

Bundesamt für Strahlenschutz

Deckblatt

GZ: QM - 9A 22100000 / SE 4.2.2

Projekt	PSP-Element	Aufgabe	UA	Lfd.Nr.	Rev.	California I
NAAN	иииииииии	AAAA	AA	NNNN	NN	Seite: I
9A	22100000	Н	RB	0003	00	Stand: 31.01.2017

Titel der Unterlage:

ERSTELLUNG EINES GEOLOGISCHEN 3D MODELLS IM BEREICH DER SCHACHTANLAGE ASSE II

Ersteller:			
ERCOSPLAN			
Stompolfold:			
Stempelfeld:			

bergrechtlich verantwortliche Person:

atomrechtlich verantwortliche Person:

Projektleitung;

Freigabe zur Anwendung:

Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Dritten zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zustimmung des BfS.

FB_DECK_REV_PRÜFBLATT_U

Stand: 07.07.2016

Zuständigkeit: QM

Bundesamt für Strahlenschutz

Revisionsblatt

Seite:	11	

Stand: 31.01.2017

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.
NAAN	имимимими	AAAA	AA	NNNN	NN
9A	22100000	Н	RB	0003	00

Titel der Unterlage:

ERSTELLUNG EINES GEOLOGISCHEN 3D MODELLS IM BEREICH DER SCHACHTANLAGE ASSE II

Rev.	RevStand Datum	UVST	Prüfer	Rev. Seite	Kat.*	Erläuterung der Revision
		. 1				
				/s		
				2		

^{*)} Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung mindestens bei der Kategorie S müssen Erläuterungen angegeben werden

3D-Modells im Bereich der Schachtanlage Asse II

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 1 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 1 von 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

ERSTELLUNG EINES GEOLOGISCHEN 3D-MODELLS IM BEREICH DER SCHACHTANLAGE ASSE II

AUFTRAGNEHMER

ERCOSPLAN Ingenieurgesellschaft Geotechnik und Bergbau mbH Arnstädter Straße 28 99096 Erfurt

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 2 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D2402420	Seite. 2 VOIT 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Impressum:

Auftraggeber:

Bundesamt für Strahlenschutz

Willy-Brandt-Str. 5 38226 Salzgitter

Telefon: +49 (0)30 18333-0 Telefax: +49 (0)30 18333-1885

E-Mail: epost@bfs.de Internet: www.bfs.de

Ersteller:

Dipl.-Geol.

Dipl.-Geol. Dipl.-Geol.

ERCOSPLAN Ingenieurgesellschaft Geotechnik und Bergbau mbH

www.ercosplan.com

Abbildungen:

Urheberrechtshinweise, Hinweis auf Rechte Dritter

Der Bericht wurde im Auftrag des Bundesamtes für Strahlenschutz (BfS) erstellt. Das BfS behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit Zustimmung des BfS zitiert, ganz oder teilweise vervielfältigt bzw. Dritten zugänglich gemacht werden.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 3 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 5 Voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Revisionsblatt

Rev.	RevStand Datum	revidierte Seite	Kat. *)	Erläuterung der Revision

Kategorie S = substanzielle Revision
Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden.

^{*)} Kategorie R = redaktionelle Korrektur

Kategorie V = verdeutlichende Verbesserung

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 4 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 4 Voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Kurzfassung

Im Rahmen der Stilllegung der Schachtanlage Asse II sollte ein dreidimensionales Modell erstellt werden, welches den aktuellen Stand vorhandener geologischer Informationen im Bereich um die Schachtanlage darstellt. Ziel war es aus den vorhandenen geologischen Daten dreidimensionale Oberflächen der wichtigsten lithostratigraphischen Einheiten des Deckgebirges und des Salinars zu erstellen und in einem Modell zu integrieren. Während die Oberflächen für die salinaren Einheiten erstellt werden konnten, ergaben sich während der Bearbeitung Widersprüche in der im geologischen Risswerk der Schachtanlage Asse II (Asse-GmbH, 2010) dargestellten Störungsgeometrie im Deckgebirge. Durch diese Widersprüche war eine geologisch plausible Modellierung der Oberflächen der Deckgebirgseinheiten nicht möglich.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 5 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 5 Voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Inhaltsverzeichnis

1	AUFGABENSTELLUNG	10
2	RAHMENBEDINGUNGEN	11
	2.1 LAGE UND TOPOGRAPHISCHE SITUATION	11
	2.2 GEOLOGISCHER RAHMEN	11
3	DATENGRUNDLAGE	14
4	AUFBEREITUNG UND INTEGRATION VORHANDENER DATEN	17
5	MODELLIERUNG DES ZECHSTEINSALINARS	20
6	MODELLIERUNG DES DECKGEBIRGES	22
7	DATENÜBERGABE	25
8	ZUSAMMENFASSUNG UND EMPFEHLUNGEN ZUM WEITEREN VORGEHEN	26

Gesamtseitenzahl: 44

Stichworte: 3D-Modell, Deckgebirge, Salinar, Schachtanlage Asse II

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 6 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0402420	Seite. 6 Voll 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Abbildungsverzeichnis

Abb. 1	Darstellung des Modellierungsgebietes und der Lage der verwendeten Sohlenrisse und Profillinien (einschließlich der Verlängerungen)	16
Abb. 2	Modellierung der Salinarhorizonte aus den digitalisierten Sohlenrissen. Hier: Oberfläche des Kaliflözes Staßfurt (K2C).	21
Abb. 3	Unterschiedliche Benennung derselben Störung (S6/D18) in den Schnitten 05 und 26	24

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 7 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Ocite. 7 Vol 144
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Tabellenverzeichnis

Tab. 1	Zusammenfassung der Einheiten gemäß Risswerk Schachtanlage Asse II (Asse- GmbH, 2010) zu modellierbaren Einheiten des Salinars
Tab. 2	Zusammenfassung der Einheiten gemäß Risswerk Schachtanlage Asse II (Asse- GmbH, 2010) zu modellierbaren Einheiten des Deckgebirges

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 8 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 6 Vol1 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Anhangsverzeichnis

ANHANG 1	Lithostratigraphische Übersicht der salinaren und postsalinaren Schichten- folge im Bereich des Höhenzuges Asse
ANHANG 2	Übersicht der verwendeten Übertagebohrungen
ANHANG 3	Übersicht der verwendeten Untertagebohrungen
ANHANG 4	Übersicht der verwendeten Sohlenrisse für das 3D-Modell des Salinars
ANHANG 5	Übersicht der verwendeten Profilschnitte für das 3D-Modell des Deckgebirges

3D-Modells im Bereich der Schachtanlage Asse II

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 9 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 5 VOIT 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Abkürzungsverzeichnis

Abb. Abbildung

BfS Bundesamt für Strahlenschutz

d.h. das heißt

DSI Discrete Smooth Interpolation Algorithmus

ESE Ost-Südost ff. fortfolgend

GOK Geländeoberkante

HW Hochwert
i.d.R. in der Regel
Kap. Kapitel
km Kilometer

m Meter

Ma Millionen Jahre

mNN Meter über Normal Null

N Norden NE Nordost Nr. Nummer NW Nordwest RW Rechtswert Südost SE SW Südwest Tab. Tabelle

u.a. unter anderem

vgl. vergleiche

WNW West-Nordwest z.B. zum Beispiel

ZW Z-Wert, Höhe in Meter über Normal Null

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 10 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 10 voil 44
9A	22100000	I	RB	0003	00	B2183138	Stand: 31.01.2017

1 AUFGABENSTELLUNG

In seiner Eigenschaft als Betreiber ist das Bundesamt für Strahlenschutz (BfS) u.a. mit der Planung von Vorsorge- und Notfallmaßnahmen im Rahmen des Stilllegungsprozesses der Schachtanlage Asse II zuständig. Wesentliche Grundlage adäquater Planungen sind dabei Modelle, die möglichst widerspruchsfrei die verfügbaren Dokumente und Unterlagen der geologischen und hydrogeologischen Erkundung berücksichtigen.

In diesem Rahmen wurde die ERCOSPLAN Ingenieurgesellschaft Geotechnik und Bergbau mbH (ERCOSPLAN) beauftragt ein geologisches 3D-Modell für das Gebiet der Schachtanlage Asse II, basierend auf den vorhandenen geologischen Daten, zu erstellen. Dabei sollten in einer ersten Teilaufgabe die vorhandenen Unterlagen in Form von Bohrprofilen des Bohrungskatasters der Schachtanlage Asse II sowie die geologischen Darstellungen des bergmännischen Risswerkes der Schachtanlage, bestehend aus Sohlenrissen und Profilschnitten, entsprechend ihrer Raumlage und in Bezug auf die Grubenbaue dargestellt werden. In der anschließenden zweiten Teilaufgabe sollte zum einen, basierend auf den digitalisierten Profilschnitten, ein Flächenmodell des Deckgebirges und zum anderen ein Oberflächenmodell der salinaren Horizonte, basierend auf den digitalisierten geologischen Sohlenrissen, modelliert werden.

Eine geologische Validierung der Eingangsdaten war nicht Teil der Aufgabe, jedoch musste eine geometrische Plausibilitätsprüfung des Störungsmusters im Deckgebirge durchgeführt werden, um die Modellierung ausführen zu können.

Die Modellierung wurde mit dem Programmpaket SKUA-GOCAD von Paradigm durchgeführt und die Übergabe erfolgt als Projekt des Programmpaketes. Zusätzlich werden die modellierten SKUA-GOCAD-Objekte in ISO 8859-2-formatierten Textdateien gespeichert und übergeben, um eine weiterführende Nutzung der dreidimensionalen Objekte in anderen Programmen zu gewährleisten.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.	D0402420	Seite: 11 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN		Seite. 11 voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

2 RAHMENBEDINGUNGEN

2.1 LAGE UND TOPOGRAPHISCHE SITUATION

Der Höhenzug Asse als Teil des Asse-Heeseberg-Höhenzuges befindet sich ca. 10 km südöstlich von Braunschweig und wird von den Ortschaften Denkte, Wittmar, Remlingen, Klein Vahlberg, Groß Vahlberg und Mönchevahlberg eingerahmt. Der Höhenzug zeigt ein deutliches Streichen in WNW-ESE-Richtung. Die Längsausdehnung des topographisch prägenden und maximal 2 km breiten Asse-Höhenzuges beträgt ca. 7,5 km (zwischen Westabbruch der Salinarstruktur bei Groß Denkte und Bereich Schacht Asse III). Mit einer Höhe von 234 mNN ist die Asse die höchste Erhebung im Asse-Heeseberg-Höhenzug. Das Gelände fällt rasch nach Südwesten in die Remlinger Mulde und nach Nordosten in die Schöppenstedter Mulde auf ungefähr 100 mNN ab.

Ein markantes morphologisches Element des Höhenzuges Asse bildet das Tal in dessen Zentrum, welches der Struktur im Streichen folgt. Entlang dieses Taleinschnittes erfolgt die geologisch bedingte Unterteilung in Nord- und Südflanke. Die Südflanke wiederum wird durch ein Quertal bei Wittmar sowie das morphologisch weniger stark ausgeprägte Quertal von Remlingen in mehrere Abschnitte geteilt. Die Nordflanke ist dem gegenüber morphologisch weniger auffällig.

Der Großteil des Höhenzuges ist mit Wald bedeckt und wird forstwirtschaftlich genutzt. Nur kleinere Areale sind landwirtschaftlich erschlossen bzw. unterliegen der Nutzung durch übertägige Anlagen der Schachtanlage Asse II.

2.2 GEOLOGISCHER RAHMEN

Die Salzstruktur Asse ist eine tektonisch geprägte, salinare Antiklinalstruktur im westlichen Teil der subherzynen Kreidesenke. Basierend auf markanten Unterschieden kann die lithologische Abfolge der subherzynen Kreidesenke in

- (1) das paläozoische Grundgebirge.
- (2) die salinare Abfolge des Zechsteins (ff. Salinar)
- (3) und ein postsalinares Deckgebirge

gegliedert werden.

