000psi-14500J)-Einfachstapelung.	9
Abbildung 6: Beschleunigtes Fallgewicht-mittlere Stärke (750psi-11500J)-Einfachstapelung	9
Abbildung 7: Beschleunigtes Fallgewicht-mittlere Stärke (750psi-11500J)-Zweifachstapelung	10
Abbildung 8: Beschleunigtes Fallgewicht-niedrige Stärke (500psi-7600J)-Einfachstapelung	10
Abbildung 9: Beschleunigtes Fallgewicht-niedrige Stärke (500psi-7600J)-Zweifachstapelung	11
Abbildung 9: Hammer–Einfachstapelung	11
Abbildung 11: Hammer–Zweifachstapelung	12
Abbildung 12: Hammer–Dreifachstapelung	12
Abbildung 13: Aufnahme mit Ersteinsätzen der Nahlinienmessung-linke Seite	
Abbildung 14: Aufnahme mit Ersteinsätzen der Nahlinienmessung-Mitte	16
Abbildung 15: Aufnahme mit Ersteinsätzen der Nahlinienmessung–rechte Seite	
Abbildung 16: Ergebnisse der Interpretation der Nahlinien-Messung–Tiefensektion	
Abbildung 17: Karte der Mächtigkeit der ersten Schicht	
Abbildung 18: Karte der Geschwindigkeit der ersten Schicht	
Abbildung 19: Karte der Geschwindigkeit der zweiten Schicht	
Abbildung 20: Karte der statischen Korrekturen, Feldstatik	
Anzahl der Blätter dieses Dokumentes	27

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		1	
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN			
9A	56100000	SMÜ			HF	KD	0010	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse Blatt: 4										Blatt: 4	

Freigabeblatt

Auftraggeber (AG):

BGE mbH (Schachtanlage Asse II)

Am Walde 2

38319 Remlingen

Auftragnehmer (AN):

Geofizyka Toruń S.A

Chrobrego 50

87-100 Toruń, Poland

+48 566593101

Bestell-Nr. (AG):

45172450

Auftrag-Nr. (AN):

18175

Toruń, 18.05.2020

Direktor, Seismische Datenakquisition

Berichtersteller

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.			
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN]		
9A	56100000	SMÜ			HF	KD	0010	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Ergebni	sse der Nahli	nienmessung	jen im Rahm	en der 3D)-Seismil	k Asse)				Blatt: 5

1 Einleitung

Die im Folgenden beschriebenen Nahlinienmessungen (Low Velocity Layer, LVL) wurden als Teil des Messprogramms der 3D-Seismik Asse von dem Seismiktrupp DE-24 von Geofizyka Toruń SA vom 27.09. bis 28.10.2019, vom 10.11. bis 24.11.2019 und am 15.12.2019 durchgeführt.

Im Rahmen des vom 25.09. bis 26.09.2019 von der Firma Verif-i durchgeführten technischen Audits des Seismiktrupps DE-24 fand auch die Überprüfung der Geräte für die Nahlinienmessungen statt. Die Prüfungsergebnisse bestätigten die Einsatzbereitschaft der Messgeräte (Verif-i Ltd., 2020).

Die Nahlinienmessungen basieren auf der Methodik der oberflächennahen Refraktionsseismik. Mit dieser Methode werden die Geschwindigkeiten und Tiefen der oberflächennahen Schichten bestimmt und somit deren Struktur erkundet. Für die Bearbeitung der reflexionsseismischen Daten liefern diese Messungen Werte zur Ermittlung der statischen Laufzeitkorrekturen.

Die Messungen wurden mit kabelgebundenen Geophonen durchgeführt. Eine Nahlinie bestand aus 48 Geophonen mit einem Abstand von 2 m zwischen den einzelnen Geophonen. Die Anregung der seismischen Wellen erfolgte für jede Nahlinie an drei Anregungspunkten: Zwei Anregungspunkte an den Enden der Geophonauslage sowie ein Anregungspunkt in der Mitte der Geophonauslage. Ein 10-kg Hammer, der auf eine Metallplatte geschlagen wurde, diente als seismische Quelle. Die Triggerung der Datenaufzeichnung erfolgte durch ein an dem Hammer montiertes piezoelektrisches Element.

Trifft eine durch die Anregung per Hammerschlag erzeugte Kompressionswelle (P-Welle) unter dem kritischen Winkel auf eine Schichtgrenze, so wird diese Welle als sogenannte Kopfwelle entlang der Schichtgrenze fortgeführt. Voraussetzung dafür ist, dass die Geschwindigkeit v₁ im Hangenden kleiner als die Geschwindigkeit v₂ im Liegenden ist. Nach den Huygenschen Prinzip ist jeder Punkt einer Wellenfront Ausgangspunkt einer neuen Welle, so dass die entlang der Schichtgrenze laufende Kopfwelle ständig einen Teil der Energie unter dem kritischen Winkel an die Oberfläche zurückstrahlt. Diese Wellen werden von Empfängern, die entlang einer Linie an der Oberfläche angeordnet sind, registriert. Die registrierten Signale wiederum werden über ein Kabel an die Messapparatur übertragen und als seismische Aufzeichnung (Record) gespeichert. Die Auswertung der Nahlinienmessungen beruht auf der Ermittlung der Laufzeiten der Ersteinsätze dieser Wellen und erfolgt hier nach der Generalized Reciprocal Methods (GRM).

Die endgültigen Messpunkte für die Nahlinien wurden nach vorheriger Absprache mit den Permittern, den Vermesser und der Fremdbauüberwachung in einem Raster von ungefähr 0,5 km x 0,5 km festgelegt. Schließlich wurden 155 Nahlinien-Messungen im Messgebiet der 3D-Seismik Asse durchgeführt. Abbildung 1 zeigt die Lage der einzelnen Messpunkte.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN]
9A	56100000	SMÜ			HF	KD	0010	00	

