IAF - Radioökologie GmbH

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Auftraggeber: BGE Bundesgesellschaft für Endlagerung mbH

Eschenstraße 55 31224 Peine

Projektname: Beprobung und Analyse von Salzlösungen in der

Schachtanlage Asse II im Jahr 2019

Projektnummer: 190920-02

Auftragnehmer: IAF-Radioökologie GmbH

Autor: Dr. rer. nat.

Dr. rer. nat. habil.

Radeberg, den 24.07.2020

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-11201-01-00

Geschäftsführer

Wilhelm-Rönsch-Str. 9 01454 Radeberg Tel. +49 (0) 3528 48730-0 Fax +49 (0) 3528 48730-22 E-Mail info@iaf-dresden.de Geschäftsführer: Dr. rer. nat. habil. Hartmut Schulz Dr. rer. nat. Christian Kunze Dipl.-Ing. (BA) René Baumert Handelsregister: HRB 9185 Amtsgericht Dresden Bankverbindung: HypoVereinsbank Dresden IBAN: DE92 8502 0086 5360 1794 29 SWIFT (BIC): HYVEDEMM496

Ini	nait		
1	F	Einleitung	8
2	2	Zielstellung	10
3	F	Probenahmestellen und Messprogramm	11
	3.1	Vorbemerkung	11
	3.2	Überblick über die Probenahmestellen	11
	3.3	Radiologische Untersuchungen	27
	3.4	Chemische Untersuchungen	32
4	[Durchführung der Probenahme	33
5	ľ	Messverfahren der chemischen und radiologischen Untersuchungen	35
	5.1	Vorbemerkung	35
	5.2	Messverfahren zur chemischen Analyse	35
	5.3	Messverfahren zur radiologischen Analyse	36
	5.3	.1 Verfahren zur gammaspektrometrischen Bestimmung	36
	5.3	.2 Radiochemische Messverfahren	36
	5.3	.3 Qualitätssicherung	37
6	E	Ergebnisse der chemischen Analysen	37
	6.1	Vorbemerkung zu den chemischen Analysen	37
	6.2	Dichtebestimmung der Salzlösungen	37
	6.3	Natrium	39
	6.4	Kalium	40
	6.5	Magnesium	42
	6.6	Chlorid	43
	6.7	Sulfat	45
	6.8	Ammonium	46
	6.9	Nitrat	47
	6.10	Ammonium-Stickstoff und Nitrat-Stickstoff	48
	6.11	Eisen-II und Eisen-III	50
	6.12	Kaliumhexacyanoferrat	50
	6.13	Diskussion der Ergebnisse der chemischen Analysen	52
7	E	Ergebnisse der radiologischen Laboranalysen von den Salzlösungen	56
	7.1	Radiologische Messergebnisse	56
	7.1	.1 Vorbemerkung zu den radiologischen Messergebnissen	56
	7.1	.2 Tabellarische Zusammenstellung der radiologischen Messwerte	56
	7.1	.3 Diskussion der radiologischen Messergebnisse	64
	7.2	Qualitätssicherung der Messwerte durch das BfS	94
8	Z	Zusammenfassung und Schlussfolgerungen	97
9	I	_iteraturverzeichnis	99

Tabellenverzeichnis

Tabelle 1:	Übersicht über die jeweiligen Bild-Nummern zu den Probe-Nummern mit Datum der Probenahme und Zuordnung zu den Entnahmestellen der Asse.	.12
Tabelle 2:	Übersicht über die zu bestimmenden Radionuklide in den Salzlösungen der Schachtanlage Asse II	
Tabelle 3:	Übersicht über die zu bestimmenden künstlichen Radionuklide in den Salzlösungen der Schachtanlage Asse II und den Schächten	.30
Tabelle 4:	Wie Tabelle 3, jedoch für die natürlichen Radionuklide	.31
Tabelle 5:	Analyse von chemischen Parametern in Salzlösungen der Schachtanlage Asse II	.33
Tabelle 6:	Chemisch-physikalische Parameter der Salzlösungen während der Probenahme	.34
Tabelle 7:	Zusammenstellung der relevanten Radionuklidkonzentrationen in Salzlösungen und in Grundwässern (H-3, C-14 und K-40), gemessen in Bq/l, eine vollständige Zusammenstellung aller Messwerte mit den entsprechenden Messunsicherheiten befindet sich in dem Anhang B	.57
Tabelle 8:	Wie Tabelle 7, jedoch für Co-60, Sr-90, Tc-99 und Cs-137	.58
Tabelle 9:	Wie Tabelle 7, jedoch für Ni-63, Pu-238, Pu-239/240 und Am241	.59
Tabelle 10:	Wie Tabelle 7, jedoch für Pb-210, Po-210, Ra-224, Ra-226 und Ra-228	.60
Tabelle 11:	Wie Tabelle 7, jedoch für Th-232, Th-230 und Th-228	.61
Tabelle 12:	Wie Tabelle 7, jedoch für U-238, U-235 und U-234	.62
Tabelle 13:	Wie Tabelle 7, jedoch für Ra-228 und Th-228	.63
Tabelle 14:	Zu bestimmende künstliche Radionuklide nach radiochemischer Präparation	.74
Tabelle 15:	Ergebnisse der C-14(anorganisch) Analysen	
Tabelle 16:	Ergebnisse der C-14(gesamt) Analysen	
Tabelle 17:	Chemisch-physikalische Parameter der 2 Zusatzproben aus den Grundwassermess-stellen der Schächte Asse 1 und Asse 3	
Tabelle 18:	Ergebnisse der Radionuklidanalysen der 2 Zusatzproben aus den Grundwassermessstellen der Schächte Asse 1 und Asse 3 (S1 und S3)	.93
Tabelle 19:	Vergleich der Analysenergebnisse von IAF und BfS im Rahmen der Messungen zur Qualitätssicherung für die Proben von den Messstellen L 658008, P 725019 und P 750043 in Bq/l	.95
Tabelle 20:	Wie Tabelle 19, jedoch für die Proben von den Messstellen P50084, P750185 und P750189 in Bq/l	.96

Abbildungsve	erzeichnis	
Abbildung 1: F	Probenahmestelle auf der 553-m-Sohle	.13
Abbildung 2: F	Probenahmestellen auf der 658-m-Sohle	.14
Abbildung 3: F	Probenahmestellen auf der 725-m-Sohle	.15
Abbildung 4: F	Probenahmestellen auf der 750-m-Sohle (Süd)	.16
Abbildung 5: F	Probenahmestellen auf der 750-m-Sohle (Nord)	.17
Abbildung 6: F	Probenahmestellen auf der 750-m-Sohle (Ost)	.18
Abbildung 7: F	Probenahmestellen auf der 750-m-Sohle	.19
Abbildung 8: F	Probenahmestelle auf der 750-m- Sohle	.20
Abbildung 9: F	Probenahmestellen auf der 750-m- Sohle	.21
Abbildung 10:	Probenahmestelle auf der 925-m-Sohle	.22
Abbildung 11:	Probenahmestelle auf der 925-m-Sohle	.23
Abbildung 12:	Probenahmestelle SB3 auf der 490-m-Sohle	.24
Abbildung 13:	Probenahmestelle in dem Schacht Asse 1	.25
Abbildung 14:	Probenahmestelle in dem Schacht Asse 3	.26
Abbildung 15:	Vergleich der Dichte der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017	.38
Abbildung 16:	Vergleich der Dichten der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Dichteänderungen besonders gekennzeichnet sind	.38
Abbildung 17:	Natriumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017	.39
Abbildung 18:	Vergleich der Natriumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind.	.40
Abbildung 19:	Vergleich der Kaliumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017	.41
Abbildung 20:	Vergleich der Kaliumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind.	.41
Abbildung 21:	Vergleich der Magnesiumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017	.42
Abbildung 22:	Vergleich der Magnesiumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind	.43
Abbildung 23:	Vergleich der Chloridkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017	.44
Abbildung 24:	Vergleich der Chloridkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017,	

	wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind.	44
Abbildung 25:	Vergleich der Sulfatkonzentrationen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017	
Abbildung 26:	Vergleich der Sulfatkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind	46
Abbildung 27:	Vergleich der Ammoniumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017	47
Abbildung 28:	Vergleich der Nitratkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017	48
Abbildung 29:	Ammonium-Stickstoff und Nitrat-Stickstoff-Messwerte aus der Charakterisierungsmessung 2019	49
Abbildung 30:	Eisen-II- und Eisen-III-Messwerte aus der Charakterisierungsmessung 2019, bei Probe P750084 (grüner Balken) liegen keine Angaben zur Oxidationsstufe vor.	50
Abbildung 31:	Kaliumh exacyanoferrat Messwerte aus der Charakterisierungsmessungen 2019 und 2011	51
Abbildung 32:	Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle P750071	52
Abbildung 33:	Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle P750043	53
Abbildung 34:	Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle	53
Abbildung 35:	Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle	54
Abbildung 36:	Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle P750064	
Abbildung 37:	Vergleich der mit der gammaspektrometrischen Methode bestimmten K-40 Aktivitätskonzentration in den untersuchten Proben mit den aus der chemischen Analyse folgenden K-40 Konzentration aus der Bestimmung der K-Konzentration bei Berücksichtigung, dass Kalium 0,012% des	
Abbildung 38:	radioaktiven Isotop K-40 enthält	64
Tibbliading co.	ausgewählten Proben (s. Anhang E) bestimmten Aktivitätskonzentrationen von K-40	65
Abbildung 39:	Vergleich der im Jahre 2019 von IAF bestimmten K-40 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten	
Abbildung 40:	Wie Abbildung 39, jedoch für die früheren Messergebnisse bis 2011	67
Abbildung 41:	Vergleich der im Jahre 2019 von IAF bestimmten Cs-137 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten	68
Abbildung 42:	Wie Abbildung 41, jedoch für die früheren Messergebnisse bis 2011	

Abbildung 43:	Vergleich der im Jahre 2019 von IAF bestimmten H-3	
	Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten	70
Abbildung 44:	Ergebnisse des AG [11] für Cs-137 und H-3 von 2017 - 2019 an der Messstelle P 750043	71
Abbildung 45:	Wie Abbildung 45, jedoch für die Proben der Messstelle P 750084	71
Abbildung 46:	Wie Abbildung 43, jedoch für die früheren Messergebnisse bis 2011	72
Abbildung 47:	Ausgewählte Ergebnisse für C-14 (anorg.)	76
Abbildung 48:	Ausgewählte Ergebnisse für C-14 (gesamt)	76
Abbildung 49:	Vergleich der im Jahre 2019 von IAF bestimmten Ra-226 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten	78
Abbildung 50:	Wie Abbildung 49, jedoch für Ra-228	78
Abbildung 51:	Wie Abbildung 49, jedoch für die früheren Ra-226 Messergebnisse bis 2011	80
Abbildung 52:	Wie Abbildung 50, jedoch für die früheren Ra-228-Messergebnisse bis 2011	81
Abbildung 53:	Vergleich der im Jahre 2019 von IAF bestimmten Ra-224 Aktivitätskonzentrationen mit den in früheren Jahren vom BfS bestimmten Werten. Zusätzlich angegeben sind auch die Ra-228	
	Aktivitätskonzentrationen	82
Abbildung 54:	Vergleich der im Jahre 2019 bestimmten U-238 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten,	83
Abbildung 55:	Wie Abbildung 54, jedoch für die früheren U-238 Messergebnisse bis 2011	84
Abbildung 56:	Zusammenstellung aller U-238 Messergebnisse von 2011 bis 2019	85
Abbildung 57:	Aktivitätsverhältnisse von U-234/U-238 für die einzelnen Messstellen	86
Abbildung 58:	Wie Abbildung 57, jedoch in Abhängigkeit von der jeweiligen U-238 Aktivitätskonzentration	27
Abbildung 59:	Pb-210 und Po-210 Aktivitätskonzentrationen in den ausgewählten Proben der Messkampagne 2019	
Abbildung 60:	Po-210 in Abhängigkeit von der Pb-210 Aktivitätskonzentration in den ausgewählten Proben der Messkampagne 2019	89
Abbildung 61:	Aktivitätsverhältnis Po-210/Pb-210 in Abhängigkeit von der Pb-210 Aktivitätskonzen-tration in den ausgewählten Proben der Messkampagne 2019	89
Abbildung 62:	Zusammenstellung aller Pb-210 Messergebnisse von 2011 - 2019	
•	Zusammenstellung aller Po-210 Messergebnisse von 2011 - 2019	

Verzeichnis der Anhänge

Anhang A: Fotodokumentation über die Probeentnahme von Salzlösungen

Anhang B: Radiologische Messwerte

Anhang C: Ergebnisse der chemisch-physikalischen Analytik, K-UTEC AG Salt Techno-

logies, 99706 Sondershausen

Anhang D: Ergebnisse der chemisch-physikalischen Analytik, Technische Universität

Clausthal, 38678 Clausthal-Zellerfeld

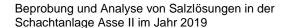
Anhang E: Ergebnisse der Vergleichsmessungen im Rahmen der Qualitätssicherung,

BfS Berlin

1 Einleitung

In der Leistungsbeschreibung zur "Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019" wurde dargelegt, dass das ehemalige Salzbergwerk Schachtanlage Asse II in Remlingen seit 1965 für die Durchführung von Forschungs- und Entwicklungsarbeiten zur Endlagerung radioaktiver Abfälle in Salzformationen genutzt wurde. Im Rahmen dieser Arbeiten sind von 1967 bis 1978 schwachradioaktive Abfälle in Einlagerungskammern auf der 750- und 725-m-Sohle eingelagert worden. Mittelradioaktive Abfälle wurden von 1972 bis 1977 in einer Einlagerungskammer auf der 511-m-Sohle eingelagert. Seit Mitte 1995 werden keine eigenen Forschungs- und Entwicklungsarbeiten in der Schachtanlage Asse II mehr durchgeführt. Die aktuellen Arbeiten zielen auf die Rückholung aller radioaktiven Abfälle aus der Schachtanlage Asse II ab.

In der Schachtanlage Asse II treten unter Tage auf verschiedenen Sohlen Salzlösungen auf, die gefasst und abgepumpt werden. Die Salzlösungen werden routinemäßig überwiegend in monatlichen Abständen durch das Betriebspersonal radiologisch und chemisch untersucht. Die radiologische Untersuchung erfolgt gammaspektrometrisch sowie mittels Flüssigszintillationsmessung (LSC). Im Rahmen des betrieblichen Strahlenschutzes werden die Salzlösungen auf die Leitnuklide Cs-137 und H-3 analysiert. Daneben werden chemische Stoffe wie z.B. NaCl aber auch physikalische Parameter wie Dichte, Temperatur, pH-Wert, etc. ermittelt. Die Analyse der Salzlösungen auf die Radionuklide Cs-137 und H-3 (Leitnuklide) bildet die Grundlage für Freigaben zur Verwertung oder Entsorgung der Salzlösung.


Für den Nachweis, dass die routinemäßige, radiologische Überwachung der Salzlösungen auf die Leitnuklide H-3 und Cs-137 ausreichend ist, wurden die Salzlösungen ab 2008 umfassend beprobt und bezüglich aller Radionuklide analysiert, die aufgrund des eingelagerten Inventars in der Schachtanlage Asse II relevant sein könnten. Die Beprobung und Analyse wurden bisher in einem 2-jährigen Rhythmus durchgeführt (s. [1], [2], [3], [4], [5], [6]]). Der vorliegende Bericht fasst die Ergebnisse der Beprobungen der Salzlösungen in der Schachtanlage Asse II vom September 2019 zusammen. Erstmalig wurden auch Lösungen aus den Schächten von Asse 1 und Asse 3 entnommen und untersucht.

An den Untersuchungen waren folgende Firmen beteiligt:

- IAF Radioökologie GmbH, Radeberg (Auftragnehmer, Radioaktivitätsuntersuchungen),
- K-UTEC AG Salt Technologies, Sonderhausen (Unterauftragnehmer, Chemische Untersuchungen von Salzlösungen),
- Institut für Endlagerforschung der Technischen Universität Clausthal (Unterauftragnehmer, Chemische Untersuchungen von Salzlösungen),
- Bundesamt für Strahlenschutz (BfS) Berlin, Qualitätssicherung zu Radioaktivitätsuntersuchungen von Salzlösungen.

In dem Kapitel 2 wird die Zielstellung der Untersuchungen entsprechend der Leistungsbeschreibung der BGE mbH dargelegt. Die Probenahmestellen und das Messprogramm werden im Kapitel 3 vorgestellt und die Durchführung der Probenahmen im Kapitel 4 weiter untersetzt. Im Kapitel 5 werden die angewendeten Messverfahren kurz beschrieben.

Die Ergebnisse der chemischen Untersuchungen werden im Kapitel 6 und die Ergebnisse der radiologischen Messungen im Kapitel 7 vorgestellt. Dabei werden auch die Ergebnisse,

Consulting

die in letzten 10 Jahren erhalten wurden, in den grafischen Überblicken mit eingeschlossen. Dies ist wichtig, um Trends zu erkennen und die Ergebnisse der Probenahme 2019 besser verstehen zu können.

Eine Zusammenfassung der Untersuchungsergebnisse und daraus folgende Schlussfolgerungen werden im Kapitel 8 gegeben.

Der Anhang A enthält eine Fotodokumentation der Probennahme, in dem Anhang B sind alle radiologischen Messwerte zusammengestellt, der Anhang C enthält die Ergebnisse der chemisch-physikalischen Analytik der K-UTEC AG Salt Technologies und der Anhang D die Ergebnisse der chemisch-physikalischen Analytik der Technischen Universität Clausthal. Den Bericht zur Qualitätssicherung des BfS enthält der Anhang E.

2 Zielstellung

Die Zielstellungen für die 2019 durchzuführenden Untersuchungen und Charakterisierungsmessungen enthalten entsprechend der Leistungsbeschreibung der BGE mbH als Auftraggebers (AG) die folgenden Prämissen:

- Ermittlung des aktuellen Zustandes der radiologischen Kontamination der Salzlösungen,
- Ermittlung des Aktivitätsgehalts und der Verteilung natürlicher Radionuklide in den Salzlösungen,
- Überprüfung der Anwendbarkeit von Leitnukliden bei der routinemäßigen betrieblichen Kontaminationsüberwachung und bei Freigaben nach StrlSchV,
- Vertiefung des Kenntnisstandes zur geogenen bzw. anthropogenen Herkunft ausgewählter natürlicher Radionuklide.

Nach Information aus der Leistungsbeschreibung treten in der Schachtanlage Asse II auf den verschiedenen Sohlen Salzlösungen auf, die radioaktive Kontaminationen aufweisen können. Die Salzlösungen sind wie folgt zu unterscheiden:

- Lösungen, die dem Grubengebäude zutreten und kontinuierlich auf den Sohlen 553 m, 574 m, 658 m, 725 m und 750 m im Umfang von ca. 13 m³ pro Tag gefasst werden. Oberhalb der 700-m-Sohle wird diese Zutrittslösung in Speicherbecken auf der 490-m-Sohle gepumpt und extern verwertet. Unterhalb der 700-m-Sohle verbleibt die Lösung in der Grube und wird intern verwertet. Die Zutrittslösung ist primär kontaminationsfrei und wird erst beim Kontakt mit Grubenluft durch in der Grubenluft vorhandene Radionuklide (volatile Stoffe), vorrangig mit Tritium, kontaminiert.
- Des Weiteren kann es bei einem Kontakt der Zutrittslösungen auf der 750-m-Sohle mit radioaktiven Kontaminationen in Strecken und Einlagerungskammern (ELK) bzw. den Abfällen selbst zum Aktivitätseintrag kommen.
- Lösungen, die aus den versetzten Kaliabbauen in die zugänglichen Grubenbereiche austreten.

Die seit 2008 durchgeführten umfangreichen nuklidspezifischen Analysen der v. g. Salzlösungen zeigen, dass oberhalb der 700-m-Sohle die Salzlösungen über die Grubenluft geringfügig mit Tritium kontaminiert sind. Andere Nuklide, die auf eingelagerte Abfälle zurückzuführen wären, konnten nicht nachgewiesen werden. Nachgewiesene natürliche Radionuklide sind auf Lösungen, die aus dem Deckgebirge dem Grubengebäude zutreten, zurückzuführen.

Die gefassten Salzlösungen unterhalb der 700-m-Sohle ergeben ein anderes Bild. Die Tritiumkonzentrationen in den Salzlösungen im Nahbereich der Einlagerungskammern zeigen die höchsten Aktivitätsgehalte und werden im Wesentlichen durch die Kammeratmosphäre der Einlagerungskammern beeinflusst. In den Fassungsstellen direkt vor den Einlagerungskammern ist Cs-137 in sehr unterschiedlichen Konzentrationen nachzuweisen. Für Tritium konnten maximale Konzentrationen von bis zu 7 MBq/l und für Cs-137 von bis zu 100 kBq/l bestimmt werden. Für andere Nuklide, die auf eingelagerte Abfälle zurückzuführen sind, können Konzentrationen bis zu einigen Hundert Bq/l in den Lösungen bestimmt werden. Die Radium- und Thoriumisotope liegen in niedrigen Konzentrationen vor und sind in der Regel

natürlichen Ursprungs. An einigen Messstellen vor den Einlagerungskammern konnten auch sehr geringe Konzentrationen von Plutonium- und Americium-Isotopen bestimmt werden.

Zu den zuletzt in 2017 durchgeführten Charakterisierungsmessungen des BfS [6] ist zusammenfassend festzuhalten, dass sich die radiologische Situation an den Messstellen der Salzlösungen unter Tage, bezogen auf die vorgehenden Untersuchungen, nicht wesentlich verändert hat. Die Auswertung ergab darüber hinaus keine Hinweise, dass die Verwendung der Radionuklide Cs-137 und H-3 als Leitnuklide geändert werden muss.

3 Probenahmestellen und Messprogramm

3.1 Vorbemerkung

Die hauptsächlichen Probenahmen wurden am 16. und 17. September 2019 gemeinsam mit Mitarbeitern der Schachtanlage Asse II und des BfS durchgeführt, wobei insgesamt 31 Proben genommen wurden. Nachfolgend wurden am 26.9.2019 vom AG eine Salzlösungsprobe aus der Schachtanlage Asse II und jeweils eine Probe aus dem Schacht Asse 1 und Schacht Asse 3 dem AN für Analysen bereitgestellt. In dem Kapitel 3.2 sind die Probenahmestellen näher spezifiziert, wobei sowohl ein tabellarischer Überblick als auch die Probennahmeorte in entsprechenden Grundrissausschnitten angegeben sind. In den Kapiteln 3.3 und 3.4 sind die Umfänge der radiologischen und chemischen Untersuchungen spezifiziert.

3.2 Überblick über die Probenahmestellen

Eine Übersicht über Probenahmestellen liefert die Tabelle 1. Sie enthält das Datum der jeweiligen Probenahme und die Bezeichnungen der Entnahmestellen. Probenahmestellen für die Salzlösungen sind aus praktischen Gründen von 1 bis 32 durchnummeriert und die 2 Proben aus den Schächten Asse 1 und Asse 3 mit S1 und S3 bezeichnet. Die Probennahmen wurden größtenteils auch durch Fotos dokumentiert. Eine diesbezügliche Übersicht liefert die Fotodokumentation in Anhang A. In der Tabelle 1 sind die zu den Probennahmestellen gehörenden Nummern der Fotos (s. Anhang A) aufgeführt.

In den Abbildungen 1 bis 14 sind die Messstellen die im Jahre 2019 beprobt wurden auf den jeweiligen Grundrissausschnitten der 490-m-, 553-m-, 574-m-, 658-m-, 725-m-, 750-m-(getrennt nach südlichem, östlichem und nördlichem Grubenbereich), 925-m-, 975-m-Sohlen der Schachtanlage Asse II dargestellt. Die Darstellungen wurden durch die Schachtanlage Asse II zur Verfügung gestellt.

Die Messstellen L658020, P750042, P750161, P750162 und P750178 konnten entgegen der ursprünglichen Planung nicht beprobt werden, da sie im Probenahmezeitraum trocken gefallen waren. Der Sammelbehälter für die Probe L658008-S1 war zum Zeitpunkt der Probenahme leer. Diese Probenahmestelle wurde am 26.09.2019 durch Mitarbeiter der Schachtanlage Asse II beprobt und die Probe IAF zugeschickt.

Tabelle 1: Übersicht über die jeweiligen Bild-Nummern zu den Probe-Nummern mit Datum der Probenahme und Zuordnung zu den Entnahmestellen der Asse.

Lfd. Probe- Nr.	Datum der Pro- benahme	Entnahmestelle Asse	Sohle	Bild-Nr.
1	16.09.2019	P 750071	750 m	1, 2
2	16.09.2019	P 750043	750 m	3, 4
3	16.09.2019	P 750006	750 m	5, 6
4	16.09.2019	P 750084	750 m	7
5	16.09.2019	L 975008	975 m	0.0.40
6	16.09.2019	L 925007	925 m	8, 9, 10
7	17.09.2019	L 725005	725 m	11, 12
8	17.09.2019	P 725010	725 m	13, 14, 15
9	17.09.2019	P 725004	725 m	16, 17
10	17.09.2019	P 725019	725 m	18
11	17.09.2019	P 725011	725 m	19
12	17.09.2019	P 725020	725 m	20, 21
13	17.09.2019	L 725006	725 m	22, 23
14	17.09.2019	P 725007	725 m	24, 25
15	17.09.2019	P 750010	750 m	26, 27
16	17.09.2019	P 750009	750 m	28, 29
17	17.09.2019	P 750061	750 m	30, 31
18	17.09.2019	P 750040	750 m	32, 33
19	17.09.2019	P 750148	750 m	34, 35
20	17.09.2019	P 750039	750 m	36, 37
21	18.09.2019	L 750179	750 m	38
22	18.09.2019	P 750184	750 m	39
23	18.09.2019	P 750153	750 m	40, 41
24	18.09.2019	P 750154	750 m	42, 43
25	18.09.2019	P 750185	750 m	44, 45
26	18.09.2019	P 750189	750 m	46, 47
27	18.09.2019	P 750064	750 m	48, 49
28	18.09.2019	P 750177	750 m	50, 51, 52
29	18.09.2019	L 658008	658 m	53, 54
30	18.09.2019	L 553007	553 m	55, 56
31	18.09.2019	SB3	490 m	57
32	26.09.2019	L658008-S1	658 m	kein Foto
Asse 1	19.09.2019	S1		kein Foto
Asse 3	23.09.2019	S3		kein Foto

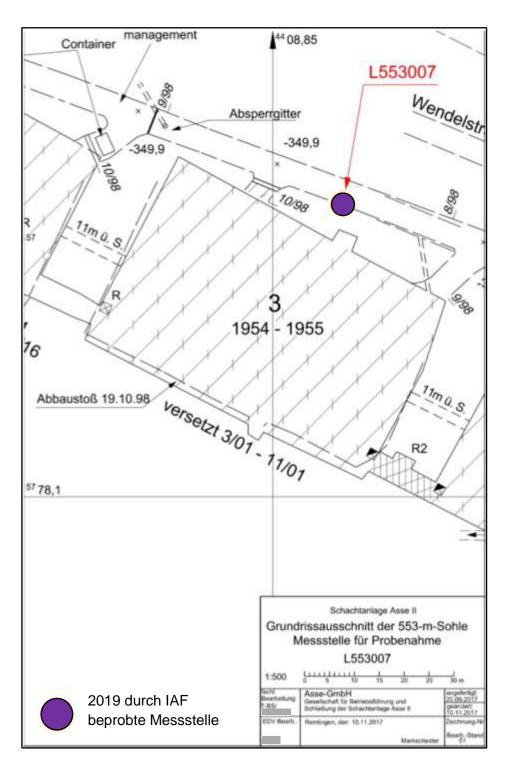


Abbildung 1: Probenahmestelle auf der 553-m-Sohle

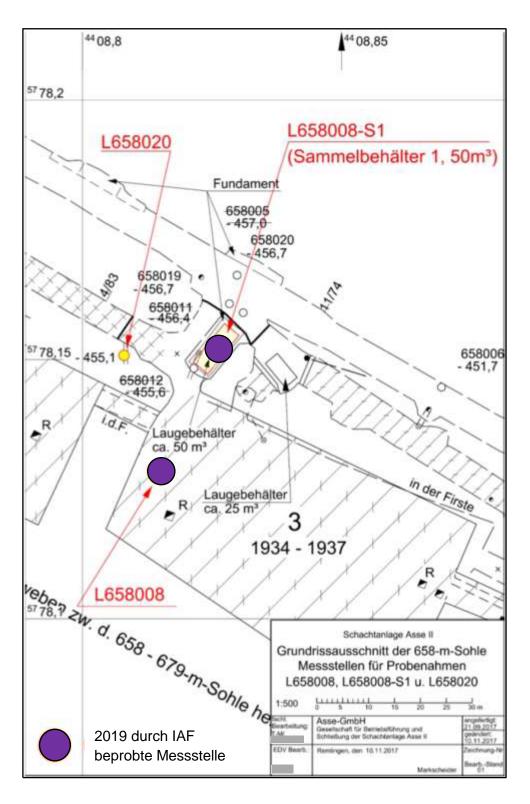


Abbildung 2: Probenahmestellen auf der 658-m-Sohle

57 78.1

P725010

P725010

P725020

P72

Abbildung 3: Probenahmestellen auf der 725-m-Sohle

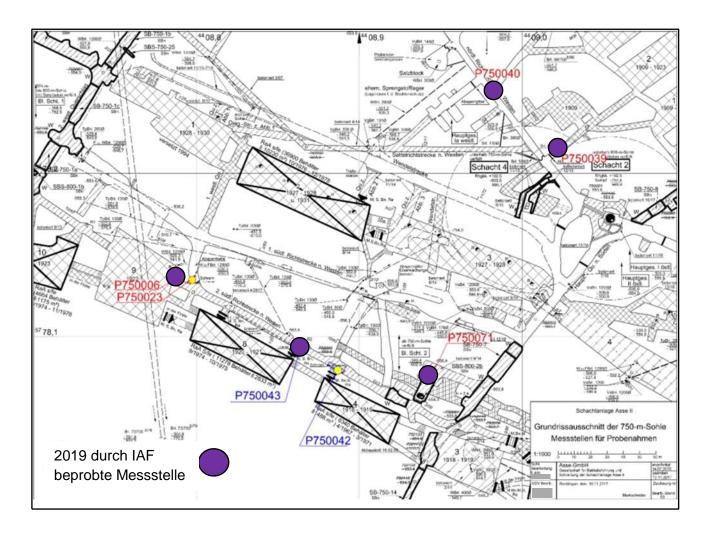


Abbildung 4: Probenahmestellen auf der 750-m-Sohle (Süd)

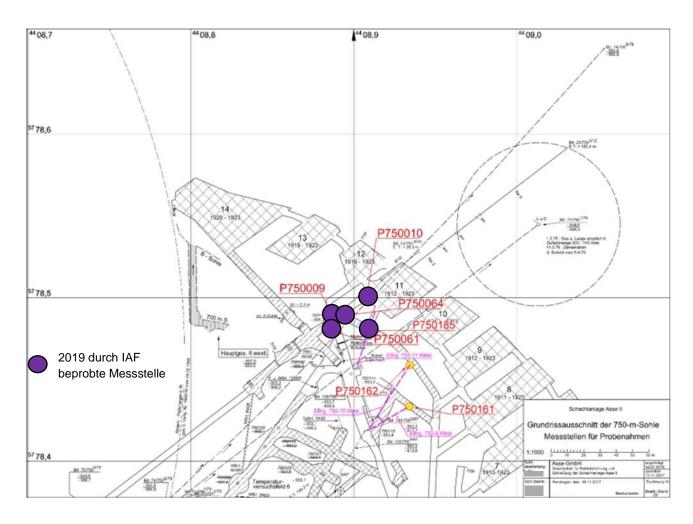


Abbildung 5: Probenahmestellen auf der 750-m-Sohle (Nord)

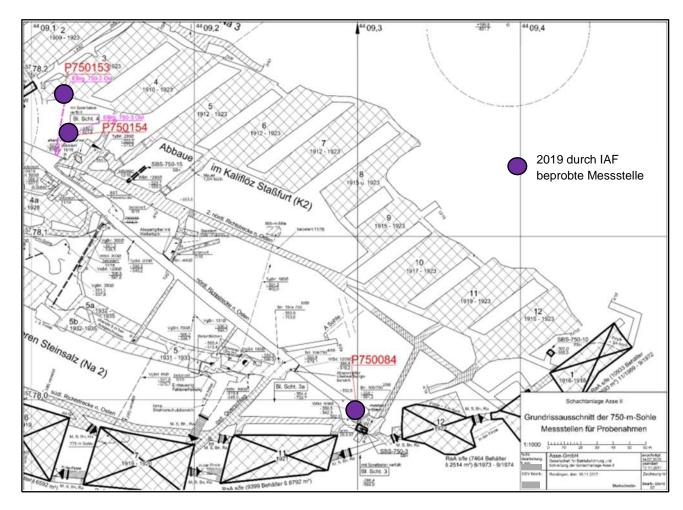


Abbildung 6: Probenahmestellen auf der 750-m-Sohle (Ost)

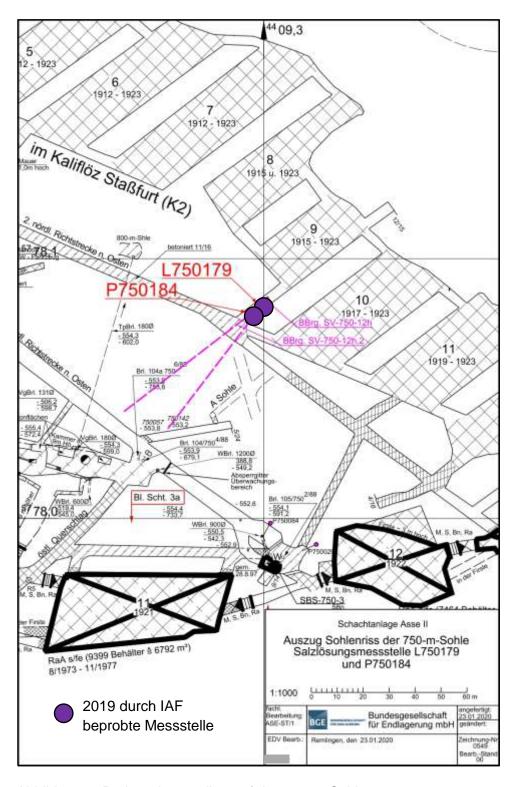


Abbildung 7: Probenahmestellen auf der 750-m-Sohle

Abbildung 8: Probenahmestelle auf der 750-m- Sohle

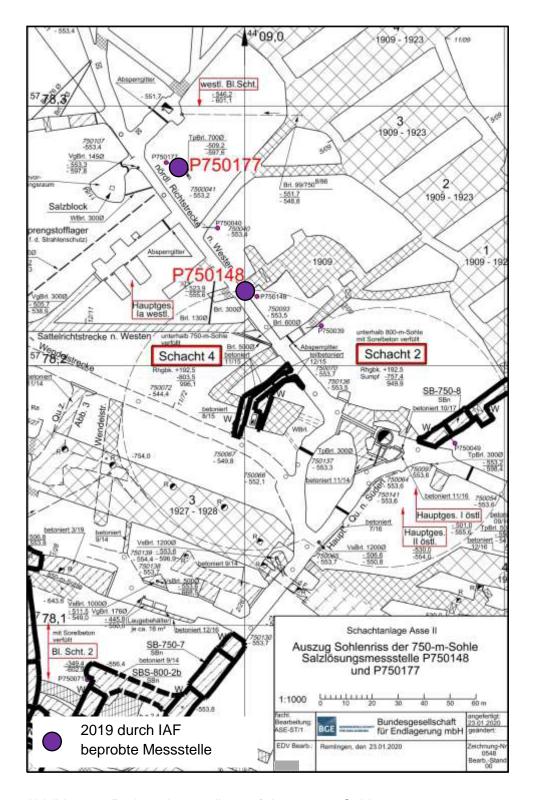


Abbildung 9: Probenahmestellen auf der 750-m- Sohle

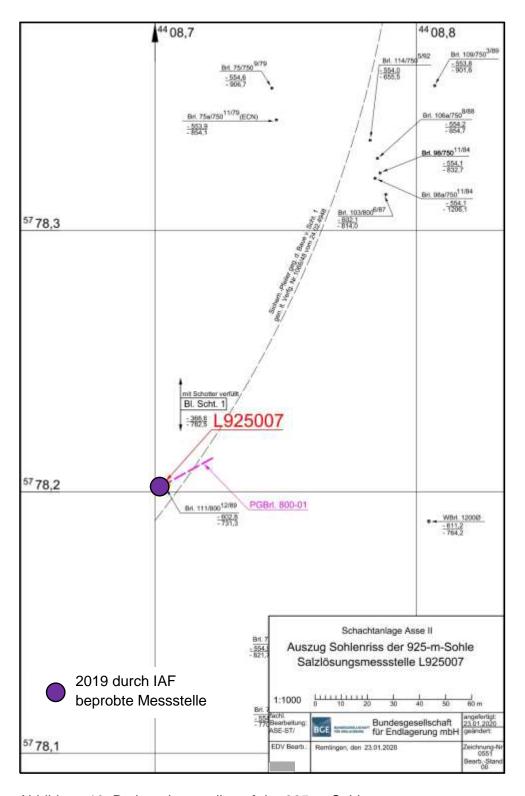


Abbildung 10: Probenahmestelle auf der 925-m-Sohle

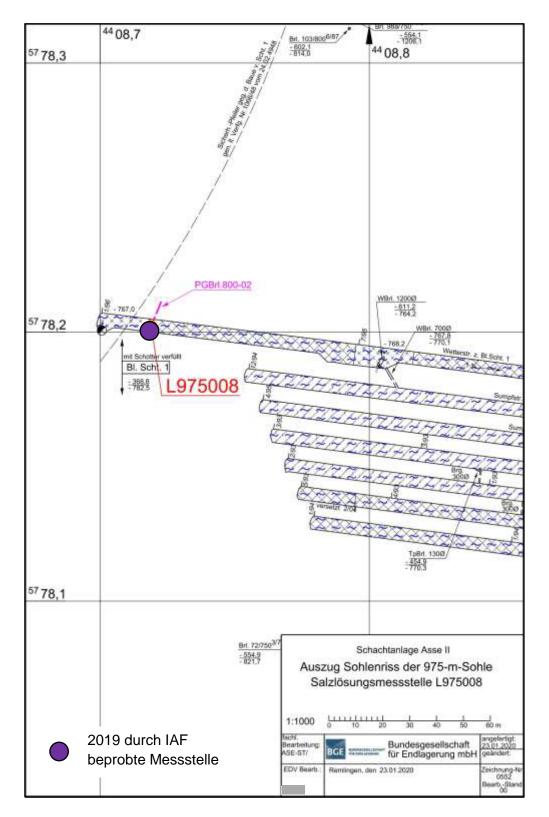


Abbildung 11: Probenahmestelle auf der 925-m-Sohle

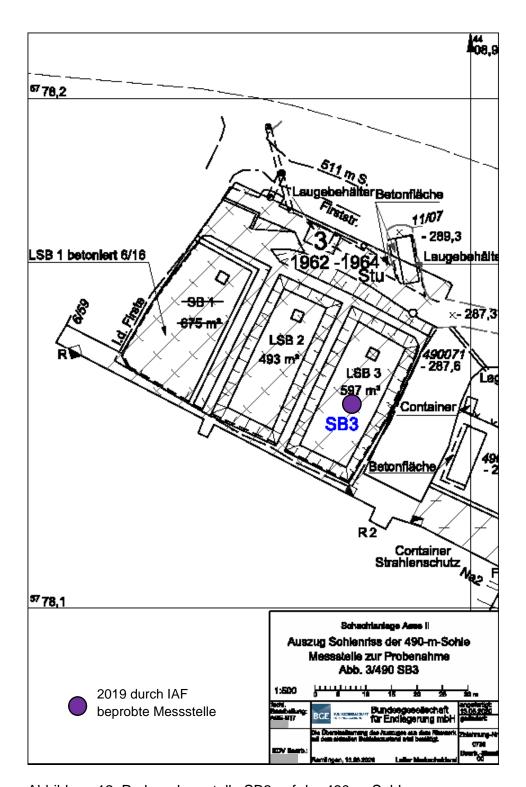


Abbildung 12: Probenahmestelle SB3 auf der 490-m-Sohle

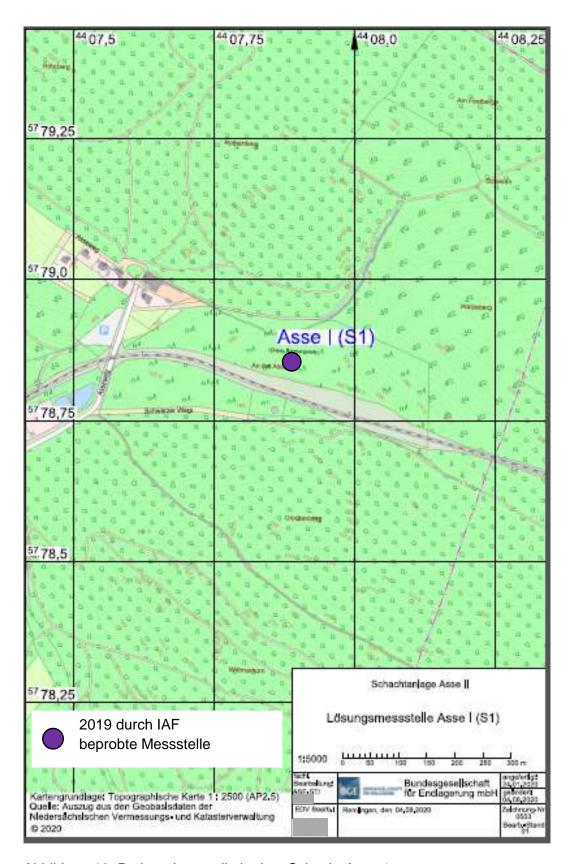


Abbildung 13: Probenahmestelle in dem Schacht Asse 1

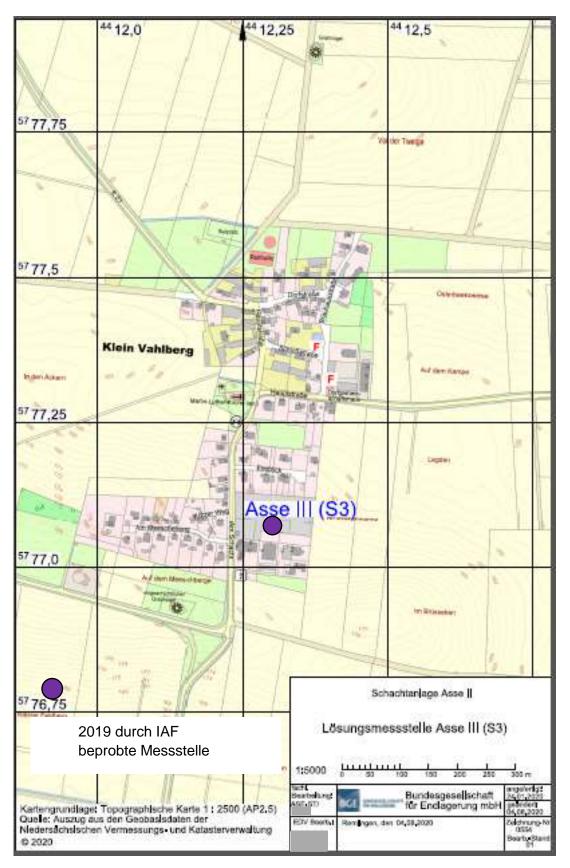


Abbildung 14: Probenahmestelle in dem Schacht Asse 3

3.3 Radiologische Untersuchungen

Nach den in der Leistungsbeschreibung des AG definierten Aufgaben sind die radiologischen Untersuchungen der Salzlösungen in akkreditierten Laboren, die über eine entsprechende Umgangsgenehmigung für radioaktive Stoffe verfügen, durchzuführen. Die im Zuge der Charakterisierungsmessungen zu ermittelnden Radionuklide sind unter Verwendung anerkannter Analyse- und Messverfahren nach aktuellem Stand von Wissenschaft und Technik zu bestimmen.

Die bislang durchgeführten Untersuchungen haben gezeigt, dass für die radioaktive Kontamination der Salzlösungen in der Schachtanlage Asse II kein einheitlicher Nuklidvektor festgelegt werden kann. Die Kontaminationssituation ist von den örtlichen Gegebenheiten abhängig und unterliegt, zumindest in einigen Bereichen der Grube, dynamischen, physikochemischen Prozessen. Es ist daher erforderlich Messverfahren mit möglichst niedrigen Nachweisgrenzen an die jeweilige Kontaminationssituation anzupassen. Die Messergebnisse werden benötigt, um Veränderungen in der radioaktiven Kontamination der Salzlösungen rechtzeitig zu erkennen und um belegen zu können, dass die Fokussierung der Routineüberwachung der Schachtanlage Asse II auf die Leitnuklide abdeckend ist.

Für die gammaspektrometrischen Untersuchungen sind hochauflösende Detektoren in einem Energiebereich von 10 keV bis 2 MeV zu verwenden. Hiermit sollen die Aktivitätskonzentrationen der natürlichen Radionuklide U-238, Ra-228, Th-228, Ra-224, Pb-210 und K-40 sowie der langlebigen künstlichen Radionuklide Co-60, Nb-94, Ag-108m, Sb-125, I-129, Ba-133, Cs-137, Eu-152, Eu-154, Am-241 und andere bereits nachgewiesene Nuklide mit niedrigen Erkennungsgrenzen und kleinen Messunsicherheiten in den Salzlösungen mit einer Dichte von bis zu 1,36 g/cm³ ermittelt werden. Für eine weitere Bewertung der Messergebnisse ist eine komplette Auswertung der Gammaspektren erforderlich. Hierbei soll für Cs-137 eine Nachweisgrenze von 0,1 Bq/l erreicht werden.

Darüber hinaus sollen radiochemische oder vergleichbare andere Verfahren zur Bestimmung der Aktivitätskonzentration der Radionuklide H-3, C-14_{gesamt}, C-14_{anorg}, Ni-63, Sr-90, Tc-99, Pb-210, Po-210, Ra-226, Ra-228, U-234, U-235, U-238, Th-228, Th-230, Th-232, Pu-238, Pu-239/240 und Am-241 angewendet werden. Es sind hierbei laborerprobte chemische Aufschlussverfahren für hochsalinare Salzlösungen anzuwenden, die sich durch ausreichende Repräsentativität der untersuchten Proben und durch abgesicherte Messwerte mit geringen Erkennungsgrenzen und Messunsicherheiten sowie hohe Belastbarkeit auszeichnen. Wegen der schwierig zu analysierenden Probenmatrix (gesättigte Salzlösungen mit zum Teil sehr hohen Magnesiumgehalten, relativ hohen Kaliumkonzentrationen und hohen Cs-137-Konzentrationen) können bei schwierig zu messenden Nukliden auch Mehrfachanalysen bzw. andere Messverfahren wie z. B. ICP-MS erforderlich sein.

An einigen Messstellen sind Salzlösungen hinsichtlich ihres Gehaltes an C-14 zu untersuchen, wobei sowohl die Gesamt-C-14-Aktivitätskonzentration als auch die des anorganisch gebundenen C-14 zu bestimmen sind. Es sind hierfür laborerprobte chemische Aufschlussverfahren für die hochsalinaren Salzlösungen anzuwenden, die sich durch ausreichende Repräsentativität der untersuchten Proben und durch abgesicherte Messwerte mit geringen Erkennungsgrenzen und kleinen Messunsicherheiten sowie hohe Belastbarkeit auszeichnen.

Es ist bekannt, dass volatile radioaktive Stoffe aus den eingelagerten Gebinden entweichen und sich über die Luft im Grubengebäude verteilen. Die in der Luft vorhanden Nuklide wie z.B. H-3 oder Rn-222 können dann über unterschiedliche physikalische Wechselwirkungen

von den Salzlösungen aufgenommen, aber auch wieder abgegeben werden. An einigen ausgewählten Messstellen sollen daher die Rn-222-Aktivitätskonzentrationen, die von der Grubenluft in den Salzlösungen akkumuliert wurden, zum Zeitpunkt der Probenahme bestimmt werden. Eine Methode zur Bestimmung der Rn-222-Aktivitätskonzentration in Salzlösungen beruht z. B. auf der teilweisen Entemanierung der Salzlösungen und Ermittlung des Verteilungsgleichgewichtes von Radon zwischen Luft und Salzlösung.

Zur Absicherung der angewendeten Messverfahren ist die Qualität der Messergebnisse nach folgenden Methoden zu prüfen und zu dokumentieren:

- Vergleich von gammaspektrometrischen und radiochemischen Messwerten
- Doppelbestimmungen bei Anwendung radiochemisch ermittelten Verfahren
- Vergleichsmessungen mit anderen Messverfahren oder Laboren

Je nach angewandter Messmethode müssen für ausgewählte Nuklide über eine bestimmte Anzahl von Stichproben qualitätssichernde Messungen durchgeführt werden. In der Tabelle 2 sind die zu analysierenden Radionuklide und die verwendeten Bestimmungsmethoden aufgeführt. Die probenspezifische Ermittlung der Erkennungs- und Nachweisgrenzen erfolgt für jede Messung nach DIN ISO 11929.

Tabelle 2: Übersicht über die zu bestimmenden Radionuklide in den Salzlösungen der Schachtanlage Asse II

Radionuklid	Bestimmungsmethode
K-40	Gammaspektrometrie, Direktmessung
Co-60	Gammaspektrometrie, Direktmessung
Nb-94	Gammaspektrometrie, Direktmessung
Ag-108m	Gammaspektrometrie, Direktmessung
Sb-125	Gammaspektrometrie, Direktmessung
I-129	Gammaspektrometrie, Direktmessung
Ba-133	Gammaspektrometrie, Direktmessung
Cs-137	Gammaspektrometrie, Direktmessung
Eu-152	Gammaspektrometrie, Direktmessung
Eu-154	Gammaspektrometrie, Direktmessung
Ra-226	Gammaspektrometrie nach Mitfällung
	an Bariumsulfat und Messung der Rn-222-Folgeprodukte
Ra-228	Gammaspektrometrie nach Mitfällung an Bariumsulfat
Ra-224	Gammaspektrometrie, Direktmessung des
	Folgeprodukts Pb-212
Pb-210	LSC nach Mitfällung und extraktionschromatographischer Trennung
Po-210	Alphaspektrometrie nach spontaner Abscheidung
	an Ni-Scheiben
Th-232, Th-230, Th-	Alphaspektrometrie nach Mitfällung und extraktions-
228	chromatographischer Trennung
U-238, U-235, U-234	Alphaspektrometrie nach Mitfällung und extraktions-
	chromatographischer Trennung
Pu-238, Pu-239/240	Alphaspektrometrie nach Mitfällung und extraktions-
	chromatographischer Trennung
Am-241	Alphaspektrometrie
H-3	LSC nach Destillation
C-14gesamt	LSC nach Pyrolyse, Adsorption des ¹⁴ CO ₂ in Natronlauge
_	und Fällung als Bariumcarbonat
C-14anorg.	LSC nach Austreiben mit Säure, Adsorption
	des ¹⁴ CO ₂ in Natronlauge und Fällung als Bariumcarbonat
Sr-90	Low-Level Betamessung des Folgeprodukts Y-90 nach Mitfällung an
	Strontiumsulfat und extraktionschromatographischer Trennung
Tc-99	LSC nach Mitfällung und extraktionschromatographischer Trennung
Ni-63	LSC nach Mitfällung und extraktionschromatographischer Trennung

Die Tabellen 3 und 4 liefern einen Überblick die Anzahl der Messstellen und eine Übersicht über die künstlichen und natürlichen Radionuklide, die in den Salzlösungen der Messstellen der Schachtanlage Asse II und den Schächten Asse 1 und Asse 3 zu analysieren sind.