Das Grundgebirge ist durch das Rhenoherzynikum der mitteleuropäischen Varisziden geprägt, welches im Harz und auf der Flechtlichen-Roßlauer-Scholle ausstreicht und auf Grund von weiteren Kartierbohrungen über das gesamte subherzyne Becken korreliert werden kann (Borsdorf & Freyer, 1973; Reuter, 1964). Es umfasst devonische bis unterkarbonische Sedimente sowie lokale vulkanitische Intrusionen (ERCOSPLAN, 2004). Ab dem Permosiles (ca. 370 Ma) kommt es auf Grund der thermisch kontrollierten, postvariszischen Subsidenz des norddeutsch-polnischen Be-

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 12 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 12 voil 44
9A	22100000	н	RB	0003	00	B2183138	Stand: 31.01.2017

ckens (Henk, 1997) zur Ablagerung der Rotliegendsedimente, welche das Molassestockwerk und somit die Füllung des Vorlandbeckens der Varisziden bilden (Franke et al., 1996; Ziegler, 1990). Sie erreichen im Bereich des subherzynen Beckens Mächtigkeiten zwischen 100 m und 300 m und wurden durch die Bohrung Remlingen 5 (Asse-GmbH, 2013) nachgewiesen.

Die andauernde thermische Subsidenz ist ebenfalls für die Ablagerung der nachfolgenden Evaporit- und Sedimentserien verantwortlich. Im Oberperm wird die Subsidenz durch zyklische Transgressionen und der damit verbundenen Ablagerung von sieben Evaporit- und Tonsteinserien des Zechsteins (258-251 Ma) ausgeglichen (Beer, 1996; Menning et al., 2005). Im Bereich der subherzynen Senke sind hier vor allem die Zyklen der Werra-, Staßfurt-, Leine-, Aller- und Ohre-Folge bedeutsam. Die Friesland- und Fulda- (Bröckelschiefer-) Folge sind nur durch rezessive Pelitfolgen überliefert (Käding, 2000). Der hohe Anteil an Evaporiten ist auch für die gesonderte Stellung der Zechsteinsedimente verantwortlich. Insbesondere die Steinsalze der Staßfurt-Folge verursachten auf Grund ihrer hohen Mächtigkeit ab der oberen Trias halokinetische Bewegungen und somit Deformationen im Deckgebirge (Schwandt & Franzke, 2008).

Im Anschluss an die salinare Phase setzt sich in der Trias die Subsidenz des Beckens fort. Im Buntsandstein werden vorwiegend klastische Sedimente abgelagert, im Oberen Buntsandstein auch Evaporite. Diesen folgen flachmarine Karbonatgesteine des Muschelkalks, welche im Mittleren Muschelkalk ebenfalls evaporitische Horizonte beinhalten können. Die Ablagerungen des Keupers sind wiederum eher terrestrisch geprägt, allerdings finden sich, vermutlich auf Grund von periodischen Meeresspiegelschwankungen, immer wieder eingeschaltete Ton- und Sulfathorizonte (ERCOSPLAN, 2004).

Marine Sedimente in Form von Ton- und Mergelsteinen wurden vom Oberen Keuper bis zum Oberen Jura abgelagert und durch die Malmingression von weißen Kalk- und Kalkmergelsteinen sowie Evaporitausscheidungen im Malm und der Unteren Kreide überlagert. Durch die unterschiedlich mächtige Verbreitung der Malm- und Unterkreidesedimente kann eine Einteilung in relative gehobene und abgesenkte Blöcke erfolgen (Baldschuhn et al., 1996; Beutler, 2002). Die subherzyne Scholle wurde in dieser Zeit relativ gehoben, die Braunschweig-Gifhorner-Scholle westlich der subherzynen Scholle hingegen abgesenkt. Auf Grund erster Salzbewegungen sind in lokal ausgeprägten Senkungsbereichen, wie z.B. der Remlinger- und Schöppenstedter Mulde (ERCOSPLAN, 2004), Lias- und teilweise Doggersedimente vorhanden.

Im Anschluss werden die jurassischen Sedimente durch Ablagerungen der Kreidetransgression überlagert. In der Unterkreide werden Sand-, Tonsteine und mergelige Abfolgen abgelagert, in der Oberkreide Kalk- und Kalkmergelsteine der Plänerkalk-Fazies.

Die Oberkreide ist vom Santon (86-84 Ma) bis zum Campan (84-71 Ma) durch die oberkretazische Inversionstektonik gekennzeichnet. An fast allen NW-SE-gerichteten Strukturen fanden Auf- und Überschiebungsbewegungen statt (Kockel, 1991). Durch die Kompression sind die Ausbildung von Salzdiapiren und die Salzsabwanderung aus den Sattelflanken bedingt, wodurch es zur weiteren Ausprägung der Randsenken an den Salinarstrukturen kommt.

Känozoische Sedimente überlagern die älteren Gesteine nur zum Teil und bilden immer Diskordanzen aus. Die känozoischen Sedimente sind hauptsächlich durch pleistozäne Bildungen der Saale- und Elstervereisung geprägt, die teilweise durch weichselzeitliche Lößablagerungen überdeckt sind. Ergänzt werden sie durch holozäne Auesedimente und Schwemmablagerungen (ER-COSPLAN, 2004).

Die Entstehung der Salzstruktur Asse kann nach Schwandt & Franzke (2008) in sechs Stadien untergliedert werden:

Das 1. Stadium ist durch die Ablagerung der Deckgebirgssedimente sowie diagenetische Prozesse in der Zeit zwischen der Obertrias und dem Jura gekennzeichnet.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 13 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 13 voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Das 2. und 3. Stadium wird durch die Extensionstektonik vom Oberjura bis zum Beginn der Oberkreide geprägt (Kockel, 2002). Infolge der von Schwandt & Franzke (2008) beschriebenen Reaktivierung von variszischen Abschiebungen im Grundgebirge kam es vor 165-84 Ma zu ersten Salzbewegungen und zur Akkumulation eines ersten Salzkissens. Durch diese Akkumulation wurde das Deckgebirge aufgerichtet und an den Sattelflanken bildeten sich Abschiebungen aus. Durch die halokinetischen Bewegungen des Zechsteinsalinars und der Aufweitung der Klüftung im Deckgebirge durch das extensionale, tektonische Regime kam es zu ersten Einwanderungen von Zechsteinsalz in die evaporithaltigen Horizonte des Oberen Buntsandsteins und zur Ausbildung eines Salzkeils.

Während des Übergangs vom 3. Stadium zum 4. Stadium ändert sich das Spannungsfeld durch das Anlegen eines kompressiven Spannungsregimes. Im 4. Stadium, in der Zeit der Oberkreide, werden Abschiebungen zum Teil invertiert oder neu angelegt und es kommt vereinzelt zur Überkippung von Deckgebirgsschichten. Der im 2. und 3. Stadium angelegte Salzkeil wird weiter ausgeprägt und es erfolgt eine Abkopplung des Mittleren und Unteren vom Oberen Buntsandstein sowie der jüngeren Horizonten an der Südflanke. Zusätzlich wird die Nord- über die Südflanke geschoben.

Ab dem Tertiär findet im 5. und 6. Stadium ein Reliefausgleich durch Erosion statt. Diese wird durch Bildung von Kollapsstrukturen in Folge von Subrosion oder Salzabwanderung im Untergrund begleitet.

Mit Bezug auf diesen regionalgeologischen Kontext sowie zahlreichen in der Vergangenheit durchgeführten Detailuntersuchungen (u.a. Appel, 1971; Bauer et al. 1998; Klarr, 1981) kann die durch Bohrungen und untertägige Abbaue aufgeschlossene Schichtenfolge im Bereich des Höhenzuges Asse entsprechend der in ANHANG 1 dargestellten Form gegliedert werden. Vor dem Hintergrund der Aufgabenstellung wurde auf die Darstellung der Schichtenfolge des Grundgebirges verzichtet.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 14 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0402420	Seite. 14 VOI1 44
9A	22100000	H	RB	0003	00	B2183138	Stand: 31.01.2017

3 DATENGRUNDLAGE

Als Datengrundlage zur Digitalisierung und dreidimensionalen Darstellung standen Bohrungen aus dem Bohrlochkataster der Asse-GmbH (2013), Bohrungen, welche in der Arbeit von Batsche et al. (1994) aufgearbeitet wurden, Profilschnitte und Sohlenrisse des geologischen Risswerkes der Schachtanlage Asse II (Asse-GmbH, 2010) sowie Sohlenrisse von Herde (1979) zur Verfügung. Die Daten wurden ERCOSPLAN durch das BfS übergeben. Für die Modellierung der Horizontoberflächen wurden aber nur die Profilschnitte und Sohlenrisse des geologischen Risswerkes der Schachtanlage Asse II (Asse-GmbH, 2010) sowie die Sohlenrisse von Herde (1979) verwendet, da in diesen die Bohrungsinformationen bereits verarbeitet wurden.

Zuerst wurden die geologischen Erkundungsbohrungen aus dem Bohrlochkataster (Asse-GmbH, 2013) in das 3D-Modell integriert. Da nur für einen Teil der Bohrungen vollständige Informationen zur Referenzierung, d.h. Angaben zum Start- und Endpunkt oder Startpunkt, Bohrteufe und Bohrwinkel, vorhanden waren, konnten insgesamt nur 76 Übertage- und 104 Untertagebohrungen in das Modell einfließen. Ergänzt wurden die Übertagebohrung durch 23 Bohrungen, welche in der Arbeit von Batsche et al. (2014) aufgelistet sind. Dies betrifft alle Bohrungen, welche mit den Buchstaben G oder H beginnen mit Ausnahme der Bohrungen H17 / GW 010, H2, H19a, H22, H24b, welche bereits im Bohrlochkataster (Asse-GmbH, 2013) erfasst wurden. Für die Bohrungen existieren neben den Stammdaten (Ansatzpunkte, Datum der Erstellung, Verlauf usw.) i.d.R. vereinfachte Schichtenverzeichnisse. Die geologischen Informationen der Schächte Asse 1 bis 4 wurden ebenfalls als Bohrungen in das Projekt integriert. Die Bohrungen wurden für die Integration in das 3D-Modell zuerst digitalisiert und in einem für das Programmpaket SKUA-GOCAD lesbaren Textformat gespeichert. In ANHANG 2 und ANHANG 3 sind die zur Verfügung stehenden Überund Untertagebohrungen zusammengestellt.

Die Sohlenrisse des geologischen Risswerkes (Asse-GmbH, 2010) bilden vor allem die interne Salzstruktur um die Schachtanlage Asse II ab und weisen nur ansatzweise die Situation im Deckgebirge aus. Im Gegensatz zu den Sohlenrissen ist in den Profilschnitten des geologischen Risswerkes (Asse-GmbH, 2010) ein deutlich größerer Teil des Deckgebirges ausgehalten. Für eine Modellierung des salzinternen Baues ist die Dichte der Profilschnitte allerdings zu gering. Aus diesem Grund wurde festgelegt, dass zwei Teilmodelle erstellt und im Anschluss in einem SKUA-GOCAD-Projekt zusammengefasst werden sollten. Das erste Teilmodell umfasst das Salinar, welches ausschließlich Horizonte des Zechsteins abbildet und welchem nur die Sohlenrisse zugrunde liegen. Das zweite Teilmodell umfasst das Deckgebirge, welches die Horizonte vom unteren Buntsandstein bis zur Kreide beinhaltet und auf den Profilschnitten basiert.

Für die Modellierung des salzinternen Baues standen 22 Sohlenrisse des geologischen Risswerkes der Schachtanlage Asse II (Asse-GmbH, 2010) mit Teufen zwischen 490 m bis 975 m unter der Geländeoberkante (bezogen auf den Ansatzpunkt Schacht Asse 2) und 19 Sohlenrisse der Untertagekartierung von Herde (1979) in Teufen von 700 m, 725 m, 750 m, 775 m und 800 m im pdf-Format zur Verfügung. In Absprache mit dem BfS wurde vereinbart, dass die Sohlenrisse von Herde in den Teufen zwischen 700 m und 800 m zu bevorzugen sind, da für diese ein Kartierbericht vorhanden ist. Falls in den Kartierungen von Herde (1979) Informationsdefizite vorhanden sind, dann sind diese durch Daten aus den Sohlenrissen des geologischen Risswerkes zu ergänzen. Da unterschiedliche Arbeitsstände für die Sohlenrisse von Herde (1979) vorhanden sind, wurde festgelegt, dass nur der jeweils neueste Stand der Risse in die Modellierung einfließen soll.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 15 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN		Seite. 13 voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Eine Übersicht der zur Modellierung verwendeten und der ergänzenden Sohlenrisse ist in AN-HANG 4 gegeben. Die Lage und Ausdehnung der Sohlenrisse ist Abb. 1 zu entnehmen. Die Ausdehnung des Salinar-Modells entspricht der Fläche der Datengrundlage, d.h. den verwendeten Sohlenrissen (Abb. 1).

