	De	eckblat	t	BGE BUNDESGESELLSCHAFT FÜR ENDLAGERUNG					
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Blatt: 1
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	ΑΑΑΑ	AA	NNNN	NN	
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.23
SCHAC SORP TEIL 3	Unterlage: HTANLAGE AS FIONSUNTERS B: SORPTION V	AN DEN GE 2-, 231-PA U	STEINSI ND 113-S	PROBEN SN	IAUS	DER BC	HRU	NG REMLINGEN 15	
Ersteller/ KIT-INE	Unterschrift:				Prüfer/Ur	nterschr	ift:		
	b	rgrechtlich	atomre	chilich		Bereichs	eitung:		Ereinabe zur Anwendung:
1 3. N	JV. 2023 nd Unterschrift	Prantwortliche Perso	on: verantv	wortliche Pers	son:				_
Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertra bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfä gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zu							auliche ältigt ur ustimm	en Behandlung auch nd Dritten zugänglich ung der BGE.	
	REV PRÜFBLAT	ти	Stand: 01 02	2019			Zuständick	eit: PM	1

 \bigcirc

 \bigcirc

Revisionsblatt

BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Blatt: Z
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.23

Titel der Unterlage:

 $\left(\right)$

SCHACHTANLAGE ASSE II:

SORPTIONSUNTERSUCHUNGEN AN DEN GESTEINSPROBEN AUS DER BOHRUNG REMLINGEN 15 TEIL 3B: SORPTION VON 14-CO32-, 231-PA UND 113-SN

Rev.	RevStand Datum	Verantwortliche Stelle	Revidierte Blätter	Kat.*	Erläuterung der Revision
00	25.07.2023	ASE-RH.4			Ersterstellung
			A		
*) Kate Kate	egorie R = redak egorie V = verde egorie S = subst	tionelle Korrektur utlichende Verbe antielle Änderung	sserung		
mindest	ens bei der Kate	gorie S müssen E	Erläuterungen angeg	eben we	rden
FB_DEC	K_REV_PRÜFB	LATT_U	Stand: 01.02.2	2019	Zuständigkeit: PM

BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

				(* 3					
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soito: 1 un CC 2
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	ΑΑΑΑ	AA	NNNN	NN	
9A	24250000		18		EGC	RZ	0008	.00	Stand: 25.07.2023

Schachtanlage Asse II:

Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15

Teil 3b: ¹⁴C, Pa und Sn

Auftragnehmer

Karlsruher Institut für Technologie (KIT) Institut für Nukleare Entsorgung (KIT-INE) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen

Eggenstein-Leopoldshafen, 25.07.2023 Ort, Datum, Unterschrift

			(////					
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Saita 4
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 4
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

Impressum:

Auftraggeber: Bundesgesellschaft für Endlagerung Eschenstraße 55 31224 Peine

> Telefon: 05171 43-0 Fax: 05171 43-1218 E-Mail: poststelle@bge.de Internet: www.bge.de

Ersteller:

Institut für Nukleare Entsorgung (KIT-INE) Karlsruher Institut für Technologie (KIT) www.kit.edu

Abbildungen: Originalabbildungen

Der Bericht wurde im Auftrag der Bundesgesellschaft für Endlagerung (BGE) erstellt. Die BGE behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit Zustimmung der BGE zitiert, ganz oder teilweise vervielfältigt bzw. Dritten zugänglich gemacht werden.

		igon io							
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor F
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 5
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Kurzfassung

Verfasser:

Titel: Schachtanlage Asse II:

Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung

Remlingen 15

Teil 3b: ¹⁴C, Pa und Sn

Stand: 12. Juni 2023

Im vorliegenden Bericht werden die durchgeführten Experimente und die hieraus ermittelten Ergebnisse zur Sorption von ¹¹³Sn(IV), ¹⁴CO₃²⁻ und ²³¹Pa(V) an Gesteinsproben des Deckgebirges der Schachtanlage Asse II, welche aus der Erkundungsbohrung Remlingen 15 (R15) gewonnen wurden, beschrieben und dargestellt. Es wurden repräsentative Gesteinsproben aus den drei unterschiedlichen Gesteinsarten (Muschelkalk, Buntsandstein und Hutgestein) ausgewählt. Die Untersuchung der Radionuklide erfolgte getrennt voneinander, in Form separater Reihenversuche mit parallelen Feststoff-Lösungsansätzen, wobei die zugehörigen Verteilungskoeffizienten der Sorptions- (R_s) und Desorptionsreaktion (R_d) bestimmt wurden. Die Radionuklide ¹¹³Sn(IV) und ²³¹Pa(V) zeigten eine starke Sorption an allen untersuchten Gesteinsproben. ¹¹³Sn(IV) wies eine schnelle Sorptionskinetik auf, wodurch bereits nach 28 Tagen die Lösungskonzentration an ¹¹³Sn(IV) in allen Gesteins-Grundwasserproben nahe oder unterhalb der Nachweisgrenze lag. ²³¹Pa(V) zeigte ebenfalls eine sehr schnelle und quantitative Wechselwirkung mit allen zur Verfügung stehenden Oberflächen der Gesteins-Grundwasserproben, so dass bereits nach einer sehr kurzen Sorptionszeit von nur einem Tag keine signifikante Konzentration des Radionuklides in den wässrigen Phasen mehr nachweisbar war. Bezüglich ¹⁴CO₃²⁻ wurde bei allen untersuchten Gesteinen eine im Vergleich zu ¹¹³Sn(IV) und ²³¹Pa(V) deutlich langsamere Kinetik der Sorptionsreaktion beobachtet. Konstante Sorptionswerte stellten sich im Beobachtungszeitraum erst nach ca. 90 Tagen ein. Des Weiteren wurde eine Korrelation der Größe der Verteilungskoeffizienten mit dem Gehalt an natürlichen carbonatischen Mineralphasen der Gesteine festgestellt. Die auf die Oberfläche der Gesteine normierten Rs-Werte der Proben aus dem Muschelkalk sind um ca. eine Größenordnung höher, verglichen mit den Proben aus dem Buntsandstein und Hutgestein. Dies deutet darauf hin, dass ein Isotopenaustausch und Einbau in natürliche carbonatische Mineralphasen einen wesentlichen Beitrag zum Sorptionsmechanismus des ¹⁴CO₃²⁻ darstellt. Die Desorptionsexperimente zeigten im Allgemeinen deutlich größere Verteilungskoeffizienten (R_d), verglichen mit den analogen

		igon io		,					
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 6
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. o
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

 R_s -Werten. Dies weist darauf hin, dass in den untersuchten Feststoff-Lösungssystemen keine einfachen, schnell reversiblen Oberflächensorptionsreaktionen sondern komplexe Prozesse der Rückhaltung der untersuchten Radionuklide ablaufen. Zumindest ein Teil der sorbierten Radionuklide ist offenbar während des Beobachtungszeitraums dieser Studie nicht desorbierbar, so dass die gemessenen R_s -Werte als Untergrenzen für Sorptionskoeffizienten (K_d) gelten können. Die Konzentrationen der stark sorbierenden Radionuklide ¹¹³Sn(IV) und ²³¹Pa(V) liegen nach der Sorption weitgehend unterhalb der Nachweisgrenze der analytischen Methoden, so dass hier nur Untergrenzen für R_s -Werte angegeben werden können.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 7
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle: 7
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Abstract

Authors:

Title: Schachtanlage Asse II:

Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung

Remlingen 15

Teil 3b: ¹⁴C, Pa und Sn

Status: 12. June 2023

This report describes and presents the experiments carried out and the results obtained on the sorption of ¹¹³Sn(IV), ¹⁴CO₃²⁻ and ²³¹Pa(V) on rock samples from the overburden of the Asse II mine, which were obtained from the RM15 pilot borehole. Representative rock samples from the three different rock types (shell limestone, red sandstone and sulphate-based cap rock) were selected. The radionuclides were analyzed separately in individual batch series, and the associated distribution coefficients for the sorption (R_s) and desorption reaction (R_d) were determined. ¹¹³Sn(IV) showed strong sorption and after 28 days the concentration of ¹¹³Sn(VI) in the aqueous phase of every rock-groundwater-sample was near or below the detection limit. ²³¹Pa(V) also showed a very fast and quantitative interaction with all available surfaces of the rock-groundwater-samples. Hence, no significant concentration of ²³¹Pa(V) was detected in solution after a sorption time of even one day. Regarding ¹⁴CO₃²⁻, a pronounced kinetic effect of the sorption reaction was observed for all rock samples. Furthermore, significantly higher solid/liquid distribution coefficients were observed for calcareous rock samples. The surfacenormalized R_s values for the sorption on samples from the limestone are by about one order of magnitude higher compared to samples from the red sandstone and cap rock. This indicates that isotope exchange with natural carbonate mineral phases represent a relevant mechanism for ¹⁴CO₃²⁻ retention. In general, desorption experiments showed significantly larger distribution coefficients (R_d) compared to the analogous R_s values. Taking into account the fact that the distribution coefficients for strongly sorbing radionuclides ¹¹³Sn(IV) und ²³¹Pa(V) are lower limits, as their concentrations after sorption are found below detection limits of the analytical method, the sorption data presented here can be regarded as conservative sorption coefficients (K_d) for future model calculations to estimate radionuclide retention.

			(
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 9
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. o
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Inhaltsverzeichnis

Kurzf	assung.		5
Abstr	act		7
Abbil	dungsve	rzeichnis	9
Tabe	llenverze	ichnis	.10
Abkü	rzungsve	erzeichnis	.12
1	Einleitur	ng	.15
2	Begriffe	und Definitionen	.17
3	Material	ien und Methoden	.18
	3.1	Radionuklide	.18
	3.2	Gesteinsproben	.20
	3.3	Grundwasser	.23
	3.4	Nachweisgrenzen der Messverfahren	.23
	3.5	Durchführung der Experimente	.24
	3.6	Auswertung der Experimente und Fehlerrechnung	.30
4	Ergebni	sse der Sorptionsuntersuchungen	.34
	4.1	¹¹³ Sn(IV) Rückhaltung in Sorptionsexperimenten	.34
	4.2	¹⁴ CO ₃ ²⁻ Rückhaltung in Sorptionsexperimenten	.38
	4.3	²³¹ Pa(V) Rückhaltung in Sorptionsexperimenten	.42
5	Ergebni	sse der Desorptionsuntersuchungen	.44
	5.1	¹¹³ Sn(IV) Rückhaltung in Desorptionsexperimenten	.44
	5.2	¹⁴ CO ₃ ²⁻ Rückhaltung in Desorptionsexperimenten	45
	5.3	²³¹ Pa(V) Rückhaltung in Desorptionsexperimenten	.48
6	Zusamn	nenfassung und Bewertung	50
Quell	lenverzei	chnis	53
Anhä	nge		.56
	A	Herstellung der ²³¹ Pa(V)-Stammlösung	.56
	В	Initiale experimentelle Parameter der äquilibrierten Gesteins-	~ ~
	•	Grundwasserproben.	.60
	C	Ergebnisse der Sorption von ¹¹³ Sn(IV)	.61
	U F	Ergebnisse der Sorption von $^{-7}\text{CU}_{3}^{-2}$	03
	E	Ergebnisse der Sorption von ²⁰ Pa(V)	05

Blattzahl dieser Unterlage:

Stichworte: Asse II, Radionuklidrückhaltung, Deckgebirge, Sorption, Desorption

63

			(//					
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 0
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 9
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

Abbildungsverzeichnis

Abb. 1:	Schematische Darstellung des experimentellen Ablaufs der Batchversuche26
Abb. 2	[¹¹³ Sn(IV)] der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: $m/V = 0,01$ g mL ⁻¹ , rechts: $m/V = 0,05$ g mL ⁻¹
Abb. 3:	R_s -Werte für ¹¹³ Sn(IV) an den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: m/V = 0,01 g mL ⁻¹ , rechts: m/V = 0,05 g mL ⁻¹
Abb. 4:	Totale Zinnkonzentration der wässrigen Phase der hier untersuchten Fest/Flüssigproben als Funktion der Äquilibrierungszeit
Abb. 5:	[¹⁴ CO ₃ ²⁻] der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: $m/V = 0,01$ g mL ⁻¹ , rechts: $m/V = 0,25$ g mL ⁻¹
Abb. 6:	R_s -Werte für ¹⁴ CO ₃ ²⁻ an den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: m/V = 0,01 g mL ⁻¹ , rechts: m/V = 0,25 g mL ⁻¹
Abb. 7:	$[^{231}Pa(V)]$ der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: m/V = 0,05 g mL ⁻¹ , rechts: m/V = 0,25 g mL ⁻¹
Abb. 8:	[¹¹³ Sn(IV)] der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Desorptionszeiten. Je Gesteinsprobe: links: $m/V = 0,01$ g mL ⁻¹ , rechts: $m/V = 0,05$ g mL ⁻¹
Abb. 9:	$[^{14}CO_3^{2-}]$ der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Desorptionszeiten (Gefüllte Symbole). Offene Symbole: Initiale $[^{14}CO_3^{2-}]_{ini,des}$. Je Gesteinsprobe: links: m/V = 0,01 g mL ⁻¹ , rechts: m/V = 0,05 g mL ⁻¹ 46
Abb. 10:	R_d -Werte für ¹⁴ CO ₃ ²⁻ an den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Desorptionszeiten (Gefüllte Symbole). Offene Symbole: R_s . Je Gesteinsprobe: links: m/V = 0,01 g mL ⁻¹ , rechts: m/V = 0,25 g mL ⁻¹ 47
Abb. 11:	[²³¹ Pa] der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 10
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 10
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Desorptionszeiten (Gefüllte Symbole). Offene Symbole: Initiale [$^{14}CO_3^{2-}$]_{ini,des}. Je Gesteinsprobe: links: m/V = 0,05 g mL⁻¹, rechts: m/V = 0,25 g mL⁻¹......48

- Abb. 13: γ–Spektrum der Pa(V)-Stammlösung 1. Oben) 0 1775 keV, Unten) 0 475 keV. [²³¹Pa(V)] ≈ 7,8·10⁻⁸ mol L⁻¹, pH ≈ 3,7......58

Tabellenverzeichnis

Tab. 1	Konzentration und Aktivitäten der in dieser Arbeit verwendeten Radionuklide ¹¹³ Sn(IV), ¹⁴ CO ₃ ²⁻ , und 231Pa(V) in den Stammlösungen und in den Sorptionsproben zu Beginn der Sorptionsexperimente
Tab. 2	Vorhandene Gesteinsproben und Auswahl für die Untersuchung der Sorption von ¹¹³ Sn(IV), ¹⁴ CO ₃ ²⁻ , und ²³¹ Pa(V)21
Tab. 3	Spezifische Oberflächengrößen der für die Sorptionsversuche verwendeten Gesteinsproben (Korngröße < 100 µm)22
Tab. 4	Nachweisgrenzen (NG) der untersuchten Radionuklide
Tab. 5	Aktivitäten der ¹¹³ Sn(IV)-Referenzproben mit einem Probevolumen von 5 mL, die entsprechenden, mittels γ–Spektroskopie gemessenen Peakflächen für eine Messzeit von 60 Minuten und die zugehörigen Kalibrationsfaktoren
Tab. 6	Eingestellte und mittels des modifizierten Szintillationscocktails gemessene Aktivitäten von ¹⁴ C, sowie die sich daraus ergebenden Zählausbeuten bei einer Messzeit von 30 Minuten
Tab. 7	pH- und Eh-Werte der Lösung beim Start der Sorptionsexperimente
Tab. 8	Massen- und flächenbezogene <i>R</i> _s -Werte für ¹⁴ CO ₃ ²⁻ an den hier untersuchten Gesteinsproben nach 90 Tagen Sorptionszeit41
Tab. 9	Minimale <i>K</i> _d -Werte für die Sorption von ¹¹³ Sn(IV), ¹⁴ CO ₃ ²⁻ und ²³¹ Pa(V) an Gesteinsproben des Deckgebirges des Schachtanlage Asse II
Tab. 10	Energien der γ -Emissionen für Radionuklide in einer ²³¹ Pa(V)-Lösung57
Tab. 11	Mittels Total-Quant [™] und HR-ICP-MS gemessene ²³¹ Pa(V)-Konzentration in der Stammlösung

Tab. 12

		J -	\						
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 11
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 11
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Tab. 12	Initiale pH-Werte und auf die Standardwasserstoffelektrode (SHE) korrigierten Eh-Werte der äquilibrierten Gesteins-Grundwasserproben. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein
Tab. 13	pH-Werte der Proben der Sorption von ¹¹³ Sn(IV) an den Gesteinsproben in Kontakt mit Grundwasser GW-023 zu unterschiedlichen Zeiten nach der Dotierung. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein61
Tab. 14	Mittelwerte der gemessenen ¹¹³ Sn(IV)-Konzentration der Sorptions- und Desorptionsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein
Tab. 15	Massenbezogene R_s - und R_d -Werte für die Sorption von ¹¹³ Sn(IV) an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein
Tab. 16	Oberflächennormierte R_{s} - und R_{d} -Werte für die Sorption von ¹¹³ Sn(IV) an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein
Tab. 17	pH-Werte in Lösungsproben aus Experimenten zur Sorption von ¹⁴ CO ₃ ²⁻ an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein
Tab. 18	Mittelwerte der gemessenen ¹⁴ CO ₃ ²⁻ -Konzentration in Sorptions- /Desorptionsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein
Tab. 19	Massenbezogene R_s - und R_d -Werte für die Sorption von ¹⁴ CO ₃ ²⁻ an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein
Tab. 20	Oberflächennormierte R_s - und R_σ -Werte für die Sorption von ¹⁴ CO ₃ ²⁻ an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein
Tab. 21	pH-Werte in Lösungsproben aus Experimenten zu Sorption von ²³¹ Pa(V) an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk,

Rot: Buntsandstein, Blau: Hutgestein......65 Mittelwerte der gemessenen ²³¹Pa(V)-Konzentration in Sorptions-/Desorptionsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Tab. 22

		.3	(//					
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 12
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 12
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Abkürzungsverzeichnis

Abb.	Abbildung	
A_0	Startkonzentration bzwaktivität des Radionuklids in den Sorptionsexperimenten	ppm, ppb, ppt, mol L ⁻¹ bzw. Bq ml ⁻¹
<i>A</i> ₁	Lösungskonzentration bzwaktivität des Radionuklids am Ende der Sorptionsexperimente	ppm, ppb, ppt, mol L ⁻¹ bzw. Bq ml ⁻¹
A ₂	Ausgangskonzentration bzw. Ausgangsaktivität des Radionuklids in der Startlösung der Desorptions- experimente	ppm, ppb, ppt, mol L ⁻¹ bzw. Bq ml ⁻¹
A _{0,des}	Gesamtkonzentration bzw. Gesamtaktivität des Radionuklids in den Desorptionsexperimenten (Summe aus gelöster und sorbierter Konzentration/Aktivität)	ppm, ppb, ppt, mol L ⁻¹ bzw. Bq ml ⁻¹
<i>A</i> ₃	Konzentration bzw. Aktivität des Radionuklids in der Lösung am Ende der Desorptionsexperimente	ppm, ppb, ppt, mol L ⁻¹ bzw. Bq ml ⁻¹
BET	Brunauer-Emmett-Teller (Methode zur Bestimmung der spezifischen Oberfläche mittels Messungen von Gas-Adsorptionsisothermen)	
BfS	Bundesamt für Strahlenschutz	
bzw.	beziehungsweise	
Eh	Nernst'sches Potential; Maß für die relative Redoxaktivität der oxidierten und reduzierten Spezies in einem System.	mV
Eh(SHE)	Eh-Wert bezogen auf die Standard- Wasserstoffelektrode	mV
GRS	Gesellschaft für Anlagen- und Reaktorsicherheit	
ERAM	Endlager für radioaktive Abfälle Morsleben	
HR-ICP-MS	Hochauflösende Massenspektrometrie mit induktiv- gekoppeltem Plasma (englisch: high resolution inductively coupled plasma mass spectrometry)	
ICP-MS	Massenspektrometrie mit induktiv-gekoppeltem Plasma	

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 12
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 15
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

KIT-INE	Institut für Nukleare Entsorgung des KIT									
K _d	Sorptionskoeffizient (im Gleichgewicht gilt: $R_s = R_d = K_d$)	mL g ⁻¹ bzw. L kg ⁻¹ oder m ³ kg ⁻¹								
K _{d,min}	Minimaler Sorptionskoeffizient (konservative Untergrenze)	mL g ⁻¹ bzw. L kg ⁻¹ oder m ³ kg ⁻¹								
Кар.	Kapitel									
KIT	Karlsruher Institut für Technologie									
LSC	Flüssigszintillationsspektroskopie									
m	Masse	g oder kg								
m/V	Massen-zu-Volumen-Verhältnis (Verhältnis der Feststoffmasse zum Lösungsvolumen)	g mL ⁻¹ bzw. kg L ⁻¹ oder kg m ⁻³								
NEA-TDB	Thermodynamische Datenbasis der Nuclear Energy Agency									
NG	Theoretische Nachweisgrenze des Messverfahrens	ppm, ppb, ppt, mol L ⁻¹ bzw. Bq ml ⁻¹								
OECD-NEA	Nuclear Energy Agency innerhalb der Organisation für wirtschaftliche Zusammenarbeit und Entwicklung (englisch: Organisation for Economic Co-operation and Development)									
рН	Negativer Logarithmus der Wasserstoffionenaktivität.	dimensionslos								
Rs	Verteilungskoeffizient der Sorptionsreaktion	mL g ⁻¹ bzw. L kg ⁻¹ oder m ³ kg ⁻¹								
R_d	Verteilungskoeffizient der Desorptionsreaktion	mL g ⁻¹ bzw. L kg ⁻¹ oder m ³ kg ⁻¹								
RN	Radionuklid									
rpm	Umdrehungen pro Minute (englisch: rounds per minute)									
Tab.	Tabelle									
V	Volumen	mL oder L								