Tabelle 3: Übersicht über die zu bestimmenden künstlichen Radionuklide in den Salzlösungen der Schachtanlage Asse II und den Schächten

Nr.	Datum der	Messstelle	Gamma	H-3	C-14	C-14	Ni-63	Sr-90	Tc-99	Pu-Iso.	Am-241
	Probe	Asse			anorg.	gesamt					
1	16.09.2019	P 750071	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	16.09.2019	P 750043	Х	Х	х	Х	Х	Х	Х	х	Х
3	16.09.2019	P 750006	Х	Х	Х	Х	Х	Х			
4	16.09.2019	P 750084	Х	Х	Х	Х	Х	Х	Х	Х	Х
5	16.09.2019	L 975008	Х	Х			Х	Х			
6	16.09.2019	L 925007	Х	Х			Х	Х			
7	17.09.2019	L 725005	Х	Х							
8	17.09.2019	P 725010	Х	Х							
9	17.09.2019	P 725004	Х	Х							
10	17.09.2019	P 725019	Х	Х							
11	17.09.2019	P 725011	Х	Х							
12	17.09.2019	P 725020	Х	Х							
13	17.09.2019	L 725006	Х	Х	х	Х					
14	17.09.2019	P 725007	Х	Х							
15	17.09.2019	P 750010	Х	Х							
16	17.09.2019	P 750009	Х	Х							
17	17.09.2019	P 750061	Х	Х							
18	17.09.2019	P 750040	Х	Х							
19	17.09.2019	P 750148	Х	Х							
20	17.09.2019	P 750039	Х	Х							
21	18.09.2019	L 750179	Х	Х							
22	18.09.2019	P 750184	Х	Х							
23	18.09.2019	P 750153	Х	Х							
24	18.09.2019	P 750154	Х	Х							
25	18.09.2019	P 750185	Х	Х							
26	18.09.2019	P 750189	Х	Х							
27	18.09.2019	P 750064	Х	Х							
28	18.09.2019	P 750177	Х	Х							
29	18.09.2019	L 658008	Х	Х	Х	Х		Х			
30	18.09.2019	L 553007	Х	Х							
31	18.09.2019	SB3	Х	Х							
32	26.09.2019	L658008-S1	Х	Х							
Asse 1	19.09.2019	S1	Х	Х	Х	Х		Х			
Asse 3	23.09.2019	S3	Х	Х	Х	Х		Х			
		Analysen	34	34	8	8	6	9	3	3	3

Tabelle 4: Wie Tabelle 3, jedoch für die natürlichen Radionuklide

Nr.	Datum der	Messstelle	Po-210	Pb-210	Ra-226	Ra-228	U-Iso.	Th-Iso.
	Probe	Asse						
1	16.09.2019	P 750071	Х	Х	Х	Х	Х	Х
2	16.09.2019	P 750043	Х	Х	Х	Х	Х	Х
3	16.09.2019	P 750006						
4	16.09.2019	P 750084	Х	Х	Х	Х	Х	Х
5	16.09.2019	L 975008	Х	Х	Х	Х	Х	Х
6	16.09.2019	L 925007	Х	Х	Χ	Х	Х	Х
7	17.09.2019	L 725005			Х	Х	Х	
8	17.09.2019	P 725010			Х	Х	Х	
9	17.09.2019	P 725004			Х	Х	Х	
10	17.09.2019	P 725019	Х	Х	Х	Х	Х	Х
11	17.09.2019	P 725011			Х	Х	Х	Х
12	17.09.2019	P 725020			Х	Х	Х	Х
13	17.09.2019	L 725006			Х	Х	Х	Х
14	17.09.2019	P 725007			Χ	Х	Х	
15	17.09.2019	P 750010	Х	Х	Х	Х	Х	Х
16	17.09.2019	P 750009	Х	Х	Х	Х	Х	Х
17	17.09.2019	P 750061	Х	Х	Х	Х	Х	Х
18	17.09.2019	P 750040	Х	Х	Х	Х	Х	Х
19	17.09.2019	P 750148						
20	17.09.2019	P 750039						
21	18.09.2019	L 750179	Х	Х	Х	Х	Х	Х
22	18.09.2019	P 750184	Х	Х	Х	Х	Х	Х
23	18.09.2019	P 750153	Х	Х	Х	Х	Х	
24	18.09.2019	P 750154	Х	Х	Х	Х	Х	
25	18.09.2019	P 750185	Х	Х	Х	Х	Х	Х
26	18.09.2019	P 750189	Х	Х	Х	Х	Х	Х
27	18.09.2019	P 750064	Х	Х	Х	Х	Х	Х
28	18.09.2019	P 750177	Х	Х	Х	Х	Х	
29	18.09.2019	L 658008	Х	Х	Х	Х	Х	Х
30	18.09.2019	L 553007	Х	Х	Х	Х	Х	
31	18.09.2019	SB3			Х	Х	Х	
32	26.09.2019	L658008-S1	Х	Х	Х	Х	Х	Х
Asse 1	19.09.2019	S1	Х	Х	Х	Х	Х	Х
Asse 3	23.09.2019	S3	Х	Х	Х	Х	Х	Х
		Analysen	23	23	31	31	31	22

3.4 Chemische Untersuchungen

Die Qualität der chemischen Analysen der wässrigen Salzlösungen muss, wie die radiologischen Messungen, dem aktuellen Stand von Wissenschaft und Technik entsprechen. Die Prüfberichte müssen gemäß den gültigen Gestaltungsrichtlinien des AG erstellt werden. Den Analyseprotokollen mit den gemessenen Parametern der Salzlösungen sind die Bestimmungsgrenzen¹und die Messunsicherheiten der analysierten Komponenten beizufügen.

Bei den Probennahmen sollen standardmäßig ca. 250 ml Probenvolumen pro Messstelle genommen werden. Hierfür ist eine vollständige geochemische Analyse der Salzlösungen durchzuführen. In Ausnahmefällen können aufgrund eines sehr geringen Zulaufes an einigen Messstellen Probennahmen von nur 10 - 50 ml durchgeführt werden. In diesen Fällen wird in Absprache zwischen AG und AN festgelegt, welche Analysen für dieses reduzierte Probenvolumen noch möglich sind. Während der Probenentnahme sind durch den AG die nachfolgend aufgelisteten Parameter zu der wässrigen Salzlösung zu messen und dem AN zur Verfügung zu stellen

- in-situ-Dichte (g/cm³),
- in-situ Temperatur (°C),
- in-situ-Leitfähigkeit (mS/cm),
- in-situ pH-Wert
- in-situ-Viskosität (mPa•s)²

Zur Kontrolle der in-situ-Dichte sollen von den Salzlösungen im Labor die theoretischen Dichten unter Angabe der Labortemperatur ermittelt werden. Die chemischen Parameter sind in der Tabelle 5 zusammengestellt.

¹ Die Bestimmungsgrenzen der chemischen Analysenergebnisse entsprechen in etwa der Nachweisgrenze bei den radiologischen Messungen.

² Für die in-situ-Viskosität konnte kein belastbarer Wert angegeben werden, da sich nach den Probennahmen herausstellte, dass das Messgerät defekt war.

Tabelle 5: Analyse von chemischen Parametern in Salzlösungen der Schachtanlage Asse II

Proben- anzahl	Zu analysierende chemische Parameter
34	Chemische Vollanalyse der Hauptkomponenten (Na, K, Mg, Ca, Sulfat, Chlorid) in mg/l, in mol/1000mol H ₂ O und in g/100g
34	Chemische Vollanalyse der Nebenkomponenten (Bromid, NH ₄ ⁺ ,Nitrat) in mg/l und in g/100g
34	Chemische Vollanalyse der Spurenbestandteile (Li, B, P, Al, Gesamt-Fe, Mn, Sr, Rb, Cs, Ba, Cr, Co, Cd, Cu, Ni, Zn, Pb, Si, Hg) in mg/l und in µg/g
34	Bestimmung der Dichte in g/cm³ an Originallösungen im Überwachungsbereich
32	CO ₂ , CO ₃ ²⁻ , HCO ₃ durch Titration an Originallösungen
33	Bestimmung von Fe ²⁺ , Fe ³⁺ an Originallösungen
20	Chemische Analyse des Kalium-Hexacyanoferrat (K ₄ Fe(CN) ₆ in mg/l
33	Berechnung der fiktiven Komponenten (NaCl, KCl, MgCl ₂ , Na ₂ SO ₄ , K ₂ SO ₄ , MgSO ₄ , Mg ₃ B ₈ O ₁₅ , CaSO ₄ , CaCl ₂ , H ₂ O) in g/l

4 Durchführung der Probenahme

Die Probenahmen erfolgten vom 16. bis 18.09.2019 gemäß den Empfehlungen der Arbeitsanweisungen für die Probeentnahme von salzhaltigen Lösungen in der Schachtanlage Asse II im Zusammenhang mit den Charakterisierungsmessungen [7]. An den Probenahmen waren Mitarbeiter der Schachtanlage Asse, des Bundesamtes für Strahlenschutz und der Firma IAF beteiligt.

Je nach Messstelle wurden die Proben durch Pumpen oder Schöpfen entnommen. An manchen Messstellen mussten aufgrund eines geringen Anfalls von Salzlösungen Sammelproben über einen längeren Zeitraum entnommen werden. In der Regel wurde zunächst eine Probe für die Eigenanalytik der Schachtanlage Asse II entnommen und daran anschließend die Probe für die Charakterisierungsmessungen. Im Rahmen der Probennahmen wurden die In-Situ-Parameter Dichte, pH-Wert, Leitfähigkeit und Temperatur bestimmt. Diese sind in der Tabelle 6 enthalten. Eine Fotodokumentation der Probenahme ist in dem Anhang A zusammengestellt.

Tabelle 6: Chemisch-physikalische Parameter der Salzlösungen während der Probenahme

Lfd. Probe- Nr.	Datum der Probe- nahme	Entnahme- stelle	Dichte [g/cm³]	Leitfähig- keit [mS/cm]	pH-Wert	Tempera- tur [°C]
1	16.09.2019	P 750071	1,3209	100,0	5,8	34,0
2	16.09.2019	P 750043	1,2790	146,8	6,5	34,8
3	16.09.2019	P 750006	1,2658	147,3	6,8	33,5
4	16.09.2019	P 750084	1,3160	101,2	5,5	32,4
5	16.09.2019	L 975008	1,3043	107,8	5,0	37,2
6	16.09.2019	L 925007	1,2934	115,4	5,0	37,3
7	17.09.2019	L 725005	1,3621	63,4	4,6	34,9
8	17.09.2019	P 725010	1,2932	122,5	5,8	35,1
9	17.09.2019	P 725004	1,2160	219,0	7,0	35,1
10	17.09.2019	P 725019	1,2246	202,0	6,8	35,1
11	17.09.2019	P 725011	1,2538	153,8	6,3	35,1
12	17.09.2019	P 725020	1,2394	182,4	6,5	35,4
13	17.09.2019	L 725006	1,2218	213,0	7,1	35,4
14	17.09.2019	P 725007	1,2599	162,7	5,8	35,5
15	17.09.2019	P 750010	1,3291	88,1	5,2	33,3
16	17.09.2019	P 750009	1,3385	69,4	5,2	33,3
17	17.09.2019	P 750061	1,3288	93,0	5,6	33,3
18	17.09.2019	P 750040	1,308	107,4	5,4	30,6
19	17.09.2019	P 750148	1,3080	107,4	5,4	30,7
20	17.09.2019	P 750039	1,3246	87,2	5,7	30,7
21	18.09.2019	L 750179	1,3206	96,2	4,7	33,4
22	18.09.2019	P 750184	1,3210	96,7	4,5	33,4
23	18.09.2019	P 750153	1,3102	106,7	5,6	29,1
24	18.09.2019	P 750154	1,3108	110,6	5,7	29,1
25	18.09.2019	P 750185	1,3054	112,1	5,4	32,5
26	18.09.2019	P 750189	1,3042	116,0	5,7	32,5
27	18.09.2019	P 750064	1,3538	73,0	5,1	32,7
28	18.09.2019	P 750177	1,3165	105,9	5,8	34,4
29	18.09.2019	L 658008	1,2051	234,0	6,7	33,3
30	18.09.2019	L 553007	1,2853	183,0	6,9	33,2
31	18.09.2019	SB3	1,2035	234,0	7,0	30,9
32	26.09.2019	L658008-S1	1,2041	235,0	6,8	31,7

Insgesamt wurden während der 3-tägigen Probennahmen 31 der 32 zu beprobenden Salzlösungen entnommen. Nachdem wieder Lösung zugeflossen war, wurde die letzte Probe am 26.09.2019 durch Mitarbeiter der Schachtanlage Asse II genommen und der IAF übermittelt.

Alle Proben wurden zunächst vor dem Abtransport im Untertage-Labor der Schachtanlage Asse II aufbewahrt. Den stark radioaktiv kontaminierten Proben P750071, P750043 und P750084 wurde jeweils 5 Vol-% Wasser zugesetzt, um zu verhindern, dass eventuell Salze ausfallen könnten. Bei den anderen Proben wurde auf eine solche Verdünnung unmittelbar nach den Probennahmen verzichtet.

Aliquote für die chemischen Untersuchungen und die Qualitätskontrollmessungen durch das BfS wurden entweder direkt im Anschluss an die Probennahmen oder erst im Labor der IAF gebildet.

5 Messverfahren der chemischen und radiologischen Untersuchungen

5.1 Vorbemerkung

Gemäß der Leistungsbeschreibung des AG sind chemische und radiologische Untersuchungen der Salzlösungen durchzuführen. Die chemischen Analysen der Proben wurden durch die

K-UTEC AG Salt Technologies und die Technischen Universität Clausthal als Unterauftragnehmer durchgeführt. Die Messverfahren werden im Kapitel 5.2 kurz aufgelistet. Die radiologischen Untersuchungen wurden ausschließlich durch die IAF durchgeführt. Die angewendeten Messverfahren sind im Kapitel 5.3 zusammenfassend beschrieben.

5.2 Messverfahren zur chemischen Analyse

Zur chemischen Analyse wurden von der Firma K-UTEC die nachfolgend aufgelisteten Messverfahren eingesetzt.

- Flammenfotometrie: Na, K,
- Komplexometrische Bestimmung: Mg
- Potentiometrie: Chlorid
- Gravimetrie: Sulfat
- Volumetrie (DIN ISO 10693): Carbonat
- TOC/DOC-Analysator (DIN EN 1484-H 3): CO2
- Photometrie (DIN 38506-E1): Fe(II/III)
- ICP-OES: Ca, Mn, Li, Sr, Al, Ba, Pb, Cd, Cr, Co, Cu, Ni, Zn, B, P
- Atomabsorbtionsspektrometrie: Hg
- Destillation und Acidimetrie: Ammonium
- Photometrie: Nitrat
- Photometrie (DIN 38405-D13): Kaliumhexacyanoferrat

Die Messverfahren der TU Clausthal beinhalteten:

- Ionenchromatographie (IC) für die Elemente Na, K, Ca, Mg sowie für Bromid, Sulfat, Ammonium und Nitrat,
- ICP-MS für die Elemente Li, B, Al, Fe, Mn, Cu, Zn, Br, Rb, Sr, Cd, Cs, Ba, Pb, U, Si, Cr, Ni und Co und Phosphat

Eine Diskussion der Ergebnisse der chemischen Analysen wird im Kapitel 6 gegeben. Weitere Informationen zu den pysikalisch-chemischen Messergebnissen und -verfahren sind in den Anhängen C und D enthalten.

5.3 Messverfahren zur radiologischen Analyse

5.3.1 Verfahren zur gammaspektrometrischen Bestimmung

Die IAF verfügt über eine Akkreditierung der DAkkS [8] zur Durchführung von gammaspektrometrischen Untersuchungen. Das speziell angewendete gammaspektrometrische Verfahren ist auch für die Bestimmung der Aktivitätskonzentrationen von künstlichen und natürlichen Radionukliden in salinaren Lösungen (Salzlösungen). Die akkreditierten Messverfahren der IAF [8] zu gammaspektrometrischen und radiochemischen Untersuchungen sind in Übereinstimmung mit den vom BfS benutzten Analysemethoden. Diese sind im Anhang C des BfS Berichts von 2015 [5] zur "Beprobung und Analyse von Salzlösungen und Grundwässern 2015 - Schachtanlage Asse II" dokumentiert worden (s.a. [6]).

Zur Erreichung der geforderten Nachweisgrenze betrug z.B. die Messdauer für Salzlösungen in der 0,45-Liter-Marinelli-Geometrie etwa 126000 Sekunden (35 Stunden). Außer den natürlichen Radionukliden U-238, Ra-228, Th-228, Ra-224 und Pb-210 sowie K-40 wurden in den Salzlösungen und den Grundwässern auch die langlebigen künstlichen Radionuklide Co-60, Nb-94, Ag-108m, Sb-125, I-129, Ba-133, Cs-137, Eu-152 und Eu-154 untersucht.

5.3.2 Radiochemische Messverfahren

Die Aktivitätskonzentrationen von

- H-3, C-14_{gesamt}, C-14_{anorg.}, Sr-90, Tc-99,
- Pb-210, Po-210, Ra-226, Ra-228,
- U-234, U-235, U-238,
- Th-228, Th-230, Th-232,
- Pu-238, Pu-239/Pu-240 und Am-241

wurden entsprechend Leistungsbeschreibung mit radiochemische Messverfahren bestimmt. Die akkreditierten Messverfahren der IAF [8] zu den radiochemische Messverfahren sind in Übereinstimmung mit den vom BfS benutzten Analysemessmethoden. Diese sind im Anhang C des BfS Berichts von 2015 [5] zur "Beprobung und Analyse von Salzlösungen und Grundwässern 2015 - Schachtanlage Asse II" dokumentiert worden (s.a. [6]). Die Messzeiten variierten je nach Messverfahren und Aktivitätskonzentrationen der zu bestimmenden Radionuklide zwischen einigen Stunden und mehreren Tagen.

5.3.3 Qualitätssicherung

Die Qualitätssicherung der Messergebnisse erfolgte entsprechend der Akkreditierung der IAF [8] und beinhaltete nachfolgend aufgelisteten Punkte:

- Regelmäßige Analyse von Kontroll- und Blindproben zur Überwachung der Leistungsfähigkeit der eingesetzten Methoden,
- regelmäßige Wartungen und Funktionskontrollen der eingesetzten Analysengeräte
- Teilnahme an Ringversuchen und Laborvergleichsuntersuchungen,
- fortlaufende Ermittlung möglicher Fehlerquellen, sowohl technischer Art als auch bezüglich des QM-Systems (kontinuierlicher Verbesserungsprozess),
- rückverfolgbare Dokumentation für jede analysierte Probe,
- Vergleich von mit verschiedenen Methoden ermittelten Messwerten,
- Durchführung von Doppel- bzw. Mehrfachbestimmungen.

6 Ergebnisse der chemischen Analysen

6.1 Vorbemerkung zu den chemischen Analysen

Die chemischen Analysen der sehr gering bzw. gar nicht kontaminierten Proben, die niedriger als die in der Strahlenschutzverordnung (StrlSchV) [9] definierten Freigabewerte sind, erfolgten durch die Firma K-UTEC zwischen dem 01.10.2019 bis 15.10.2019. Die übermittelten Proben wurden vom 24.10.2019 bis 13.11.2019 analysiert. Die Ergebnisse sind in den Prüfberichten 19-1925-1, 19-1926-1 und 19-2020-1 enthalten und in dem Anhang C zusammengestellt.

Die 3 Proben mit stark erhöhten radioaktiv kontaminierten Salzlösungen wurden durch das Institut für Endlagerforschung der TU Clausthal von 16.09.2019 bis 28.10.2019 analysiert. Die Ergebnisse mit den Prüfprotokollen sind in dem Anhang D dokumentiert.

Eine erste qualitative Überprüfung der Messwerte erfolgte immer durch die Ermittlung der jeweiligen Ionenbilanz. Der Ionenbilanzfehler der von der K-UTEC untersuchten Salzlösungen variierte nur zwischen -0,47 % und +0,49 %. Diese sehr geringen Abweichungen sind ein direkter Hinweis auf die ganzeinheitliche Bestimmung der einzelnen Komponenten einer Probe.

Für die drei stärker radioaktiv kontaminierten Proben, die von der TU Clausthal analysiert wurden, sind in den Prüfprotokollen keine Ionenbilanzfehler angegeben. Eine von IAF durchgeführte Überprüfung führte ebenfalls zu sehr geringen Abweichungen von -0,039 % bis 1,40 %.

6.2 Dichtebestimmung der Salzlösungen

Die Dichten der Salzlösungen wurden in-situ während der Probenahme bestimmt. In der Abbildung 15 sind die Messwerte aus den Beprobungen der Jahre 2019 und 2017 gegenübergestellt und in Abbildung 16 gegeneinander aufgetragen. Insgesamt unterscheiden sich die Messwerte für die Dichte im Jahr 2019 im Vergleich zu 2017 zumeist nur sehr wenig. Jedoch bei den Probenahmestellen L725005 und P750064 sind geringe Anstiege bis ca. 3% festzustellen. Diese sind möglicherweise auch auf die Verdunstungseffekte bei den sehr geringen Fassungsraten (0,2 Liter/Tag für L725005 und 1,4 Liter/Tag für P750064) zurückzuführen.

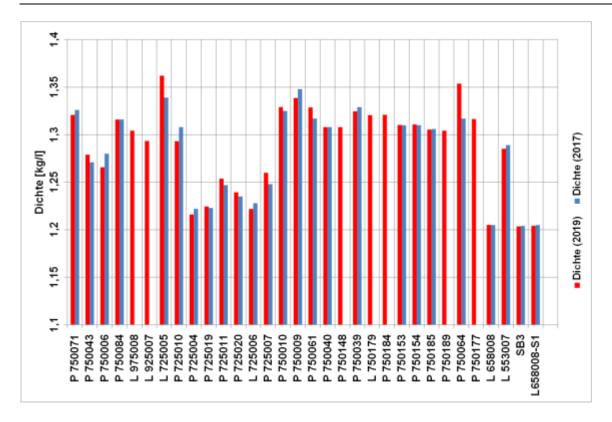


Abbildung 15: Vergleich der Dichte der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017

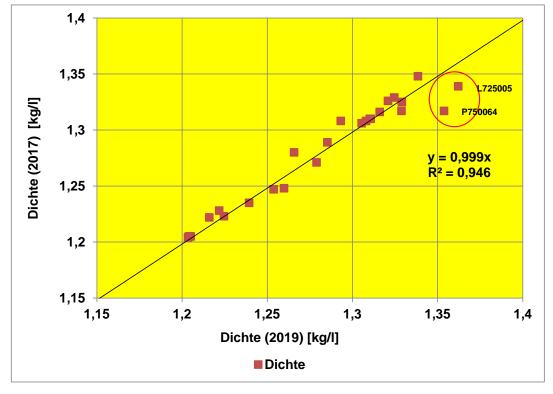


Abbildung 16: Vergleich der Dichten der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Dichteänderungen besonders gekennzeichnet sind.

6.3 Natrium

In der Abbildung 17 sind die Natriummesswerte aus den Beprobungen der Jahre 2019 und 2017 gegenübergestellt und in Abbildung 18 gegeneinander aufgetragen. In der überwiegenden Anzahl der Fälle haben sich die Natriumkonzentrationen in den Messstellen in 2019, verglichen mit denen aus 2017, kaum verändert. Auf der 725 m-Sohle wurden jedoch bei einigen Proben merkliche Natriumkonzentrationsveränderungen festgestellt. Bei Probe P725007 ist beispielsweise ein Rückgang um 28% (von 64000 auf 45800 mg/l) zu verzeichnen. Damit setzt sich der bisherige Trend fort (Rückgang der Konzentration von 81000 mg/l im Jahr 2015 [5] auf 64000 mg/l im Jahr 2017 [6]). Der im gleichen Zeitraum auftretende kontinuierliche Anstieg der Magnesiumkonzentrationen (siehe Kapitel 6.5) deutet auf eine grundlegende Verschiebung der Mineralienzusammensetzung hin, die möglicherweise auf Veränderungen in den jeweiligen Fassungsraten, die auch die Verdunstungsprozesse und damit verknüpften Löslichkeitsgleichgewicht der unterschiedlichen Salze mehr oder minder stark beeinflussen.

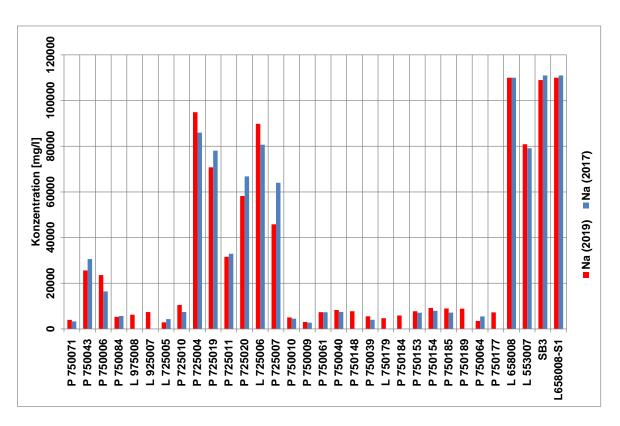


Abbildung 17: Natriumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017

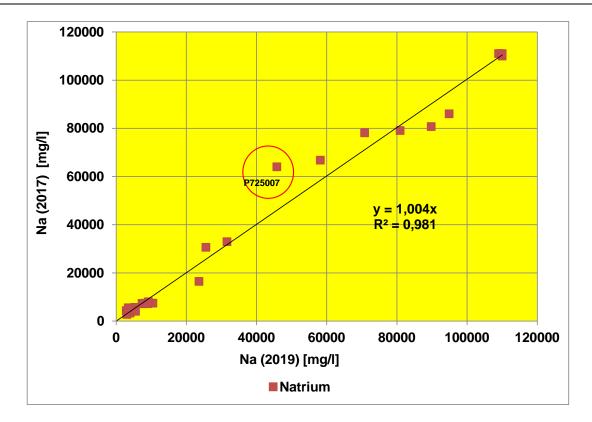


Abbildung 18: Vergleich der Natriumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind.

6.4 Kalium

In der Abbildung 19 sind die Kaliumkonzentrationen aus den Beprobungen der Jahre 2019 und 2017 gegenübergestellt und in Abbildung 20 gegeneinander aufgetragen. An den meisten Messstellen konnten bei den Kaliumkonzentrationen in 2019 insgesamt nur kleinere Veränderungen gegenüber 2017 festgestellt werden. Auffällig ist jedoch der deutliche Konzentrationsrückgang bei den Messstellen L725005 (-70%) und P750064 (-74%), sowie ein leichter Anstieg bei P750043 (+12%).

Bei Messstelle L725005 wurde in den Jahren 2009 bis 2013 eine vergleichsweise konstante Kaliumkonzentration in der Größenordnung von ca. 1000 mg/l ermittelt. Im Jahr 2015 wurde ein sprunghafter Anstieg auf 30900 mg/l festgestellt. Seitdem nimmt die Konzentration wieder ab (4890 mg/l im Jahr 2017 und nunmehr 1490 mg/l) und nähert sich damit wieder den ursprünglichen Werten an. Gleichzeitig mit dem Rückgang der Kaliumkonzentration nimmt auch in schwächerem Maße die Konzentration von Natrium und Sulfat ab, während die Konzentrationen von Magnesium und Chlorid etwas ansteigen. Möglicherweise könnten dafür bauliche Veränderungen im Fassungssystem als Ursache in Betracht gezogen werden.

Bei Messstelle P750064 ist neben der Abnahme der Kaliumkonzentration auch ein leichter Rückgang der Natriumkonzentration festzustellen. Im Gegenzug steigt die Magnesiumkonzentration an. Da auch an dieser Messstelle nur eine geringe Fassungsrate von etwa 1 Liter/Tag vorliegt, könnten hierbei Verdunstungseffekte und die damit verknüpften Verschiebung der entsprechenden Löslichkeitsgleichgewichte eine Rolle spielen.

Die Messstellen P750043 und P750044 wurden zu einer Messstelle, die weiterhin mit P750043 bezeichnet wird, zusammengefasst. Die zwischen den Jahren 2019 und 2017 fest-

gestellten Konzentrationsunterschiede bei Kalium könnten wahrscheinlich auf diese bauliche Veränderung zurückgeführt werden.

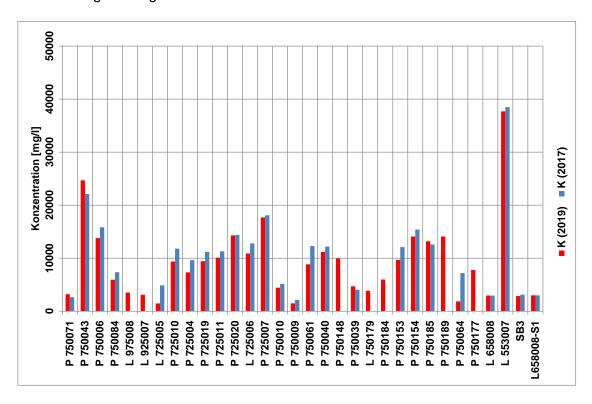


Abbildung 19: Vergleich der Kaliumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017

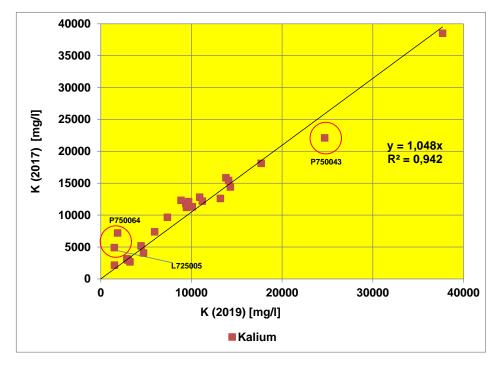


Abbildung 20: Vergleich der Kaliumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind.

Radiologische Gutachten Consulting

6.5 Magnesium

In der Abbildung 21 sind die Magnesiumkonzentrationen aus den Beprobungen der Jahre 2019 und 2017 gegenübergestellt und in Abbildung 22 gegeneinander aufgetragen. Die Magnesiumkonzentrationen sind in 2019, verglichen mit denen aus 2017, bei den meisten Probenahmestellen unverändert geblieben. Bei 3 Probennahmestellen konnten in 2019 merkliche Konzentrationsanstiege von rund 20% (L725005 und P750064) bis 35% (L725007) verzeichnet werden.

Bei Probe L725005 ist ein zunehmender Trend in der Magnesiumkonzentrationsentwicklung bereits seit 2015 zu beobachten. Die Magnesiumkonzentrationen stiegen von 82300 mg/l über 115000 mg/l in 2017 auf 134000 mg/l in 2019 an. Der gleiche Trend ist für die Lauge der Probe L725007 zu beobachten. Der Anstieg der Magnesiumkonzentration bei beiden Messstellen L725005 und P750064 ist gegenläufig zur Abnahme der Kaliumkonzentration (siehe Kapitel 6.4) und ist, wie oben ausgeführt, möglicherweise auf den Einfluss von baulichen Veränderungen und die Verschiebung von Löslichkeitsgleichgewichten zurückzuführen.

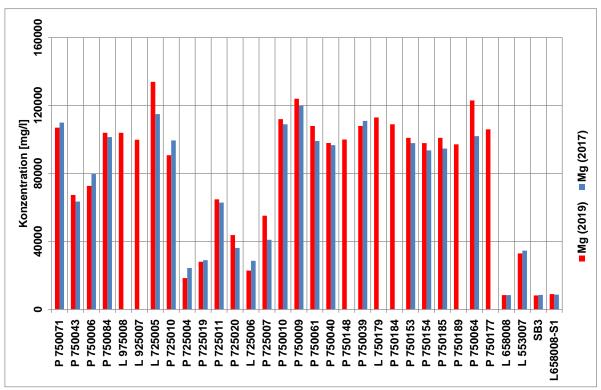


Abbildung 21: Vergleich der Magnesiumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017

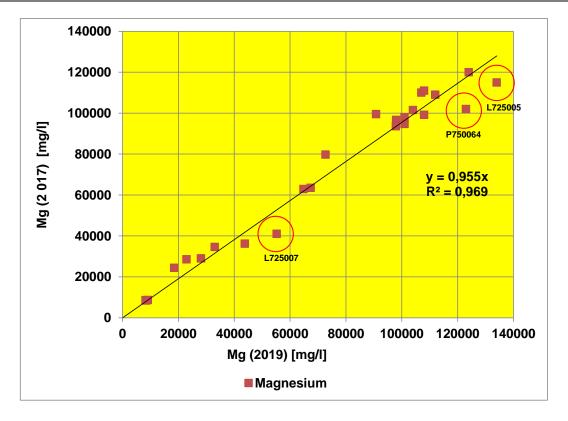


Abbildung 22: Vergleich der Magnesiumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind

6.6 Chlorid

In der Abbildung 23 sind die Chloridkonzentrationen aus den Beprobungen der Jahre 2019 und 2017 gegenübergestellt und in Abbildung 24 gegeneinander aufgetragen. Die Chloridkonzentrationen sind 2019, im Vergleich zu 2017, bei den meisten Probenahmestellen unverändert geblieben. Bei den Proben (L725005, P750009, P750064) sind jedoch merkliche Anstiege der Chloridkonzentrationen zwischen 13 und 25% festzustellen. Diese korrelieren bei den Proben L725005 und P750064 mit den ansteigenden Magnesiumkonzentrationen, bei P75009 hingegen mit einem Anstieg der Natriumkonzentration.

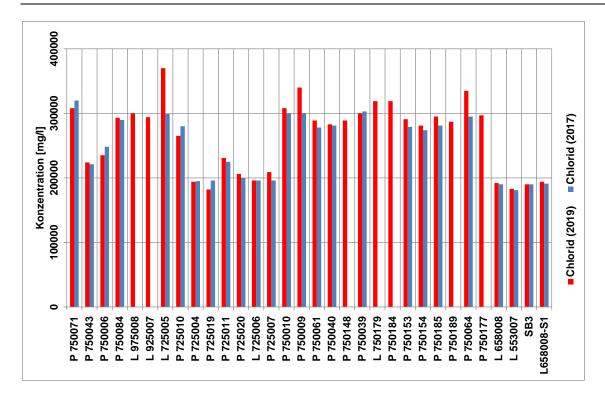


Abbildung 23: Vergleich der Chloridkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017

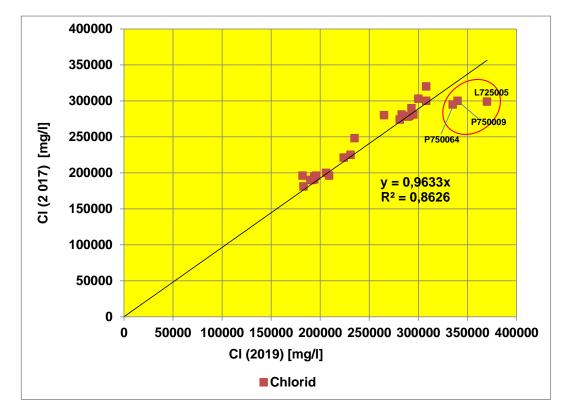


Abbildung 24: Vergleich der Chloridkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind.

6.7 Sulfat

In der Abbildung 25 sind die Sulfatkonzentrationen aus den Beprobungen der Jahre 2019 und 2017 gegenübergestellt und in Abbildung 26 gegeneinander aufgetragen. Die gemessenen Sulfatkonzentrationen in 2019 sind im Vergleich zu 2017, bei den meisten Probenahmestellen unverändert geblieben. Es werden jedoch merkliche Konzentrationsrückgänge (-32% bei L725005 und -11% L553007) sowie auch deutliche Anstiege (+38% bei P750061 und +41% bei P750064) festgestellt. Bei den Messstellen L725005 und P750064 korrelieren die Veränderungen in den Sulfatkonzentrationen mit denen der anderen Hauptionen. Die Messstelle L553007 ist generell durch hohe Sulfatkonzentrationen gekennzeichnet. Der in 2019 gemessene Wert von 87400 mg/l liegt wieder auf dem Niveau von 2015 (87100 mg/l). Diese Messstelle ist insgesamt durch schwankende und sehr niedrige Fassungsraten von < 1 Liter pro Tag gekennzeichnet, so dass die jeweils angetroffenen Konzentrationen stark von den Verdunstungsraten bestimmt werden.



Abbildung 25: Vergleich der Sulfatkonzentrationen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017

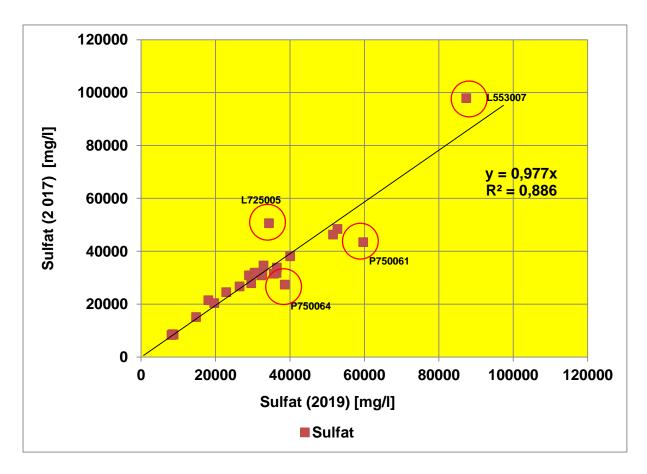


Abbildung 26: Vergleich der Sulfatkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 gegenüber 2017, wobei Messwertpaare mit merklichen Konzentrationsänderungen besonders gekennzeichnet sind

6.8 Ammonium

In der Abbildung 27 sind die Ammoniumkonzentrationen aus den Beprobungen der Jahre 2019 und 2017 gegenübergestellt. Hierbei ist zu beachten, dass nur für die Messstellen P750071, P750043 und P750084, die erhöhte radioaktive Konzentrationen aufweisen entsprechende Ergebnisse aus 2017 vorlagen. Für Messstelle P750071 konnten sowohl in 2019 als auch in 2017 keine Messwerte oberhalb der Bestimmungsgrenze angegeben werden. Die bereits 2017 festgestellte hohe Ammoniumkonzentration in der Probe P750043 wurde durch die Messungen in 2019 bestätigt. Alle anderen Proben sind durch vergleichsweise niedrige Ammoniumkonzentrationen charakterisiert.

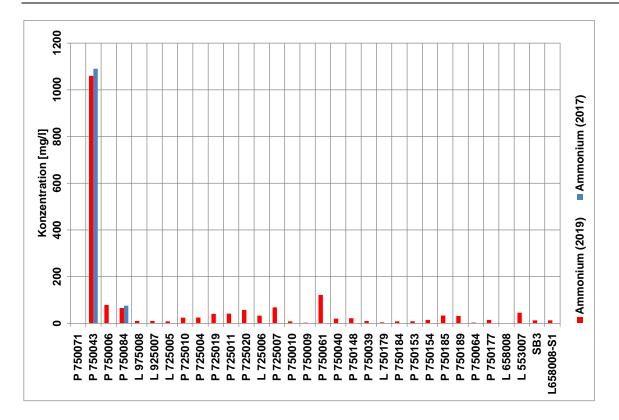


Abbildung 27: Vergleich der Ammoniumkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017

6.9 Nitrat

In der Abbildung 28 sind die Nitratkonzentrationen aus den Beprobungen der Jahre 2019 und 2017 gegenübergestellt. Auch hier lagen wie bei Ammonium nur für die Messstellen P750071, P750043 und P750084, die erhöhte radioaktive Konzentrationen aufweisen, sowie für Messstelle P750006 entsprechende Ergebnisse aus 2017 vor. Die bereits 2017 festgestellte hohe Nitratkonzentration bei der Probe P750084 wurde durch die Messungen in 2019 bestätigt. Alle anderen Proben sind durch vergleichsweise niedrige Nitratkonzentrationen charakterisiert.

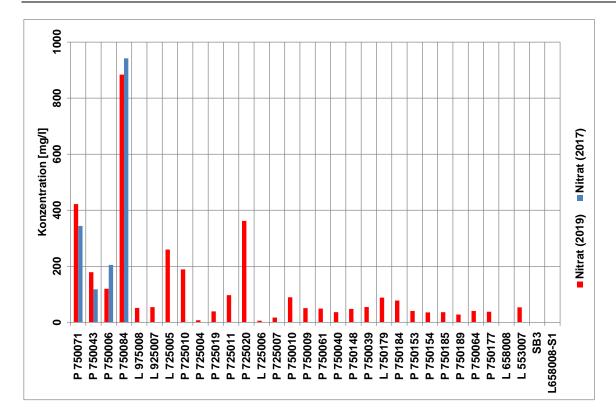


Abbildung 28: Vergleich der Nitratkonzentrationen der Salzlösungen aus der Schachtanlage Asse II bei den Beprobungen von 2019 und 2017

6.10 Ammonium-Stickstoff und Nitrat-Stickstoff

In der Abbildung 29 sind die Ammonium- und Nitrat-Messwerte aus 2019 zusammen dargestellt. Damit diese direkt miteinander verglichen werden können, erfolgte eine Umrechnung auf Ammonium-Stickstoff und Nitrat-Stickstoff. In der Zutrittslösung L658008 sind gegenwärtig noch keine Stickstoffverbindungen nachweisbar. Auch in vielen anderen Proben wurden nur geringe Konzentrationen von Ammonium- oder Nitratstickstoff ermittelt. Erhöhte Konzentrationen von Stickstoffverbindungen wurden in den Proben P750043 und P750084 nachgewiesen, die auch durch sehr stark erhöhte H-3- und Cs-137-Aktivitätskonzentrationen (s. Ergebnisse in Kapitel 7.1.2) charakterisiert sind. Die Tatsache, dass Stickstoff in der Probe P750043 als Ammonium vorliegt, könnte auf reduktive Milieubedingungen hinweisen. In der Probe P750084 ist hingegen überwiegend Nitrat-Stickstoff vorhanden, was auf oxidative Milieubedingungen hindeutet.

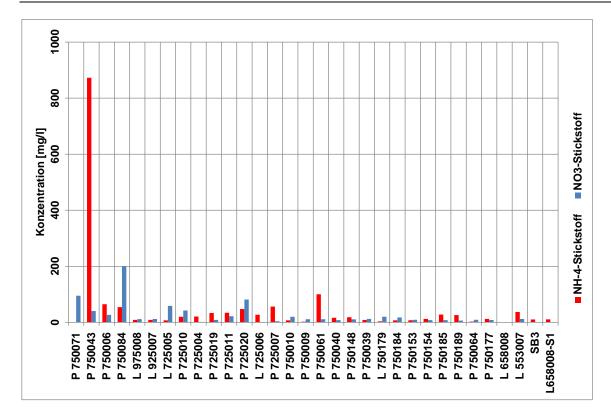


Abbildung 29: Ammonium-Stickstoff und Nitrat-Stickstoff-Messwerte aus der Charakterisierungsmessung 2019

6.11 Eisen-III und Eisen-III

In der Abbildung 30 sind die Eisenkonzentrationen dargestellt. In den Proben L725005, P725007, L750179 und P750184 dominiert der Anteil von Fe(III). In der Probe P750084, die auch durch sehr stark erhöhte H-3- und Cs-137-Aktivitätskonzentrationen (s. Ergebnisse in Kapitel 7.1.2) charakterisiert ist, liegen keine Ergebnisse zu den Oxidationsstufen vor.

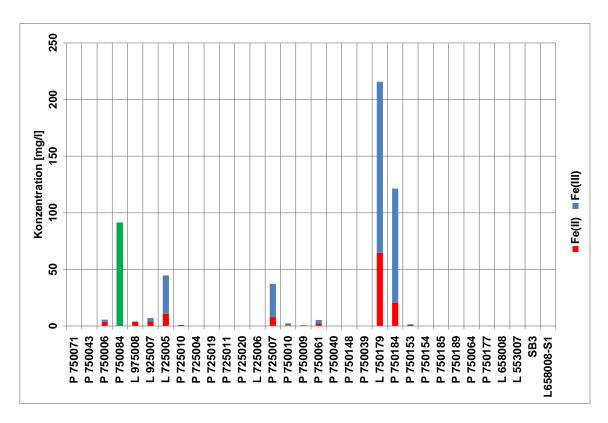


Abbildung 30: Eisen-II- und Eisen-III-Messwerte aus der Charakterisierungsmessung 2019, bei Probe P750084 (grüner Balken) liegen keine Angaben zur Oxidationsstufe vor.

6.12 Kaliumhexacyanoferrat

In der Abbildung 30 sind die Kaliumhexacyanoferrat Messwerte von den Charakterisierungsmessungen 2019 und 2011 dargestellt. Hierzu ist zu bemerken, dass diese aus den früheren Untersuchungen nur Messwert aus dem Jahr 2011 vorliegen. Die Bestimmungsgrenze von Kaliumhexacyanoferrat, das als Trennmittel eingesetzt wird, liegt bei 0,01 mg/l. Die 2019 durchgeführten 14 Messungen lieferten für 6 Probenahmestellen Messwerte, wobei an 4 Mess-stellen die Bestimmungsgrenze erreicht wurde. Am Messpunkt L 553007 wurde ein vergleichsweise hoher Kaliumhexacyanoferrat Messwert von 2,52 mg/l nachgewiesen. Die 2011 erzielten Messwerte liegen alle im Bereich bzw. knapp oberhalb der Bestimmungsgrenze. An 2 Messpunkten ist ein Vergleich der Messwerte von 2011 und 2019 möglich. Sie dokumentieren, dass im Verlauf der letzten 8 Jahre praktisch keine Veränderungen in den Kaliumhexacyanoferratkonzentrationen aufgetreten sind.

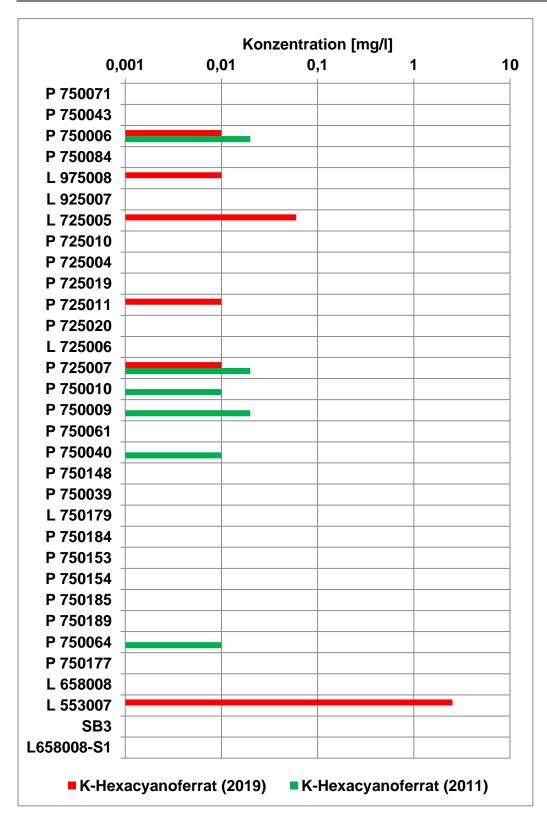


Abbildung 31: Kaliumh exacyanoferrat Messwerte aus der Charakterisierungsmessungen 2019 und 2011

6.13 Diskussion der Ergebnisse der chemischen Analysen

Im Vergleich zu den Ergebnissen der Charakterisierungsmessung im Jahr 2017 haben sich die chemischen Zusammensetzungen sowie die Dichten der Salzlösungen an den meisten Messstellen nicht oder nur unwesentlich verändert. Wenn deutlichere Änderungen auftraten, sind diese möglicherweise auf Veränderungen in den jeweiligen Fassungsraten zurückzuführen, die auch die Verdunstungsprozesse und damit verknüpften Löslichkeitsgleichgewichte der unterschiedlichen Salze mehr oder minder stark beeinflussen.

Die Ergebnisse von Messstellen P750071, P750043, P750084, an denen teils stark erhöhte radioaktive Salzlösungen auftreten sowie von den Messstellen L725005 und P750064, an denen teilweise signifikante Konzentrationsänderungen der chemischen Zusammensetzungen beobachtet wurden, werden im Folgenden auch unter Einbeziehung der Ergebnisse der Ergebnisse der Charakterisierungsmessung von 2015 zusammenfassend diskutiert.

Bei Messstelle P750071 verringerten sich 2017 die Natrium- und Kaliumkonzentrationen, in 2019 sind sie jedoch wieder auf die Werte von 2015 angestiegen. Insgesamt gesehen, sind die Veränderungen, wie die Ergebnisse in der Abbildung 32 dokumentieren, seit 2015 als vergleichsweise gering einzuschätzen.

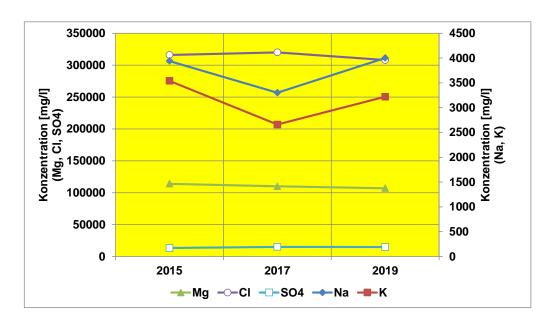


Abbildung 32: Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle P750071

Bei den Proben von der Messstelle P750043 (s. Abbildung 33) ist seit 2015 eine Verringerung der Na-Konzentration zu beobachten, wohingegen die Konzentrationen von Kalium, Magnesium und Chlorid geringfügig ansteigen. Die Verringerung der Na-Konzentration kann mit den baulichen Veränderungen im Jahr 2017 im Rahmen der Zusammenlegung der Messstellen P750044 und P750043 zur neuen Messstelle P75043 zusammenhängen. Die in 2019 gemessene Ammoniumkonzentration an der Messstelle ist mit 1060 mg/l weiterhin als sehr hoch zu charakterisieren (s. Abbildung 27).

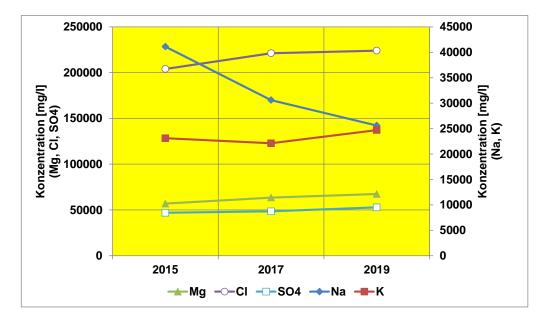


Abbildung 33: Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle P750043

Die in Proben von der Messstelle P750084 (s. Abbildung 34) ermittelten Konzentrationen der Hauptionen sind seit 2015 als nahezu unveränderlich zu charakterisieren. Eine Ausnahme bildet jedoch die Kaliumkonzentration in 2017, wobei aber 2019 wieder das Niveau von 2015 erreicht wird. Die Salzlösungen von dieser Messstelle sind durch gleichbleibend hohe Nitratkonzentrationen gekennzeichnet (s. Abbildung 28).