BGE BUNDESGESELLSCHAFFÜR ENDLAGERUNG

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

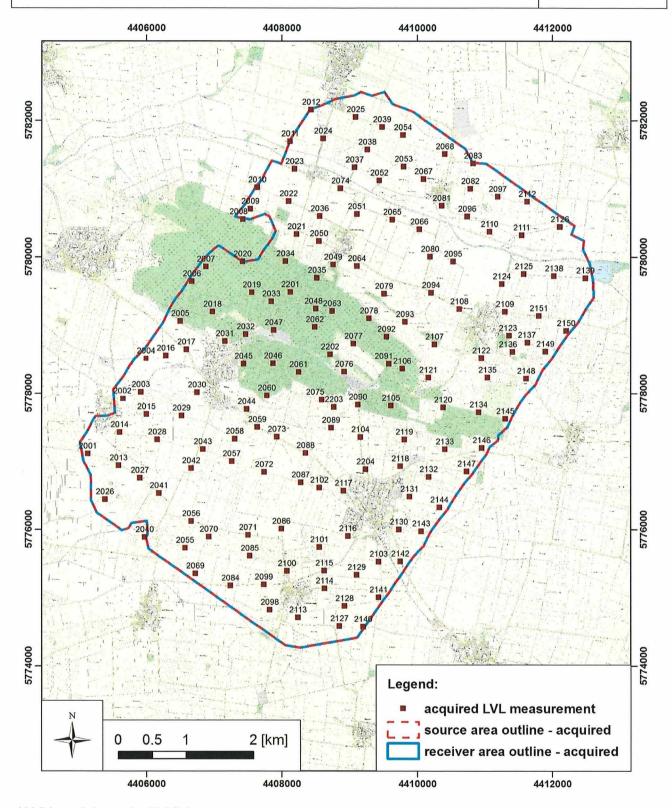
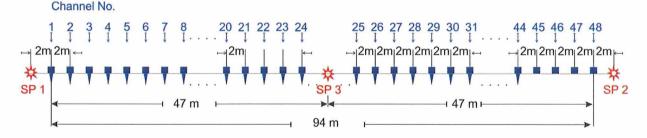


Abbildung 1: Lage der Nahlinien

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN] .
9A	56100000	SMÜ			HF	KD	0010	00	
80002 (340)	25 GP-0250	180 9.220.00. 9.251.0.9			10 (20)	38/3/63-01		M-1000	L

BGE BUNDESGESELLSCHAFFÜR ENDLAGERUNG

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse


Blatt: 7

2 Messanordnung und Methodik der Nahlinien-Messungen

Die Nahlinienmessungen wurden mit einem Geophonkabel durchgeführt an dem im Abstand von jeweils 2 m 48 Geophone vom Typ SG-10 fest montierten waren. Die Anregung der seismischen Wellen erfolgte für jede Nahlinie an drei Anregungspunkten: Zwei Anregungspunkte an den Enden der Geophonauslage im Abstand von jeweils 2 m zum ersten bzw. letzten Geophon sowie ein Anregungspunkt in der Mitte der Geophonauslage. Jeden Tag zu Beginn der Messungen wurde ein Selbsttest der Registrierapparatur GEOMETRICS StrataVisor durchgeführt. Die Aufzeichnung der Daten erfolgte im Format SEG-2. In Tabelle 1 sind die wesentlichen Parameter der Nahlinienmessung zusammengefasst. Abbildung 2 veranschaulicht die Messgeometrie der Nahlinien.

Tabelle 1: Nahlinienparameter

Nahlinienparameter	Wert
Seismische Quelle	Hammer
Empfängertyp	Geophon
Anzahl der aktiven Kanäle	48
Aufnahmelänge	500 ms
Abtastrate	0,125 ms
Format Standard	SEG-2 (* .dat)
Länge der Auslage	94 m
Entfernung vom Quellpunkt zur Auslage	2 m
Überdeckung	1 - 20
Anzahl / Lage der Anregungspunkte	3, Linienenden und Mitte
Empfängerintervall	2 m

Acquisition scheme for 3 source point

Abbildung 2: Messgeometrie der Nahlinien

2.1 Test der Seismischen Quelle

Zu Beginn der Nahlinienmessungen fand im Rahmen einer Testmessung am Punkt 2047 ein Vergleich zwischen einem auf einem LKW montierten beschleunigten Fallgewicht (Accelerated Weight Drop, AWD) vom Typ AF450 (Abbildung 3) und einem 10-kg-Hammer als seismischer Quelle statt (Abbildung 4). Für die weiteren Nahlinienmessungen wurde der Hammer als Quelle ausgewählt, da die erzeugte Energiemenge ausreichend war und kein, vom notwendigen Betrieb des LKW verursachtes, störendes Rauschen (Noise) im Bereich der Ersteinsätze beobachtet wurde. Die Ergebnisse des Tests der seismischen Quelle sind in den Abbildungen 4 bis 11 dargestellt.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Γ
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	56100000	SMÜ			HF	KD	0010	00	

Abbildung 3: Beschleunigtes Fallgewicht AF450 auf LKW als Trägerfahrzeug

Abbildung 4: Hammerschlag als seismische Quelle

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	10-1-10	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	56100000	SMÜ			HF	KD	0010	00	BGE	BUNDESGESELLSCH FÜR ENDLAGERUNG

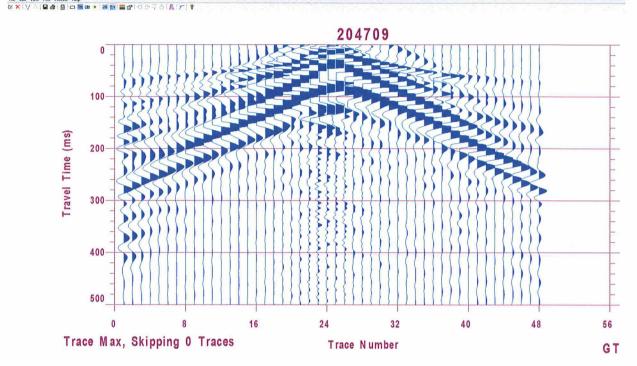


Abbildung 5: Beschleunigtes Fallgewicht - maximale Stärke (1000psi - 14500J) - Einfachstapelung

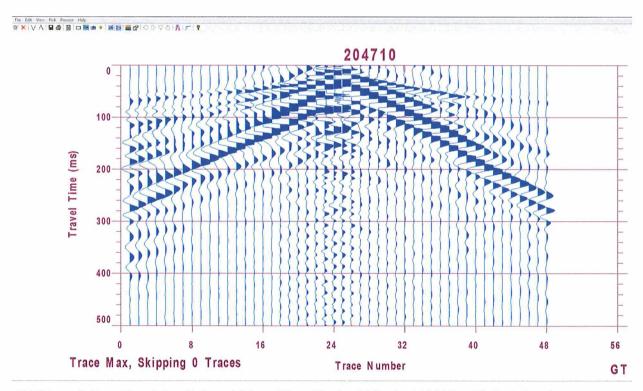


Abbildung 6: Beschleunigtes Fallgewicht - mittlere Stärke (750psi - 11500J) - Einfachstapelung

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	
9A	56100000	SMÜ			HF	KD	0010	00	BGE