Für die Modellierung des Deckgebirges standen, verteilt über die gesamte Struktur Asse, sieben Profilschnitte des geologischen Risswerkes der Schachtanlage Asse II (Asse-GmbH, 2010) zur Verfügung. Da das geologische Risswerk nur den Nahbereich um die Schachtanlage Asse II abbildet, wurde mit dem BfS vereinbart, dass das Deckgebirgs-Modell auf diesen Nahbereich der Schachtanlage Asse II beschränkt ist (siehe Abb. 1). In ANHANG 5 erfolgt eine Aufstellung der in der Modellierung verwendeten Profilschnitte. Die Lage und Ausdehnung der Profilschnitte ist Abb. 1 zu entnehmen.

Die Profilschnitte 2, 14, 22, 26, 28 und 30 liegen nahezu senkrecht zum Streichen der Struktur, der Profilschnitt 5 im Streichen. Im geologischen Risswerk (Asse-GmbH, 2010) weisen die Profilschnitte senkrecht zum Streichen der Struktur eine Länge zwischen 1,3 km und 1,4 km auf und das Profil 5, welches im Streichen der Struktur verläuft, eine Länge von 1,1 km.

Die Sohlenrisse und Profilschnitte des geologischen Risswerkes wurden ERCOSPLAN durch das BfS als Dateien im pdf-Format, inklusive eines Lageplans im Maßstab 1:25:000, im Rahmen der Bearbeitung zur Verfügung gestellt.

Neben den geologischen Daten wurde zur Validierung der Lage der Profilschnitte und als Begrenzung des Modells auf LIDAR-Daten zur Abbildung der Geländeoberfläche zurückgegriffen, welche ERCOSPLAN ebenfalls durch das BfS als Rasterpunkte mit x-, y- und z-Koordinaten in einer Textdatei zur Verfügung gestellt wurden. Die ursprüngliche horizontale Auflösung von 1 m wurde für die Modellierung auf 10 m verringert, um ein Prozessieren der Daten in einem angemessenen Zeitraum zu ermöglichen.

Das Koordinatensystem für bereits referenzierte Daten ist DHDN-Gauß-Krüger-Zone 4. Dieses wurde für das gesamte weitere Projekt als Referenzsystem genutzt.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.			Seite: 16 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	20100100	00110: 10 1011 11
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

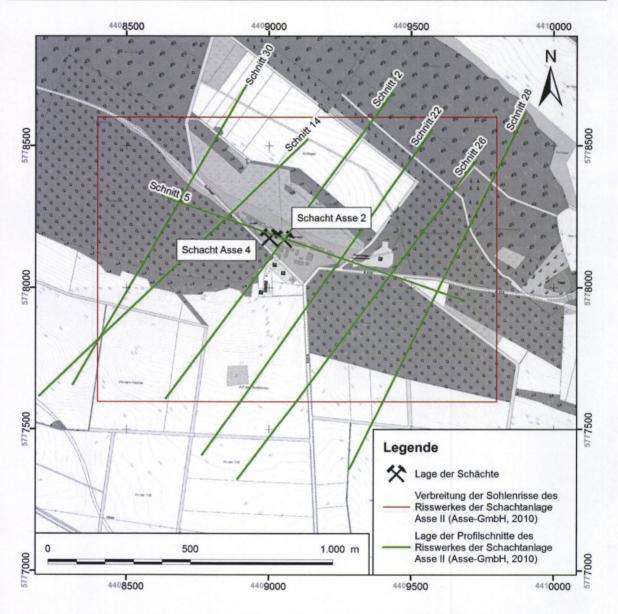


Abb. 1 Lage der verwendeten Sohlenrisse und Profilschnitte des geologischen Risswerkes (Asse-GmbH, 2010)

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.	D2402420	Seite: 17 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN		Geite. 17 Volt 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

4 AUFBEREITUNG UND INTEGRATION VORHANDENER DA-TEN

Die verwendeten Daten (vgl. Kap. 3) wurden von ERCOSPLAN in ein Modell integriert. Da eine geologische Plausibilitätsprüfung und Bewertung der Eingangsdaten nicht Bestandteil der Aufgabe war, fand nur eine vereinfachte Vorprüfung dieser im Zuge der Modellierung des Deckgebirges statt (vgl. Kap. 6).

Wie in Kap. 3 beschrieben, wurden zwei Modelle, eines für das Salinar und eines für das Deckgebirge, erstellt. Die stratigraphische Gliederung im Bereich der Schachtanlage Asse II wurde unterschiedlich detailliert erfasst und ist teilweise in einem hohen Detailgrad verfügbar (siehe ANHANG 1). Um die Modellierung rechentechnisch und in einem angemessenen Zeitrahmen durchführen zu können, mussten die zu modellierenden Horizonte zusammengefasst werden. Da zwei Teilmodelle erstellt werden sollten, wurden die zu modellierenden Horizonte getrennt, einmal für das Salinar (siehe Tab. 1) und einmal für das Deckgebirge (siehe Tab. 2), festgelegt.

Grundlage für die Zusammenfassung der Horizonte im Salinarmodell bildeten die Sohlenrisse des geologischen Risswerkes (Asse-GmbH, 2010). Es wurden nur Horizontoberflächen modelliert, welche sich über den Großteil der Sohlenrisse verfolgen lassen und welche eine für die Modellierung verwendbare Mächtigkeit besitzen, da ansonsten mit Schichtschnitten während der Modellierung zu rechnen ist. Aus diesem Grund wurde auf die Modellierung der Schichtflächen für die Einheiten Pegmatitanhydrit (A4), Hauptanhydrit (A3), Grauer Salzton (T3), Gebänderter Deckanhydrit (A2r) und Tonliniensalz (Na2T) verzichtet. Die in den Sohlenrissen ausgewiesenen Untereinheiten des Leine-Steinsalzen (Na3 β , Na3 γ , Na3Ro+ δ , Na3 ϵ + ζ , Na3 γ und Na3 ϑ) sowie die Anhydritmittelsalze und (Haupt-)Anhydritmittel (am4, am6 und am7) wurden allgemein zum Leine-Steinsalz (Na3) zusammengefasst. Die Zusammenfassung der in den Sohlenrissen vorhandenen Einheiten zu modellierbaren Einheiten des Salinars ist in Tab. 1 aufgelistet. Die Bezeichnung der Horizonte ist den Sohlenrissen des geologischen Risswerks (Asse-GmbH, 2010) zu entnehmen.

Tab. 1 Zusammenfassung der Einheiten gemäß Risswerk Schachtanlage Asse II (Asse-GmbH, 2010) zu modellierbaren Einheiten des Salinars

Einheiten gem. Risswerk Schacht- anlage Asse II (Asse-GmbH, 2010)	Zu modellieren- de Einheiten	Begründung für die Zusammenfassung
A4r, z5 – z7	A4r-z7	Nur Namensänderung, da Kommas im Namen nicht verarbeitet werden können.
A4 und Na4	A4-Na4	A4 zu geringmächtig
T4	T4	
Na3β bis Na3ϑ,	Na3	einzelne Lagen zu geringmächtig
A3, T3, K2C	K2C	A3 und T3 nur sehr vereinzelt ausgewiesen und starker Bezug zur Deformation des K2C
Na2K, Na2T	Na2K	Na2T nur lokal verbreitet
Na2P	Na2P	

Projekt	PSP-Element	Aufgabe		Lfd. Nr.	Rev.		Seite: 18 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	B2183138	Content of ton 11
9A	22100000	Н	RB	0003	00	D2103130	Stand: 31.01.2017

Einheiten gem. Risswerk Schacht- anlage Asse II (Asse-GmbH, 2010)	Zu modellieren- de Einheiten	Begründung für die Zusammenfassung
Na2S	Na2S	
Νa2β	Na2β	

Die Profilschnitte des geologischen Risswerkes (Asse-GmbH, 2010) bilden die Grundlage für die Modellierung des Deckgebirges, weshalb die zu modellierenden Horizonte auf deren Grundlage festgelegt wurden. Da einzelne Folgen für eine Modellierung eine zu geringe Mächtigkeit aufweisen, erfolgte eine Zusammenfassung mit Horizonten der gleichen stratigraphischen Gruppe.

Die Sohlenrisse der Schachtanlage Asse II (Asse-GmbH, 2010) sind nicht mit in die Modellierung eingebunden, da der verwendete Workflow zur Modellierung, "Structure and Stratigraphy" (vgl. Kap. 6), nur Störungsinformationen verarbeiten kann, aus welchen sich Informationen zur Fallrichtung und dem Fallwinkel ableiten lassen (sogenannte Fault-Sticks). Störungen aus den Sohlenrissen liefern aber nur eine Aussage über das Streichen der Störungen.

Die Korrelation der in den Profilschnitten ausgewiesenen und der zu modellierenden Einheiten des Deckgebirges ist in Tab. 2 aufgelistet. Die Bezeichnung der Horizonte ist den Profilschnitten des geologischen Risswerkes (Asse-GmbH, 2010) zu entnehmen.

Tab. 2 Zusammenfassung der Einheiten gemäß Risswerk Schachtanlage Asse II (Asse-GmbH, 2010) zu modellierbaren Einheiten des Deckgebirges

Einheiten gem. Risswerk Schacht- anlage Asse II (Asse-GmbH, 2010)	Zu modellieren- de Einheiten	Begründung für die Zusammenfassung
q, t, kr	q-kr	Geringe Verbreitung von Quartär und Tertiär, diese Fläche entspricht der GOK
j	j	
ko	ko	
km, km1, km2	km	km1 und km2 nur teilweise unterschieden, Zusammenfassung zur stratigrafischen Grup- pe km
ku	ku	
mo1, mo2	mo	mo1 zu geringmächtig
mm, mmNA, mmR	mm	mmNA und mmR nur teilweise ausgewiesen, sowie alleinstehend zu geringmächtig und innerhalb der Formation mm lokalisiert
mu	mu	
so, soAy, soA, soNA	so	soAy, soA und soNA nur teilweise ausgewiesen, sowie alleinstehend zu geringmächtig
sm	sm	
ρ, su	su	ρ zu geringmächtig und innerhalb der Formation su lokalisiert
Zechsteinhorizonte	p	Der Top der Zechsteinhorizonte bildet die Basis des Oberen (Südflanke) und Unteren Buntsandsteins (Nordflanke)

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 19 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 19 VOI1 44
9A	22100000	Η	RB	0003	00	B2183138	Stand: 31.01.2017

Das erste Ziel der Erstellung des geologischen 3D-Modells stellte die Integration von bereits vorhandenen Daten dar. Weitere Ziele waren die Modellierung der Horizontoberflächen des Salinars (vgl. Kap. 5) und der Horizontoberflächen und Störungsflächen des Deckgebirges (vgl. Kap. 6) auf Basis der beschriebenen Datengrundlage.

Zum Erreichen des ersten Ziels wurden insgesamt 99 Übertage- (inklusive der Schächte Asse 1 bis 4) und 104 Untertagebohrungen aus dem Bohrlochkataster (Asse-GmbH, 2013) sowie der Arbeit von Batsche et al. (1994; vgl. Kap. 3) in das Projekt geladen, welche die Voraussetzungen für die dreidimensionale Darstellung erfüllten (vgl. Kap. 3). Die Bohrpfade der Übertagebohrungen wurden mit Hilfe des Ansatzpunktes und der Teufe georeferenziert. In Ermangelung von Informationen bezüglich des Bohrpfades bzw. der Bohrabweichung für übertägige Bohrungen wurde für diese ein vertikaler Bohrpfad angenommen. Die Bohrpfade der Untertagebohrungen wurden mit Hilfe eines Ansatz- und eines Endpunktes gemäß Bohrlochkataster (Asse-GmbH, 2013) bzw. Batsche et al. (1994) georeferenziert. Dadurch war es möglich, sowohl schräge als auch horizontale Bohrungen in das Modell zu integrieren.

Schichtmarker in den Bohrungen repräsentieren die Oberflächen der in der Tab. 1 und der Tab. 2 zusammengefassten lithostratigraphischen Horizonte. Diese wurden mittels Teufenangaben in den Ausgangsdaten in die Bohrpfade integriert. Eine Übersicht der integrierten Bohrungen ist im AN-HANG 2 (Übertagebohrungen) und ANHANG 3 (Untertagebohrungen) aufgelistet.

Die Sohlenrisse des geologischen Risswerkes (Asse-GmbH, 2010) lagen im pdf-Format und unreferenziert vor. Daher wurden diese zunächst vektorisiert und anhand eines vorhandenen Koordinatenrahmens georeferenziert. Die Referenzierung der Sohlenrisse von Herde (1979) erfolgte mit Hilfe der eingezeichneten Bohrungen sowie durch den Abgleich mit den Sohlenrissen des geologischen Risswerkes (Asse-GmbH, 2010). Die Teufenangaben der Karten waren mit Bezug zum Schacht Asse 2 (Ansatzpunkt von 192,5 mNN) gegeben.