[]

		U	•	/					
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 14
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 14
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Zeichen für die Konzentration in Lösung

mol L⁻¹

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 15
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 15
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

1 Einleitung

Mit der am 28. Februar 2013 vom Deutschen Bundestag beschlossenen Gesetzesvorlage "zur Beschleunigung der Rückholung radioaktiver Abfälle und der Stilllegung der Schachtanlage Asse II" (kurz "Lex Asse", § 57b AtG) ist die Rückholung der in der Schachtanlage Asse II eingelagerten radioaktiven Abfälle gesetzlich vorgeschrieben. Allerdings erfordert die sichere Stilllegung der Schachtanlage Asse Ш zusätzlich die Implementierung von Vorsorgemaßnahmen für den Fall eines drohenden. auslegungsüberschreitenden Lösungszutritts in die Schachtanlage. Bei einer notfallmäßigen Schließung kann es zum Verbleib zumindest eines Teils der Abfälle in den Einlagerungskammern kommen. Für diesen Fall Sicherheitsuntersuchungen durchzuführen, sind die auch eine mögliche Radionuklidausbreitung beinhalten. Dazu ist die Quantifizierung der Rückhaltung der vorhandenen Radionuklide sowohl an Materialien welche sich innerhalb der Kammern befinden, als auch am Gestein der Deckgebirgsschichten erforderlich. Die experimentelle Ermittlung dieser Daten soll an ungestörtem Gesteinsmaterial erfolgen, welches aus verschiedenen stratigrafischen Einheiten der Deckgebirgsformation gewonnen wurde. Ziel ist die Erstellung einer belastbaren, lokalspezifischen Datenbasis, welche die Grundlage für entsprechende Modell- und Ausbreitungsrechnungen der Radionuklide darstellt. In diesem Kontext wurde das KIT-INE vom BfS am 9. Januar 2013 aufgefordert, ein Untersuchungsprogramm zur Bewertung der Radionuklidrückhaltung im Deckgebirge der Schachtanlage Asse II zu konzipieren. Aufbauend auf den Erfahrungen aus vorangegangenen Untersuchungsprogrammen [1, 2, 3, 4] wurde vom KIT-INE ein entsprechendes, umfassendes Arbeitsprogramm vorgeschlagen. Basierend auf den experimentellen Befunden und unter Berücksichtigung der zugrundeliegenden Prozesse soll die Übertragbarkeit der Laborergebnisse auf das Radionuklidverhalten im Deckgebirge der Schachtanlage Asse II eingehend diskutiert werden. Die Auswahl der relevanten Radionuklide ergab sich aus dem Radionuklidinventar der Einlagerungskammern der Schachtanlage Asse II und einigen Analogieschlüssen, und wurde von AF-Consult und GRS kommentiert [5]. Ziel des Untersuchungsprogramms ist es, die radionuklidspezifischen Verteilungskoeffizienten der Sorptions- (R_s) und Desorptionsreaktionen (R_d) experimentell zu ermitteln und daraus wenn möglich Sorptionskoeffizienten (K_d) abzuleiten bzw. minimale Sorptionskoeffizienten ($K_{d,min}$) als konservative Untergrenzen abzuschätzen. Diese Daten sollen anschließend im Rahmen von Ausbreitungsrechnungen als Eingabeparameter verwendet werden, wodurch eine Abschätzung der Radionuklidrückhaltung in den Deckgebirgsformationen möglich ist [6]. Eine gezielte Untersuchung der den Sorptionsprozessen zugrundeliegenden Sorptionsmechanismen ist jedoch nicht Gegenstand des Projektes.

Die Probennahme der Gesteine aus der Bohrung Remlingen 15 und des Grundwassers aus der Messstelle GW-023, sowie die ausführliche Charakterisierung der Gesteins- und Grundwasserproben ist in drei vorhergehenden Projektteilen durchgeführt worden [7, 8, 9]. Eine detaillierte Darstellung der Ergebnisse ist in den entsprechenden Abschlussberichten gegeben. Die Untersuchung der Sorption der relevanten Radionuklide erfolgt in drei Teilprojekten. Als erstes wurde in Teil 3a ein experimentelles Programm zur Untersuchung der

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 16
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 10
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Sorption von ²⁴³Am, ²⁴²Pu, ²³³U, ²³⁰Th, ²³⁷Np, ²²⁶Ra, ⁹⁹Tc, ¹³⁷Cs und ⁷⁵Se an zehn Gesteinsproben aus den drei unterschiedlichen stratigrafischen Formationen des Deckgebirges der Asse II (Muschelkalk, Buntsandstein und Hutgestein) durchgeführt [10]. Die Radionuklide wurden hierbei simultan in Form eines Cocktails zugegeben und gemeinsam untersucht. Hierbei wurden die drei Radionuklide ¹⁴C, ²³¹Pa und ¹¹³Sn, welche für die Schachtanlage Asse II ebenfalls von Relevanz sind, aus den Untersuchungen zunächst ausgeschlossen, da eine gemeinsame Messung dieser Radionuklide in dem eingesetzten Radionuklidcocktail aufgrund analytischer oder chemischer Aspekte nicht möglich war. So waren z. B. für die Stabilisierung einer ¹⁴CO₃²⁻ Stammlösung alkalische Bedingungen erforderlich, während in den anderen Radionuklidstammlösungen ein niedriger pH-Wert eingestellt wurde. Daher wurde beschlossen, in einem zweiten Projektteil (Teil 3b) ein separates Arbeitsprogramm zu entwickeln, in welchem diese drei Radionuklide in separaten Messserien untersucht werden.

Der vorliegende Bericht enthält die Ergebnisse des Arbeitsprogrammes zu Teil 3b, welches Sorptions- und Desorptionsversuche mit ¹⁴C, ²³¹Pa und ¹¹³Sn an jeweils fünf ausgewählten Gesteinsproben im Kontakt mit dem Grundwasser GW-023 beinhaltete. Zinn wurde als vierwertiges ¹¹³Sn(IV) zugegeben, da zweiwertiges Sn(II) ein starkes Reduktionsmittel darstellt und unter den vorliegenden experimentellen pH-Eh Bedingungen nicht stabil ist [11]. ¹⁴C wurde ausschließlich in anorganischer Form als ¹⁴CO₃²⁻ eingesetzt. Auf eine Zugabe an ¹⁴C-markierten, organischen Verbindungen wurde verzichtet, da hierzu zunächst die Festlegung einer Auswahl relevanter organischer Verbindungen erforderlich ist. ²³¹Pa wurde als fünfwertiges ²³¹Pa(V) verwendet. Die Auswahl der Gesteinsproben erfolgte derart, dass aus den untersuchten stratigrafischen Einheiten Muschelkalk und Buntsandstein sowie dem Hutgestein jeweils repräsentative Proben untersucht werden.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 17
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 17
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

2 Begriffe und Definitionen

Die zur Rückhaltung der Radionuklide beitragenden Prozesse, so wie die wichtigsten Begriffe und Definitionen, welche im Rahmen der Untersuchung der Sorption von Radionukliden an Oberflächen von Bedeutung sind, wurden bereits eingehend in den vorangehenden Berichten erläutert [7-10]. Im Folgenden werden diese daher lediglich in verkürzter Form nochmals zusammengefasst. Die Wechselwirkung der Radionuklide mit den Gesteinsproben wird mittels Verteilungskoeffizienten für die Sorptions- (R_s) und Desorptionsreaktion (R_d) , und der aus diesen ableitbaren Sorptionskoeffizienten (K_d) quantifiziert. Für den Fall, dass sich ein thermodynamisches Gleichgewicht für Sorptions- und Desorptionsreaktion einstellt, gilt: R_s = $R_d = K_d$. Die R_s -, R_d -, und K_d -Koeffizienten, wie sie sich aus den oben aufgeführten Experimenten ergeben, werden meist in einer massebezogenen Dimension angegeben (z. B. mL mg⁻¹ oder m³ kg⁻¹). Das Standardverfahren zur Ermittlung von R_{s} - und R_{d} -Werten basiert auf Adsorptions-/Desorptionsversuchen an zerkleinerten Gesteinsproben in Form von Batchexperimenten [12]. Trägt man nach einer definierten Äquilibrierungszeit die an der Oberfläche gebundene Stoffmenge des Radionuklides in Abhängigkeit von der in Lösung befindlichen Stoffmenge auf, erhält man die sogenannten Sorptionsisothermen (bei konstanter Temperatur, Ionenstärke, pH- und Eh-Wert). Im Falle einer linearen Isotherme ist die sorbierte Stoffmenge des Spurenelements proportional seiner Konzentration in der wässrigen Phase und wird durch den Verteilungskoeffizienten K_d beschrieben. Weicht die bestimmte Isotherme von der Linearität ab, so deutet dies auf das gleichzeitige Vorhandensein unterschiedlicher Rückhaltemechanismen und/oder unterschiedlicher Sorptionsplätze auf den Oberflächen hin.

Wichtige experimentelle Größen sind das Massen-zu-Volumen-Verhältnis (*m*/V) der in den Experimenten eingesetzten Feststoffmasse bezogen auf das entsprechende Lösungsvolumen (z. B. g mL⁻¹), und die spezifische Oberfläche des zerkleinerten Gesteins, welche in Flächezu-Masse (z. B. cm² g⁻¹) angegeben wird. Für die Übertragbarkeit von R_s - und R_d -Werten von Laborexperimenten auf reale Gesteinssysteme (porös oder geklüftet), ist eine Umrechnung der massenbezogenen Sorptionskoeffizienten auf flächenbezogene Sorptionskoeffizienten erforderlich. Dazu kann eine Normierung auf die verfügbare Oberfläche (z. B. experimentell bestimmt durch die Brunauer-Emmett-Teller-Methode) erfolgen. Die sich hierbei ergebende Einheit für R_s - und R_d -Werte ist "cm", entsprechend der Umrechnung g mL⁻¹/cm² g⁻¹ = cm³/cm² = cm.

Das in der vorliegenden Arbeit untersuchte Gesteinsmaterial wurde aus natürlichen Gebirgsformationen des Deckgebirges der Schachtanlage Asse II gewonnen, und besteht daher aus einer Vielzahl an unterschiedlichen Mineralphasen [9]. Daher stellen die hier ermittelten Verteilungs- und Sorptionskoeffizienten lediglich gemittelte Werte dar, welche zudem nur für die vorliegenden Gesteine, mit ihren entsprechenden mineralischen Zusammensetzungen, sowie für die hier vorliegenden geochemischen Bedingungen gültig sind. Eine additive Beschreibung der Sorption von Spurenelementen an den einzelnen Komponenten eines Feststoffes, welcher aus mehreren Komponenten besteht, ist häufig nicht möglich, da die quantitative Zusammensetzung aller für die Sorption relevanter Mineralphasen und ihrer effektiven Oberflächen in realen Systemen nur schwer erfassbar ist [13-15].

			(
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 19
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 16
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

3 Materialien und Methoden

3.1 Radionuklide

In der vorliegenden Arbeit wurden die drei Radionuklide ¹¹³Sn, ¹⁴C und ²³¹Pa separat voneinander, in Form individueller Messreihen, untersucht. Details zu den jeweiligen hier untersuchten Radionukliden sind im Folgenden gegeben.

- ¹¹³Sn: Zinn kann in wässriger Lösung sowohl als zweiwertiges Sn(II) als auch als vierwertiges Sn(IV) vorliegen. Unter den Redoxbedingungen, die in den hier beschriebenen Probensystemen vorliegen, ist die Oxidationsstufe II nicht stabil [11]. Für die hier durchgeführten Arbeiten wurde daher ausschließlich vierwertiges ¹¹³Sn(IV) zu den Gesteins-Lösungsproben dotiert. Hierfür wurde eine kommerziell erhältliche ¹¹³Sn(IV)-Stammlösung (Eckert & Ziegler Nuclitec GmbH, Katalognummer: 6113, ¹¹³SnCl₄ in 6M HCl) verwendet. Sn(IV) weist unter den gegebenen geochemischen Bedingungen jedoch eine geringe Löslichkeit auf [16], wodurch eine Quantifizierung der Lösungskonzentration mittels HR-ICP-MS erschwert wird. Die geeignetste Möglichkeit ¹¹³Sn(IV) unter den vorliegenden Bedingungen zu guantifizieren stellt die γ -Spektroskopie dar. Die Hauptemissionslinie des ¹¹³Sn (E γ =391,698 keV; 64,97 %) ist nuklidspezifisch und interferiert mit keiner Gammalinie des ²³¹Pa. Allerdings könnten die Gammalinien der Radionuklide aus der Zerfallsreihe des ²³¹Pa zu Interferenzen führen und den Untergrund im Messbereich erhöhen, wodurch sich die Nachweisgrenzen für die Bestimmung von ¹¹³Sn verschlechtern würde. Des Weiteren ist zu beachten, dass aufgrund der kurzen Halbwertszeit von 113 Sn (t_{1/2} = 115,05 Tage) im Zeitraum der durchgeführten Experimente die Abnahme der ¹¹³Sn(IV)-Konzentration bedingt durch dessen radioaktiven Zerfall nicht vernachlässigt werden kann. Dieser Effekt wurde rechnerisch berücksichtigt.
- ^{- 14}**CO**₃²⁻: In den durchgeführten Arbeiten wurde ¹⁴C ausschließlich in Form von anorganischem ¹⁴CO₃²⁻ zugesetzt. Die maximale Konzentration an gelösten Carbonat in einer wässrigen Lösung hängt maßgeblich vom pH-Wert, dem CO₂ Partialdruck und der Ca²⁺- und Mg²⁺-Konzentration ab. In Anwesenheit von Ca²⁺ und Mg²⁺ kann sich Calcit (CaCO_{3,s}) bzw. Magnesit (MgCO_{3,s}) bilden, wodurch die Konzentration von CO₃²⁻ durch die Löslichkeitsprodukte dieser Festphasen bestimmt wird. Für die experimentellen Arbeiten wurde eine am KIT-INE verfügbare ¹⁴CO₃²⁻ Stammlösung (A(¹⁴C) = 3,59·10⁷ Bq mL⁻¹, [¹⁴CO₃²⁻] = 1,55·10⁻² mol L⁻¹, pH ≈ 11) verwendet. Sämtliche präparativen Arbeiten mit der ¹⁴CO₃²⁻-Stammlösung wurden unter alkalischen Bedingungen durchgeführt, um Verluste durch die Bildung von gasförmigem und damit flüchtigem ¹⁴CO₂ zu vermeiden. ¹⁴C stellt einen niederenergetischen β⁻-Strahler dar (E_{βmax} = 0,1565 keV), welcher mit Flüssigszintillationsspektrometrie quantitativ messbar ist. Das Vorliegen von anderen beta- oder gammastrahlenden Radionukliden würde hierbei sowohl die Nachweisgrenze als auch die Genauigkeit der Methode stark beeinträchtigen, bzw. eine vorherige chemische Abtrennung des ¹⁴C erfordern.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 10
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 19
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

²³¹Pa: Protactinium wurde in den Arbeiten als fünfwertiges Pa(V) zugegeben. Eine Protactinium-Lösung ist kommerziell nicht erhältlich. Daher wurde am KIT-INE eine entsprechende Lösung präpariert (Details siehe Kap. 7.1). Im Allgemeinen zeigt Pa(V) eine sehr starke Rückhaltung an allen Oberflächen [17-19]. Insbesondere bei pH > 3 erfolgt eine rasche und quantitative Sorption an den meisten Materialien. Somit ist es erforderlich, den pH der Radionuklidstammlösung möglichst niedrig zu halten und diesen erst kurz vor der Zugabe der Stammlösung zu den Sedimentproben entsprechend anzupassen. Des Weiteren muss nach der Abtrennung der festen Phase das in Lösung befindliche Pa(V) stabilisiert werden, um eine nachträgliche Oberflächensorption während der Probenpräparation und Analytik zu vermeiden. Dies erfolgt durch Zugabe an Fluorid, wodurch sich stabile Pa(V)-Fluorokomplexe in der Lösung bilden.

Eine Übersicht der Radionuklidkonzentrationen der hier eingesetzten, initialen Stammlösungen und der Gesteins-Lösungsproben ist in Tab. 1 gegeben. Bei ¹¹³Sn(IV) handelt es sich um die Konzentration am Tag der Zugabe. Die Stammlösungen von ¹⁴CO₃²⁻ und ²³¹Pa(V) sind hinsichtlich der Radionuklidkonzentrationen im zeitliche Rahmen der durchgeführten Experimente stabil. Bezüglich der ¹¹³Sn(IV)-Stammlösung liegt die totale Zinnkonzentration dieser Lösung oberhalb des Löslichkeitslimits von amorphem Zinnoxid, so dass eine teilweise Ausfällung von SnO₂(am) vor der Dotierung zu den Gesteins-Lösungsproben nicht ausgeschlossen werden kann.

Tab. 1Konzentration und Aktivitäten der in dieser Arbeit verwendeten Radionuklide113Sn(IV), 14CO32-, und 231Pa(V) in den Stammlösungen und in den
Sorptionsproben zu Beginn der Sorptionsexperimente

Nuklid	Stammlösung		Proben (init	ial)	Bemerkung
	Konz. / mol L ⁻¹	Akt. / Bq L ⁻¹	Konz. / mol L ⁻¹	Akt. / Bq L ⁻¹	
¹¹³ Sn(IV)	^{a)} 3,4·10 ⁻¹⁰	^{a)} 1,6·10 ⁹	^{a)} 1,0·10 ⁻¹²	^{a)} 4,8·10 ⁶	Totale Zinnkonz. der Stammlösung: [Sn(IV)] _{total} = (6 ± 3)·10 ⁻⁵ mol L ⁻¹
¹⁴ CO ₃ ²⁻	2,3·10 ⁻⁴	5,3·10 ⁸	1,2·10 ⁻⁷	2,7·10 ⁵	Natürliches Carbonat vorhanden
²³¹ Pa(V)	4,0·10 ⁻⁷	1,6·10 ⁵	2,0·10 ⁻¹¹	8	-

a) ¹¹³Sn-Konzentration bzw. -Aktivität am Tage der Dotierung

Die Quantifizierung der untersuchten Radionuklide ¹¹³Sn(IV), ¹⁴CO₃²⁻ und ²³¹Pa(V) erfordert unterschiedliche analytische Methoden, entsprechend der physikalischen und chemischen Eigenschaft der jeweiligen Radionuklide. Die hier angewandten Methoden sind im Folgenden beschrieben.

 ¹¹³Sn: γ-Spektroskopie ¹¹³Sn zerfällt mit einer Halbwertszeit von ca. 115 Tagen über einen Elektroneneinfang zu ^{113,m}In, welches anschließend unter Aussendung eines γ– Quants in den Grundzustand übergeht. Aufgrund der hohen Wahrscheinlichkeit eines

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 20
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 20
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

Übergangs bei ca. 392 keV kann diese Emissionslinie sehr genau detektiert werden, und die ¹¹³Sn-Konzentration mittels γ -Spektroskopie bestimmt werden.

- ¹⁴C: Flüssigszintillationsspektrometrie ¹⁴C stellt einen reinen, niederenergetischen β⁻-Strahler (E_{β,max} = 156 keV) dar, welcher mit einer Halbwertszeit von 5730 Jahren zu ¹⁴N zerfällt und keine γ–Linien aufweist. Aufgrund der niedrigen maximalen Betaenergie stellt die Flüssigszintillationsspektroskopie (LSC) für die hier gestellte Aufgabe die beste Methode dar, mit welcher ¹⁴C hinreichend genau quantifiziert werden kann.
- ²³¹Pa: Massenspektrometrie Das Protactinium-Isotop ²³¹Pa zerfällt primär über einen Alphazerfall (E_α = 5,15 MeV) zu ²²⁷Ac und ist somit Teil der Uran-Actinium-Zerfallsreihe. Wegen der komplexen Alpha- und Gammaspektren ²³¹Pa-haltiger Proben, bedingt durch die in dieser Zerfallskette auftretenden Tochternuklide, wurde die hochauflösende Massenspektrometrie (HR-ICP-MS) zur Quantifizierung der ²³¹Pa-Konzentration herangezogen.

3.2 Gesteinsproben

In vorausgegangenen Arbeiten wurden aus der Erkundungsbohrung Remlingen 15 insgesamt 26 Gesteinsproben in Form von Bohrkernen gewonnen [7]. Diese Proben umfassen Gesteine aus dem unteren Muschelkalk, dem oberen Buntsandstein und dem Hutgestein.