Blatt: 10

BUNDESGESELLSCHAF FÜR ENDLAGERUNG

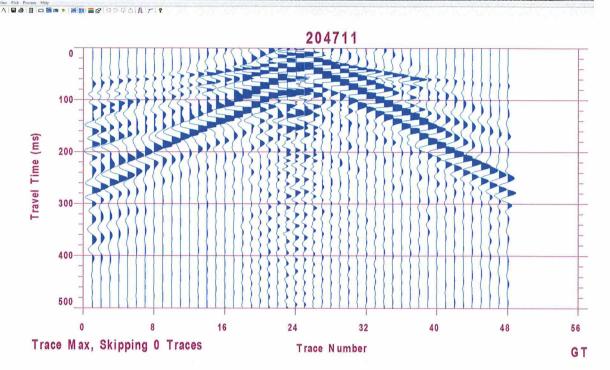


Abbildung 7: Beschleunigtes Fallgewicht - mittlere Stärke (750psi - 11500J) - Zweifachstapelung

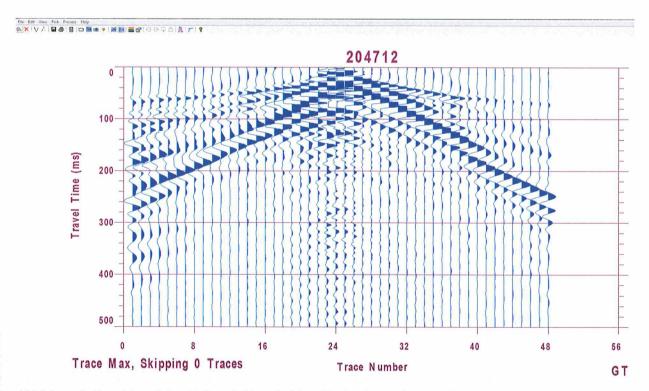


Abbildung 8: Beschleunigtes Fallgewicht - niedrige Stärke (500psi - 7600J) - Einfachstapelung

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	1
9A	56100000	SMÜ			HF	KD	0010	00	

Abbildung 9: Beschleunigtes Fallgewicht - niedrige Stärke (500psi - 7600J) - Zweifachstapelung

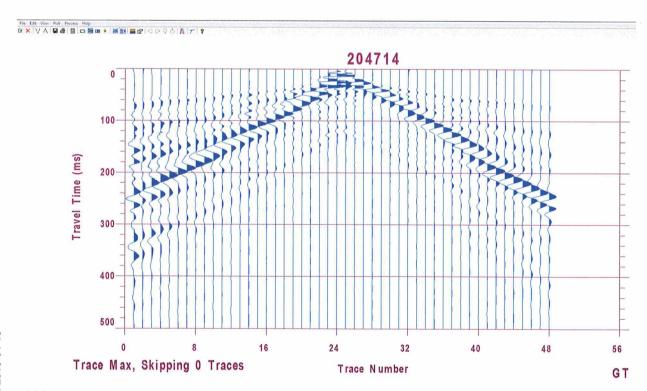


Abbildung 10: Hammer - Einfachstapelung

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	1
9A	56100000	SMÜ			HF	KD	0010	00	

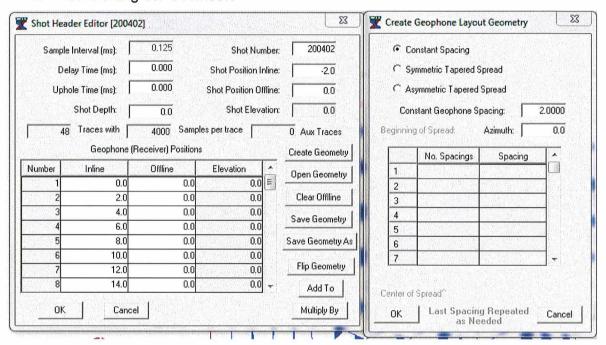
BGE BUNDESGESELLSCHAFFÜR ENDLAGERUNG

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

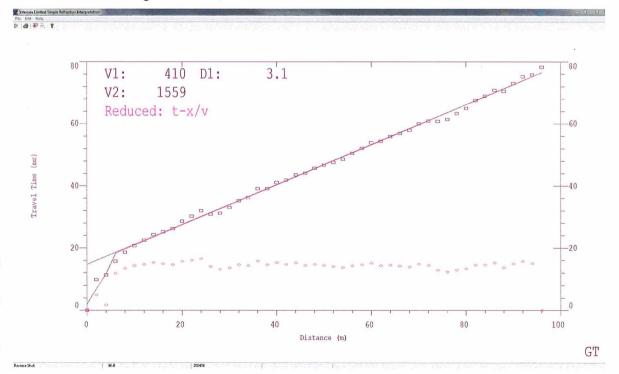


Abbildung 11: Hammer – Zweifachstapelung

Abbildung 12: Hammer - Dreifachstapelung

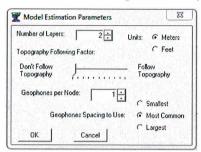

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	DEC 5	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	56100000	SMÜ			HF	KD	0010	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
									_	

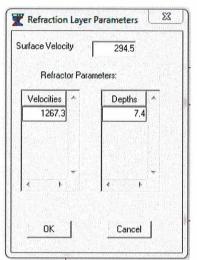
Blatt: 13

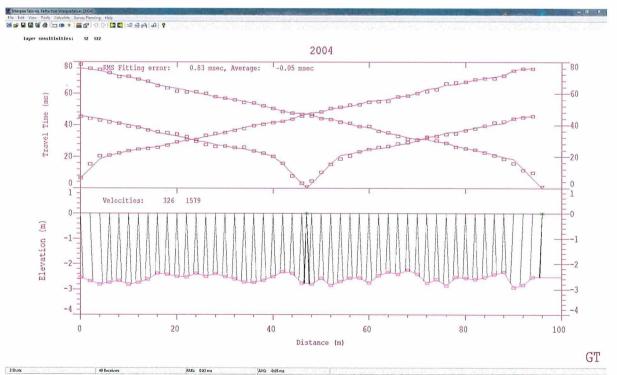

2.2 Auswertung der Nahlinienmessungen

Die Auswertung bzw. Interpretation von Nahlinienmessdaten basiert hier auf der GRM-Methode (Generalized Reciprocal Method), der eine geometrische Betrachtung der Strahlenwege zugrunde liegt. Mit der GRM-Methode ist es möglich, die Stratigraphie des oberflächennahen Untergrundes zu ermitteln (s. https://wiki.seg.org/wiki/The_generalized_reciprocal_method). Die Auswertung wurde mit der Software IXRefraX der Firma Interpex durchgeführt. Im Folgenden werden die anhand einzelner Bildschirmkopien verschiedene Arbeitsschritte bzw. die Vorgehensweise der Auswertung erläutert (vergl. auch http://www.interpex.com/IXRefraX/IXRefraX.htm).