Die Profilschnitte wurden als zweidimensionale und vektorisierte Schnitte übergeben. Daher war eine Transformierung der Schnitte in den dreidimensionalen Raum notwendig. Die Transformation wurde auf Grundlage einer Kartendarstellung zur Lage der Schnitte im Maßstab 1:25.000 durchgeführt.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.	D0400420	Seite: 20 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN		Seite. 20 VOIT 44
9A	22100000	Η	RB	0003	00	B2183138	Stand: 31.01.2017

5 MODELLIERUNG DES ZECHSTEINSALINARS

Da die Zechsteinhorizonte aus den Sohlenrissen von Herde (1979) und den Sohlenrissen des geologischen Risswerkes (Asse-GmbH, 2010) erstellt wurden, ergibt sich das Modellierungsgebiet aus der Ausdehnung dieser Sohlenrisse (siehe Abb. 1, Kap. 3).

Für die Modellierung des Zechsteinsalinars mussten folgende Schritte durchgeführt werden:

- (1) Digitalisierung der stratigraphischen Hangendgrenzen der zu modellierenden Zechsteineinheiten (siehe Tab. 1, Kap. 4) aus den vorher georeferenzierten Sohlenrissen als Linien in der Software ArcGIS der Firma ESRI
- (2) Import der digitalisierten Einheitengrenzen in SKUA-GOCAD und Zuweisung der Tiefeninformation bezogen auf die Teufe der Sohlenrisse und des Ansatzpunktes von Schacht Asse 2 (192,5 mNN; Asse-GmbH, 2013)
- (3) Verbindung der einzelnen Linien einer Einheitsgrenze zu triangulierten Flächen (in SKUA-GOCAD als "Surfaces" bezeichnet)
- (4) Verfeinerung der Triangulation und anschließende Interpolation der Grenzflächen

Der Grad der Triangulation unter Punkt (3) wird durch die Software automatisch ermittelt. Die Verfeinerung und anschließende Interpolation unter Punkt (4) ist zur Modellierung von gleichmäßigen Schichtverläufen notwendig. Die Interpolation wurde mit dem in SKUA-GOCAD integrierten Interpolationsalgorithmus "Discrete Smooth Interpolation" (DSI; Mallet, 1992 und 2008) durchgeführt.

Als Ergebnis entstanden 9 Hangendgrenzflächen der Modellierungseinheiten des Zechsteinsalinars, welche unabhängig voneinander, aber unter Berücksichtigung der vorgenommenen Zusammenfassungen (vgl. Tab. 1) entsprechend des Verlaufes der Horizonte in den Sohlenrissen modelliert wurden. Einzig zwischen den Sohlenrissen kann es auf Grund der Verfeinerung und Interpolation der Grenzflächen und der Modellierung von separaten Einheiten zu Schnitten zwischen den einzelnen Horizontoberflächen in Bereichen mit sehr geringer Schichtmächtigkeit kommen. Diese wurden durch manuelle Anpassung der Grenzflächen soweit wie möglich behoben. Die manuelle Anpassung muss nach jeder neuen Interpolation, z.B. nach dem Hinzufügen oder der Anpassung von Daten, durchgeführt werden. Eine schematische Übersicht der Modellierung ist in Abb. 2 am Beispiel des Kaliflözes der Staßfurt–Folge dargestellt.

_

¹ Ein Surface ist ein Objekt des Programmpaketes SKUA-GOCAD. Es repräsentiert eine Fläche, welche aus mehreren Teilen (im Programm als "Parts" bezeichnet) bestehen kann. Diese Einzelteile wiederum sind aus Knotenpunkten aufgebaut, welche durch ein trianguliertes Netz miteinander verbunden sind. Diese triangulierten Netze lassen sich, zum Beispiel im Autocad-DXF-Format, in andere Programme exportieren.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.	D0400400	Seite: 21 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN		
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

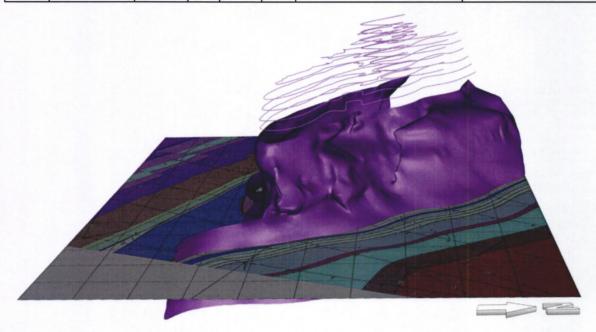


Abb. 2 Modellierung der Salinarhorizonte aus den digitalisierten Sohlenrissen. Hier: Oberfläche des Kaliflözes Staßfurt (K2C).

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.	D0400400	Seite: 22 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN		Seite. 22 voii 44
9A	22100000	I	RB	0003	00	B2183138	Stand: 31.01.2017

6 MODELLIERUNG DES DECKGEBIRGES

Im Gegensatz zur Modellierung des Zechsteinsalinars sollte die Modellierung des Deckgebirges mit dem Workflow "Structure & Stratigraphy" des Programmpaktes SKUA-GOCAD durchgeführt werden, da dieser eine einfache Möglichkeit zur Modellierung von strukturgeologisch überprägten, gleichmäßig abgelagerten Sedimentfolgen liefert. Dieser Workflow konnte nicht auf das Salinar angewendet werden, da dieses auf Grund der Salzkeilbildung zu inhomogen und die Geometrie der Grenzflächen zu unterschiedlich ist. Der Workflow erlaubt es weiterhin eine manuelle Anpassung der Grenzflächen zu vermeiden, bzw. dass diese Anpassung bei sich iterativ wiederholenden Interpolationen nur einmalig durchgeführt werden muss. Die Begrenzung des Modellierungsgebietes wird durch die Verbreitung der Profilschnitte festgelegt und ist in Abb. 1 (Kap.3) dargestellt. Der generelle Workflow besteht dabei aus den folgenden Einzelschritten:

- (1) Erzeugung einer programminternen stratigraphischen Tabelle mit allen zu modellierenden Horizonten
- (2) Auswahl der zur Modellierung genutzten Schichtdaten
- (3) Auswahl der zur Modellierung genutzten Störungsdaten
- (4) Modellierung eines Salinarkörpers, welcher als Abgrenzung zwischen Salinarmodell und Deckgebirgsmodell dient
- (5) Korrelation der Störungen und Modellierung der Störungsflächen
- (6) Modellierung und Anpassung der Horizonte
- (7) Erzeugung eines geologischen Blockmodells (Volumenmodell) inklusive aller Störungs- und Horizontflächen

Die programminterne stratigraphische Tabelle wurde auf Grundlage der in Tab. 2 (Kap. 4) festgelegten Horizonte erzeugt. Diese wurde vom Programm SKUA-GOCAD während des Workflows zur relativen Ordnung der zu modellierenden Horizonte zueinander genutzt.

Da im Vorfeld alle verfügbaren Daten digitalisiert und in das Modell integriert wurden, mussten während der Arbeitsschritte (2) und (3) des Workflows die für die Modellierung des Deckgebirges relevanten Einheitengrenzen und Störungslinien nur selektiert werden. Diese Schritte sind im Modellierungsprozess vor allem erforderlich, um Daten, welche im Projekt enthalten sind, aber nicht im Workflow genutzt werden sollen, auszuschließen.

Durch seismische Untersuchungen (Bauer et al., 1998) und die Ergebnisse der Bohrung Remlingen 5 (Asse-GmbH, 2013) ist ein keilartiges Eindringen des Zechsteinsalinars an der Südflanke zwischen Oberem und Mittlerem Buntsandstein nachgewiesen (Klarr, 1981). Aus modellierungstechnischen Gründen ist es erforderlich, dass die Geometrie dieses Keils vorgegeben wird (Modellierungsschritt (4)) Hierfür wurden aus den Profilschnitten die digitalisierten Linien der Schichtgrenzen, welche die Oberfläche des Zechsteins abbilden, zu einer Fläche interpoliert und bis zur Grenze des Modellgebietes extrapoliert. Die Extrapolation war notwendig, da die Profilschnitte nicht das gesamte Modellgebiet abdecken.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 23 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Oeite. 23 VOI1 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

Im Arbeitsschritt (5) des Workflows muss ein modelltechnisch plausibles Störungsnetz generiert werden. Grundlage hierfür bildete das Störungsnetz des geologischen Risswerkes (Asse-GmbH, 2010). Um Störungsflächen für ein konsistentes Modell zu konstruieren, ist die Korrelation der geologischen Strukturen über die einzelnen Schnitte besonders wichtig.

Hierzu wurden die aus dem Risswerk vorgegeben Störungsbezeichnungen übernommen, anhand derer die Störungen miteinander korreliert wurden. Folgende Inkonsistenzen wurden dabei identifiziert:

- Insgesamt 18 Störungen sind nur auf einem Profilschnitt verzeichnet und konnte auf Grund mangelnder Informationen nicht dreidimensional modelliert werden. Dies betrifft die Störungen D4, D7, D7a, D10, D11, D12, D13, D16, D17, D18, D19, D20, S2a, S3a, S3b, S6a, S8 und "?".
- Sich kreuzende Störungen weißen untereinander keinen Versatz auf oder der Versatz ändert sich deutlich zum sonstigen, stratigraphischen Versatz (zum Beispiel Kreuzung der Störungen D3 und D? im Schnitt 14).
- Einige Störungen sind auf mehreren, nicht benachbarten Profilschnitten ausgewiesen, fehlen aber in den dazwischen lokalisierten Schnitten. Dies betrifft die Störungen S4b (vorhanden in den Schnitten 02 und 30, nicht aber im Schnitt 14) und S8a (vorhanden in den Schnitten 02 und 26, nicht aber im Schnitt 22).
- Die Grenze zwischen Nord- und Südflanke (diese entspricht der Störung zwischen Oberen und Unterem Buntsandstein, bzw. Zechstein am Top der Antiklinalstruktur) wird im Verlauf der Profile immer wieder durch andere Störungen repräsentiert (S4C, S5, S6, S6a, D18). Teilweise wechseln sich die Störungen auch in einem Profilschnitt ab (z.B. Schnitt 26: S5, S6 und S6a).
- Die Grenze zwischen Nord- und Südflanke wird durch Störungen realisiert, welche unterschiedliches Einfallen aufweisen. Die Störung S4C fällt in den Schnitten 02 (in Verbindung mit Störung S5) und 30 nach Norden ein, im zwischen diesen Schnitten lokalisierten Schnitt 14 aber nach Süden. Dieser zweifache Wechsel der Einfallsrichtung ist auf innerhalb des geringen Abstandes der Schnitte von ca. 400m modelltechnisch nicht umsetzbar.
- Störungen, welche sich über mehrere Profilschnitte verfolgen lassen, zeigen teilweise deutliche Unterschiede in ihren Ausprägungen und Versätzen (z.B. S5 ist in den Profilschnitten 56, 30 und 2 die Hauptstörung, welche die Nord- von der Südflanke trennt; im Schnitt 22 ist sie nur gering angedeutet und weist keinerlei Versatz auf).
- Der Versatz der einzelnen Störungen ändert sich zum Teil drastisch bzw. zeigt horizontweise einen entgegengesetzten Bewegungssinn. Die Störung S8 im Schnitt 30 ist an der Basis des Rogensteinhorizontes im Unteren Buntsandstein eine Aufschiebung mit ca. 40 m Versatz. An der Basis des Mittleren Buntsandsteins ist sie als Abschiebung mit einem Versatz von ca. 40 m ausgewiesen. Der Versatz der Störung D17/S4a im Schnitt 26 von ca. 27 m an der Basis des Trochitenkalks (mo1) wird beim Zusammentreffen mit der Störung S3 plötzlich auf 0 m reduziert. Dies hat eine Reduktion der Schichtmächtigkeit des Mittleren Muschelkalks von ca. 45 m auf 30 m zur Folge. Der Versatz der Störung S4c im Profil 26 steigt von ca. 7 m an der Basis des Unteren Muschelkalks auf mindestens 45 m am Top des Unteren Muschelkalks an.
- Störungen springen zwischen zwei Profilschnitten zum Teil ohne erkennbaren Grund in ein anderes stratigraphisches Niveau, obwohl Störungen im gleichen Niveau vorhanden sind. Zum Beispiel wandert die Störung D12 zwischen den Profilschnitt 2 und 22 nach N und

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 24 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	50450400	Oeite. 24 Voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

wird im ursprünglichen stratigraphischen Niveau (Mittlerer Buntsandstein an der Geländeoberkante) durch die Störung D13 ersetzt. Diese wird wiederum im Profilschnitt 26 erneut nach N versetzt und durch die Störung D14/S8a ersetzt.