Es wurden hinreichend große Stücke aus den ungestörten, inneren Bereichen des Bohrkerns gewonnen, welche nicht durch das Bohrfluid beeinflusst waren. Zehn Proben, welche ausschließlich aus dem Buntsandstein aus einer Teufe von ca. 270 m stammen, wurden tiefgefroren und für zukünftige Arbeiten konserviert. Die 16 übrigen Proben (Vier Proben aus dem Muschelkalk, acht Proben aus dem Buntsandstein und vier Proben aus dem Hutgestein) wurden unter Inertgas (Argon) gelagert, eingehend charakterisiert und für die weitere Verwendung aufbereitet. Die Aufarbeitung erfolgte in einem Inertgas-Handschuhkasten unter Ar-Atmosphäre mit Hilfe entsprechender Sägen, Bohrer, Kugelmühlen und Siebe. So konnte zerkleinertes Gesteinsmaterial mit einer Korngröße < 100 µm gewonnen werden, welches anschließend für die Sorptionsversuche zur Verfügung stand [8]. Ein Überblick über diese Proben und die Auswahl für die hier und im vorhergehenden Projektteil durchgeführten Arbeiten, ist in Tab. 2 gegeben. Zusätzlich ist die Auswahl der Gesteine aufgezeigt, welche im Rahmen von Teil 3a [10] untersucht wurden.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 21
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seile. Zi
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Tab. 2 Vorhandene Gesteinsproben und Auswahl für die Untersuchung der Sorption von ¹¹³Sn(IV), ¹⁴CO₃²⁻, und ²³¹Pa(V)

Formation	Probe	Teuf	e / m	Auswahl für die Sorptionsuntersuchungen				
				¹¹³ Sn(IV)	¹⁴ CO ₃ ²⁻	²³¹ Pa(V)	Projektteil 3a [10]	
Obarar Wallankalk	001_KIT	14,60	15,00					
	002_KIT	38,60	39,00		Х			
Schaumkalkhank	003_KIT	45,58	45,90	Х	Х	Х	Х	
Schaumkaikbank	004_KIT	50,00	50,10				Х	
Döt 4	005_KIT	132,75	132,95				Х	
K01 4	006_KIT	173,80	174,00	Х			Х	
	007_KIT	225,49	225,85	Х	Х	Х	Х	
	011_KIT	266,30	266,60					
Röt 3	012_KIT	267,38	267,70					
	016_KIT	271,00	271,28				Х	
	021_KIT	275,80	276,00					
Röt 1	022_KIT	369,40	369,62			Х	Х	
	023_KIT	396,75	397,00	Х			Х	
Hutgestein/	024_KIT	414,60	415,00		Х	Х	Х	
sulfatisches Röt	025_KIT	429,38	429,60					
	026_KIT	439,00	439,30	Х	Х	Х	Х	

Für jedes hier untersuchte Radionuklid wurden fünf Gesteinsproben ausgewählt. Die Auswahl ist im Folgenden für jedes Radionuklid begründet.

- ¹¹³Sn(IV): Untersuchungen des mit den Gesteinsproben äquilibrierten Grundwassers zeigten das Vorhandensein von natürlichem, inaktivem Zinn, das von natürlichen Zinnphasen in den Gesteinen herrührt. Ein wahrscheinlicher Wechselwirkungsmechanismus des ¹¹³Sn(IV) ist daher eine Isotopenaustauschreaktion und struktureller Einbau in Zinnphasenoberflächen. Sowohl aus dem Buntsandstein als auch aus dem Hutgestein wurden jeweils zwei Gesteinsproben ausgewählt, welche eine hohe und eine niedrige natürliche Zinnkonzentration im äquilibrierten Grundwasser zeigten. Des Weiteren wurde eine Gesteinsprobe aus dem Muschelkalk untersucht, welche ebenfalls eine natürliche Zinnkonzentration im äquilibrierten Grundwasser aufwies, um eine abdeckende Betrachtung aller Gesteinsarten zu gewährleisten.
- ¹⁴CO₃²: Im Rahmen der vorliegenden Arbeit wurde ¹⁴C ausschließlich in Form von anorganischem ¹⁴CO₃² zugesetzt. Es ist von einer Wechselwirkung des ¹⁴CO₃² mit natürlichen carbonathaltigen Mineralphasen der Gesteine auszugehen. Diese wird vermutlich über einen Isotopenaustausch durch dynamische Auflösungs- und

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 22
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. ZZ
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Ausfällungsreaktionen erfolgen. Daher wurden primär Gesteine mit unterschiedlichen Gehalten an natürlichen carbonatischen Phasen für die Untersuchungen ausgewählt. Aus dem Muschelkalk und dem Hutgestein wurden zwei Gesteinsproben mit unterschiedlichen Anteilen an Calcit (CaCO_{3,s}) ausgewählt (z. B. zeigte die Probe des Hutgesteins aus der größten Teufe einen erhöhten Calcitgehalt, verglichen mit dem oberen Hutgestein). Zusätzlich wurde eine Probe aus dem Buntsandstein, welche einen niedrigen Gehalt an Calcit aufwies, ausgewählt, um alle Gesteinsarten abdeckend zu betrachten.

²³¹Pa(V): Protactinium stellt ein sehr stark sorbierendes Element dar, weshalb von einer sehr starken Wechselwirkung mit allen Gesteinsproben auszugehen ist. Dies hätte eine schnelle und quantitative Sorption des ²³¹Pa(V) zur Folge, wodurch im Falle einer möglichen, wenn auch sehr unwahrscheinlichen Freisetzung dieses Radionuklides in das Deckgebirge primär von einer Rückhaltung an den unteren, dem Grubengebäude der Schachtanlage Asse II nahen, Gesteinsformationen auszugehen ist. Der Fokus der Arbeiten lag daher auf Gesteinsproben des Hutgesteins und des unteren Buntsandsteins. Zusätzlich wurde auch, für eine abdeckende Betrachtung, jeweils eine Probe aus dem oberen Buntsandstein und aus dem Muschelkalk ausgewählt.

Die, mittels der Brunauer-Emmett-Teller-Methode (BET), bestimmten spezifischen Oberflächen [9] der im Rahmen dieser Arbeit untersuchten Gesteinsproben sind in Tab. 3 zusammengefasst.

Sorptionsprobe	BET- Oberfläche / m² g ⁻¹	±
002_KIT	8,0	0,1
003_KIT	2,9	0,1
006_KIT	25,3	0,3
007_KIT	25,2	0,3
022_KIT	19,5	0,2
023_KIT	16,4	0,2
024_KIT	8,9	0,2
026_KIT	39,9	0,4

Tab. 3Spezifische Oberflächengrößen der für die Sorptionsversuche verwendeten
Gesteinsproben (Korngröße < 100 μm)</th>

Um den Effekt der unterschiedlichen Gesteinsoberflächen auf das Ausmaß der Sorption zu berücksichtigen, wurden für alle Radionuklide zusätzlich zu den massebezogenen R_s - und R_d -Werten die analogen flächennormierten Verteilungskoeffizienten berechnet.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 22
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 23
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

3.3 Grundwasser

Das für die Untersuchungen verwendete Grundwasser GW-023 stammt aus dem Basiskonglomerat des unteren Muschelkalks in einer Tiefe von -20,13 bis -25,13 m NN (227,5 - 232,5 m unter der Messpunkthöhe von +207,37 m NN entsprechend der Teufenlage und Länge der Pegelfilterstrecke) [6]. Die Probennahme erfolgte unter Vermeidung eines Kontakts des Grundwassers mit der Luft. Die Zusammensetzung des Grundwassers wurde von KIT-INE analysiert und im Bericht KIT-INE 002/2016 zusammengefasst [8].

3.4 Nachweisgrenzen der Messverfahren

In der analytischen Chemie werden verschiedene Definitionen für die Belastbarkeit und Zuverlässigkeit von Messdaten beschrieben. In der vorliegenden Studie wird die Nachweisgrenze (NG) verwendet, für welche die Definition gilt, dass ein Messwert mindestens über dem Dreifachen der Standardabweichung des Messwerts einer tracerfreien Probe liegen muss.

Nuklid	NG / ppt	NG / Bq L ⁻¹						
		γ-Spektromet	rie					
¹¹³ Sn(IV)	4,52·10⁻⁵	4,0·10 ⁻¹⁶	16,8					
		LSC						
¹⁴ CO ₃ ²⁻	5,8	9,1·10 ⁻¹¹	210					
	HR-ICP-MS							
²³¹ Pa(V)	2,31·10 ⁻²	1,0·10 ⁻¹³	0,04					

 Tab. 4
 Nachweisgrenzen (NG) der untersuchten Radionuklide

Die γ -Spektrometrie wurde als relative Messung zu einem Standard mit gleicher Messgeometrie von 5 ml und bekannter Aktivität durchgeführt. Die LSC-Messungen erfolgte mittels eines modifizierten Szintillationscocktails (Hionic Fluor (Perkin Elmer)) dessen pH-Wert durch Zugabe an NaOH angehoben wurde. Die Nachweisgrenze der HR-ICP-MS wurde durch die Messung des Grundwassers (GW-023) ohne Zugabe des Tracers durch Bestimmung der dreifachen Standardabweichung des Blindwerts ermittelt. Die NG für γ -Spektrometrie und LSC erfolgte analog. Eine Zusammenfassung der Nachweisgrenzen der jeweiligen Verfahren ist in Tab. 4 gegeben.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 24
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 24
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

3.5 Durchführung der Experimente

3.5.1. Vorversuche

Aufgrund der gegebenen geochemischen Bedingungen mussten für die drei untersuchten Radionuklide, ¹¹³Sn(IV), ¹⁴CO₃²⁻ und ²³¹Pa(V), Vorversuche durchgeführt werden, um optimale Bedingungen für die Sorptionsuntersuchungen zu gewährleisten. Die Vorversuche für die jeweiligen Radionuklide sind im Folgenden beschrieben.

¹¹³**Sn(IV):** Die γ-spektroskopischen Untersuchungen mussten mit einer Messgeometrie von 5 mL durchgeführt werden. Die experimentell zugänglichen Peakflächen wurden gegen eine Reihe an Referenzproben mit unterschiedlichen Aktivitäten an ¹¹³Sn(IV) in die Aktivität umrechnet. Die Referenzproben wurden über eine logarithmische Verdünnungsreihe einer Stammlösung bekannter Aktivität an ¹¹³Sn(IV) hergestellt. Die Ergebnisse sind in Tab. 5 dargestellt.

Tab. 5Aktivitäten der ¹¹³Sn(IV)-Referenzproben mit einem Probevolumen von 5 mL,
die entsprechenden, mittels γ–Spektroskopie gemessenen Peakflächen für eine
Messzeit von 60 Minuten und die zugehörigen Kalibrationsfaktoren

Proben- bezeichnung	¹ A _{total} / Bq	¹ A _{ist} / Bq mL ⁻¹	Peakfläche / Counts	Kalibrationsfaktor
Sn113-0,1	0,09	0,018	-	-
Sn113-1	0,9	0,18	$3,20.10^2 \pm 74$	2,81·10 ⁻³ ± 7,2·10 ⁻⁴
Sn113-10	9,1	1,8	$3,07 \cdot 10^3 \pm 98$	2,96·10 ⁻³ ± 1,7·10 ⁻⁴
Sn113-100	90,6	18,1	3,15·10 ⁴ ± 127	2,87·10 ⁻³ ± 8,3·10 ⁻⁵
Sn113-1000	905,5	181,1	$3,11.10^5 \pm 563$	2,91·10 ⁻³ ± 7,8·10 ⁻⁵
Sn113-10000	9054,8	1811,0	$3,05 \cdot 10^6 \pm 6728$	2,96·10 ⁻³ ± 8,1·10 ⁻⁵

¹Berechnete Aktivitäten entsprechend der Verdünnung einer Referenzprobe

Die Ergebnisse zeigten für alle gemessenen Proben eine vergleichbare Zählausbeute. Hieraus wurde ein gemittelter Kalibrationsfaktor von $(2,91 \pm 0,07) \cdot 10^{-3}$ berechnet, mit dem die gemessenen Peakflächen in die entsprechenden Aktivitäten umgerechnet wurden. Zusätzlich zu dem Messfehler der γ -spektroskopischen Messung wurden die experimentell ermittelten Peakflächen mit einem Fehler von 2,5 % beaufschlagt, welcher einem Erfahrungswertwert zur Berücksichtigung experimenteller Unsicherheiten (z. B. Pipettierfehler) entspricht. Die resultierenden Fehler der Messwerte wurden mittels Fehlerfortpflanzung in den entsprechenden Verteilungskoeffizienten berücksichtigt.

¹⁴**C**: Der für die Flüssigszintillationsmessungen benötigte Szintillationscocktail (Hionic Fluor (Perkin Elmer)) weist einen schwach sauren pH-Wert im Bereich von 5 – 6 auf. Aufgrund der geringen Löslichkeit von CO₂ in sauren Lösungen, würde die Zugabe einer alkalischen Carbonatlösung zu diesem Cocktail zu einem Ausgasen des gelösten Carbonates als Kohlendioxid führen. Daher musste der pH-Wert des Szintillationscocktails vor der Zugabe der ¹⁴CO₃²⁻-haltigen Lösungen angehoben werden. Die Effizienz des so modifizierten Cocktails

	Kenningen 10 (Ten Ob)								
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 25
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 25
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

wurde in Vorversuchen bestimmt. Hierzu wurden 10 mL Hionic Fluor Cocktail mit 1,5 mL NaOH (2 mol L⁻¹) vermengt und 500 µL einer in Grundwasser GW-023 angesetzten ¹⁴CO₃²⁻-Stammlösung mit unterschiedlichen Aktivitäten an ¹⁴C zugegeben. Die Aktivität des ¹⁴C wurde anschließend mit gleichbleibendem Messprotokoll mittels LSC bestimmt. Die Ergebnisse sind in Tab 6. dargestellt.

Tab. 6Eingestellte und mittels des modifizierten Szintillationscocktails gemessene
Aktivitäten von 14C, sowie die sich daraus ergebenden Zählausbeuten bei einer
Messzeit von 30 Minuten

Probenbezeichnung	¹ A _{ist} (¹⁴ C-Lsg) / Bq mL ⁻¹	² A _{total} (LSC) / Bq	cpm	Zählausbeute
Blind	0	0	4,17 ± 0,19	-
C14_0,1	0,2	0,10	8,61 ± 0,58	0,74 ± 0,07
C14_1	1,98	0,99	47,88 ± 1,03	$0,74 \pm 0,03$
C14_10	19,78	9,89	445,07 ± 3,3	0,74 ± 0,02
C14_100	197,76	98,88	4468,1 ± 7,9	$0,75 \pm 0,02$

¹Berechnete Aktivitäten der zugegebenen ¹⁴C-Lösung ($V_{add} = 0,5$ mL), entsprechend der Verdünnung einer Referenzprobe; ²Gesamte Soll-Aktivität der LSC-Probe

Alle gemessenen Proben zeigten eine vergleichbare Zählausbeute von 0,75 ± 0,01. Mittels des hieraus bestimmten Kalibrationsfaktors von 0,75 ± 0,025 Bq cps⁻¹ (cps: counts per second) war eine Umrechnung der experimentell gemessenen in die tatsächlichen Aktivitäten möglich. Zusätzlich zu dem Messfehler der LSC-Messungen wurden die experimentell ermittelten Aktivitäten mit einem Fehler von 2,5 % beaufschlagt, welcher einen Erfahrungswert darstellt, durch den experimentelle Unsicherheiten (z. B. Pipettierfehler) berücksichtigt werden. Der resultierende Fehler wurde entsprechend einer Fehlerfortpflanzung berücksichtigt. Unter Berücksichtigung der Definition der Nachweisgrenze (siehe Kap. 3.4) und dem, dem modifizierten LSC-Cocktail, zugegebenen Volumen von 0,5 mL, liegt die Nachweisegrenze bezüglich der Aktivität der wässrigen Phase der Sorptionsproben bei 0,21 Bq mL⁻¹. Dies entspricht [¹⁴CO₃²⁻]_{NG} = 9,1 10⁻¹¹ mol L⁻¹.

²³¹**Pa:** Eine kommerzielle Protactinium-Stammlösung ist nicht erhältlich. Daher musste im Rahmen der vorliegenden Arbeit eine entsprechende Stammlösung angesetzt werden. Hierfür wurde festes $Pa_2O_{5,s}$ aufgelöst, gereinigt und eingehend charakterisiert. Eine detaillierte Beschreibung der Arbeitsschritte und der Charakterisierung ist in Anhang 7.1 gegeben. Die so hergestellte Stammlösung zeigte eine $[Pa(V)]_{total} = 3,84 \cdot 10^{-3} \text{ mol L}^{-1}$, ein Gesamtvolumen von ca. 1 mL mit pH \approx 1. Ausgehend von dieser Lösung wurde unmittelbar vor dem Spiken der Gestein/Lösungsproben eine zweite Pa(V)-Stammlösung angesetzt, welche folgende Charakteristika zeigte:

 $[Pa(V)]_{total} = 4 \cdot 10^{-7} \text{ mol } L^{-1}$ $V_{total} = 20 \text{ mL}$

Schachtanlage Asse II: Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)							BGE	BUN FÜR	IDESGESELLSCHAFT ENDLAGERUNG
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 26
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 20
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

pH ≈ 4.4

Aus dieser Stammlösung wurden unmittelbar nach ihrer Herstellung Aliquote entnommen und zu den einzelnen Gesteins-Lösungsproben dotiert. Aufgrund der starken Sorption von Protactinium an allen Oberflächen bei pH > 1 war es von großer Wichtigkeit, diese Arbeitsschritte möglichst zügig durchzuführen. Die Quantifizierung der Pa(V)-Konzentration in Lösung erfolgte mittels HR-ICP-MS, mit einem Detektionslimit von [²³¹Pa(V)]_{NG} = 10⁻¹³ mol L⁻¹. Vor der Analyse wurde die Lösung durch Zusatz von HCI/HF ([F⁻]_{total,Sample} ≈ 10⁻³ M) stabilisiert.

3.5.2. Batchexperimente

In Abb. 1 ist eine schematische Darstellung des experimentellen Ablaufs der im Rahmen dieser Arbeit durchgeführten Batchexperimente gegeben.

Abb. 1: Schematische Darstellung des experimentellen Ablaufs der Batchversuche

Die Batch-Adsorptionsversuche wurden so durchgeführt, dass zunächst eine Gesteinsprobe (Adsorbent) mit einer Lösung kontaktiert und äquilibriert wurde. Anschließend wurde das zu adsorbierende Radionuklid (Adsorbat) zu der Lösung dotiert. Nach einer definierten Sorptionszeit erfolgte eine Separation der flüssigen und festen Phase mittels Ultrazentrifugation, und die Konzentration des Adsorbates in der wässrigen Phase wurde mit der jeweiligen analytischen Methode quantifiziert. Die verbliebenen Gesteins-Lösungsproben wurden mit frischer, radionuklidfreier Lösung aufgefüllt und für eine definierte Zeit kontaktiert.

	Kenningen Te (Ten eb)								
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 07
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 27
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Nach dieser Desorptionszeit erfolgte wieder eine Phasenseparation und erneute Messung der Adsorbatkonzentration in der wässrigen Phase. Aus den Lösungskonzentrationen können die Verteilungskoeffizienten der Sorptions- (R_s) und Desorptionsreaktion (R_d) des Adsorbates zwischen der festen und flüssigen Phase berechnet werden. Im Falle einer vollständig reversiblen Sorptionsreaktion, welche im thermodynamischen Gleichgewicht vorliegt, ist der R_{s} -Wert gleich dem R_{d} -Wert, und beide entsprechen dem Sorptionskoeffizienten (K_{d}). Liegt eine teilweise irreversible Sorption vor oder stellt sich das Sorptionsgleichgewicht nicht innerhalb des Beobachtungszeitraums ein, ist im Allgemeinen der R_d-Wert größer als der R_s-Wert. Üblicherweise wird der K_{a} -Wert in Transportmodellen als Rückhalteparameter verwendet, wodurch aber eine lineare Beziehung zwischen der Beladung des Feststoffes mit dem Tracer und seiner Lösungskonzentration unterstellt wird. Voraussetzung hierfür ist, dass keine Sättigungseffekte der Sorptionsplätze der Mineraloberfläche auftreten, elektrostatische und sterische Effekte mit zunehmender Beladung an der Oberfläche ausgeschlossen werden können, und dass es zu keiner Aus-/Mitfällung oder Bildung einer festen Lösung (sog. Solid Solution) kommt. Die Existenz dieser linearen Beziehung kann mit sogenannten Sorptionsisothermen überprüft werden. Generell kann bei leichtlöslichen Radionukliden bzw. Spurenelementen die Lösungskonzentrationen um mehrere Größenordnungen variiert und entsprechende Sorptionsisothermen über einen weiten Konzentrationsbereich aufgenommen werden. Schwerlösliche Radionuklide bzw. Spurenelemente liegen jedoch nur in extrem geringen Lösungskonzentrationen in den Sorptionsproben vor, wodurch eine Variation der Radionuklidkonzentrationen nur sehr schwer bzw. überhaupt nicht möglich ist. Alternativ werden Experimente mit verschiedenen m/V-Verhältnissen durchgeführt, wodurch ebenfalls Sorptionsisothermen ermittelt werden können.