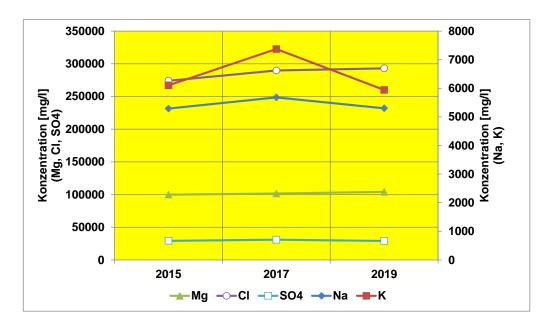


Abbildung 34: Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle P75084

In den Hauptionenkonzentrationen der Salzlösung von der Messstelle L725005 (s. Abbildung 35) traten deutliche Veränderungen in der Zusammensetzung zu den früheren Messungen auf. Die Konzentrationen von Natrium, Kalium und Sulfat verringerten sich teilweise deutlich, wohingegen die Magnesium- und Chloridkonzentrationen signifikant anstiegen.

Geht man zeitlich weiter zurück, sind in den Jahren 2009 bis 2013 vergleichsweise konstante Kaliumkonzentration von ca. 1000 mg/l festgestellt worden [5]. Ein sprunghafter Anstieg wurde 2015 festgestellt. Seitdem nimmt die Kaliumkonzentration wieder ab (4890 mg/l im Jahr 2017 auf 1490 mg/l in 2019) und nähert sich damit wieder den früheren Werten an. Möglicherweise scheinen die Veränderungen bei den Hauptionenkonzentrationen durch zwischenzeitliche Änderungen in den Fassungsraten bedingt zu sein, die auch die Verdunstungsprozesse und damit verknüpften Löslichkeitsgleichgewichte der unterschiedlichen Salze mehr oder minder stark beeinflussen.

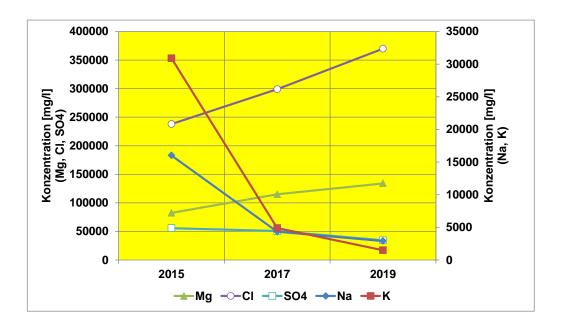


Abbildung 35: Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle L725005

In den Proben von der Messstelle P750064 im Bereich der Reichelt-Sümpfe (s. Abbildung 36) waren die Veränderungen der Hauptionenkonzentrationen in 2017 und 2015 noch gering. In 2019 traten jedoch deutliche Veränderungen auf. Ein teils deutlicher Rückgang der Konzentrationen konnte bei Natrium und Kalium nachgewiesen werden, während bei Magnesium, Chlorid und Sulfat mehr oder minder große Anstiege zu erkennen waren. Die Ursache für diese Veränderungen ist möglicherweise auch hier in Änderungen in der Fassungsrate und den damit verknüpften Verdunstungseffekten zu sehen.

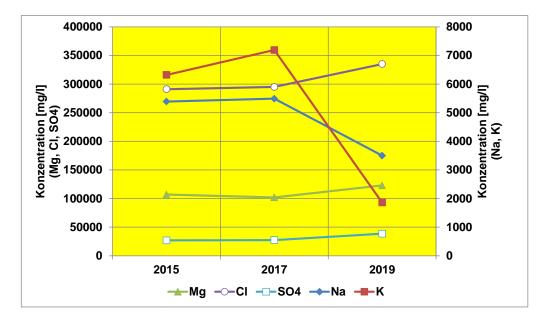


Abbildung 36: Zeitlicher Verlauf der Konzentrationen der Hauptionen bei Messstelle P750064

7 Ergebnisse der radiologischen Laboranalysen von den Salzlösungen

7.1 Radiologische Messergebnisse

7.1.1 Vorbemerkung zu den radiologischen Messergebnissen

Die Messergebnisse der radiologischen Messungen sind in dem Anhang B zusammengestellt. Die Tabellen enthalten auch die Nachweisgrenzen (NWG) der jeweiligen Messung. Für Messwerte > NWG ist die erweiterte, kombinierte Standardmessunsicherheit mit einem Erweiterungsfaktor von k=2 (2σ) mit angegeben, was einem Vertrauensniveau von ca. 95 % entspricht. Die kombinierte Standardmessunsicherheit setzt sich zusammen aus der Unsicherheit, die durch die Zählstatistik bedingt ist, sowie aus den Unsicherheiten des Kalibrierfaktors und der chemischen Ausbeute.

Die NWG kennzeichnet den kleinsten Wert der Messgröße, zu dem die möglichen Messwerte höchstens mit einer Wahrscheinlichkeit β unterhalb des Wertes der Erkennungsgrenze liegen. Dieser kleinste Wert der Messgröße kann somit mit dem gewählten Messverfahren mit einer statistischen Sicherheit von 1 - β nachgewiesen werden.

Die jeweiligen Verfahrensbeschreibungen beinhalten die Diskussion zur Anwendbarkeit des Verfahrens, das Verfahrensprinzip, eine Beschreibung der radiochemischen Trennung, die Beschreibung des Messprinzips, die Berechnung der Analysenergebnisse und deren Gesamtmessunsicherheit sowie die Berechnung erreichbarer Nachweisgrenzen. Die akkreditierten Messverfahren der IAF [8] zu gammaspektrometrischen Untersuchungen sind in Übereinstimmung mit den vom BfS benutzten Analysemessmethoden für die Gammaspektrometrie. Diese sind im Anhang C des BfS Berichts von 2015 [5] zur "Beprobung und Analyse von Salzlösungen und Grundwässern 2015 - Schachtanlage Asse II" dokumentiert worden (s.a. [6]).

7.1.2 Tabellarische Zusammenstellung der radiologischen Messwerte

Die radiologischen Messwerte für die Salzlösungen sind im vollen Umfang in dem Anhang B zusammengestellt. Die nachfolgenden Tabellen 7 bis 13 enthalten Auszüge daraus und sind so gruppiert, um Zusammenhänge der Radioaktivitätsverteilungen auf die charakteristischen Radionuklide besser extrahieren zu können. In dem Kapitel 7.1.3 wird Diskussion der radiologischen Messergebnisse gegeben, wobei auch auf die Ergebnisse früherer Messungen eingegangen wird.

Tabelle 7: Zusammenstellung der relevanten Radionuklidkonzentrationen in Salzlösungen und in Grundwässern (H-3, C-14 und K-40), gemessen in Bq/l, eine vollständige Zusammenstellung aller Messwerte mit den entsprechenden Messunsicherheiten befindet sich in dem Anhang B

Lfd. Pro- be-Nr.	Datum der Probenahme	Entnahme- stelle	H-3	C-14 gesamt	C-14 anorg.	K-40
1	16.09.2019	P 750071	3914	7,15	0,062	106
2	16.09.2019	P 750043	1250000	298	5,87	749
3	16.09.2019	P 750006	10990	3,82	0,16	426
4	16.09.2019	P 750084	339700	38,3	1,75	177
5	16.09.2019	L 975008	1522	n.a.	n.a.	101
6	16.09.2019	L 925007	174,4	n.a.	n.a.	86,3
7	17.09.2019	L 725005	73,1	n.a.	n.a.	32
8	17.09.2019	P 725010	227,6	n.a.	n.a.	301
9	17.09.2019	P 725004	49,1	n.a.	n.a.	227
10	17.09.2019	P 725019	74,6	n.a.	n.a.	307
11	17.09.2019	P 725011	731,5	n.a.	n.a.	313
12	17.09.2019	P 725020	3658	n.a.	n.a.	450
13	17.09.2019	L 725006	46,4	1,2	< NWG	329
14	17.09.2019	P 725007	1994	n.a.	n.a.	560
15	17.09.2019	P 750010	18,6	n.a.	n.a.	138
16	17.09.2019	P 750009	39,5	n.a.	n.a.	41
17	17.09.2019	P 750061	59,2	n.a.	n.a.	282
18	17.09.2019	P 750040	< NWG	n.a.	n.a.	341
19	17.09.2019	P 750148	< NWG	n.a.	n.a.	306
20	17.09.2019	P 750039	23,4	n.a.	n.a.	144
21	18.09.2019	L 750179	< NWG	n.a.	n.a.	110
22	18.09.2019	P 750184	17,1	n.a.	n.a.	169
23	18.09.2019	P 750153	6,2	n.a.	n.a.	296
24	18.09.2019	P 750154	< NWG	n.a.	n.a.	461
25	18.09.2019	P 750185	6,2	n.a.	n.a.	391
26	18.09.2019	P 750189	6,3	n.a.	n.a.	421
27	18.09.2019	P 750064	26,9	n.a.	n.a.	50,5
28	18.09.2019	P 750177	5,8	n.a.	n.a.	239
29	18.09.2019	L 658008	< NWG	< NWG	< NWG	79,7
30	18.09.2019	L 553007	134,1	n.a.	n.a.	1180
31	18.09.2019	SB3	< NWG	n.a.	n.a.	76
32	26.09.2019	L658008-S1	< NWG	n.a.	n.a.	83,8
Asse 1	19.09.2019	S1	< NWG	< NWG	< NWG	< NWG
Asse 3	23.09.2019	S3	< NWG	< NWG	< NWG	9,45

Tabelle 8: Wie Tabelle 7, jedoch für Co-60, Sr-90, Tc-99 und Cs-137

Lfd. Probe- Nr.	Datum der Probenahme	Entnahmestelle	Co-60	Sr-90	Tc-99	Cs-137
1	16.09.2019	P 750071	< NWG	< NWG	< NWG	4930
2	16.09.2019	P 750043	< NWG	< NWG	< NWG	9700
3	16.09.2019	P 750006	< NWG	< NWG	n.a.	0,271
4	16.09.2019	P 750084	1,05	< NWG	22,3	106600
5	16.09.2019	L 975008	< NWG	< NWG	n.a.	9,61
6	16.09.2019	L 925007	< NWG	< NWG	n.a.	0,124
7	17.09.2019	L 725005	< NWG	n.a.	n.a.	< NWG
8	17.09.2019	P 725010	< NWG	n.a.	n.a.	< NWG
9	17.09.2019	P 725004	< NWG	n.a.	n.a.	< NWG
10	17.09.2019	P 725019	< NWG	n.a.	n.a.	< NWG
11	17.09.2019	P 725011	< NWG	n.a.	n.a.	< NWG
12	17.09.2019	P 725020	< NWG	n.a.	n.a.	2,26
13	17.09.2019	L 725006	< NWG	n.a.	n.a.	< NWG
14	17.09.2019	P 725007	< NWG	n.a.	n.a.	1,98
15	17.09.2019	P 750010	< NWG	n.a.	n.a.	< NWG
16	17.09.2019	P 750009	< NWG	n.a.	n.a.	< NWG
17	17.09.2019	P 750061	< NWG	n.a.	n.a.	< NWG
18	17.09.2019	P 750040	< NWG	n.a.	n.a.	< NWG
19	17.09.2019	P 750148	< NWG	n.a.	n.a.	< NWG
20	17.09.2019	P 750039	< NWG	n.a.	n.a.	< NWG
21	18.09.2019	L 750179	< NWG	n.a.	n.a.	< NWG
22	18.09.2019	P 750184	< NWG	n.a.	n.a.	< NWG
23	18.09.2019	P 750153	< NWG	n.a.	n.a.	< NWG
24	18.09.2019	P 750154	< NWG	n.a.	n.a.	< NWG
25	18.09.2019	P 750185	< NWG	n.a.	n.a.	< NWG
26	18.09.2019	P 750189	< NWG	n.a.	n.a.	< NWG
27	18.09.2019	P 750064	< NWG	n.a.	n.a.	< NWG
28	18.09.2019	P 750177	< NWG	n.a.	n.a.	< NWG
29	18.09.2019	L 658008	< NWG	< NWG	n.a.	< NWG
30	18.09.2019	L 553007	< NWG	n.a.	n.a.	< NWG
31	18.09.2019	SB3	< NWG	n.a.	n.a.	< NWG
32	26.09.2019	L658008-S1	< NWG	n.a.	n.a.	< NWG
Asse 1	19.09.2019	S1	< NWG	< NWG	n.a.	< NWG
Asse 3	23.09.2019	S3	< NWG	< NWG	n.a.	< NWG

Tabelle 9: Wie Tabelle 7, jedoch für Ni-63, Pu-238, Pu-239/240 und Am241

Lfd. Probe- Nr.	Datum der Proben- ahme	Entnahme- stelle	Ni-63	Pu-238	Pu-239/240	Am-241
1	16.09.2019	P 750071	123	< NWG	< NWG	0,0025
2	16.09.2019	P 750043	27,8	0,0010	0,0025	0,0108
3	16.09.2019	P 750006	< NWG	n.a.	n.a.	n.a.
4	16.09.2019	P 750084	867	< NWG	0,0019	0,0081
5	16.09.2019	L 975008	< NWG	n.a.	n.a.	n.a.
6	16.09.2019	L 925007	< NWG	n.a.	n.a.	n.a.
7	17.09.2019	L 725005	n.a.	n.a.	n.a.	n.a.
8	17.09.2019	P 725010	n.a.	n.a.	n.a.	n.a.
9	17.09.2019	P 725004	n.a.	n.a.	n.a.	n.a.
10	17.09.2019	P 725019	n.a.	n.a.	n.a.	n.a.
11	17.09.2019	P 725011	n.a.	n.a.	n.a.	n.a.
12	17.09.2019	P 725020	n.a.	n.a.	n.a.	n.a.
13	17.09.2019	L 725006	n.a.	n.a.	n.a.	n.a.
14	17.09.2019	P 725007	n.a.	n.a.	n.a.	n.a.
15	17.09.2019	P 750010	n.a.	n.a.	n.a.	n.a.
16	17.09.2019	P 750009	n.a.	n.a.	n.a.	n.a.
17	17.09.2019	P 750061	n.a.	n.a.	n.a.	n.a.
18	17.09.2019	P 750040	n.a.	n.a.	n.a.	n.a.
19	17.09.2019	P 750148	n.a.	n.a.	n.a.	n.a.
20	17.09.2019	P 750039	n.a.	n.a.	n.a.	n.a.
21	18.09.2019	L 750179	n.a.	n.a.	n.a.	n.a.
22	18.09.2019	P 750184	n.a.	n.a.	n.a.	n.a.
23	18.09.2019	P 750153	n.a.	n.a.	n.a.	n.a.
24	18.09.2019	P 750154	n.a.	n.a.	n.a.	n.a.
25	18.09.2019	P 750185	n.a.	n.a.	n.a.	n.a.
26	18.09.2019	P 750189	n.a.	n.a.	n.a.	n.a.
27	18.09.2019	P 750064	n.a.	n.a.	n.a.	n.a.
28	18.09.2019	P 750177	n.a.	n.a.	n.a.	n.a.
29	18.09.2019	L 658008	n.a.	n.a.	n.a.	n.a.
30	18.09.2019	L 553007	n.a.	n.a.	n.a.	n.a.
31	18.09.2019	SB3	n.a.	n.a.	n.a.	n.a.
32	26.09.2019	L658008-S1	n.a.	n.a.	n.a.	n.a.
Asse 1	19.09.2019	S1	n.a.	n.a.	n.a.	n.a.
Asse 3	23.09.2019	S3	n.a.	n.a.	n.a.	n.a.

Tabelle 10: Wie Tabelle 7, jedoch für Pb-210, Po-210, Ra-224, Ra-226 und Ra-228

Lfd. Probe- Nr.	Datum der Proben- ahme	Entnahme- stelle	Pb-210	Po-210	Ra-224	Ra-226	Ra-228
1	16.09.2019	P 750071	0,818	< NWG	n.a.	< NWG	0,037
2	16.09.2019	P 750043	1,79	< NWG	n.a.	< NWG	< NWG
3	16.09.2019	P 750006	n.a.	n.a.	n.a.	n.a.	n.a.
4	16.09.2019	P 750084	3,19	< NWG	n.a.	< NWG	< NWG
5	16.09.2019	L 975008	0,533	0,165	n.a.	0,026	0,105
6	16.09.2019	L 925007	1,27	0,495	n.a.	0,035	0,225
7	17.09.2019	L 725005	n.a.	n.a.	n.a.	< NWG	< NWG
8	17.09.2019	P 725010	n.a.	n.a.	n.a.	< NWG	< NWG
9	17.09.2019	P 725004	n.a.	n.a.	n.a.	< NWG	0,015
10	17.09.2019	P 725019	0,045	0,014	n.a.	0,025	< NWG
11	17.09.2019	P 725011	n.a.	n.a.	n.a.	0,022	< NWG
12	17.09.2019	P 725020	n.a.	n.a.	n.a.	< NWG	< NWG
13	17.09.2019	L 725006	n.a.	n.a.	n.a.	0,010	< NWG
14	17.09.2019	P 725007	n.a.	n.a.	n.a.	< NWG	< NWG
15	17.09.2019	P 750010	3,2	0,363	n.a.	0,036	0,158
16	17.09.2019	P 750009	0,849	0,134	n.a.	< NWG	0,02
17	17.09.2019	P 750061	0,244	0,016	n.a.	< NWG	< NWG
18	17.09.2019	P 750040	0,392	0,064	n.a.	0,013	< NWG
19	17.09.2019	P 750148	n.a.	n.a.	n.a.	n.a.	n.a.
20	17.09.2019	P 750039	n.a.	n.a.	n.a.	n.a.	n.a.
21	18.09.2019	L 750179	0,619	0,136	n.a.	0,024	< NWG
22	18.09.2019	P 750184	1,37	1,33	n.a.	0,037	< NWG
23	18.09.2019	P 750153	0,429	0,029	n.a.	0,011	< NWG
24	18.09.2019	P 750154	0,189	0,046	n.a.	< NWG	< NWG
25	18.09.2019	P 750185	1,15	0,306	< NWG	0,015	0,035
26	18.09.2019	P 750189	0,908	0,021	< NWG	0,010	0,017
27	18.09.2019	P 750064	0,474	0,082	n.a.	0,011	< NWG
28	18.09.2019	P 750177	0,240	0,025	n.a.	0,010	< NWG
29	18.09.2019	L 658008	0,033	< NWG	1,71	0,254	0,583
30	18.09.2019	L 553007	0,094	0,0075	n.a.	< NWG	< NWG
31	18.09.2019	SB3	n.a.	n.a.	0,39	0,240	0,575
32	26.09.2019	L658008-S1	0,017	0,0088	1,38	0,242	0,53
Asse 1	19.09.2019	S1	< NWG	< NWG	< NWG	0,010	0,014
Asse 3	23.09.2019	S3	< NWG	< NWG	< NWG	0,022	0,010

Tabelle 11: Wie Tabelle 7, jedoch für Th-232, Th-230 und Th-228

Lfd. Probe- Nr.	Datum der Proben- ahme	Entnahme- stelle	Th-232	Th-230	Th-228
1	16.09.2019	P 750071	< NWG	0,0045	< NWG
2	16.09.2019	P 750043	< NWG	< NWG	< NWG
3	16.09.2019	P 750006	n.a.	n.a.	n.a.
4	16.09.2019	P 750084	< NWG	< NWG	< NWG
5	16.09.2019	L 975008	< NWG	< NWG	< NWG
6	16.09.2019	L 925007	< NWG	< NWG	< NWG
7	17.09.2019	L 725005	n.a.	n.a.	n.a.
8	17.09.2019	P 725010	n.a.	n.a.	n.a.
9	17.09.2019	P 725004	n.a.	n.a.	n.a.
10	17.09.2019	P 725019	< NWG	< NWG	< NWG
11	17.09.2019	P 725011	< NWG	< NWG	< NWG
12	17.09.2019	P 725020	< NWG	< NWG	< NWG
13	17.09.2019	L 725006	< NWG	< NWG	< NWG
14	17.09.2019	P 725007	n.a.	n.a.	n.a.
15	17.09.2019	P 750010	< NWG	< NWG	< NWG
16	17.09.2019	P 750009	< NWG	< NWG	< NWG
17	17.09.2019	P 750061	< NWG	0,0042	< NWG
18	17.09.2019	P 750040	< NWG	< NWG	< NWG
19	17.09.2019	P 750148	n.a.	n.a.	n.a.
20	17.09.2019	P 750039	n.a.	n.a.	n.a.
21	18.09.2019	L 750179	< NWG	0,0140	< NWG
22	18.09.2019	P 750184	< NWG	0,0140	< NWG
23	18.09.2019	P 750153	n.a.	n.a.	n.a.
24	18.09.2019	P 750154	n.a.	n.a.	n.a.
25	18.09.2019	P 750185	< NWG	< NWG	< NWG
26	18.09.2019	P 750189	< NWG	< NWG	< NWG
27	18.09.2019	P 750064	< NWG	< NWG	< NWG
28	18.09.2019	P 750177	n.a.	n.a.	n.a.
29	18.09.2019	L 658008	< NWG	< NWG	< NWG
30	18.09.2019	L 553007	n.a.	n.a.	n.a.
31	18.09.2019	SB3	n.a.	n.a.	n.a.
32	26.09.2019	L658008-S1	< NWG	< NWG	< NWG
Asse 1	19.09.2019	S1	< NWG	< NWG	< NWG
Asse 3	23.09.2019	S3	< NWG	< NWG	< NWG

Tabelle 12: Wie Tabelle 7, jedoch für U-238, U-235 und U-234

Lfd. Probe- Nr.	Datum der Pro- benahme	Entnahme- stelle	U-238	U-235	U-234
1	16.09.2019	P 750071	0,0077	< NWG	0,014
2	16.09.2019	P 750043	0,0080	< NWG	0,010
3	16.09.2019	P 750006	n.a.	n.a.	n.a.
4	16.09.2019	P 750084	0,025	< NWG	0,033
5	16.09.2019	L 975008	0,041	< NWG	0,051
6	16.09.2019	L 925007	0,092	0,0040	0,096
7	17.09.2019	L 725005	0,029	< NWG	0,04
8	17.09.2019	P 725010	< NWG	< NWG	< NWG
9	17.09.2019	P 725004	0,028	< NWG	0,048
10	17.09.2019	P 725019	0,073	0,0031	0,116
11	17.09.2019	P 725011	0,040	0,0017	0,047
12	17.09.2019	P 725020	0,083	0,0036	0,123
13	17.09.2019	L 725006	0,020	0,0068	0,028
14	17.09.2019	P 725007	0,020	< NWG	0,022
15	17.09.2019	P 750010	0,0082	< NWG	0,017
16	17.09.2019	P 750009	0,014	< NWG	0,031
17	17.09.2019	P 750061	0,0095	< NWG	0,024
18	17.09.2019	P 750040	0,016	< NWG	0,028
19	17.09.2019	P 750148	n.a.	n.a.	n.a.
20	17.09.2019	P 750039	n.a.	n.a.	n.a.
21	18.09.2019	L 750179	0,016	< NWG	0,029
22	18.09.2019	P 750184	0,018	< NWG	0,041
23	18.09.2019	P 750153	0,015	< NWG	0,024
24	18.09.2019	P 750154	0,024	< NWG	0,048
25	18.09.2019	P 750185	0,011	< NWG	0,034
26	18.09.2019	P 750189	0,0084	< NWG	0,028
27	18.09.2019	P 750064	0,018	< NWG	0,032
28	18.09.2019	P 750177	0,0085	< NWG	0,024
29	18.09.2019	L 658008	0,0045	< NWG	0,0076
30	18.09.2019	L 553007	0,025	< NWG	0,036
31	18.09.2019	SB3	< NWG	< NWG	0,0086
32	26.09.2019	L658008-S1	< NWG	< NWG	0,0092
Asse 1	19.09.2019	S1	0,167	0,0077	0,485
Asse 3	23.09.2019	S3	0,0017	< NWG	0,0033

Tabelle 13: Wie Tabelle 7, jedoch für Ra-228 und Th-228.

Lfd. Probe- Nr.	Datum der Proben- ahme	Entnahme- stelle	Ra-228	Th-228
1	16.09.2019	P 750071	0,037	< NWG
2	16.09.2019	P 750043	< NWG	< NWG
3	16.09.2019	P 750006	n.a.	n.a.
4	16.09.2019	P 750084	< NWG	< NWG
5	16.09.2019	L 975008	0,105	< NWG
6	16.09.2019	L 925007	0,225	< NWG
7	17.09.2019	L 725005	< NWG	n.a.
8	17.09.2019	P 725010	< NWG	n.a.
9	17.09.2019	P 725004	0,015	n.a.
10	17.09.2019	P 725019	< NWG	< NWG
11	17.09.2019	P 725011	< NWG	< NWG
12	17.09.2019	P 725020	< NWG	< NWG
13	17.09.2019	L 725006	< NWG	< NWG
14	17.09.2019	P 725007	< NWG	n.a.
15	17.09.2019	P 750010	0,158	< NWG
16	17.09.2019	P 750009	0,02	< NWG
17	17.09.2019	P 750061	< NWG	< NWG
18	17.09.2019	P 750040	< NWG	< NWG
19	17.09.2019	P 750148	n.a.	n.a.
20	17.09.2019	P 750039	n.a.	n.a.
21	18.09.2019	L 750179	< NWG	< NWG
22	18.09.2019	P 750184	< NWG	< NWG
23	18.09.2019	P 750153	< NWG	n.a.
24	18.09.2019	P 750154	< NWG	n.a.
25	18.09.2019	P 750185	0,035	< NWG
26	18.09.2019	P 750189	0,017	< NWG
27	18.09.2019	P 750064	< NWG	< NWG
28	18.09.2019	P 750177	< NWG	n.a.
29	18.09.2019	L 658008	0,583	< NWG
30	18.09.2019	L 553007	< NWG	n.a.
31	18.09.2019	SB3	0,575	n.a.
32	26.09.2019	L658008-S1	0,53	< NWG
Asse 1	19.09.2019	S1	0,014	< NWG
Asse 3	23.09.2019	S3	0,010	< NWG

Consulting

7.1.3 Diskussion der radiologischen Messergebnisse

7.1.3.1 Vorbemerkung zu aliquotierten Proben

In allen Proben ist K-40 in mehr oder minder großen Aktivitätskonzentrationen durch radiologische Messungen nachgewiesen worden. Da das natürliche Kalium zu 0,012% aus dem radioaktiven Isotop K-40 besteht, sind die jeweiligen Analysenergebnisse besonders gut geeignet zu überprüfen, ob die Aliquotierung des Probenmaterials für die chemischen und radiologischen Untersuchungen im Jahre 2019 zu keinen sichtlichen Diskrepanzen geführt hat. In der Abbildung 37 sind die entsprechenden Ergebnisse dargestellt. Es ist zu erkennen, dass die Ergebnisse der jeweiligen Messmethoden nahezu perfekt übereinstimmen, so dass damit auch die Repräsentativität der aliquotierten Proben nachgewiesen ist.

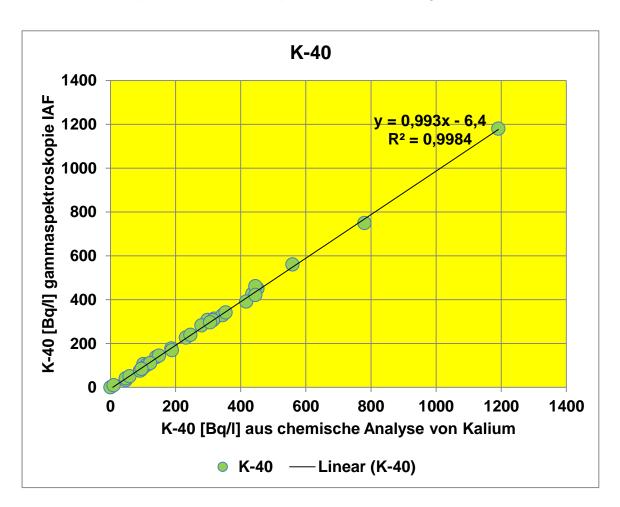


Abbildung 37: Vergleich der mit der gammaspektrometrischen Methode bestimmten K-40 Aktivitätskonzentration in den untersuchten Proben mit den aus der chemischen Analyse folgenden K-40 Konzentration aus der Bestimmung der K-Konzentration bei Berücksichtigung, dass Kalium 0,012% des radioaktiven Isotop K-40 enthält.

In der Abbildung 38 sind in den ausgewählten Proben für die Qualitätssicherung die jeweiligen Ergebnisse von IAF und BfS [10] (s. Anhang E) für K-40 miteinander verglichen. Die sehr gute Übereinstimmung der entsprechenden K-40 Aktivitätskonzentrationen bedeutet, dass auch bei Analysen von weiteren Radionukliden von einem übereinstimmenden Probenmaterial auszugehen ist.

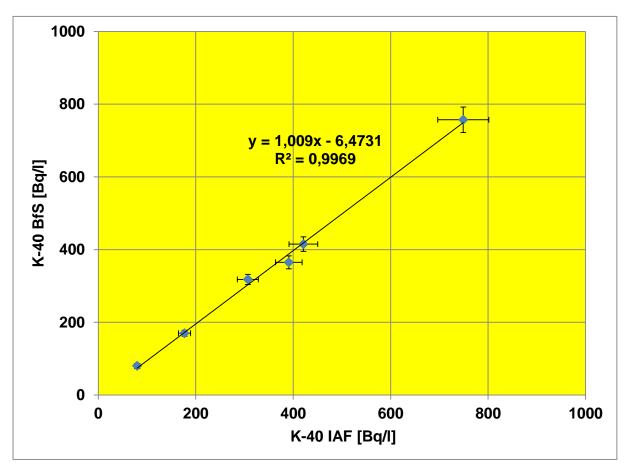


Abbildung 38: Vergleich der von IAF und BfS im Rahmen der Qualitätssicherung 2019 ausgewählten Proben (s. Anhang E) bestimmten Aktivitätskonzentrationen von K-40

Radiologische Gutachten

Consulting

In der Abbildung 39 sind die im Jahre 2019 bestimmten K-40 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten verglichen. Das Korrelationsdiagramm dokumentiert, dass trotz guter Übereinstimmung im generellen Trend, an einzelnen Messstellen geringe Abweichungen der K-40 Aktivitätskonzentrationen festzustellen sind. Dies deutet, wie bereits in Kapitel 6.4 (Kalium) diskutiert, auf mehr oder minder geringe chemische Veränderungen in den Salzlösungen an den Messstellen hin.

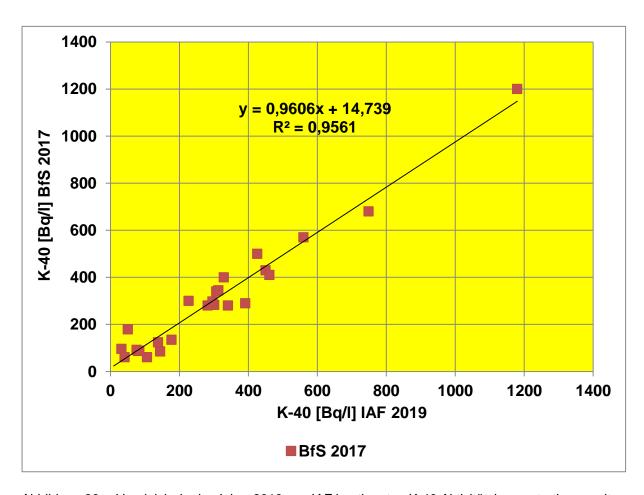


Abbildung 39: Vergleich der im Jahre 2019 von IAF bestimmten K-40 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten.

In der Abbildung 40 sind die früheren Messergebnisse der K-40 Aktivitätskonzentrationen bis 2011, soweit sie vorlagen, grafisch dargestellt. Es ist zu erkennen, dass im Verlauf der Zeit auch an einigen Messstellen die K-40 Aktivitätskonzentrationen stark variierten, jedoch der allgemeine Trend der Messwerte an jedem Messpunkt mehr oder weniger deutlich erkennbar erhalten bleibt.

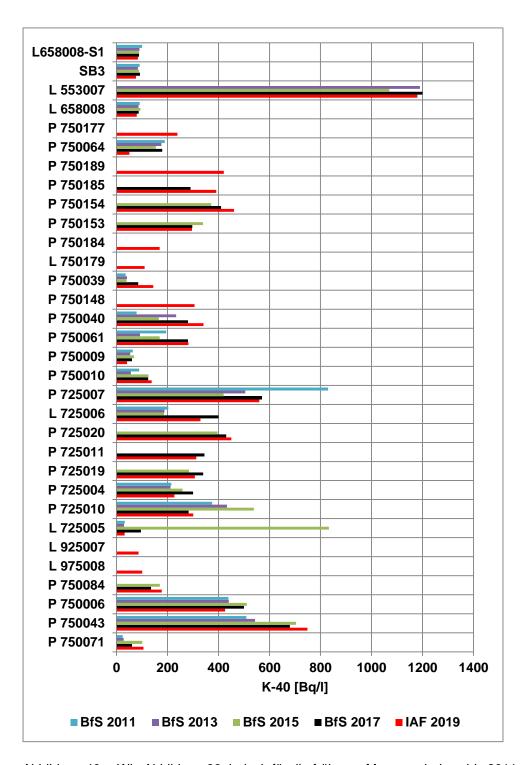


Abbildung 40: Wie Abbildung 39, jedoch für die früheren Messergebnisse bis 2011

7.1.3.2 Künstliche Radionuklide

7.1.3.2.1 Cs-137

Consulting

In der Abbildung 41 sind die im Jahre 2019 bestimmten Cs-137 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten verglichen. An 8 von 32 Messstellen konnte Cs-137 in den jeweiligen Proben nachgewiesen werden. In der Probe von der Messstelle P 750084, die die höchste Cs-137 Aktivitätskonzentration von 106600 Bq/l aufweist, wurde ein um ca. 23% höherer Wert als 2017 festgestellt. Auch die Vergleichsmessungen von 2019 des BfS zur Qualitätssicherung [10] (s. Anhang E) bestätigen diesen Trend und sind in sehr guter Übereinstimmung mit dem von IAF analysierten Wert. Der Höchstwert von Cs-137 in 2019 unterscheidet sich jedoch nur gering von dem im Jahr 2015 gemessenen Wert. Für noch frühere Jahre lagen keine Messwerte vor.

Die Zunahme der Cs-137 Aktivitätskonzentration von 2019 gegenüber 2017 wird im Diagramm (s. Abbildung 41) mit der Steigung der Regressionsgeraden von 0,8386 beschrieben (s.a. Diskussion im nachfolgenden Kapitel 7.1.3.2.2).

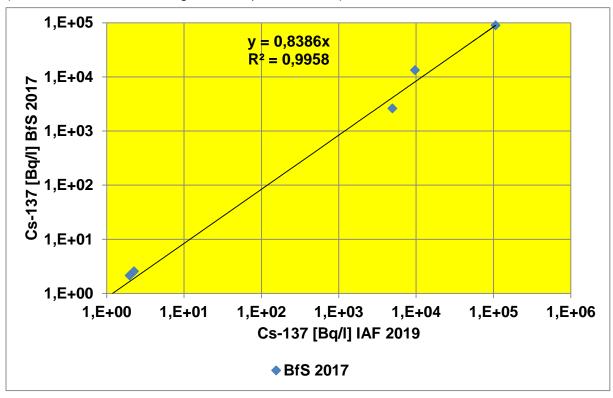


Abbildung 41: Vergleich der im Jahre 2019 von IAF bestimmten Cs-137 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten.

In der Abbildung 42 sind alle früheren Messergebnisse der Cs-137 Aktivitätskonzentrationen bis 2011, soweit sie vorlagen, grafisch dargestellt. Es ist zu erkennen, dass im Verlauf der Zeit die Cs-137 Aktivitätskonzentrationen immer etwas variierten, jedoch der allgemeine Trend der Messwerte untereinander annähernd erhalten bleibt. Die höchsten Cs-137 Messwerte wurden an der Messstelle P 750084 nachgewiesen

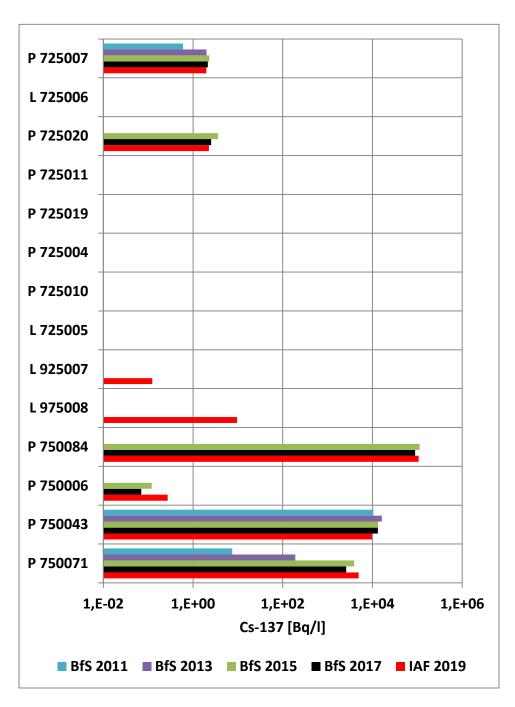


Abbildung 42: Wie Abbildung 41, jedoch für die früheren Messergebnisse bis 2011

7.1.3.2.2 H-3

In der Abbildung 43 sind die im Jahre 2019 bestimmten H-3 Aktivitätskonzentrationen mit denen in 2017 vom BfS ermittelten Werten verglichen. An 25 von 32 Messstellen konnte H-3 in den Proben nachgewiesen werden. In der Probe der Messstelle P 750043, die die höchste H-3 Aktivitätskonzentration mit 1,25 MBq/l aufweist, wurde ein um den Faktor 1,78 niedrigerer Wert als 2017 festgestellt (vgl. Ergebnisse in Abbildung 46). Auch die Untersuchungen des AG [11] lieferten H-3 Aktivitätskonzentrationen, die mit denen von der IAF festgestellten Abnahme kompatibel sind. Vergleichsmessungen des BfS sind im Jahre 2019 für diese Messstelle nicht durchgeführt worden.

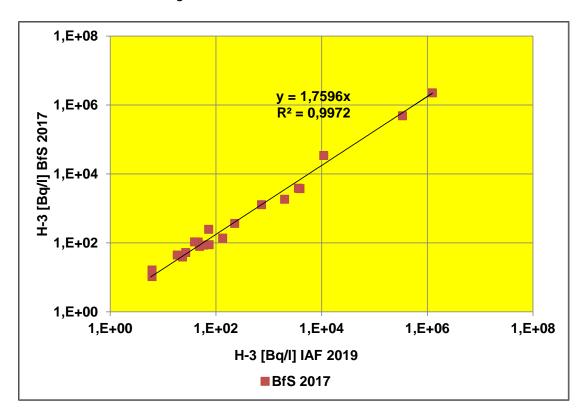


Abbildung 43: Vergleich der im Jahre 2019 von IAF bestimmten H-3 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten.

In der Abbildung 44 sind die entsprechenden Ergebnisse für den Zeitraum 2017 - 2019 dargestellt [11]. Die Ergebnisse belegen unzweifelhaft, dass in den letzten 2 Jahren die H-3 Aktivitätskonzentrationen in den Proben von der Messstelle P 750043 stetig geringer wurden. Das Korrelationsdiagramm reflektiert diese Reduktion durch eine entsprechend höhere Steigung der Regressionsgeraden von 1,7596.

Auch in der Probe von der Messstelle P 750084, die die zweithöchste H-3 Aktivitätskonzentration von 0,34 MBq/l aufweist, wurde ein um den Faktor 1,43 niedrigerer Wert als 2017 festgestellt (vgl. Ergebnisse in Abbildung 46). Die Untersuchungsergebnisse des AG [11] sind auch hier mit den von der IAF festgestellten Abnahme kompatibel (s. Abbildung 45). Vergleichsmessungen des BfS sind im Jahre 2019 für diese Messstelle nicht durchgeführt worden.

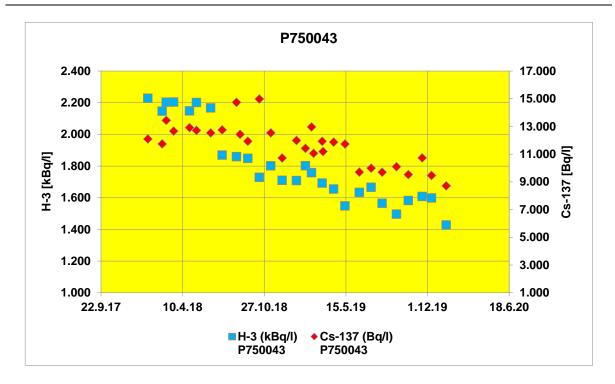


Abbildung 44: Ergebnisse des AG [11] für Cs-137 und H-3 von 2017 - 2019 an der Messstelle P 750043

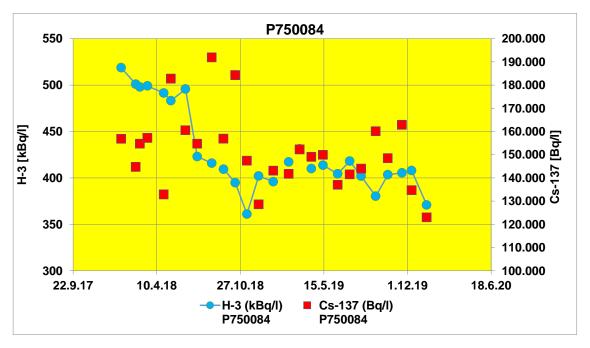


Abbildung 45: Wie Abbildung 45, jedoch für die Proben der Messstelle P 750084

In der Abbildung 46 sind die früheren Messergebnisse der H-3 Aktivitätskonzentrationen bis 2011, soweit sie zur Verfügung standen, grafisch dargestellt. Es ist zu erkennen, dass im Verlauf der Zeit die Cs-137 Aktivitätskonzentrationen etwas variierten, jedoch der allgemeine Trend der Messwerte an einem Messpunkt mehr oder weniger deutlich erhalten bleibt.

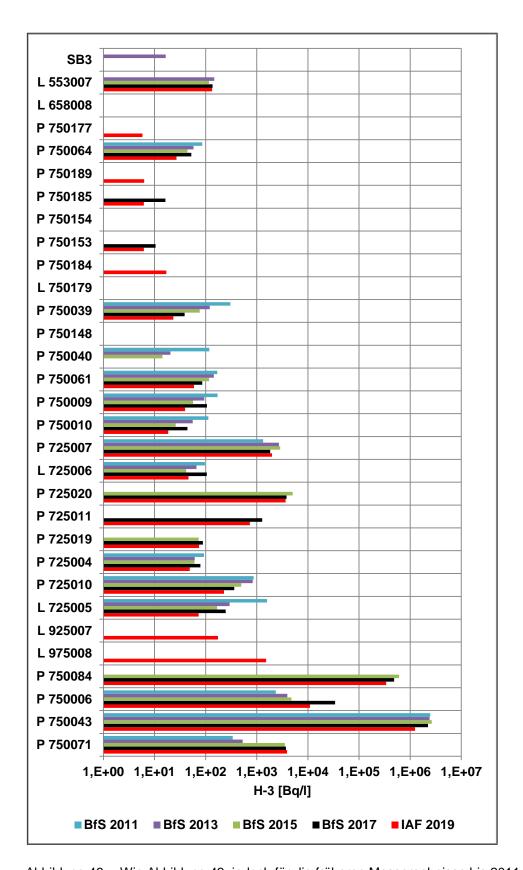


Abbildung 46: Wie Abbildung 43, jedoch für die früheren Messergebnisse bis 2011

IAF - Radioökologie GmbH

Labor für Radionukildanalytik Radiologische Gutachten Consulting

Es ist generell zu bemerken, dass sich die angegebenen H-3 Aktivitätskonzentrationen der IAF immer auf die der jeweiligen Destillate beziehen. Die Salzlösungen werden oftmals unverdünnt destilliert und die H-3 Aktivitätskonzentration des Destillats nach Zugabe von Szintillator mit Hilfe der LSC Technik gemessen. Auch die vom AG [11] angegebenen Messwerte beruhen auf diesem Verfahren. Die so bestimmten H-3 Aktivitätskonzentrationen stellen somit eine konservative Abschätzung, d.h. Überschätzung, der tatsächlich auf die Ausgangslauge zu beziehenden Aktivitätskonzentrationen dar. In [12] ist eine Quantifizierung dieser Überschätzung dokumentiert, wobei bei einem Bezug auf das Destillatvolumen die tatsächlich in der originalen hochsalinaren CaCl₂ Salzlösung mit einer Dichte von 1,39 g/ml vorhandene H-3 Aktivitätskonzentrationen im Extremfall bis zu 23% und bei einer MgCl₂ Salzlösung mit einer Dichte von 1,29 g/ml bis zu 16% überschätzt werden können. Wird jedoch die Salzlösung vor der Destillation im Verhältnis 1:5 verdünnt und die resultierende H-3 Aktivitätskonzentration des Destillats unter Berücksichtigung der Verdünnung korrigiert, kann die tatsächliche H-3 Aktivitätskonzentration in der Ausgangslösung reproduziert werden.

7.1.3.2.3 Weitere Ergebnisse der gammaspektrometrischen Analyse für die ausgewählten künstlichen Radionuklide Co-60, Nb-94, Ag-108m, Sb-125, I-129, Ba-133, Eu-152 und Eu-154

Im Ergebnis der gammaspektrometrischen Analysen der Salzlösungen konnte von den ausgewählten künstlichen Radionukliden Co-60, Nb-94, Ag-108m, Sb-125, I-129, Ba-133, Eu-152 und Eu-154 nur Co-60 in der Probe von der Messstelle P750084 mit 1,05 Bq/l nachgewiesen. Da auch die Vergleichsmessung des BfS von 2019 zur Qualitätssicherung [10] (s. Anhang E) ebenfalls einen Wert von 1,05 Bq/l liefert, kann geschlussfolgert werden, dass die bereits 2017 festgestellte tendenzielle Abnahme der Co-60 Aktivitätskonzentration sich somit fortsetzt (2017: 1,8 Bq/l, 2015: 3,82 Bq/l). Die sich manifestierende Abnahme ist größer als aus dem radioaktiven Zerfall von Co-60 (Halbwertszeit: 5,3 a) zu erwarten ist. Bei allen weiteren 31 Messstellen ist die Co-60 Aktivitätskonzentration immer < NWG. Für die 5 ausgewählten Messstellen zur Qualitätssicherung [10] (s. Anhang E) wurden durch das BfS ebenfalls nur Nachweisgrenzen angegeben.

7.1.3.2.4 Weitere Ergebnisse für künstliche Radionuklide nach radiochemischer Präparation

Gemäß Leistungsbeschreibung (vgl. Tabelle 3) sind die in Tabelle 14 aufgeführten Radionuklide nach radiochemischer Präparation zu bestimmen, wobei teils umfangreiche Laborarbeiten erforderlich waren. Im Sinne einer hohen Qualitätssicherung wurden deshalb für alle Proben Mehrfach-Bestimmungen durchgeführt. Dies geschah auch unter dem Blickwinkel des Sammelns von entsprechenden Erfahrungen für eine angepasste Vorgehensweise bei der Bearbeitung des teils sehr komplizierten Probenmaterials.

Für nur wenige dieser nach radiochemischer Präparation zu bestimmenden Radionuklide wurden durch das BfS [10] (s. Anhang E) Vergleichsmessungen im Sinne der Qualitätssicherung durchgeführt. Sie bestätigen ausnahmslos die Ergebnisse von IAF.

Tabelle 14: Zu bestimmende künstliche Radionuklide nach radiochemischer Präparation

Sr-90	Ni-63	Tc-99	Am-241	Pu-238	Pu-239/240	C-14 (anorg.)	C-14 (gesamt)
9	6	3	3	3	3	8	8

Sr-90

Trotz eines hohen Mess- und Präparationsaufwands konnte in allen 9 Proben das Radionuklid Sr-90 nicht nachgewiesen werden. Es wurden lediglich sehr niedrige Erkennungs- bzw. Nachweisgrenzen erreicht (s. Ergebnisse in der Tabelle 8). Auch bei einer Vergleichsmessung zur Qualitätssicherung wurde 2019 durch das BfS [10] (s. Anhang E) nur eine Nachweisgrenze angegeben.

Tc-99

Nur in einer der 3 untersuchten Proben ist Tc-99 nachgewiesen worden. Diese Tc-99 Aktivitätskonzentration stammt, wie die von Co-60, von der Probe der Messstelle P750084 (s. Ergebnisse in der Tabelle 8). Der Messwert von 22,3 Bq/l stimmt sehr gut mit denen vom BfS in 2017 und 2015 bestimmten Werten von 21,0 Bq/l bzw. 20,4 Bq/l überein. Bei den Vergleichsmessungen zur Qualitätssicherung wurde jedoch 2019 durch das BfS [10] (s. Anhang E) ein etwas höherer Wert von 28,8 Bq/l bestimmt.

Ni-63

In 3 der 6 der zu untersuchenden Proben ist Ni-63 nachgewiesen worden (s. Ergebnisse in Tabelle 9). Die sehr hohe Ni-63 Aktivitätskonzentration von 867 Bq/l in der Probe von der Messstelle P 750043 wurde auch durch die Ergebnisse der Vergleichsmessung des BfS mit 900 Bq/l bestätigt. Bei Messstelle P 750084 wurde ein Messwert von 27,8 Bq/l ermittelt, welcher ebenfalls gut mit dem durch das BfS ermittelten Wert von 28,7 Bq/l übereinstimmt [10] (s. Anhang E).

Am-241

In den 3 zu untersuchenden Proben von den Messstellen (P 750071, P 750043, P 750084) wurde mit einem hohen Mess- und Präparationsaufwand Am-241 auf einem sehr niedrigen Niveau erstmalig nachgewiesen (2,5 - 10,8 mBq/l (s. Ergebnisse in Tabelle 9). Für die eine ausgewählten Messstelle P 750043 zur Qualitätssicherung [10] (s. Anhang E) wurde durch das BfS ebenfalls Am-241 mit 8,6 mBq/l nachgewiesen. Dieser Wert stimmt sehr gut mit dem von IAF erhaltenem Wert überein. Bei früheren Messungen (2017 und 2015) wurde für die Proben von den Messstellen P 750043 und P 750084 für Am-241 nur niedrige Nachweisgrenzen angegeben.

Pu-238, Pu-239/240

Für Pu-239/240 stellt sich die Situation ähnlich wie für Am-241 dar. In den 2 der 3 zu untersuchenden Proben von den Messstellen (P 750071, P 750043, P 750084) wurde Pu-239/240 erstmalig auf einem sehr niedrigen Niveau nachgewiesen (2,5 bzw. 1,9 mBq/l, s. Ergebnisse in Tabelle 9). Bei früheren Messungen (2017 und 2015) wurde für die Proben von den Messstellen P 750043 und P 750084 für Pu-239/240 nur niedrige Nachweisgrenzen angegeben. Für die eine ausgewählten Messstelle P 750043 zur Qualitätssicherung [10] (s. Anhang E) wurde Pu-239/240 durch das BfS mit einer Aktivitätskonzentration von 2,3 mBq/l nachgewiesen, die sehr gut mit dem von IAF erhaltenem Wert übereinstimmt.

Pu-238 wurde in den 3 zu untersuchenden Proben von den Messstellen (P 750071, P 750043, P 750084) nur in der Probe von der Messstelle P 750043 mit 1,0 mBq/l (s. Ergebnisse in Tabelle 9) nachgewiesen³. Für diese ausgewählte Messstelle zur Qualitätssicherung [10] (s. Anhang E) wurde durch das BfS ebenfalls eine Pu-238 Aktivitätskonzentration von 2,1 mBq/l ermittelt, die im Rahmen der Messunsicherheiten mit dem von IAF erhaltenem Wert übereinstimmt. Bei früheren Messungen (2017 und 2015) wurde für die Proben von den Messstellen P 750043 und P 750084 für Pu-238 nur niedrige Nachweisgrenzen angegeben.