- Störungen sind zum Teil auf der Nord- und Südflanke ausgeprägt, zeigen aber unterschiedliches Einfallen. Störung D8 fällt in den Schnitten 05 und 14 in Richtung SW ein, im Schnitt 02 auf der Südflanke aber Richtung NE.
- Störungen haben zum Teil unterschiedliche Bezeichnungen. In Abb. 3 ist zu erkennen, dass die Störung S6 des Schnittes 26 der Störung D18 des Schnittes 05 entspricht.

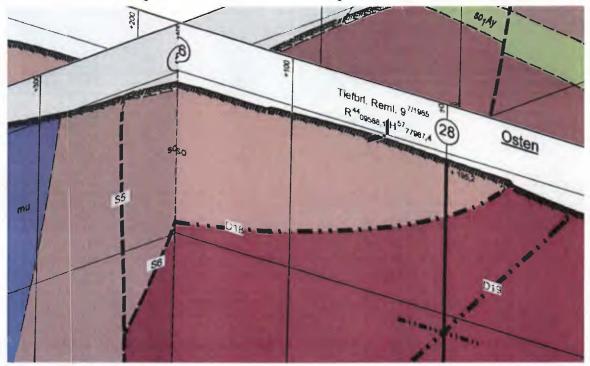


Abb. 3 Unterschiedliche Benennung derselben Störung (S6/D18) in den Schnitten 05 und 26

Auf Grund der oben aufgelisteten Inkonsistenzen konnte für das Deckgebirge kein Störungsnetz generiert werden, welches auf dem Risswerk der Schachtanlage Asse II (Asse-GmbH, 2010) beruht. Dies hatte zur Folge, dass die Modellierung des Deckgebirges nicht fortgesetzt und somit kein Flächenmodell des Deckgebirges erstellt werden konnte.

3D-Modells im Bereich der Schachtanlage Asse II

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 25 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 23 voil 44
9A	22100000	H	RB	0003	00	B2183138	Stand: 31.01.2017

7 DATENÜBERGABE

Die Übergabe der Daten an das BfS erfolgt in Form eines zusammenfassenden SKUA-GOCAD Projektes sowie als exportierte Einzelobjekte im SKUA-GOCAD-Format, damit diese in anderen Programmen verarbeitet werden können.

Folgende Daten werden dem BfS im textbasierten SKUA-GOCAD-Format übergeben:

- für Modell aufbereitete Bohrungen (georeferenziert)
 - 99 über Tage
 - 104 unter Tage
- für das Modell des Salinars und das Modell des Deckgebirges grundlegende Daten
 - 22 Voxets² der Sohlenrisse des geologischen Risswerkes (Asse-GmbH, 2010)
 - 14 Voxets der Sohlenrisse von Herde (1979)
 - 7 Voxets der Profilschnitte des geologischen Risswerkes (Asse-GmbH, 2010)
 - 9 aus den Sohlenrissen des geologischen Risswerkes (Asse-GmbH, 2010), sowie von Herde (1979) digitalisierte Polylinienobjekte für die Horizonte A4r-z7, A4-Na4, T4, Na3, K2C, Na2K, Na2P, Na2S, Na2β zur Modellierung des Salinars
 - 36 Polylinien der für die Modellierung des Deckgebirges verwendeten Störungen, abgeleitet aus den Profilschnitten (Asse-GmbH, 2010)
 - 11 Polylinien der für die Modellierung des Deckgebirges verwendeten Einheiten, abgeleitet aus den Profilschnitten (Asse-GmbH, 2010)
- Modellierte Flächen
 - 9 Oberflächen für die Einheiten A4r-z7, A4--Na4, T4, Na3, K2C, Na2K, Na2P, Na2S, Na2β
- Geländeoberfläche
 - 1 Raster mit einer Auflösung von 10 m, errechnet aus 1 m LIDAR-Daten
 - 1 Surface erstellt aus dem Raster mit 10 m Auflösung
- Grubengebäude
 - 1 Polylinie für das Grubengebäude der Schachtanlage Asse II

² Ein Voxet ist ein SKUA-GOCAD Objekt. Es entspricht einem regelmäßigen, dreidimensionalen Raster. Es wird durch einen Ursprung, 3 Achsvektoren und die Anzahl der Zellen pro Achse definiert. Häufig wird es zur Speicherung von Bilddaten, zum Beispiel Seismik oder Profilschnitte, verwendet.

3D-Modells im Bereich der Schachtanlage Asse II

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 26 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 20 voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 31.01.2017

8 ZUSAMMENFASSUNG UND EMPFEHLUNGEN ZUM WEITEREN VORGEHEN

Ziel der Bearbeitung war die Erstellung eines dreidimensionalen Modells auf Grundlage des zweidimensionalen Risswerkes der Schachtanlage Asse II (Asse-GmbH, 2010). Dieses sollte der Visualisierung der geologischen Situation auf dem Stand der aktuellen geologischen Erkundung dienen und das Aufzeigen von möglichen Inkonsistenzen im geologischen Risswerk der Asse-GmbH (2010) ermöglichen.

Grundlagen für die Modellierung waren die Profilschnitte und Sohlenrisse des geologischen Risswerkes der Asse-GmbH (2010). Zusätzlich standen für die Sohlen zwischen 700 m und 800 m weitere dokumentierte Sohlenrisse von Herde (1979) zur Verfügung. Zusätzlich wurden die geologischen Erkundungsbohrungen aus dem Bohrlochkataster der Asse-GmbH (2013) sowie die hydrologischen Bohrungen, welche durch Batsche et al. (1994) bearbeitet wurden, im Modell dargestellt.

Auf Grund der unterschiedlichen lithologischen Eigenschaften und der daraus folgenden differenzierten geometrischen Ausbildung der zu modellierenden Einheiten wurde entschieden, zwei Teilmodelle, eines für das Deckgebirge und eines für das Salinar, zu erstellen. Sämtliche Grundlagendaten und Ergebnisse wurde im Anschluss in einem SKUA-GOCAD-Projekt zusammengefasst. Das Salinarmodell basiert auf den Sohlenrissen des geologischen Risswerkes (Asse-GmbH, 2010) und den Sohlenrissen von Herde (1979) und ist somit auf die Ausdehnung dieser Sohlenrisse beschränkt.

Im Zuge der Modellierung des Deckgebirges wurde eine indirekte Plausibilitätsprüfung des im geologischen Risswerk der Asse-GmbH (2010) verzeichneten Störungssystems durchgeführt. Auf Grund der in Kapitel 6 aufgelisteten Inkonsistenzen konnte das Störungssystem modelltechnisch allerdings nicht erstellt werden, wodurch eine Modellierung des Deckgebirges nicht möglich war.

Das Ergebnis der gesamten Modellierung ist ein digitales geologisches 3D-Modell, welches die Grenzlinien der in Kapitel 4 (Tab. 1 und Tab. 2) festgelegten Einheiten, basierend auf den Rissen und Schnitten des geologischen Risswerkes der Schachtanlage Asse II (Asse-GmbH, 2010), sowie die für das Salinar erstellten Oberflächen der Modelleinheiten enthält. Es bildet den Stand der geologischen Erkundung der Salinarstruktur Asse, basierend auf dem Risswerk der Schachtanlage Asse II (Asse-GmbH, 2010), ab.

Für das weitere Vorgehen wird dringend eine Plausibilitätsprüfung und Ergänzung der vorhandenen Primärdaten und, darauf aufbauend, eine Validierung und Anpassung des geologischen Risswerkes der Schachtanlage Asse II (Asse-GmbH, 2010) empfohlen, um die in Kapitel 6 aufgelisteten Inkonsistenzen zu beseitigen.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 27 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Ocite. 27 Vol 144
9A	22100000	н	RB	0003	00	B2183138	Stand: 31.01.2017

Literaturverzeichnis

Appel, D. (1971): Bericht über die geologische Neuaufnahme der Asse bei Wolfenbüttel (Niedersachsen) unter besonderer Berücksichtigung ihrer Quartärbedeckung und der Tektonik der Südwestflanke. AZ.IV-1306/71, 129 S., TH Hannover, Hannover

Asse-GmbH (2010): Risswerk der Schachtanlage Asse II. Remlingen, Stand 2010

Asse-GmbH-(2013): Bohrlochkataster der Schachtanlage Asse II. Remlingen

Baldschuhn, R., Frisch, U., Kockel, F. (1996): Geotektonischer Atlas von NW-Deutschland. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

Batsche, H., Klarr, K., v. Stempel, C. (1994): Hydrogeologisches Forschungsprogramm ASSE – Abschlussbericht, Institut für Tiefenplanung, Abteilungsbericht IfP 4/94

Bauer, M., Küstermann, W., Deubel, K., Fischer, K-H., Seitz, R. & Vormbaum, M. (1998): Ergebnissbericht Reflexionsseismik, Bohrlochseismik, Seismische Arbeiten zur Strukturerkundung des Deckgebirges im Gebiet des Forschungsbergwerkes Asse – Hauptphase. Geophysik GGD, 95 S., Asse, Remlingen

Beer, W. (1996): Kalilagerstätten in Deutschland. Kali und Steinsalz, Bd. 12, H. 1, S. 18-30, Essen

Beutler, G. (2002): Tektonische Übersichtskarte von Sachsen-Anhalt 1:500.000, Saxonische Strukturen. 1. Auflage, Halle/S.

Borsdorf, K.-H., Freyer, G. (1973): Zur Altersstellung der Sedimentserien in der östlichen Blankenburger Zone (Harz). geol. Wiss., Themenh. 1: S. 81-90, Berlin

ERCOSPLAN (2004): Zusammenfassung der geologischen Grundlagen für die Langzeitsicherheitsbewertung der Schachtanlage ASSE II. ERCOSPLAN Ingenieurgesellschaft Bergbau und Geotechnik mbH, 94 S., Erfurt, Clausthal-Zellerfeld

Franke, D., Hoffmann, N. & Lindert, W. (1996): The Variscian deformation front in East Germany. Part 2: Tectonic Interpretation. Z. Angew. Geol., 42, 1, S. 44-56

Henk, A. (1997): Thermo-mechanical modelling of late-orogenic extension – a study from the Variscian orogen of Central Europe. In: Zhiqin, X., Yufeng, R., Xiaoping, Q. (ed.): Proceedings of the 30th International Geological Congress – Vol. 7: Orogenic Belts and Geological Mapping. International Science Publishers: S. 21-38, Zeist

Herde (1979): Geologische Kartierung der Sohlen 700 m, 725 m, 750 m, 775 m und 800 m auf der Schachtanlage Asse II. Gesellschaft für Strahlen & Umweltforschung mbH, München

Käding, K. C. (2000): Die Aller-, Ohre-, Friesland- und Fulda-Folge (vormals Bröckelschiefer-Folge). Kali und Steinsalz, Bd. 13, H. 14, S. 760-770, Essen

Klarr, K. (1981): Grundlagen zur Geologie der Asse. GSF Bericht T117, 92 S., 5 Tabellen, GSF, Braunschweig

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 28 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 20 voil 44
9A	22100000	н	RB	0003	00	B2183138	Stand: 31.01.2017

Kockel, F. (1991): Die Strukturen im Untergrund des Braunschweiger Landes. Geol. Jb., 127, S. 391-404, 2 Abb., 2 Taf.; Hannover.

Kockel, F. (2002): Rifting processes in NW-Germany and the German North Sea Sector. Neth. J. Geosci., 81, 2, S. 149-158

Mallet, J. L. (1992): Discrete smooth interpolation in geometric modelling. – Computer Aided Design, 24, 4, S. 178-191

Mallet, J. L. (2008): Numerical Earth Models. – EAGE Publications-bv, 147 S.Menning, M., Gast, R., Hagdorn, H., Käding, K.-C., Simon, T., Szurlies, M. & Nitsch, E. (2005): Zeitskala für Perm und Trias in der Stratigraphischen Tabelle von Deutschland 2002, zyklos-tratigraphische Kalibrierung der höheren Dyas und Germanischen Trias und das Alter der Stufen Roadium bis Rhaetium 2005. Newsletters on Stratigraphy, 41, 1-3 S. 173-210

Menning, M., Gast, R., Hagdorn, H., Käding, K.-C., Simon, T., Szurlies, M. & Nitsch, E. (2005): Zeitskala für Perm und Trias in der Stratigraphischen Tabelle von Deutschland 2002, zyklostratigraphische Kalibrierung der höheren Dyas und Germanischen Trias und das Alter der Stufen Roadium bis Rhaetium 2005. Newsletters on Stratigraphy, 41, 1-3, S. 173-210

Reuter, F. (1964): Die regionale Stellung der Flechtlingen-Roßlauer-Scholle. Geologie, Beih. 40, 66 S., Berlin

Schwandt & Franzke (2008): Ergänzende Untersuchung/Beurteilung der strukturellen Situation des Deckgebirges im Bereich der Schachtanlage Asse II. GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Remlingen, 79 S.