Die Sorptionsversuche wurden mit zerkleinertem Gestein der Größenfraktion < 100 μ m durchgeführt. Für die drei untersuchten Radionuklide wurden jeweils zwei *m*/V-Verhältnisse untersucht:

 113 Sn:0,01 g mL^{-1}; 0,05 g mL^{-1} 14 CO32-:0,01 g mL^{-1}; 0,25 g mL^{-1} 231 Pa:0,05 g mL^{-1}; 0,25 g mL^{-1}

Für ¹¹³Sn(IV) beruhte die Auswahl der Gesteins-Lösungsproben auf dem Gehalt an natürlichem Sn(IV) in der wässrigen Phase der äquilibrierten Feststoff-Lösungsproben, wobei jeweils zwei m/V-Verhältnisse gewählt wurden, welche die größte Differenz der natürlichen Zinnkonzentration aufgewiesen hatten. Für ¹⁴CO₃²⁻ wurde das kleinste und das höchste m/V-Verhältnis übernommen, die in den vorhergehenden Untersuchungen [10] verwendet wurden. Grund hierfür ist die Vermutung, dass ¹⁴CO₃²⁻ primär über einen Isotopenaustausch mit carbonatischen Mineralphasen (z. B. Calcit, Dolomit) wechselwirkt. Durch die hier getroffene Auswahl der m/V-Verhältnisse liegt eine möglichst große Differenz des Gesamtgehaltes dieser Phasen in den Sorptionsproben vor, wodurch das Ausmaß eines Isotopenaustauschs deutlicher nachzuweisen sein sollte. Bezüglich Pa(V) erfolgte die Auswahl aus pragmatischen

	Kenningen Te (Ten eb)								
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 20
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. Zo
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Gründen, entsprechend dem aus dem vorhergehenden Untersuchungen noch verfügbaren, zerkleinerten Gesteinsmaterials.

Die entsprechenden Gesteinsmengen wurden in 30 mL Polypropylen-Weithalsflaschen mit Schraubverschluss eingewogen und mit jeweils 20 mL Grundwasser GW-023 aufgefüllt. Die Untersuchung jedes Zeitschrittes erfolgte in jeweils drei parallelen Ansätzen. Vor Beginn der Sorptionsexperimente wurden die Gesteinsproben mit dem Grundwasser für etwa zwei Monate äquilibriert, wobei der pH und das Redoxpotential regelmäßig überprüft wurden. Die Äquilibrierung fand bei einer Temperatur von 22 ± 2°C statt. Nach der Äquilibrierung wurden Aliquote der jeweiligen Radionuklidstammlösungen zu den Gesteins-Grundwasserproben dotiert. Die gesamte Anzahl der experimentellen Ansätze (Gesteins-Grundwasserproben) belief sich auf 560. Über den Verlauf der Sorptions- und Desorptionszeiten wurden die Proben regelmäßig von Hand geschüttelt. Auf eine kontinuierliche Durchmischung wurde verzichtet, da eine zu starke Agitation der Gesteinsproben zur Bildung frischer Oberflächen führen kann. Alle Experimente fanden unter Inertgas-Atmosphäre (Ar) in einer Handschuhbox statt, wobei die Probengefäße durch zusätzliche Plastikverpackungen vor eventuell auftretendem, kurzzeitigem Lufteinbruch geschützt waren. Im Gegensatz zu vielen Batchexperimenten, bei denen im Verlauf der Versuchsdauer die Proben mehrfach geöffnet und Fluidaliguote entnommen werden (wobei das generelle Problem besteht, dass sich u. a. das m/V-Verhältnis durch die Probenahme ändert) wurde hier für jede Parallelprobe, jede Versuchsdauer und jedes m/V-Verhältnis eine separate Probe angesetzt, welche nur einmal beprobt wurde. Die Sorption der Radionuklide wurde nach den folgenden vier verschiedenen Kontaktzeiten ermittelt:

¹¹³ Sn(IV):	1, 7, 28, 90 Tage
¹⁴ CO ₃ ²⁻ :	1, 7, 28, 90 Tage
²³¹ Pa(V):	1, 2, 7, 90 Tage

Für die Experimente mit ²³¹Pa(V) wurden kürzere Sorptionszeiten gewählt, da hier von einer sehr starken und sehr raschen Sorption des Radionuklides auszugehen war. Nach den jeweiligen Zeitschritten wurden 15 mL der überstehenden Lösung aus den Proben entnommen und ultrazentrifugiert (50000 rpm, 60 min). Anschließend wurden zur Bestimmung der Desorption die Probengefäße mit nicht dotiertem Grundwasser wieder auf 20 mL aufgefüllt. In bestimmten Zeitabständen, die denen entsprachen, die für die Untersuchung der Sorptionsreaktion gewählt wurden, wurden erneut 15 mL der Probenlösungen entnommen. Die entnommenen Lösungen wurden ultrazentrifugiert (50000 rpm, 60 min) und für die jeweilige Analytik entsprechend vorbereitet. Für die γ -Spektrometrie wurden zu 5 mL Probenlösung 100 µL HNO₃ zur Stabilisierung zugegeben und direkt gemessen. Für die LSC-Messungen wurde direkt nach der Zentrifugation ein Aliquot von 500 µL der wässrigen Phase zu 10 mL des pH-angehobenen Szintillationscocktails gegeben. Für die ICP-MS-Analysen mussten alle Proben in 5 % HNO₃ in einem Verhältnis von 1:10 verdünnt werden.

	Kenningen Te (Ten eb)								
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 20
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 29
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

3.5.3. Lösungszusammensetzung

Der pH-Wert und das Redox-Potential stellen zwei wichtige geochemische Parameter dar, welche die Sorption von Radionukliden signifikant beeinflussen. Das von KIT-INE in vorangegangenen Arbeiten gewonnene Grundwasser GW-023 zeigt einen neutralen pH-Wert (pH = 7,07) und oxidierende Bedingungen (Eh = 261 mV (SHE)), sowie einer geringen Ionenstärke (I_M < 0,05 mol L⁻¹) [8]. Die gemahlenen Sedimentproben wurden in definierten m/V-Verhältnissen mit diesem Grundwasser kontaktiert und über einen Zeitraum von 2 Monaten äquilibriert. Die nach dieser Äquilibrierungszeit gemessenen pH- und Eh-Werte der Proben sind in Tab. 7 für die jeweiligen m/V-Verhältnisse aufgeführt. Die Daten stellen die gemittelten Ergebnisse dreier Parallelproben dar.

Probe	m/V / g mL ⁻¹	рН¹	±	Eh ¹ (SHE) / mV	±
002 KIT	0,01	8,83	0,05	69,4	2,9
002_KI	0,25	8,65	0,03	79,8	1,9
	0,01	8,98	0,10	60,6	5,9
003_KIT	0,05	8,97	0,02	61,2	1,2
	0,25	8,86	0,06	67,8	3,3
	0,01	8,81	0,07	70,5	4,1
000_KII	0,05	8,64	0,04	80,7	2,1
	0,01	8,90	0,08	65,3	4,6
007_KIT	0,05	8,58	0,05	83,6	3,2
	0,25	8,38	0,06	95,7	3,7
022 KIT	0,05	8,60	0,07	82,7	4,0
022_KII	0,25	8,51	0,11	88	6,3
000 KIT	0,01	9,03	0,02	57,6	1,4
023_KII	0,05	8,95	0,04	62,5	2,2
024 KIT	0,05	8,98	0,04	60,7	2,4
024_KII	0,25	8,80	0,06	71	3,6
	0,01	8,76	0,01	73,6	0,6
026_KIT	0,05	8,74	0,02	74,9	1,0
	0,25	8,49	0,02	89,4	1,0

Tah 7	0H- und Eh-Werte der Lösung beim Start der Sorntionsexperimente
100.1	and En World der Lobarg beim Glart der Gerptionberperimente

¹Aus drei Parallelmessungen gemittelte Werte

Die Ergebnisse zeigen für alle Proben leicht alkalische pH-Werte und schwach oxidierende Bedingungen. Des Weiteren ist lediglich eine geringe Variation der pH- und Eh-Werte der einzelnen Proben zu erkennen, so dass für alle Systeme ein gemittelter pH = $8,76 \pm 0,19$ und Eh = 73 ± 11 mV angegeben werden kann. Verglichen mit dem Eh ≈ 420 mV, welcher in vorherigen Arbeiten mit den gleichen Sedimentproben und demselben Grundwasser ermittelt wurden [10], ist das in dieser Arbeit ermittelte Redox-Potential deutlich geringer. Eine mögliche Ursache für diesen Unterschied könnte eine Kontamination der vorherigen Proben mit Luftsauerstoff sein, welche während der präparativen Arbeiten aufgetreten ist.

gen ie (ien ek)									
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 20
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 30
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Die pH-Werte zu den jeweiligen Sorptions- und Desorptionszeitpunkten der unterschiedlichen Radionuklide wurden wiederholt gemessen. Eine detaillierte Auflistung der gemessenen pH-Werte ist in den Anhängen 2 – 10 gegeben. Die Werte zeigen keine signifikante Veränderung über die Zeit, was in guter Übereinstimmung mit den vorhergehenden Arbeiten ist [10].

Vorherige Arbeiten haben das Vorkommen von natürlichem Zinn in der wässrigen Phase der Gesteins-Lösungsproben festgestellt, was auf die Auflösung von mineralischen Zinnphasen in den Gesteinen zurückzuführen ist [10]. Durch das Vorhandensein an natürlichem, inaktivem Zinn in der ¹¹³Sn(IV)-Stammlösung erfolgt zusätzlich eine Erhöhung der Sn(IV)-Konzentrationen in den jeweiligen Lösungen, so dass diese zu Beginn der Experimente im Bereich von $10^{-7} - 10^{-9}$ mol L⁻¹ liegen. Die totale Konzentration an Zinn in der wässrigen Phase sowohl der Gesteins-Lösungsproben als auch der Referenzlösung (GW-023 ohne Gestein mit zugesetztem Radionuklid) wurde zu jedem Sorptionszeitpunkt mittels ICP-MS bestimmt. Die Ergebnisse sind in Kapitel 4.1 dargestellt.

Des Weiteren zeigten alle hier untersuchten Gesteinsproben das Vorhandensein von Calcit. Daher berechnet sich, entsprechend des Löslichkeitsproduktes von CaCO_{3,s}, im geschlossenen System unter Ausschluss signifikanter Mengen an gasförmigen CO₂, eine totale Carbonatkonzentration in der wässrigen Phase von DIC = 10^{-3} mol L⁻¹ (dissolved inorganic carbon, DIC = $[CO_2(aq)] + [H_2CO_3] + [HCO_3^{-1}] + [CO_3^{2-1}]$, und, bei dem pH-Wert der Proben von 8 – 8.5, eine Gleichgewichtskonzentration an $[CO_3^{2-1}] = 10^{-6} - 10^{-5}$ mol L⁻¹.

3.6 Auswertung der Experimente und Fehlerrechnung

3.6.1. Berechnung der Sorptions- und Desorptionskoeffizienten

Zur Auswertung der Sorptions- und Desorptionsexperimente werden folgende Konzentrationen mit den Bezeichnungen A_0 , A_1 , A_2 und A_3 benötigt:

- *A*₀ Initiale Konzentration des jeweiligen Radionuklides in der wässrigen Lösung der Sorptionsproben zu Beginn der Untersuchungen.
- *A*₁ Konzentration des jeweiligen Radionuklides in der wässrigen Phase der Sorptionsproben nach einer definierten Sorptionszeit.
- *A*₂ Konzentration des jeweiligen Radionuklides in der Lösung zu Beginn der Desorptionsexperimente.
- *A*₃ Konzentration des jeweiligen Radionuklides in der wässrigen Phase nach einer definierten Desorptionszeit.

Es ist an dieser Stelle zu erwähnen, dass die Konzentration der jeweiligen Radionuklide in den entsprechenden feststofffreien Vergleichsproben (Referenzproben mit Grundwasser GW-023 ohne Gestein) mit der Zeit abnahmen. Für ¹¹³Sn(IV) und ¹⁴CO₃²⁻ lagen nach 90 Tagen die Aktivitäten der Referenzlösungen bei ca. 30% (¹¹³Sn(IV)) bzw. 86% (¹⁴CO₃²⁻) der zugegebenen Dotierung. Pa(V) war in den Referenzproben nach kurzer Zeit überhaupt nicht nachweisbar,

Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)							BGE BUNDESGESELLSCH FÜR ENDLAGERUNG				
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Saita 21		
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	ΑΑΑΑ	AA	NNNN	NN	Selle. 31		
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023		

was wahrscheinlich auf eine Sorption der Radionuklide an den Behälterwänden der Probengefäße zurückgeführt werden kann. In Anwesenheit der Gesteinsproben in den Batchexperimenten ist jedoch zu unterstellen, dass Sorption nahezu ausschließlich an der vergleichsweisen großen Oberfläche des Gesteins erfolgt, welche signifikant größer ist als die der Gefäßwände. Dieser Effekt ist auch aus der Literatur bekannt und durch experimentelle Befunde verifiziert [20]. Der Verteilungskoeffizient R_s errechnet sich aus der zugegebenen Konzentration des jeweiligen Radionuklides (A_0), der Lösungskonzentration des Radionuklides nach einer definierten Sorptionszeit (A_1), der eingewogenen Gesteinsmasse m und dem Lösungsvolumen V nach Gleichung (1).

$$R_s = \frac{A_0 - A_1}{A_1} \cdot \frac{V}{m} \tag{1}$$

V: Lösungsvolumen (L)

m: Feststoffmasse (g oder kg)

Im idealen Fall sollte der berechnete R_s -Wert unabhängig von der Feststoffkonzentration bzw. Radionuklidkonzentration sein.

Nach der Probenahme, welche nach einer definierten Sorptionszeit erfolgte, wurde das verbliebene Lösungsvolumen mit frischem Grundwasser auf 20 mL aufgefüllt, wodurch die Konzentration des jeweiligen nicht sorbierten Radionuklids (A_1) auf die Konzentration (A_2) abnahm. Nach einer definierten Desorptionszeit, erfolgte eine erneute Phasenseparation und die Bestimmung der sich eingestellten Radionuklidkonzentration in Lösung (A_3). Es können nun drei mögliche Fälle eintreten:

- $A_2 < A_3$ Eine Desorption des an dem Festkörper sorbierten Radionuklids fand statt.
- $A_2 > A_3$ Das Sorptionsgleichgewicht war noch nicht erreicht und es fand weitere Sorption des Radionuklides statt.
- $A_2 \approx A_3$ Es fand keine weitere Desorption statt. Dieser Effekt kann durch eine sehr langsame Kinetik der Desorption erklärt werden. In den folgenden Ausführungen gilt dieses Kriterium als erfüllt, wenn A_3 weniger als 10% von A_2 abweicht.

Die Berechnung des Desorptionskoeffizienten erfolgt analog zur Berechnung des Sorptionskoeffizienten, wobei sich die Anfangskonzentration des Radionuklides aus der Summe der am Feststoff sorbierten und der in dem verbleibenden Restvolumen gelösten Stoffmenge berechnet. Das Restvolumen V_{rest} ergibt sich anhand der Lösungsmengen, die nicht separiert wurde (5 mL). Das Volumen des zugegebenen, nicht dotierten GW-023-Wassers für die Desorptionsexperimente entspricht dem entnommenen Volumen (15 mL).

Radionuklidmenge sorbiert am Feststoff: $n_{sorb} = (A_0 - A_1) \cdot 0,02 L$

Radionuklidmenge gelöst im Restvolumen:

$$n_{dis} = (V_{rest} \times A_1)$$

S	Schac orptionsur Sesteinspro Remlin	htanlag ntersuch oben au ngen 15		BGE	BUN FÜR	IDESGESELLSCHAFT ENDLAGERUNG			
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 22
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 32
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

Die Anfangskonzentration der Radionuklide bzw. Spurenelemente im Desorptionsexperiment *A*₂ beträgt somit.

$$A_2 = \frac{(n_{sorp} + n_{dis})}{20 \, mL} \tag{2}$$

Der Desorptionskoeffizient R_d ergibt sich nach Gleichung (3):

$$R_d = \frac{A_2 - A_3}{A_3} \cdot \frac{V}{m} \tag{3}$$

3.6.2. Fehlerrechnung

Die Untersuchung aller Proben erfolgte in Form von drei parallelen Ansätzen. Hieraus wurden unter Berücksichtigung der Fehler der Einzelmessungen (Δ_i) gewichtete Mittelwerte \overline{X} und deren zugehörige Fehler $\overline{\Delta}$ berechnet:

$$\bar{X} = \frac{\sum_{i=1}^{3} \frac{\lambda_{i}^{2}}{\lambda_{i}^{2}}}{\sum_{i=1}^{3} \frac{1}{\lambda_{i}^{2}}} \qquad und \qquad \bar{\Delta} = \sqrt{\frac{1}{\sum_{i=1}^{3} \frac{1}{\lambda_{i}^{2}}}}$$
(4)

Diese Fehlerrechnung wurde für alle Daten der γ -Spektrometrie, der LSC und der HR-ICP-MS angewendet, bei welchen jeder Datenpunkt mit entsprechender Fehlerangabe vorliegt. Aus den Messwerten der Konzentrationen bzw. Zählraten der Radionuklide in der feststofffreien Lösung (A_1), deren initialer Konzentration (A_0) und den jeweiligen Feststoffmassen und Lösungsvolumina lassen sich die Verteilungskoeffizienten nach Gleichung (1) berechnen. Die Fehler der Verteilungskoeffizienten ΔR_s ergeben sich dann gemäß dem Fehlerfortpflanzungsgesetz:

$$\Delta R_{s} = \sqrt{\left(\frac{\partial R_{s}}{\partial A_{0}} \cdot \Delta A_{0}\right)^{2} + \left(\frac{\partial R_{s}}{\partial A_{1}} \cdot \Delta A_{1}\right)^{2} + \left(\frac{\partial R_{s}}{\partial V} \cdot \Delta V\right)^{2} + \left(\frac{\partial R_{s}}{\partial m} \cdot \Delta m\right)^{2}}$$
(5)

Ausdifferenzieren der Gleichung (1) und Einsetzen der Fehler zeigt, dass der dominierende Fehler aus der Messung der Konzentrationen A_1 in den Sorptionsproben entsteht. Die Fehler, die aus der Einwaage der Feststoffe (~ 1%) und aus der Volumenbestimmung (~ 1%) resultieren, tragen deutlich weniger zum Gesamtfehler bei. Näherungsweise lässt sich der Fehler daher nach Gleichung 6 berechnen:

$$\Delta R_{\rm s} = \sqrt{\left(\frac{A_0 \cdot \frac{V}{m}}{A_1^2} \cdot \Delta A_1\right)^2} \tag{6}$$

Bezüglich der Desorption, ergibt sich der Fehler von A_2 zu

$$\Delta A_{2} = \sqrt{\Delta A_{0}^{2} + \Delta A_{1}^{2} + (V_{rest} \cdot \Delta A_{1})^{2}}$$
(7)

S U	Schachtanlage Asse II: Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)						BGE	BUN FÜR	IDESGESELLSCHAFT ENDLAGERUNG
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 22
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 33
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

Hierbei entspricht V_{rest} dem Pipettierfehler. Der Fehler des Desorptionskoeffizienten (R_d) ergibt sich zu

$$\Delta R_{d} = \frac{V}{m} \sqrt{\left(\frac{1}{A_{3}}\Delta A_{2}\right)^{2} + \left(\frac{A_{2}}{A_{3}^{2}} \cdot \Delta A_{3}\right)^{2}}.$$
(8)

	Kenningen 10 (1en ob)								
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 24
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 34
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

4 Ergebnisse der Sorptionsuntersuchungen

Im Folgenden sind die Ergebnisse der Sorptionsuntersuchungen dargestellt. Es sind sowohl die gemittelten Konzentrationen der Radionuklide in den wässrigen Phasen, als auch die entsprechenden R_s-Werte für die jeweiligen Gesteinsproben, die m/V-Verhältnisse und die Kontaktzeiten in einer logarithmischen Skalierung dargestellt. Hierbei werden lediglich diejenigen Werte angegeben, welche über der Nachweisgrenze der analytischen Methode für das jeweilige Radionuklid liegen. Jeder Datenpunkt entspricht dem Mittelwert aus drei Parallelproben, wobei die entsprechenden Fehlerbalken immer angegeben werden. Teilweise liegen diese allerdings innerhalb der Größe des Datenpunktes. Der Hintergrund der jeweiligen Diagramme ist für die Proben aus dem Muschelkalk grün, für die Buntsandsteinproben rot und für die Hutgesteinsproben blau eingefärbt. Für jede Gesteins-Lösungsprobe entspricht der linke Wert immer dem geringeren m/V-Verhältnis, während der rechte Wert das entsprechend höhere Verhältnis repräsentiert. Die unterschiedlichen Farben und Symbole spiegeln die vier unterschiedlichen Zeitschritte wieder. Die initial zugegebene Radionuklidkonzentration und die Nachweisgrenzen der jeweiligen analytischen Methoden sind ebenfalls eingezeichnet. Eine detaillierte Übersicht über alle Konzentrationen und die daraus berechneten R_s-Werte befindet sich im Anhang.