C-14 (anorg.) und C-14 (gesamt)

In den Abbildungen 47 und 48 sind Ergebnisse für C14 (anorg.) und C-14 (gesamt) für die Messstellen ausgewählt worden, die jeweils höchsten C-14 Aktivitätskonzentrationen aufweisen. Eine Übersicht über die Ergebnisse aller zu analysierenden Proben liefern die Tabellen 15 und 16. Es ist zu erkennen, dass seit 2011 die C-14 (anorg.) Aktivitätskonzentrationen in der Probe P 750043 von 61,1 Bq/l bis 5,9 Bq/l kontinuierlich um etwa eine Größenordnung zurückgegangen sind.

Für die vergleichsweise hohen C-14 (gesamt) Aktivitätskonzentrationen von den Proben der Messstelle P 750043 kann seit 2011 kein einheitlicher Trend festgestellt werden. Es ist eher davon auszugehen, dass die C-14 (gesamt) Aktivitätskonzentrationen in einem Bereich von ca. 30% alterieren. Diese Aussage wird auch durch die Ergebnisse der Vergleichsmessung des BfS in 2019 bestätigt [10], die, soweit sie vorliegen, die Ergebnisse der IAF bestätigen.

³ Ursprünglich wurde für diesen Messpunkt nur eine Nachweisgrenze von 0,017 Bq/l erreicht, die dem BfS zur Bewertung vorlag. Durch Ausdehnung der Messzeit auf ca. 8 Tage wurde Pu-238 mit 1 mBq/l nachgewiesen.

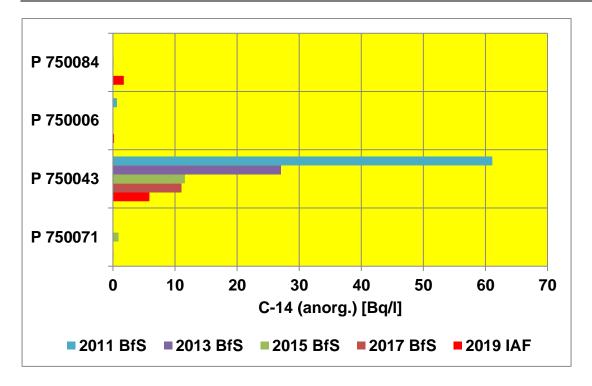


Abbildung 47: Ausgewählte Ergebnisse für C-14 (anorg.)

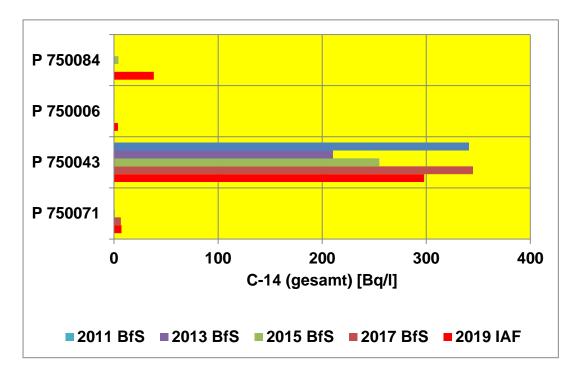


Abbildung 48: Ausgewählte Ergebnisse für C-14 (gesamt)

Tabelle 15: Ergebnisse der C-14(anorganisch) Analysen

C-14 (anorg.)	2019 IAF	2017 BfS	2015 BfS	2013 BfS	2011 BfS
P 750071	0,06	<0,07	0,90		<nwg< th=""></nwg<>
P 750043	5,87	11,00	11,60	27,00	61,10
P 750006	0,16		0,06		0,63
P 750084	1,75		0,08		0,00
L 725006	<nwg< th=""><th>0,10</th><th></th><th></th><th><nwg< th=""></nwg<></th></nwg<>	0,10			<nwg< th=""></nwg<>
L 658008	<nwg< th=""><th></th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""></nwg<></th></nwg<></th></nwg<></th></nwg<>		<nwg< th=""><th><nwg< th=""><th><nwg< th=""></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""></nwg<></th></nwg<>	<nwg< th=""></nwg<>

Tabelle 16: Ergebnisse der C-14(gesamt) Analysen

C-14 gesamt	2019 IAF	2017 BfS	2015 BfS	2013 BfS	2011 BfS
P 750071	7,15	6,50	0,90		<nwg< th=""></nwg<>
P 750043	298	345	255	210	341
P 750006	3,82				0,066
P 750084	38,30		4,30		
L 725006	<nwg< th=""><th>1,2</th><th>0,90</th><th></th><th><nwg< th=""></nwg<></th></nwg<>	1,2	0,90		<nwg< th=""></nwg<>
L 658008	<nwg< th=""><th></th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""></nwg<></th></nwg<></th></nwg<></th></nwg<>		<nwg< th=""><th><nwg< th=""><th><nwg< th=""></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""></nwg<></th></nwg<>	<nwg< th=""></nwg<>

7.1.3.3 Natürliche Radionuklide

Die Analysenergebnisse für die natürlichen Radionuklide sind im Kapitel 7.1.2 in den Abbildungen 10 bis 13 zusammengestellt. Die einzelnen Radionuklide, die für die Proben aus den unterschiedlichen Messstellen erhalten wurden, werden mit denen des BfS aus dem Jahre 2017 explizit in Form von Korrelationsdiagrammen und durch eine Zusammenstellung der Ergebnisse aus den letzten 9 Jahren verglichen, um eventuell sich manifestierende Trends ableiten zu können.

7.1.3.3.1 Ra-226, Ra-228 und Ra-224

Das Salz der Asse ist von anderen Gesteinen umgeben, die erdgeschichtlich als Buntsandstein bezeichnet werden. Dazu gehören Ton-, Sand- und Kalkstein. In diesen Gesteinen befinden sich zahlreiche Risse und Störungen, in denen Grundwasser fließen kann. Teilweise sind die Gesteinsschichten unterbrochen und gegeneinander verschoben. Vor allem südwestlich des Bergwerks sind die Störungen zu finden. Sie sind entstanden, weil das Salz über viele Millionen Jahren Richtung Tagesoberfläche drängte und die darüber liegenden Gesteinsschichten nahezu senkrecht aufwölbte und verformte. Durch Risse im Salz und im umliegenden Gebirge läuft Grundwasser in die Schachtanlage Asse II. Aktuell sind es rund 13,5 Kubikmeter pro Tag [13].

In den Abbildungen 49 und 50 sind die im Jahre 2019 bestimmten Ra-226 und Ra-228 Aktivitätskonzentrationen in den Salzlösungen mit denen in 2017 vom BfS bestimmten Werten verglichen. Die Ergebnisse in den jeweiligen Korrelationsdiagrammen belegen, dass gegenüber den Messungen aus dem Jahre 2019 nur marginale Veränderungen aufgetreten sind. Durch das BfS sind in 2019 im Rahmen der Qualitätssicherung Messvergleiche für Ra-224 und je 3 für Ra-226 und Ra-228 durchgeführt worden [10].

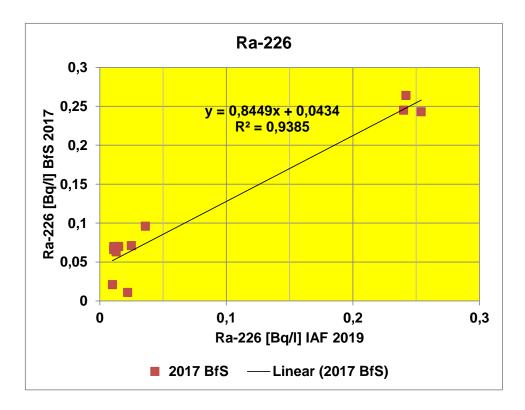


Abbildung 49: Vergleich der im Jahre 2019 von IAF bestimmten Ra-226 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten.

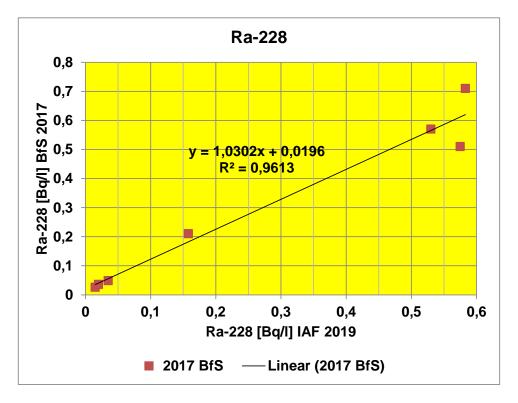


Abbildung 50: Wie Abbildung 49, jedoch für Ra-228

In den Abbildungen 51 und 52 sind alle früheren Messergebnisse der Ra-226 und Ra-228 Aktivitätskonzentrationen bis 2011, soweit sie vorlagen, grafisch dargestellt. Es ist zu erkennen, dass sich die Radiumaktivitätskonzentrationen über die letzte Dekade tendenziell kaum verändert haben. Sie alterieren geringfügig im Bereich ihrer jeweiligen Höchstwerte. Des Weiteren dominieren in den 3 Salzlösungs-Proben L658008-S1, SB3 und L658008 sowohl die Ra-226 als auch die Ra-228 Aktivitätskonzentrationen gegenüber denen von den anderen untersuchten Messstellen deutlich, wobei in diesen 3 Proben die Ra228 Aktivität etwa doppelt so hoch wie die von Ra-226. Verglichen zu den Grundwasserproben aus den Schächten Asse 1 und Asse 3 (s. Ergebnisse in Kapitel 7.1.3.3.5) sind die ermittelten Aktivitätskonzentrationen dieser 3 Salzlösungsproben L658008-S1, SB3 und L658008 etwa bis Faktor 20 bzw. 50 höher als die der Grundwässer. Diese signifikante Erhöhung der Radiumaktivitätskonzentrationen ist auf die Wechselwirkung des eindringenden Grundwassers mit unter den jeweiligen chemischen Bedingungen leichter eluierbareren Gebirgsmaterial zurückzuführen. Wo diese Elutionsprozesse nicht stattfinden bzw. stark unterdrückt sind, weisen die entsprechenden Salzlösungen Radiumaktivitätskonzentrationen auf, die mit den der Grundwässer vergleichbar sind.

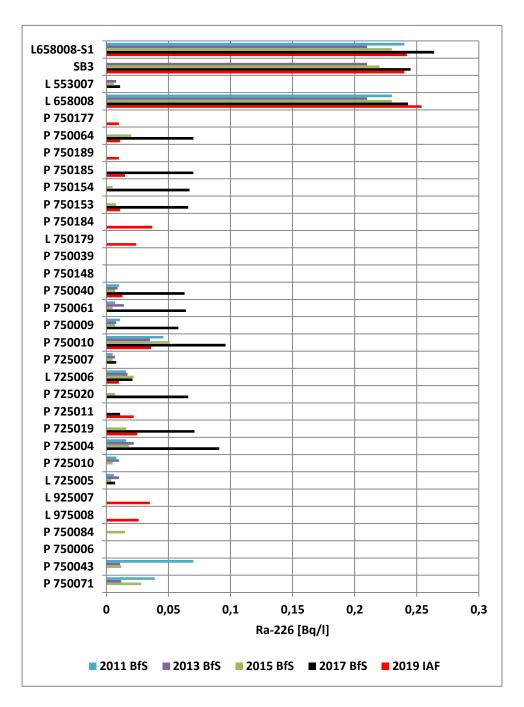


Abbildung 51: Wie Abbildung 49, jedoch für die früheren Ra-226 Messergebnisse bis 2011

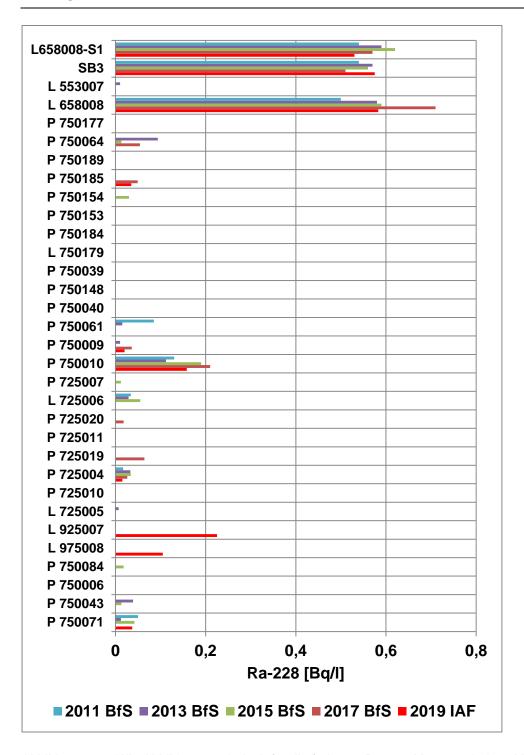


Abbildung 52: Wie Abbildung 50, jedoch für die früheren Ra-228-Messergebnisse bis 2011

Informationen in den zeitlichen Ablauf der Radiumelutionsprozesse liefern die Untersuchungsergebnisse über die Ra-224 Aktivitätskonzentrationen. Das Radionuklid Ra-224 hat eine vergleichsweise kurze Halbwertszeit von 3,7 Tagen und wäre in den Salzlösungen nicht nachweisbar, wenn die Fließwege entsprechend lang bzw. die Grundwasserfließgeschwindigkeiten entsprechend niedrig wären. Deshalb hängt die an den Messstellen tatsächlich nachgewiesene Ra-224 Aktivitätskonzentration stark von der Fließdauer ab und eignet sich

Radiologische Gutachten

Consulting

somit z.B. als Tracer zur Erkundung der Transportvorgänge vom Zutritt aus dem Deckgebirge bis zur jeweiligen Messstelle.

In der Abbildung 53 sind die an 3 Messstellen im Jahre 2019 von IAF bestimmten Ra-224 Aktivitätskonzentrationen mit den in früheren Jahren vom BfS bestimmten Werten verglichen, wobei zusätzlich auch die Ra-228 Aktivitätskonzentrationen (s. Abbildung 52) mit angegeben sind. Es ist zu erkennen, dass sich der in den früheren Jahren festgestellte Trend der Ra-224 Aktivitätskonzentrationen an den 3 ausgewählten Messstellen praktisch kaum verändert hat. Auch die Vergleichsmessung des BfS in 2019 im Rahmen der Qualitätssicherungsmaßnahmen [10] bestätigt für die ausgewählten Messstellen die von IAF analysierten Werte (s. Anhang E).

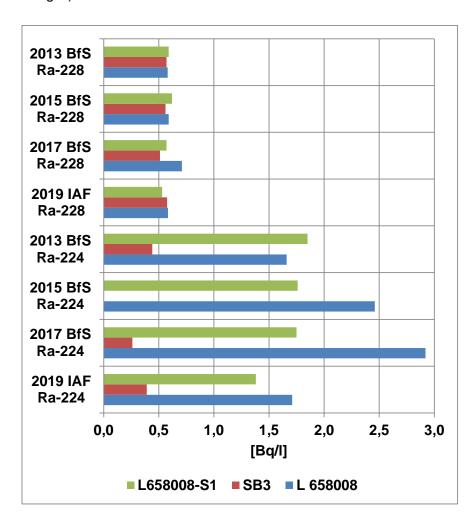


Abbildung 53: Vergleich der im Jahre 2019 von IAF bestimmten Ra-224 Aktivitätskonzentrationen mit den in früheren Jahren vom BfS bestimmten Werten. Zusätzlich angegeben sind auch die Ra-228 Aktivitätskonzentrationen.

Aus diesen Messergebnissen für Ra-224, dessen Aktivitätskonzentration auf den Zeitpunkt der Probenahme bezogen ist, ist klar ersichtlich, dass im Speicherbecken SB3 wegen der vergleichsweise längeren Verweilzeit die niedrigsten Ra-224 Aktivitätskonzentrationen festgestellt werden. Ob jedoch in dem Becken teilweise Ra-224 unter den herrschenden chemischen Milieubedingungen auch aus abgelagerten Th-228 nachgebildet wird, konnte nicht geklärt werden. Zudem ist zu bemerken, dass Th-228 in keiner der Salzlösungen und in den

2 Grundwasserproben aus den Schächten Asse 1 und Asse 3 (insgesamt 20 Messstellen) nachgewiesen wurde (s. Ergebnisse in der Tabelle 11).

Die am Messpunkt L658008 für die "frische Lauge" an der Hauptfassungsstelle gewonnene Salzlösung verfügt über die höchste Ra-224 Aktivitätskonzentration von bis zu knapp 3 Bq/l. Nach ca. 10 Tagen Speicherungszeit wäre die Aktivitätskonzentration von Ra-224 auf Werte von etwa 0,5 Bq/l abgesunken. Am tatsächlichen "Entstehungsort" der erhöhten Ra-224 Aktivitätskonzentrationen ist je nach Höhe der Fließgeschwindigkeiten von Werten > 3 Bq/l auszugehen.

7.1.3.3.2 U-238 und U-234

In der Abbildung 54 sind die im Jahre 2019 bestimmten U-238 Aktivitätskonzentrationen mit denen in 2017 vom BfS bestimmten Werten verglichen. Die Ergebnisse in den jeweiligen Korrelationsdiagrammen belegen, dass gegenüber den Messungen aus dem Jahre 2019 nur marginale Veränderungen aufgetreten sind.

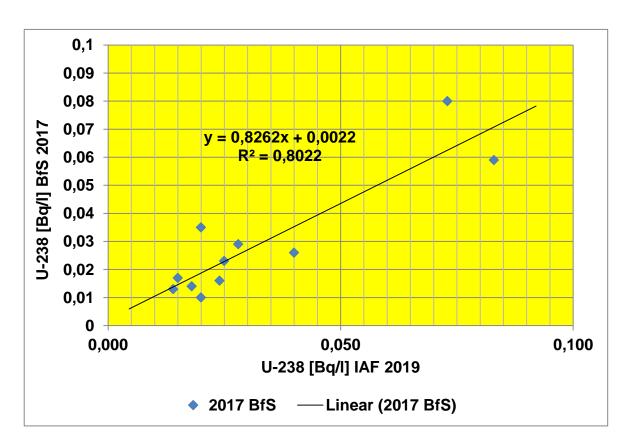


Abbildung 54: Vergleich der im Jahre 2019 bestimmten U-238 Aktivitätskonzentrationen mit den in 2017 vom BfS bestimmten Werten.

In der Abbildung 55 sind alle früheren Messergebnisse der U-238 Aktivitätskonzentrationen bis 2011, soweit sie vorlagen, grafisch dargestellt. Es ist zu erkennen, dass sich in der Tendenz die U-238 Aktivitätskonzentrationen an den einzelnen Messstellen nicht auffallend verändert haben. Insgesamt sind die in den untersuchten Messstellen nachgewiesenen U-238 Aktivitätskonzentrationen nicht besonders hoch. Sie liegen im Maximum (Messstelle

L925007) noch unterhalb von 100 mBq/l. An der Messstelle SB3 wurden für U-238 nur sehr niedrige Nachweisgrenzen erreicht, wohingegen U-234 nachgewiesen werden konnte.

Abschließend ist zu bemerken, dass die Vergleichsmessung des BfS in 2019 im Rahmen der Qualitätssicherungsmaßnahmen [10] für die ausgewählte Messstelle P 725019 die U-238 Werte von IAF voll umfänglich bestätigt (s. Anhang E).

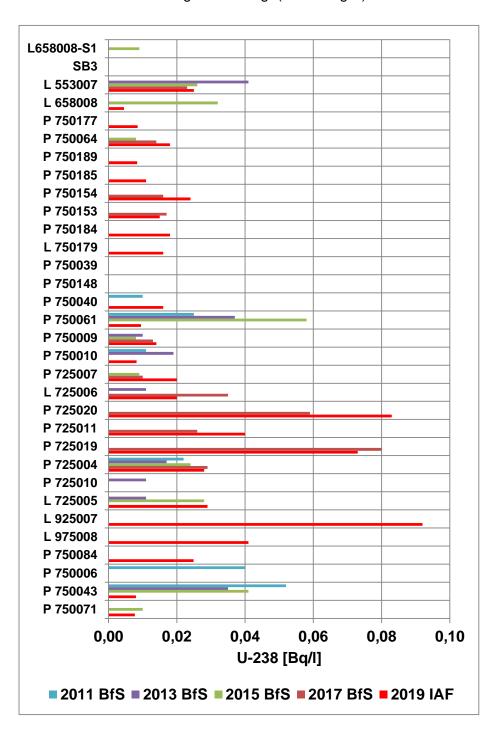


Abbildung 55: Wie Abbildung 54, jedoch für die früheren U-238 Messergebnisse bis 2011

Die U-234 Aktivitätskonzentrationen zeigen den gleichen Trend wie die von U-238 (s. Abbildung 56). In der Abbildung 57 sind die Aktivitätsverhältnisse von U-234/U-238 für die einzelnen Messstellen für 2019 dargestellt.

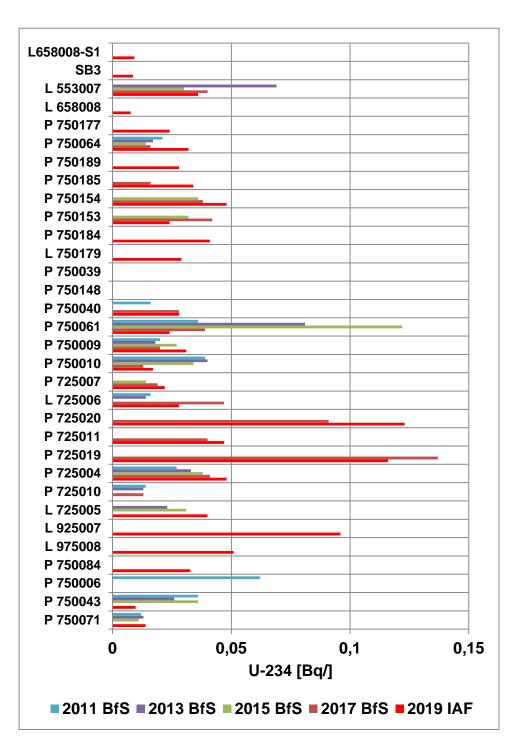


Abbildung 56: Zusammenstellung aller U-238 Messergebnisse von 2011 bis 2019

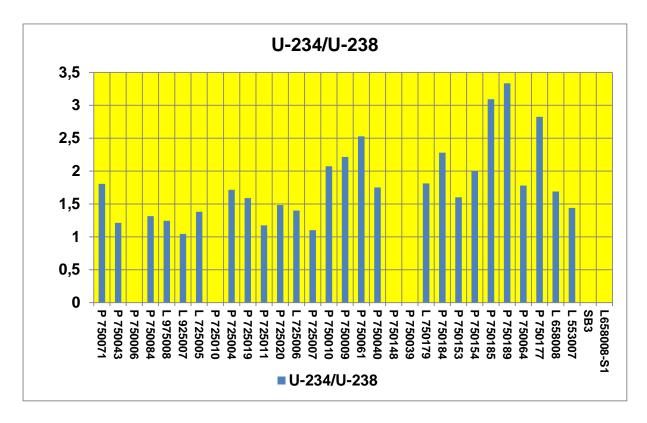


Abbildung 57: Aktivitätsverhältnisse von U-234/U-238 für die einzelnen Messstellen

Die Abbildung 58 zeigt die Aktivitätsverhältnisse von U-234/U-238 in Abhängigkeit von den U-238 Aktivitätskonzentrationen. Bei den etwas höheren U-238 Aktivitätskonzentrationen sind die von U-234 nur geringfügig höher, bei geringen U-238 Aktivitätskonzentrationen von < 20 mBq/l scheinen diese bis etwa um den Faktor 3 größer zu sein.

Es wird bei Grundwässern festgestellt, dass die U-234 Aktivitätskonzentrationen generell etwas höher als die von U-238 sind. Es wurden hohe Unterschiede bis ca. Faktor 15 festgestellt [14] (s.a. Ergebnisse in [15]). Im Trinkwasser in Deutschland ist das U-234/U-238 bei etwa 1,65 anzusiedeln [16]. Durch die beim Alpha-Zerfall von U-238 auftretenden Rückstoßprozesse an der Phasengrenze fest/flüssig des Grundwasserleiters wird einer stärkeren Auslaugung von U-234 des vom Grundwasser durchströmten Gesteins Vorschub geleistet.

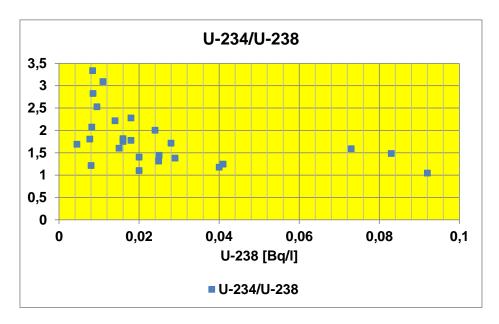


Abbildung 58: Wie Abbildung 57, jedoch in Abhängigkeit von der jeweiligen U-238 Aktivitätskonzentration

7.1.3.3.3 Pb-210 und Po-210

In der Abbildung 59 sind die Pb-210 und Po-210 Aktivitätskonzentrationen von den ausgewählten Proben der Messkampagne 2019 grafisch dargestellt. Falls keine Messwerte für Po-210 angegeben sind, bedeutet dies, dass für diese Messungen nur Nachweisgrenzen existieren. Aus dieser Darstellung ist ersichtlich, dass bis auf wenige Ausnahmen, die Po-210 Aktivitätskonzentrationen signifikant geringer als die von Pb-210 sind. Das bedeutet, dass wahrscheinlich hauptsächlich Pb-210 in der Salzlösung der jeweiligen Messstelle existent bzw. dorthin migriert, jedoch nicht Po-210, dessen Aktivitätskonzentration je nach Zeitdauer nachgebildet wird.

In der Abbildung 60 sind zur besseren Übersicht die gemessenen Po-210 Aktivitätskonzentrationen in Abhängigkeit von den Pb-210 Aktivitätskonzentrationen und in der Abbildung 61 das Aktivitätsverhältnis Po-210/Pb-210 in Abhängigkeit von den Pb-210 Aktivitätskonzentrationen dargestellt. Es ist zu erkennen, dass in einer einzigen Probe (P 750184) praktisch radioaktives Gleichgewicht zwischen Pb-210 und Po-210 besteht, während in allen anderen Proben das Aktivitätsverhältnis von R=Po-210/Pb-210 < 0,4 ist. Ein Aktivitätsverhältnis von R=0,39 wurde in der Probe P 925007 festgestellt, wobei wahrscheinlich die Po-210 Aktivitätskonzentration allein auf eine Nachbildung nach einer Lagerungszeit von ca. 2 -3 Monaten entstanden sein könnte.

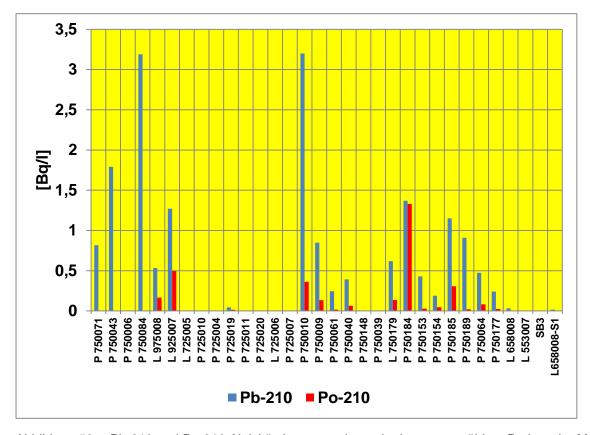


Abbildung 59: Pb-210 und Po-210 Aktivitätskonzentrationen in den ausgewählten Proben der Messkampagne 2019

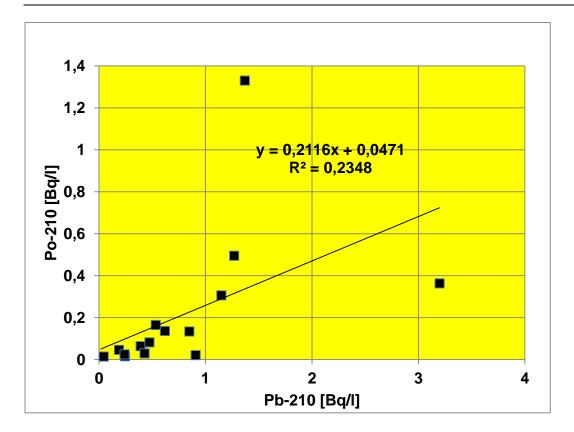


Abbildung 60: Po-210 in Abhängigkeit von der Pb-210 Aktivitätskonzentration in den ausgewählten Proben der Messkampagne 2019

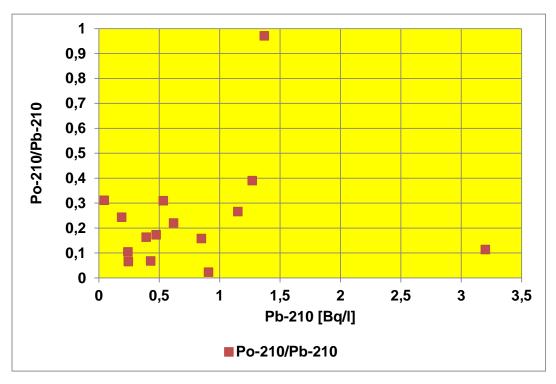


Abbildung 61: Aktivitätsverhältnis Po-210/Pb-210 in Abhängigkeit von der Pb-210 Aktivitätskonzentration in den ausgewählten Proben der Messkampagne 2019

Generell ist zu bemerken, dass für den Zeitraum von 2011 bis 2019 für die Pb-210 und Po-210 Aktivitätskonzentrationen nur eine geringe Anzahl von Messergebnissen vorliegt. In den Abbildungen 62 und 63 sind diese zusammenfassend dargestellt.

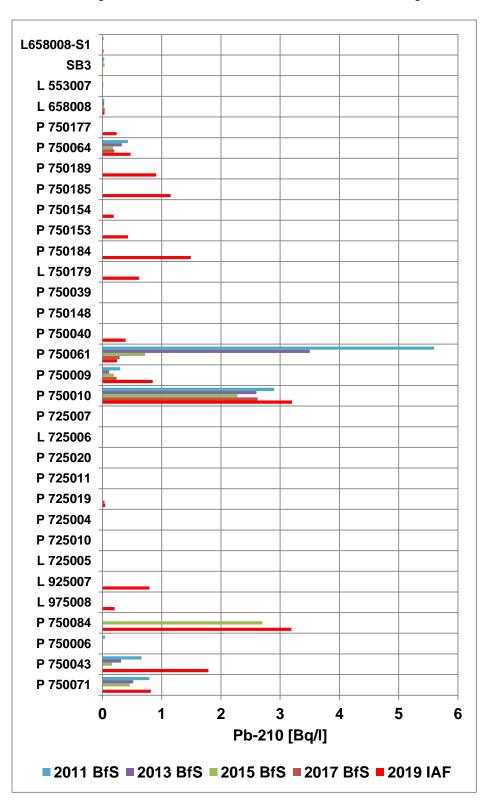


Abbildung 62: Zusammenstellung aller Pb-210 Messergebnisse von 2011 - 2019

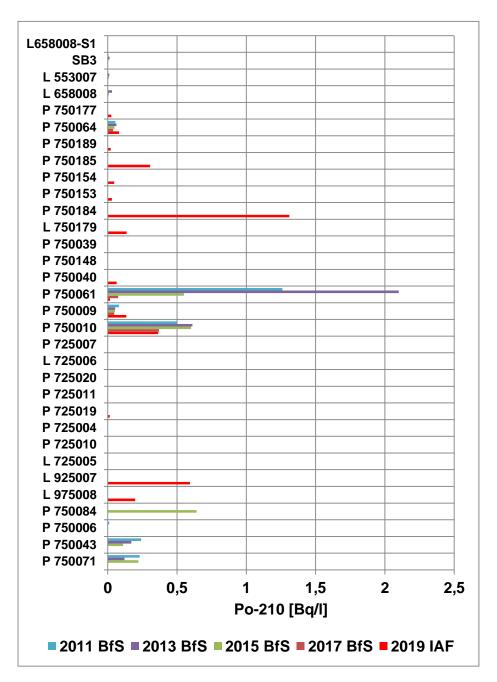


Abbildung 63: Zusammenstellung aller Po-210 Messergebnisse von 2011 - 2019

7.1.3.3.4 Thorium-232, Th-230 und Th-228

Erstmalig wurden im Rahmen der Charakterisierungsmessung im Jahre 2017 durch das BfS [6] auch die Thoriumisotope Th-228, Th-230 und Th-232 aus den natürlichen Zerfallsreihen von Th-232 und U-238 untersucht. Diese Art von Messungen wurden durch IAF im Jahre 2019 an 20 ausgewählten Salzlösungen aus der Schachtanlage Asse II und 2 Proben aus den Schächten von Asse 1 und Asse 3 wiederholt.

Für Th-232 konnten in 2019, wie auch durch BfS [6] in 2017, nur Messwerte von < NWG erzielt werden (s. Ergebnisse in der Tabelle 11). Auch das Tochternuklid Th-228, ein Zerfallsprodukt von Ra-228, konnte in keiner der Proben nachgewiesen werden. Die Vergleichsmessungen von 2019 des BfS zur Qualitätssicherung [10] (s. Anhang E) bestätigen diese Ergebnisse voll umfänglich.

In 2017 wurden jedoch durch das BfS in einigen Messstellen Th-228 auf einem sehr niedrigen Niveau in den Salzlösungen nachgewiesen. Dies betrifft auch die Zutrittsstelle L658008, für die eine Th-228 Aktivitätskonzentration von 0,047 Bq/l ermittelt wurde. In der Messkampagne 2019 konnte dagegen Th-228 sowohl von IAF als auch vom BfS nicht nachgewiesen werden. Es wurde nur eine sehr niedrige NWG von 0,010 Bq/l angegeben. Diese Diskrepanz ist darauf zurückzuführen, dass in 2017 die Th-228 Aktivitätskonzentrationen generell auf den Messzeitpunkt bezogen sind und somit die Nachbildung von Th-228 aus dem Zerfall von Ra-228 nicht subtrahiert wurde.

Th-230 wurde in Proben von 4 Messstellen auf einem sehr niedrigen Niveau (maximal 14 mBq/l) nachgewiesen (s. Ergebnisse in der Tabelle 11).

7.1.3.3.5 Untersuchungsergebnisse von zwei Proben aus den Schächten Asse 1 und Asse 3

Von den Probenahmestellen der Schächte Asse 1 (s. Abbildung 13) und Asse 3 (s. Abbildung 14) sind die Proben S1 bzw. S3 vom AG entnommen worden und der IAF zur chemischen und radiologischen Analyse zur Verfügung gestellt worden. Die Ergebnisse der chemischen Analyse sind in der Tabelle 17 zusammengestellt.

Tabelle 17: Chemisch-physikalische Parameter der 2 Zusatzproben aus den Grundwassermessstellen der Schächte Asse 1 und Asse 3

Nr.	Messstelle	pH-Wert	Dichte	Fe	Na	К	Mg
			kg/l	mg/l	mg/l	mg/l	mg/l
Asse 1	S1	7,48	1,001	< BG	262	13	138
Asse 2	S3	10,34	1,047	< BG	23200	329	< BG

Nr.	Messstelle	Ca	Chlorid	Sulfat	Am- moni- um	Nitrat
		mg/l	mg/l	mg/l	mg/l	mg/l
Asse 1	S1	516	639	677	< BG	9,5
Asse 2	S3	2170	38000	2670	8,12	0,76

Es ist klar ersichtlich, dass sich die 2 Wasserproben aus den Schächten in ihrer chemischen Konsistenz deutlich voneinander unterscheiden. Die Probe aus dem Schacht Asse 1 ist eher mit der einer Mineral- bzw. Trinkwasserprobe vergleichbar, während die Probe aus dem Schacht Asse 3 wegen ihrer höheren Salinität als Salzlösung zu bezeichnen wäre. Jedoch ist ihre Salinität noch deutlich geringer als die der Laugenproben (s. Ergebnisse in Kapitel 6). In beiden Proben sind die pH-Werte mit 7,5 (S1) und 10,3 (S3) signifikant höher als die der Laugenproben (4,6 bis 7,1, Median 5,7). Der hohe pH-Wert bei Messstelle S3 kann mit zementhaltigen Materialien im Schacht Asse 3 zusammenhängen. Diese Vermutung wird auch durch die vergleichsweise hohe Ca-Konzentration von 2170 mg/l gestützt. In der Probe S3 konnte im Unterschied zu den Laugenproben Mg nicht nachgewiesen werden. In der Probe S1 ist dagegen kein Ammonium enthalten, jedoch Spuren von Nitrat sind nachweisbar. In der Probe S3 ist dagegen Ammonium nachweisbar und nur geringe Spuren von Nitrat sind erkennbar.

Insgesamt gesehen, scheint in diesen von den Schächten Asse 1 und Asse 3 stammenden Proben kein direkter Einfluss von den Salzlösungen aus der Schachtanlage Asse II (s. Ergebnisse in Kapitel 6) erkennbar zu sein. Diese Schlussfolgerung wird auch durch die radiologischen Messergebnisse (s. Tabelle 18) nachhaltig gestützt.

In der Tabelle 18 sind die Ergebnisse der Radionuklidanalysen von den 2 Messstellen der Schächte Asse 1 und Asse 3 zusammengestellt. In beiden Proben konnten keine relevanten künstlichen Radionuklide mit den gammaspektrometrischen Methoden nachgewiesen werden. Die erreichten Erkennungs- und Nachweisgrenzen sind in Analysetabellen im Anhang B angegeben.

Tabelle 18: Ergebnisse der Radionuklidanalysen der 2 Zusatzproben aus den Grundwassermessstellen der Schächte Asse 1 und Asse 3 (S1 und S3)

Nr.	Messstelle	K-40	Co-60	Nb-94	Ag- 108m	Sb-125	I-129	Ba-133
		Bq/l	Bq/l	Bq/l	Bq/l	Bq/l	Bq/l	Bq/l
Asse 1	S1	< NWG	< NWG	< NWG	< NWG	< NWG	< NWG	< NWG
Asse 3	S3	9,45	< NWG	< NWG	< NWG	< NWG	< NWG	< NWG
Nr.	Messstelle	Cs-137	Eu-152	Eu-154	H-3	C-14 anorg.	C-14 gesamt	Sr-90
		Bq/l	Bq/l	Bq/l	Bq/l	Bq/l	Bq/l	Bq/I
Asse 1	S1	< NWG	< NWG	< NWG	< NWG	< NWG	< NWG	< NWG
Asse 3	S3	< NWG	< NWG	< NWG	< NWG	< NWG	< NWG	< NWG

Nr.	Messstelle	Ra-224	Ra-226	Ra-228	Po-210	Pb-210
		Bq/I	Bq/l	Bq/l	Bq/l	Bq/l
Asse 1	S1	< NWG	0,010	0,014	< 0,0013	< 0,012
Asse 3	S3	< NWG	0,022	0,010	< 0,0030	< 0,010
Nr.	Messstelle	U-238	U-234	Th-232	Th-230	Th-228
		Bq/I	Bq/I	Bq/l	Bq/l	Bq/I
Asse 1	S1	0,167	0,485	< NWG	< NWG	< NWG
Asse 3	S3	0,0017	0,0033	< NWG	< NWG	< NWG

Bezüglich der natürlichen Radionuklide ist zu bemerken, dass sich die Wässer hinsichtlich der Höhe der Urankonzentrationen signifikant unterscheiden, wobei das Wasser aus dem Schacht 3 (S3) extrem geringe Uranaktivitätskonzentrationen aufweist, und die im Schacht 1(S1) etwa um 2 Größenordnungen höher sind. Die Analysen zeigen des Weiteren, dass die Urankonzentrationen natürlichen Ursprungs sind.

Würde als Bewertungsmaßstab die Trinkwasserverordnung [17] zugrunde gelegt, erfüllen beide Wässer das Dosiskriterium von 0,1 mSv/a bei einer jährlichen Ingestionsrate von 730 l. Es ist jedoch zu bemerken, dass die Urankonzentration in Wasser vom Schacht S1 den festgelegten Grenzwert von 10 μ g/l etwas übertrifft.

7.2 Qualitätssicherung der Messwerte durch das BfS

Zur Qualitätssicherung der in der Probenahmekampagne 2019 durchgeführten radiologischen Messungen wurden durch das BfS an 6 Messstellen parallel Proben entnommen und im Labor des BfS analysiert. Der entsprechende Bericht zur Qualitätssicherung [10] ist in dem Anhang E enthalten. Die Ergebnisse in den Tabellen 19 und 20 liefern einen Überblick der vom BfS und der IAF untersuchten Proben It. Qualitätssicherungsprogramms in der Leistungsbeschreibung. Aus diesem Vergleich folgt, dass die durch IAF erzielten Ergebnisse voll umfänglich mit denen des BfS übereinstimmen. Es ist jedoch zu bemerken, dass für einzelne Radionuklide durch das BfS noch geringere Nachweis- bzw. Erkennungsgrenzen erreicht wurden, die allein auf die teils deutlich längeren Messzeiten zurückzuführen sind. Aus diesem Grund sind auch die im Bericht zur Qualitätssicherung [10] (s. Anhang E) angegebenen Messunsicherheiten in einigen Fällen entsprechend geringer.

Im Resümee des BfS zum Messwertvergleich ist zusammengefasst, dass die Messergebnisse von BfS und IAF im Rahmen der berechneten Messunsicherheiten gut übereinstimmen. Der Vergleich der Messergebnisse für die direkt gemessenen Gammastrahler, die Alphastrahler und auch für den Betastrahler Ni-63 ergaben die besten Übereinstimmungen. Aus Sicht des BfS ist besonders hervorzuheben, dass in salinaren Lösungen Radionuklide trotz der sehr niedrigen Aktivitätskonzentrationen von wenigen mBq/l nachgewiesen werden konnten und sich für die Mehrzahl der Ergebnisse eine "gute" bis "sehr gute" Vergleichbarkeit ergeben hat.

Tabelle 19: Vergleich der Analysenergebnisse von IAF und BfS im Rahmen der Messungen zur Qualitätssicherung für die Proben von den Messstellen L 658008, P 725019 und P 750043 in Bq/l

Messstelle	L 65	58008	P 72	25019	P 750	0043
Nuklid	IAF	BfS	IAF	BfS	IAF	BfS
C-14 ges.					298	230
Ni-63					27,8	28,7
Sr-90					< NWG	< NWG
Cs-137					9700	9760
Pu-238					0,0010	0,0021
Pu- 230/240					0,0025	0,0023
Am-241					0,0109	0,0086
K-40	79,7	80	307	318	749	757
Pb-210	0,033	0,015				
Po-210	< NWG	< NWG				
Ra-224	1,71	1,63				
		2,10				
Ra-226	0,254	0,265				
		0,235				
Ra-228	0,583	0,64				
		0,67				
U-234			0,116	0,121		
U-235			0,0031	0,003		
U-238			0,073	0,074		
Th-228	< NWG	< NWG				

Tabelle 20: Wie Tabelle 19, jedoch für die Proben von den Messstellen P50084, P750185 und P750189 in Bq/l

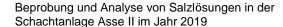
Messstelle	P 7	50084	P 75	0185	P 750189	
Nuklid	IAF	BfS	IAF	BfS	IAF	BfS
C-14 ges.	38,3	37				
Co-60	1,05	1,05				
Ni-63	867	900				
Tc-99	22,3	28,8				
Cs-137	106.600	105.200				
K-40	177	170	391	365	421	415
Pb-210			1,15	1,61	0,91	1,23
				1,40		1,80
Ra-226			0,015	0,016	0,010	0,013
Ra-228			0,035	0,052	0,017	0,043
Th-228			< NWG	< NWG	< NWG	< NWG

8 Zusammenfassung und Schlussfolgerungen

Die IAF Messergebnisse Ergebnisse aus dem Jahre 2019 bestätigen voll umfänglich die vom BfS 2017 erhaltenen Ergebnisse und auch die darin enthaltenen Schlussfolgerungen in Bezug auf die Ergebnisse früherer Jahre [6]. Es wurde bestätigt, dass H-3 und Cs-137 die Leitnuklide in den Salzlösungen der relevanten Messetellen sind. Die Auswertung der im Rahmen der hier vorgestellten Untersuchung erhaltenen Messergebnisse ergab keine Hinweise darauf, dass die bisherige Empfehlung zur Verwendung der Radionuklide Cs-137 und H-3 als Leitnuklide modifiziert werden muss. Dies ist in Übereinstimmung mit den durch das BfS im Bericht für das Jahr 2017 [6] zusammengefassten Schlussfolgerungen. Zur Darstellung von Trends seit 2011 wurden alle Messergebnisse soweit vorhanden, grafisch dargestellt und die von IAF in 2019 erhaltenen Ergebnisse mit den vom BfS in 2017 publizierten Ergebnissen verglichen.

Trotz eines hohen Mess- und Präparationsaufwands konnte in allen 9 ausgewählten Proben das Radionuklid Sr-90 nicht nachgewiesen werden.

Nur in einer (P750084) der 3 untersuchten Proben wurde Tc-99 nachgewiesen. In dieser Probe ist auch Co-60 festgestellt worden. Die nachgewiesene Aktivitätskonzentration von 22,3 Bq/l für Tc-99 stimmt sehr gut mit dem vom BfS in 2017 und in 2015 bestimmten Wert von 21,0 Bq/l bzw. 20,4 Bq/l überein.


Das Radionuklid Ni-63 wurde in 3 der 6 der zu untersuchenden Proben nachgewiesen. Die sehr hohe Ni-63 Aktivitätskonzentration von 867 Bq/l in der Probe von der Messstelle P 750043 wurde auch durch die Ergebnisse der Vergleichsmessung des BfS mit 900 Bq/l bestätigt. In dieser Probe sind seit 2011 die C-14 (anorg.) Aktivitätskonzentrationen von 61,1 Bq/l bis 5,9 Bq/l kontinuierlich um etwa eine Größenordnung zurückgegangen, wohingegen für die vergleichsweise hohen C-14 (gesamt) Aktivitätskonzentrationen kein einheitlicher Trend festgestellt werden konnte. Es scheint, dass die C-14 (gesamt) Aktivitätskonzentrationen in einem von Bereich von ca. 30% alterieren.

Erstmals wurde an den 3 zu untersuchenden Messstellen (P 750071, P 750043, P 750084) Am-241 auf einem sehr niedrigen Niveau nachgewiesen. Wahrscheinlich ist auch in den früher genommenen Proben Am-241 vorhanden gewesen, jedoch erfolgte kein so hoher Messund Präparationsaufwand.

Für Plutoniumisotope stellt sich die Situation ähnlich wie für Am-241 dar. An den Messstellen P 750043 und P 750084) wurde erstmalig Pu-239/240 auf einem sehr niedrigen Niveau nachgewiesen (2,5 bzw. 1,9 mBq/l). Dagegen wurde Pu-238 nur in der Probe von der Messstelle P 750043 mit 1,0 mBq/l erstmalig nachgewiesen.

Durch das BfS wurde im Jahre 2017 zusammenfassend festgestellt [6], dass sich die radiologische Situation an den Messstellen der 490-m-, der 553-m-, der 574-m-, der 658-m-, der 725-m-und der 750-m-Sohle, auf die früheren Jahre 2008, 2009, 2011, 2013 und 2015 nicht verändert haben und die Kriterien bezüglich der Freigabe von Salzlösungen nach StrlSchV weiterhin erfüllt sind. Die IAF Messergebnisse aus dem Jahre 2019 bestätigen diese Aussage voll umfänglich.

Die Ergebnisse der untersuchten Wässer aus den Schächten Asse 1 und Asse 3 belegten, dass die 2 Proben (S 1 und S 3) in ihrer chemischen Konsistenz deutlich voneinander unterscheiden. Die Probe von der Messstelle S1 ist eher mit der einer Mineral- bzw. Trinkwasserprobe vergleichbar, während die Probe von der Messstelle S3 wegen ihrer höheren Salinität

als Salzlösung zu bezeichnen wäre. In beiden Proben konnten keine relevanten künstlichen Radionuklide nachgewiesen werden. Die Wässer unterscheiden sich signifikant hinsichtlich der Höhe der Urankonzentrationen, wobei das Wasser aus dem Schacht 3 extrem geringe Uranaktivitätskonzentrationen aufweist, und die im Schacht 1 etwa um 2 Größenordnungen höher sind. Die Analysen zeigen des Weiteren, dass die Urankonzentrationen natürlichen Ursprungs sind. Würde als Bewertungsmaßstab der Trinkwasserverordnung zugrunde gelegt, erfüllen beide Wässer das Dosiskriterium von 0,1 mSv/a bei einer jährlichen Ingestion von 730 I. In den von den 2 Schächten stammenden Proben ist kein direkter Einfluss von den Salzlösungen der Schachtanlage Asse II erkennbar.

9 Literaturverzeichnis

- [1] BRENK SYSTEMPLANUNG GMBH: Standortbezogene Freigabe von Zutrittslösungen aus der Schachtanlage Asse Zwischenbericht zur Freigabe von Zutrittslösungen auf der Basis vollständiger Freigabemessungen. Aachen, 12.10.2008
- [2] BRENK SYSTEMPLANUNG GMBH: Beprobung und Analyse von Salzlösungen 2009, Schachtanlage Asse II Endbericht. Aachen, 16.12.2009
- [3] BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen und Salzen 2011 Schachtanlage Asse II, 9A–65161000, LE-RB-0008, 18.11.2011
- [4] BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen, Salzen und Grundwässern 2013 Schachtanlage Asse II, 9A–65161000, LE-RB-0013, 13.11.2013
- [5] BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen und Salzen 2015 Schachtanlage Asse II, 9A–65161000, LE-RB-0014, 13.11.2015
- [6] BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen und Salzen 2017 Schachtanlage Asse II, 9A–65161000, LE-RB-0015, 21.11.2017
- [7] Bundesgesellschaft für Endlagerung: Arbeitsanweisung Probenahme Salzlösungen, 9A-65250000-01STS/LE/DA/0001/02, Stand 06.09.2018
- [8] Akkreditierungsurkunde der IAF-Radioökologie GmbH, ausgestellt von der Deutsche Akkreditierungsstelle GmbH am 21.06.2019, Registrierungsnummer der Urkunde: D-PL-11201-01-00
- [9] Strahlenschutzverordnung vom 29. November 2018 (BGBI. I S. 2034, 2036)
- [10] BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen 2019 Schachtanlage Asse II, Unabhängiger Bericht zur Qualitätssicherung von Radioaktivitätsmessungen in hochsalinaren Lösungen, UR 01 / 2020, Juli 2020
- [11] Ergebnisse der Strahlenschutzmessungen in der Schachtanlage Asse II, BGE Berichte 2019
- [12] Probenaufbereitung von hochkonzentrierten Salzlösungen zur Bestimmung von Tritium in der wässrigen Phase, Interne Berichte der IAF-Radioökologie, Mai 2020
- [13] https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjj742sy4vrAhXLqqQKHfCpD4YQFjAAegQIARAB&url=https%3A%2F%2Fwww.bge.de%2Fde%2Fasse%2Fthemenschwerpunkte%2Fthemenschwerpunktdas-wasser-in-der-asse%2Fwarum-laeuft-wasser-in-die-asse%2F&usg=AOvVaw1Tyl_4oRByCG8qy58hFh8r
- [14] IAF-Radioökologie GmbH, Interne Berichte
- [15] R. Gellermann und Stolz, Z.Umweltchem., Ökotox. 9 (1997)
- [16] M. Beyermann, T. Bünger, K. Gehrcke, D. Obrikat Strahlenexposition durch natürliche Radionuklide im Trinkwasser in der Bundesrepublik Deutschland, BfS-SW-06/09 urn:nbn:de:0221-20100319945, BfS Salzgitter 2009

[17] Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung - TrinkwV), in der Fassung der Bekanntmachung vom 10. März 2016 (BGBl. I S. 459), die zuletzt durch Artikel 99 der Verordnung vom 19. Juni 2020 (BGBl. I S. 1328) geändert worden ist

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Anhang A - Fotodokumentation über die Probeentnahme von Salzlösungen

Auftraggeber: BGE Bundesgesellschaft für Endlagerung mbH

Eschenstraße 55 31224 Peine

Projektname: Beprobung und Analyse von Salzlösungen

in der Schachtanlage Asse II im Jahr 2019

Projektnummer: 190920-02

Auftragnehmer: IAF-Radioökologie GmbH

Autor: Dr. rer. nat.