Ziegler, P. (1990): Geological Atlas of Western and Central Europe. Shell, The Hague, 239 S.

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 29 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 29 VOIT 44
9A	22100000	н	RB	0003	00	B2183138	Stand: 13.06.2014

Anhang 1

Lithostratigraphische Übersicht der salinaren und postsalinaren Schichtenfolge im Bereich des Höhenzuges Asse

System	Serie	(Regionale) Stufe/Gruppe	Fol- ge/Formation	Horizont	Petrographie	Symbolschlüssel nach Asse-GmbH (2010)	Mächtig- keit nach Klarr
	Holozän				humoser Schluff mit Ton- und Sandbeimengungen	qh	3 m
Quartär	ozän		Weichsel- eiszeit		umgelagerter Löß		hin 00 m
	Pleistozän		Saale- eiszeit		Ton, Geschiebelehm und Fließerden	qp	bis 30 m
				Schio	chtlücke		
Paläogen	Oli- gozän	Latdorf			glaukonitischer Quarz- sand, Ton und Schluff	tolu	bis 25 m
				Schio	chtlücke		
		Campan			klüftige, sandige Kalkmergelgesteine	krca	40 m
		Santon			glaukonitische Tonsteine	krsa	10 m
	Ober-				Schichtlücke		
	kreide	Turon	Rhotomagen-		Plänerkalke	krt	
Kreide	elide	Cenoman	sis bis La- marckizone		Plänerkalke	krCK	130 m
Y					Mergelstein	krCM	20 - 30 m
		Oberalb			klüftige Flammenmergel	krlo	50 - 60 m
	Unter- kreide	Hauterive bis Alb			Tone und vereinzelte Mergelbänke	krh bis krl	200 - 250 m
		Unter- hauterive		Hilskonglomerat	Konglomerat und Mergelstein	krhu	bis 25 m
				Schio	chtlücke		
		Bajocium	Coronaten- schichten		Tonstein, schwach feinsandig	jmD1	bis 90 m
		Aalenium	Polyplocus- schichten		Sandstein, fein- bis mittelsandig, Tonstein		10 - 15 m
		Togreium	Jurensis- mergel		Ton- und Mergelstein	juZ2	- 35 - 40 m
		Toarcium Posidonier schiefer			Ton- und Mergelstein	juE	35 - 40 111
	Lias	Pliens-	Amaltheen- schichten		Ton- und Mergelstein, fein- bis mittelsandig	juD	ca. 100 m
		bachium	Numismalis- mergel		Kalkeisensandstein, oolithisch	juG	15 - 20 m
		Sinemurium	Planicosta- schichten		Tonstein mit Kalkeisen- stein	juB1	ca. 35 m

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 30 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 30 VOIT 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

System	Serie	(Regionale) Stufe/Gruppe	Fol- ge/Formation	Horizont	Petrographie	Symbolschlüssel nach Asse-GmbH (2010)	Mächtig- keit nach Klarr
			Arieten- schichten		Oolithkalkstein	juA3	ca. 10 m
		Hattanaium	Angulaten- schichten		Tonstein, lagenweise	juA2	60 - 70 m
		Hattangium	Psilonoten- schichten		Sandstein	juA1	- 60 - 70 m
		Oberer Keuper	Rhät		Sandstein, fein- bis mittelsandig	ko	ca. 50 m
			Oberer Gipskeuper		Ton- bis Mergelstein	kmGo	90 - 100 m
			Rote Wand		Mergelstein	kmR	ca. 20 m
	Keuper	Mittlerer Keuper	Schilfsand- steinzone		Sandstein, feinsandig, schwach tonig	kmS	6 - 10 m
			Steinsalz		Steinsalz, z.T. abgelaugt		
			Unterer Gipskeuper		Ton- bis Schluffstein	kmGu	110 - 120 m
		Unterer Keuper			Ton- und Mergelstein, vereinzelt Sandsteinla- gen	ku	60 - 80 m
		01	Ceratiten- schichten		Mergel- und Kalkstein	mo2	50 - 60 m
		Oberer Muschelkalk	Encrinus- schichten (Trochitenkalk)		Kalkstein	mo1	7 - 10 m
					Mergelstein		ca. 13 m
Trias		Mittlerer Muschelkalk			Mergel- und Tonstein, Steinsalz z.T. verkarstet, Anhydrit	mm	ca. 95 m ca. 10 m
			Schaumkalk- bänke		bioklastischer Kalkstein	muS	8 - 15 m
			Wellenkalk 3		Mergelkalk	muVV3	10 - 15 m
		Unterer Muschelkalk	Terebratel- bänke		mikritischer Kalkstein	muT	ca. 7 m
		Wiuscherkark	Wellenkalk 2		Mergelkalk	muW2	30 - 35 m
			Oolithbänke		bioklastischer Kalkstein, dazwischen Mergelkalk	muOB	6 - 8 m
			Wellenkalk 1		Mergelkalk	muW1	bis 25 m

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 31 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 31 voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

System	Serie	(Regionale) Stufe/Gruppe	Fol- ge/Formation	Horizont	Petrographie	Symbolschlüssel nach Asse-GmbH (2010)	Mächtig- keit nach Klarr
			— Konglomerat- bänke		Kalkstein mit intraforma- tionalen Geröllen	muK	ca. 15 m
			Röt 4		Mergelstein	so4	ca. 50 m
			Röt 3		Tonstein	so3	ca. 23 m
		Oberer Buntsand-	Röt 2		Ton- und Mergelstein	so2	ca. 22 m
		stein			Röt 1 - Mergelstein	so1T	
			Röt 1		Röt 1 - Anhydrit	so1Ab	ca. 55 m
					Röt-Steinsalz	so1Na	
				Tonige Grenz- schichten	Tonstein, lagenweise karbonathaltig, schwach feinsandig und schluffig	smS4	8 - 10 m
		Solling-Folge	Bausandstein	Wechselfolge aus Ton- bis Schluffstei- nen, Tonsteinen, Feinsandstein und Schluffstein; an der Basis Mittelsand- stein	smSS	ca. 20 m	
	Buntsandstein	Mittlerer Buntsand- stein		Tonige Zwischen- schichten, rot	Tonstein, Schluff- und Feinsandsteinlagen	smST2	ca. 20 m
	Bunts	otom		Tonige Zwischen- schichten, grau	Tonstein	smST1	ca. 5 m
				Solling- Basissandstein	Mittel- und Feinsandstein	smS1B	2 - 3 m
					Schichtlücke		
			Volpriehausen-	Volpriehausen- Wechselfolge	Wechselfolge aus Ton- und Schluffstein und Mittelsandstein	smVW	50 - 60 m
			Folge	Volpriehausen- Sandstein	Mittelsandstein	smVS	ca. 10 m
	Unterer Buntsand- stein		Oolith-Horizont lambda		suBI	ca. 9 m	
			Oolith-Horizont kappa	fluviatil/lakustrischer	suBk	ca. 11 m	
		Bernburg- Folge	Oolith-Horizont iota	Sandstein/Oolith- Schüttungen	suBi	ca. 18 m	
		Buntsand-		Oolith-Horizont theta	wechseln mit tonigen Sedimenten	suBh	ca. 32 m
				Oolith-Horizont eta		suBg	ca. 20 m
				Oolith-Horizont zeta		suBf	ca. 25 m
			Calvörde-Folge	Oolith-Horizont epsilon 2	Sandstein wenig bis keine Oolith-	suCe1	ca. 20 m
				Oolith-Horizont	bänke	suCe2	ca. 14 m

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 32 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 32 VOIT 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

System	Serie	(Regionale) Stufe/Gruppe	Fol- ge/Formation	Horizont	Petrographie	Symbolschlüssel nach Asse-GmbH (2010)	Mächtig- keit nach Klarr
100	生 分型股			epsilon 1			
				Oolith-Horizont delta 2		suCd2	ca. 19 m
				Oolith-Horizont delta 1		suCd1	ca. 13 m
				Oolith-Horizont gamma 2		suCc2	ca. 11 m
				Oolith-Horizont gamma 1		suCc1	ca. 13 m
				Oolith-Horizont beta 2	Oolith-/Sandstein Top: tonig	suCb2	ca. 24 m
				Oolith-Horizont beta 1	Basis: sandig-oolithisch	suCb1	ca. 21 m
				Oolith-Horizont alpha 2		suCa2	ca. 16 m
				Oolith-Horizont alpha 1		suCa1	ca. 16 m
			teilweise zum Zechstein zugehörig	Bröckelschiefer	Tonstein	Т7	ca. 17 m
			Zechstein 6 Friesland- Folge	Friesland-Ton	toniger, feinsandiger Schluffstein	Т6	4 m
			Zechstein 5 Ohre-Folge	Ohre-Anhydrit	toniger Anhydrit	A5	0,4 m
				Salzbrockenton	Tonsteine mit Anhydrit- lagen	T5	3,7 m
Perm	Zechstein			Aller- Grenzanhydrit	Anhydrit mit drei Mergelsteineinschaltun- gen	A4r	4 - 16 m
Pe	Zech			Tonbanksalz		Na4tm	7 m
				Schneesalz + Rosensalz	Steinsalz, versch. farbig	Να4β+γ	bis 16 m
			Zechstein 4 Aller-Folge	Aller-Basissalz		Na4α	bis 5 m
				Pegmatitanhydrit	anhydritischer Ton bis Anhydrit	A4	1,3
				Roter Salzton	sand- und tonhaltiger Schluffstein mit Anhydritknollen	T4	13
			Zechstein 3	Tonmittelsalz	Wechselfolge aus Halit und anhydritischen	Na3tm	ca. 23 m
			Leine-Folge	Schwadensalz	Salzen	Na3 8	ca. 12 m

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 33 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 33 VOIT 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

System	Serie	(Regionale) Stufe/Gruppe	Fol- ge/Formation	Horizont	Petrographie	Symbolschlüssel nach Asse-GmbH (2010)	Mächtig- keit nach Klarr
				Anhydritmittelsalz	- Anhydrit, z.T. verkieselt - Stein- und Schwadensalz - Anhydrit verwachsen mit orangenem Steinsalz - Stein- und Schwadensalz - pegmatitischer Anhydrit mit orangenem Steinsalz - Steinsalz - Anhydrit pegmatitisch bis kompakt - Stein- und Schwadensalz - Anhydrit mit Toneinlagen - Steinsalz - Anhydrit z.T. pegmatitisch - Steinsalz - Anhydrit z.T. verkieselt - Steinsalz	am8 Na3 am7 Na3 am6 Na3 am5 Na3 am4 Na3 am3 Na3 am2 Na3 am2	ca. 0,24 m ca. 1 m ca. 2,1 m ca. 1,60 m ca. 5 m 0,1 - 1 m ca. 6 m ca. 1,3 m ca. 0,30 m ca. 0,085 m ca. 3 m ca. 0,07 m ca. 3,5 m ca. 0,007 m
				Buntes Salz	Steinsalz mit Anhydritla- gen	Να3ζ	7 m
				Bändersalz	Wechselfolge aus oran- genem Steinsalz und grobkörnigen Stein- salzbänken	Na3ε	ca. 10 m
				Ronnenberg- Horizont bis Banksalz	feinkristallines Steinsalz mit tonigen Beimengungen	Na3Ro-6	ca. 10 m
				Gamma- Liniensalz	Steinsalz	Na3γ	ca. 5 m
				Beta-Liniensalz		Na3β	ca. 30 m
				Leine-Basissalz		Na3α	bis 16 m
				Hauptanhydrit	grobkristalliner Anhydrit mit Tonbeimengungen	А3	ca. 30 m
				Grauer Salzton (im Hangenden als Magnesit)	klastischer, feinstkörni- ger Tonstein	Т3	ca. 6 m
			Zechstein 2	Gebänderter Deckanhydrit	meist tektonisch unter- drückt	A2r	ca. 1,5 m
			Staßfurt-Folge	Decksteinsalz		Na2r	ca. 1 m
				Flöz Staßfurt: Hartsalz		K2H	0-2 m