4.1 ¹¹³Sn(IV) Rückhaltung in Sorptionsexperimenten

Die Mittelwerte der gemessenen ¹¹³Sn(IV) Lösungskonzentrationen sind für alle untersuchten Gesteinsproben, die zwei m/V-Verhältnisse und die vier Probenahmezeitpunkte in Abb. 2 dargestellt. Die initiale Konzentration an ¹¹³Sn(IV) betrug 10⁻¹² mol L⁻¹. Die Abnahme der ¹¹³Sn(IV)-Konzentration durch den radioaktiven Zerfall ($T_{1/2} \sim 115$ Tage) wurde rechnerisch berücksichtigt, so dass in allen Abbildungen lediglich die Änderung der Lösungskonzentration bedingt durch geochemische Wechselwirkungsprozesse mit den Gesteinen dargestellt ist. Die ¹¹³Sn(IV) mit allen untersuchten Ergebnisse zeigen eine starke Rückhaltung des Gesteinsproben. **Bereits** nach einem Tag war ein deutlicher Rückgang der Insbesondere für die Lösungskonzentration zu beobachten. Gesteinsproben des Buntsandsteins und des tieferen Hutgesteins lag die Konzentration des ¹¹³Sn(IV) nahe der Nachweisgrenze. Die höchsten Radionuklidkonzentrationen waren für die Probe des Muschelkalks zu beobachten. Mit fortschreitender Sorptionszeit erfolgte eine sukzessive Zunahme der Rückhaltung, so dass nach 90 Tagen Sorptionszeit bei allen Proben die ¹¹³Sn(IV)-Lösungskonzentration unterhalb der Nachweisgrenze lag. Des Weiteren wurde beobachtet, dass die Sorption bei dem höheren m/V-Verhältnis geringfügig schneller als beim niedrigeren m/V-Verhältnis erfolgte.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 25
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 35
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Abb. 2 [¹¹³Sn(IV)] der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: m/V = 0,01 g mL⁻¹, rechts: m/V = 0,05 g mL⁻¹

Die aus den gemessenen Konzentrationen ermittelten R_s -Werte für die fünf untersuchten Gesteinsproben sind in Abb. 3 als Funktion der m/V-Verhältnisse und der Sorptionszeiten dargestellt. Bereits nach einem Tag Sorptionszeit liegen für die Proben des Buntsandsteins und des Hutgesteins hohe Werte im Bereich von log $R_s = 4, 1 - 5, 2$ vor. An der Gesteinsprobe ¹¹³Sn(IV) **Muschelkalks** (003 KIT) zeigt nach des einem Tag geringere Verteilungskoeffizienten von log $R_s = 3.5 \pm 0.4$. Mit zunehmender Sorptionszeit steigen alle R_s -Werte langsam aber signifikant an, was die deutliche Kinetik der Rückhaltung widerspiegelt. Nach 90 Tagen Sorptionszeit liegen sämtliche Lösungskonzentrationen an ¹¹³Sn(IV) unterhalb der Nachweisgrenze, mit Verteilungskoeffizienten von $R_s > 1.5 \cdot 10^5$ mL g⁻¹ für m/V = 0.01 g mL⁻¹ ¹ bzw. $R_s > 5 \cdot 10^4$ mL g⁻¹ für m/V = 0,05 g mL⁻¹. Somit lässt sich eine Untergrenze für die Verteilungskoeffizienten von $R_s = 5.10^4 \text{ mL g}^{-1}$ angeben Eine tabellarische Übersicht über die ermittelten Konzentrationen und die daraus abgeleiteten R_s -Werte ist im Anhang gegeben. Bislang gab es keine Asse spezifischen Sorptionsdaten für Sn. Die in der vorliegenden Arbeit

Schachtanage Assell. Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)							BGE	BUN FÜR	IDESGESELLSCHAFT ENDLAGERUNG
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soito: 26
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. So
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

ermittelten Daten liegen im Bereich der höchsten in der Literatur berichteten Sorptionskoeffizienten für verschieden Sedimentgesteine (siehe [21]).

Abb. 3: R_s-Werte für ¹¹³Sn(IV) an den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: m/V = 0,01 g mL⁻¹, rechts: m/V = 0,05 g mL⁻¹

Bei den hier beschriebenen Experimenten ist zu beachten, dass die totale Konzentration an Sn(IV) in der wässrigen Phase um 3 – 5 Größenordnungen ([Sn(IV)]_{total} = $10^{-7} - 10^{-9}$ mol L⁻¹) höher liegt, als die zudotierte Menge an ¹¹³Sn(IV) ([¹¹³Sn(IV)]_{ini} = 10^{-12} mol L⁻¹). Dies resultiert zum einen aus der Auflösung natürlicher Zinnphasen der Gesteine, zum anderen jedoch auch aus dem Vorhandensein von inaktivem Sn(IV) der ¹¹³Sn(IV)-Stammlösung. Die Gesamtkonzentration an Zinn in den Proben wurde zu jedem Sorptionszeitpunkt mittels ICP-MS ermittelt. Die Ergebnisse sind in Abbildung 4 gegeben. Die Lösungskonzentration an Sn(IV) der Referenzprobe (Grundwasser GW-023 ohne Gestein) liegt direkt nach dem Dotieren bei [Sn(IV)] = $3,1\cdot10^{-9}$ mol L⁻¹ und deutlich unterhalb der berechneten Gesamtkonzentration [Sn(IV)]_{total} = $2\cdot10^{-7}$ mol L⁻¹. Nach einem Tag liegt die Konzentration von Zinn bei nahezu allen Grundwasser/Gesteinsproben im Bereich von [Sn(IV)] = $(0,5 - 1,8)\cdot10^{-8}$ mol L⁻¹. Die Probe KIT_006 stellt eine Ausnahme dar, mit einer erhöhten Zinnkonzentration

S G	Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)							BGE BUNDESGESELLSCHAFT FÜR ENDLAGERUNG				
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 27			
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 37			
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023			

von ca. $1,1\cdot10^{-7}$ mol L⁻¹. Die für den hier relevanten pH Bereich zu erwartende Löslichkeit von Sn(IV) bezogen auf kristallines Cassiterit (SnO₂(cr)) liegt bei [Sn(IV)] = 10^{-9} mol L⁻¹, während für amorphes SnO₂(am) die maximale Lösungskonzentration an Zinn bei etwa 10^{-7} mol L⁻¹ liegt [22]. Die initialen Sn(IV) Konzentrationen der Proben befinden sich somit im Bereich bzw. unterhalb der erwarteten Löslichkeitskonzentration für SnO₂(am). Nach 7 Tagen Sorptionszeit ist bei allen Proben eine weitere Abnahme der Zinnkonzentration zu beobachten, welche insbesondere für Probe 006_KIT stark ausgeprägt ist. So liegt bei nahezu allen Proben eine [Sn(IV)] = $(0,8 - 2,1)\cdot10^{-9}$ mol L⁻¹ vor. Bei noch längeren Sorptionszeiten ist keine signifikante Änderung der Zinnkonzentration zu verzeichnen und die Lösungskonzentration von Sn(IV) ist stabil.

Abb. 4: Totale Zinnkonzentration der wässrigen Phase der hier untersuchten Fest/Flüssigproben als Funktion der Äquilibrierungszeit

Die Befunde deuten darauf hin, dass die hier beobachtete Rückhaltung des ¹¹³Sn(IV) auf eine initiale Oberflächensorption zurückzuführen ist. Die Ausfällung einer festen Sn(IV)-Festphase kann weitestgehend ausgeschlossen werden. Die experimentell ermittelte, totale Zinnkonzentration liegt unterhalb der Löslichkeitsgrenze von amorphen SnO₂(am), wodurch die Ausfällung dieser Festphase nicht stattfinden kann. Zwar liegt die totale Zinnkonzentration oberhalb kristallinem Cassiterits (SnO₂(cr)), jedoch ist die Ausfällung dieser Mineralphase unwahrscheinlich, da die Ausfällung kristalliner Festphasen meist kinetisch gehemmt ist und über deutlich längere Zeiträume erfolgt als die, welche in diesem Projekt betrachtet wurden (siehe z. B. Diskussion zur Bildung vierwertiger Actinidfestphasen, AnO₂(am), [23]). Langfristig ist bei Ausfällungen von SnO₂(am) dann davon auszugehen, dass durch Rekristallisation des Festkörpers und Kristallwachstum die Lösungskonzentration von Sn(IV) weiter abnimmt. Im vorliegenden Fall ist die Abnahme der Sn(IV) Konzentration jedoch auf Oberflächensorption zurück zu führen. Da zusätzlich von Austauschprozessen ausgegangen werden kann, welche langfristig zu einem partiellen Einbau von ¹¹³Sn(IV) in natürliche, zinnhaltige Mineralphasen führen, könnte sich die Retention von Sn(IV) über lange Zeiträume eher verstärken.

S G	Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)							BUN FÜR	IDESGESELLSCHAFT ENDLAGERUNG
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 20
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 30
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

4.2 ¹⁴CO₃²⁻ Rückhaltung in Sorptionsexperimenten

Im Rahmen der hier durchgeführten Arbeiten wurde ¹⁴C als anorganisches ¹⁴CO₃²⁻ zugesetzt.

Abb. 5: $[{}^{14}CO_{3}{}^{2-}]$ der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: m/V = 0,01 g mL⁻¹, rechts: m/V = 0,25 g mL⁻¹

Die Konzentration des zugegebenen ¹⁴CO₃²⁻ (2·10⁻⁷ mol L⁻¹) lag um ca. vier Größenordnungen unterhalb der totalen Carbonatkonzentration (DIC: $[CO_{2aq}] + [H_2CO_3] + [HCO_3^{-1}] + [CO_3^{2-1}])$ des Grundwassers von 10⁻³ mol L⁻¹, welche sich aufgrund der Äquilibrierung mit Calcit einstellt, bzw. eine Größenordnung unterhalb der, bei den hier vorliegenden leicht alkalischen Bedingungen (pH = 8.0 – 8.5) sich einstellenden Gleichgewichtskonzentration an $[CO_3^{2-1}] =$ 2·10⁻⁶ mol L⁻¹. Die Bestimmung der Lösungskonzentration des ¹⁴C-markierten Carbonates erfolgte mittels Flüssigszintillationsspektrometrie, wobei ein modifizierter Szintillationscocktail mit angehobenem pH verwendet wurde.

	Kenningen 10 (1en ob)								
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 20
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 39
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

In Abb. 5 sind die Mittelwerte der hier gemessenen Konzentrationen von ¹⁴CO₃²⁻ für die untersuchten Gesteinsproben, m/V-Verhältnisse und Sorptionszeiten dargestellt. Bei allen untersuchten Gesteinsproben variiert die ¹⁴CO₃²⁻-Lösungskonzentration mit der Zeit. Bei den Proben aus dem Buntsandstein und dem Hutgestein, sowie aus dem Muschelkalk bei niedrigem m/V-Verhältnis, war nach einem Tag Sorptionszeit nur eine geringfügige Abnahme der ¹⁴CO₃²⁻-Konzentration festzustellen. Lediglich bei den Gesteinsproben aus dem Muschelkalk mit einem hohen m/V-Verhältnis zeigte sich bereits nach einem Tag ein stärkerer Rückgang. Mit Ausnahme der Muschelkalkprobe 003_KIT, bei der eine große Streuung der Messwerte mit der Zeit beobachtet wurde, war eine stetige Abnahme der ¹⁴CO₃²⁻-Lösungskonzentration bis zu einer Sorptionszeit von 28 Tagen bei allen Gesteinsproben zu beobachten. Nach 90 Tagen Sorptionszeit war in den meisten Proben die ¹⁴CO₃²⁻-Konzentration nahezu konstant.

Bei der Probe aus dem Muschelkalk, welche aus einer Teufe von 45 – 46 m stammt (Probe 003_KIT), war zwar anfangs eine deutliche Abnahme der ¹⁴CO₃²⁻⁻Lösungskonzentration zu beobachten, allerdings gefolgt von einer Streuung der ¹⁴CO₃²⁻⁻Konzentration, wodurch nach 90 Tagen annähernd der Wert erreicht war, welcher nach 7 Tagen Sorptionszeit vorlag. Die Ursache für diese Streuung ist nicht vollständig verstanden. Möglicherweise können geringfügige Änderungen der experimentellen Bedingungen (leichte pH Variationen innerhalb des Messfehlers, geringe CO₂ Verluste etc.) zur Verschiebung des Löslichkeitsgleichgewichts von Calcit führen, die zu geringen Ausfällungen oder Auflösungen von Calcit führen können.

Aus den gemessenen Lösungskonzentrationen von ${}^{14}\text{CO}_{3}{}^{2-}$ wurden die entsprechenden Verteilungskoeffizienten (R_s) berechnet. Die Ergebnisse sind in Abb. 6 dargestellt. Nach einem Tag stellen sich Werte im Bereich von $R_s = 0,1 - 10 \text{ mL g}{}^{-1}$ ein. Hierbei weist die Probe aus dem oberen Hutgestein (024_KIT) die niedrigsten Werte auf. Auffällig ist, dass für das höhere m/V-Verhältnis systematisch niedrigere Werte ermittelt wurden. Innerhalb von 28 Tagen steigen die Verteilungskoeffizienten um 1 bis 1,5 Größenordnungen an, was die ausgeprägte Kinetik der Sorptionsreaktion widerspiegelt. Nach 90 Tagen zeigen die meisten R_s -Werte keine signifikante Änderung, und es stellen sich Werte im Bereich von $R_s = 10 - 100 \text{ mL g}{}^{-1}$ für ein m/V Verhältnis von 0,01 g mL $^{-1}$ und Werte von $R_s = 6 - 30 \text{ mL g}{}^{-1}$ für ein m/V Verhältnis von 0,25 g mL $^{-1}$ ein. Wie oben erläutert, stellt die Probe 003_KIT eine Ausnahme dar, für welche der R_s -Wert nach 28 Tagen und nicht der R_s -Wert nach 90 Tagen ein Maximum aufweist. Die für das Feststoff-Lösungsverhältnis m/V = 0,01 mL g $^{-1}$ gemessenen Werte sind tendenziell etwas höher als die in [24] gefundenen Werte, während diejenigen für m/V=0,25 mL g $^{-1}$ sehr gut innerhalb der Bandbreite der in [21] zusammengestellten Sorptionsdaten für ${}^{14}\text{CO}_3{}^{2-}$ liegen.

Schachtanlage Asse II: Sorptionsuntersuchungen an den BUNDESGESELLSCHAFT BGE Gesteinsproben aus der Bohrung FÜR ENDLAGERUNG Remlingen 15 (Teil 3b) Funktion/Thema Komponente PSP-Element Baugruppe Aufgabe UA Lfd. Nr. Projekt Rev. Seite: 40 NAAN ΝΝΝΝΝΝΝΝΝ NNAAANN ΝN AANNNA AANN AAAA AA NNNN RΖ 9A 24250000 EGC 0008 00 Stand: 25.07.2023

Abb. 6: R_s -Werte für ¹⁴CO₃²⁻ an den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: m/V = 0,01 g mL⁻¹, rechts: m/V = 0,25 g mL⁻¹

Um eine bessere Vergleichbarkeit der Verteilungskoeffizienten an den unterschiedlichen Gesteinsproben zu ermöglichen, wurden die nach 90 Tagen ermittelten, massenbezogenen R_s -Werte auf die Oberfläche der Gesteine normiert. Eine Übersicht der so erhaltenen oberflächenbezogenen R_s -Werte von ¹⁴CO₃²⁻ ist in Tab. 8 gegeben. Zusätzlich sind die analogen massenbezogenen Werte, sowie die Calcit-Gehalte der jeweiligen Gesteine in Tab. 8 aufgeführt. Die oberflächennormierten R_s -Koeffizienten zeigen, dass die Werte für die Gesteine aus dem Muschelkalk insbesondere für die Experimente mit dem höheren m/V-Verhältnis um bis zu einer Größenordnung über den Werten der Gesteinsproben aus dem Buntsandstein und Hutgestein liegen. Diese Verteilung der R_s -Koeffizienten korreliert mit den Gehalten an Calcit der Gesteinsproben, welche bei den Gesteinsproben 002_KIT und 003_KIT (Muschelkalk, 60 – 70 Gew. % Calcit) ebenfalls um ca. eine Größenordnung höher sind, verglichen mit den Gesteinsproben aus Buntsandstein und Hutgestein (1 – 6 Gew. % Calcit).

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 11
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 41
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Tab. 8Massen- und flächenbezogene R_s -Werte für ${}^{14}CO_3{}^{2-}$ an den hier untersuchten
Gesteinsproben nach 90 Tagen Sorptionszeit

Formation (m/V=0,01 g mL ⁻¹)	Massenbezogener <i>R</i> s-Wert / mL g ⁻¹	±	Oberflächenbezogener <i>R</i> s -Wert / cm	±	Calcit Gew. %
Muschelkalk / 002_KIT	101	2,3	1,264·10 ⁻³	2,9·10 ⁻ ₅	61,2
Muschelkalk / 003_KIT	27,3	1,5	9,282·10 ⁻⁴	5,0·10 ⁻ 5	70,4
Röt 3 / 007_KIT	33,8	1,6	1,341·10 ⁻⁴	6,2·10 ⁻ ⁶	5,5
Hutgestein / 024_KIT	57,9	2,0	6,604·10 ⁻⁴	2,1·10 ⁻ 5	1,0
Hutgestein / 026_KIT	57,5	1,8	1,440·10 ⁻⁴	2,2·10 ⁻ 5	3,5
Formation (m/V=0,25 g mL ⁻¹)	Massenbezogener <i>R</i> s-Wert / mL g ⁻¹	±	Oberflächenbezogener <i>R₅</i> -Wert / cm	±	Calcit Gew. %
Muschelkalk / 002_KIT	29,8	0,4	3,73·10 ⁻⁴	4,9·10 ⁻ ⁶	61,2
Muschelkalk / 003_KIT	6,1	0,1	2,06·10 ⁻⁴	4,0·10 ⁻	70,4
Röt 3 / 007_KIT	19,0	1,6	7,55·10 ⁻⁵	1,1·10 ⁻ 6	5,5
Hutgestein / 024_KIT	6,6	0,1	7,51·10 ⁻⁵	1,5·10 ⁻	1,0
Hutgestein / 026_KIT	14,0	0,2	3,51·10 ⁻⁵	5,3·10 ⁻ 7	3,5

Die beobachtete Korrelation der Rückhaltung des ¹⁴CO₃²⁻ mit dem Calcitgehalt der Gesteinsproben und der ausgeprägte kinetische Effekt der Sorption deuteten darauf hin, dass Isotopenaustausch und Einbau durch Rekristallisationsprozesse in natürliche carbonatische Mineralphasen einen wichtigen Rückhaltemechanismus für ¹⁴CO₃²⁻ darstellen. Sorption von Carbonat an Mineraloberflächen ist ebenfalls denkbar [25, 26]. Eine weitere Reaktion, die möglicherweise zu einer Reduktion der ¹⁴CO₃²⁻ Konzentration führen kann, ist die oben beschriebene Ausfällung geringer Mengen an Calcit durch leichte pH Variationen. In diesem Fall könnte dies zu einer Mitfällung von ¹⁴CO₃²⁻ führen. Ein solcher Effekt würde sich deutlicher bei den Experimenten mit geringem m/V Verhältnis auswirken, bei denen weniger ¹⁴CO₃²⁻ an Mineraloberflächen sorbiert. Ausfällung würde damit zu einem höheren Wert für die R_s -

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 12
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 42
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Koeffizienten führen. Bei Experimenten mit hohem m/V Verhältnis (0,25 g mL⁻¹) ist mit einem geringeren Einfluss solcher Präzipitate zu rechnen. Daher werden die für diese experimentellen Bedingungen erhaltenen, niedrigeren R_s -Werte als Parameter für die Ausbreitungsrechnungen empfohlen. Dass unter diesen Bedingungen die Sorption an den in den Gesteinsproben enthaltenen Calcitoberflächen relevant ist, zeigt sich dennoch in der recht guten Korrelation der R_s -Werte mit dem Calcitgehalt.

Zusammenfassend zeigen die Ergebnisse der hier durchgeführten Arbeit, dass ¹⁴CO₃²⁻ an den untersuchten Gesteinsproben signifikant zurückgehalten wird. Vor allem die Gesteine aus dem oberen Muschelkalk, welche sehr große Anteile an Calcit aufweisen, stellen eine Barriere für die Ausbreitung von gelöstem ¹⁴CO₃²⁻ dar. Aber auch an den Gesteinsproben aus den tieferliegenden Formationen des Buntsandsteins und des Hutgesteins, die geringer Calcitgehalte aufweisen, wird eine signifikante Rückhaltung von ¹⁴CO₃²⁻ beobachtet.

4.3 ²³¹Pa(V) Rückhaltung in Sorptionsexperimenten

In der vorliegenden Arbeit wurde Protactinium ausschließlich als fünfwertiges 231 Pa(V) zugesetzt. Andere Redoxzustände des Pa sind unter natürlichen Bedingungen nicht stabil. Die initiale Konzentration betrug [231 Pa(V)]_{ini} = 2·10⁻¹¹ mol L⁻¹ und lag somit unterhalb einer erwarteten Löslichkeitskonzentration für Pa₂O₅ [27, 28].

Die Einstellung der Konzentration erfolgte durch Zugabe von Aliquoten einer ²³¹Pa(V)-Stammlösung, welche unmittelbar vor Beginn der Sorptionsmessungen angesetzt wurde. Die Radionuklidkonzentration der Stammlösung betrug [²³¹Pa(V)] = $4 \cdot 10^{-7}$ mol L⁻¹, mit einem pH = 4,4. Um eine Sorption des Protactiniums an den Wänden der Gefäße und Apparaturen nach der Beprobung zu unterdrücken, wurde die Lösung nach der Phasenseparation mit Fluorid versetzt, wodurch sich stabile PaFn⁵⁻ⁿ-Komplexe bilden. Die ermittelten ²³¹Pa(V)-Lösungskonzentrationen in den unterschiedlichen Gesteins-Grundwasserproben bei den untersuchten m/V-Verhältnissen und nach den vier Sorptionszeitpunkten sind in Abb. 7 dargestellt.