Dr. rer. nat. habil.

Radeberg, den 24.07.2020

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-11201-01-00

Geschäftsführer

Wilhelm-Rönsch-Str. 9 01454 Radeberg Tel. +49 (0) 3528 48730-0 Fax +49 (0) 3528 48730-22 E-Mail info@iaf-dresden.de Geschäftsführer: Dr. rer. nat. habil. Hartmut Schulz Dr. rer. nat. Christian Kunze Dipl.-Ing. (BA) René Baumert Handelsregister: HRB 9185 Amtsgericht Dresden Bankverbindung: HypoVereinsbank Dresden IBAN: DE92 8502 0086 5360 1794 29 SWIFT (BIC): HYVEDEMM496

Anhang A

Fotodokumentation über die Probeentnahme von Salzlösungen

Tabelle 1: Übersicht über die jeweiligen Bild-Nummern zu den Probe-Nummern mit Datum der Probenahme und Zuordnung zu den Entnahmestellen der Asse.

Probe- Nr.	Datum der Probenahme	Entnahmestelle Asse	Bild-Nr.
1	16.09.2019	P 750071	1, 2
2	16.09.2019	P 750043	3, 4
3	16.09.2019	P 750006	5, 6
4	16.09.2019	P 750084	7
5	16.09.2019	L 975008	
6	16.09.2019	L 925007	8, 9, 10
7	17.09.2019	L 725005	11, 12
8	17.09.2019	P 725010	13, 14, 15
9	17.09.2019	P 725004	16, 17
10	17.09.2019	P 725019	18
11	17.09.2019	P 725011	19
12	17.09.2019	P 725020	20, 21
13	17.09.2019	L 725006	22, 23
14	17.09.2019	P 725007	24, 25
15	17.09.2019	P 750010	26, 27
16	17.09.2019	P 750009	28, 29
17	17.09.2019	P 750061	30, 31
18	17.09.2019	P 750040	32, 33
19	17.09.2019	P 750148	34, 35
20	17.09.2019	P 750039	36, 37
21	18.09.2019	L 750179	38
22	18.09.2019	P 750184	39
23	18.09.2019	P 750153	40, 41
24	18.09.2019	P 750154	42, 43
25	18.09.2019	P 750185	44, 45
26	18.09.2019	P 750189	46, 47
27	18.09.2019	P 750064	48, 49
28	18.09.2019	P 750177	50, 51, 52
29	18.09.2019	L 658008	53, 54
30	18.09.2019	L 553007	55, 56
31	18.09.2019	SB3	57
32	26.09.2019	L658008-S1	kein Foto
Asse 1	19.09.2019	S1	kein Foto
Asse 3	23.09.2019	S3	kein Foto

Die folgenden Bilder wurden im Zeitraum vom 16.09.2019 bis 26.09.2019 durch Mitarbeiter der IAF-Radioökologie GmbH aufgenommen und dokumentieren die Probeentnahme der Salzlaugen aus der Schachtanlage Asse II. Die Zuordnung der Probe-Nummern ist analog zu Tabelle 1.

Probe-Nr. 1:

Bild 1 und 2: Austritt in der nördlichen Umfahrung von Blindschacht 2/750 und aus dem Baugrund WL-750-16a (nördliche Mauer, nach der Auffahrung) auf der 750-m-Sohle, P750071.

Probe-Nr. 2:

Bild 3 und 4: Schlitz vor dem Zugang zur Einlagerungskammer 8E/750 auf der 750-m-Sohle, P750043.

Probe-Nr. 3:

Bild 5 und 6: Sumpf im Zugang zum Abbau 9E/750 auf der 750-m-Sohle, P750006.

Probe-Nr. 4:



Bild 7: NE-Abschnitt der nördlichen Richtstrecke nach Osten, vor dem Sumpf vor Einlagerungskammer 12/750 (4. von 15 Sohlbohrungen/Laugekontrollbohrungen) auf der 750-m-Sohle, P750084.

Probe-Nr. 5 und 6:

Bild 8 bis 10: PGBrl. 800-2, vor der Mauer BS 1/800-m-S, auf der 975-m-Sohle, P975008 und PGBrl. 800-1, vor der Mauer BS 1/800 m-S, P925007.

Probe-Nr. 7:

Bild 11 und 12: Rollloch R1/725 in der Richtstrecke nach Westen 725 (Sohlenniveau, Gleitbogenstrecke) im Pfeiler 1-2/725, auf der 725-m-Sohle, L725005.

Probe-Nr. 8:

Bild 13 bis 15: Schram und Schlitz in der Richtstrecke nach Westen 725 (Sohlenniveau, Gleitbogenstrecke, ABR2) im Pfeiler 2-3/725 auf der 725-m-Sohle, P725010.

Probe-Nr. 9:

Bild 16 und 17: Schram und Sumpf in der Richtstrecke nach Westen 725 (Sohlenniveau, Gleitbogenstrecke, ABR3) im Pfeiler 2-3 auf der 725-m-Sohle, P725004.

Probe-Nr. 10:

Bild 18: Fallende Erkundungsbohrung EBrg. 08/725 (in SE-Richtung, ABR3) im Pfeiler 2-3/725 auf der 725-m-Sohle, P725019.

Probe-Nr. 11:

Bild 19: Erkundungsbohrung EBrg. SV-725-6.4 im Pfeiler 2-3/725 auf der 725-m-Sohle, P725011.

Probe-Nr. 12:

Bild 20 und 21: Fallende Erkundungsbohrung EBrg. 09/725 (in SE-Richtung, ABR4) im Pfeiler 3-4/725 auf der 725-m-Sohle, P725020,

Probe-Nr. 13:

Bild 22 und 23: Rollloch R2/725 in der Richtstrecke nach Westen 725 (Sohlenniveau, Gleitbogenstrecke) im Pfeiler 3-4/725 auf der 725-m-Sohle, L725006.

Probe-Nr. 14:

Bild 24 und 25: Schram und Schlitz in der Richtstrecke nach Westen 725 (Sohlenniveau, Gleitbogenstrecke, ABR4), nahe Blindschacht 2/725 auf der 725-m-Sohle, P725007.

Probe-Nr. 15:

Bild 26 und 27: Sumpf im Zugang zum Kaliabbau 11W/750 (NW-Kali-Feld, "Reichelt-Sumpf Ost") auf der 750-m-Sohle, P750010.

Probe-Nr. 16:

Bild 28 und 29: Sumpf im Zugang zum Kaliabbau 12W/750 (NW-Kali-Feld, ehem. "Reichelt-Sumpf Mitte"), aktuell auch "Reichelt-Sumpf-Nord" auf der 750-m-Sohle, P750009.

Probe-Nr. 17:

Bild 30 und 31: NE-Mauer des Resthohlraums RH-750-27 im NW-Kali-Feld 750, inkl. SW-Stoß/Sohle am NW-Ende der nördl. Richtstrecke nach Westen 750, zwischen den Lokalitäten P750008 und P750009, aktuell auch "Reichelt-Sumpf West" auf der 750-m-Sohle, P750061.

Probe-Nr. 18:

Bild 32 und 33: Sumpf im Stummelort gegenüber dem ehem. Sprengstoff-Magazin (Querschlag zu den Kaliabbauen 3W/750 und 4W/750) auf der 750-m-Sohle, P750040.

Probe-Nr. 19:

Bild 34 und 35: Lösungsaustritt in der Richtstrecke nach Westen auf der 750-m-Sohle, Gleitbogen, ca. 25 m südöstlich der Katasterlokalität P750040, P750148.

Probe-Nr. 20:

Bild 36 und 37: Sumpf im Stummelort gegenüber Schacht 4 (Querschlag zu den Kaliabbauen 1/750 und 2W/750) auf der 750-m-Sohle, P750039.

Probe-Nr. 21:

Bild 38: Lösungsaustritt in der Befüllbohrung BBrg. SV-750-12h auf der 750-m-Sohle, L750179.

Probe-Nr. 22:

Bild 39: Lösungsaustritt in der Befüllbohrung BBrg. SV-750-12h.2 auf der 750-m-Sohle, P750184.

Probe-Nr. 23:

Bild 40 und 41: Geneigte Erkundungsbohrung EBrg. 750-2 Ost westlich des Blindschachtes 4/750 in Richtung des Kali-Abbaues 3E/750 auf der 750-m-Sohle, P750153.

Probe-Nr. 24:

Bild 42 und 43: Geneigte Erkundungsbohrung EBrg. 750-3-Ost westlich des Blindschachtes 4/750 in Richtung Kali-Abbau 3E/750 auf der 750-m-Sohle, P750154.

Probe-Nr. 25:

Bild 44 und 45: Lösungsaustritt in der Erkundungsbohrung 750-11 West auf der 750-m-Sohle, P750185.

Probe-Nr. 26:

Bild 46 und 47: Lösungsaustritt in der Erkundungsbohrung 750-11.1 West auf der 750-m-Sohle, P750189.

Probe-Nr. 27:

Bild 48 und 49: Nordwestliche Mauer des Resthohlraums RH-750-38 im NW-Kali-Feld 750, aktuell auch "Reichelt-Sumpf Süd" auf der 750-m-Sohle, P750064.

Probe-Nr. 28:

Bild 50 bis 52: Versorgungsbohrung von der 700-m-Sohle zur 800-m-Sohle, P750177.

Probe-Nr. 29:

Bild 53 und 54: Abbau 3/658, Firste, SW-Ecke des S-Stoßes auf der 658-m-Sohle, L658008.

Probe-Nr. 30:

Bild 55 und 56: S-Stoß an der Begleitstrecke auf der 553-m-Sohle, L553007.

Bild 57: Speicherbecken 3 auf der 490-m-Sohle, SB3.

Probe-Nr. 32:

Keine Bilder vorhanden Sammelbehälter 1, 50 m³ auf der 658-m-Sohle, L658008-S1.

Asse 1:

Keine Bilder vorhanden Schacht S1

Asse 3:

Keine Bilder vorhanden Schacht S3

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Anhang B - Radiologische Messwerte

Auftraggeber: BGE Bundesgesellschaft für Endlagerung mbH

Eschenstraße 55 31224 Peine

Projektname: Beprobung und Analyse von Salzlösungen

in der Schachtanlage Asse II im Jahr 2019

Projektnummer: 190920-02

Auftragnehmer: IAF-Radioökologie GmbH

Autor: Dr. rer. nat.

Dr. rer. nat. habil.

Radeberg, den 24.07.2020

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-11201-01-00

Geschäftsführer

Wilhelm-Rönsch-Str. 9 01454 Radeberg Tel. +49 (0) 3528 48730-0 Fax +49 (0) 3528 48730-22 E-Mail info@iaf-dresden.de Geschäftsführer: Dr. rer. nat. habil. Hartmut Schulz Dr. rer. nat. Christian Kunze Dipl.-Ing. (BA) René Baumert Handelsregister: HRB 9185 Amtsgericht Dresden Bankverbindung: HypoVereinsbank Dresden IBAN: DE92 8502 0086 5360 1794 29 SWIFT (BIC): HYVEDEMM496

Anhang B

Radiologische Messwerte

Tabelle 1:	Messwerte S1	88
Tabelle 2:	Messwerte S3	89
Tabelle 3:	Messwerte SB	
Tabelle 4:	Messwerte L5530073	91
Tabelle 5:	Messwerte L658008-S1	92
Tabelle 6:	Messwerte L658008	93
Tabelle 7:	Messwerte L725005	94
Tabelle 8:	Messwerte L725006	95
Tabelle 9:	Messwerte P725004	96
Tabelle 10:	Messwerte P 725010	97
Tabelle 11:	Messwerte P725007	98
Tabelle 12:	Messwerte P725011	99
Tabelle 13:	Messwerte P725019	100
Tabelle 14:	Messwerte P725020	
Tabelle 15:	Messwerte P750040	102
Tabelle 16:	Messwerte P750061	103
Tabelle 17:	Messwerte P750064	104
Tabelle 18:	Messwerte P750009	
Tabelle 19:	Messwerte P750010	
Tabelle 20:	Messwerte P750039	
Tabelle 21:	Messwerte P750006	
Tabelle 22:	Messwerte P750043	
Tabelle 23:	Messwerte P750071	
Tabelle 24:	Messwerte P750084	
Tabelle 25:	Messwerte P750148	
Tabelle 26:	Messwerte P750153	
Tabelle 27:	Messwerte P750154	
Tabelle 28:	Messwerte P750177	
Tabelle 29:	Messwerte L750179	
Tabelle 30:	Messwerte P750184	
Tabelle 31:	Messwerte P750185	
Tabelle 32:	Messwerte P750189	
Tabelle 33:	Messwerte L925007	
Tabelle 34:	Messwerte L975008	124

Anmerkungen:

- Die nachfolgenden Tabellen enthalten die Messergebnisse der Radionuklidbestimmungen, die Nachweisgrenzen (NWG) der jeweiligen Messung und für Ergebnisse oberhalb der NWG auch die kombinierte doppelte Standardmessunsicherheit. Die Messunsicherheit setzt sich zusammen aus der Unsicherheit, die durch die Zählstatistik bedingt ist, sowie aus den Unsicherheiten des Kalibrierfaktors und der chemischen Ausbeute.
- Die Messwerte für die Dichte (ρ in g/cm³), die Temperatur (T in °C), die Leitfähigkeit (Lf in mS/cm) und den pH-Wert wurden bei der Probeentnahme vor Ort bestimmt.

IAF - Radioökologie GmbH

Tabelle 1: Messwerte S1

Probe	Sohle	Beschreibung	Datum/Uhrzeit
Asse S1	115 m	S1	19.09.2019
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
-	1,004	-	-

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/I]	Unsicherheit* [%]
H-3	Beta-LSC	2,5	< NWG	
C-14 ges.	Beta-LSC	0,80	< NWG	
C-14 anorg.	Beta-LSC	0,02	< NWG	
K-40	Gammaspektrometrie	1,99	< NWG	
Co-60	Gammaspektrometrie	0,10	< NWG	
Sr-90	Low-Level-Beta	0,028	< NWG	
Nb-94	Gammaspektrometrie	0,080	< NWG	
Ag-108m	Gammaspektrometrie	0,87	< NWG	
Sb-125	Gammaspektrometrie	0,27	< NWG	
I-129	Gammaspektrometrie	0,76	< NWG	
Ba-133	Gammaspektrometrie	0,11	< NWG	
Cs-137	Gammaspektrometrie	0,096	< NWG	
Eu-152	Gammaspektrometrie	0,14	< NWG	
Eu-154	Gammaspektrometrie	0,10	< NWG	
Ra-224	Gammaspektrometrie	1,75	< NWG	
Ra-226	Gammaspektrometrie	0,007	0,010	50
Ra-228	Gammaspektrometrie	0,017	< NWG	
Pb-210	Beta-LSC	0,012	< NWG	
Po-210	Alphaspektrometrie	0,0013	< NWG	
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0072	< NWG	
Th-232	Alphaspektrometrie	0,0072	< NWG	
U-233/234	Alphaspektrometrie	0,0029	0,485	11
U-235	Alphaspektrometrie	0,0026	0,0077	48
U-238	Alphaspektrometrie	0,0038	0,167	13

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

IAF - Radioökologie GmbH

Tabelle 2: Messwerte S3

Probe	Sohle	Beschreibung	Datum/Uhrzeit
Asse 3	170 m	S3	23.09.2019
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
-	1,0052	-	-

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/I]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	< NWG	
C-14 ges.	Beta-LSC	0,80	< NWG	
C-14 anorg.	Beta-LSC	0,02	< NWG	
K-40	Gammaspektrometrie	1,47	9,45	12
Co-60	Gammaspektrometrie	0,065	< NWG	
Sr-90	Low-Level-Beta	0,067	< NWG	
Nb-94	Gammaspektrometrie	0,065	< NWG	
Ag-108m	Gammaspektrometrie	0,059	< NWG	
Sb-125	Gammaspektrometrie	0,19	< NWG	
I-129	Gammaspektrometrie	0,60	< NWG	
Ba-133	Gammaspektrometrie	0,080	< NWG	
Cs-137	Gammaspektrometrie	0,074	< NWG	
Eu-152	Gammaspektrometrie	0,12	< NWG	
Eu-154	Gammaspektrometrie	0,082	< NWG	
Ra-224	Gammaspektrometrie	0,78	< NWG	
Ra-226	Gammaspektrometrie	0,007	0,022	30
Ra-228	Gammaspektrometrie	0,017	< NWG	
Po-210	Alphaspektrometrie	0,0013	< NWG	
Pb-210	Beta-LSC	0,022	< NWG	
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0009	< NWG	
Th-232	Alphaspektrometrie	0,0008	< NWG	
U-233/234	Alphaspektrometrie	0,0030	0,0033	71
U-235	Alphaspektrometrie	0,0019	< NWG	
U-238	Alphaspektrometrie	0,0030	< NWG	

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 3: Messwerte SB

Probe	Sohle	Beschreibung	Datum/Uhrzeit
SB 3 MP_SB3	490 m	Speicherbecken 3	18.09.19 8:50
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,964	1,2035	30,9	234,0

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	< NWG	
K-40	Gammaspektrometrie	12,24	76	6,3
Co-60	Gammaspektrometrie	0,128	< NWG	
Nb-94	Gammaspektrometrie	0,095	< NWG	
Ag-108m	Gammaspektrometrie	0,093	< NWG	
Sb-125	Gammaspektrometrie	0,296	< NWG	
I-129	Gammaspektrometrie	0,96	< NWG	
Ba-133	Gammaspektrometrie	0,114	< NWG	
Cs-137	Gammaspektrometrie	0,0996	< NWG	
Eu-152	Gammaspektrometrie	0,183	< NWG	
Eu-154	Gammaspektrometrie	0,124	< NWG	
Ra-224	Gammaspektrometrie	0,11	0,39	50
Ra-226	Gammaspektrometrie	0,013	0,240	9,0
Ra-228	Gammaspektrometrie	0,036	0,575	9,0
U-233/234	Alphaspektrometrie	0,0041	0,0086	49
U-235	Alphaspektrometrie	0,0029	< NWG	
U-238	Alphaspektrometrie	0,0037	< NWG	

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 4: Messwerte L5530073

Probe	Sohle	Beschreibung	Datum/Uhrzeit
L553007	553 m	S-Stoß, Begleitstrecke	18.09.19 11:10
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,893	1,2853	33,2	183

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/I]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	134,1	7,1
K-40	Gammaspektrometrie	7,56	1180	6,0
Co-60	Gammaspektrometrie	0,271	< NWG	
Nb-94	Gammaspektrometrie	0,207	< NWG	
Ag-108m	Gammaspektrometrie	0,174	< NWG	
Sb-125	Gammaspektrometrie	0,53	< NWG	
I-129	Gammaspektrometrie	0,194	< NWG	
Ba-133	Gammaspektrometrie	0,215	< NWG	
Cs-137	Gammaspektrometrie	0,188	< NWG	
Eu-152	Gammaspektrometrie	0,356	< NWG	
Eu-154	Gammaspektrometrie	0,252	< NWG	
Pb-210	Beta-LSC	0,068	0,094	51
Po-210	Alphaspektrometrie	0,0029	0,0075	42
Ra-226	Gammaspektrometrie	0,086	< NWG	
Ra-228	Gammaspektrometrie	0,21	< NWG	
U-233/234	Alphaspektrometrie	0,0027	0,036	25
U-235	Alphaspektrometrie	0,0025	< NWG	
U-238	Alphaspektrometrie	0,0030	0,025	29

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 5: Messwerte L658008-S1

Probe	Sohle	Beschreibung	Datum/Uhrzeit
L658008-S1	658 m	Sammelbehälter 1; 50m ³	26.09.2019
MP_27-S1		auf der 658 m Sohle	7:00
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,77	1,2041	31,7	235

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	< NWG	
K-40	Gammaspektrometrie	11,14	83,8	6,3
Co-60	Gammaspektrometrie	0,087	< NWG	
Nb-94	Gammaspektrometrie	0,073	< NWG	
Ag-108m	Gammaspektrometrie	0,066	< NWG	
Sb-125	Gammaspektrometrie	0,20	< NWG	
I-129	Gammaspektrometrie	0,62	< NWG	
Ba-133	Gammaspektrometrie	0,08	< NWG	
Cs-137	Gammaspektrometrie	0,077	< NWG	
Eu-152	Gammaspektrometrie	0,11	< NWG	
Eu-154	Gammaspektrometrie	0,082	< NWG	
Ra-224	Gammaspektrometrie	0,45	1,38	25
Ra-226	Gammaspektrometrie	0,010	0,242	9,0
Ra-228	Gammaspektrometrie	0,028	0,530	9,0
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0015	< NWG	
Th-232	Alphaspektrometrie	0,0015	< NWG	
U-233/234	Alphaspektrometrie	0,0043	0,0092	56
U-235	Alphaspektrometrie	0,0043	< NWG	
U-238	Alphaspektrometrie	0,0043	< NWG	

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 6: Messwerte L658008

Probe	Sohle	Beschreibung	Datum/Uhrzeit
L658008 MP_27-Z	658 m	Abbau 3/658, frische Zutrittslösung	18.09.2019 10:15
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,735	1,2051	33,3	234

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/I]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	< NWG	
C-14 ges.	Beta-LSC	1,4	< NWG	
C-14 anorg.	Beta-LSC	0,03	< NWG	
K-40	Gammaspektrometrie	11,4	79,7	7,0
Co-60	Gammaspektrometrie	0,098	< NWG	
Nb-94	Gammaspektrometrie	0,091	< NWG	
Ag-108m	Gammaspektrometrie	0,086	< NWG	
Sb-125	Gammaspektrometrie	0,252	< NWG	
I-129	Gammaspektrometrie	0,593	< NWG	
Ba-133	Gammaspektrometrie	0,110	< NWG	
Cs-137	Gammaspektrometrie	0,091	< NWG	
Eu-152	Gammaspektrometrie	0,189	< NWG	
Eu-154	Gammaspektrometrie	0,133	< NWG	
Pb-210	Beta-LSC	0,020	0,033	48
Po-210	Alphaspektrometrie	0,005	< NWG	
Ra-224	Gammaspektrometrie	0,380	1,71	20
Ra-226	Gammaspektrometrie	0,014	0,254	9,8
Ra-228	Gammaspektrometrie	0,027	0,583	9,1
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0015	< NWG	
Th-232	Alphaspektrometrie	0,0012	< NWG	
U-233/234	Alphaspektrometrie	0,0025	0,0076	45
U-235	Alphaspektrometrie	0,0021	< NWG	
U-238	Alphaspektrometrie	0,0034	0,0045	64

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 7: Messwerte L725005

Probe	Sohle	Beschreibung	Datum/Uhrzeit
L725005 MP RL1	725 m	Rollloch R1/725 in der Richtstrecke nach Westen 725 im Pfeiler 1-	17.09.19
		2/725	
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
4,642	1,3621	34,9	63,4

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	73,1	7,9
K-40	Gammaspektrometrie	2,36	32,0	6,9
Co-60	Gammaspektrometrie	0,100	< NWG	
Nb-94	Gammaspektrometrie	0,088	< NWG	
Ag-108m	Gammaspektrometrie	0,079	< NWG	
Sb-125	Gammaspektrometrie	0,25	< NWG	
I-129	Gammaspektrometrie	0,47	< NWG	
Ba-133	Gammaspektrometrie	0,095	< NWG	
Cs-137	Gammaspektrometrie	0,091	< NWG	
Eu-152	Gammaspektrometrie	0,147	< NWG	
Eu-154	Gammaspektrometrie	0,104	< NWG	
Ra-226	Gammaspektrometrie	0,020	< NWG	
Ra-228	Gammaspektrometrie	0,049	< NWG	
U-233/234	Alphaspektrometrie	0,0030	0,040	17
U-235	Alphaspektrometrie	0,0019	< NWG	
U-238	Alphaspektrometrie	0,0030	0,029	20

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 8: Messwerte L725006

Probe	Sohle	Beschreibung	Datum/Uhrzeit
L725006	725 m	Rollloch R2/725 in der	17.09.19
MP_RL2		Richtstrecke nach Westen 725 im Pfeiler 3- 4/725	8:30
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
7,074	1,2218	35,4	213

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	46,4	6,0
C-14 ges.	Beta-LSC	0,403	1,20	29
C-14 anorg.	Beta-LSC	0,03	< NWG	
K-40	Gammaspektrometrie	5780	329	6
Co-60	Gammaspektrometrie	0,169	< NWG	
Nb-94	Gammaspektrometrie	0,136	< NWG	
Ag-108m	Gammaspektrometrie	0,109	< NWG	
Sb-125	Gammaspektrometrie	0,349	< NWG	
I-129	Gammaspektrometrie	1,01	< NWG	
Ba-133	Gammaspektrometrie	0,133	< NWG	
Cs-137	Gammaspektrometrie	0,146	< NWG	
Eu-152	Gammaspektrometrie	0,208	< NWG	
Eu-154	Gammaspektrometrie	0,143	< NWG	
Ra-226	Gammaspektrometrie	0,010	< NWG	
Ra-228	Gammaspektrometrie	0,015	< NWG	
Th-228	Alphaspektrometrie	0,039	< NWG	
Th-230	Alphaspektrometrie	0,029	< NWG	
Th-232	Alphaspektrometrie	0,028	< NWG	
U-233/234	Alphaspektrometrie	0,0022	0,028	22
U-235	Alphaspektrometrie	0,0018	< NWG	
U-238	Alphaspektrometrie	0,0030	0,020	26

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 9: Messwerte P725004

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P725004	725 m	Schram+Sumpf in der	17.09.19
MP_38		Richtstrecke nach Westen 725 im Pfeiler 2- 3	8:10
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
7,044	1,2160	35,1	219

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	49,1	8,8
K-40	Gammaspektrometrie	5,06	227	6,0
Co-60	Gammaspektrometrie	0,156	< NWG	
Nb-94	Gammaspektrometrie	0,12	< NWG	
Ag-108m	Gammaspektrometrie	0,11	< NWG	
Sb-125	Gammaspektrometrie	0,36	< NWG	
I-129	Gammaspektrometrie	0,64	< NWG	
Ba-133	Gammaspektrometrie	0,138	< NWG	
Cs-137	Gammaspektrometrie	0,137	< NWG	
Eu-152	Gammaspektrometrie	0,204	< NWG	
Eu-154	Gammaspektrometrie	0,136	< NWG	
Ra-226	Gammaspektrometrie	0,007	< NWG	
Ra-228	Gammaspektrometrie	0,015	< NWG	
U-233/234	Alphaspektrometrie	0,0029	0,048	21
U-235	Alphaspektrometrie	0,0027	< NWG	
U-238	Alphaspektrometrie	0,0032	0,028	26

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 10: Messwerte P 725010

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P 725010	725 m	Schram+Schlitz in der	17.09.19
		Richtstrecke nach Westen 725 im Pfeiler 2- 3/725	8:00
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,750	1,29322	35,1	122,5

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	227,6	6,6
K-40	Gammaspektrometrie	3,38	301	6,0
Co-60	Gammaspektrometrie	0,12	< NWG	
Nb-94	Gammaspektrometrie	0,098	< NWG	
Ag-108m	Gammaspektrometrie	0,088	< NWG	
Sb-125	Gammaspektrometrie	0,28	< NWG	
I-129	Gammaspektrometrie	0,64	< NWG	
Ba-133	Gammaspektrometrie	0,11	< NWG	
Cs-137	Gammaspektrometrie	0,096	< NWG	
Eu-152	Gammaspektrometrie	0,20	< NWG	
Eu-154	Gammaspektrometrie	0,14	< NWG	
Ra-226	Gammaspektrometrie	0,008	< NWG	
Ra-228	Gammaspektrometrie	0,018	< NWG	
U-233/234	Alphaspektrometrie	0,0090	< NWG	
U-235	Alphaspektrometrie	0,0060	< NWG	
U-238	Alphaspektrometrie	0,0090	< NWG	

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 11: Messwerte P725007

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P725007	725 m	Schram+Schlitz in der	17.09.9
MP_39/1		Richtstrecke nach Westen 725, nahe Blindschacht 2/275	8:50
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,849	1,2599	35,5	162,7

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	1.994	6,1
K-40	Gammaspektrometrie	5,96	560	6,0
Co-60	Gammaspektrometrie	0,192	< NWG	
Nb-94	Gammaspektrometrie	0,156	< NWG	
Ag-108m	Gammaspektrometrie	0,141	< NWG	
Sb-125	Gammaspektrometrie	0,432	< NWG	
I-129	Gammaspektrometrie	1,02	< NWG	
Ba-133	Gammaspektrometrie	0,167	< NWG	
Cs-137	Gammaspektrometrie	0,24	1,98	8,3
Eu-152	Gammaspektrometrie	0,315	< NWG	
Eu-154	Gammaspektrometrie	0,217	< NWG	
Ra-226	Gammaspektrometrie	0,010	< NWG	
Ra-228	Gammaspektrometrie	0,014	< NWG	
U-233/234	Alphaspektrometrie	0,0020	0,023	22
U-235	Alphaspektrometrie	0,0020	< NWG	
U-238	Alphaspektrometrie	0,0020	0,020	23

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 12: Messwerte P725011

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P725011	725 m	Erkundungsbohrung EBrg. SV-725-6.4 im Pfeiler 2-3/725	17.09.19
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,287	1,2538	35,1	153,8

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	731,5	6,2
K-40	Gammaspektrometrie	4,22	313	6,0
Co-60	Gammaspektrometrie	0,136	< NWG	
Nb-94	Gammaspektrometrie	0,104	< NWG	
Ag-108m	Gammaspektrometrie	0,087	< NWG	
Sb-125	Gammaspektrometrie	0,27	< NWG	
I-129	Gammaspektrometrie	0,54	< NWG	
Ba-133	Gammaspektrometrie	0,114	< NWG	
Cs-137	Gammaspektrometrie	0,102	< NWG	
Eu-152	Gammaspektrometrie	0,168	< NWG	
Eu-154	Gammaspektrometrie	0,120	< NWG	
Ra-226	Gammaspektrometrie	0,007	0,022	25
Ra-228	Gammaspektrometrie	0,018	< NWG	
Th-228	Alphaspektrometrie	0,017	< NWG	
Th-230	Alphaspektrometrie	0,012	< NWG	
Th-232	Alphaspektrometrie	0,011	< NWG	
U-233/234	Alphaspektrometrie	0,0013	0,047	16
U-235	Alphaspektrometrie	0,0012	0,0017	71
U-238	Alphaspektrometrie	0,0014	0,040	17

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 13: Messwerte P725019

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P725019	725 m	EBrg. 08/725 im Pfeiler 2-3/725	17.09.2019 08:15
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,812	1,2246	35,1	202

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/l]	Unsicherheit*
H-3	Beta-LSC	2,1	74,6	7,9
K-40	Gammaspektrometrie	2,4	307	6,9
Co-60	Gammaspektrometrie	0,14	< NWG	
Nb-94	Gammaspektrometrie	0,090	< NWG	
Ag-108m	Gammaspektrometrie	0,084	< NWG	
Sb-125	Gammaspektrometrie	0,26	< NWG	
I-129	Gammaspektrometrie	0,61	< NWG	
Ba-133	Gammaspektrometrie	0,10	< NWG	
Cs-137	Gammaspektrometrie	0,085	< NWG	
Eu-152	Gammaspektrometrie	0,19	< NWG	
Eu-154	Gammaspektrometrie	0,13	< NWG	
Pb-210	Beta-LSC	0,047	0,045	68
Po-210	Alphaspektrometrie	0,040	0,014	27
Ra-226	Gammaspektrometrie	0,010	0,025	30
Ra-228	Gammaspektrometrie	0,018	< NWG	
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0042	< NWG	
Th-232	Alphaspektrometrie	0,0040	< NWG	
U-233/234	Alphaspektrometrie	0,0034	0,116	17
U-235	Alphaspektrometrie	0,0029	0,0031	87
U-238	Alphaspektrometrie	0,0044	0,073	21

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 14: Messwerte P725020

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P725020	725 m	Fallende Erkundungsbohrung EBrg. 09/725 im Pfeiler 3-4/725	17.09.19 8:40
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,517	1,2394	35,4	182,4

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	365,8	6,0
K-40	Gammaspektrometrie	6,56	450	6,0
Co-60	Gammaspektrometrie	0,199	< NWG	
Nb-94	Gammaspektrometrie	0,150	< NWG	
Ag-108m	Gammaspektrometrie	0,133	< NWG	
Sb-125	Gammaspektrometrie	0,40	< NWG	
I-129	Gammaspektrometrie	0,77	< NWG	
Ba-133	Gammaspektrometrie	0,159	< NWG	
Cs-137	Gammaspektrometrie	0,085	2,26	7,0
Eu-152	Gammaspektrometrie	0,245	< NWG	
Eu-154	Gammaspektrometrie	0,173	< NWG	
Ra-226	Gammaspektrometrie	0,008	< NWG	
Ra-228	Gammaspektrometrie	0,014	< NWG	
Th-228	Alphaspektrometrie	0,020	< NWG	
Th-230	Alphaspektrometrie	0,015	< NWG	
Th-232	Alphaspektrometrie	0,015	< NWG	
U-233/234	Alphaspektrometrie	0,0013	0,123	12
U-235	Alphaspektrometrie	0,0013	0,0036	46
U-238	Alphaspektrometrie	0,0013	0,083	13

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 15: Messwerte P750040

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750040	750 m	Sumpf im Stummelort	17.09.19
MP_SK		gegenüber ehem. Sprengstoffmagazin	11:00
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,429	1,308	30,6	107,4

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	< NWG	
K-40	Gammaspektrometrie	7,46	341	6,0
Co-60	Gammaspektrometrie	0,12	< NWG	
Nb-94	Gammaspektrometrie	0,095	< NWG	
Ag-108m	Gammaspektrometrie	0,084	< NWG	
Sb-125	Gammaspektrometrie	0,26	< NWG	
I-129	Gammaspektrometrie	0,915	< NWG	
Ba-133	Gammaspektrometrie	0,1	< NWG	
Cs-137	Gammaspektrometrie	0,094	< NWG	
Eu-152	Gammaspektrometrie	0,169	< NWG	
Eu-154	Gammaspektrometrie	0,12	< NWG	
Pb-210	Beta-LSC	0,107	0,392	27
Po-210	Alphaspektrometrie	0,0045	0,064	15
Ra-226	Gammaspektrometrie	0,009	0,013	50
Ra-228	Gammaspektrometrie	0,021	< NWG	
Th-228	Alphaspektrometrie	0,0050	< NWG	
Th-230	Alphaspektrometrie	0,0029	< NWG	
Th-232	Alphaspektrometrie	0,0029	< NWG	
U-233/234	Alphaspektrometrie	0,0051	0,028	32
U-235	Alphaspektrometrie	0,0046	< NWG	
U-238	Alphaspektrometrie	0,0057	0,016	43

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 16: Messwerte P750061

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750061	750 m	NE-Mauer des	17.09.19
MP_RS-a		Resthohlraums RH-750- 27 im NW-Kali-Feld 750, aktuell auch "Reichelt- Sumpf West"	10:10
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,614	1,3288	33,3	93,0

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,6	59,2	9,3
K-40	Gammaspektrometrie	4,04	282	6,0
Co-60	Gammaspektrometrie	0,130	< NWG	
Nb-94	Gammaspektrometrie	0,099	< NWG	
Ag-108m	Gammaspektrometrie	0,083	< NWG	
Sb-125	Gammaspektrometrie	0,265	< NWG	
I-129	Gammaspektrometrie	0,800	< NWG	
Ba-133	Gammaspektrometrie	0,104	< NWG	
Cs-137	Gammaspektrometrie	0,103	< NWG	
Eu-152	Gammaspektrometrie	0,156	< NWG	
Eu-154	Gammaspektrometrie	0,111	< NWG	
Pb-210	Beta-LSC	0,085	0,244	28
Po-210	Alphaspektrometrie	0,0032	0,016	13
Ra-226	Gammaspektrometrie	0,010	< NWG	
Ra-228	Gammaspektrometrie	0,021	< NWG	
Th-228	Alphaspektrometrie	0,0050	< NWG	
Th-230	Alphaspektrometrie	0,0012	0,0042	38
Th-232	Alphaspektrometrie	0,00084	< NWG	
U-233/234	Alphaspektrometrie	0,0022	0,024	21
U-235	Alphaspektrometrie	0,0015	< NWG	
U-238	Alphaspektrometrie	0,0024	0,0095	32

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 17: Messwerte P750064

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750064	750 m	Nordwestliche Mauer des Resthohlraums RH- 750-38 im NW-Kali-Feld 750, aktuell auch "Reichelt-Sumpf Süd"	18.09.19 9:10
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,110	1,3538	32,7	73,0

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	29,9	11
K-40	Gammaspektrometrie	4,54	50,5	6,5
Co-60	Gammaspektrometrie	0,110	< NWG	
Nb-94	Gammaspektrometrie	0,097	< NWG	
Ag-108m	Gammaspektrometrie	0,090	< NWG	
Sb-125	Gammaspektrometrie	0,291	< NWG	
I-129	Gammaspektrometrie	0,889	< NWG	
Ba-133	Gammaspektrometrie	0,110	< NWG	
Cs-137	Gammaspektrometrie	0,088	< NWG	
Eu-152	Gammaspektrometrie	0,176	< NWG	
Eu-154	Gammaspektrometrie	0,122	< NWG	
Pb-210	Beta-LSC	0,071	0,474	25
Po-210	Alphaspektrometrie	0,0032	0,082	15
Ra-226	Gammaspektrometrie	0,008	0,011	40
Ra-228	Gammaspektrometrie	0,017	< NWG	
Th-228	Alphaspektrometrie	0,015	< NWG	
Th-230	Alphaspektrometrie	0,0013	< NWG	
Th-232	Alphaspektrometrie	0,0007	< NWG	
U-233/234	Alphaspektrometrie	0,0049	0,032	25
U-235	Alphaspektrometrie	0,0034	< NWG	
U-238	Alphaspektrometrie	0,0043	0,018	33

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 18: Messwerte P750009

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750009	750 m	Sumpf im Zugang zum	17.09.19
MP_RS-b		Kaliabbau 12W/750, aktuell auch "Reichelt- Sumpf Nord"	10:00
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,181	1,3385	33,3	69,4

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	39,5	9,5
K-40	Gammaspektrometrie	2,58	41	7,0
Co-60	Gammaspektrometrie	0,104	< NWG	
Nb-94	Gammaspektrometrie	0,096	< NWG	
Ag-108m	Gammaspektrometrie	0,087	< NWG	
Sb-125	Gammaspektrometrie	0,266	< NWG	
I-129	Gammaspektrometrie	0,500	< NWG	
Ba-133	Gammaspektrometrie	0,107	< NWG	
Cs-137	Gammaspektrometrie	0,093	< NWG	
Eu-152	Gammaspektrometrie	0,152	< NWG	
Eu-154	Gammaspektrometrie	0,110	< NWG	
Pb-210	Beta-LSC	0,114	0,849	23
Po-210	Alphaspektrometrie	0,0056	0,134	15
Ra-226	Gammaspektrometrie	0,010	< NWG	
Ra-228	Gammaspektrometrie	0,023	0,020	50
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0034	< NWG	
Th-232	Alphaspektrometrie	0,0034	< NWG	
U-233/234	Alphaspektrometrie	0,0038	0,031	27
U-235	Alphaspektrometrie	0,0034	< NWG	
U-238	Alphaspektrometrie	0,0049	0,014	42

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 19: Messwerte P750010

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750010	750 m	Sumpf im Zugang zum	17.09.19
MP_RS-c		Kaliabbau 11W/750, aktuell auch "Reichelt- Sumpf Ost"	9:50
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,226	1,3291	33,3	88,1

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/I]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	18,6	14
K-40	Gammaspektrometrie	4,3	138	6,1
Co-60	Gammaspektrometrie	0,121	< NWG	
Nb-94	Gammaspektrometrie	0,111	< NWG	
Ag-108m	Gammaspektrometrie	0,094	< NWG	
Sb-125	Gammaspektrometrie	0,266	< NWG	
I-129	Gammaspektrometrie	0,810	< NWG	
Ba-133	Gammaspektrometrie	0,106	< NWG	
Cs-137	Gammaspektrometrie	0,109	< NWG	
Eu-152	Gammaspektrometrie	0,164	< NWG	
Eu-154	Gammaspektrometrie	0,109	< NWG	
Pb-210	Gammaspektrometrie	0,049	3,20	21
Po-210	Alphaspektrometrie	0,0066	0,363	9,2
Ra-226	Gammaspektrometrie	0,007	0,036	20
Ra-228	Gammaspektrometrie	0,017	0,158	10
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0095	< NWG	
Th-232	Alphaspektrometrie	0,0075	< NWG	
U-233/234	Alphaspektrometrie	0,0031	0,017	39
U-235	Alphaspektrometrie	0,0031	< NWG	
U-238	Alphaspektrometrie	0,0031	0,0082	55

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 20: Messwerte P750039

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750039	750 m	Sumpf im Stummelort	17.09.19
MP_LSCH4		gegenüber Schacht 4	10:35
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,693	1,3246	30,7	87,2

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	23,4	12
K-40	Gammaspektrometrie	2,42	144	6,0
Co-60	Gammaspektrometrie	0,097	< NWG	
Nb-94	Gammaspektrometrie	0,088	< NWG	
Ag-108m	Gammaspektrometrie	0,081	< NWG	
Sb-125	Gammaspektrometrie	0,254	< NWG	
I-129	Gammaspektrometrie	0,577	< NWG	
Ba-133	Gammaspektrometrie	0,102	< NWG	
Cs-137	Gammaspektrometrie	0,087	< NWG	
Eu-152	Gammaspektrometrie	0,185	< NWG	
Eu-154	Gammaspektrometrie	0,132	< NWG	

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 21: Messwerte P750006

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750006	750 m	Sumpf im Zugang zum Abbau 9E/750	16.09.19 15:40
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,810	1,2658	33,5	147,3

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	10.990	6,0
C-14 ges.	Beta-LSC	0,61	3,82	23
C-14 anorg.	Beta-LSC	0,03	0,16	17
K-40	Gammaspektrometrie	3,42	426	6,0
Ni-63	Beta-LSC	0,14	< NWG	
Co-60	Gammaspektrometrie	0,18	< NWG	
Sr-90	Betamessung	0,072	< NWG	
Nb-94	Gammaspektrometrie	0,14	< NWG	
Ag-108m	Gammaspektrometrie	0,12	< NWG	
Sb-125	Gammaspektrometrie	0,36	< NWG	
I-129	Gammaspektrometrie	1,21	< NWG	
Ba-133	Gammaspektrometrie	0,14	< NWG	
Cs-137	Gammaspektrometrie	0,15	0,271	25
Eu-152	Gammaspektrometrie	0,21	< NWG	
Eu-154	Gammaspektrometrie	0,15	< NWG	

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 22: Messwerte P750043

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750043 MP_L3	750 m	Schlitz vor dem Zugang zur ELK 8E	16.09.2019 16:00 17.09.2019 09:10
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
6,531	1,279	34,5	146,8

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	228	1,25E+06	6,0
C-14 ges.	Beta-LSC	3,0	298	19
C-14 anorg.	Beta-LSC	0,05	5,87	11
K-40	Gammaspektrometrie	10,6	749	6,9
Co-60	Gammaspektrometrie	0,262	< NWG	
Ni-63	Beta-LSC	2,0	27,8	9,0
Sr-90	Low-Level-Beta	0,035	< NWG	
Nb-94	Gammaspektrometrie	0,253	< NWG	
Tc-99	Beta-LSC	0,42	< NWG	
Ag-108m	Gammaspektrometrie	0,280	< NWG	
Sb-125	Gammaspektrometrie	6,5	< NWG	
I-129	Gammaspektrometrie	13,9	< NWG	
Ba-133	Gammaspektrometrie	2,33	< NWG	
Cs-137	Gammaspektrometrie	3,5	9.700	7,0
Eu-152	Gammaspektrometrie	0,913	< NWG	
Eu-154	Gammaspektrometrie	0,956	< NWG	
Pb-210	Beta-LSC	0,115	1,79	9,3
Po-210	Alphaspektrometrie	0,05	< NWG	
Ra-226	Gammaspektrometrie	0,012	< NWG	
Ra-228	Gammaspektrometrie	0,010	< NWG	
Th-228	Alphaspektrometrie	0,025	< NWG	
Th-230	Alphaspektrometrie	0,011	< NWG	
Th-232	Alphaspektrometrie	0,0067	< NWG	
U-233/234	Alphaspektrometrie	0,0012	0,0097	22
U-235	Alphaspektrometrie	0,0012	< NWG	
U-238	Alphaspektrometrie	0,0013	0,0088	24

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/l]	Unsicherheit* [%]
Pu-238	Alphaspektrometrie	0,0017	< NWG	
Pu-239/240	Alphaspektrometrie	0,0017	0,0025	64
Am-241	Alphaspektrometrie	0,0018	0,0109	29

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 23: Messwerte P750071

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750071	750 m	Austritt in der nördl. Umfahrung von BS 2 und aus dem Baugrund WL-750-16a	16.05.19 14:45
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,836	1,320	34,0	100,0

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	23	3914	6,4
C-14 ges.	Beta-LSC	1,63	7,15	25
C-14 anorg.	Beta-LSC	0,06	0,062	58
K-40	Gammaspektrometrie	8,2	106	6,6
Ni-63	Beta-LSC	0,66	123	6,3
Co-60	Gammaspektrometrie	0,203	< NWG	
Sr-90	Low-Level-Beta	0,025	< NWG	
Nb-94	Gammaspektrometrie	0,184	< NWG	
Ag-108m	Gammaspektrometrie	0,216	< NWG	
Sb-125	Gammaspektrometrie	5,88	< NWG	
I-129	Gammaspektrometrie	16,2	< NWG	
Ba-133	Gammaspektrometrie	2,13	< NWG	
Cs-137	Gammaspektrometrie	3,7	4930	6,0
Eu-152	Gammaspektrometrie	0,883	< NWG	
Eu-154	Gammaspektrometrie	0,619	< NWG	
Pb-210	Beta-LSC	0,131	0,818	16
Po-210	Alphaspektrometrie	0,05	< NWG	
Ra-226	Gammaspektrometrie	0,012	< NWG	
Ra-228	Gammaspektrometrie	0,028	0,037	60
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0026	0,0045	60
Th-232	Alphaspektrometrie	0,0026	< NWG	
U-233/234	Alphaspektrometrie	0,0012	0,014	19
U-235	Alphaspektrometrie	0,0011	< NWG	
U-238	Alphaspektrometrie	0,0013	0,0077	25
Pu-238	Alphaspektrometrie	0,00092	< NWG	
Pu-239/240	Alphaspektrometrie	0,00092	< NWG	

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/l]	Unsicherheit* [%]
Am-241	Alphaspektrometrie	0,00087	0,0025	45

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 24: Messwerte P750084

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750084	750 m	NE-Abschnitt der nördl. Richtstrecke nach Osten, vor Sumpf vor ELK 12/750	16.09.19 14:35
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,506	1,3160	32,4	101,2

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	228	3,40E+05	6,0
C-14 ges.	Beta-LSC	1,3	38,3	20
C-14 anorg.	Beta-LSC	0,06	1,75	11
K-40	Gammaspektrometrie	10,4	177	6,8
Co-60	Gammaspektrometrie	0,54	1,05	14
Ni-63	Beta-LSC	2,3	867	6,3
Sr-90	Low-Level-Beta	0,065	< NWG	
Nb-94	Gammaspektrometrie	1,82	< NWG	
Tc-99	Beta-LSC	0,72	22,3	13
Ag-108m	Gammaspektrometrie	2,38	< NWG	
Sb-125	Gammaspektrometrie	30,5	< NWG	
I-129	Gammaspektrometrie	81,6	< NWG	
Ba-133	Gammaspektrometrie	10,7	< NWG	
Cs-137	Gammaspektrometrie	15,1	106.600	7,7
Eu-152	Gammaspektrometrie	1,29	< NWG	
Eu-154	Gammaspektrometrie	2,91	< NWG	
Pb-210	Beta-LSC	0,145	3,19	8,6
Po-210	Alphaspektrometrie	0,05	< NWG	
Ra-226	Gammaspektrometrie	0,067	< NWG	
Ra-228	Gammaspekrometrie	0,044	< NWG	
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,055	< NWG	
Th-232	Alphaspektrometrie	0,0055	< NWG	
U-233/234	Alphaspektrometrie	0,0028	0,033	17
U-235	Alphaspektrometrie	0,0024	< NWG	
U-238	Alphaspektrometrie	0,0024	0,025	20

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
Pu-238	Alphaspektrometrie	0,0018	< NWG	
Pu-239/240	Alphaspektrometrie	0,0018	0,0019	76
Am-241	Alphaspektrometrie	0,0021	0,0081	35

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 25: Messwerte P750148

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750148	750 m	Lösungsaustritt in der Richtstrecke nach Westen auf der 750-m- Sohle, 25m südöstlich P750040	17.09.19 10:45
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,429	1,3080	30,7	107,4

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/I]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	< NWG	
K-40	Gammaspektrometrie	4,14	306	6,0
Co-60	Gammaspektrometrie	0,118	< NWG	
Nb-94	Gammaspektrometrie	0,094	< NWG	
Ag-108m	Gammaspektrometrie	0,078	< NWG	
Sb-125	Gammaspektrometrie	0,245	< NWG	
I-129	Gammaspektrometrie	0,787	< NWG	
Ba-133	Gammaspektrometrie	0,096	< NWG	
Cs-137	Gammaspektrometrie	0,088	< NWG	
Eu-152	Gammaspektrometrie	0,15	< NWG	
Eu-154	Gammaspektrometrie	0,11	< NWG	

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 26: Messwerte P750153

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750153	750 m	Gen. Erkundungsb. EBrg. 750-2 Ost, westl. BS 4/750 in Richtung Abbau 3E/750	18.09.19 8:20
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,581	1,3102	29,1	106,7

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/I]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	6,2	27
K-40	Gammaspektrometrie	4,66	296	6,0
Co-60	Gammaspektrometrie	0,131	< NWG	
Nb-94	Gammaspektrometrie	0,102	< NWG	
Ag-108m	Gammaspektrometrie	0,091	< NWG	
Sb-125	Gammaspektrometrie	0,273	< NWG	
I-129	Gammaspektrometrie	0,549	< NWG	
Ba-133	Gammaspektrometrie	0,107	< NWG	
Cs-137	Gammaspektrometrie	0,098	< NWG	
Eu-152	Gammaspektrometrie	0,166	< NWG	
Eu-154	Gammaspektrometrie	0,117	< NWG	
Pb-210	Beta-LSC	0,083	0,429	26
Po-210	Alphaspektrometrie	0,0024	0,029	16
Ra-226	Gammaspektrometrie	0,008	0,011	50
Ra-228	Gammaspektrometrie	0,022	< NWG	
U-233/234	Alphaspektrometrie	0,0046	0,024	23
U-235	Alphaspektrometrie	0,0031	< NWG	
U-238	Alphaspektrometrie	0,0050	0,015	38