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 34 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 34 Voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

System	Serie	(Regionale) Stufe/Gruppe	Fol- ge/Formation	Horizont	Petrographie	Symbolschlüssel nach Asse-GmbH (2010)	Mächtig- keit nach Klarr
				Flöz Staßfurt: Carnallitit	carnallitischer Kieserit	K2C	ca. 40 m
				kieseritisches Übergangssalz	feinkristallines Steinsalz mit polyhalitischen und kieseritischen Lagen	Na2K	1-5 m
				Tonliniensalz	fein- bis mittelkristallines Steinsalz mit dünnen Tonlagen	Na2T	0-25 m
				Polyhalitbanksalz	fein- bis mittelkristallines Steinsalz mit Polyhalitlagen	Na2P	3-16 m
				Speisesalz	fein- bis mittelkristallines Steinsalz	Na2S	ca. 10 m
				Hauptsalz	grobkristallines Steinsalz mit Anhydritlagen	Na2β	ca. 450 m
				Staßfurt-Basissalz (nicht aufge- schlossen)	-	Na2α	
				Basalanhydrit	Anhydrit	A2	3 m
				Stinkschiefer, kalkig	tonhaltiger Dolomit mit schwefelhaltigen Verbin- dungen	Ca2	2,1 m
				Werra-Anhydrit	Anhydrit mit Mergelstein durchsetzt	A1	53,2 m
			Zechstein 1 Werra-Folge	Zechsteinkalk	kalkiger Mergelstein	Ca1	4,7 m
			TTOTAL TOIGE	Kupferschiefer	schwarzgrauer Tonstein	T1	0,32 m

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 35 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN		Seite. 35 VOIT 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

Anhang 2 Übersicht der verwendeten Übertagebohrungen

Nr.	Bezeichnung	RW	HW	zw	RW	HW	zw
			Startpunkt			Endpunkt	
1	G1	4407310,00	5779000,00	170,00	4407310,00	5779000,00	146,25
2	G2a	4407100,00	5779208,00	200,85	4407100,00	5779208,00	170,85
3	H1	4410192,50	5778086,00	152,40	4410192,50	5778086,00	82,40
4	H10	4407401,50	5778681,00	137,90	4407401,50	5778681,00	99,40
5	H11	4405696,00	5780092,00	110,62	4405696,00	5780092,00	-38,58
6	H12	4405668,50	5780353,50	114,28	4405668,50	5780353,50	40,28
7	H13	4406069,00	5780027,50	124,54	4406069,00	5780027,50	62,54
8	H14	4407544,00	5778751,50	148,60	4407544,00	5778751,50	80,40
9	H15	4410039,50	5778282,00	173,40	4410039,50	5778282,00	122,75
10	H15a	4410030,00	5778304,50	175,00	4410030,00	5778304,50	130,90
11	H16	4409152,00	5777986,00	178,20	4409152,00	5777986,00	104,20
12	H17/GW 010	4408102,50	5778628,00	173,32	4408102,50	5778628,00	-69,68
13	H18a	4406624,50	5779683,00	146,03	4406624,50	5779683,00	-84,47
14	H19	4407562,00	5778940,00	149,30	4407562,00	5778940,00	-65,20
15	H19a	4407602,50	5778925,00	148,97	4407602,50	5778925,00	-47,53
16	H2	4410374,50	5778102,00	143,43	4410374,50	5778102,00	82,43
17	H21	4406666,00	5779642,00	148,85	4406666,00	5779642,00	-41,55
18	H22	4407783,00	5779343,50	201,53	4407783,00	5779343,50	70,53
19	H23	4408156,00	5778352,50	225,36	4408156,00	5778352,50	65,26
20	H24b	4408334,50	5778377,50	205,48	4408334,50	5778377,50	-1,62
21	H25	4406943,50	5779258,50	184,81	4406943,50	5779258,50	-205,19
22	H25a	4406949,00	5779255,00	185,21	4406949,00	5779255,00	112,21
23	НЗ	4408973,00	5778441,50	226,19	4408973,00	5778441,50	128,19
24	H4	4409668,50	5778424,00	208,89	4409668,50	5778424,00	92,39
25	H5	4409995,00	5777809,50	188,21	4409995,00	5777809,50	42,21
26	H6	4409107,50	5778007,00	179,98	4409107,50	5778007,00	108,98
27	H7	4409789,00	5776863,50	145,62	4409789,00	5776863,50	95,62
28	H8	4407146,00	5779234,50	195,76	4407146,00	5779234,50	-62,94
29	H9	4407617,00	5778040,00	145,10	4407617,00	5778040,00	82,10
30	M1	4405599,00	5780095,50	187,82	4405599,00	5780095,50	160,82

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 36 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 30 voil 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

Nr.	Bezeichnung	RW	HW	zw	RW	HW	zw
31	M12	4407202,50	5778399,00	125,21	4407202,50	5778399,00	63,71
32	P1	4408868,50	5777469,50	163,48	4408868,50	5777469,50	143,98
33	P10	4407358,00	5778680,00	137,55	4407358,00	5778680,00	103,05
34	P11	4410460,50	5778067,00	149,23	4410460,50	5778067,00	134,73
35	P12	4410958,00	5778377,00	123,02	4410958,00	5778377,00	113,02
36	P13	4408856,50	5778102,00	213,58	4408856,50	5778102,00	116,38
37	P14	4407604,00	5778855,00	159,57	4407604,00	5778855,00	81,57
38	P15	4409151,50	5777387,00	159,82	4409151,50	5777387,00	113,82
39	P16	4409292,50	5777941,00	201,73	4409292,50	5777941,00	119,63
40	P17	4408163,00	5780109,50	133,09	4408163,00	5780109,50	69,79
41	P2	4410320,00	5777890,00	170,80	4410320,00	5777890,00	155,80
42	P3	4407180,00	5778470,00	126,97	4407180,00	5778470,00	110,97
43	P4	4408190,00	5779640,00	193,43	4408190,00	5779640,00	173,43
44	P5	4406270,00	5780710,00	179,60	4406270,00	5780710,00	164,60
45	P6	4406510,00	5780680,00	168,36	4406510,00	5780680,00	147,36
46	P7	4406715,50	5780614,00	176,30	4406715,50	5780614,00	161,30
47	P8	4407250,00	5778570,00	130,68	4407250,00	5778570,00	124,68
48	P9	4409200,00	5777530,00	164,12	4409200,00	5777530,00	143,12
49	PN1	4411293,00	5777281,00	176,97	4411293,00	5777281,00	-73,43
50	PN2	4410255,00	5777550,00	208,36	4410255,00	5777550,00	-51,64
51	PN3	4408377,00	5778093,00	205,25	4408377,00	5778093,00	20,05
52	Q1	4405017,00	5779625,00	95,39	4405017,00	5779625,00	93,89
53	Q10	4402781,00	5780761,50	85,95	4402781,00	5780761,50	55,65
54	Q11	4403326,50	5780403,00	82,18	4403326,50	5780403,00	51,88
55	Q12	4408652,50	5781824,50	89,19	4408652,50	5781824,50	80,44
56	Q13	4408519,00	5781345,00	87,26	4408519,00	5781345,00	56,96
57	Q14	4408453,50	5781101,00	89,21	4408453,50	5781101,00	58,91
58	Q15	4408346,00	5780723,50	95,38	4408346,00	5780723,50	65,08
59	Q16	4408618,00	5776606,00	143,51	4408618,00	5776606,00	122,01
60	Q17	4408658,00	5775432,50	111,41	4408658,00	5775432,50	80,91
61	Q18	4407470,50	5775182,00	105,61	4407470,50	5775182,00	77,41
62	Q19	4409433,50	5775100,50	121,68	4409433,50	5775100,50	100,68
63	Q2	4404913,50	5779261,50	91,68	4404913,50	5779261,50	87,08
64	Q20	4411200,00	5775865,00	153,56	4411200,00	5775865,00	123,86

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 37 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 37 Vol1 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

Nr.	Bezeichnung	RW	HW	zw	RW	HW	zw
65	Q21	4411691,50	5775611,50	150,38	4411691,50	5775611,50	120,78
66	Q22	4412024,50	5775981,00	148,58	4412024,50	5775981,00	124,88
67	Q23	4412080,00	5776430,50	156,70	4412080,00	5776430,50	154,00
68	Q24	4413005,50	5775570,50	135,06	4413005,50	5775570,50	122,06
69	Q25	4413245,50	5776104,00	145,74	4413245,50	5776104,00	136,74
70	Q26	4413132,00	5776387,00	151,73	4413132,00	5776387,00	144,13
71	Q27	4412753,00	5777286,00	152,90	4412753,00	5777286,00	148,10
72	Q28	4411625,50	5777538,50	161,92	4411625,50	5777538,50	150,92
73	Q29	4411528,00	5777100,00	179,09	4411528,00	5777100,00	177,99
74	Q3	4404701,00	5778534,00	90,48	4404701,00	5778534,00	80,38
75	Q30	4405281,50	5775023,00	87,61	4405281,50	5775023,00	66,91
76	Q31	4403424,50	5774653,00	83,57	4403424,50	5774653,00	65,87
77	Q32	4404668,50	5776445,00	88,57	4404668,50	5776445,00	74,97
78	Q33	4405177,00	5776428,50	89,54	4405177,00	5776428,50	68,84
79	Q34	4404620,00	5777980,00	93,37	4404620,00	5777980,00	86,57
80	Q35	4405500,50	5778502,50	98,24	4405500,50	5778502,50	85,44
81	Q4	4405479,00	5780570,00	119,00	4405479,00	5780570,00	106,20
82	Q5	4405128,50	5781087,00	93,56	4405128,50	5781087,00	87,06
83	Q6	4404682,50	5781248,00	84,44	4404682,50	5781248,00	58,44
84	Q7	4404636,50	5781321,50	82,68	4404636,50	5781321,50	51,48
85	Q8	4404420,50	5781320,50	81,65	4404420,50	5781320,50	51,35
86	Q9	4403946,00	5781752,00	90,49	4403946,00	5781752,00	60,19
87	R1	4409017,00	5778080,00	191,00	4409017,00	5778080,00	-497,70
88	R2	4408976,00	5778220,00	199,00	4408976,00	5778220,00	-452,20
89	R3	4409392,00	5778260,00	199,80	4409392,00	5778260,00	-621,70
90	R4	4409003,00	5778179,00	192,50	4409003,00	5778179,00	-803,60
91	R5	4408717,00	5777743,00	172,60	4408717,00	5777743,00	-2083,70
92	R6	4408846,00	5777892,50	193,30	4408846,00	5777892,50	-504,26
93	R7	4408461,50	5777919,50	181,30	4408461,50	5777919,50	-727,70
94	R8	4409186,00	5777725,00	169,70	4409186,00	5777725,00	-533,30
95	R9	4409588,00	5777987,50	195,20	4409588,00	5777987,50	-983,18
96	Schacht 1	4407889,50	5778856,50	160,55	4407889,50	5778856,50	-214,55
97	Schacht 2	4409054,00	5778172,50	192,5	4409054,00	5778172,50	-757,40
98	Schacht 3	4412300,50	5777068,00	168,50	4412300,50	5777068,00	-559,50

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 38 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Ocite: 50 Vol1 44
9A	22100000	н	RB	0003	00	B2183138	Stand: 13.06.2014

Nr.	Bezeichnung	RW	HW	ZW	RW	HW	ZW
99	Schacht 4	4409003,00	5778179,00	192,5	4409003,00	5778179,00	-803,60

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 39 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 39 VOIT 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