Die Befunde zeigen eine sehr starke Rückhaltung des Protactiniums an allen untersuchten Gesteinsproben. Bei allen Proben lag bereits nach einem Tag die Konzentration an ²³¹Pa(V) unterhalb der analytischen Nachweisgrenze. Auch nach längerer Sorptionszeit war keine signifikante Konzentration in den wässrigen Phasen nachweisbar. Eine Berechnung von R_s -Werten basierend dieser Datenlage ist nicht möglich. Aufgrund der beobachteten sehr starken und schnellen Sorption kann aber von sehr hohen Verteilungskoeffizienten von $R_s > 10^5$ mL g⁻¹ ausgegangen werden. Dies ist in guter Übereinstimmung mit der Literatur, wo Protactinium als sehr stark sorbierendes Element bekannt ist [17-19].

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 12
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 43
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Abb. 7: $[^{231}Pa(V)]$ der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Sorptionszeiten. Je Gesteinsprobe: links: m/V = 0,05 g mL⁻¹, rechts: m/V = 0,25 g mL⁻¹

	Kenningen 10 (1en ob)								
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 11
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 44
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

5 Ergebnisse der Desorptionsuntersuchungen

Zusätzlich zu den Sorptionsexperimenten, wurden auch Desorptionsversuche durchgeführt um zu ermitteln, ob die Verteilungskoeffizienten als Sorptionskoeffizienten (K_d), bzw. konservative Untergrenzen dieser ($K_{d,min}$) zu bewerten sind. Die Darstellung der Ergebnisse erfolgt analog zu den Sorptionsexperimenten. Eine detaillierte tabellarische Zusammenstellung der ermittelten Konzentrationen der jeweiligen Radionuklide, sowie der errechneten R_s - und R_d -Werte ist im Anhang gegeben.

5.1 ¹¹³Sn(IV) Rückhaltung in Desorptionsexperimenten

Die Konzentrationen von ¹¹³Sn(IV) in den wässrigen Phasen der hier untersuchten Gesteins-Grundwasserproben nach den jeweiligen Desorptionszeiten sind in Abb. 8 für die verschiedenen m/V-Verhältnisse dargestellt.

Nur für Gesteins-Grundwasserproben einige wenige waren nachweisbare Lösungskonzentrationen an ¹¹³Sn(IV) festzustellen, welche zudem nur geringfügig oberhalb der der Nachweisgrenze lagen. Dies bestätigt die in den Sorptionsexperimenten beobachtete starke Rückhaltung von ¹¹³Sn(IV) an den untersuchten Gesteinsproben. Generell ist festzustellen, dass für nahezu alle untersuchten Gesteinsproben die Lösungskonzentration an ¹¹³Sn(IV) nach der Desorptionszeit unterhalb der gammaspektroskopischen Nachweisgrenze liegt. Nur bei einigen wenigen Proben ist eine Aktivität an desorbiertem ¹¹³Sn(IV) nachweisbar. Dies zeigt, dass das Gleichgewicht der Sn-Sorption weit auf der Seite der festkörpergebundenen Sn-Spezies liegt, und ¹¹³Sn(IV) in den untersuchten Systemen eine außerordentlich starke Rückhaltung erfährt. Dies wird durch die abgeleiteten R_d-Werte verdeutlicht, welche deutlich größer sind, verglichen mit den analogen R_s -Werten. Da sowohl in den Sorptions- als auch Desorptionsexperimenten ¹¹³Sn(IV) nahezu ausschließlich unterhalb der Nachweisgrenze der analytischen Methode vorliegt, liegen relevante R_{s^-} und R_{d^-} Werte und damit auch K_{d} -Werte in einem Bereich von > 1,5·10⁵ mL g⁻¹ (für Experimente mit $m/V = 0.01 \text{ g mL}^{-1}$ bzw. > 5.10⁴ mL g⁻¹ (für Experimente mit m/V = 0.05 g mL⁻¹).

Abb. 8: $[^{113}Sn(IV)]$ der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Desorptionszeiten. Je Gesteinsprobe: links: m/V = 0,01 g mL⁻¹, rechts: m/V = 0,05 g mL⁻¹

5.2 ¹⁴CO₃²⁻ Rückhaltung in Desorptionsexperimenten

Die Lösungskonzentrationen an ¹⁴CO₃²⁻, welche sich nach den untersuchten Desorptionszeiten in den wässrigen Phasen der untersuchten Gesteine einstellen, sind in Abb. 9 (gefüllte Symbole) für die untersuchten Gesteinsproben und m/V-Verhältnisse dargestellt. Zusätzlich sind die initialen Lösungskonzentrationen an ¹⁴CO₃²⁻ ([¹⁴CO₃²⁻]_{ini,des}) der jeweiligen Proben zu Beginn der Desorptionsexperimente dargestellt, welche sich nach Auffüllen der nach den Sorptionszeiten beprobten Gesteins-Grundwasserproben mit Grundwasser GW-023 ergeben (offene Symbole).

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 46
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selte: 46
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Es ist kein klarer Trend der Veränderung der initialen ¹⁴CO₃²⁻-Konzentration mit der Desorptionszeit zu beobachten. Während bei einigen Proben eine leichte Zunahme zu verzeichnen ist, erfolgt bei anderen Proben wiederum eine Abnahme der ¹⁴CO₃²⁻-Konzentration in der Lösung. Eine Ausnahme stellten die Werte nach 28 Tagen Desorptionszeit dar, welche bei fast allen Proben deutlich über [¹⁴CO₃²⁻]_{ini,des} liegen. Der Grund für diesen Effekt ist zurzeit nicht verstanden. Eine mögliche Erklärung ist, dass es sich um ein Artefakt in der Beprobung handelt, bei welchem ein Teil des Bodenkörpers aufgeschlämmt und mit beprobt wurde.

Abb. 9: $[^{14}CO_3^{2-}]$ der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Desorptionszeiten (Gefüllte Symbole). Offene Symbole: Initiale $[^{14}CO_3^{2-}]_{ini,des}$. Je Gesteinsprobe: links: m/V = 0,01 g mL⁻¹, rechts: m/V = 0,05 g mL⁻¹

S	Schachtanlage Asse II: Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)							BUN FÜR	IDESGESELLSCHAFT ENDLAGERUNG
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 47
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selte: 47
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

Die anhand der ermittelten Konzentrationen von ${}^{14}CO_3{}^{2-}$ nach den Desorptionszeitpunkten berechneten R_d -Werte sind in Abb. 10 dargestellt (gefüllte Symbole).

Abb. 10: R_d -Werte für ¹⁴CO₃²⁻ an den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Desorptionszeiten (Gefüllte Symbole). Offene Symbole: R_s . Je Gesteinsprobe: links: m/V = 0,01 g mL⁻¹, rechts: m/V = 0,25 g mL⁻¹

Zusätzlich sind zum Vergleich die analogen R_s -Werte angeben (offenen Symbole). Die Ergebnisse zeigen, dass für die meisten untersuchten Gesteinsproben die ermittelten R_{d^-} Werte größer sind als die analogen R_s -Werte, weshalb die hier ermittelten R_s -Werte minimale Untergrenzen der Verteilungskoeffizienten darstellen. Die nach 90 Tagen ermittelten Daten können als konservative, minimale $K_{d,min}$ -Werte betrachtet werden.

Schachtanage Assell: Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)							BGE	BUN FÜR	IDESGESELLSCHAFT ENDLAGERUNG
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soito: 49
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 40
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

5.3 ²³¹Pa(V) Rückhaltung in Desorptionsexperimenten

Die Konzentrationen an ²³¹Pa(V) der wässrigen Phasen der untersuchten Gesteinsproben nach den jeweiligen Desorptionszeiten sind in Abb. 11 (gefüllte Symbole) für die untersuchten Gesteins-Grundwasserproben und Konzentrationen an ²³¹Pa(V) der wässrigen Phasen der untersuchten Gesteinsproben nach den jeweiligen Desorptionszeiten sind in Abb. 11 (gefüllte Symbole) für die untersuchten Gesteins-Grundwasserproben und m/V-Verhältnisse dargestellt.

Abb. 11: [²³¹Pa] der Lösung im Kontakt mit den verschiedenen Gesteinsproben (Grün: Muschelkalk; Rot: Bundsandstein, Blau: Hutgestein) für die vier untersuchten Desorptionszeiten (Gefüllte Symbole). Offene Symbole: Initiale [¹⁴CO₃²⁻]_{ini,des}. Je Gesteinsprobe: links: m/V = 0,05 g mL⁻¹, rechts: m/V = 0,25 g mL⁻¹

Für nahezu alle untersuchten Gesteinsproben und Desorptionszeiten lag die Lösungskonzentration an ²³¹Pa(V) nahe an oder unterhalb der Nachweisgrenze. Eine Ausnahme stellte die Gesteinsprobe aus dem oberen Buntsandstein (007_KIT) mit geringerem m/V-Verhältnis dar, bei welcher nach 90 Tagen eine deutlich erhöhte Konzentration an ²³¹Pa(V) zu beobachten war. Der Grund hierfür ist unklar. Eine mögliche Erklärung ist, dass es

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 10
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 49
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

sich hier um ein Artefakt bei der experimentellen Durchführung handelt, wobei ein Teil der Festphase bei der Probennahme der überstehenden Lösung aufgeschlämmt wurde, wodurch ein Teil des sorbierten ²³¹Pa(V) mit beprobt wurde.

Die Ergebnisse zeigen, dass Protactinium sehr stark an den untersuchten Gesteinsproben zurückgehalten wird und im untersuchten Zeitraum nicht signifikant desorbiert. Dies unterstreicht die bereits ermittelte starke Sorption von 231 Pa(V) an den hier untersuchten Gesteinsproben. Analog zu den Sorptionsuntersuchungen kann auch bei der Desorption von sehr hohen Verteilungskoeffizienten von $R_d > 10^5$ mL g⁻¹ ausgegangen werden. Somit können für die Sorption von 231 Pa(V) im Deckgebirge der Schachtanlage Asse II minimale Sorptionskoeffizienten von $K_{d,min} = 10^5$ mL g⁻¹ als konservative Schätzung angegeben werden, was einer quasi quantitativen Rückhaltung von Protactinium entspricht.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor EO
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 50
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

6 Zusammenfassung und Bewertung

In der hier durchgeführten Arbeit wurde die Sorption von ¹¹³Sn(IV), ¹⁴CO₃²⁻ und ²³¹Pa(V) an gemahlenen Gesteinsproben des Deckgebirges der Schachtanlage Asse II, welche mit natürlichem Grundwasser äquilibriert waren, untersucht. Die Experimente wurden sowohl als Sorptions- als auch als Desorptionsexperimente durchgeführt. Die Untersuchung jedes Radionuklides erfolgte in separaten experimentellen Versuchsreihen, wobei für jedes Radionuklid fünf individuelle Gesteinsproben aus Muschelkalk- und Buntsandsteinformationen sowie aus dem Hutgestein des Asse-Salinars ausgewählt wurden. Des Weiteren war es möglich, für jedes Radionuklid eine spezifisch optimierte Analysenmethode zur Quantifizierung zu wählen, wodurch sehr niedrige Nachweisgrenzen erreicht werden konnten. Die für die jeweiligen Radionuklide gewonnenen Ergebnisse sind im Folgenden zusammengefasst:

¹¹³Sn(IV) zeigte eine starke und schnelle Sorption an allen untersuchten Gesteinsproben. Generell war ein kinetischer Effekt der Sorptionsreaktion zu beobachten, was durch einen deutlichen Anstieg der Verteilungskoeffizienten mit zunehmender Sorptionszeit gekennzeichnet war. Nach einer Sorptionszeit von 28 Tagen konnten für alle Gesteinsproben hohe Verteilungskoeffizienten im Bereich von log $R_s = 4,7 - 5,2$ ermittelt werden. Nach 90 Tagen lag die Konzentration an ¹¹³Sn(IV) in den wässrigen Phasen aller Sorptionsexperimente unterhalb der Nachweisgrenze (< $4 \cdot 10^{-6}$ mol L⁻¹), was auf sehr hohe $R_s > 10^5$ mL g⁻¹ bereits innerhalb dieser Versuchsdauer schließen lässt. Die starke Sorption von ¹¹³Sn(IV) konnte durch die Desorptionsexperimente bestätigt werden. Diese zeigten ebenfalls bei nahezu allen Gesteins-Grundwasserproben keine signifikanten Konzentrationen an ¹¹³Sn(IV) in Lösung. Die wenigen ermittelten R_{dr} Werte sind zudem größer als die analogen R_{s} -*R*_s-Werte Werte. Somit können die hier bestimmten als minimale Sorptionskoeffizienten (log $K_{d,min} = 4,7 - 5,2$) angenommen werden.

Geochemische Reaktionen des Isotops ¹¹³Sn können nicht ohne Berücksichtigung der Gesamtkonzentrationen an Zinn (113Sn zusammen mit natürlichen, inaktiven Sn-Isotopen) betrachtet werden. Letztere lag in der vorliegenden Arbeit um bis zu 5 Größenordnungen höher als die zugegebene ¹¹³Sn(IV)-Konzentration. Jedoch lag die totale Zinnkonzentration im Bereich bzw. unterhalb der Löslichkeit von amorphen SnO₂(am), wodurch eine Ausfällung dieser Phase ausgeschlossen werden kann. Somit lässt sich die in den Experimenten beobachtete starke initiale Abnahme sowohl der Gesamtzinn- als auch der ¹¹³Sn(IV)-Konzentrationen durch Oberflächensorption erklären. Im Verlauf Sorptionsreaktion späteren der können auch Isotopenaustauschreaktionen an Oberflächen von im Gestein vorliegenden Sn-Festphasen eine Rolle spielen.

Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass von einer sehr starken Rückhaltung von ¹¹³Sn(IV) in den untersuchten Gesteinsproben des Deckgebirges der Asse II ausgegangen werden kann. Dies ist in guter Übereinstimmung mit Literaturdaten für andere Gesteine und Mineralphasen [29, 30].

		igon io							
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor E1
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 51
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

• Für die Sorption von ¹⁴**CO**₃²⁻ wurde für alle Gesteinsproben eine ausgeprägte Kinetik der Rückhaltung beobachtet. Nach kurzen Äquilibrierungszeiten lagen zunächst verhältnismäßig kleine R_s -Werte im Bereich von 0,1 – 10 mL g⁻¹ vor, welche mit der Zeit deutlich anstiegen. Innerhalb von 28 Tagen war ein Anstieg der Verteilungskoeffizienten um 1 – 1,5 Größenordnungen zu verzeichnen. Nach 90 Tagen Sorptionszeit zeigten die meisten R_s -Werte keine signifikante Änderung mehr. Die Desorptionsexperimente zeigten, dass die meisten ermittelten R_d -Werte höher lagen als die entsprechenden R_s -Werte. Somit können die R_s -Werte nach 90 Tagen Sorptionszeit als konservativ abgeschätzte, minimale Sorptionskoeffizienten ($K_{d,min}$) angenommen werden.

Es konnte eine gute Korrelation der R_s -Werte mit der Menge an Calcit in den Gesteinsproben, insbesondere für die Experimente mit einem hohen m/V Verhältnis von 0,25 g mL⁻¹, festgestellt werden. So lagen die auf die Gesteinsoberfläche normierten R_s -Werte der Gesteine des Muschelkalks, welche 60-70 Gew.% Calcit aufwiesen, um eine Größenordnungen über den analogen Werten des Buntsandsteins und Hutgesteins, welche lediglich 1-6 Gew.% Calcit aufzeigten. Dies und die ausgeprägte Kinetik der Sorptionsreaktion deuten darauf hin, dass ein Isotopenaustausch und Einbau in carbonatische Festphasen einen wesentlichen Rückhaltemechanismus für ¹⁴CO₃²⁻ darstellt.

Die hier ermittelten Ergebnisse zeigen eine mittlere bis starke Rückhaltung von ¹⁴CO₃²⁻ in den untersuchten Gesteinsproben des Deckgebirges der Asse II, deren Ausmaß vor allem durch die Menge an carbonatischen Festphasen bestimmt wird. Verglichen mit Ergebnissen früherer Untersuchungen [24, 31], wurden in dieser Arbeit in Experimenten mit einem m/V Verhältnis von 0,01 g mL⁻¹ leicht höhere Sorptionskoeffizienten ermittelt. Um mögliche experimentelle Artefakte bei den Experimenten mit diesen niedrigem m/V Verhältnissen möglichst auszuschließen, wird empfohlen, die bei einem höheren m/V Verhältnis (0,25 g mL⁻¹) erhaltenen, niedrigeren R_s -Werte von 6-30 mL g⁻¹ für Ausbreitungsrechnungen zu verwenden. Diese stimmen sehr gut mit den Ergebnissen früherer Arbeiten überein [24, 31].

• 231 Pa(V) zeigte eine schnelle und sehr starke Rückhaltung an allen untersuchten Gesteinsproben. Sowohl bei den Sorptions- als auch bei den Desorptionsexperimenten war bereits nach einer sehr kurzen Äquilibrierungszeit von nur einem Tag die Konzentration an 231 Pa(V) nahe an oder unterhalb der Nachweisgrenze (< 10⁻¹³ mol L⁻ ¹). Auch nach längeren Sorptions- bzw. Desorptionszeiten war keine signifikante Konzentration an 231 Pa(V) in den wässrigen Phasen nachweisbar. Aus der beobachteten sehr starken und schnellen Sorption lassen sich sehr hohe Sorptionskoeffizienten von $K_d > 10^5$ mL g⁻¹ ableiten.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor ED
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 52
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023

Die Ergebnisse der hier durchgeführten Arbeiten zeigen, dass ²³¹Pa(V) praktisch als immobil im Deckgebirge der Schachtanlage Asse II zu bewerten ist. Auch dies ist in sehr guter Übereinstimmung mit früheren Arbeiten [24, 31].

In Tab. 9 werden die Sorptionskoeffizienten angegeben, welche sich nach der längsten untersuchten Sorptionszeit einstellen. Für ¹¹³Sn(IV) und ²³¹Pa(V) handelt es sich um Untergrenzen, da die sich in den Experimenten einstellenden, jeweiligen Lösungskonzentrationen unterhalb der Nachweisgrenze der analytischen Methode lagen. Für ¹⁴CO₃²⁻ ist der niedrigste Wert, welcher nach 90 Tagen Sorptionszeit ermittelt wurde, aufgeführt.