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 27: Messwerte P750154

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750154	750 m	Gen. Erkundungsb. EBrg. 750-3 Ost, westl. BS 4/750 in Richtung Abbau 3E/750	18.09.19 8:25
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,677	1,3108	29,1	110,6

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	< NWG	
K-40	Gammaspektrometrie	4,38	461	6,0
Co-60	Gammaspektrometrie	0,139	< NWG	
Nb-94	Gammaspektrometrie	0,114	< NWG	
Ag-108m	Gammaspektrometrie	0,100	< NWG	
Sb-125	Gammaspektrometrie	0,31	< NWG	
I-129	Gammaspektrometrie	1,07	< NWG	
Ba-133	Gammaspektrometrie	0,128	< NWG	
Cs-137	Gammaspektrometrie	0,109	< NWG	
Eu-152	Gammaspektrometrie	0,204	< NWG	
Eu-154	Gammaspektrometrie	0,146	< NWG	
Pb-210	Beta-LSC	0,059	0,189	30
Po-210	Alphaspektrometrie	0,0032	0,046	19
Ra-226	Gammaspektrometrie	0,010	< NWG	
Ra-228	Gammaspektrometrie	0,018	< NWG	
U-233/234	Alphaspektrometrie	0,0052	0,048	26
U-235	Alphaspektrometrie	0,0035	< NWG	
U-238	Alphaspektrometrie	0,0052	0,024	36

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 28: Messwerte P750177

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750177	750 m	Versorgungsbohrung	18.09.19
		von der 700-m-Sohle zur 800-m-Sohle	7:30
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,806	1,3165	34,4	105,9

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	5,8	21
K-40	Gammaspektrometrie	4,16	239	6,0
Co-60	Gammaspektrometrie	0,135	< NWG	
Nb-94	Gammaspektrometrie	0,103	< NWG	
Ag-108m	Gammaspektrometrie	0,0899	< NWG	
Sb-125	Gammaspektrometrie	0,291	< NWG	
I-129	Gammaspektrometrie	1,01	< NWG	
Ba-133	Gammaspektrometrie	0,115	< NWG	
Cs-137	Gammaspektrometrie	0,098	< NWG	
Eu-152	Gammaspektrometrie	0,19	< NWG	
Eu-154	Gammaspektrometrie	0,135	< NWG	
Pb-210	Beta-LSC	0,057	0,240	24
Po-210	Alphaspektrometrie	0,0073	0,025	24
Ra-226	Gammaspektrometrie	0,007	0,010	50
Ra-228	Gammaspektrometrie	0,015	< NWG	
U-233/234	Alphaspektrometrie	0,0061	0,024	38
U-235	Alphaspektrometrie	0,0043	< NWG	
U-238	Alphaspektrometrie	0,0066	0,0085	67

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 29: Messwerte L750179

Probe	Sohle	Beschreibung	Datum/Uhrzeit
L750179	750 m	Lösungsaustritt in Befüllbohrung BBrg. SV- 750-12h	18.09.19 10:45
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
4,735	1,3206	33,4	96,2

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/I]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	< NWG	
K-40	Gammaspektrometrie	3,4	110	6,1
Co-60	Gammaspektrometrie	0,1	< NWG	
Nb-94	Gammaspektrometrie	0,086	< NWG	
Ag-108m	Gammaspektrometrie	0,088	< NWG	
Sb-125	Gammaspektrometrie	0,25	< NWG	
I-129	Gammaspektrometrie	0,58	< NWG	
Ba-133	Gammaspektrometrie	0,11	< NWG	
Cs-137	Gammaspektrometrie	0,087	< NWG	
Eu-152	Gammaspektrometrie	0,19	< NWG	
Eu-154	Gammaspektrometrie	0,135	< NWG	
Pb-210	Beta-LSC	0,109	0,619	26
Po-210	Alphaspektrometrie	0,014	0,136	19
Ra-226	Gammaspektrometrie	0,010	0,024	30
Ra-228	Gammaspektrometrie	0,019	< NWG	
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0067	0,014	54
Th-232	Alphaspektrometrie	0,0062	< NWG	
U-233/234	Alphaspektrometrie	0,0081	0,029	40
U-235	Alphaspektrometrie	0,0058	< NWG	
U-238	Alphaspektrometrie	0,0072	0,016	51

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 30: Messwerte P750184

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750184	750 m	Lösungsaustritt in der Befüllbohrung BBrg. SV- 750-12h.2	18.09.19 10:55
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
4,519	1,3210	33,4	96,7

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	17,1	14
K-40	Gammaspektrometrie	3,8	169	6,1
Co-60	Gammaspektrometrie	0,124	< NWG	
Nb-94	Gammaspektrometrie	0,102	< NWG	
Ag-108m	Gammaspektrometrie	0,088	< NWG	
Sb-125	Gammaspektrometrie	0,270	< NWG	
I-129	Gammaspektrometrie	0,544	< NWG	
Ba-133	Gammaspektrometrie	0,112	< NWG	
Cs-137	Gammaspektrometrie	0,0945	< NWG	
Eu-152	Gammaspektrometrie	0,172	< NWG	
Eu-154	Gammaspektrometrie	0,124	< NWG	
Pb-210	Beta-LSC	0,170	1,37	23
Po-210	Alphaspektrometrie	0,022	1,33	22
Ra-226	Gammaspektrometrie	0,017	0,037	30
Ra-228	Gammaspektrometrie	0,045	< NWG	
Th-228	Alphaspektrometrie	0,020	< NWG	
Th-230	Alphaspektrometrie	0,0039	0,014	48
Th-232	Alphaspektrometrie	0,0038	< NWG	
U-233/234	Alphaspektrometrie	0,0020	0,042	17
U-235	Alphaspektrometrie	0,0018	< NWG	
U-238	Alphaspektrometrie	0,0027	0,018	25

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 31: Messwerte P750185

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750185	750 m	Lösungsaustritt in der EBrg. 750-11 West	18.09.19 8:45
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,444	1,3054	32,5	112,1

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	6,2	27
K-40	Gammaspektrometrie	3,0	391	6,9
Co-60	Gammaspektrometrie	0,103	< NWG	
Nb-94	Gammaspektrometrie	0,085	< NWG	
Ag-108m	Gammaspektrometrie	0,072	< NWG	
Sb-125	Gammaspektrometrie	0,215	< NWG	
I-129	Gammaspektrometrie	0,627	< NWG	
Ba-133	Gammaspektrometrie	0,084	< NWG	
Cs-137	Gammaspektrometrie	0,099	< NWG	
Eu-152	Gammaspektrometrie	0,157	< NWG	
Eu-154	Gammaspektrometrie	0,108	< NWG	
Pb-210	Beta-LSC	0,064	1,15	21
Po-210	Alphaspektrometrie	0,024	0,306	20
Ra-224	Gammaspektrometrie	0,35	< NWG	
Ra-226	Gammaspektrometrie	0,008	0,015	53
Ra-228	Gammaspektrometrie	0,021	0,035	31
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0036	< NWG	
Th-232	Alphaspektrometrie	0,0034	< NWG	
U-233/234	Alphaspektrometrie	0,0033	0,034	18
U-235	Alphaspektrometrie	0,0021	< NWG	
U-238	Alphaspektrometrie	0,0027	0,011	31

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 32: Messwerte P750189

Probe	Sohle	Beschreibung	Datum/Uhrzeit
P750189	750 m	Lösungsaustritt in der EBrg. 750-11.1 West	18.09.2019 08:55
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
5,698	1,3042	32,5	116,0

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/I]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	6,3	26
K-40	Gammaspektrometrie	4,1	421	6,9
Co-60	Gammaspektrometrie	0,113	< NWG	
Nb-94	Gammaspektrometrie	0,092	< NWG	
Ag-108m	Gammaspektrometrie	0,076	< NWG	
Sb-125	Gammaspektrometrie	0,242	< NWG	
I-129	Gammaspektrometrie	0,589	< NWG	
Ba-133	Gammaspektrometrie	0,094	< NWG	
Cs-137	Gammaspektrometrie	0,084	< NWG	
Eu-152	Gammaspektrometrie	0,172	< NWG	
Eu-154	Gammaspektrometrie	0,122	< NWG	
Pb-210	Beta-LSC	0,057	0,91	22
Po-210	Alphaspektrometrie	0,0024	0,021	14
Ra-224	Gammaspektrometrie	0,368	< NWG	
Ra-226	Gammaspektrometrie	0,009	0,010	50
Ra-228	Gammaspektrometrie	0,016	0,017	53
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0027	< NWG	
Th-232	Alphaspektrometrie	0,0016	< NWG	
U-233/234	Alphaspektrometrie	0,0044	0,028	26
U-235	Alphaspektrometrie	0,0027	< NWG	
U-238	Alphaspektrometrie	0,0044	0,0084	49

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 33: Messwerte L925007

Probe	Sohle	Beschreibung	Datum/Uhrzeit
L925007	925 m	PGBrl. 800-1, vor der Mauer BS 1/800-m-S	16.09.19 14:50
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
4,997	1,2934	37,3	115,4

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	174,4	6,8
K-40	Gammaspektrometrie	9,78	86,3	6,2
Co-60	Gammaspektrometrie	0,083	< NWG	
Ni-63	Beta-LSC	0,20	< NWG	
Sr-90	Betamessung	0,069	< NWG	
Nb-94	Gammaspektrometrie	0,080	< NWG	
Ag-108m	Gammaspektrometrie	0,080	< NWG	
Sb-125	Gammaspektrometrie	0,24	< NWG	
I-129	Gammaspektrometrie	0,53	< NWG	
Ba-133	Gammaspektrometrie	0,099	< NWG	
Cs-137	Gammaspektrometrie	0,14	0,124	70
Eu-152	Gammaspektrometrie	0,17	< NWG	
Eu-154	Gammaspektrometrie	0,12	< NWG	
Pb-210	Beta-LSC	0,081	1,27	9,8
Po-210	Alphaspektrometrie	0,028	0,495	16
Ra-226	Gammaspektrometrie	0,008	0,035	25
Ra-228	Gammaspektrometrie	0,025	0,225	10
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,029	< NWG	
Th-232	Alphaspektrometrie	0,029	< NWG	
U-233/234	Alphaspektrometrie	0,0031	0,096	18
U-235	Alphaspektrometrie	0,0028	0,0040	76
U-238	Alphaspektrometrie	0,0033	0,092	18

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

Tabelle 34: Messwerte L975008

Probe	Sohle	Beschreibung	Datum/Uhrzeit
L975008	975 m	PGBrl. 800-2, vor der Mauer BS 1/800-m-S	16.09.19 14:25
pH-Wert	ρ [g/cm³]	T [°C]	Lf [mS/cm]
4,992	1,3043	37,2	107,8

Nuklid	Methode	Nachweisgrenze (NWG) [Bq/l]	Messwert [Bq/l]	Unsicherheit* [%]
H-3	Beta-LSC	2,1	1.522	6,8
K-40	Gammaspektrometrie	5,22	101	6,4
Co-60	Gammaspektrometrie	0,13	< NWG	
Ni-63	Beta-LSC	0,11	< NWG	
Sr-90	Betamessung	0,081	< NWG	
Nb-94	Gammaspektrometrie	0,12	< NWG	
Ag-108m	Gammaspektrometrie	0,13	< NWG	
Sb-125	Gammaspektrometrie	0,43	< NWG	
I-129	Gammaspektrometrie	1,29	< NWG	
Ba-133	Gammaspektrometrie	0,16	< NWG	
Cs-137	Gammaspektrometrie	0,29	9,61	6,3
Eu-152	Gammaspektrometrie	0,25	< NWG	
Eu-154	Gammaspektrometrie	0,17	< NWG	
Pb-210	Beta-LSC	0,084	0,533	14
Po-210	Alphaspektrometrie	0,0031	0,165	16
Ra-226	Gammaspektrometrie	0,007	0,026	40
Ra-228	Gammaspektrometrie	0,020	0,105	25
Th-228	Alphaspektrometrie	0,010	< NWG	
Th-230	Alphaspektrometrie	0,0032	< NWG	
Th-232	Alphaspektrometrie	0,0030	< NWG	
U-233/234	Alphaspektrometrie	0,0033	0,051	22
U-235	Alphaspektrometrie	0,0028	< NWG	
U-238	Alphaspektrometrie	0,0043	0,041	24

^{*}Unsicherheiten: kombinierte doppelte relative Standardmessunsicherheiten

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Anhang C - Ergebnisse der chemisch-physikalischen Analytik, K-UTEC AG Salt Technologies, Prüfberichte 19-1925-1 und 19-1926-1

Auftraggeber: BGE Bundesgesellschaft für Endlagerung mbH

Eschenstraße 55 31224 Peine

Projektname: Beprobung und Analyse von Salzlösungen

in der Schachtanlage Asse II im Jahr 2019

Projektnummer: 190920-02

Auftragnehmer: IAF-Radioökologie GmbH

Autor: Dr. rer. nat.

Dr. rer. nat. habil.

Radeberg, den 24.07.2020

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-11201-01-00

Geschäftsführer

Wilhelm-Rönsch-Str. 9 01454 Radeberg Tel. +49 (0) 3528 48730-0 Fax +49 (0) 3528 48730-22 E-Mail info@iaf-dresden.de Geschäftsführer: Dr. rer. nat. habil. Hartmut Schulz Dr. rer. nat. Christian Kunze Dipl.-Ing. (BA) René Baumert Handelsregister: HRB 9185 Amtsgericht Dresden Bankverbindung: HypoVereinsbank Dresden IBAN: DE92 8502 0086 5360 1794 29 SWIFT (BIC): HYVEDEMM496

Anhang C

Diese Anlage enthält eine Kopie der von der K-UTEC AG gelieferten chemischphysikalischen Analyse-Ergebnisse.

Prüfbericht 19-1925-1

Seiten 4 bis 67

Chemisch-physikalische Analytik der Proben:
P 750006
L 975008
L 925007
L 725005
P 725010
P 725004
P 725019
P 725011
P 725020
L 725006
P 725007
L 658008
SB3
L 553007
Prüfbericht 19-1926-1
Seiten 68 bis 131

Chemisch-physikalische Analytik der Proben:

P 750010

P 750009

P 750061

P 750040

P 750148

L 750179

P 750184

P 750153

P 750154

P 750185

P 750189

P 750064

P 750177

P 750039

Durch die DAAkS nach DIN EN ISO/EC 17025 akkeeditertes Publiaboratorium. Die Akteediterung git nur tür den in der Ukundenanlage D-PL-14237-01-00 aufgeführten: Akkeediterungsumfang.

Seite 1 von 30

Chemisch-physikalische Analytik

K-UTEC AG Salt Technologies Am Petersenschacht 7 99706 Sondershausen Tel.: +49 3632 610-150 Fax.: +49 3632 610-105 E-Mail: cpa@k-ufec.de

Prüfbericht: 19-1925-1

Auftrag: Lösungsuntersuchung
Auftraggeber: IAF-Radioökologie GmbH

TI Nadiookologic Offici

Withelm-Rönsch-Straße 9 01454 Radeberg

Probeneingang: 01.10.2019 Probennahme: Auftraggeber

Entnahmeort: Entnahmedatum: Probenanzahl:

Prüfzeitraum: 01.10.2019 bis 15.10.2019

Proben-Nr. Probentext 19-1925/01 P 750006 19-1925/02 L 975008 19-1925/03 L 925007 19-1925/04 L 725005 19-1925/05 P 725010 19-1925/06 P 725004 19-1925/07 P 725019 19-1925/08 P 725011 19-1925/09 P 725020 19-1925/10 L 725006 19-1925/11 P 725007 19-1925/12 L 658008 19-1925/13 SB3 19-1925/14 L 553007

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Sette 2 von 30

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Dieser Prüfberlicht darf ohne Genehmigung der K-UTEC AG nicht auszugsweise verweitlättigt werden. Die Prüfergelonisse beziehen sich ausschließlich auf die im Prüfberlicht spezitizierten Prüfgegenstände. (DIN EN ISO/EC 17025)

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Akkreditierungsumfang.

Probenbez.:

P 750006

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Sette 3 von 30

Salzlösung 19-1925/01 Probenart:

Proben-Nr.:

01.10.2019 bis 15.10.2019 Messzeltraum:

P 750006

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.265	g/cm³	
Temperatur (vor Ort)	intern. Verfahren*	33.8	°C	
Dichte (Labor)	DEV-C 9*	1,269	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	7.14	-	
Natium	K-UTEC 110: 2016-03	23600	mg/l	5
Kalium	K-UTEC 110: 2016-03	13800	mg/l	7
Magnesium	K-UTEC 112: 2016-03	72700	mg/l	10
Calcium	K-UTEC 6: 2016-04	112	mg/l	1
Chlorid	K-UTEC 114; 2016-03	235000	mg/l	30
Sulfat	K-UTEC 104; 2016-04	32900	mg/l	10
Mangan	K-UTEC 6: 2016-04	2.94	mg/l	1,00
Eisen	DIN 38406-E1*	5,66	mg/l	0,60
Eisen 00	DIN 38406-E1*	3.71	mg/l	0,60
Eisen-III	DIN 38406-E1*	1.95	mg/l	0.60
Carbonat	DIN ISO 10693*	1.23	mg/l	0.50
CO ₂	DIN EN 1484-H 3*	15,6	mg/l	0.40
Hydrogencarbonat	DEV-D8*	256	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	7.24	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	0.5	mg/l	0.5
Rubidium	AES*	21.3	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.350	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	13.8	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	600.0
Chrom	K-UTEC 6: 2016-04	0.180	mg/l	0,001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	1,35	mg/l	0,01
Nickel	K-UIEC 6: 2016-04	0,730	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0,04	mg/l	0.02
Zink	K-UTEC 6: 2016-04	1.50	mg/l	0.005
Вог	K-UTEC 6: 2016-04	59.8	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.240	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	3530	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	75.8	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	120	mg/l	0.2
Kallumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	0.01	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	0.38	g/I	0,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Sette 4 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/01 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCla	K-UTEC 126: 2016-03	0	g/I	70
MgSO ₄	K-UTEC 126: 2016-03	40,9	g/I	
MgCl ₂	K-UTEC 126: 2016-03	250	g/I	
MgBr ₂	intern, Verfahren*	4.07	g/I	
MgaBaO13	Intern. Verfahren*	0.28	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	26,3	g/I	
Ng ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	60,0	g/l	
H ₂ O	K-UTEC 126: 2016-03	887	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

L 975008

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Sette 5 von 30

Probenart: Proben-Nr.:

Messzeitraum:

Salzlösung 19-1925/02 01.10.2019 bis 15.10.2019

L 975008

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1,304	g/cm³	
Temperatur (vor Ort)	Infern. Verfahren*	37.2	°C	
Dichte (Labor)	DEV-C 9*	1,312	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,33	-	
Natrium	K-UTEC 110: 2016-03	6260	mg/l	5
Kalium	K-UTEC 110: 2016-03	3520	mg/l	7
Magnesium	K-UTEC 112: 2016-03	104000	mg/l	10
Calcium	K-UTEC 6: 2016-04	64	mg/l	1
Chlorid	K-UTEC 114: 2016-03	300000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	18000	mg/l	10
Manaan	K-UTEC 6: 2016-04	26.1	mg/l	1.0
Eisen	DIN 38406-E1*	4.02	mg/l	0,60
Eisen 00	DIN 38406-E1*	3,88	mg/l	0.60
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	296	mg/l	0.40
Hydrogencarbonat	DEV-D8*	76.3	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	6.55	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	0.78	mg/l	0,50
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	2.3	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.180	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	1.64	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	0.035	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	0.41	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	1.50	mg/l	0,01
Nickel	K-UIEC 6: 2016-04	0.410	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0.18	mg/l	0.02
Zink	K-UTEC 6: 2016-04	17.1	mg/l	0.005
Вог	K-UTEC 6: 2016-04	64,3	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	3.09	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	4800	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	10.8	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	51,8	mg/l	0.2
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	0.01	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	0,22	α/I	0,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Sette 6 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/02 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCla	K-UTEC 126: 2016-03	0	g/I	720
MgSO ₄	K-UTEC 126: 2016-03	22,4	g/I	
MgCl ₂	K-UTEC 126: 2016-03	386	g/l	
MgBr ₂	intern. Verfahren*	5,52	g/I	
MgaBaO13	intern. Verfahren*	0.3	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	6.71	g/I	
Ng ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	15,9	g/l	
H ₂ O	K-UTEC 126: 2016-03	875	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

L 925007

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Sette 7 von 30

Bestim.-

Salzlösung 19-1925/03 01.10.2019 bis 15.10.2019 Probenart:

Proben-Nr.:

Messzeitraum:

L 925007

Parameter	Verfahren	Messwert	Dim.	grenze
Dichte (vor Ort)	Intern. Verfahren*	1,293	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	37.3	°C	
Dichte (Labor)	DEV-C 9*	1,299	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,39	-	
Natrum	K-UTEC 110: 2016-03	7410	mg/l	5
Kalium	K-UTEC 110: 2016-03	3120	mg/l	7
Magnesium	K-UTEC 112: 2016-03	99900	mg/l	10
Calcium	K-UTEC 6: 2016-04	104	mg/l	1
Chlorid	K-UTEC 114: 2016-03	294000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	13900	mg/l	10
Mangan	K-UTEC 6: 2016-04	49.7	mg/l	1.0
Eisen	DIN 38406-E1*	7.12	mg/l	0,60
Eisen 00	DIN 38406-E1*	4.07	mg/l	0,60
Eisen-III	DIN 38406-E1*	3,05	mg/l	0.60
Carbonat	DIN ISO 10693*	n.n.	mg/l	0,5
CO ₂	DIN EN 1484-H 3*	323	mg/l	0.40
Hydrogencarbonat	DEV-D8*	95.4	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	2.69	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	1.5	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.230	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	5.04	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	0.028	mg/l	0,001
Cobalt	K-UTEC 6: 2016-04	0,25	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.19	mg/l	0,01
Nickel	K-UTEC 6: 2016-04	0.100	mg/l	0,001
Silicium	K-UTEC 6: 2016-04	0.36	mg/l	0,02
Zink	K-UTEC 6: 2016-04	32.8	mg/l	0.005
Bor	K-UTEC 6: 2016-04	40,7	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	1.97	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	4600	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	10.8	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	54.4	mg/l	0.2
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n.n.	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	0.35	g/I	3,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Sette 8 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/03 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/l	10
MgSO ₄	K-UTEC 126: 2016-03	17.1	g/I	
MgCl ₂	K-UTEC 126: 2016-03	375	g/I	
MgBr ₂	intern, Verfahren*	5,29	g/I	
MgaBaOsa	Intern. Verfahren*	0.03	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	5,95	g/I	
Ng ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	18,8	g/l	
H ₂ O	K-UTEC 126: 2016-03	877	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Akkreditierungsumfang.

Probenbez.:

L 725005

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Sette 9 von 30

Probenart:

Proben-Nr.:

Salzlösung 19-1925/04 01.10.2019 bis 15.10.2019 Messzeltraum:

L 725005

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	intern. Verfahren*	1.362	g/cm³	
Temperatur (vor Ort)	Infern. Verfahren*	34.9	°C	
Dichte (Labor)	DEV-C 9*	1.362	g/cm³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	4,98	-	
Natrium	K-UTEC 110: 2016-03	2890	mg/l	5
Kalium	K-UTEC 110: 2016-03	1490	mg/l	7
Magnesium	K-UTEC 112: 2016-03	134000	mg/l	10
Calcium	K-UTEC 6: 2016-04	25,7	mg/l	1,0
Chlorid	K-UTEC 114: 2016-03	370000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	34400	mg/l	10
Manaan	K-UTEC 6: 2016-04	6,47	ma/l	1,00
Eisen	DIN 38406-E1*	44.7	mg/l	0.6
Eisen 00	DIN 38406-E1*	10.9	mg/l	0.6
Eisen-III	DIN 38406-E1*	33.8	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	108	mg/l	0.40
Hydrogencarbonat	DEV-D8*	12.6	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	8,77	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	n.n.	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0,760	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	n.n.	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	D.D.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	0.082	mg/l	0,010
Kupfer	K-UTEC 6: 2016-04	6,14	mg/l	0,01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	27.2	mg/l	0.005
Bor	K-UTEC 6: 2016-04	101	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.620	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	0,061	mg/l	0.010
Bromid	Intern. Verfahren*	5890	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	8.66	mg/l	0.60
Nitrat	K-UTEC 5: 2017-11	260	mg/l	0.2
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	0.06	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	0,09	g/l	0,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Seite 10 von 30 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/04 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/I	
MgSO ₄	K-UTEC 126: 2016-03	43	g/I	
MgCl ₂	K-UTEC 126: 2016-03	489	g/I	
MgBr ₂	intern. Verfahren*	6,79	g/I	
MgaBaO13	Intern. Verfahren*	0.07	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	2.83	g/I	
NG ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	7,35	g/l	
H ₂ O	K-UTEC 126: 2016-03	813	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Akkreditierungsumfang.

Probenbez.:

P 725010

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 11 von 30

Probenart:

Proben-Nr.:

Salzlösung 19-1925/05 01.10.2019 bis 15.10.2019 Messzeitraum:

P 725010

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.293	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	35.1	°C	
Dichte (Labor)	DEV-C 9*	1.293	g/cm³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,95	-	
Natrium	K-UTEC 110: 2016-03	10500	mg/l	5
Kalium	K-UTEC 110: 2016-03	9380	mg/l	7
Magnesium	K-UTEC 112: 2016-03	90800	mg/l	10
Calcium	K-UTEC 6: 2016-04	46,8	mg/l	1,0
Chlorid	K-UTEC 114; 2016-03	265000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	30800	mg/l	10
Mangan	K-UTEC 6: 2016-04	2.14	ma/l	1,00
Eisen	DIN 38406-E1*	0,99	mg/l	0.60
Eisen (II)	DIN 38406-E1*	1,05	mg/l	0,60
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0,5
CO ₂	DIN EN 1484-H 3*	103	mg/l	0.40
Hydrogencarbonat	DEV-D8*	110	mg/l	0,5
Lithium	K-UTEC 6: 2016-04	7,99	mg/l	0,10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	0,7	mg/l	0,5
Rubidium	AES*	9,9	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0,140	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	0,094	mg/l	0,077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0,006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0,001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	1,11	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0,001
Silicium	K-UTEC 6: 2016-04	0.13	mg/l	0.02
Zink	K-UTEC 6: 2016-04	35.1	mg/l	0,005
Bor	K-UTEC 6: 2016-04	68.4	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.550	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	4760	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	24.5	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	189	mg/l	0.2
Kaliumhexacyanoferrat(I)	DIN 38 405-D 13-1-3*	n.n.	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	0.16	ca/l	E155

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Seite 12 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/05 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCla	K-UTEC 126: 2016-03	0	g/I	720
MgSO ₄	K-UTEC 126: 2016-03	38,4	g/I	
MgCl ₂	K-UTEC 126: 2016-03	322	g/l	
MgBr ₂	intern. Verfahren*	5,49	g/I	
MgaBaO13	Intern. Verfahren*	0.31	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	17,9	g/I	
NG ₂ SO ₄	K-L/IEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	26,8	g/I	
H ₂ O	K-UTEC 126: 2016-03	882	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Akkreditierungsumfang.

Probenbez.:

P 725004

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 13 von 30

Probenart: Proben-Nr.:

Messzeitraum:

Salzlösung 19-1925/06 01.10.2019 bis 15.10.2019

P	7	2	E.	n	o.	
۳.	r,	c	u	u	U٤	+

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.216	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	35.1	°C	
Dichte (Labor)	DEV-C 9*	1,225	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	7,06	-	
Natrium	K-UTEC 110: 2016-03	94900	mg/l	5
Kalium	K-UTEC 110: 2016-03	7350	mg/l	7
Magnesium	K-UTEC 112: 2016-03	18500	mg/l	10
Calcium	K-UTEC 6: 2016-04	430	mg/l	1
Chlorid	K-UTEC 114: 2016-03	194000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	18100	mg/l	10
Mangan	K-UTEC 6: 2016-04	n.n.	mg/l	1
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0,5
CO ₂	DIN EN 1484-H 3*	8.90	mg/l	0.40
Hydrogencarbonat	DEV-D8*	118	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	3.25	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	14.6	mg/l	0.5
Casium	AAS*	0.6	mg/l	0.5
Rubidium	AES*	5	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.488	mg/l	0.049
Bartum	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	n.n.	mg/l	0,077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	600.0
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.052	mg/l	0,010
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0.17	mg/l	0.02
Zink	K-UTEC 6: 2016-04	3.36	mg/l	0.005
Bor	K-UTEC 6: 2016-04	34.0	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	n.n.	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	916	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	25.3	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	7.87	mg/l	0,20
Kaliumhexacyanoferrat(I)	DIN 38 405-D 13-1-3*	n.n.	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	1.46	g/I	0,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Seite 14 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/06 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/l	- 10
MgSO ₄	K-UTEC 126: 2016-03	21.4	g/I	
MgCl ₂	K-UTEC 126; 2016-03	54.8	g/l	
MgBr ₂	Intern. Verfahren*	1,06	g/I	
MgaBaOsa	Intern. Verfahren*	0.16	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	14.0	g/I	
Na ₂ SO ₄	K-UIEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	241	g/l	
H ₂ O	K-UTEC 126: 2016-03	891	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Akkreditierungsumfang.

Probenbez.:

P 725019

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 15 von 30

Salzlösung 19-1925/07 Probenart:

Proben-Nr.:

01.10.2019 bis 15.10.2019 Messzeltraum:

P 725019

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.224	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	35.1	°C	
Dichte (Labor)	DEV-C 9*	1,207	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	7,01	-	
Natium	K-UTEC 110: 2016-03	70800	mg/l	5
Kalium	K-UTEC 110: 2016-03	9450	mg/l	7
Magnesium	K-UTEC 112: 2016-03	28100	mg/l	10
Calcium	K-UTEC 6: 2016-04	230	mg/l	1
Chlorid	K-UTEC 114; 2016-03	182000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	22900	mg/l	10
Mangan	K-UTEC 6: 2016-04	n.n.	mg/l	1
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0,6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	0,51	mg/l	0,50
CO ₂	DIN EN 1484-H 3*	13,2	mg/l	0.40
Hydrogencarbonat	DEV-D8*	156	mg/l	0,5
Lithium	K-UTEC 6: 2016-04	4,16	mg/l	0,10
Strontium	K-UTEC 6: 2016-04	5,54	mg/l	0,50
Casium	AAS*	n.n.	mg/l	0,5
Rubidium	AES*	9.4	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0,600	mg/l	0.049
Bartum	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	0,390	mg/l	0,077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	600,0
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0,001
Cobalt	K-UTEC 6; 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.104	mg/l	0,010
Nickel	K-UTEC 6: 2016-04	0,015	mg/l	0,001
Silicium	K-UTEC 6: 2016-04	0,21	mg/l	0.02
Zink	K-UTEC 6: 2016-04	6,13	mg/l	0.005
Bor	K-UTEC 6: 2016-04	43,4	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.150	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	1410	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	41.1	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	39.1	mg/l	0.2
Kaliumhexacyanoferrat(I)	DIN 38 405-D 13-1-3*	n.n.	mg/l	0,01
CaSO ₄	K-UTEC 126: 2016-03	0,78	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Seite 16 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/07 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/I	
MgSO ₄	K-UTEC 126: 2016-03	28,0	g/I	
MgCl ₂	K-UTEC 126: 2016-03	86.8	g/I	
MgBr ₂	intern. Verfahren*	1,63	g/I	
MgaBaOsa	Intern. Verfahren*	0.2	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	18,0	g/I	
Ng ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	180	g/l	
H ₂ O	K-UTEC 126: 2016-03	891	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

P 725011

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 17 von 30

Salzlösung 19-1925/08 Probenart: Proben-Nr.:

01.10.2019 bis 15.10.2019 Messzeltraum:

P 725011

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.253	g/cm³	
Temperatur (vor Ort)	intern. Verfahren*	35.4	°C	
Dichte (Labor)	DEV-C 9*	1,263	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	6,56	-	
Natrium	K-UTEC 110: 2016-03	31600	mg/l	5
Kalium	K-UTEC 110: 2016-03	10100	mg/l	7
Magnesium	K-UTEC 112: 2016-03	64800	mg/l	10
Calcium	K-UTEC 6: 2016-04	131	mg/l	1
Chlorid	K-UTEC 114; 2016-03	231000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	19700	mg/l	10
Mangan	K-UTEC 6: 2016-04	n.n.	mg/l	1
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen (II)	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	37.9	mg/l	0.40
Hydrogencarbonat	DEV-D8*	163	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	5.89	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	0.53	mg/l	0,50
Casium	AAS*	0.6	mg/l	0.5
Rubidium	AES*	16.6	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0,210	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	n.n.	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	600,0
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	1.00	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0.10	mg/l	0.02
Zink	K-UTEC 6: 2016-04	21.0	mg/l	0.005
Вог	K-UTEC 6: 2016-04	53.7	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.230	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	0,038	mg/l	0.010
Bromid	Intern. Verfahren*	3260	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	41.9	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	97.2	mg/l	0.2
Kallumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	0.01	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	0.44	g/I	3,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Seite 18 von 30 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/08 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/l	(2)
MgSO ₄	K-UTEC 126: 2016-03	24,3	g/I	
MgCl ₂	K-UTEC 126: 2016-03	233	g/l	
MgBr ₂	intern. Verfahren*	3,76	g/I	
MgaBaO13	Intern. Verfahren*	0.25	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	19,2	g/I	
NG2SO4	K-L/TEC 126: 2016-03	n.n.	g/l	0,01
NaCl	K-UTEC 126: 2016-03	80,4	g/l	
H ₂ O	K-UTEC 126: 2016-03	902	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Akkreditierungsumfang.

Probenbez.:

P 725020

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 19 von 30

Probenart:

Proben-Nr.:

Salzlösung 19-1925/09 01.10.2019 bis 15.10.2019 Messzeltraum:

P 725020

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.239	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	35.4	°C	
Dichte (Labor)	DEV-C 9*	1,247	g/cm³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	6,69	-	
Natrium	K-UTEC 110: 2016-03	58200	mg/l	5
Kalium	K-UTEC 110: 2016-03	14300	mg/l	7
Magnesium	K-UTEC 112: 2016-03	43800	mg/l	10
Calcium	K-UTEC 6: 2016-04	200	mg/l	1
Chlorid	K-UTEC 114; 2016-03	206000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	32300	mg/l	10
Mangan	K-UTEC 6: 2016-04	1,29	ma/l	1,00
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0,6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0,5
CO ₂	DIN EN 1484-H 3*	49.3	mg/l	0.40
Hydrogencarbonat	DEV-D8*	283	mg/l	0,5
Lithium	K-UTEC 6: 2016-04	8.22	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	1.1	mg/l	0.5
Casium	AAS*	0.5	mg/l	0.5
Rubidium	AES*	9.5	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0,200	mg/l	0.049
Barium	K-UTEC 6: 2016-04	0,08	mg/l	0.03
Blei	K-UTEC 6: 2016-04	1.19	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	0.023	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6; 2016-04	1.85	mg/l	0,01
Nickel	K-UIEC 6: 2016-04	n.n.	mg/l	0,001
Silicium	K-UTEC 6: 2016-04	0,44	mg/l	0.02
Zink	K-UTEC 6: 2016-04	81.5	mg/l	0.005
Bor	K-UTEC 6: 2016-04	54.2	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.270	mg/l	0,033
Queckslber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	2500	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	57.7	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	362	mg/l	0.2
Kaliumhexacyanoferrat(I)	DIN 38 405-D 13-1-3*	n.n.	mg/l	0.01
CoSO ₄	K-UTEC 126: 2016-03	86,0	g/I	2101

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Seite 20 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/09 Fortsetzung			Bestim
Parameter	Verfahren Mes	swert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/l	- 70
MgSO ₄	K-UTEC 126: 2016-03	39,9	g/I	
MgCl ₂	K-UTEC 126; 2016-03	138	g/l	
MgBr ₂	Intern. Verfahren*	2,88	g/I	
MgaBaO13	Intern. Verfahren*	0.25	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	27,4	g/I	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0,01
NaCl	K-UTEC 126: 2016-03	148	g/l	
H ₂ O	K-UTEC 126: 2016-03	890	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

L 725006

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 21 von 30

Salzlösung 19-1925/10 Probenart: Proben-Nr.:

Messzeitraum:

01.10.2019 bis 15.10.2019

725006				

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.221	g/cm³	
Temperatur (vor Ort)	Infern. Verfahren*	35,5	°C	
Dichte (Labor)	DEV-C 9*	1.226	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	7,15	-	
Natrium	K-UTEC 110: 2016-03	89800	mg/l	5
Kalium	K-UTEC 110: 2016-03	10900	mg/l	7
Magnesium	K-UTEC 112: 2016-03	22900	mg/l	10
Calcium	K-UTEC 6: 2016-04	330	mg/l	1
Chlorid	K-UIEC 114: 2016-03	196000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	26500	mg/l	10
Manaan	K-UTEC 6: 2016-04	n.n.	mg/l	1
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen (II)	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	0.61	mg/l	0.50
CO ₂	DIN EN 1484-H 3*	8,10	mg/l	0.40
Hydrogencarbonat	DEV-D8*	133	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	5.41	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	16.4	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	6.1	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.480	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	0.390	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	600.0
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.19	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0.23	mg/l	0.02
Zink	K-UTEC 6: 2016-04	1,93	mg/l	0.005
Bor	K-UTEC 6: 2016-04	50,5	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.120	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	1240	rng/l	1.0
Ammonium	K-UTEC 116: 2016-04	33.2	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	6,07	mg/l	0.20
Kaliumhexacvanoferrat(II)	DIN 38 405-D 13-1-3*	n.n.	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	1,12	g/I	0,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Seite 22 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/10 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/l	10
MgSO ₄	K-UTEC 126: 2016-03	32,2	g/I	
MgCl ₂	K-UTEC 126: 2016-03	63.4	g/l	
MgBr ₂	intern. Verfahren*	1.42	g/I	
MgsBsOss	Intern. Verfahren*	0.24	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	20.7	g/I	
Ng ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	228	g/l	
H ₂ O	K-UTEC 126: 2016-03	878	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

P 725007

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 23 von 30

Salzlösung Probenart: Proben-Nr.: 19-1925/11

01.10.2019 bis 15.10.2019 Messzeitraum:

P 725007

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.259	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	35,5	°C	
Dichte (Labor)	DEV-C 9*	1.277	g/cm3	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	4,98	-	
Natrium	K-UTEC 110: 2016-03	45800	mg/l	5
Kalium	K-UTEC 110: 2016-03	17700	mg/l	7
Magnesium	K-UTEC 112: 2016-03	55200	mg/l	10
Calcium	K-UTEC 6: 2016-04	134	mg/l	1
Chlorid	K-UTEC 114: 2016-03	209000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	51600	mg/l	10
Manaan	K-UTEC 6: 2016-04	11,3	mg/l	1.0
Eisen	DIN 38406-E1*	37.3	mg/l	0.6
Eisen 00	DIN 38406-E1*	7.91	mg/l	0.60
Eisen-III	DIN 38406-E1*	29.4	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	45.1	mg/l	0.40
Hydrogencarbonat	DEV-D8*	5.1	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	6.52	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	0.6	mg/l	0.5
Rubidium	AES*	14	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.170	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	n.n.	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	600.0
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.41	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	48,0	mg/l	0.005
Bor	K-UTEC 6: 2016-04	60,9	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	n.n.	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	2900	rng/l	1.0
Ammonium	K-UTEC 116: 2016-04	68,6	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	17,4	mg/l	0.2
Kaliumhexacvanoferrat(II)	DIN 38 405-D 13-1-3*	0.01	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	0.46	g/I	0,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Seite 24 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/11 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/I	7.0
MgSO ₄	K-UTEC 126: 2016-03	64,2	g/I	
MgCl ₂	K-UTEC 126: 2016-03	164	g/l	
MgBr ₂	intern. Verfahren*	3,34	g/I	
MgaBaO13	Intern. Verfahren*	0.28	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	33,7	g/I	
Ng ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	117	g/l	
H ₂ O	K-UTEC 126: 2016-03	895	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

L 658008

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 25 von 30

Salzlösung Probenart: Proben-Nr.: 19-1925/12

01.10.2019 bis 15.10.2019 Messzeitraum:

L 658008

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	intern. Verfahren*	1.205	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	33.3	°C	
Dichte (Labor)	DEV-C 9*	1,200	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	6,82	-	
Natrium	K-UTEC 110: 2016-03	110000	mg/l	5
Kalium	K-UTEC 110; 2016-03	2980	mg/l	7
Magnesium	K-UTEC 112: 2016-03	8450	mg/l	10
Calcium	K-UTEC 6: 2016-04	806	mg/l	1
Chlorid	K-UTEC 114; 2016-03	192000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	8780	mg/l	10
Manaan	K-UTEC 6: 2016-04	n.n.	mg/l	1
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	9,40	mg/l	0.40
Hydrogencarbonat	DEV-D8*	71.1	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	2.21	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	20.2	mg/l	0.5
Casium	AAS*	0.6	mg/l	0.5
Rubidium	AES*	1.9	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.410	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	n.n.	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0,37	mg/l	0.02
Zink	K-UTEC 6: 2016-04	0.120	mg/l	0.005
Вог	K-UTEC 6: 2016-04	25.1	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	n.n.	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	366	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	16.6	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	n.n.	mg/l	0.2
Kallumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n.n.	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	2,74	g/I	3,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Seite 26 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/12 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/l	7.0
MgSO ₄	K-UTEC 126: 2016-03	8,58	g/I	
MgCl ₂	K-UTEC 126; 2016-03	26.0	g/l	
MgBr ₂	intern. Verfahren*	0.42	g/I	
MgaBaO13	intern. Verfahren*	0.11	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	5,69	g/I	
Ng ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	280	g/l	
H ₂ O	K-UTEC 126: 2016-03	877	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

SB3

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 27 von 30

Salzlösung Probenart: Proben-Nr.: 19-1925/13

01.10.2019 bis 15.10.2019 Messzeitraum:

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.203	g/cm³	
Temperatur (vor Ort)	Infern. Verfahren*	30,9	°C	
Dichte (Labor)	DEV-C 9*	1,205	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	6,97	-	
Natrium	K-UTEC 110: 2016-03	109000	mg/l	5
Kalium	K-UTEC 110: 2016-03	2880	mg/l	7
Magnesium	K-UTEC 112: 2016-03	8270	mg/l	10
Calcium	K-UTEC 6: 2016-04	795	mg/l	1
Chlorid	K-UTEC 114: 2016-03	190000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	8480	mg/l	10
Mangan	K-UTEC 6: 2016-04	1,08	mg/l	1,00
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	7,10	mg/l	0.40
Hydrogencarbonat	DEV-D8*	75.8	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	2,19	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	19.8	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	1.9	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.560	mg/l	0.049
Barium	K-UTEC 6: 2016-04	0.04	mg/l	0.03
Blei	K-UTEC 6: 2016-04	n.n.	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0.23	mg/l	0.02
Zink	K-UTEC 6: 2016-04	0,120	mg/l	0.005
Вог	K-UTEC 6: 2016-04	25.1	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	n.n.	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	370	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	13.0	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	0.27	mg/l	0,20
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n.n.	mg/l	0,01
CaSO ₄	K-UTEC 126: 2016-03	2.7	a/i	0,01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1925-1 Prüfbericht-Nr.: Seite 28 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1925/13 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
CaCl ₂	K-UTEC 126: 2016-03	0	g/I	- 10
MgSO ₄	K-UTEC 126: 2016-03	8,24	g/I	
MgCl ₂	K-UTEC 126; 2016-03	25.6	g/l	
MgBr ₂	Intern. Verfahren*	0.43	g/I	
MgsBsOss	Intern. Verfahren*	0.11	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/l	0.01
KCI	K-UTEC 126: 2016-03	5,49	g/I	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0,01
NaCl	K-UTEC 126: 2016-03	278	g/l	
H ₂ O	K-UTEC 126: 2016-03	885	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

L 553007

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung Seite 29 von 30

Salzlösung Probenart: Proben-Nr.: 19-1925/14

Messzeltraum:

L 553007

01.10.2019 bis 15.10.2019

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.285	g/cm³	
Temperatur (vor Ort)	Infern. Verfahren*	33.2	°C	
Dichte (Labor)	DEV-C 9*	1,293	g/cm3	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
Natrium	K-UTEC 110: 2016-03	80900	mg/l	5
Kalium	K-UTEC 110: 2016-03	37700	mg/l	7
Magnesium	K-UTEC 112: 2016-03	33000	mg/l	10
Calcium	K-UTEC 6: 2016-04	57,7	mg/l	1.0
Chlorid	K-UTEC 114: 2016-03	183000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	97400	mg/l	10
Manaan	K-UTEC 6: 2016-04	n.n.	mg/l	1
Elsen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen (II)	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Lithium	K-UTEC 6: 2016-04	3.09	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0,5
Cäsium	AAS*	0.7	mg/l	0.5
Rubidium	AES*	13.6	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0,470	mg/l	0.049
Barlum	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	n.n.	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	D.D.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	0.830	mg/l	0,005
Bor	K-UTEC 6: 2016-04	76.8	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.240	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	989	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	45.5	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	53.6	mg/l	0.2
Kallumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	2,52	mg/l	0.01
CaSO ₄	K-UTEC 126: 2016-03	0.2	g/l	0.01
CaCla	K-UTEC 126: 2016-03	0.2	g/l	
MgSO ₄	K-UTEC 126: 2016-03	122	g/i	
MgCl ₂	K-UTEC 126: 2016-03	32.2	g/i	
MgBr ₂	intern. Verfahren*	1.14	Q/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAAR nach DIN EN ISO/EC 17025 akteiditerter Publiaboratorium. Die Akteiditerung gilt nur für den in der Ulkundenanlage D-PL-14237-01-00 aufgeführten: Akteiditerungsumfang.

Prüfbericht-Nr.: 19-1925-1 Seite 30 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.: 19-1925/14 Fortsetzung Bestim.-Parameter grenze Verfahren Messwert Dim. MgaBaOts intern. Vertahren* 0.36 g/l K2SO4 K-UTEC 126: 2016-03 n.n. g/I 0.01 KCI K-UTEC 126: 2016-03 71.9 q/I Na₂SO₄ K-UTEC 126: 2016-03 0.01 n.n. g/l NaCl K-UTEC 126: 2016-03 206 9/1 K-UTEC 126: 2016-03 H₂O 860 g/l

Hinweis: Auf Grund der Probenbeschaffenheit kann die Dichte im Labor nur ungenau ermittelt werden. Die zu erwartende Abweichung beträgt 0.010 g/cm3.

Dieser Prüfberlicht wird in zwei weiteren Varianten erstellt, um alle geforderfen Einheiten für die einzelnen Parameter darstellen zu können.

Hinzu kommt das Jänecke-Diagramm mit den entsprechenden Koordinaten als Anlage,

Sondershausen, den 18,10,2019

Laborletter

Anlage: 2 zus. PB, Jänecke-Diag. (4 S.)

nicht akkreditierter Parameter

n.n. Messergebnis ist unterhalb Bestimmungsgrenze

Dim. Dimension

bezogen auf Trockensubstanz

Durch die DAMS nach DIN EN ISO/IEC 17025 altkreditiertes Profaboratorum.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

(03632)61 01 50 (03632)61 01 05

cpa@k-utec.de

Tel.:

Fax:

E-Mail:

Chemisch-physikalische Analytik

K-UTEC AG Salt Technologies Am Petersenschacht 7 99706 Sondershausen

19-1925-1

Hier: Massenkonzentrationen

Auftrag: Lösungsuntersuchung Auftraggeber:

IAF-Radioökologie GmbH

Wilhelm-Rönsch-Straße 9

01454 Radeberg

Probeneingang: 01.10.2019 Probennahme: Auftraggeber

Entnahmeort:

Prüfbericht

Entnahmedatum: Probenanzahl:

01.10.2019 bis 15.10.2019 Prüfzeitraum:

Probentext	
P 750006	
L 975008	
L 925007	
L 725005	
P 725010	
P 725004	
P 725019	
P 725011	
P 725020	
L 725006	
P 725007	
L 658008	
SB3	
L 553007	
	P 750006 L 975008 L 925007 L 725005 P 725010 P 725004 P 725019 P 725011 P 725020 L 725006 P 725007 L 658008 SB3

Dieser Prüfbericht darf ohne Genehmigung der K-UTEC AG nicht auszugsweise vervielfaltigt werden. Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände (DIN EN ISO/IEC 17025)

Seite 1 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Bactimm -

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750006

Proben-Nr.: 19-1925/01

Messzeitraum 01.10.2019 bis 15.10.2019 P 750006

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	1,86	g/100g	0,00039
Kalium	K-UTEC 110; 2016-03	1,09	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	5,73	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	8800,0	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	18,52	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,59	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	2,32	µg/g	0,79
Eisen	DIN 38406-E1*	4,46	µg/g	0,47
Eisen (II)	DIN 38406-E1*	2,92	µg/g	0,47
Eisen-III	DIN 38406-E1*	1,54	µg/g	0,47
Carbonat	DIN ISO 10693*	0,00010	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0012	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0202	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	5,71	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Căsium	AAS*	0,39	µg/g	0,39
Rubidium	AES*	16,78	µg/g	0,08
Aluminium	K-UTEC 6: 2016-04	0,28	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n, n,	µg/g	0,02
Blei	K-UTEC 6: 2016-04	10,87	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	0,14	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	1,06	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	0,58	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0,03	µg/g	0,02
Zink	K-UTEC 6: 2016-04	1,18	µg/g	0,004
Bor	K-UTEC 6: 2016-04	47,12	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,19	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,278	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,0060	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0095	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	0,01	µg/g	0,01

Seite 2 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Destinon

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 975008

Proben-Nr.: 19-1925/02

Messzeitraum 01.10.2019 bis 15.10.2019 L 975008

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	0.48	g/100g	0.00039
Kalium	K-UTEC 110: 2016-03	0,27	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	7,93	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0049	g/100g	0,00008
Chlorid	K-UTEC 114: 2016-03	22,87	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	1,37	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	19,89	µg/g	0.79
Eisen	DIN 38406-E1*	3,06	µg/g	0,47
Eisen (II)	DIN 38406-E1*	2,96	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0.47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0226	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0058	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	4,99	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	0,59	µg/g	0,39
Cāsium	AAS*	n. n.	µg/g	0,39
Rubidium	AES*	1,75	µg/g	0,08
Aluminium	K-UTEC 6: 2016-04	0,14	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02
Blei	K-UTEC 6: 2016-04	1,25	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	0,03	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	0,31	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	1,14	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	0,31	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0,14	µg/g	0,02
Zink	K-UTEC 6: 2016-04	13,03	µg/g	0,004
Bor	K-UTEC 6: 2016-04	49,01	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	2,36	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,366	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00082	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0039	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	0,01	µg/g	0,01

Seite 3 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfäng.