- 1. Eingabedateien (*.SEG-2, *.dat)
- 2. Initialisierung der Geometrie

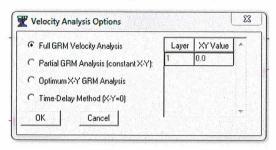


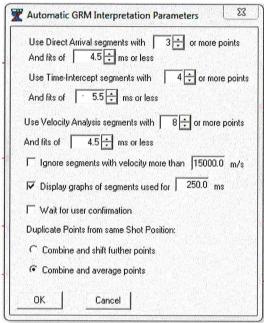

- 3. Interpretation / Editierung / Überprüfung der Ersteinsätze
- 4. Untersuchung der Daten, um ein Model abzuschätzen



Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	56100000	SMÜ			HF	KD	0010	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG
Ergebni	isse der Nahli	nienmessung	en im Rahm	en der 3D)-Seismil	k Asse)		Е	Blatt: 14

5. Berechnung und Überprüfung des Model 1





Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.		
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	56100000	SMÜ			HF	KD	0010	00	BGE	BUNDESGESELLSCHAF FÜR ENDLAGERUNG

Blatt: 15

6. Berechnung / GRM Interpretation

7. Ausgabe

- Datei: GIF (Ersteinsätze Anzeige),
- Datei: GRM (ASCII Dateien in GREMIX Datenformat),
- Datei: RFX (Binär Dateien IXRefraX-Format Interpretation),
- o Datei: WMF (Grafikdatei mit Interpretation),
- o Datei: XYZ (ASCII Dateien mit finaler VELOC 1, VELOC 2, TIEFEN 1).

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.			
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	1		
9A	56100000	SMÜ			HF	KD	0010	00		BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

Blatt: 16

Exemplarisch sind die Ergebnisse der Auswertung nach der GRM-Methode für die Nahlinie Nr. 2004 in den Abbildungen 12 bis 15 dargestellt:

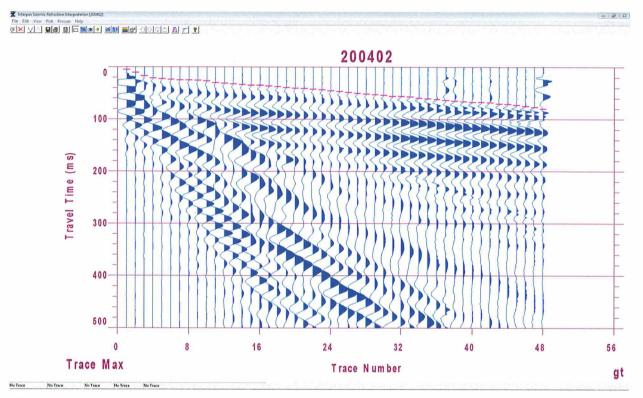


Abbildung 13: Aufnahme mit Ersteinsätzen der Nahlinienmessung -linke Seite

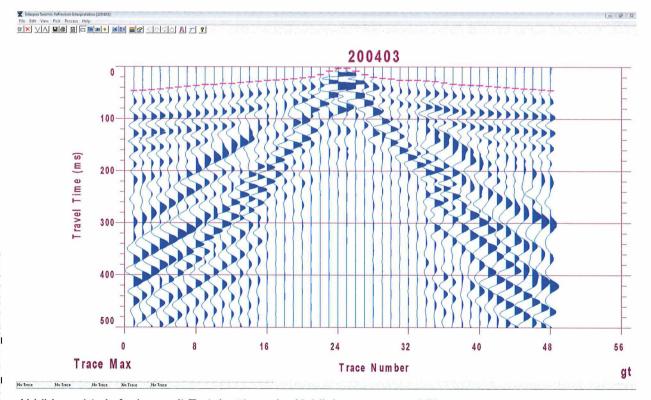


Abbildung 14: Aufnahme mit Ersteinsätzen der Nahlinienmessung – Mitte

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	56100000	SMÜ			HF	KD	0010	00

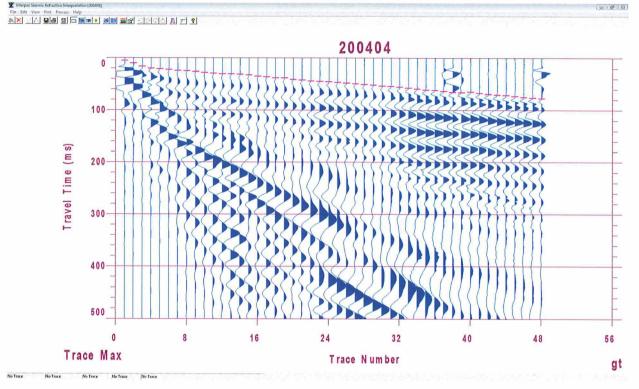


Abbildung 15: Aufnahme mit Ersteinsätzen der Nahlinienmessung - rechte Seite

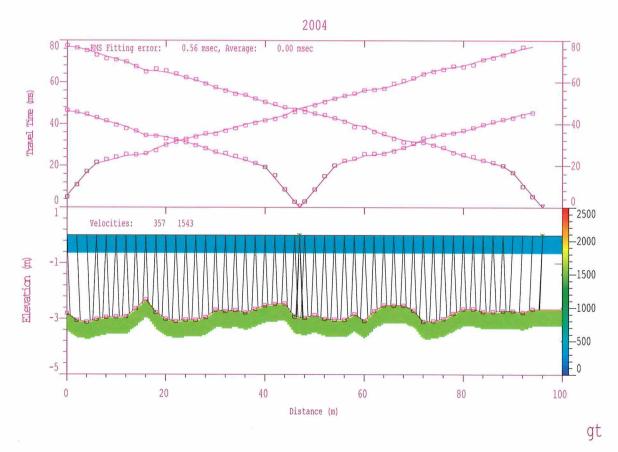


Abbildung 16: Ergebnisse der Interpretation der Nahlinien-Messung – Tiefensektion

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	THE PARTY OF	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	56100000	SMÜ			HF	KD	0010	00	BGE	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

Blatt: 18

3 Ergebnisse der Nahlinienmessungen und statische Korrektur

Die statische Korrektur ist bei der Bearbeitung der reflexionsseismischen Daten der 3D-Seismik notwendig, um Effekte der unterschiedlichen topographischen Höhe bzw. Variationen der Mächtigkeit und Geschwindigkeit der Verwitterungsschicht auszugleichen. Dazu ist ein oberflächennahes Geschwindigkeits-Tiefen-Modell erforderlich, was durch die Nahlinienmessungen ermittelt wird. Mit Hilfe der statischen Korrekturen werden die seismischen Registrierungen an allen Messpunkten zeitlich so verschoben, als ob die Messpunkte auf einer ebenen Fläche, dem seismischen Bezugsniveau, liegen würden.