Tab. 9	Minimale	K _a -Werte	für	die	Sorption	von	¹¹³ Sn(IV),	¹⁴ CO ₃ ²⁻	und	²³¹ Pa(V)	an
	Gesteinsp	broben des	s Deo	ckge	ebirges de	s Scl	hachtanlag	e Asse I	1		

Nuklid	Oxidations- stufe	Sorptionszeit	Minimaler <i>K</i> _d -Wert unter den experimentellen Bedingungen	Anmerkungen
¹¹³ Sn	+IV	90 Tage	$K_d > 5.10^4 \text{ mL g}^{-1}$	Daten bezogen auf NG
¹⁴ CO ₃ ²⁻	+11	90 Tage	$K_d \ge 6,1 \pm 0,1 \text{ mL g}^{-1}$	Gesteinsprobe mit dem niedrigsten K_d (m/V=0,25 g mL ⁻¹)
²³¹ Pa	+V	90 Tage	$K_d > 10^5 \mathrm{mL}\mathrm{g}^{-1}$	Daten bezogen auf NG

An dieser Stelle wird darauf hingewiesen, dass die im Rahmen dieser Arbeit ermittelten Sorptionskoeffizienten streng genommen nur für die hier vorliegenden experimentellen Bedingungen gültig sind. Diese Bedingungen beinhalten die Zusammensetzung des Grundwassers einschließlich des pH- und Eh-Wertes, die Korn- und Oberflächengröße der jeweiligen Gesteinsproben, die m/V-Verhältnisse und die eingesetzten Radionuklidkonzentrationen. Zusätzlich ist zu beachten, dass die Kinetik der Sorptions- und Desorptionsreaktionen durch die geochemischen Bedingungen und Eigenschaften der Gesteins- und Lösungssystem (z. B. spezifische Oberflächengröße) beeinflusst wird. Daher kann insbesondere die Sorptionskinetik im realen System anders ausfallen als in den untersuchten Laborsystemen. Darüber hinaus war die experimentelle Beobachtungszeit im Rahmen des Projekts Teil 3b auf 90 Tage begrenzt. Gerade für Sorptionsreaktionen, bei denen Isotopenaustauschreaktionen mit Festphasen im Gestein ablaufen (siehe ¹⁴CO₃²⁻ und möglicherweise auch für ¹¹³Sn(IV)), können sich die Sorptionskonstanten bei Kontaktzeiten von Jahren oder länger noch deutlich erhöhen. Weiterhin ist zu beachten, dass die R_s-Werte für ¹⁴C sich ausschließlich auf das Vorkommen als ¹⁴CO₃²⁻ bezieht. Für möglicherweise auftretende organische ¹⁴C Verbindungen ist die Rückhaltung separat zu bestimmen und die in dieser Arbeit ermittelten Daten nicht anwendbar.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor 52
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 55
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

Quellenverzeichnis

- [1] K. GOMPPER (1998): Nuklidmigration im Deckgebirge des Endlagers für radioaktive Abfälle Morsleben (ERAM) Teil 2: Sorption im Deckgebirge. Institut für Nukleare Entsorgung, Karlsruhe.
- [2] H. GECKEIS (1998): Bestimmung von in-situ K_d-Werten im Deckgebirge des Endlagers für radioaktive Abfälle Morsleben (ERAM). Institut für Nukleare Entsorgung, Karlsruhe, FZK-INE 007/98.
- [3] P. VEJMELKA, T. FANGHÄNEL, B. KIENZLER, E. KORTHAUS, J. ROEMER, W. SCHUESSLER, R. ARTINGER (2000): Sorption and Migration of Radionuclides in Granite (HRL ÄSPÖ, Sweden). Forschungszentrum Karlsruhe, FZKA 6488.
- [4] B. KIENZLER, T. KUPCIK, J. LÜTZENKIRCHEN, V. METZ, T. RABUNG, T. SCHÄFER (2012): Abschätzung von Sorptionskoeffizienten im Deckgebirge der Schachtanlage Asse II: Ableitung von oberen und unteren Grenzwerten der Sorptionskoeffizienten für nicht untersuchte Nuklide. Institut für Nukleare Entsorgung, Karlsruhe, KIT-INE 05/2012.
- [5] M. NIEMEYER AND D. BUHMANN (2015): Radionuklidauswahl für Sorptionsmessungen an Gesteinen des Deckgebirges der Asse II. AF-Consult Switzerland AG & GRS Braunschweig, Memo 1764/74; GRS-Notiz 550800-72; Stand: 29. Juni 2015.
- [6] BFS (2016): Radionuklidsorption im Deckgebirge der Schachtanlage Asse II: Versuche an Gesteinsmaterial für die numerische Modellierung. Bundesamt für Strahlenschutz, Salzgitter, BfS-KZL 9A/24250000/EGC/TF/0001/00, Stand: 08.06.2016.
- [7] KIT-INE (2015): Schachtanlage Asse II Sorptionsuntersuchungen an Gesteinsproben aus der Bohrung Remlingen 15 - Teil 1: Probenahme. Institut f
 ür Nukleare Entsorgung, Karlsruhe, KIT-INE 03/2014, BfS-KZL 9A/24250000/EGC/RZ/0002/00.
- [8] KIT-INE (2016): Schachtanlage Asse II Sorptionsuntersuchungen an Gesteinsproben aus der Bohrung Remlingen 15 - Teil 1a: Grundwasseranalysen. Institut f
 ür Nukleare Entsorgung, Karlsruhe, KIT-INE 02/2016, BfS-KZL 9A/24250000/EGC/RZ/0006/00, Stand: 22.11.2016.
- [9] KIT-INE (2015): Schachtanlage Asse II Sorptionsuntersuchungen an Gesteinsproben aus der Bohrung Remlingen 15 - Teil 2: Charakterisierung der Gesteine. Institut für Nukleare Entsorgung, Karlsruhe, KIT-INE 002-2015; BfS-KZL 9A/24250000/EGC/RZ/0004/00, Stand: 10.05.2016.
- [10] T. Rabung, B. KIENZLER, A. SKERENCAK-FRECH, M. SCHLIEKER, D. FELLHAUER, M. PLASCHKE, F. GEYER, C. WALSCHBURGER, T. KISELY, M. BÖTTLE, M. FUSS, M. ALTMAIER V. METZ, H. GECKEIS (2018): Schachtanlage Asse II: Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15.- Teil 3a: GW-023 und Radionuklid-Cocktail, Karlsruhe, BGE-SZ-KZL 9A/24250000/EGC/RZ/0007/00, Stand: 18.09.2018
- [11] NIAIST (2005): Atlas of Eh-pH diagrams, Intercomparison of thermodynamic databases, Geological Survey of Japan Open File Report N0.419, National Institute of Advanced Industrial Science and Technology, p. 242

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor E4
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 54
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

- [12] OECD (2000): OECD guideline for the testing of chemicals: Adsorption Desorption Using a Batch Equilibrium Method. Organisation for Economic Co-operation and Development (OECD), Paris.
- [13] T. OHNUKI (1994): Sorption characteristics of strontium on sandy soils and their components, Radiochimica Acta, 64, 237-245.
- [14] S. GOLDBERG, L. J. CRISCENTI, D. R. TURNER, J. A. DAVIS, K. J. CANTRELL (2007): Adsorption-desorption processes in the subsurface reactive transport modelling, Vadose Zone Journal 6, 407-435.
- [15] F. S. EBONG, N. EVANS (2012): Modelling the sorption of ⁶³Ni to granitic materials: application of the component additive model, Journal of Environmental Science and Engineering B 1, 281-292.
- [16] F. SÉBY, M. POTIN-GAUTIER, E. GIFFAUT, O.F.X. DONARD (2001): A critical review of thermodynamic data for inorganic tin species, Geochimica Cosmochimica Acta, 65, 3041-3053.
- [17] B. F. MYASOEDOV, H. W. KIRBY, I. G. TANANAEV (2006): The Chemistry of the Actinide and Transactinide Elements: Protactinium, in *The Chemistry of the Actinide and Transactinide Elements*, L. R. Morss, N. M. Edelstein, J. Fuger, Eds., Dordrecht Springer, 161-252.
- [18] R. GUILLAUMONT, G. IONOVA, J. C. KRUPA, F. DAVID (1996): Considerations on Protactinium Redox Potentials, Radiochimica Acta, 75, 97-103.
- [19] J. A. BERRY, J. HOBLEY, S. A. LANE, A. K. LITTLEBOY, M. J. NASH, P. OLIVER, J. L. SMITH-BRIGGS, S. J. WILLIAMS (1989): Solubility and sorption of protactinium in the near-field and far-field environments of a radioactive waste repository, Analyst, 114, 339-347.
- [20] M. BRADBURY, B. BAEYENS (2011): Physico-Chemical Characterisation Data and Sorption Measurements of Cs, Ni, Eu, Th, U, Cl, I and Se on MX-80 Bentonite, NTB 09-08, Nagra
- [21] L. WISSMEIER, J. POPPEI, M. NIEMEYER (2016): Herleitung von KD-Werten zur Modellierung der Nuklidmigration im Deckgebirge der Schachtanlage Asse II, AF-Consult Switzerland AG, Baden (Schweiz), AF 1764/71, Bundesamt für Strahlenschutz
- [22] D. RAI (2022): Thermodynamic Data for Sn(IV) Dioxides and Hydroxido Complexes: A Critical Review, Journal of Solution Chemistry, 51, 1169-1189.
- [23] V. NECK, M. ALTMAIER, R. MÜLLER, A. BAUER, TH. FANGHÄNEL, J.I. KIM (2003): Solubility of crystalline thorium dioxide, Radiochimica Acta, 91, 253-262.
- [24] W. BODE (1989): Untersuchungen zur Bestimmung der Rückhalteeigenschaften von Gesteinen über der Schachtanlage Asse II gegenüber gelösten Radionukliden. GSF, Institut für Tieflagerung, GSF-Bericht 16/89. TL 28/89.
- [25] J.C. MENDEZ, T. HIEMSTRA (2019): Carbonate Adsorption to Ferrihydrite: Competitive Interaction with Phosphate for Use in Soil Systems, ACS Earth and Space Chemistry, 3, 129-141.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soito, EE
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 55
9A	24250000				EGC	RZ	8000	00	Stand: 25.07.2023

- [26] C. Su, D.L. Suarez (1997): *In Situ* Infrared Speciation of adsorbed Carbonate on Aluminium and Iron Oxides, Clay and Clay Minerals, 6, 814-825.
- [27] S. SALAH, L. WANG (2014): Speciation and solubility calculations for waste relevant radionuclides in Boom Clay. SCK CEN-ER-198 External Report.
- [28] J.A. BERRY, J. HOBLEY, S.A. LANE, A.K. LITTLEBOY, M.J. NASH, P. OLIVER, J.L. SMITH-BRIGGS, S.J. WILLIAMS (1989): Solubility and Soprtion of Protactinium in the Near-diled and Far-field Environments of a Radioactive Waste Repository, Analyst, 114, 339-347.
- [29] T. GIL-DIAZ, F. HEBERLING, V. KELLER, M. FUSS, M. BÖTTLE, E. EICHE, J. SCHAEFER (2020): Tin-113 and Selenium-75 radiotracer adsorption and desorption kinetics in contrasting estuarine salinity and turbidity conditions, Journal for Environmental Radioactivity, 213, 106133.
- [30] M.A.M. KEDZIOREK, A.C.M. BOURG, E. GIFFAUT (2007): Hydrogeochemistry of Sn(IV) in the context of radioactive waste disposal: Solubility and adsorption on MX-80 bentonite and Callovo-Oxfordian argillite, Physics and Chemistry of the Earth, 32, 568-572.
- [31] W. BODE, C. GRISSMANN, G. HENSEL, B. HENTE, H.-J. HERBERT, C. REICHELT, W. SANDER, C. STARKE (1990): Standort- und Sicherheitsuntersuchungen für das Salzbergwerk Asse sowie ingenieurtechnische Entwicklungen. GSF, Institut für Tieflagerung, GSF-Bericht 31/90. TL 35/90.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor FC		
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 56		
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023		

Anhänge

Da ²³¹Pa-Stammlösungen nicht kommerziell erhältlich sind, wurden eine ²³¹Pa-Stammlösungen speziell für diese Untersuchungen präpariert. Die Herstellung der ²³¹Pa-Stammlösung ist in Abschnitt 7.1 beschrieben.

Die in den Abschnitten 7.2 bis 7.5 angegebenen Konzentrationen und Verteilungskoeffizienten sind die Mittelwerte aus den drei Parallelproben und wurden wie in Kap. 3.6 angegeben berechnet. Sofern die Mittelwerte kleiner als die theoretische Nachweisgrenze waren, wurde in den Tabellen "< NG" eingetragen ohne Angabe von Zahlenwerten. In diesen Fällen wird kein Fehler des Mittelwertes angegeben.

Die angegebenen anfänglichen Konzentrationen A₀ der entsprechenden Radionuklide entsprechen der jeweiligen Konzentration des Radionuklids in der Probe ohne Gestein (Blindprobe) nach den angegebenen Sorptionszeiten. Die initialen, zu Beginn der Experimente zugegebenen Konzentrationen der Radionuklide sind in Tab. 1 gegeben. Bezüglich ¹¹³Sn(IV) wurde die Verringerung der Konzentration aufgrund des radioaktiven Zerfalls rechnerisch berücksichtigt.

Die tabellierten R_{s} - bzw. R_{d} -Werte wurden aus den ermittelten Lösungskonzentrationen der entsprechenden Radionuklide berechnet. In vielen Fällen können jedoch keine Werte angegeben werden, da die Konzentrationen des Radionuklides unter der Nachweisgrenze lag.

A Herstellung der ²³¹Pa(V)-Stammlösung

25 mg festes Pa₂O_{5,(s)} wurden in konzentrierter HNO₃ (8 mol L⁻¹, 69%) gelöst. Nach diesem Auflösungsschritt war noch ein Niederschlag zu erkennen: Es wurden zusätzlich HCI/HF (9 mol L⁻¹ / 0,1 mol L⁻¹) zugegeben, wodurch es zu einer vollständigen Auflösung des Feststoffes kam (siehe Abb. 12, Mitte). Zur Entfernung an NO_x und HF wurde die Lösung für 192 Stunden unter Rückfluss gekocht (siehe Abb. 12, rechts) und anschließend mit HCI (0,1 mol L⁻¹) aufgenommen. Die so erhaltene Lösung (Pa-Stammlösung 1) zeigte eine maximale Dosisleistung von 700 µSv/h. Anschließend wurde ein weiter Reinigungsschritt durchgeführt, in welchem das Protactinium mehrfach im Basischen als Pa(OH)5 gefällt und mit MilliQ-Wasser gewaschen wurde. Die Pa(V)-Stammlösung wurde vor Beginn kurz der Sorptionsuntersuchungen herstellt, indem eine definierte Menge des Pa(OH)5-Festkörpers in HCI (0.1 mol·L⁻¹)) gelöst wurde (Lösung "Pa₁"). Der pH-Wert dieser Lösung wurde unmittelbar vor Zugabe der Stammlösung zu den Gesteins-Grundwasserproben auf pH ≈ 4 angehoben.

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor E7		
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 57		
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023		

Abb. 12: Aufarbeitung von 25 mg Pa₂O₅,(s). Links) Auflösen in 8 mol L⁻¹ HNO₃, Mitte) zusätzliche Zugabe von 9,0 mol·L⁻¹ HCl und 0,1 mol·L⁻¹ HF, Rechts) Rückflussapparatur zur Entfernung von NOx und HF

Beide Stammlösungen wurden mittels HR-ICP-MS, TotalQuantTM, sowie α - und γ -Spektrometrie charakterisiert. Für die γ -spektrometrische Analyse wurden 40 µL der "Pa₁"-Lösung in 10 mL MilliQ-Wasser gelöst und direkt vermessen. Die entsprechenden Spektren und die jeweiligen Elemente mit ihren γ -Energien sind in Abb. 13 bzw. Tab. 10 gegeben. Die Ergebnisse zeigen qualitativ, dass ²³¹Pa(V) und die entsprechenden Tochternuklide in den Lösungen vorhanden sind. Da sich die Probe jedoch nicht in einem radiochemischen Gleichgewicht befindet, und zusätzlich das Tochternuklid ²¹⁹Rn gasförmig ist und aus der Lösung ausgast, ist eine Quantifizierung mittels der γ -Spektrometrie nicht möglich.

²³¹ Pa / keV	²²⁷ Th / keV	²³¹ Th / keV	²²³ Ra / keV	²¹⁹ Rn / keV	²¹¹ Bi / keV	²¹¹ Pb / keV
27,38 102,99 300,17 302,78 330,02	50,13 85,53 88,47 100,08 113,15 204,60	81,15 83,86	94,72 97,73 122,41 144,36 154,33 158,76	77,06 79,55 130,71 271,38 401,99	351,21 427,25 832,17 1109,6	405,02 427,25 832,17
337,20	204,00 236,16 256.37 286,22 296,75 330,02		269,60 324,03 338,44 445,19			

Tab. 10 Energien der γ -Emissionen für Radionuklide in einer ²³¹Pa(V)-Lösung

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor EQ		
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 58		
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023		

Abb. 13: γ–Spektrum der Pa(V)-Stammlösung 1. Oben) 0 – 1775 keV, Unten) 0 – 475 keV. [²³¹Pa(V)] ≈ 7,8·10⁻⁸ mol L⁻¹, pH ≈ 3,7

		igen io									
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soitor EO		
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Seite: 59		
9A	24250000				EGC	RZ	0008	00	Stand: 25.07.2023		

Für die TotalQuantTM-Analysen wurden 20 µL Pa₁-Lösung in 20 µl HF und 4960 µL HNO₃ (2%) gelöst, was die Lösung "Pa₂" ergab. Für die hochauflösende (HR) ICP-MS-Analytik wurden von der "Pa₂"-Lösung 50 µL entnommen und nochmals in 20 µL HF und 4930 µL HNO₃ (2%) gelöst, was die "Pa₃"-Lösung ergab. Die Ergebnisse der TQ- und HR-ICP-MS-Analytik bezüglich der Konzentration an ²³¹Pa und die hieraus errechnete Konzentration der ²³¹Pa-Stammlösung sind in Tab. 11 gegeben.

Tab. 11Mittels Total-Quant[™] und HR-ICP-MS gemessene ²³¹Pa(V)-Konzentration in
der Stammlösung

Lösung	Messmethode	[²³¹ Pa(V)] / g L ⁻¹	[²³¹ Pa(V)] / mol L ⁻¹	[²³¹ Pa(V)] / mol L ⁻¹ der ursprünglichen Stammlösung
Pa ₂	Total-Quant [™]	(82,00 ± 12,14)·10 ⁻⁶	(3,55 ± 0,53)·10 ⁻⁷	(2,76 ± 0,66)·10 ⁻³
Pa₃	HR-ICP-MS	(853,30 ± 0,33) · 10 ⁻⁹	(3,69 ± 0,01)·10 ⁻⁹	(3,84 ± 0,01)·10 ⁻³
				(3,84 ± 0,01)·10 ⁻³

Die ermittelten Konzentrationen sind im Rahmen ihrer Fehlerbereiche in Übereinstimmung. Da der mittels Total-QuantTM ermittelte Wert eine deutlich größere Unsicherheit aufweist, verglichen mit dem durch hochauflösende ICP-MS gemessenen Wert, wird der mittels Fehlerfortpflanzung berechnete Mittelwert von [²³¹Pa(V)]_{Stammlösung} = $(3,84 \pm 0,01) \cdot 10^{-3}$ mol L⁻¹ im Wesentlichen vom letzteren Wert bestimmt.

S G	Schac orptionsur esteinspro Remlii	htanlag htersucl oben au ngen 15	e Asse hunge s der B (Teil 3		BGE	BUNI FÜR	BUNDESGESELLSCHAFT FÜR ENDLAGERUNG		
ojekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soito: 60
AAN NNNNNNNN NNAAANN AANNNA AANN AAAA						AA	NNNN	NN	Seile. 60
A	24250000				EGC	RZ	0007	00	Stand: 12.06.2023

S G	Schac orptionsur esteinspro Remlin	htanlag ntersucl oben au ngen 15	E	BGE	BUNI FÜR	DESGESELLSCHAFT ENDLAGERUNG			
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Saita 60
NAAN	NNNNNNNNN	NNAAANN	AAAA	AA	NNNN	NN	Selle. 60		
9A	24250000				EGC	RZ	0007	00	Stand: 12.06.2023

Initiale experimentelle Parameter der äquilibrierten Gesteins-Grundwasserproben. В

Initiale pH-Werte und auf die Standardwasserstoffelektrode (SHE) korrigierten Eh-Werte der äquilibrierten Gesteins-Grundwasserproben. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein Tab. 12

	<i>m/V</i> (g mL⁻¹)	рН	Δ	Eh(SHE)	Δ
002_KIT	0,01	8,83	0,05	69,4	2,9
	-	-	-	-	-
	0.25	8,65	0,03	79,8	1,9
003_KIT	0,01	8,98	0,10	60,6	5,9
	0,05	8,97	0,02	61.2	1,2
	0,25	8,86	0,06	67,8	3,3
006_KIT	0,01	8,81	0,07	70,5	4,1
	0,05	8,64	0,04	80,7	2,1
	-	-	-	-	-
007_KIT	0,01	8,90	0,08	65,3	4,6
	0,05	8,58	0,05	83,6	3,2
	0,25	8,38	0,06	95,7	3,7
022_KIT	-	-	-	-	-
	0,05	8,60	0,07	82,7	4,0
	0,25	8,51	0,11	88,0	6,3
023_KIT	0,01	9,03	0,02	57,6	1,4
	0,05	8,95	0,04	62,5	2,2
	-	-	-	-	-
024_KIT	-	-	-	-	-
	0,05	8,98	0,04	60,7	2,4
	0,25	8,80	0,06	71,0	3,6
026_KIT	0,01	8,76	0,01	73,6	0,6
	0,05	8,74	0,02	74,9	1,0
	0,25	8,49	0,02	89,4	1,0

S G	Schacl orptionsur esteinspro Remlii	htanlag htersucl bben au hgen 15	e Asse hunge s der E 5 (Teil 3	en ng		BGE	BUNI FÜR	UNDESGESELLSCHAFT ÜR ENDLAGERUNG	
jekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 61
AN NNNNNNNN NNAAANN AANNNA AANN AAAA							NNNN	NN	Selle. 61
A	24250000				EGC	RZ	0007	00	Stand: 12.06.2023

Schachtanlage Asse II: Sorptionsuntersuchungen an den Gesteinsproben aus der Bohrung Remlingen 15 (Teil 3b)							BGE	BUNI FÜR	DESGESELLSCHAFT ENDLAGERUNG
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Caita: C1
NAAN	NAAN NNNNNNNN NNAAANN AANNNA AANN AAAA							NN	Selle. 01
9A	24250000				EGC	RZ 0007		00	Stand: 12.06.2023

Ergebnisse der Sorption von ¹¹³Sn(IV) С

Tab. 13 pH-Werte der Proben der Sorption von ¹¹³Sn(IV) an den Gesteinsproben in Kontakt mit Grundwasser GW-023 zu unterschiedlichen Zeiten nach der Dotierung. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein

	<i>m/V</i> (g mL ⁻¹)	Nach Dotierung	±	1 Tage	±	7 Tage	±	14 Tag	±	28 Tage	±	56 Tage	±
003_KIT	0,01	8,89	0,04	8,86	0,06	8,85	0,03	8,86	0,03	8,90	0,03	8,91	0,02
	0,05	8,93	0,03	8,91	0,02	8,89	0,03	8,88	0,01	8,84	0,02	8,84	0,02
006_KIT	0,01	8,81	0,02	8,83	0,02	8,85	0,03	8,82	0,01	8,86	0,02	8,86	0,01
	0,05	8,66	0,07	8,68	0,03	8,67	0,02	8,68	0,02	8,71	0,09	8,76	0,06
007_KIT	0,01	8,86	0,02	8,84	0,01	8,84	0,01	8,83	0,02	8,81	0,02	8,79	0,03
	0,05	8,56	0,07	8,55	0,06	8,57	0,03	8,60	0,03	8,67	0,04	8,66	0,03
023_KIT	0,01	8,97	0,02	8,96	0,02	8,96	0,02	8,92	0,03	8,89	0,02	8,89	0,02
	0,05	8,87	0,02	8,85	0,02	8,85	0,01	8 <i>,</i> 85	0,03	8,84	0,02	8,86	0,04
026_KIT	0,01	8,75	0,04	8,78	0,03	8,82	0,05	8,79	0,02	8,82	0,01	8,85	0,02
	0,05	8,76	0,02	8,74	0,03	8,74	0,03	8,79	0,02	8,79	0,03	8,79	0,02