Bactimm -

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 925007

Proben-Nr.: 19-1925/03

Messzeitraum 01.10.2019 bis 15.10.2019 L 925007

		Best			
Parameter	Verfahren	Messwert	Dim.	grenze	
Natrium	K-UTEC 110: 2016-03	0,57	g/100g	0,00039	
Kalium	K-UTEC 110: 2016-03	0,24	g/100g	0,00055	
Magnesium	K-UTEC 112: 2016-03	7,69	g/100g	0,00079	
Calcium	K-UTEC 6: 2016-04	0,0080	g/100g	80000,0	
Chlorid	K-UTEC 114: 2016-03	22,63	g/100g	0,00236	
Sulfat	K-UTEC 104: 2016-04	1,07	g/100g	0,00079	
Mangan	K-UTEC 6: 2016-04	38,26	µg/g	0,79	
Eisen	DIN 38406-E1*	5,48	µg/g	0,47	
Eisen (II)	DIN 38406-E1*	3,13	µg/g	0,47	
Eisen-III	DIN 38406-E1*	2,35	µg/g	0,47	
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004	
CO ₂	DIN EN 1484-H 3*	0,0249	g/100g	0,00003	
Hydrogencarbonat	DEV-D8*	0,0073	g/100g	0,00004	
Lithium	K-UTEC 6: 2016-04	2,07	µg/g	0,08	
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39	
Căsium	AAS*	n. n.	µg/g	0,39	
Rubidium	AES*	1,15	µg/g	0,08	
Aluminium	K-UTEC 6: 2016-04	0,18	µg/g	0,04	
Barium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02	
Blei	K-UTEC 6: 2016-04	3,88	µg/g	0,06	
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005	
Chrom	K-UTEC 6: 2016-04	0,02	µg/g	0,001	
Cobalt	K-UTEC 6: 2016-04	0,19	µg/g	0,01	
Kupfer	K-UTEC 6: 2016-04	0,15	µg/g	0,01	
Nickel	K-UTEC 6: 2016-04	0,08	µg/g	0,00	
Silicium	K-UTEC 6: 2016-04	0,28	µg/g	0,02	
Zink	K-UTEC 6: 2016-04	25,25	µg/g	0,004	
Bor	K-UTEC 6: 2016-04	31,33	µg/g	0,01	
Phosphor	K-UTEC 6: 2016-04	1,52	µg/g	0,03	
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01	
Bromid	intern. Verfahren*	0,354	g/100g	80000,0	
Ammonium	K-UTEC 116: 2016-04	0,00083	g/100g	0,00005	
Nitrat	K-UTEC 5: 2017-11	0,0042	g/100g	0,00002	
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n. n.	µg/g	0,01	

Seite 4 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 725005

Proben-Nr.: 19-1925/04

Messzeitraum 01.10.2019 bis 15.10.2019 L 725005

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	0,21	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,11	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	9,84	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0019	g/100g	0,00008
Chlorid	K-UTEC 114: 2016-03	27,17	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,53	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	4,75	µg/g	0.79
Eisen	DIN 38406-E1*	32,82	µg/g	0,47
Eisen (II)	DIN 38406-E1*	8,00	µg/g	0,47
Eisen-III	DIN 38406-E1*	24,82	µg/g	0.47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0079	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0009	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	6.44	µg/g	0.08
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Căsium	AAS*	n. n.	µg/g	0.39
Rubidium	AES*	n. n.	µg/g	0.08
Aluminium	K-UTEC 6: 2016-04	0,56	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n, n,	µg/g	0,02
Blei	K-UTEC 6: 2016-04	n. n.	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	0,06	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	4,51	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	n, n.	µg/g	0.02
Zink	K-UTEC 6: 2016-04	19,97	µg/g	0,004
Bor	K-UTEC 6: 2016-04	74,16	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,46	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	0,04	µg/g	0,01
Bromid	intern. Verfahren*	0,432	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00064	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0191	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	0,04	µg/g	0,01

Seite 5 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725010

Proben-Nr.: 19-1925/05

Messzeitraum 01.10.2019 bis 15.10.2019 P 725010

P 725010				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	0,81	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,73	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	7,02	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0036	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	20,49	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,38	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	1,66	µg/g	0,79
Eisen	DIN 38406-E1*	0,77	µg/g	0,47
Eisen (II)	DIN 38406-E1*	0,81	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0.47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0080	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0085	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	6.18	pg/g	0.08
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Căsium	AAS*	0.54	µg/g	0.39
Rubidium	AES*	7.66	µg/g	0.08
Aluminium	K-UTEC 6: 2016-04	0,11	µg/g	0.04
Barium	K-UTEC 6: 2016-04	n, n,	рд/д	0.02
Blei	K-UTEC 6: 2016-04	0.07	µg/g	0.06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0.005
Chrom	K-UTEC 6: 2016-04	n, n,	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01
Kupfer	K-UTEC 6: 2016-04	0,86	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0.00
Silicium	K-UTEC 6: 2016-04	0.10	µg/g	0.02
Zink	K-UTEC 6: 2016-04	27,15	µg/g	0.004
Bor	K-UTEC 6: 2016-04	52,90	µg/g	0.01
Phosphor	K-UTEC 6: 2016-04	0.43	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0.01
Bromid	intern. Verfahren*	0,368	a/100g	0,00008
Ammonium	K-UTEC 116: 2016-04	0.00189	a/100g	0.00005
Nitrat	K-UTEC 5: 2017-11	0,0146	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n. n.	µg/g	0.01

Seite 6 von 15

Quecksilber

Ammonium

Kaliumhexacyanoferrat(II)

Bromid

Nitrat

Labor für Radionukildanalytik Radiologische Gutachten Consulting

Durch die DAKKS nach DIN EN ISO/IEC 17025 akkreditiertes Prüffaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgelühr Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salziösung Probenbez.: P 725004

Proben-Nr.: 19-1925/06

Messzeitraum 01.10.2019 bis 15.10.2019 P 725004

Bestimm.grenze Parameter Verfahren Messwert Dim K-UTEC 110: 2016-03 g/100g 0.00039 Natrium 7.75 0,60 g/100g 0,00055 Kalium K-UTEC 110: 2016-03 Magnesium K-UTEC 112: 2016-03 1,51 g/100g 0,00079 K-UTEC 6: 2016-04 Calcium 0,0351 80000,0 g/100g Chlorid K-UTEC 114: 2016-03 15,84 g/100g 0,00236 Sulfat K-UTEC 104: 2016-04 0,00079 1,48 g/100g K-UTEC 6: 2016-04 Mangan 0.79 n.n. µg/g Eisen DIN 38406-E1* 0.47 n.n. µg/g Eisen (II) DIN 38406-E1* 0.47 n.n. µg/g DIN 38406-E1* Eisen-III n.n. µg/g 0,47 Carbonat DIN ISO 10693* g/100g 0,00004 n.n. 0,00003 CO2 DIN EN 1484-H 3* 0,0007 g/100g DEV-D8* 0,0096 0,00004 Hydrogencarbonat g/100g Lithium K-UTEC 6: 2016-04 2,65 0,08 µg/g Strontium K-UTEC 6: 2016-04 11,92 µg/g 0,39 AAS* 0.49 0.39 Căsium µg/g Rubidium AES* 4,08 µg/g 80,0 Aluminium K-UTEC 6: 2016-04 0.40 0.04 µg/g Barium K-UTEC 6: 2016-04 n.n. µg/g 0.02 Blei K-UTEC 6: 2016-04 0,06 n. n. µg/g Cadmium K-UTEC 6: 2016-04 0.005 n.n. µg/g Chrom K-UTEC 6: 2016-04 n.n. 0,001 µg/g Cobalt K-UTEC 6: 2016-04 n.n. 0.01 µg/g Kupfer K-UTEC 6: 2016-04 0,04 0.01 µg/g Nickel K-UTEC 6: 2016-04 n.n. 0,00 µg/g K-UTEC 6: 2016-04 0.02 Silicium 0.14 иа/а K-UTEC 6: 2016-04 Zink 2.74 0.004 µg/g Bor K-UTEC 6: 2016-04 27,76 0,01 µg/g Phosphor K-UTEC 6: 2016-04 0,03 n.n. µg/g

K-UTEC 121: 2016-03

K-UTEC 116: 2016-04

K-UTEC 5: 2017-11

DIN 38 405-D 13-1-3*

intern. Verfahren*

Seite 7 von 15

0.01

0,01

80000,0

0.00005

0.00002

n.n.

0,075

0.00207

0.0006

n. n.

µg/g

g/100g

g/100g

g/100g

µg/g

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfäng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725019

Proben-Nr.: 19-1925/07

Messzeitraum 01.10.2019 bis 15.10.2019 P 725019

P 725019				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	5,87	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,78	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	2,33	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0191	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	15,08	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	1,90	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	n. n.	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n, n.	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0,47
Carbonat	DIN ISO 10693*	0,00004	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0011	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0129	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	3,45	µg/g	0.08
Strontium	K-UTEC 6: 2016-04	4,59	µg/g	0,39
Căsium	AAS*	n. n.	µg/g	0.39
Rubidium	AES*	7.79	µg/g	0,08
Aluminium	K-UTEC 6: 2016-04	0,50	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n, n.	µg/g	0,02
Blei	K-UTEC 6: 2016-04	0,32	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n, n,	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01
Kupfer	K-UTEC 6: 2016-04	0,09	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	0,01	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0,17	µg/g	0.02
Zink	K-UTEC 6: 2016-04	5,08	µg/g	0,004
Bor	K-UTEC 6: 2016-04	35,96	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,12	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n, n,	µg/g	0.01
Bromid	intern. Verfahren*	0,117	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00341	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0032	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n. n.	µg/g	0,01

Seite 8 von 15

Quecksilber

Ammonium Nitrat

Kaliumhexacyanoferrat(II)

Bromid

Labor für Radionukildanalytik Radiologische Gutachten Consulting

Durch die DAMS nach DIN EN ISO/IEC 17025 altkreditiertes Profaboratorum.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfäng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salziösung Probenbez.: P 725011

Proben-Nr.: 19-1925/08

Messzeitraum 01.10.2019 bis 15.10.2019 P 725011

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	2.50	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,80	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	5.13	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0.0104	g/100g	0,00008
Chlorid	K-UTEC 114: 2016-03	18.29	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	1,56	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	n. n.	µg/g	0.79
Eisen	DIN 38406-E1*	n. n.	µg/g	0.47
Eisen (II)	DIN 38406-E1*	n, n,	pg/g	0.47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0.47
Carbonat	DIN ISO 10693*	n, n,	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0030	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0129	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	4.66	µg/g	0.08
Strontium	K-UTEC 6: 2016-04	0.42	µg/g	0,39
Căsium	AAS*	0,48	µg/g	0.39
Rubidium	AES*	13,14	µg/g	0.08
Aluminium	K-UTEC 6: 2016-04	0,17	µg/g	0.04
Barium	K-UTEC 6: 2016-04	n, n,	µg/g	0,02
Blei	K-UTEC 6: 2016-04	n. n.	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n, n,	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01
Kupfer	K-UTEC 6: 2016-04	0,79	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0.08	µg/g	0.02
Zink	K-UTEC 6: 2016-04	16,63	µg/g	0,004
Bor	K-UTEC 6: 2016-04	42,52	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,18	µg/g	0,03

K-UTEC 121: 2016-03

K-UTEC 116: 2016-04

K-UTEC 5: 2017-11

DIN 38 405-D 13-1-3*

intern. Verfahren*

Seite 9 von 15

0,01

0,01

80000,0

0.00005

0,00002

0,03

0,258

0.00332

0,0077

0,01

µg/g

g/100g

g/100g

g/100g

µg/g

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfäng.

Dections

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725020

Proben-Nr.: 19-1925/09

Messzeitraum 01.10.2019 bis 15.10.2019 P 725020

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	4,67	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	1,15	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	3,51	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0160	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	16,52	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,59	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	1,03	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n, n,	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0,47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0040	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0227	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	6,59	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	0,88	µg/g	0,39
Căsium	AAS*	0,40	µg/g	0,39
Rubidium	AES*	7,62	µg/g	80,0
Aluminium	K-UTEC 6: 2016-04	0,16	µg/g	0,04
Barium	K-UTEC 6: 2016-04	0,06	µg/g	0,02
Blei	K-UTEC 6: 2016-04	0,95	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	0,02	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	1,48	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0,35	µg/g	0,02
Zink	K-UTEC 6: 2016-04	65,36	µg/g	0,004
Bor	K-UTEC 6: 2016-04	43,46	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,22	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,200	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00463	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0290	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n. n.	µg/g	0,01

Seite 10 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 725006

Proben-Nr.: 19-1925/10

Messzeitraum 01.10.2019 bis 15.10.2019 L 725006

£ 12000			Bestimm	
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	7,32	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,89	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	1,87	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0269	g/100g	0,00008
Chlorid	K-UTEC 114: 2016-03	15,99	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,16	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	n. n.	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0,47
Carbonat	DIN ISO 10693*	0,00005	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0007	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0108	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	4,41	µg/g	0.08
Strontium	K-UTEC 6: 2016-04	13,38	µg/g	0,39
Cāsium	AAS*	n. n.	µg/g	0.39
Rubidium	AES*	4,98	µg/g	0.08
Aluminium	K-UTEC 6: 2016-04	0,39	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n.n.	µg/g	0,02
Blei	K-UTEC 6: 2016-04	0,32	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	0,15	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0,19	µg/g	0.02
Zink	K-UTEC 6: 2016-04	1,57	µg/g	0,004
Bor	K-UTEC 6: 2016-04	41,19	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,10	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,101	g/100g	0,00008
Ammonium	K-UTEC 116: 2016-04	0,00271	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0005	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n. n.	µg/g	0,01

Seite 11 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfäng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725007

Proben-Nr.: 19-1925/11

Messzeitraum 01.10.2019 bis 15.10.2019 P 725007

			Besti		
Parameter	Verfahren	Messwert	Dim.	grenze	
Natrium	K-UTEC 110: 2016-03	3,59	g/100g	0,00039	
Kalium	K-UTEC 110: 2016-03	1,39	g/100g	0,00055	
Magnesium	K-UTEC 112: 2016-03	4,32	g/100g	0,00079	
Calcium	K-UTEC 6: 2016-04	0,0105	g/100g	80000,0	
Chlorid	K-UTEC 114: 2016-03	16,37	g/100g	0,00236	
Sulfat	K-UTEC 104: 2016-04	4,04	g/100g	0,00079	
Mangan	K-UTEC 6: 2016-04	8,85	µg/g	0,79	
Eisen	DIN 38406-E1*	29,21	µg/g	0,47	
Eisen (II)	DIN 38406-E1*	6,19	µg/g	0,47	
Eisen-III	DIN 38406-E1*	23,02	µg/g	0.47	
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004	
CO ₂	DIN EN 1484-H 3*	0,0035	g/100g	0,00003	
Hydrogencarbonat	DEV-D8*	0,0004	g/100g	0,00004	
Lithium	K-UTEC 6: 2016-04	5,11	µg/g	0.08	
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39	
Căsium	AAS*	0,47	µg/g	0.39	
Rubidium	AES*	10.96	µg/g	0.08	
Aluminium	K-UTEC 6: 2016-04	0,13	µg/g	0,04	
Barium	K-UTEC 6: 2016-04	n, n,	µg/g	0,02	
Blei	K-UTEC 6: 2016-04	n. n.	µg/g	0,06	
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0.005	
Chrom	K-UTEC 6: 2016-04	n, n,	µg/g	0,001	
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01	
Kupfer	K-UTEC 6: 2016-04	0,32	µg/g	0,01	
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00	
Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0.02	
Zink	K-UTEC 6: 2016-04	37,59	µg/g	0,004	
Bor	K-UTEC 6: 2016-04	47,69	µg/g	0,01	
Phosphor	K-UTEC 6: 2016-04	n. n.	µg/g	0,03	
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0.01	
Bromid	intern. Verfahren*	0,227	g/100g	80000,0	
Ammonium	K-UTEC 116: 2016-04	0,00537	g/100g	0,00005	
Nitrat	K-UTEC 5: 2017-11	0,0014	g/100g	0,00002	
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	0,01	µg/g	0,01	

Seite 12 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 658008 19-1925/12

Proben-Nr.: 01.10.2019 bis 15.10.2019

Messzeitraum L 658008

L 030006			Be	
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	9,17	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,25	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	0,70	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0672	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	16,00	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	0,73	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	n. n.	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n, n,	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0.47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0008	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0.0059	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	1.84	µg/g	0.08
Strontium	K-UTEC 6: 2016-04	16,83	µg/g	0,39
Căsium	AAS*	0.50	µg/g	0.39
Rubidium	AES*	1,58	µg/g	0.08
Aluminium	K-UTEC 6: 2016-04	0.34	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n, n,	µg/g	0,02
Blei	K-UTEC 6: 2016-04	n. n.	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0.005
Chrom	K-UTEC 6: 2016-04	n, n,	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01
Kupfer	K-UTEC 6: 2016-04	n. n.	µg/g	0.01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0.00
Silicium	K-UTEC 6: 2016-04	0.31	µg/g	0.02
Zink	K-UTEC 6: 2016-04	0.10	µg/g	0.004
Bor	K-UTEC 6: 2016-04	20,92	µg/g	0.01
Phosphor	K-UTEC 6: 2016-04	n. n.	µg/g	0.03
Quecksilber	K-UTEC 121: 2016-03	n. n.	pg/g	0.01
Bromid	intern. Verfahren*	0,031	g/100g	0,00008
Ammonium	K-UTEC 116: 2016-04	0.00138	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	n. n.	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n. n.	µg/g	0.01

Seite 13 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

19-1925-1 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: SB3 19-1925/13

Proben-Nr.: 01.10.2019 bis 15.10.2019

Messzeitraum SB3

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	9,05	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,24	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	0,69	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0660	g/100g	0,00008
Chlorid	K-UTEC 114: 2016-03	15,77	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	0,70	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	0,90	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n, n,	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0.47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0006	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0063	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	1.82	µg/g	0.08
Strontium	K-UTEC 6: 2016-04	16,43	µg/g	0,39
Căsium	AAS*	n. n.	µg/g	0.39
Rubidium	AES*	1,58	µg/g	0.08
Aluminium	K-UTEC 6: 2016-04	0,46	µg/g	0,04
Barium	K-UTEC 6: 2016-04	0,03	µg/g	0,02
Blei	K-UTEC 6: 2016-04	n. n.	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n, n,	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01
Kupfer	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0,19	µg/g	0.02
Zink	K-UTEC 6: 2016-04	0,10	µg/g	0,004
Bor	K-UTEC 6: 2016-04	20,83	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	n. n.	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0.01
Bromid	intern. Verfahren*	0,031	g/100g	0,00008
Ammonium	K-UTEC 116: 2016-04	0,00108	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0000	g/100g	0,00002
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	n. n.	µg/g	0,01

Seite 14 von 15

Durch die DAMS nach DIN EN ISO/IEC 17025 altkreditiertes Profaboratorum.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 553007

Proben-Nr.: 19-1925/14

Messzeitraum 01.10.2019 bis 15.10.2019 L 553007

			Bestimn			
Parameter	Verfahren	Messwert	Dim.	grenze		
Natrium	K-UTEC 110: 2016-03	6,26	g/100g	0,00039		
Kalium	K-UTEC 110: 2016-03	2,92	g/100g	0,00055		
Magnesium	K-UTEC 112: 2016-03	2,55	g/100g	0,00079		
Calcium	K-UTEC 6: 2016-04	0,0045	g/100g	80000,0		
Chlorid	K-UTEC 114: 2016-03	14,15	g/100g	0,00236		
Sulfat	K-UTEC 104: 2016-04	7,53	g/100g	0,00079		
Mangan	K-UTEC 6: 2016-04	n. n.	µg/g	0,79		
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47		
Eisen (II)	DIN 38406-E1*	n. n.	µg/g	0,47		
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0.47		
Lithium	K-UTEC 6: 2016-04	2,39	µg/g	80,0		
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39		
Cāsium	AAS*	0,54	µg/g	0,39		
Rubidium	AES*	10,52	µg/g	80,0		
Aluminium	K-UTEC 6: 2016-04	0,36	µg/g	0,04		
Barium	K-UTEC 6: 2016-04	n. n.	µg/g	0.02		
Blei	K-UTEC 6: 2016-04	n. n.	µg/g	0,06		
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005		
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001		
Cobalt	K-UTEC 6: 2016-04	n. n.	µg/g	0,01		
Kupfer	K-UTEC 6: 2016-04	n. n.	µg/g	0,01		
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00		
Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02		
Zink	K-UTEC 6: 2016-04	0,64	µg/g	0,004		
Bor	K-UTEC 6: 2016-04	59,40	µg/g	0.01		
Phosphor	K-UTEC 6: 2016-04	0,19	µg/g	0,03		
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01		
Bromid	intern. Verfahren*	0,076	g/100g	0,00008		
Ammonium	K-UTEC 116: 2016-04	0,00352	g/100g	0,00005		
Nitrat	K-UTEC 5: 2017-11	0,0041	g/100g	0,00002		
Kaliumhexacyanoferrat(II)	DIN 38 405-D 13-1-3*	1,95	µg/g	0,01		

Sondershausen, den 18.10.2019

Laborleiter

Seite 15 von 15

nicht akkreditierte Parameter

n.n. Messergebnis ist unterhalb Bestimmungsgrenze

Dim Dimension

TS bezogen auf Trockensubstanz

Durch die DAMS nach DIN EN ISO/IEC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenartage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Chemisch-physikalische Analytik

K-UTEC AG Salt Technologies Am Petersenschacht 7 99706 Sondershausen Tel.: (03632)61 01 50 Fax.: (03632)61 01 05 E-Mail: cpa@k-utec.de

Prüfbericht 19-1925-1

Hier: Stoffmengenkonzentrationen und Ionenbilanzierung

Auftrag: Lösungsuntersuchung Auftraggeber: IAF-Radioökologie GmbH

IAT-Nadiookologie Gillon

Wilhelm-Rönsch-Straße 9

01454 Radeberg

Probeneingang: 01.10.2019 Probennahme: Auftraggeber

Entnahmeort: Entnahmedatum:

Probenanzahl: 14

Prüfzeitraum: 01.10.2019 bis 15.10.2019

Proben-Nr.	Probentext	
19-1925/01	P 750006	
19-1925/02	L 975008	
19-1925/03	L 925007	
19-1925/04	L 725005	
19-1925/05	P 725010	
19-1925/06	P 725004	
19-1925/07	P 725019	
19-1925/08	P 725011	
19-1925/09	P 725020	
19-1925/10	L 725006	
19-1925/11	P 725007	
19-1925/12	L 658008	
19-1925/13	SB3	
19-1925/14	L 553007	

Dieser Prüfbericht darf ohne Genehmigung der K-UTEC AG nicht auszugsweise vervielfältigt werden: Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände (DIN EN ISO/IEC 17025)

Seite 1 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkreditierungsunfäng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750006

Proben-Nr.: 19-1925/01

Messzeitraum 01.10.2019 bis 15.10.2019 P 750006

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	18,49	mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	6,36	mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	53,89	mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,050	mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	119,41	mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	6,17	mol/lumol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		1027	mmol/l (eq)	
K*		353	mmol/l (eq)	
Mg ²⁺		5982	mmol/l (eq)	
Ca ²⁺		5.59	mmol/l (eq)	
Σ Kationenäquivalente		7367	mmol/I (eq)	
CI		6628	mmol/l (eq.)	
SO ₄ ² ·		685	mmol/l (eq)	
HCO ₃		4,20	mmol/l (eq)	
Br'		44,18	mmol/l (eq.)	
B ₈ O ₁₅ 5-		4,15	mmol/l (eq)	
Σ Anionenăquivalente		7366	mmol/I (eq)	
Relative Abweichung		0,02	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 975008

Proben-Nr.: 19-1925/02

Messzeitraum 01.10.2019 bis 15.10.2019 L 975008

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	4,91	mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	1,62	mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	77,09	mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,029	moVkmol H₂O	0,0004
Chlorid	K-UTEC 114: 2016-03	152,44	mol/kmol HyO	0,0152
Sulfat	K-UTEC 104: 2016-04	3,38	mol/kmol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		272	mmol/f (eq)	
K ⁺		90	mmol/l (eq)	
Mg ² *		8558	mmol/l (eq)	
Ca ²⁺		3,19	mmol/l (eq)	
Σ Kationenäquivalente		8923	mmol/I (eq)	
CI		8462	mmol/l (eq)	
SO ₄ ² ·		375	mmol/l (eq)	
HCO ₃		1,25	mmol/l (eq)	
Br		60,07	mmol/l (pg)	
B ₈ O ₁₅ 5-		4,46	mmol/l (eq)	
Σ Anionenăquivalente		8902	mmol/I (eq)	
Relative Abweichung		0,24	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 925007

Proben-Nr.: 19-1925/03

Messzeitraum 01.10.2019 bis 15.10.2019 L 925007

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	5,81	mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	1,44	mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	74,05	mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,047	mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	149,39	mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	2,61	mol/kmol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		322	mmol/l (eq)	
K ⁺		80	mmol/L(eq)	
Mg ² *		8221	mmol/L(eq)	
Ca ²⁺		5,19	mmol/l (eq)	
Σ Kationenäquivalente		8628	mmol/l (eq)	
CI		8293	mmol/l (eq)	
SO ₄ ² ·		289	mmol/l (eq)	
HCO ₃		1,56	mmol/l (eq.)	
Br		57,57	(pe) Nomm	
B ₈ O ₁₅ 5-		2,82	mmol/l (eq)	
Σ Anionenăquivalente		8644	mmol/I (eq)	
Relative Abweichung		-0,19	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkreditierungsunfäng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 725005

Proben-Nr.: 19-1925/04

Messzeitraum 01.10.2019 bis 15.10.2019

L 725005			-0.2500aannonno-
Parameter	Verfahren	Messwert Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	2,26 moi/kmoi H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	0,69 mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	99,32 mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,012 mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	188,01 mot/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	6,45 mol/kmol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*		
Na*		126 mmol/l (eq)	
K ⁺		38 mmol/l (eq)	
Mg ²⁺		11027 mmol/l (eq)	
Ca ²⁺		1,28 mmol/l (eq)	
Σ Kationenāquivalente		11192 mmol/l (eq)	
CI		10436 mmol/l (eq.)	
SO42.		716 mmol/l (eq)	
HCO ₃		0,21 mmol/l (eq)	
Br'		73,71 mmol/l (eq)	
B ₈ O ₁₅ ⁶⁻		7,01 mmol/l (eq)	
Σ Anionenäquivalente		11233 mmol/l (eq)	
Relative Abweichung		-0,37 %	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgetührten Akkrediterungsunding.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725010

Proben-Nr.: 19-1925/05

Messzeitraum 01.10.2019 bis 15.10.2019

P 725010

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	8,23	mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	4,32	mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	67,30	mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,021	moVkmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	134,66	mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	5,78	mol/lumol H₂O	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*			
Na*		457	mmol/t (eq)	
K ⁺		240	mmol/L(eq)	
Mg ²⁺		7472	mmol/L(eq)	
Ca ²⁺		2.34	mmol/l (eq.)	
Σ Kationenäquivalente		8171	mmol/I (eq)	
CI		7475	mmol/l (eq)	
SO ₄ ² ·		641	mmol/l (eq)	
HCO ₃		1,80	mmol/l (eq.)	
Br'		59,57	mmol/l (eq.)	
B ₈ O ₁₅ 5		4,75	mmol/l (eq)	
Σ Anionenăquivalente		8182	mmol/I (eq)	
Relative Abweichung		-0,14	%	

Seite 6 von 15

Labor für Radionukildanalytik Radiologische Gutachten Consulting

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725004

Proben-Nr.: 19-1925/06

Messzeitraum 01.10.2019 bis 15.10.2019 P 725004

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	74,37 m	noi/kmal H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	3,39 m	O ₂ H loma/lon	0,0032
Magnesium	K-UTEC 112: 2016-03	13,71 m	nol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,193 п	nol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	98,58 m	O ₂ H lomx/ion	0,0152
Sulfat	K-UTEC 104: 2016-04	3,39 п	nol/kmol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		4128	mmol/l (eq)	
K ⁺		188	mmol/l (eq)	
Mg ² *		1522	mmol/l (eq)	
Ca ²⁺		21,46	mmol/l (eq)	
Σ Kationenäquivalente		5860	mmol/I (eq)	
CI		5472	mmol/l (eq)	
SO ₄ ² ·		377	mmol/l (eq)	
HCO ₃		1,93	mmol/l (eq)	
Br		11,46	(pe) Nomm	
B ₈ O ₁₅ 5-		2,36	mmol/l (eq)	
Σ Anionenăquivalente		5865	mmol/I (eq)	
Relative Abweichung		-0,08	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgetührten Akkrediterungsunding.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725019

Proben-Nr.: 19-1925/07

Messzeitraum 01.10.2019 bis 15.10.2019 P.725019

P 725019 Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03			0.0039
Kalium	K-UTEC 110: 2016-03		mol/kmol H ₂ O	0,0039
			nol/kmol H ₂ O	11 B \$101 M B \$
Magnesium	K-UTEC 112: 2016-03		noi/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04		mol/kmol H₂O	0,0004
Chlorid	K-UTEC 114: 2016-03	92,48 1	nol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	4,29	mol/lumal H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		3080	mmol/t (eq)	
K ⁺		242	mmol/L(eq)	
Mg ² *		2312	mmol/t (eq)	
Ca ²⁺		11,48	mmol/l (eq)	
Σ Kationenäquivalente		5645	mmol/l (eq)	
CI		5134	(pe) Nomm	
SO ₄ ² ·		477	mmol/l (eq)	
HCO ₃		2,56	mmol/l (eq)	
Br		17,65	(pe) Nomm	
B ₈ O ₁₅ ⁶		3,01	mmol/l (eq)	
Σ Anionenäquivalente		5634	mmol/I (eq)	
Relative Abweichung		0,20	%	

Seite 8 von 15

Durch die DAKKS nach DIN EN ISONEC 17025 akkreditiertes Prüflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkreditierungsunfäng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725011

Proben-Nr.: 19-1925/08

Messzeitraum 01.10.2019 bis 15.10.2019 P 725011

P /25011			Bestimm
Parameter	Verfahren	Messwert Dim.	grenze
Natrium	K-UTEC 110: 2016-03	24,76 mol/kmol H ₂ C	0,0039
Kalium	K-UTEC 110: 2016-03	4,65 mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	48,03 mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,059 mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	117,38 mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	3,69 mol/kmol H ₂ O	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*		
Na*		1375 mmol/l (eq)	
K ⁺		258 mmol/l (eq)	
Mg ² *		5332 mmol/l (eq)	
Ca ²⁺		6,54 mmol/l (eq.)	
Σ Kationenäquivalente		6972 mmol/l (eq)	
CI		6516 mmol/l (eq)	
SO ₄ ² ·		410 mmol/l (eq)	
HCO ₃		2,67 mmol/l (eq)	
Br		40,80 mmol/l (eq.)	
B ₈ O ₁₅ 5-		3,73 mmol/l (eq)	
Σ Anionenäquivalente		6973 mmol/l (eq)	
Relative Abweichung		-0,02 %	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725020

Proben-Nr.: 19-1925/09

Messzeitraum 01.10.2019 bis 15.10.2019

P 725020			
			Bestimm
Parameter	Verfahren	Messwert Dim.	grenze
Natrium	K-UTEC 110: 2016-03	45,61 mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	6,59 mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	32,47 mot/kmot H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,090 mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	104,68 mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	6,06 mol/kmal H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*		
Na*		2532 mmol/l (eq)	
K ⁺		366 mmol/l (eq)	
Mg ²⁺		3604 mmol/l (eq)	
Ca ²⁺		9,98 mmol/l (eq)	
Σ Kationenäquivalente		6511 mmol/l (eq)	
CI		5811 mmol/l (eq)	
SO42		672 mmol/l (eq)	
HCO ₃		4,64 mmol/l (eq)	
Br'		31,29 mmol/l (eq.)	
B ₈ O ₁₅		3,76 mmol/l (eq)	
Σ Anionenăquivalente		6523 mmol/l (eq)	
Relative Abweichung		-0,17 %	

Seite 10 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 725006

Proben-Nr.: 19-1925/10

Messzeitraum 01.10.2019 bis 15.10.2019 L 725006

L 725006 Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	The second secon	noi/kmol H ₂ O	0.0039
Kalium	K-UTEC 110: 2016-03		iol/kmal H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	57.55	noli/kmol H ₂ O	0.0074
Calcium	K-UTEC 6: 2016-04		nol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03		O-H lomx/lor	0,0152
Sulfat	K-UTEC 104: 2016-04	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	nol/lamal H ₂ O	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*			
Na*		3906	mmol/t (eq)	
K ⁺		279	mmol/l (eq)	
Mg ²⁺			mmol/L(eq)	
Ca ²⁺		0.1002	(pe) Nomm	
Σ Kationenäquivalente			nmol/I (eq)	
CI		5528	mmol/l (eq.)	
SO ₄ ² ·			mmol/l (eq)	
HCO ₃		2,18	mmol/l (eq)	
Br'		15.52	(pe) Nomm	
B ₈ O ₁₅ 6-		002023	mmol/l (eq.)	
Σ Anionenăquivalente		6101	mmol/I (eq)	
Relative Abweichung		-0,26	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 725007

Proben-Nr.: 19-1925/11

Messzeitraum 01.10.2019 bis 15.10.2019 P 725007

P /2500/			Bestimm
Parameter	Verfahren	Messwert Dim.	grenze
Natrium	K-UTEC 110: 2016-03	35,89 mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	8,16 mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	40,92 mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,060 mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	106,20 mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	9,68 mol/kmol H ₂ O	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*		
Na*		1992 mmol/l (eq)	
K ⁺		453 mmol/l (eq.)	
Mg ²⁺		4542 mmol/l (eq)	
Ca ²⁺		6,69 mmol/l (eq.)	
Σ Kationenäquivalente		6994 mmol/l (eq)	
CI		5895 mmot/l (eq.)	
SO ₄ ² ·		1074 mmol/l (eq)	
HCO ₃		0,08 mmol/l (eq)	
Br		36,29 mmol/l (eq.)	
B ₈ O ₁₅ 5-		4,23 mmol/l (eq)	
Σ Anionenäquivalente		7010 mmol/l (eq)	
Relative Abweichung		-0,23 %	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfäng.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 658008

Proben-Nr.: 19-1925/12

Messzeitraum 01.10.2019 bis 15.10.2019

L 658008				Bestimm
Parameter	Verfahren	Messwert D	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	86,20 mol/k	mol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	1,37 mol/k	mol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	6,26 mol/k	omol H₂O	0,0074
Calcium	K-UTEC 6: 2016-04	0,362 mol/k	mol H₂O	0,0004
Chlorid	K-UTEC 114: 2016-03	97,56 mol/k	onol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	1,65 mol/k	mol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		4785 mm	ol/f (eq)	
K ⁺		76 mm	ol/I (eq)	
Mg ²⁺			ol/l (eq)	
Ca ²⁺		40,22 mm	ol/ (eq)	
Σ Kationenāquivalente		5597 mm	ol/I (eq)	
CI		5416 mm	ol/I (eq)	
SO42		183 mm	ol/I (eq)	
HCO ₃		1,17 mm	ol/I (eq)	
Br'		4,58 mm	(pe) No	
B ₈ O ₁₅		1,74 mm	ol/l (eq)	
Σ Anionenäquivalente		5606 mm	ol/I (eq)	
Relative Abweichung		-0,17	%	

Seite 13 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

19-1925-1 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: SB3 Proben-Nr.: 19-1925/13

Messzeitraum 01.10.2019 bis 15.10.2019

SB3

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03		moi/kmoi H ₂ O	0.0039
Kalium	K-UTEC 110: 2016-03		mol/kmol H ₂ O	0,0039
	K-UTEC 112: 2016-03			
Magnesium			mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,357	moVkmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	96,55	mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	1,59	mol/kmal H ₂ O	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*			
Na*		4741	mmol/f (eq)	
K ⁺		74	mmol/l (eq)	
Mg ²⁺		681	mmol/l (eq)	
Ca ²⁺		39,67	mmol/l (eq)	
Σ Kationenäquivalente		5535	mmol/l (eq)	
CI		5359	mmol/l (eq.)	
SO42.		177	mmol/l (eq)	
HCO ₃		1,24	mmol/l (eq.)	
Br		4,63	mmol/l (eq.)	
B ₈ O ₁₅ ⁶		1,74	mmol/l (eq)	
Σ Anionenãquivalente		5543	mmol/I (eq)	
Relative Abweichung		-0.15	%	

Durch die DAMS nach DIN EN ISO/IEC 17025 altkreditiertes Profaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgetührten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1925-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 553007

Proben-Nr.: 19-1925/14

Messzeitraum 01.10.2019 bis 15.10.2019 L 553007

			Bestimm
Parameter	Verfahren	Messwert Dim.	grenze
Natrium	K-UTEC 110: 2016-03	63,39 mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	17,37 mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	24,46 mot/kmot H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,026 mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	92,99 mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	18,27 mol/kmol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*		
Na*		3519 mmol/l (eq)	
K*		964 mmol/l (eq)	
Mg ²⁺		2715 mmol/l (eq)	
Ca ²⁺		2,88 mmol/l (eq)	
Σ Kationenäquivalente		7202 mmol/l (eq)	
CI		5162 mmol/l (eq)	
SO42		2028 mmol/l (eq)	
HCO ₃		0,00 mmol/l (eq.)	
Br		12,38 mmol/l (eq)	
B ₈ O ₁₅ -5-		5,33 mmol/l (eq)	
Σ Anionenăquivalente		7207 mmol/l (eq)	
Relative Abweichung		-0,08 %	

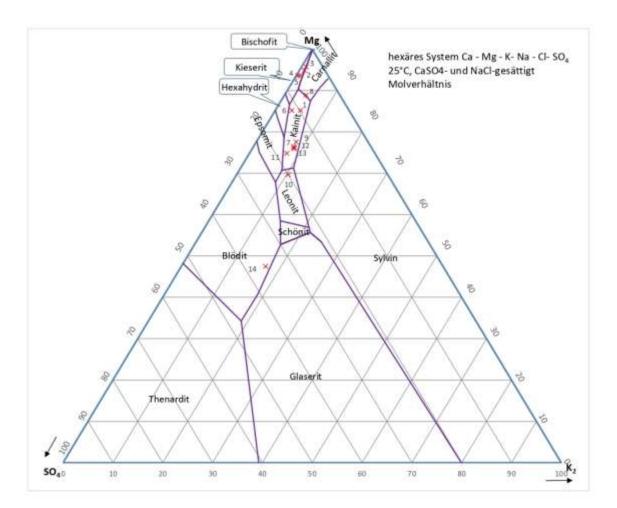
Sondershausen, den 18.10.2019

Laborleiter

nicht akkreditierte Parameter

n.n. Messergebnis ist unterhalb Bestimmungsgrenze

Dim Dimension


TS bezogen auf Trockensubstanz

Umrechnung de	er Konzentra	ationen von	g/l in Jäne	cke-Koordin	naten
		19-1925/02			
	P 750006	L 975008	L 925007	L 725005	P 725010
MgSO ₄ g/l	40,9	22,4	17,1	43,0	38,4
MgCl ₂ g/l	250,0	386,0	375,0	489,0	322,0
KCl g/l	26,3	6,7	6,0	2,8	17,9
NaCl g/l	60,0	15,9	18,8	7,4	26,8
H₂O g/l	887,0	875,0	877,0	813,0	882,0
Temp	25	25	25	25	25
Dichte	1,265	1,304	1,293	1,362	1,293
MgSO ₄ g/1000g	46,1	25,6	19,5	52,9	43,5
MgCl ₂ g/1000g	281,8	441,1	427,6	601,5	365,1
KCl g/1000g	29,7	7,7	6,8	3,5	20,3
NaCl g/1000g	67,6	18,2	21,4	9,0	30,4
MgSO ₄ m/100m	0,69	0,38	0,29	0,79	0,65
MgCl ₂ m/100m	5,33	8,35	8,09	11,38	6,91
K ₂ Cl ₂ m/100m	0,36	0,09	0,08	0,04	0,25
Na ₂ Cl ₂ m/100m	1,04	0,28	0,33	0,14	0,47
Zw.Summe:	7,07	9,21	8,76	13,01	8,46
S0 ₄	9,8	4,2	3,3	6,1	7,7
Mg	85,2	94,8	95,7	93,6	89,4
K ₂	5,1	1,0	0,9	0,3	2,9
MgS0 ₄	120,369	120,369	120,369	120,369	120,369
MgCl ₂	95,2106	95,2106	95,2106	95,2106	95,2106
K ₂ Cl ₂	149,102	149,102	149,102	149,102	149,102
Na ₂ Cl ₂	116,88512	116,88512	116,88512	116,88512	116,88512
H₂O	18,0153	18,0153	18,0153	18,0153	18,0153

Umrechnung de	er Konzentra	ationen von	g/l in Jäne	cke-Koordir	naten
			19-1925/08		
	P 725004	P 725019	P 725011	P 725020	L 725006
MgSO ₄ g/l	21,4	28,0	24,3	39,9	32,2
MgCl ₂ g/l	54,8	86,8	233,0	138,0	63,4
KCl g/l	14,0	18,0	19,2	27,4	20,7
NaCl g/l	241,0	180,0	80,4	148,0	228,0
H₂O g/l	891,0	891,0	902,0	890,0	878,0
Temp	25	25	25	25	25
Dichte	1,216	1,224	1,253	1,239	1,221
MgSO ₄ g/1000g	24,0	31,4	26,9	44,8	36,7
MgCl ₂ g/1000g	61,5	97,4	258,3	155,1	72,2
KCl g/1000g	15,7	20,2	21,3	30,8	23,6
NaCl g/1000g	270,5	202,0	89,1	166,3	259,7
MgSO ₄ m/100m	0,36	0,47	0,40	0,67	0,55
MgCl ₂ m/100m	1,16	1,84	4,89	2,93	1,37
K ₂ Cl ₂ m/100m	0,19	0,24	0,26	0,37	0,28
Na ₂ Cl ₂ m/100m	4,17	3,11	1,37	2,56	4,00
Zw.Summe:	2,07	3,03	5,95	4,65	2,75
S0 ₄	17,3	15,5	6,8	14,4	20,0
Mg	73,5	76,4	88,9	77,6	69,7
K ₂	9,2	8,1	4,3	8,0	10,4
MgS0 ₄	120,369	120,369	120,369	120,369	120,369
MgCl ₂	95,2106	95,2106	95,2106	95,2106	95,2106
K ₂ Cl ₂	149,102	149,102	149,102	149,102	149,102
Na ₂ Cl ₂	116,88512	116,88512	116,88512	116,88512	116,88512
H₂O	18,0153	18,0153	18,0153	18,0153	18,0153

Umrechnung de	er Konzentra	ationen von	g/l in Jäne	cke-Koordinater
	19-1925/11	19-1925/12	19-1925/13	19-1925/14
	P 725007	L 658008	SB3	L 553007
MgSO ₄ g/l	64,2	8,6	8,2	122,0
MgCl ₂ g/l	164,0	26,0	25,6	32,2
KCl g/l	33,7	5,7	5,5	71,9
NaCl g/l	117,0	280,0	278,0	206,0
H₂O g/l	895,0	877,0	885,0	860,0
Temp	25	25	25	25
Dichte	1,259	1,205	1,203	1,285
MgSO ₄ g/1000g	71,7	9,8	9,3	141,9
MgCl ₂ g/1000g	183,2	29,6	28,9	37,4
KCl g/1000g	37,7	6,5	6,2	83,6
NaCl g/1000g	130,7	319,3	314,1	239,5
MgSO ₄ m/100m	1,07	0,15	0,14	2,12
MgCl ₂ m/100m	3,47	0,56	0,55	0,71
K ₂ Cl ₂ m/100m	0,45	0,08	0,07	1,01
Na ₂ Cl ₂ m/100m	2,01	4,92	4,84	3,69
Zw.Summe:	6,07	0,93	0,90	5,96
S0 ₄	17,7	15,7	15,5	35,6
Mg	74,8	75,9	76,2	47,5
K ₂	7,5	8,4	8,3	16,9
MgS0 ₄	120,369	120,369	120,369	120,369
MgCl ₂	95,2106	95,2106	95,2106	95,2106
K ₂ Cl ₂	149,102	149,102	149,102	149,102
Na ₂ Cl ₂	116,88512	116,88512	116,88512	116,88512
H ₂ O	18,0153	18,0153	18,0153	18,0153

IAF - Radioökologie GmbH

	T .	Legende	Terror
Vr.		Probe	Datum
1	P 750006	19-1925/01	
2	L 975008	19-1925/02	
3	L 925007	19-1925/03	
4	L 725005	19-1925/04	
5	P 725010	19-1925/05	
6	P 725004	19-1925/06	
7	P 725019	19-1925/07	
8	P 725011	19-1925/08	
9	P 725020	19-1925/09	
10	L 725006	19-1925/10	
11	P 725007	19-1925/11	
12	L 658008	19-1925/12	
13	SB3	19-1925/13	
14	L 553007	19-1925/14	
	1		1
			1
	+	_	+

Durch die DAkkS nach DIN EN ISO/EC 1702S akkeeldtertes Prüflaboratorium. Die Akkeeldterung git nur für den in der Ukundenanlage D-PL-14237-01-00 aufgeführten Akkeeldterungsumfang.

Seite 1 von 30

Chemisch-physikalische Analytik

K-UTEC AG Salt Technologies Am Petersenschacht 7 99706 Sondershausen

Tel.: +49 3632 610-150 +49 3632 610-105 Fcpc: E-Mail: cpa@k-utec.de

Prüfbericht: 19-1926-1

Auftrag: Lösungsuntersuchung Auftraggeber: IAF-Radioökologie GmbH

Withelm-Rönsch-Straße 9 01454 Radeberg

Probeneingang: 01.10.2019 Probennahme: Auftraggeber

Entrahmeort: Entnahmedatum: Probenanzahl:

01.10.2019 bis 15.10.2019 Prüfzeitraum:

Proben-Nr. Probentext 19-1926/01 P 750010 P 750009 19-1926/02 19-1926/03 P 750061 19-1926/04 P 750040 19-1926/05 P 750148 19-1926/06 L 750179 19-1926/07 P 750184 19-1926/08 P 750153 19-1926/09 P 750154 19-1926/10 P 750185 19-1926/11 P 750189 19-1926/12 P 750064 P 750177 19-1926/13 19-1926/14 P 750039

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Sette 2 von 30

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Dieser Prüfberlicht darf ohne Genehmigung der K-UTEC AG nicht auszugsweise verweitlättigt werden. Die Prüfergelonisse beziehen sich ausschließlich auf die im Prüfberlicht spezitizierten Prüfgegenstände. (DIN EN ISO/EC 17025)

nicht akkreditierter Parameter

Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktreditierungsumfang.

Probenbez.:

P 750010

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Sette 3 von 30

Salzlösung Probenart:

Proben-Nr.: 19-1926/01

01.10.2019 bis 15.10.2019 Messzeltraum:

P 750010

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1,329	g/cm³	
Temperatur (vor Ort)	Infern. Verfahren*	33,3	°C	
Dichte (Labor)	DEV-C 9*	1.360	g/cm³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,39	-	
Natrium	K-UTEC 110: 2016-03	5050	mg/l	5
Kalium	K-UTEC 110: 2016-03	4450	mg/l	7
Magnesium	K-UTEC 112: 2016-03	112000	mg/l	10
Calcium	K-UTEC 6: 2016-04	19,2	mg/l	1,0
Chlorid	K-UTEC 114: 2016-03	308000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	36400	mg/l	10
Manaan	K-UTEC 6: 2016-04	53.2	mg/l	1.0
Eisen	DIN 38406-E1*	2.4	mg/l	0.6
Eisen 00	DIN 38406-E1*	0.67	mg/l	0,60
Eisen-III	DIN 38406-E1*	1.73	mg/l	0.60
Carbonat	DIN ISO 10693*	n.n.	mg/l	0,5
CO ₂	DIN EN 1484-H 3*	123	mg/l	0.40
Hydrogencarbonat	DEV-D8*	36.7	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	13.1	mg/l	0.1
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	2.4	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0,310	mg/l	0.049
Bartum	K-UTEC 6: 2016-04	0.051	mg/l	0.030
Blei	K-UTEC 6: 2016-04	6.76	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.57	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	33.0	mg/l	0.005
Bor	K-UTEC 6: 2016-04	122	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.640	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	5160	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	8.66	mg/l	0.60
Nitrat	K-UTEC 5: 2017-11	89.5	mg/l	0.2
CaSO ₄	K-UTEC 126: 2016-03	0.06	g/I	. 012
CaCla	K-UTEC 126: 2016-03	0	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Prüfbericht-Nr.: Sette 4 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/01 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	45,5	g/l	7.0
MgCl₂	K-UTEC 126: 2016-03	398	g/I	
MgBr ₂	intern. Verfahren*	5.95	g/l	
MgsBsOss	Intern. Verfahren*	0.56	g/I	
K2SO4	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	8,48	g/I	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	12,8	g/I	
H₂O	K-UTEC 126: 2016-03	889	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktreditierungsumfang.