Auf der Basis der Ergebnisse der Nahlinien-Messungen wurde ein entsprechendes Modell der Geschwindigkeitsverteilung für den oberflächennahen Bereich im Messgebiet der 3D-Seismik Asse erstellt. Die Messergebnisse ergaben ein Geschwindigkeitsmodell mit zwei Schichten:

- Schicht 1 (oberflächennahe Verwitterungsschicht) mit Geschwindigkeiten von 293 m/s bis 828 m/s und Mächtigkeiten von 2,1 m bis 8,8 m
- Schicht 2 mit Geschwindigkeiten von 1190 m/s bis 2735 m/s (wobei die Nahlinie mit der Geschwindigkeit 843 m/s als Ausreißer nicht berücksichtigt wurde)

Die vollständigen Ergebnisse sind im Anhang 1 in tabellarischer Form dargestellt. Um eine lückenlose statische Korrektur auf den Datensatz der 3D-Seismik anwenden zu können, wurden die Ergebnisse der Nahlinienmessung interpoliert und die statischen Korrekturen für die Gesamtfläche ermittelt. Abbildung 16 zeigt die aus den Nahlinien interpretierte Tiefensektion. Abbildung 17 zeigt in einer Kartendarstellung die aus den Nahlinien ermittelte Mächtigkeit der ersten Schicht, Abbildung 18 die Geschwindigkeit innerhalb dieser ersten Schicht und die Abbildung 19 die Geschwindigkeit im Liegenden der ersten Schicht. Die daraus berechneten statischen Korrekturen sind in Abbildung 20 dargestellt. Diese Korrekturwerte wurden dann für die Quellpunkte und Empfangspunkte in die SPS-Dateien der 3D-Seismik eingegeben.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	1
9A	56100000	SMÜ			HF	KD	0010	00	

BGE BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

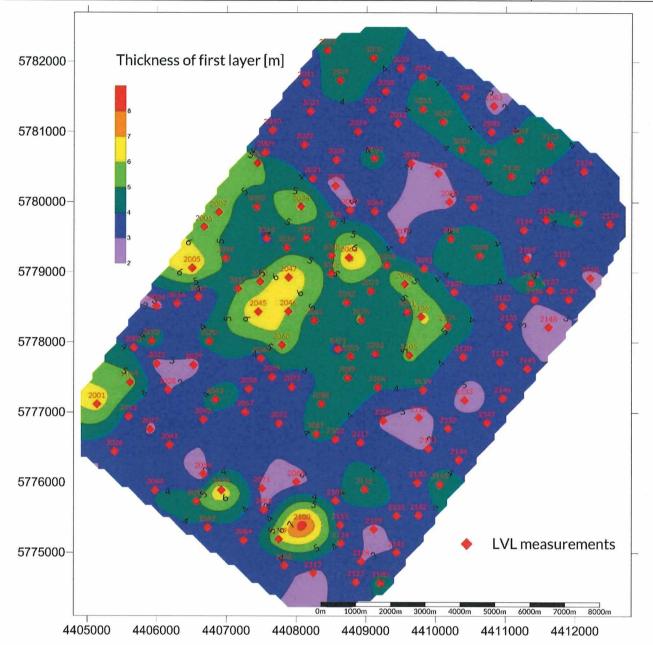


Abbildung 17: Karte der Mächtigkeit der ersten Schicht

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	56100000	SMÜ			HF	KD	0010	00

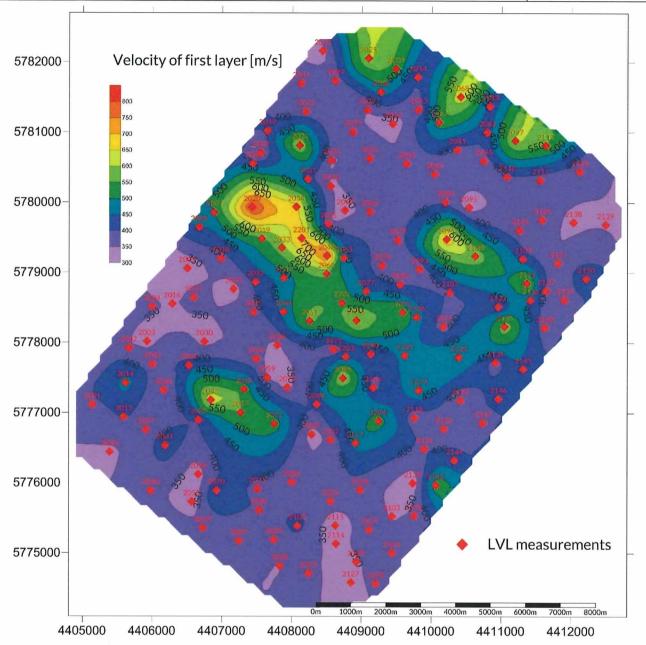


Abbildung 18: Karte der Geschwindigkeit der ersten Schicht

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	1
9A	56100000	SMÜ			HE	KD	0010	00	

BGE BUNDESGESELLSCHAF FÜR ENDLAGERUNG

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

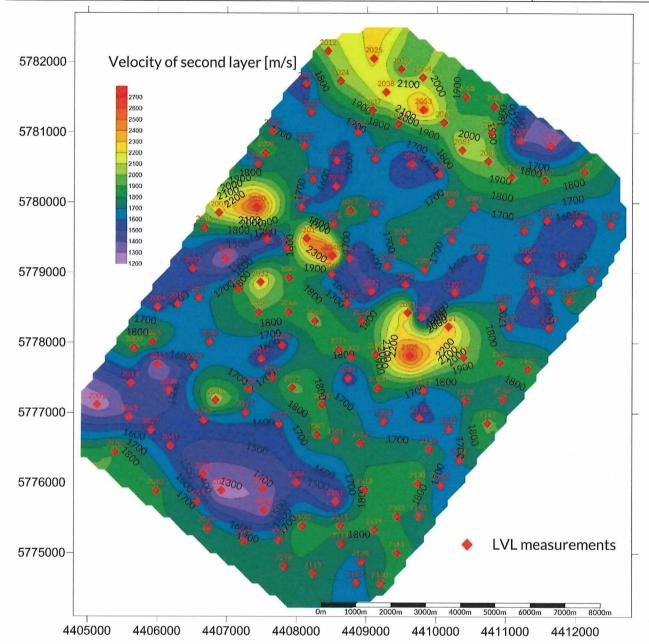


Abbildung 19: Karte der Geschwindigkeit der zweiten Schicht

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	56100000	SMÜ			HF	KD	0010	00