Anhang 3 Übersicht der verwendeten Untertagebohrungen

			Startpunkt		Endpunkt			
Nr.	Bezeichnung	RW	HW	zw	RW	HW	zw	
1	100_750	4408892,00	5778454,00	-553,70	4408892,00	5778454,00	-609,35	
2	101_750	4408907,00	5778418,00	-553,32	4408907,00	5778418,00	-612,42	
3	102_750	4408906,50	5778417,50	-553,24	4408876,50	5778366,00	-612,64	
4	103_800	4408786,50	5778316,00	-602,10	4408796,00	5778312,50	-814,04	
5	104_750	4409253,50	5778022,00	-553,92	4409254,50	5778024,00	-679,15	
6	104a_750	4409251,50	5778022,50	-553,92	4409252,50	5778026,00	-753,59	
7	105_750	4409307,50	5777984,50	-554,11	4409307,50	5777984,50	-591,21	
8	106_750	4408786,50	5778329,00	-554,10	4408783,00	5778330,00	-643,26	
9	106a_750	4408785,50	5778327,50	-554,15	4408785,00	5778327,50	-854,65	
10	107_875	4409250,00	5778200,00	-684,00	4409360,00	5778200,00	-683,00	
11	108_875	4409240,00	5778230,00	-684,00	4409250,00	5778270,00	-682,00	
12	109_750	4408806,50	5778355,50	-553,81	4408807,50	5778355,00	-901,10	
13	110_800	4409117,00	5778043,00	-602,00	4409106,00	5777984,50	-607,23	
14	111_800	4408703,00	5778201,50	-602,82	4408704,00	5778201,50	-729,81	
15	113_775	4408730,00	5778220,00	-572,00	4408700,00	5778130,00	-568,00	
16	114_750	4408782,00	5778334,50	-554,02	4408785,50	5778335,00	-1032,87	
17	115_850	4409081,00	5778044,00	-650,80	4408798,00	5778151,00	-673,37	
18	117_950	4408943,00	5778139,50	-756,22	4408878,00	5778076,50	-805,26	
19	118_490	4409228,00	5778050,00	-296,00	4409310,00	5777993,50	-296,00	
20	119_532	4408749,00	5778221,50	-321,41	4408730,00	5778174,50	-323,13	
21	120_637	4408810,00	5778150,00	-431,00	4408800,00	5778130,00	-431,00	
22	121_637	4408880,00	5778110,00	-431,00	4408870,00	5778080,00	-431,00	
23	122_574	4408752,00	5778164,50	-380,52	4408738,50	5778146,50	-470,17	
24	123_975	4408928,00	5778184,00	-771,50	4408927,50	5778183,50	-1022,64	
25	124_975	4408928,50	5778180,50	-771,50	4408928,00	5778179,00	-976,57	
26	125_490	4409284,50	5777978,00	-285,47	4409291,00	5777980,50	-285,84	
27	19_700	4409274,50	5778038,50	-507,00	4409306,50	5778116,00	-507,00	
28	1_750	4409186,00	5778190,50	-555,56	4409299,50	5778273,50	-709,10	
29	20_700	4409319,50	5777997,00	-507,00	4409282,00	5777904,00	-507,00	
30	21_700	4409364,00	5778004,50	-507,00	4409391,00	5778072,00	-507,00	
31	22_700	4409175,50	5778061,50	-507,00	4409150,00	5777997,50	-507,00	

								3	T -		
Projek NAAN			fgabe AAA	UA AA	Lfd. Nr. NNNN	Rev.				Seite:	40 von 44
9A	22100000		Н	RB	0003	00		B2183138		Stand:	13.06.2014
32	23_700	440	9360,	00	5777982	2,00	-507,00	4409305,00	5777845,00		-507,00
33	24_700	440	4409430,00		5777980	0,00	-506,00	4409480,00	57	78100,00	-506,00
34	28_800	440	8964,	00	577829	1,00	-602,10	4408921,00	57	78082,50	-602,10
35	29_800	440	9137,	00	5778152	2,50	-603,90	4409192,00	577	78272,50	-702,90
36	34_800	440	9114,	00	5778406	3,00	-605,60	4409114,00	57	78406,00	-649,40
37	35_700	440	8910,	00	5778140	0,00	-501,19	4408910,00	577	78160,00	-337,40
38	38_750	440	8538,	50	5778179	9,50	-552,00	4408519,50	577	78161,00	-552,00
39	41_532	440	8782,	62	5778148	3,41	-339,00	4408781,31	577	78145,17	-378,95
40	42_532	440	9106,	86	5778006	5,32	-339,00	4409105,53	577	78003,07	-379,10
41	43_532	440	8819,	50	5778192	2,50	-339,00	4408846,00	577	78260,50	-339,00
42	44_532	440	9116,	00	5778028	3,50	-339,00	4409141,00	577	78095,50	-339,00
43	45_532	440	9047,	00	5778048	3,00	-339,00	4409066,50	577	78115,50	-339,00
44	46_532	440	8911,	50	5778104	1,50	-339,00	4408940,50	577	78169,00	-339,00
45	47_532	440	9262,	00	577798	5,50	-339,00	4409287,50	577	78051,00	-339,00
46	48_532	440	9179,	50	577815	5,50	-339,00	4409198,50	577	78183,50	-339,00
47	49_532	440	9318,	01	5778017	7,78	-339,00	4409324,67	577	78018,34	-396,28
48	50_511	440	8851,	50	5778142	2,50	-318,00	4408933,50	577	78290,00	-318,00
49	51_775	440	9160,	00	577797	5,50	-578,00	4409229,50	577	77945,50	-578,00
50	52_775	440	9160,	00	5777977	7,00	-578,00	4409270,00	577	77962,00	-578,00
51	53_775	440	8780,	00	5778136	3,00	-578,00	4408713,00	577	78166,00	-578,00
52	54_775	440	8794,	00	5778126	5,50	-578,00	4408665,50	577	78153,50	-578,00
53	55_800	440	9086,	50	5778047	7,50	-602,00	4409017,00	577	77907,00	-602,00
54	56_800	440	9119,	00	577810	5,50	-603,15	4409078,00	577	77978,00	-787,63
55	57_800	440	9130,	00	5778120	0,00	-601,00	4409260,00	577	78240,00	-676,00
56	58_800	440	8950,	00	5778150	0,00	-602,00	4409040,00	577	78320,00	-602,00
57	59_800	440	8953,0	00	5778145	5,50	-602,00	4409039,00	577	78318,00	-602,00
58	60_800	440	8796,0	00	5778231	1,50	-602,00	4408906,00	577	78417,00	-602,00
59	61_490	440	8906,6	66	5778105	5,14	-296,00	4408906,30	577	78104,47	-328,29
60	62_490	440	9114,	59	5778025	5,19	-296,00	4409113,12	577	78020,87	-336,66
61	63_490_A1c	440	8910,0	00	5778150	0,00	-296,00	4409020,00	577	78000,00	-290,00
62	64_490_A2	440	8909,0	00	5778147	7,00	-296,00	4409040,50	577	77971,50	-334,69
63	65_490_A3	440	9214,	50	5778036	3,50	-295,51	4409165,00	577	78262,50	-299,55
64	66_490_A4	440	9220,0	00	5778035	5,00	-295,51	4409347,00	577	78144,00	-304,89
65	67_490_A5	440	9222,0	00	5778035	5,00	-295,51	4409284,50	577	78108,50	-316,10
66	68_775	440	8933,0	00	5778050),50	-578,00	4408891,00	577	77964,50	-578,00

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 41 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	B2183138	Seite. 41 Voil 44
9A	22100000	Н	RB	0003	00	B2103138	Stand: 13.06.2014

67	69_750	4409003,00	5778179,00	-554,00	4409003,00	5778179,00	-804,00
68	70_490	4409024,68	5778191,31	-295,00	4409071,35	5778236,28	-380,23
69	70a_926	4409000,00	5778173,00	-734,20	4408976,50	5778123,50	-777,80
70	70b_750	4408810,00	5778360,00	-548,00	4408810,00	5778360,00	-522,00
71	71_750	4408750,00	5778343,00	-554,64	4409013,50	5778545,00	-689,03
72	72_750	4408746,50	5778337,00	-554,91	4408779,00	5778038,50	-821,67
73	73_750	4408746,00	5778336,50	-554,91	4408781,50	5778037,00	-770,92
74	73_750_2010	4409305,40	5777994,90	-552,63	4409305,54	5777995,25	-557,41
75	74_750	4408751,00	5778343,50	-554,64	4409053,50	5778652,50	-895,90
76	74_750_2010	4409297,20	5777991,70	-552,56	4409297,03	5777991,28	-558,44
77	75_750	4408750,00	5778340,00	-554,00	4408750,00	5778340,00	-854,00
78	75_750_2010	4409274,50	5778007,70	-551,90	4409274,24	5778007,06	-560,97
79	75a_750	4408746,00	5778342,00	-553,94	4408747,00	5778343,50	-854,13
80	76_800	4409120,50	5778105,00	-602,56	4409021,50	5777788,50	-767,86
81	77_800	4409124,00	5778103,00	-601,06	4409172,00	5777984,50	-604,70
82	78_800	4409125,50	5778105,00	-600,78	4409244,50	5778059,00	-601,22
83	79_800	4409126,00	5778105,00	-601,73	4409299,00	5778072,50	-646,74
84	80_800	4409128,00	5778108,50	-601,03	4409298,00	5778160,50	-608,72
85	81_800	4409127,50	5778110,50	-602,88	4409467,50	5778467,50	-880,65
86	82_800	4409128,00	5778111,00	-602,88	4409301,00	5778293,50	-721,81
87	83_800	4409127,50	5778106,50	-600,81	4409373,50	5778099,00	-612,40
88	84_800	4409124,50	5778109,50	-603,10	4409164,50	5778102,00	-907,62
89	85_775	4409044,00	5778093,00	-578,67	4408805,00	5777747,50	-894,30
90	86_775	4409048,00	5778099,50	-577,87	4409200,00	5778333,50	-686,41
91	87_775	4409048,00	5778099,00	-578,34	4409293,50	5778503,00	-816,97
92	88_800	4409119,50	5778104,50	-602,04	4409138,50	5778043,00	-607,56
93	89_750	4408698,00	5778198,00	-553,40	4408699,00	5778200,00	-627,36
94	90_800	4409150,00	5778180,00	-601,00	4409120,00	5778170,00	-601,00
95	91_800	4409124,00	5778131,00	-601,26	4409115,50	5778167,50	-602,65
96	92_775	4409116,00	5778167,50	-577,82	4409116,00	5778167,50	-602,82
97	93_800	4408838,00	5778239,00	-602,00	4408878,00	5778309,50	-602,00
98	94_875	4409276,50	5778107,50	-659,90	4409320,00	5778095,00	-664,30
99	95_875	4409261,00	5778115,00	-657,90	4409276,00	5778166,50	-672,20
100	96_875	4409259,50	5778110,50	-657,90	4409247,00	5778068,50	-671,90
101	97_800	4408929,00	5778157,00	-602,00	4408922,00	5778288,00	-602,00

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 42 von 44		
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 42 VOIT 44		
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014		

102	98_750	4408782,50	5778322,50	-554,10	4408795,00	5778326,00	-832,66
103	98a_750	4408782,50	5778322,50	-554,10	4408798,00	5778343,00	-1206,13
104	99_750	4408980,00	5778300,00	-552,00	4409020,00	5778300,00	-549,00

Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 43 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN	D0400400	Seite. 43 VOIT 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

Anhang 4Übersicht der verwendeten Sohlenrisse für das 3D-Modell des Salinars

Quelle	Bezeichnung	Im Modell verwendet
Asse-GmbH (2010)	Geologie 490-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 511-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 532-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 553-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 574-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 595-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 616-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 637-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 658-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 679-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 700-m-Sohle	zur Ergänzung
Asse-GmbH (2010)	Geologie 725-m-Sohle	zur Ergänzung
Asse-GmbH (2010)	Geologie 750-m-Sohle	zur Ergänzung
Asse-GmbH (2010)	Geologie 775-m-Sohle	zur Ergänzung
Asse-GmbH (2010)	Geologie 800-m-Sohle	zur Ergänzung
Asse-GmbH (2010)	Geologie 825-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 850-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 875-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 900-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 925-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 950-m-Sohle	Ja
Asse-GmbH (2010)	Geologie 975-m-Sohle	Ja
Herde (1979)	geologie700_Herde1979-82	Ja
Herde (1979)	geologie725_Herde1979-82	Ja
Herde (1979)	Herde_Geologie_750_02.82	Ja
Herde (1979)	Herde_Geologie_775_02.82	Ja
Herde (1979)	Herde_Geologie_800-850_01.82	Ja

5	B00 51				_		
Projekt	PSP-Element	Aufgabe	UA	Lfd. Nr.	Rev.		Seite: 44 von 44
NAAN	NNNNNNNNN	AAAA	AA	NNNN	NN		Seite. 44 VOII 44
9A	22100000	Н	RB	0003	00	B2183138	Stand: 13.06.2014

Anhang 5

Übersicht der verwendeten Profilschnitte für das 3D-Modell des Deckgebirges

Quelle	Schnittnummer
Asse-GmbH (2010)	2
Asse-GmbH (2010)	5
Asse-GmbH (2010)	14
Asse-GmbH (2010)	16
Asse-GmbH (2010)	22
Asse-GmbH (2010)	26
Asse-GmbH (2010)	28
Asse-GmbH (2010)	30