Mittelwerte der gemessenen ¹¹³Sn(IV)-Konzentration der Sorptions- und Desorptionsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein Tab. 14

		[1	¹³ Sn(IV)] der	Sorptionspro	ben nach de mo	en jeweiligen L ⁻¹	Äquilibrieru	ngszeiten (A	1)	[¹¹³	Sn(IV)] der D	esorptionsp	roben nach o mo	len jeweilige I L ⁻¹	n Äquilibrier	ungszeiten (A3)
	<i>m/V</i> (g mL ⁻¹)	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±
Ao		5,92E-13	1,9E-14	5,48E-13	1,4E-14	4,19E-13	1,1E-14	1,73E-13	4,3E-15								
003_KIT	0,01	2,76E-14	4,9E-16	3,45E-15	5,0E-17	6,15E-16	9,1E-18	< NG	-	9,29E-16	1,2E-17	< NG	-	< NG	-	6,67E-16	1,7E-17
	0,05	6,11E-15	8,8E-17	9,91E-16	1,5E-17	3,98E-16	9,9E-18	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-
006_KIT	0,01	1,67E-15	2,4E-17	4,13E-16	7,6E-18	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-
	0,05	7,52E-16	1,3E-17	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-
007_KIT	0,01	1,33E-15	2,0E-17	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-
	0,05	4,83E-16	1,2E-17	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-
023_KIT	0,01	7,40E-15	1,1E-16	7,78E-16	1,4E-17	8,49E-16	2,1E-17	< NG	-	1,19E-15	1,2E-17	5,12E-16	1,28E-17	< NG	-	< NG	-
	0,05	1,73E-15	2,6E-17	1,63E-15	2,4E-17	< NG	-	< NG	-	4,43E-16	1,1E-17	6,17E-16	1,54E-17	< NG	-	< NG	-
026_KIT	0,01	6,55E-16	1,2E-17	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-
	0,05	7,66E-16	1,4E-17	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-
NG(¹¹³ Sn(IV	())								4 •10 ^{−16}	mol L ⁻¹							

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugrupp
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN
9A	24250000			

					R₅-We mL	erte g ⁻¹							R _d -W mL	erte g ⁻¹			
	<i>m/V</i> (g mL ⁻¹)	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±
003_KIT	0,01	3505	64	27719	404	137312	2028	-	-	66705	604	-	-	-	-	52061	2032
	0,05	3235	47	19331	284	42473	1062	-	-	-	-	-	-	-	-	-	-
006_KIT	0,01	59566	866	232161	4296	-	-	-	-	-	-	-	-	-	-	-	-
	0,05	26428	468	-	-	-	-	-	-	-	-	-	-	-	-	-	-
007_KIT	0,01	74673	1099	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0,05	41106	1028	-	-	-	-	-	-	-	-	-	-	-	-	-	-
023_KIT	0,01	13344	194	123108	2236	99408	2488	-	-	53483	735	115471	1035	-	-	-	-
	0,05	11508	174	11757	172	-	-	-	-	29018	678	19132	1356	-	-	-	-
026_KIT	0,01	151733	2816	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0,05	25927	463	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Massenbezogene R_s- und R_d-Werte für die Sorption von ¹¹³Sn(IV) an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein Tab. 15

Oberflächennormierte R_s- und R_d-Werte für die Sorption von ¹¹³Sn(IV) an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein Tab. 16

					R₅-W cn	erte n							R _d -W cr	erte n			
	<i>m/V</i> (g mL⁻¹)	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±
003_KIT	0,01	1,19E-01	2,2E-03	9,43E-01	1,4E-02	4,67E+00	6,9E-02	-	-	2,27E+00	2,1E-02	-	-	-	-	1,77E+00	6,9E-02
	0,05	1,10E-01	1,6E-03	6,58E-01	9,6E-03	1,45E+00	3,6E-02	-	-	-	-	-	-	-	-	-	-
006_KIT	0,01	2,36E-01	3,4E-03	9,18E-01	1,7E-02	-	-	-	-	-	-	-	-	-	-	-	-
	0,05	1,05E-01	1,9E-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
007_KIT	0,01	2,97E-01	4,4E-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0,05	1,63E-01	4,1E-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
023_KIT	0,01	8,13E-02	1,2E-03	7,50E-01	1,4E-02	6,05E-01	1,5E-02	-	-	3,26E-01	1,8E-03	7,03E-01	2,6E-03	-	-	-	-
	0,05	7,01E-02	1,1E-03	7,16E-02	1,1E-03	-	-	-	-	1,77E-01	1,7E-03	1,17E-01	3,4E-03	-	-	-	-
026_KIT	0,01	3,80E-01	7,1E-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0,05	6,49E-02	1,2E-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Se G	Schac orptionsur esteinspro Remlii	htanlag htersucl bben au ngen 15	e Asse hunge s der I 5 (Teil 3	len ng	E	BGE	BUNI FÜR	DESGESELLSCHAFT ENDLAGERUNG	
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soiter 62
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 63
9A	24250000				EGC	RZ	0007	00	Stand: 12.06.2023

Ergebnisse der Sorption von ¹⁴CO₃²⁻ D

Tab. 17	pH-Werte in Lösungsproben aus Experimenten zur Sorption von ¹⁴	CO32- an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk,
---------	---	---

	<i>m/V</i> (g mL⁻¹)	Nach Dotierung	±	1 Tage	±	7 Tage	±	14 Tage	±	28 Tage	±	56 Tage	±
002_KIT	0,01	8,89	0,04	8,86	0,06	8,85	0,03	8,86	0,03	8,90	0,03	8,91	0,02
	0,25	8,93	0,03	8,91	0,02	8,89	0,03	8,88	0,01	8,84	0,02	8,84	0,02
003_KIT	0,01	8,81	0,02	8,83	0,02	8 <i>,</i> 85	0,03	8,82	0,01	8,86	0,02	8,86	0,01
	0,25	8,66	0,07	8,68	0,03	8,67	0,02	8,68	0,02	8,71	0,09	8,76	0,06
007_KIT	0,01	8 <i>,</i> 86	0,02	8,84	0,01	8,84	0,01	8,83	0,02	8,81	0,02	8,79	0,03
	0,25	8,56	0,07	8,55	0,06	8,57	0,03	8,60	0,03	8,67	0,04	8,66	0,03
024_KIT	0,01	8,97	0,02	8,96	0,02	8,96	0,02	8,92	0,03	8,89	0,02	8,89	0,02
	0,25	8,87	0,02	8,85	0,02	8,85	0,01	8,85	0,03	8,84	0,02	8,86	0,04
026_KIT	0,01	8,75	0,04	8,78	0,03	8,82	0,05	8,79	0,02	8,82	0,01	8,85	0,02
	0,25	8,76	0,02	8,74	0,03	8,74	0,03	8,79	0,02	8,79	0,03	8,79	0,02

Mittelwerte der gemessenen ¹⁴CO₃²⁻-Konzentration in Sorptions-/Desorptionsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein Tab. 18

		[¹⁴ CO ₃ ²⁻] der Sorptionsproben nach den jeweiligen Äquilibrierungszeiten (A ₁)									[¹⁴ CO ₃ ²⁻] der D	esorptionspr	oben nach de	en jeweiligen Å	Äquilibrierun	gszeiten (A₃)	
					mol	L-1							mo	L ⁻¹			
	m/V	1 Тар	1	7 7		20 7.00		00 To 20		1 7.2		7 7 9 9 9		20 Taga		00 Тала	
	(g mL -)	Tiag	Ξ	7 Tage	Ŧ	28 Tage	Ŧ	90 Tage	Ť	Tiag	Ξ	7 Tage	Ť	28 Tage	Ξ	90 Tage	Ŧ
A ₀		9,33E-08	1,9E-09	8,46E-08	1,7E-09	8,16E-08	1,6E-09	8,04E-08	1,6E-09								
002_KIT	0,01	7,90E-08	9,1E-10	5,27E-08	6,1E-10	3,49E-08	4,1E-10	4,00E-08	4,7E-10	2,44E-08	2,8E-10	7,88E-09	9,2E-11	5,73E-08	6,6E-10	1,16E-08	1,4E-10
	0,25	3,15E-08	3,6E-10	1,27E-08	1,5E-10	6,84E-09	7,9E-11	9,52E-09	1,1E-10	1,95E-08	2,3E-10	6,06E-09	7,0E-11	1,32E-08	1,5E-10	5,21E-09	6,0E-11
003_KIT	0,01	7,54E-08	8,8E-10	5,22E-08	6,1E-10	3,95E-08	4,6E-10	6,32E-08	7,3E-10	2,12E-08	2,4E-10	8,44E-09	1,0E-10	5,45E-08	6,3E-10	1,27E-08	1,5E-10
003_KII	0,25	4,63E-08	5,3E-10	2,11E-08	2,4E-10	1,46E-08	1,7E-10	3,20E-08	3,7E-10	2,13E-08	2,5E-10	5,10E-09	5,9E-11	3,63E-08	4,2E-10	8,92E-09	1,0E-10
007_KIT	0,01	8,62E-08	1,2E-09	6,87E-08	7,9E-10	4,89E-08	5,7E-10	6,01E-08	7,0E-10	1,77E-08	2,0E-10	1,08E-08	1,3E-10	5,91E-08	6,9E-10	1,17E-08	1,5E-10
	0,25	7,14E-08	8,3E-10	3,15E-08	3,7E-10	1,56E-08	1,8E-10	1,40E-08	1,6E-10	1,94E-08	2,3E-10	6,33E-09	7,3E-11	1,62E-08	1,9E-10	5,83E-09	6,7E-11
024_KIT	0,01	9,27E-08	1,9E-09	6,98E-08	8,1E-10	4,89E-08	5,8E-10	5,09E-08	6,0E-10	1,95E-08	2,3E-10	8,76E-09	1,1E-10	6,09E-08	7,1E-10	1,34E-08	1,6E-10
	0,25	9,10E-08	1,8E-09	6,59E-08	7,6E-10	4,24E-08	4,9E-10	3,04E-08	3,9E-10	2,19E-08	2,5E-10	1,53E-08	1,8E-10	4,02E-08	4,7E-10	1,11E-08	1,3E-10
026_KIT	0,01	7,94E-08	1,1E-09	6,50E-08	7,5E-10	4,22E-08	4,9E-10	5,10E-08	6,0E-10	2,13E-08	2,5E-10	8,44E-09	9,8E-11	6,34E-08	7,3E-10	1,29E-08	1,5E-10
	0,25	7,54E-08	8,7E-10	4,63E-08	5,4E-10	2,87E-08	3,3E-10	1,78E-08	2,1E-10	2,53E-08	2,9E-10	1,02E-08	2,0E-10	1,71E-08	2,0E-10	6,59E-09	7,6E-11
NG(¹⁴ CO ₃ ²⁻)								ġ	9,1·10 ⁻¹¹ mol I	-1							

Rot: Buntsandstein, Blau: Hutgestein

Projekt	PSP-Element	Funktion/Thema	Komponente	Baugrupp
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN
9A	24250000			

					<i>R₅</i> -W mL	′erte g ⁻¹							R _d -W mL	erte g ⁻¹			
	<i>m/V</i> (g mL ⁻¹)	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±
002_KIT	0,01	18,2	1,4	60,6	1,9	133,8	2,7	101,0	2,3	66,9	1,9	668,1	9,0	28,8	1,5	504,7	7,3
	0,25	7,8	0,1	22,6	0,3	43,8	0,6	29,8	0,4	11,7	0,2	55,7	0,7	24,7	0,3	67,3	0,8
003_KIT	0,01	23,8	1,4	62,1	1,9	106,7	2,4	27,3	1,5	105,1	2,4	621,1	9,0	29,2	1,5	313,2	4,9
	0,25	4,1	0,1	12,1	0,2	18,3	0,3	6,1	0,1	8,2	0,1	62,0	0,8	5,8	0,1	30,1	0,4
007_KIT	0,01	8,2	1,5	23,1	1,4	66,9	1,9	33,8	1,6	99,6	2,3	347,5	5,2	7,1	1,2	369,2	5,9
	0,25	1,2	0,1	6,7	0,1	16,9	0,2	19,0	0,3	5,6	0,1	44,2	0,6	17,8	0,3	57,5	0,7
024_KIT	0,01	0,7	2,0	21,1	1,4	67,0	2,0	57,9	1,9	56,2	1,8	443,7	6,7	4,0	1,2	361,1	5,5
	0,25	0,1	0,1	1,1	0,1	3,7	0,1	6,6	0,1	1,8	0,1	9,3	0,2	2,8	0,1	23,9	0,3
026_KIT	0,01	17,6	1,7	30,1	1,5	93,3	2,2	57,5	1,8	89,9	2,2	507,3	7,0	7,9	1,3	379,7	5,5
	0,25	1,0	0,1	3,3	0,1	7,4	0,1	14,0	0,2	2,9	0,1	21,6	0,5	14,4	0,2	48,6	0,6

Massenbezogene R_s- und R_d-Werte für die Sorption von ¹⁴CO₃²⁻ an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein Tab. 19

Tab. 20 Oberflächennormierte R_s- und R_d-Werte für die Sorption von ¹⁴CO₃²⁻ an den Gesteinsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein

					<i>R</i> s-W	erte n							R _d -W cn	erte n			
	<i>m/V</i> (g mL⁻¹)	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±	1 Tag	±	7 Tage	±	28 Tage	±	90 Tage	±
002_KIT	0,01	2,28E-04	1,7E-05	7,58E-04	2,3E-05	1,67E-03	3,4E-05	1,26E-03	2,9E-05	8,38E-04	2,4E-05	8,36E-03	1,1E-04	3,61E-04	1,9E-05	6,32E-03	9,1E-05
	0,25	9,82E-05	1,7E-06	2,83E-04	3,9E-06	5,48E-04	6,9E-06	3,73E-04	4,9E-06	1,46E-04	2,3E-06	6,98E-04	8,7E-06	3,09E-04	4,2E-06	8,43E-04	1,0E-05
003_KIT	0,01	8,10E-04	4,9E-05	2,11E-03	6,4E-05	3,63E-03	8,1E-05	9,28E-04	5,0E-05	3,58E-03	8,1E-05	2,11E-02	3,0E-04	9,92E-04	5,1E-05	1,07E-02	1,7E-04
	0,25	1,39E-04	3,2E-06	4,10E-04	6,3E-06	6,24E-04	8,8E-06	2,06E-04	4,0E-06	2,80E-04	4,8E-06	2,11E-03	2,6E-05	1,98E-04	3,9E-06	1,02E-03	1,3E-05
007_KIT	0,01	3,27E-05	6,1E-06	9,18E-05	5,7E-06	2,66E-04	7,7E-06	1,34E-04	6,2E-06	3,96E-04	9,2E-06	1,38E-03	2,1E-05	2,82E-05	4,9E-06	1,47E-03	2,3E-05
	0,25	4,88E-06	2,4E-07	2,67E-05	4,9E-07	6,72E-05	9,6E-07	7,55E-05	1,1E-06	2,21E-05	4,4E-07	1,76E-04	2,2E-06	7,07E-05	1,0E-06	2,28E-04	2,8E-06
024_KIT	0,01	8,29E-06	2,3E-05	2,41E-04	1,6E-05	7,65E-04	2,3E-05	6,60E-04	2,1E-05	6,41E-04	2,1E-05	5,07E-03	7,7E-05	4,53E-05	1,4E-05	4,12E-03	6,3E-05
	0,25	1,17E-06	9,3E-07	1,30E-05	6,8E-07	4,22E-05	1,0E-06	7,51E-05	1,5E-06	2,06E-05	7,7E-07	1,06E-04	1,8E-06	3,18E-05	9,2E-07	2,72E-04	3,7E-06
026_KIT	0,01	4,40E-05	4,2E-06	7,54E-05	3,8E-06	2,34E-04	5,6E-06	1,44E-04	4,6E-06	2,25E-04	5,5E-06	1,27E-03	1,8E-05	1,97E-05	3,1E-06	9,51E-04	1,4E-05
	0,25	2,38E-06	1,4E-07	8,28E-06	2,1E-07	1,85E-05	3,3E-07	3,51E-05	5,3E-07	7,19E-06	2,0E-07	5,40E-05	1,2E-06	3,60E-05	5,3E-07	1,22E-04	1,5E-06

		0	•	,							
Projekt	PSP-Element	Funktion/Thema	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	Soito: 65		
NAAN	NNNNNNNNN	NNAAANN	AANNNA	AANN	AAAA	AA	NNNN	NN	Selle. 05		
9A	24250000				EGC	RZ	0007	00	Stand: 12.06.2023		

Ergebnisse der Sorption von ²³¹Pa(V) Ε

Tab. 21	pH-Werte in Lösungsproben aus Ex	perimenten zu Sorption von ²³¹ Pa(V)	an den Gesteinsproben in Kontakt m	it Grundwasser GW-023. Grün: Muschelkalk,
---------	----------------------------------	---	------------------------------------	---

	<i>m/V</i> (g mL ⁻¹)	Nach Dotierung	±	1 Tag	±	2 Tage	±	4 Tage	±	7 Tage	±	14 Tage	±	90 Tage	±	180	±
003_KIT	0,05	8,89	0,02	8,83	0,04	8,84	0,06	8,84	0,02	8,79	0,08	8,89	0,04	8,85	0,04	8,83	0,03
	0,25	8,84	0,04	8,80	0,05	8,78	0,04	8,81	0,05	8,78	0,02	8,84	0,03	8,80	0,01	8,88	0,09
007_KIT	0,05	8,87	0,02	8,85	0,02	8,83	0,02	8,84	0,06	8,83	0,05	8,83	0,06	8,83	0,05	8,87	0,10
	0,25	8,67	0,08	8,65	0,04	8,63	0,04	8,61	0,06	8,62	0,01	8,69	0,08	8,61	0,02	8,71	0,11
022_KIT	0,05	8,73	0,03	8,79	0,09	8,79	0,03	8,82	0,03	8,79	0,06	8,82	0,09	8,79	0,06	8,73	0,05
	0,25	8,55	0,04	8,55	0,06	8 <i>,</i> 59	0,03	8,64	0,05	8,65	0,05	8,64	0,10	8,62	0,07	8,69	0,06
024_KIT	0,05	8,43	0,02	8,57	0,01	8,61	0,02	8,63	0,04	8,66	0,06	8,62	0,01	8,54	0,07	8,54	0,07
	0,25	8,57	0,02	8,64	0,04	8,72	0,03	8,73	0,02	8,69	0,05	8,62	0,00	8,57	0,10	8,59	0,07
026_KIT	0,05	8,70	0,01	8,70	0,06	8,75	0,06	8,76	0,04	8,77	0,08	8,70	0,01	8,72	0,09	8,73	0,09
	0,25	8,71	0,03	8,71	0,02	8,72	0,02	8,73	0,01	8,75	0,02	8,72	0,00	8,70	0,01	8,73	0,03

Mittelwerte der gemessenen ²³¹Pa(V)-Konzentration in Sorptions-/Desorptionsproben in Kontakt mit Grundwasser GW-023. Grün: Muschelkalk, Rot: Buntsandstein, Blau: Hutgestein Tab. 22

			[²³¹ Pa(V)] de	r Sorptionspr	oben nach de mol	n jeweiligen Ä L ⁻¹	Aquilibrierun	gszeiten (A1)	[²³¹ Pa(V)] der Desorptionsproben nach den jeweiligen Äquilibrierungszeiten (A ₃) mol L ⁻¹									
	<i>m/∨</i> (g mL⁻¹)	1 Tag	±	2 Tage	±	7 Tage	±	90 Tage	±	1 Tag	±	2 Tage	±	7 Tage	±	90 Tage	±	
Ao		< NG	-	< NG	-	< NG	-	< NG	-									
003_KIT	0,05	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	
	0,25	< NG	-	< NG	-	1,29E-13	2,3E-13	3,26E-13	1,9E-13	< NG	-	< NG	-	< NG	-	< NG	-	
007_KIT	0,05	< NG	-	< NG	-	1,10E-13	3,1E-13	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	
	0,25	< NG	-	< NG	-	1,62E-13	2,6E-13	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	
022_KIT	0,05	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	
	0,25	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	3,047E-13	1,4E-13	< NG	-	< NG	-	
024_KIT	0,05	< NG	-	< NG	-	1,28E-13	2,1E-13	< NG	-	< NG	-	< NG	-	1,20E-13	1,4E-13	< NG	-	
	0,25	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	
026_KIT	0,05	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	
	0,25	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	< NG	-	
NG(²³¹ Pa(V))								1	0 ⁻¹³ mol L ⁻¹									

, Rot: Buntsandstein, Blau: Hutgestein