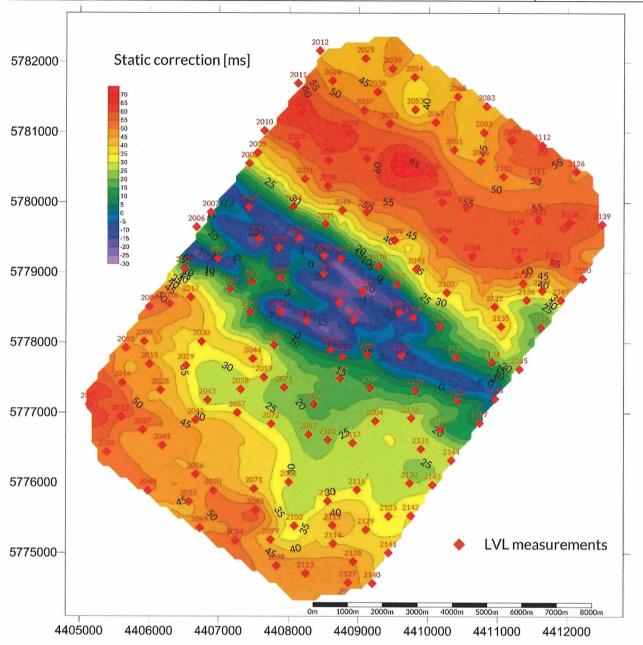


Abbildung 20: Karte der statischen Korrekturen, Feldstatik

NAAN NNNNNNNNN NNAAANN AANNNA AANN AAAA AA		
0.4 50400000 0.400		
9A 56100000 SMÜ HF KD 0010 00	BGE	BUNDESGESELLSCHAF FÜR ENDLAGERUNG

Blatt: 23

4 Schlussfolgerung

Vor Beginn der Nahlinienmessungen wurde ein Vergleichstest der seismischen Quellen (10-kg-Hammer und beschleunigtes Fallgewicht) durchgeführt. Das Testergebnis zeigte, dass die seismischen Spuren im Nahbereich (near-offsets) des Fallgewichts stark durch Motorgeräusche des Trägerfahrzeugs beeinflusst wurden, während das Testergebnis des 10 kg schweren Hammers eine sehr gute Datenqualität im Nahbereich, der für die Geschwindigkeits- und Mächtigkeitsbestimmung der ersten Schicht wichtig ist, lieferte.

Im Allgemeinen waren die Ersteinsätze der Nahlinienmessungen klar erkennbar und ermöglichten in der gesamten Messfläche eine zuverlässige Auswertung. Die Untersuchungsergebnisse wurden mit einem Zweischicht-Modell berechnet. Die Geschwindigkeit der ersten Schicht variiert zwischen 293 m/s und 828 m/s, wobei die stärksten Variationen im westlichen Zentralteil des Messgebiets auftreten. In dem Bereich treten auch Schichtmächtigkeiten größer als 5 m auf, während im übrigen Bereich der Messfläche die Mächtigkeit der ersten Schicht zwischen 2,1 m und 4 m variiert. Die Geschwindigkeit der zweiten Schicht ändert sich mit Werten zwischen 1190 m/s und 2735 m/s relativ stark und erreicht im mittleren Teil Maximalwerte von 2735 m/s und im nördlichen Teil von 2418 m/s.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Description of the last	
NAAN	ИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN		
9A	56100000	SMÜ			HF	KD	0010	00	BGE	BUNDESGESELLSCHAF FÜR ENDLAGERUNG

Blatt: 24

Anhang 1 Ergebnisse der Nahlinien-Messung

Nr.	Nahlinien-Nr.	Datum	Rechtswert (Mitte)	Hochwert (Mitte)	Höhe	h1 [m]	V1 [m/s]	V2 [m/s]
1	2001	2019.10.07	4405136.1	5777115.3	113.5	6.6	382	1209
2	2002	2019.10.04	4405660.2	5777922.8	100.1	3.8	356	1832
3	2003	2019.10.04	4405922.9	5778018.4	101.7	4.6	337	1895
4	2004	2019.10.05	4405997.0	5778510.6	104.1	2.8	357	1543
5	2005	2019.09.30	4406502.7	5779059.6	151.9	7	317	1512
6	2006	2019.10.01	4406672.8	5779646.1	148.3	5.1	453	1800
7	2007	2019.10.01	4406882.4	5779856.0	170.5	5.5	487	2143
8	2008	2019.11.23	4407434.3	5780554.5	132.2	5.7	418	1570
9	2009	2019.10.24	4407546.0	5780705.9	115.9	3.3	340	1903
10	2010	2019.10.24	4407644.6	5781023.4	93.1	3.2	411	1700
11	2011	2019.10.23	4408126.0	5781696.6	86.9	3.5	364	1551
12	2012	2019.10.23	4408437.0	5782161.3	90.7	4.2	333	2046
13	2013	2019.10.07	4405590.1	5776942	110.9	3.5	406	. 1417
14	2014	2019.10.07	4405609.9	5777426.6	113.6	5.5	473	1489
15	2015	2019.10.04	4406001.4	5777693.7	130.6	2.6	379	1261
16	2016	2019.10.05	4406287.5	5778551.3	108.6	3.1	344	1601
17	2017	2019.10.04	4406591.4	5778644.0	118.6	2.8	368	1657
18	2018	2019.09.30	4406979.1	5779200.8	191.5	4.8	376	1229
19	2019	2019.10.01	4407564.7	5779481.6	213.9	3.8	537	1375
20	2020	2019.09.30	4407424.6	5779933.2	219.1	4.1	828	2732
21	2021	2019.10.24	4408223.1	5780333.7	112.5	3.5	415	1700
22	2022	2019.10.24	4408107.6	5780815.9	98.6	3.5	614	1696
23	2023	2019.10.24	4408192.5	5781292.6	87.0	3.6	372	1606
24	2024	2019.10.23	4408618.1	5781736.6	88.6	4.7	373	1997
25	2025	2019.10.23	4409093.7	5782054.7	96.3	4.7	609	2237
26	2026	2019.10.07	4405388.7	5776442.5	89.9	3.0	341	1904
27	2027	2019.10.07	4405905.9	5776756	113.8	2.9	363	1532
28	2028	2019.10.05	4406160.4	5777321.9	125.8	3.0	353	1463
29	2029	2019.10.04	4406523.8	5777673.8	139.2	2.5	423	1563
30	2030	2019.10.04	4406748.9	5778015.5	126.8	4.5	336	1658
31	2031	2019.10.02	4407160.3	5778763.9	150.9	5.0	330	1840
32	2032	2019.09.28	4407473.8	5778867.2	151.8	5.1	412	2254
33	2033	2019.09.28		5779351.8	203.1	4.3	581	1647
34	2034	2019.10.01	4408060.9	5779939.4	155.2	6.4	673	1570
35	2035	2019.10.26	4408522.6	5779694.6	153.6	4.4	348	1658
36	2036	2019.10.24	4408565.0	5780600.8	96.5	3.7	345	1562
37	2037	2019.10.22	4409079.1	5781317.7	87.7	3.8	350	1936
38	2038	2019.10.22	4409267.1	5781577.4	88.1	3.2	473	2221
39	2039	2019.10.23	4409483.9	5781906.1	99.8	3.6	536	1898
40	2040	2019.10.07	4405978.4	5775889.3	93.6	3.9	371	1844
41	2041	2019.10.08	4406185.7	5776534.6	121.6	3.4	433	1536
42	2042	2019.10.05	4406665.4	5776899.1	123.1	3.6	398	1560
43	2043	2019.10.05	4406837.8	5777181.7	133.6	4.7	645	2131
44	2044	2019.10.28	4407486.0	5777770.3	127.4	3.5	358	1535
45	2045	2019.10.02	4407446.0	5778435.4	146.5	7.1	385	1897

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.	Г
NAAN	иииииииии	NNAAANN	AANNNA	AANN	AAAA	AA	ИИИИ	NN	
9A	56100000	SMÜ			HF	KD	0010	00	

BGE BUNDESGESELLSCHAFFÜR ENDLAGERUNG

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

								7 7 ER -
Nr.	Nahlinien-Nr.	Datum	Rechtswert (Mitte)	Hochwert (Mitte)	Höhe	h1 [m]	V1 [m/s]	V2 [m/s]
46	2046	2019.10.12	4407878.7	5778442.0	215.7	5.7	450	843
47	2047	2019.09.27	4407882.7	5778925.9	168.8	7.2	468	1831
48	2048	2019.09.28	4408502.3	5779240.1	217.5	4.5	785	2735
49	2049	2019.10.02	4408762.8	5779886.2	116.4	3.0	324	1914
50	2050	2019.10.26	4408555.7	5780232.9	107.1	2.5	347	1510
51	2051	2019.10.25	4409111.5	5780628.2	89.8	4.5	385	1702
52	2052	2019.10.22	4409442.6	5781120.8	88.5	3.2	327	1824
53	2053	2019.10.22	4409804.9	5781324.7	92.7	5.0	366	2418
54	2054	2019.10.23	4409794.7	5781786.6	103.7	4.0	393	2023
55	2055	2019.10.09	4406570.5	5775732.6	107.0	5.0	321	1669
56	2056	2019.10.08	4406665.5	5776121.8	129.4	2.3	321	1364
57	2057	2019.10.26	4407265.7	5777003.7	137.9	3.5	550	1648
58	2058	2019.10.08	4407312.3	5777333.8	144.6	3.8	535	1707
59	2059	2019.10.08	4407644.3	5777506.7	137.5	3.5	347	1730
60	2060	2019.09.27	4407787.0	5777965	153.5	5.7	338	1522
61	2061	2019.09.27	4408253.1	5778312.3	229.9	4.4	569	1951
62	2062	2019.09.28	4408495.7	5778984.2	174.5	4.6	552	1572
63	2063	2019.10.01	4408750	5779207.3	202.1	7.5	461	1453
64	2064	2019.10.25	4409114.8	5779869.1	109.4	3.1	378	1670
65	2065	2019.10.25	4409638.1	5780550.9	88.5	2.9	358	1453
66	2066	2019.10.25	4410036.5	5780405.1	88.8	2.6	347	1559
67	2067	2019.10.22	4410098.8	5781143.6	95.5	4.5	530	1953
68	2068	2019.10.22	4410416.8	5781507.9	111.9	3.7	640	1813
69	2069	2019.10.09	4406727.3	5775357.9	100.2	3.5	378	1780
70	2070	2019.10.08	4406922.3	5775893.2	124.7	7.2	447	1190
71	2071	2019.10.08	4407506.8	5775919.0	140.8	2.6	379	1354
72	2072	2019.11.17	4407746.7	5776843.9	145.9	3.4	532	1584
73	2073	2019.10.28	4407934.0	5777363.1	144.9	3.1	337	1960
74	2074	2019.11.24	4408872.2	5781005.3	87.8	3.1	355	1610
75	2075	2019.11.23	4408595.2	5777905.4	186.7	3.8	361	1838
76	2076	2019.10.10	4408926.3	5778318.0	214.5	5.2	624	1771
77	2077	2019.10.02	4409062.5	5778732.1	221.6	3.9	447	1433
78	2078	2019.10.12	4409289.2	5779099.3	163	4.8	367	1666
79	2079	2019.10.12	4409515.1	5779463.1	116.4	2.9	374	1769
80	2080	2019.10.21	4410194.3	5780004.5	91.0	2.8	390	1818
81	2081	2019.10.19	4410366.4	5780750.5	91.5	4.6	386	2113
82	2082	2019.10.21	4410792.3	5780999.1	102.2	3.8	419	1968
83	2083	2019.10.21	4410831.7	5781372	117.1	2.5	416	1864
84	2084	2019.10.09	4407242.8	5775176.9	101.9	3.1	363	1736
85	2085	2019.10.09	4407531.9	5775614.0	119.4	2.8	399	1303
86	2086	2019.10.09	4407999	5776011.1	146.1	2.6	359	1479
87	2087	2019.11.17	4408285.1	5776693.0	143.9	4.3	325	1850
88	2088	2019.10.11	4408356.2	5777121.2	151.9	4.7	411	1829
89	2089	2019.11.17	4408733.4	5777495.1	163.3	5.1	617	1516
90	2090	2019.10.26	4409129.7	5777836.3	171.3	3.9	399	1867
91	2091	2019.10.20	4409585.4	5778432.3	216.4	3.8	557	2340
31	2001	2010.10.10	770000.4	0110402.0	210.4	0.0	001	2040

 Projekt
 PSP-Element
 Funktion/Thema
 Komponente
 Baugruppe
 Aufgabe
 UA
 Lfd Nr.
 Rev.

 NAAN
 NNNNNNNNNN
 NNAAANN
 AANNNA
 AANN
 AAAA
 AA
 NNNN
 NN

 9A
 56100000
 SMÜ
 HF
 KD
 0010
 00

BGE BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

Nr.	Nahlinien-Nr.	Datum	Rechtswert (Mitte)	Hochwert (Mitte)	Höhe	h1 [m]	V1 [m/s]	V2 [m/s]
92	2092	2019.10.02	4409549.6	5778832.3	174.9	6.0	398	1520
93	2093	2019.10.18	4409824.8	5779048.8	127.6	3.9	358	1731
94	2094	2019.10.18	4410213.0	5779477.4	100.6	4.4	692	1663
95	2095	2019.10.19	4410538.9	5779931.4	90.8	3.5	325	1692
96	2096	2019.10.21	4410745.7	5780593.0	93.3	4.2	372	2013
97	2097	2019.10.21	4411196.5	5780884.5	112.3	4.2	616	1391
98	2098	2019.10.10	4407829.2	5774819.6	100.1	3.2	348	1797
99	2099	2019.10.09	4407742.8	5775192.1	110.8	6.1	360	1730
100	2100	2019.10.10	4408081.9	5775389.8	114.4	8.8	415	1888
101	2101	2019.10.15	4408557.7	5775742.6	141.1	3.7	397	1375
102	2102	2019.11.17	4408559.1	5776615.8	143.9	3.9	364	1778
103	2103	2019.11.24	4409434.1	5775527.3	127.7	3.6	344	1812
104	2104	2019.10.15	4409164.0	5777358.6	159.5	4.1	380	1779
105	2105	2019.10.10	4409614.7	5777819.2	214.3	5.3	466	2685
106	2106	2019.10.02	4409782.7	5778366.4	201.1	6.5	471	1280
107	2107	2019.10.18	4410259.8	5778717.5	141.3	3.8	395	1460
108	2108	2019.10.18	4410628.5	5779236.4	98.0	4.9	591	1593
109	2109	2019.10.18	4411305.3	5779195.7	101.1	2.8	422	1587
110	2110	2019.10.19	4411077.7	5780368.9	94.1	4.5	392	1934
111	2111	2019.10.19	4411553.5	5780322.1	93.9	3.8	373	1876
112	2112	2019.10.21	4411632.9	5780814.4	110.4	4.5	551	1346
113	2113	2019.10.10	4408243	5774712.2	101.8	2.8	363	1774
114	2114	2019.10.14	4408637.9	5775134.4	116.0	3.9	327	1723
115	2115	2019.10.14	4408630.0	5775395.9	110.3	3.3	293	1872
116	2116	2019.10.15	4408979.9	5775903.7	125.1	5.0	378	1857
117	2117	2019.10.11	4408917.8	5776570.9	145.2	3.3	471	1732
118	2118	2019.11.17	4409753.8	5776929.4	148.8	2.4	358	1581
119	2119	2019.11.17	4409816.5	5777321.7	171.5	3.9	494	1600
120	2120	2019.10.15	4410389.5	5777793.7	176.8	3.3	511	1968
121	2121	2019.10.11	4410169.3	5778231.9	160.0	5.1	372	2331
122	2122	2019.10.17	4410953.3	5778514.4	122.2	3.4	399	1726
123	2123	2019.10.17	4411362.6	5778845.7	120.9	4.9	589	1617
124	2124	2019.10.16	4411258.2	5779604.1	95.4	3.4	365	1643
125	2125	2019.10.16	4411581.7	5779751.3	93.3	4.0	366	1594
126	2126	2019.10.19	4412116.2	5780439.9	96.3	3.2	361	1862
127	2127	2019.10.14	4408853.1	5774583.1	106.6	3.3	324	1615
128	2128	2019.10.14	4408928.7	5774878.3	111.9	2.9	346	1684
129	2129	2019.10.14	4409110.4	5775335.6	126.1	2.7	398	1808
130	2130	2019.11.10	4409733.2	5775999.8	136.5	3.2	309	1909
131	2131	2019.11.10	4409893.4	5776486.0	141.7	3.0	393	1745
132	2132	2019.11.10	4410176.3	5776771.8	163.7	3.5	374	1595
133	2133	2019.11.10	4410415.1	5777177.9	172.0	2.7	356	1707
134	2134	2019.10.11	4410914.7	5777721.4	159.9	3.1	376	1847
135	2135	2019.10.17	4411044.8	5778232.7	126.3	3.3	594	1611
136	2136	2019.10.17	4411413.9	5778608.8	149.9	3.1	443	1434
137	2137	2019.10.16	4411637.1	5778742.5	131.6	3.8	372	1671
2						<u> </u>	5,2	.07.1

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd Nr.	Rev.
NAAN	ИИИИИИИИИИ	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN
9A	56100000	SMÜ			HF	KD	0010	00

BGE BUNDESGESELLSCHAFT

Ergebnisse der Nahlinienmessungen im Rahmen der 3D-Seismik Asse

Nr.	Nahlinien-Nr.	Datum	Rechtswert (Mitte)	Hochwert (Mitte)	Höhe	h1 [m]	V1 [m/s]	V2 [m/s]
138	2138	2019.10.16	4412030.9	5779718.7	94.0	4.2	340	1513
139	2139	2019.10.16	4412487.8	5779688.4	95.4	3.6	348	1660
140	2140	2019.10.15	4409203.7	5774570.4	109.0	4.5	368	1810
141	2141	2019.10.14	4409434.8	5775005.6	119.7	3.0	370	1840
142	2142	2019.10.15	4409752.0	5775533.4	125.8	3.2	360	1736
143	2143	2019.11.23	4410063.1	5775973.4	141.3	5.1	534	1602
144	2144	2019.11.10	4410331.7	5776324.5	141.8	3.3	421	1698
145	2145	2019.10.12	4411311.1	5777626.5	150.0	3.5	451	1865
146	2146	2019.10.28	4410959.4	5777201.8	192.0	3.3	434	1699
147	2147	2019.11.23	4410735.1	5776855.9	163.8	3.3	352	1951
148	2148	2019.10.18	4411618.9	5778216.1	164.7	2.1	367	1595
149	2149	2019.10.17	4411901.3	5778611.1	122.8	3.8	362	1735
150	2150	2019.10.17	4412208.5	5778916.9	104.7	2.8	447	1693
151	2151	2019.10.26	4411804.9	5779138.6	104.5	3.2	346	1532
152	2201	2019.12.15	4408135.0	5779488.8	228.0	3.8	715	2490
153	2202	2019.12.15	4408717.7	5778569.7	218.6	4.7	530	1657
154	2203	2019.12.15	4408774.0	5777800.6	179.5	6.1	491	1191
155	2204	2019.12.15	4409241.2	5776886.8	146.9	2.9	534	1621