Probenbez.:

P 750009

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Sette 5 von 30

Probenart:

Proben-Nr.:

Salzlösung 19-1926/02 01.10.2019 bis 15.10.2019 Messzeltraum:

P 750009

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	intern. Verfahren*	1,338	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	33,3	°C	
Dichte (Labor)	DEV-C 9*	1.374	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,50	-	
Natium	K-UTEC 110: 2016-03	3060	mg/l	5
Kalium	K-UTEC 110; 2016-03	1510	mg/l	7
Magnesium	K-UTEC 112: 2016-03	124000	mg/l	10
Calcium	K-UTEC 6: 2016-04	22.5	mg/l	1,0
Chlorid	K-UTEC 114: 2016-03	340000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	36500	mg/l	10
Manaan	K-UTEC 6: 2016-04	26.6	mg/l	1.0
Eisen	DIN 38406-E1*	1,17	mg/l	0.60
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	0.74	mg/l	0.60
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	140	mg/l	0.40
Hydrogencarbonat	DEV-D8*	53.8	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	4,13	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	0.2	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.330	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	5,25	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.067	mg/l	0.010
Nickel	K-UTEC 6: 2016-04	0,0,	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	16.3	mg/l	0.005
Bor	K-UTEC 6: 2016-04	140	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	1.11	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0,01
Bromid	Intern. Verfahren*	5160	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	2.89	mg/l	0.60
Nitrat	K-UTEC 5: 2017-11	50,4	mg/l	0.2
CaSO ₄	K-UIEC 3: 2017-11 K-UIEC 126: 2016-03	0.08	g/I	0.2
CaCla	K-UIEC 126: 2016-03	0,08	g/i	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Prüfbericht-Nr.: Sette 6 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/02 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	45,7	g/l	70
MgCl ₂	K-UTEC 126: 2016-03	448	g/I	
MgBr ₂	Intern. Verfahren*	5.95	g/l	
MgsBsOrs	Intern. Verfahren*	0.65	g/I	
K2SO4	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	2,88	g/l	
NG ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	7,79	g/I	
H ₂ O	K-UTEC 126: 2016-03	863	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

P 750061

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Sette 7 von 30

Probenart:

Proben-Nr.:

Salzlösung 19-1926/03 01.10.2019 bis 15.10.2019 Messzeltraum:

P 750061

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1,328	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	33.3	°C	
Dichte (Labor)	DEV-C 9*	1.328	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,69	-	
Natrium	K-UTEC 110: 2016-03	7390	mg/l	5
Kalium	K-UTEC 110: 2016-03	8860	mg/l	7
Magnesium	K-UTEC 112: 2016-03	108000	mg/l	10
Calcium	K-UTEC 6: 2016-04	48.7	mg/l	1,0
Chlorid	K-UIEC 114: 2016-03	289000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	59700	mg/l	10
Manaan	K-UTEC 6: 2016-04	14.2	ma/l	1.0
Eisen	DIN 38406-E1*	5,36	mg/l	0,60
Eisen (II)	DIN 38406-E1*	2,35	mg/l	0.60
Eisen-III	DIN 38406-E1*	3,01	mg/l	0.60
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	109	mg/l	0.40
Hydrogencarbonat	DEV-D8*	64.3	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	14.1	mg/l	0.1
Strontium	K-UTEC 6: 2016-04	0.58	mg/l	0,50
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	13.5	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.190	mg/l	0.049
Barium	K-UTEC 6: 2016-04	0.085	mg/l	0.030
Blei	K-UTEC 6: 2016-04	0.160	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	0.047	mg/l	0,001
Cobalt	K-UTEC 6: 2016-04	0.019	mg/l	0,010
Kupfer	K-UTEC 6: 2016-04	0,53	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	0,078	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0.29	mg/l	0.02
Zink	K-UTEC 6: 2016-04	19.8	mg/l	0.005
Bor	K-UTEC 6: 2016-04	135	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	13.6	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	3960	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	122	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	49.3	mg/l	0.2
CaSO ₄	K-UTEC 126: 2016-03	0.17	g/I	0.2
CaCl ₂	K-UIEC 126: 2016-03	0,17	g/i	
CGCIZ	K-01EC 120, 2010-03	U	Phi	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Prüfbericht-Nr.: Sette 8 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/03 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	74,6	g/l	70
MgCl ₂	K-UTEC 126: 2016-03	361	g/I	
MgBr ₂	intern. Verfahren*	4.57	g/l	
MgsBsOss	Intern. Verfahren*	0.62	g/I	
K2SO4	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	16.9	g/I	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	18,8	g/I	
H ₂ O	K-UTEC 126: 2016-03	851	gΛ	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

P 750040

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Sette 9 von 30

Probenart:

Proben-Nr.:

Salzlösung 19-1926/04 01.10.2019 bis 15.10.2019 Messzeitraum:

P 750040

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1,308	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	30.6	°C	
Dichte (Labor)	DEV-C 9*	1.328	g/cm³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	6,01	-	
Natrium	K-UTEC 110: 2016-03	8320	mg/L	5
Kalium	K-UTEC 110: 2016-03	11200	mg/l	7
Magnesium	K-UTEC 112: 2016-03	98000	mg/l	10
Calcium	K-UTEC 6: 2016-04	16,3	mg/l	1,0
Chlorid	K-UTEC 114: 2016-03	283000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	32600	mg/l	10
Mangan	K-UTEC 6: 2016-04	8,44	mg/l	1,00
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0,5
CO ₂	DIN EN 1484-H 3*	87.6	mg/l	0.40
Hydrogencarbonat	DEV-D8*	108	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	1.41	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	26.4	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.220	mg/l	0.049
Bartum	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	2.54	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.21	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	3.04	mg/l	0.005
Bor	K-UTEC 6: 2016-04	86.8	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.710	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	3560	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	20.2	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	36.5	mg/l	0.2
CaSO ₄	K-UTEC 126: 2016-03	0.05	G/I	0.2
CaCl ₂	K-UTEC 126: 2016-03	0,00	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Seite 10 von 30 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/04 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	40.8	g/I	7.
MgCl ₂	K-UTEC 126: 2016-03	349	g/I	
MgBr ₂	Intern. Verfahren*	4,1	g/l	
MgsBsOxs	Intern. Verfahren*	0,4	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	21,4	g/I	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	21.1	g/I	
H ₂ O	K-UTEC 126: 2016-03	891	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktreditierungsumfang.

Probenbez.:

P 750148

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 11 von 30

Probenart: Proben-Nr.:

Messzeitraum:

Salzlösung 19-1926/05 01.10.2019 bis 15.10.2019

P 750148

arameter	Verfahren	Messwert	Dim.	Bestim grenze
ichte (vor Ort)	Intern. Verfahren*	1,308	g/cm³	
emperatur (vor Ort)	infern. Verfahren*	30.7	°C	
ichte (Labor)	DEV-C 9*	1.331	g/cm ³	
emperatur (Labor)	DIN 38 404-C 4*	22	"C	
H-Wert	K-UTEC 108: 2016-03	5,59	-	
atrium	K-UTEC 110: 2016-03	7750	mg/l	5
alium	K-UTEC 110; 2016-03	9970	mg/l	7
Tagnesium	K-UTEC 112: 2016-03	100000	mg/l	10
alcium	K-UTEC 6: 2016-04	18,3	mg/l	1,0
hlorid	K-UTEC 114; 2016-03	289000	mg/l	30
ulfat	K-UTEC 104; 2016-04	31400	mg/l	10
Mangan	K-UTEC 6: 2016-04	8,67	mg/l	1,00
isen	DIN 38406-E1*	2.13	mg/l	0,60
isen (1)	DIN 38406-E1*	0.97	mg/l	0,60
sen-III	DIN 38406-E1*	1.16	mg/l	0.60
arbonat	DIN ISO 10693*	n.n.	mg/l	0.5
O2	DIN EN 1484-H 3*	207	mg/l	0.40
ydrogencarbonat	DEV-D8*	97.1	mg/l	0.5
thium	K-UTEC 6: 2016-04	1.6	mg/l	0.1
tronfium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
asium	AAS*	0.5	mg/l	0.5
ubidium	AES*	22.6	mg/l	0.1
luminium	K-UTEC 6: 2016-04	0.170	mg/l	0.049
arium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
el	K-UTEC 6: 2016-04	2.14	mg/l	0.077
admium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
hiom	K-UTEC 6: 2016-04	0.025	mg/l	0.001
obalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
upfer	K-UTEC 6: 2016-04	0.16	mg/l	0,01
ickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
lkaum	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
nk	K-UTEC 6: 2016-04	4.61	mg/l	0.005
OI.	K-UTEC 6: 2016-04	78,1	mg/l	0.01
hosphor	K-UTEC 6: 2016-04	1.02	mg/l	0,033
uecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
iomid	Intern. Verfahren*	3900	rng/l	1.0
mmonium	K-UIEC 116: 2016-04	22.4	mg/l	0.6
				0.2
			400	0.2
itrat caSO ₄ caCl ₂	K-UTEC 5: 2016-03 K-UTEC 126: 2016-03 K-UTEC 126: 2016-03	48.1 0.06 0	mg/l g/l g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

Seite 12 von 30

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

m
ze
70
0.01
0.01

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

L 750179

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 13 von 30

Probenart: Proben-Nr.:

Salzlösung 19-1926/06 01.10.2019 bis 15.10.2019 Messzeitraum:

L 750179

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.32	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	33,4	°C	
Dichte (Labor)	DEV-C 9*	1.368	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	4,50	-	
Natium	K-UTEC 110: 2016-03	4710	mg/l	5
Kalium	K-UTEC 110: 2016-03	3870	mg/l	7
Magnesium	K-UTEC 112: 2016-03	113000	mg/l	10
Calcium	K-UTEC 6: 2016-04	27,8	mg/l	1,0
Chlorid	K-UTEC 114: 2016-03	319000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	23100	mg/l	10
Mangan	K-UTEC 6: 2016-04	8.64	mg/l	1,00
Eisen	DIN 38406-E1*	215	mg/l	0.6
Eisen 00	DIN 38406-E1*	64.7	mg/l	0.6
Eisen-III	DIN 38406-E1*	151	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	94.5	mg/l	0.40
Hydrogencarbonat	DEV-D8*	3.6	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	35.9	mg/l	0.1
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	0.4	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.750	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	6.97	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	0.080	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	0.21	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	28.0	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	7.17	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	0.49	mg/l	0.02
Zink	K-UTEC 6: 2016-04	166	mg/l	0.005
Bor	K-UTEC 6: 2016-04	160	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.400	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	intern. Verfahren*	8160	mg/l	1,0
Ammonium	K-UTEC 116: 2016-04	4.33	mg/l	0.60
Nitrat	K-UTEC 5: 2017-11	88.4	mg/l	0.2
CaSO ₄	K-UIEC 126: 2016-03	0.1	ci/l	0.2
CaCla	K-UIEC 126: 2016-03	0,1		
CUCIS	K-UIEC 120: 2010-03	U	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Prüfbericht-Nr.: Seite 14 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/06 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
MgSO ₄	K-UTEC 126: 2016-03	28.9	g/I	
MgCl ₂	K-UTEC 126: 2016-03	414	g/I	
MgBr ₂	intern. Verfahren*	9.4	g/l	
MgsBsOss	Intern. Verfahren*	0.74	g/I	
K2SO4	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	7,38	g/l	
NG ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	12,0	g/I	
H ₂ O	K-LITEC: 126: 2016-03	895	CM	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktreditierungsumfang.

Probenbez.:

P 750184

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 15 von 30

Salzlösung 19-1926/07 Probenart:

Proben-Nr.:

01.10.2019 bis 15.10.2019 Messzeltraum:

P 750184

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	intern. Verfahren*	1.321	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	33.4	°C	
Dichte (Labor)	DEV-C 9*	1.358	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	4,52	-	
Natrium	K-UTEC 110: 2016-03	5910	mg/l	5
Kalium	K-UTEC 110: 2016-03	5980	mg/l	7
Magnesium	K-UTEC 112: 2016-03	109000	mg/l	10
Calcium	K-UTEC 6: 2016-04	19.7	mg/l	1.0
Chlorid	K-UTEC 114: 2016-03	305000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	31900	mg/l	10
Manaan	K-UTEC 6: 2016-04	35.5	mg/l	1.0
Eisen	DIN 38406-E1*	122	mg/l	0.6
Eisen 00	DIN 38406-E1*	20.2	mg/l	0.6
Eisen-III	DIN 38406-E1*	102	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	60.6	mg/l	0.40
Hydrogencarbonat	DEV-D8*	2.4	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	6,92	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	2.1	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	3,35	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	11.8	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	0.026	mg/l	0,010
Kupfer	K-UTEC 6: 2016-04	2.87	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	0.270	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	23.0	mg/l	0.005
Bor	K-UTEC 6: 2016-04	188	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	1,21	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	5160	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	8.66	mg/l	0.60
Nitrat	K-UTEC 5: 2017-11	78,0		0.2
CaSO ₄	K-UTEC 126: 2016-03	0.07	mg/l g/l	0.2
	K-UTEC 126: 2016-03			
CaCl ₂	K-UIEC 126: 2016-03	0	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

Prüfbericht-Nr.: 19-1926-1 Seite 16 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/07 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	40.0	g/I	
MgCl ₂	K-UTEC 126: 2016-03	391	g/I	
MgBr ₂	intern. Verfahren*	5,95	g/l	
MgsBsOrs	Intern. Verfahren*	0.87	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	11,4	g/l	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	15,0	g/l	
H ₂ O	K-UTEC 126: 2016-03	894	g/l	
H ₂ O	K-UTEC 126: 2016-03	894	gΛ	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

P 750153

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 17 von 30

Salzlösung 19-1926/08 Probenart: Proben-Nr.:

01.10.2019 bis 15.10.2019 Messzeitraum:

P 750153

refahren* refahren* 104-C 4* 108: 2016-03 110: 2016-03 110: 2016-03 112: 2016-03	1.31 29.1 1.317 22 5,65 7740 9690	g/cm³ °C g/cm³ °C - mg/l	
9* 404-C 4* 108: 2016-03 110: 2016-03 110: 2016-03 112: 2016-03	1.317 22 5,65 7740	g/cm³ °C - mg/l	Dec.
404-C 4* 108: 2016-03 110: 2016-03 110: 2016-03 112: 2016-03	22 5,65 7740	°C - mg/l	ne.
108: 2016-03 110: 2016-03 110: 2016-03 112: 2016-03	5,65 7740	- mg/l	
110: 2016-03 110: 2016-03 112: 2016-03	7740	mg/l	1.00
110: 2016-03 112: 2016-03	E-201-233	100	100
112: 2016-03	9690		5
		mg/l	7
5: 2016-04	101000	mg/l	10
J. 2010:04	27	mg/l	1
114: 2016-03	291000	mg/l	30
104: 2016-04	30500	mg/l	10
6: 2016-04	4.97	mg/l	1,00
06-E1*	1,68	mg/l	0,60
06-E1*	0.97	mg/l	0,60
06-E1*	0.71	mg/l	0,60
10693*	n.n.	mg/l	0.5
1484-H 3*	122	mg/l	0.40
	65.8	mg/l	0.5
6: 2016-04	4.47	mg/l	0.10
6: 2016-04	0,58	mg/l	0,50
	n.n.		0.5
			0.1
6: 2016-04		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	0.049
		100	0.030
			0.077
	5217.24		600.0
			0.001
		100	0.01
			0,01
	CATCA		0.001
		5 C C C C C C C C C C C C C C C C C C C	0.02
			0.005
	(7) () () () () () () ()		0.01
			0,033
R. (1997)			0.01
1 March 10, 100 Bell 10 March			1.0
7.7170.000.000.000.00			0.60
			0.2
	0.09	400	0.2
12A-201A.03			
	6: 2016-04 6: 2016-03 (erfahren* 15: 2016-04	n.n. 14,9 6: 2016-04 0,390 6: 2016-04 0,078 6: 2016-04 4,81 6: 2016-04 n.n. 6: 2016-04 0,10 6: 2016-04 1,15 6: 2016-04 n.n. 6: 2016-04 n.n. 6: 2016-04 0,10 1,15 6: 2016-04 n.n. 6: 2016-04 0,10 1,15 6: 2016-04 n.n. 6: 2016-04 0,580 121: 2016-03 n.n. 6: 2016-04 98,7 6: 2016-04 98,7 6: 2016-04 9,13 6: 2016-04 9,38 erfahren* 4630 116: 2016-04 9,38	n.n. mg/l 14.9 mg/l 6: 2016-04 0,390 mg/l 6: 2016-04 0,078 mg/l 6: 2016-04 4,81 mg/l 6: 2016-04 n.n. mg/l 6: 2016-04 0,10 mg/l 6: 2016-04 1,15 mg/l 6: 2016-04 n.n. mg/l 6: 2016-04 9,13 mg/l 10: 2016-04 0,580 mg/l 10: 2016-04 9,38 mg/l 116: 2016-04 9,38 mg/l

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

Seite 18 von 30

19-1926-1 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/08 Fortsetzung
-------------	------------------------

Proben-Nr.:	19-1926/08 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	38,2	g/I	180
MgCl ₂	K-UTEC 126: 2016-03	363	g/I	
MgBr ₂	intern. Verfahren*	5,33	g/l	
Mg ₃ B ₈ O ₁₅	intern. Verfahren*	0.46	g/I	
K2SO4	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	18,5	g/l	
NG ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	19,7	g/I	
H ₂ O	K-UTEC 126: 2016-03	871	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktreditierungsumfang.

Probenbez.:

P 750154

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 19 von 30

Salzlösung Probenart: Proben-Nr.:

19-1926/09 01.10.2019 bis 15.10.2019 Messzeitraum:

P 750154

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1,31	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	29.1	°C	
Dichte (Labor)	DEV-C 9*	1.330	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,77	-	
Natrium	K-UTEC 110: 2016-03	9210	mg/l	5
Kalium	K-UTEC 110: 2016-03	14100	mg/l	7
Magnesium	K-UTEC 112: 2016-03	97900	mg/l	10
Calcium	K-UTEC 6: 2016-04	13.2	mg/l	1,0
Chlorid	K-UTEC 114: 2016-03	281000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	40100	mg/l	10
Mangan	K-UTEC 6: 2016-04	2.83	mg/l	1,00
Eisen	DIN 38406-E1*	0.7	mg/l	0.6
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	166	mg/l	0.40
Hydrogencarbonat	DEV-D8*	117	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	1,45	mg/l	0,10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0,5
Rubidium	AES*	31.7	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.120	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	1,73	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6; 2016-04	0.47	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	3.52	mg/l	0.005
Bor	K-UTEC 6: 2016-04	76.3	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.430	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	**************************************	mg/l	0.01
Bromid	Intern. Verfahren*	n.n. 4000		1.0
Ammonium	K-UTEC 116: 2016-04	15.2	mg/l	0,6
	K-UTEC 5: 2017-11	35.7	mg/l	0.0
Nitrat	K-UTEC 126; 2016-03	0.04	mg/l	0.2
CaSO ₄			g/I	
CaCl ₂	K-UTEC 126: 2016-03	0	g/ī	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Prüfbericht-Nr.: Seite 20 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/09 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	50.2	g/l	- 75
MgCl₂	K-UTEC 126: 2016-03	341	g/I	
MgBr ₂	intern. Verfahren*	4.6	g/l	
MgsBsOss	Intern. Verfahren*	0.35	g/I	
K2SO4	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	26,9	g/I	
NG ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	23.4	g/I	
H₂O	K-UTEC 126: 2016-03	883	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Seite 21 von 30

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

P 750185

Probenbez.:

Salzlösung 19-1926/10 Probenart: Proben-Nr.:

01.10.2019 bis 15.10.2019 Messzeltraum:

P 750185

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1,305	g/cm³	
Temperatur (vor Ort)	Infern. Verfahren*	32.5	°C	
Dichte (Labor)	DEV-C 9*	1,313	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,74	-	
Natrium	K-UTEC 110: 2016-03	8970	mg/l	5
Kalium	K-UTEC 110: 2016-03	13200	mg/l	7
Magnesium	K-UTEC 112: 2016-03	101000	mg/l	10
Calcium	K-UTEC 6: 2016-04	18,8	mg/l	1,0
Chlorid	K-UTEC 114; 2016-03	295000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	29600	mg/l	10
Mangan	K-UTEC 6: 2016-04	19,5	mg/l	1.0
Eisen	DIN 38406-E1*	0.65	mg/l	0.60
Eisen (II)	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	99.7	mg/l	0.40
Hydrogencarbonat	DEV-D8*	66	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	3.0	mg/l	0.1
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	23.2	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.200	mg/l	0.049
Bartum	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	7.40	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0,006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0,001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.34	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	8.10	mg/l	0.005
Bor	K-UTEC 6: 2016-04	108	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.700	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Biomid	Intern. Verfahren*	3960	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	33.9	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	36.5	mg/l	0.2
CgSO ₄	K-UTEC 126: 2016-03	0.06	g/I	0.2
CaCla	K-UTEC 126: 2016-03	0,00	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

Prüfbericht-Nr.: 19-1926-1 Seite 22 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/10 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	37,1	g/I	70
MgCl ₂	K-UTEC 126: 2016-03	362	g/I	
MgBr ₂	intern. Verfahren*	4,55	g/l	
MgsBsOrs	intern. Verfahren*	0,5	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	25.2	g/l	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	22,8	g/I	
H ₂ O	K-I/IEC 126: 2016-03	861	CO.	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

P 750189

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 23 von 30

Salzlösung Probenart: Proben-Nr.: 19-1926/11

01.10.2019 bis 15.10.2019 Messzeitraum:

P 750189

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	intern. Verfahren*	1.304	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	32,5	°C	
Dichte (Labor)	DEV-C 9*	1.314	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,85	-	
Natium	K-UTEC 110: 2016-03	8910	mg/l	5
Kalium	K-UTEC 110: 2016-03	14100	mg/l	7
Magnesium	K-UTEC 112: 2016-03	97200	mg/l	10
Calcium	K-UTEC 6: 2016-04	18	mg/l	1
Chlorid	K-UIEC 114: 2016-03	287000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	28800	mg/l	10
Manaan	K-UTEC 6: 2016-04	17.7	mg/l	1.0
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen (II)	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	99.0	mg/l	0.40
Hydrogencarbonat	DEV-D8*	84.3	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	2.09	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0,5
Rubidium	AES*	27.7	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.220	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	5,73	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	5.00	0.01
Kupfer	K-UTEC 6: 2016-04		mg/l mg/l	0.01
Nickel	K-UIEC 6: 2016-04	n.n.	100	0.001
	K-UTEC 6: 2016-04	2598727	mg/l	0.001
Silicium		n.n.	mg/l	0,02
Zink	K-UTEC 6: 2016-04	5,00	mg/l	
Bor	K-UTEC 6: 2016-04	95.6	mg/l	0,01
Phosphor	K-UTEC 6: 2016-04	0.660	mg/l	0.033
Quecksiber	K-UTEC 121: 2016-03	0,0105	mg/l	0.0100
Bromid	Intern. Verfahren*	3800	mg/l	1.0
Ammonium	K-UIEC 116: 2016-04	31,8	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	28.2	mg/l	0.2
CaSO ₄	K-UTEC 126: 2016-03	0.06	g/I	
CaCl ₂	K-UTEC 126: 2016-03	0	g/ī	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Prüfbericht-Nr.: Seite 24 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/11 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
MgSO ₄	K-UTEC 126: 2016-03	36,1	g/I	(I)
MgCl ₂	K-UTEC 126: 2016-03	350	g/I	
MgBr ₂	intern. Verfahren*	4.37	g/l	
MgsBsOxs	intern. Verfahren*	0.44	g/I	
K2SO4	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	26.9	g/l	
NG ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	22,6	g/I	
H ₂ O	K-LITEC: 126: 2016-03	874	CIÚ.	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

P 750064

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 25 von 30

Salzlösung Probenart:

Proben-Nr.: 19-1926/12

01.10.2019 bis 15.10.2019 Messzeltraum:

P 750064

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1.353	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	32.7	°C	
Dichte (Labor)	DEV-C 9*	1.377	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,45	-	
Natrium	K-UTEC 110: 2016-03	3500	mg/l	5
Kalium	K-UTEC 110: 2016-03	1860	mg/l	7
Magnesium	K-UTEC 112: 2016-03	123000	mg/l	10
Calcium	K-UTEC 6: 2016-04	30,3	mg/l	1.0
Chlorid	K-UTEC 114: 2016-03	335000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	38600	mg/l	10
Manaan	K-UTEC 6: 2016-04	23.8	mg/l	1.0
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen 00	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	138	mg/l	0.40
Hydrogencarbonat	DEV-D8*	47.2	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	3.14	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0.5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	0.7	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.330	mg/l	0.049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0.03
Blei	K-UTEC 6: 2016-04	4.75	mg/l	0.077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	600.0
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0,001
Silicium	K-UTEC 6: 2016-04	0.032	mg/l	0.020
Zink	K-UTEC 6: 2016-04	7.65	mg/l	0.005
Bor	K-UTEC 6: 2016-04	139	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	1.03	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	5030	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	3.61	mg/l	0.60
Nitrat	K-UTEC 5: 2017-11	40.8	mg/l	0.2
CqSO ₄	K-UTEC 126: 2016-03	0.1	G/I	0.2
CaCla	K-UTEC 126: 2016-03	0	g/l	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Prüfbericht-Nr.: Seite 26 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/12 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	48.3	g/I	70
MgCl ₂	K-UTEC 126: 2016-03	440	g/I	
MgBr ₂	intern. Verfahren*	5.79	g/l	
MgsBsOrs	Intern. Verfahren*	0.64	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	3,54	g/I	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	8,88	g/l	
H ₂ O	K-UTEC 126: 2016-03	870	g/I	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung git nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktreditierungsumfang.

Probenbez.:

P 750177

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 27 von 30

Salzlösung Probenart: Proben-Nr.: 19-1926/13

01.10.2019 bis 15.10.2019 Messzeltraum:

P 750177

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	Intern. Verfahren*	1,316	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	34.4	°C	
Dichte (Labor)	DEV-C 9*	1.342	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
pH-Wert	K-UTEC 108: 2016-03	5,92	-	
Natium	K-UTEC 110: 2016-03	7290	mg/l	5
Kalium	K-UTEC 110: 2016-03	7790	mg/l	7
Magnesium	K-UTEC 112: 2016-03	106000	mg/l	10
Calcium	K-UTEC 6: 2016-04	31	mg/l	1
Chlorid	K-UIEC 114: 2016-03	297000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	36800	mg/l	10
Manaan	K-UTEC 6: 2016-04	9.05	ma/l	1.00
Eisen	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen (II)	DIN 38406-E1*	n.n.	mg/l	0.6
Eisen-III	DIN 38406-E1*	n.n.	mg/l	0.6
Carbonat	DIN ISO 10693*	n.n.	mg/l	0.5
CO ₂	DIN EN 1484-H 3*	75.0	mg/l	0.40
Hydrogencarbonat	DEV-D8*	75.3	mg/l	0.5
Lithium	K-UTEC 6: 2016-04	2,45	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	0,53	mg/l	0,50
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	11.9	mg/l	0.1
Aluminium	K-UTEC 6: 2016-04	0.120	mg/l	0.049
Barium	K-UTEC 6: 2016-04	0.11	mg/l	0.03
Blei	K-UTEC 6: 2016-04	2,62	mg/l	0,077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0.006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0,001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0.38	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	3.54	mg/l	0.005
Bor	K-UTEC 6: 2016-04	94.4	mg/l	0.01
Phosphor	K-UTEC 6: 2016-04	0.780	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0.01
Bromid	Intern. Verfahren*	4130	mg/l	1.0
Ammonium	K-UTEC 116: 2016-04	15.2	mg/l	0.6
Nitrat	K-UTEC 5: 2017-11	37.9	mg/l	0.2
CaSO ₄	K-UTEC 126: 2016-03	0.11	g/I	0.2
CaCl ₂	K-UIEC 126: 2016-03	0,11	g/i	
CGCI2	K-01EG 120, 2010-03	U	Phi	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN EN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-Pt-14237-01-00 aufgeführten Aktredifierungsumfang.

19-1926-1 Prüfbericht-Nr.: Seite 28 von 30

Betreff: Lösungsuntersuchung

Proben-Nr.:	19-1926/13 Fortsetzung			Bestim
Parameter	Verfahren	Messwert	Dim.	grenze
Mg8O ₄	K-UTEC 126: 2016-03	46,0	g/l	9.
MgCl ₂	K-UTEC 126: 2016-03	375	g/I	
MgBr ₂	intern. Verfahren*	4.76	g/l	
MgsBsOrs	intern. Verfahren*	0.43	g/I	
K ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
KCI	K-UTEC 126: 2016-03	14.9	g/l	
Na ₂ SO ₄	K-UTEC 126: 2016-03	n.n.	g/I	0.01
NaCl	K-UTEC 126: 2016-03	18,5	g/l	
H ₂ O	K-UTEC 126: 2016-03	883	gΛ	

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Durch die DAkkS nach DIN BN ISC/EC 1702S aktredifiertes Prüflaboratorium. Die Akkedifierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Akkredifierungsumfang.

Probenbez.:

P 750039

19-1926-1 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung Seite 29 von 30

Salzlösung Probenart: 19-1926/14 Proben-Nr.:

Messzeltraum: 01.10.2019 bis 15.10.2019

P 750039

Parameter	Verfahren	Messwert	Dim.	Bestim grenze
Dichte (vor Ort)	intern. Verfahren*	1.324	g/cm³	
Temperatur (vor Ort)	Intern. Verfahren*	30,7	°C	
Dichte (Labor)	DEV-C 9*	1.317	g/cm ³	
Temperatur (Labor)	DIN 38 404-C 4*	22	°C	
Natrium	K-UTEC 110: 2016-03	5540	mg/l	5
Kallum	K-UTEC 110: 2016-03	4720	mg/l	7
Magnesium	K-UTEC 112: 2016-03	108000	mg/l	10
Calcium	K-UTEC 6: 2016-04	31,0	mg/l	1.0
Chlorid	K-UTEC 114: 2016-03	300000	mg/l	30
Sulfat	K-UTEC 104: 2016-04	35700	mg/l	10
Mangan	K-UTEC 6: 2016-04	9,65	mg/l	1,00
Elsen	DIN 38406-E1*	0,0	mg/l	0.6
Lithium	K-UTEC 6: 2016-04	2.34	mg/l	0.10
Strontium	K-UTEC 6: 2016-04	n.n.	mg/l	0,5
Casium	AAS*	n.n.	mg/l	0.5
Rubidium	AES*	4.6	mg/l	0,1
Aluminium	K-UTEC 6: 2016-04	0.185	mg/l	0,049
Barium	K-UTEC 6: 2016-04	n.n.	mg/l	0,03
Blei	K-UTEC 6; 2016-04	1,92	mg/l	0,077
Cadmium	K-UTEC 6: 2016-04	n.n.	mg/l	0,006
Chrom	K-UTEC 6: 2016-04	n.n.	mg/l	0,001
Cobalt	K-UTEC 6: 2016-04	n.n.	mg/l	0.01
Kupfer	K-UTEC 6: 2016-04	0,23	mg/l	0.01
Nickel	K-UTEC 6: 2016-04	n.n.	mg/l	0.001
Silicium	K-UTEC 6: 2016-04	n.n.	mg/l	0.02
Zink	K-UTEC 6: 2016-04	7.16	mg/l	0,005
Bor	K-UTEC 6: 2016-04	91,2	mg/l	0,01
Phosphor	K-UTEC 6; 2016-04	1,56	mg/l	0,033
Quecksiber	K-UTEC 121: 2016-03	n.n.	mg/l	0,01
Bromid	intern. Verfahren*	4300	mg/l	1,0
Ammonium	K-UTEC 116: 2016-04	10,1	mg/l	0,6
Nitrat	K-UTEC 5: 2017-11	55.0	mg/l	0.2

Hinwels: Auf Grund der Probenbeschaffenheit kann die Dichte im Labor nur ungenau ermittelt werden. Die zu erwartende Abweichung beträgt 0,010 g/cm3.

Dieser Prüfberlicht wird in zwei weiteren Varianten erstellt, um alle geforderten Einheiten für die einzelnen Parameter darstellen zu können.

Hinzu kommt das Jänecke-Diagramm mit den entsprechenden Koordinaten als Anlage.

nicht aktreditierter Parameter

Messergebnis ist unterhalb Bestimmungsgrenze

Dim. Dimension

bezogen auf Trockensubstanz

Durch die DAkkS nach DIN EN ISO/EC 1702S aktreditiertes Prüflaboratorium. Die Akkeditierung gilt nur für den in der Urkundenanlage D-PL-14237-01-00 aufgeführten Aktreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung Seite 30 von 30

Sondershausen, den 18.10.2019

Laborleiter

Anlage: 2 zus. PB, Jänecke-Diag. (4 S.)

nicht akkreditierter Parameter Messergebnis ist unterhalb Bestimmungsgrenze

Dim.

Dimension bezogen auf Trackensubstanz

Durch die DAMS nach DIN EN ISO/IEC 17025 altkreditiertes Profaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

(03632)61 01 50 (03632)61 01 05

cpa@k-utec.de

Tel.:

Fax:

E-Mail:

Chemisch-physikalische Analytik

K-UTEC AG Salt Technologies Am Petersenschacht 7 99706 Sondershausen

19-1926-1

Hier: Massenkonzentrationen

Auftrag: Lösungsuntersuchung Auftraggeber:

IAF-Radioökologie GmbH

Wilhelm-Rönsch-Straße 9

01454 Radeberg

Probeneingang: 01.10.2019 Probennahme: Auftraggeber

Entnahmeort: Entnahmedatum:

Prüfbericht

Probenanzahl:

01.10.2019 bis 15.10.2019 Prüfzeitraum:

Proben-Nr.	Probentext	
19-1926/01	P 750010	
19-1926/02	P 750009	
19-1926/03	P 750061	
19-1926/04	P 750040	
19-1926/05	P 750148	
19-1926/06	L 750179	
19-1926/07	P 750184	
19-1926/08	P 750153	
19-1926/09	P 750154	
19-1926/10	P 750185	
19-1926/11	P 750189	
19-1926/12	P 750064	
19-1926/13	P 750177	
19-1926/14	P 750039	
19-1926/12 19-1926/13	P 750064 P 750177	

Dieser Prüfbericht darf ohne Genehmigung der K-UTEC AG nicht auszugsweise vervielfaltigt werden. Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände (DIN EN ISO/IEC 17025)

Seite 1 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750010 19-1926/01

Proben-Nr.: 01.10.2019 bis 15.10.2019

Messzeitraum P 750010

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	0,37	g/100g	0,00037
Kalium	K-UTEC 110; 2016-03	0,33	g/100g	0,00051
Magnesium	K-UTEC 112: 2016-03	8,24	g/100g	0,00074
Calcium	K-UTEC 6: 2016-04	0,0014	g/100g	0,00007
Chlorid	K-UTEC 114: 2016-03	22,65	g/100g	0,00221
Sulfat	K-UTEC 104: 2016-04	2,68	g/100g	0,00074
Mangan	K-UTEC 6: 2016-04	39,12	µg/g	0,74
Eisen	DIN 38406-E1*	1,76	µg/g	0,44
Eisen (II)	DIN 38406-E1*	0,49	µg/g	0,44
Eisen-III	DIN 38406-E1*	1,27	µg/g	0,44
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0090	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0027	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	9,63	µg/g	0,07
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,37
Cāsium	AAS*	n. n.	µg/g	0,37
Rubidium	AES*	1,76	µg/g	0.07
Aluminium	K-UTEC 6: 2016-04	0,23	µg/g	0,04
Barium	K-UTEC 6: 2016-04	0,04	µg/g	0,02
Blei	K-UTEC 6: 2016-04	4,97	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0.004
Chrom	K-UTEC 6: 2016-04	n, n,	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01
Kupfer	K-UTEC 6: 2016-04	0,42	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0.00
Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0.01
Zink	K-UTEC 6: 2016-04	24.26	µg/g	0,004
Bor	K-UTEC 6: 2016-04	89,71	µg/g	0.01
Phosphor	K-UTEC 6: 2016-04	0.47	µg/g	0.02
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0.01
Bromid	intern, Verfahren*	0,379	g/100g	0,00007
Ammonium	K-UTEC 116: 2016-04	0,0006	g/100g	0.00004
Nitrat	K-UTEC 5: 2017-11	0,0066	g/100g	0,00001

Seite 2 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Bactimm -

19-1926-1 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750009 Proben-Nr.: 19-1926/02

01.10.2019 bis 15.10.2019

Messzeitraum P 750009

Natrium K-UTEC 110: 2016-03 0,22 g/100g 0,00039 Kalium K-UTEC 110: 2016-03 0,11 g/100g 0,00058 Magnesium K-UTEC 112: 2016-03 9,02 g/100g 0,00058 Magnesium K-UTEC 112: 2016-03 9,02 g/100g 0,00059 Calcium K-UTEC 6: 2016-04 0,0016 g/100g 0,00088 Chlorid K-UTEC 114: 2016-03 24,75 g/100g 0,00088 Chlorid K-UTEC 114: 2016-04 2,66 g/100g 0,00079 Eisen Chlorid K-UTEC 6: 2016-04 19,36 µg/g 0,0079 Eisen DiN 38406-E1* 0,85 µg/g 0,47 Eisen (II) DIN 38406-E1* 0,54 µg/g 0,47 Eisen III DIN 38406-E1* 0,54 µg/g 0,47 Eisen-III DIN 38406-E1* 0,54 µg/g 0,47 Carbonat DIN ISO 10693* n. n. g/100g 0,00004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,00004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 µg/g 0,98 Strontium K-UTEC 6: 2016-04 n. n. µg/g 0,39 Căsium AAS* n. n. n. µg/g 0,39 Rubidium AES* 0,15 µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. µg/g 0,08 Cadmium K-UTEC 6: 2016-04 n. n. µg/g 0,08 Cadmium K-UTEC 6: 2016-04 n. n. µg/g 0,08 Cadmium K-UTEC 6: 2016-04 n. n. µg/g 0,005 Chrom K-UTEC 6: 2016-04 n	Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Kallum K-UTEC 110: 2016-03 0,11 g/100g 0,00055 Magnesium K-UTEC 112: 2016-03 9,02 g/100g 0,00078 Calcium K-UTEC 6: 2016-04 0,0016 g/100g 0,00008 Chlorid K-UTEC 104: 2016-04 24,75 g/100g 0,00028 Sulfat K-UTEC 104: 2016-04 2,66 g/100g 0,00079 Mangan K-UTEC 6: 2016-04 19,36 µg/g 0,79 Eisen DIN 38406-E1* 0,85 µg/g 0,47 Eisen (II) DIN 38406-E1* 0,54 µg/g 0,47 Eisen-III DIN 38406-E1* 0,54 µg/g 0,47 Carbonat DIN ISO 10693* n.n. g/100g 0,00004 Hydrogencarbonat DEV-D8* 0,0019 g/100g 0,00003 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,0004 Lithium K-UTEC 6: 2016-04 3,01 µg/g 0,38 Strontium K-UTEC 6: 2016-04 n.n. µg/g					
Magnesium K-UTEC 112: 2016-03 9,02 g/100g 0,00079 Calcium K-UTEC 6: 2016-04 0,0016 g/100g 0,00008 Chlorid K-UTEC 114: 2016-03 24,75 g/100g 0,00028 Sulfat K-UTEC 104: 2016-04 2,66 g/100g 0,00079 Mangan K-UTEC 6: 2016-04 19,36 µg/g 0,79 Eisen DIN 38406-E1* 0,85 µg/g 0,47 Eisen (III) DIN 38406-E1* 0,54 µg/g 0,47 Eisen-III DIN 38406-E1* 0,54 µg/g 0,47 Carbonat DIN ISO 10693* n.n. g/100g 0,0004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,00004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,00004 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 µg/g 0,39 Căsium AAS* n.n. µg/g 0,39 Căsium AAS* n.n. µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n.n. µg/g 0,08 <td>C. C. C</td> <td>이 경기가 하고 하는 사람이 아픈데 프라이트 가게 되었다.</td> <td></td> <td></td> <td></td>	C. C	이 경기가 하고 하는 사람이 아픈데 프라이트 가게 되었다.			
Calcium K-UTEC 6: 2016-04 0,0016 g/100g 0,00008 Chlorid K-UTEC 114: 2016-03 24,75 g/100g 0,00236 Sulfat K-UTEC 104: 2016-04 2,66 g/100g 0,00079 Mangan K-UTEC 6: 2016-04 19,36 µg/g 0,79 Eisen DIN 38406-E1* 0,85 µg/g 0,47 Eisen (II) DIN 38406-E1* n.n. µg/g 0,47 Eisen-III DIN 38406-E1* 0,54 µg/g 0,47 Carbonat DIN ISO 10693* n.n. g/100g 0,00004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,00004 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 µg/g 0,08 Strontium K-UTEC 6: 2016-04 n.n. µg/g 0,39 Căsium AAS* n.n. µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n.n. µg/g 0,08					
Chlorid K-UTEC 114: 2016-03 24,75 g/100g 0,00236 Sulfat K-UTEC 104: 2016-04 2,66 g/100g 0,00079 Mangan K-UTEC 6: 2016-04 19,36 µg/g 0,79 Eisen DIN 38406-E1* 0,85 µg/g 0,47 Eisen (II) DIN 38406-E1* 0,54 µg/g 0,47 Eisen-III DIN 38406-E1* 0,54 µg/g 0,47 Carbonat DIN ISO 10693* n. n. g/100g 0,00004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,00004 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 µg/g 0,08 Strontium K-UTEC 6: 2016-04 n. n. µg/g 0,39 Casium AAS* n. n. µg/g 0,39 Rubidium AES* 0,15 µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. µg/g 0,06 Cadmium			N 1007 75 35	Committee of the commit	10.000000000000000000000000000000000000
Sulfat K-UTEC 104: 2016-04 2,66 g/100g 0,00079 Mangan K-UTEC 6: 2016-04 19,36 µg/g 0,79 Eisen DIN 38406-E1* 0,85 µg/g 0,47 Eisen (II) DIN 38406-E1* n.n. µg/g 0,47 Eisen-III DIN 38406-E1* 0,54 µg/g 0,47 Carbonat DIN ISO 10693* n.n. g/100g 0,0004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,0003 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,0004 Lithium K-UTEC 6: 2016-04 n.n. µg/g 0,08 Strontium K-UTEC 6: 2016-04 n.n. µg/g 0,08 Strontium AAS* n.n. µg/g 0,08 Strontium K-UTEC 6: 2016-04 n.n. µg/g 0,08 Strontium AES* 0,15 µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n.n. µg/g 0,04 Bari				The second secon	10 1 1 To 200 1 To 20
Mangan K-UTEC 6: 2016-04 19,36 μg/g 0.79 Eisen DIN 38406-E1* 0.85 μg/g 0.47 Eisen (II) DIN 38406-E1* n.n. μg/g 0.47 Eisen-IIII DIN 38406-E1* n.n. g/100g 0.47 Carbonat DIN ISO 10693* n.n. g/100g 0,00004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,00003 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 n.n. μg/g 0,39 Căsium AS* n.n. μg/g 0,39 Rubidium AES* 0,15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 n.n. μg/g 0,04 Barium K-UTEC 6: 2016-04 n.n. μg/g 0,02 Blei K-UTEC 6: 2016-04 n.n. μg/g 0,05 Cadmium K-UTEC 6: 2016-04 n.n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n.n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04					
Eisen (II) DIN 38406-E1* 0,85 μg/g 0,47 Eisen (II) DIN 38406-E1* n. n. μg/g 0,47 Eisen-III DIN 38406-E1* 0,54 μg/g 0,47 Carbonat DIN ISO 10693* n. n. g/100g 0,00004 CO₂ DIN EN 1484-H 3* 0,0102 g/100g 0,00004 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 μg/g 0,08 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0,39 Cāsium AAS* n. n. μg/g 0,39 Rubidium AES* 0,15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. μg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Blei K-UTEC 6: 2016-04 n. n. μg/g 0,00 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,00 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,01 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01					
Eisen (II) DIN 38406-E1* n. n. μg/g 0,47 Eisen-III DIN 38406-E1* 0,54 μg/g 0,47 Carbonat DIN ISO 10693* n. n. g/100g 0,00004 CO₂ DIN EN 1484-H 3* 0,0102 g/100g 0,00003 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 μg/g 0,08 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0,39 Cāsium AAS* n. n. μg/g 0,39 Rubidium AES* 0.15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. μg/g 0,04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 <td< td=""><td>- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td></td><td>and the second second second</td><td>2000</td></td<>	- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			and the second second second	2000
Eisen-III DIN 38406-E1* 0,54 μg/g 0,47 Carbonat DIN ISO 10693* n. n. g/100g 0,0004 CO₂ DIN EN 1484-H 3* 0,0102 g/100g 0,00003 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 μg/g 0,08 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0,39 Casium AAS* n. n. μg/g 0,39 Rubidium AES* 0,15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. μg/g 0,04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 </td <td>TOTAL SECTION OF THE PARTY OF T</td> <td></td> <td></td> <td></td> <td>(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)</td>	TOTAL SECTION OF THE PARTY OF T				(C)
Carbonat DIN ISO 10693* n. n. g/100g 0,00004 CO2 DIN EN 1484-H 3* 0,0102 g/100g 0,00003 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 µg/g 0,08 Strontium K-UTEC 6: 2016-04 n. n. µg/g 0,39 Cäsium AAS* n. n. µg/g 0,39 Rubidium AES* 0,15 µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. µg/g 0,08 Aluminium K-UTEC 6: 2016-04 n. n. µg/g 0,04 Belei K-UTEC 6: 2016-04 n. n. µg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. µg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. µg/g 0,001 Cobalt K-UTEC 6: 2016-04 n. n. µg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. µg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. µg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. µg/g 0,00 <td>37675331 USS (N)</td> <td></td> <td></td> <td>7. 7. 7. 7. 7.</td> <td>7.6-23.0</td>	37675331 USS (N)			7. 7. 7. 7. 7.	7.6-23.0
CO₂ DIN EN 1484-H 3* 0,0102 g/100g 0,0003 Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 μg/g 0,08 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0,39 Cāsium AAS* n. n. μg/g 0,39 Rubidium AES* 0,15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 0,24 μg/g 0,04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Blei K-UTEC 6: 2016-04 n. n. μg/g 0,005 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,001 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,00 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,01					11.100.00000000000000000000000000000000
Hydrogencarbonat DEV-D8* 0,0039 g/100g 0,00004 Lithium K-UTEC 6: 2016-04 3,01 μg/g 0,08 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0,39 Cāsium AAS* n. n. μg/g 0,39 Rubidium AES* 0,15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 0,24 μg/g 0,04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Blei K-UTEC 6: 2016-04 n. n. μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,01 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,00 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Zink K-UTEC 6: 2016-04 n. n. μg/g 0,00 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016					
Lithium K-UTEC 6: 2016-04 3,01 μg/g 0,08 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0,39 Căsium AAS* n. n. μg/g 0,39 Rubidium AES* 0,15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 0,24 μg/g 0,04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Blei K-UTEC 6: 2016-04 n. n. μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,01 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,00 Zink K-UTEC 6: 2016-04 n. n. μg/g 0,00 Phosphor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04			10,000	g/100g	24 F. CHARLES
Strontium K-UTEC 6: 2016-04 n. n. μg/g 0,39 Cāsium AAS* n. n. μg/g 0,39 Rubidium AES* 0,15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 0,24 μg/g 0,04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Blei K-UTEC 6: 2016-04 n. n. μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,001 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Zink K-UTEC 6: 2016-04 n. n. μg/g 0,00 Bor K-UTEC 6: 2016-04 11,86 μg/g 0,004 Phosphor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g	Hydrogencarbonat		0,0039	g/100g	0,00004
Casium AAS* n. n. μg/g 0.39 Rubidium AES* 0.15 μg/g 0.08 Aluminium K-UTEC 6: 2016-04 0.24 μg/g 0.04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0.05 Blei K-UTEC 6: 2016-04 n. n. μg/g 0.06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0.005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0.001 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0.01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0.01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0.00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0.02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0.004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0.01 Phosphor K-UTEC 6: 2016-04 0.81 μg/g 0.03 Quecksilber <td>Lithium</td> <td>K-UTEC 6: 2016-04</td> <td>3,01</td> <td>µg/g</td> <td>0,08</td>	Lithium	K-UTEC 6: 2016-04	3,01	µg/g	0,08
Rubidium AES* 0,15 μg/g 0,08 Aluminium K-UTEC 6: 2016-04 0,24 μg/g 0,04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Blei K-UTEC 6: 2016-04 n. n. μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,01 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 n. n. μg/g 0,00 Bor K-UTEC 6: 2016-04 11,86 μg/g 0,00 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Aluminium K-UTEC 6: 2016-04 0,24 μg/g 0,04 Barium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Blei K-UTEC 6: 2016-04 3,82 μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,01 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,03 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,0	Căsium	AAS*	n. n.	µg/g	0,39
Barium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Blei K-UTEC 6: 2016-04 3,82 μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,001 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,01 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern, Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Rubidium	AES*	0,15	µg/g	0,08
Blei K-UTEC 6: 2016-04 3,82 μg/g 0,06 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,001 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,01 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Aluminium	K-UTEC 6: 2016-04	0,24	µg/g	0,04
Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,005 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,001 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,04 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Barium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02
Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,001 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 0,05 μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Blei	K-UTEC 6: 2016-04	3,82	µg/g	0,06
Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,01 Kupfer K-UTEC 6: 2016-04 0,05 μg/g 0,01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Kupfer K-UTEC 6: 2016-04 0.05 μg/g 0.01 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0.00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0.02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0.04 Bor K-UTEC 6: 2016-04 101,89 μg/g 0.01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0.03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0.01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Nickel K-UTEC 6: 2016-04 n. n. μg/g 0,00 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0,01
Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Kupfer	K-UTEC 6: 2016-04	0,05	µg/g	0,01
Silicium K-UTEC 6: 2016-04 n. n. μg/g 0,02 Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Nickel	K-UTEC 6: 2016-04	n. n.	p/g/g	0.00
Zink K-UTEC 6: 2016-04 11,86 μg/g 0,004 Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Silicium	K-UTEC 6: 2016-04	n, n.	G 07 (7)	0.02
Bor K-UTEC 6: 2016-04 101,89 μg/g 0,01 Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Zink	K-UTEC 6: 2016-04	11.86		0.004
Phosphor K-UTEC 6: 2016-04 0,81 μg/g 0,03 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Bor	K-UTEC 6: 2016-04	101,89	200702707	0.01
Quecksilber K-UTEC 121: 2016-03 n. n. µg/g 0,01 Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Phosphor	K-UTEC 6: 2016-04	100000000000000000000000000000000000000	100,000,000	10000000
Bromid intern. Verfahren* 0,376 g/100g 0,00008 Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Quecksilber	K-UTEC 121: 2016-03			2000
Ammonium K-UTEC 116: 2016-04 0,00021 g/100g 0,00005	Bromid	30400000000000000000000000000000000000			
	Ammonium				140000000000000000000000000000000000000
	Nitrat				1100-500-00-00-00-00-00-00-00-00-00-00-00-

Seite 3 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Destinon

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750061

Proben-Nr.: 19-1926/03

Messzeitraum 01.10.2019 bis 15.10.2019 P 750061

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	0,56	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,67	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	8,13	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0037	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	21,76	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	4,50	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	10,69	µg/g	0,79
Eisen	DIN 38406-E1*	4,04	µg/g	0,47
Eisen (II)	DIN 38406-E1*	1,77	µg/g	0,47
Eisen-III	DIN 38406-E1*	2,27	µg/g	0.47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0082	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0048	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	10,62	µg/g	0.08
Strontium	K-UTEC 6: 2016-04	0,44	µg/g	0,39
Cāsium	AAS*	n. n.	µg/g	0,39
Rubidium	AES*	10,17	µg/g	0,08
Aluminium	K-UTEC 6: 2016-04	0,14	µg/g	0,04
Barium	K-UTEC 6: 2016-04	0,06	µg/g	0,02
Blei	K-UTEC 6: 2016-04	0,12	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	0.04	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	0,01	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	0,40	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	0,06	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0,22	µg/g	0,02
Zink	K-UTEC 6: 2016-04	14,91	µg/g	0,004
Bor	K-UTEC 6: 2016-04	101,66	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	10,24	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,298	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00919	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0037	g/100g	0,00002

Seite 4 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgetührten Akkrediterungsunding.

Destinon

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750040

Proben-Nr.: 19-1926/04

Messzeitraum 01.10.2019 bis 15.10.2019 P 750040

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	0,63	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,84	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	7,38	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0012	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	21,31	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,45	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	6,36	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0,47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0066	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0081	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	1,06	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Cāsium	AAS*	n. n.	µg/g	0,39
Rubidium	AES*	19,88	µg/g	0,08
Aluminium	K-UTEC 6: 2016-04	0,17	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n.n.	µg/g	0,02
Blei	K-UTEC 6: 2016-04	1,91	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	0,16	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	n.n.	µg/g	0,02
Zink	K-UTEC 6: 2016-04	2,29	µg/g	0,004
Bor	K-UTEC 6: 2016-04	65,36	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,53	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,268	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00152	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0027	g/100g	0,00002

Seite 5 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkreditierungsunfäng.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750148

Proben-Nr.: 19-1926/05

Messzeitraum 01.10.2019 bis 15.10.2019 P 750148

		Bes				
Parameter	Verfahren	Messwert	Dim.	grenze		
Natrium	K-UTEC 110: 2016-03	0,58	g/100g	0,00039		
Kalium	K-UTEC 110: 2016-03	0,75	g/100g	0,00055		
Magnesium	K-UTEC 112: 2016-03	7,51	g/100g	0,00079		
Calcium	K-UTEC 6: 2016-04	0,0014	g/100g	80000,0		
Chlorid	K-UTEC 114: 2016-03	21,71	g/100g	0,00236		
Sulfat	K-UTEC 104: 2016-04	2,36	g/100g	0,00079		
Mangan	K-UTEC 6: 2016-04	6,51	µg/g	0,79		
Eisen	DIN 38406-E1*	1,60	µg/g	0,47		
Eisen (II)	DIN 38406-E1*	0,73	µg/g	0,47		
Eisen-III	DIN 38406-E1*	0,87	µg/g	0.47		
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004		
CO ₂	DIN EN 1484-H 3*	0,0156	g/100g	0,00003		
Hydrogencarbonat	DEV-D8*	0,0073	g/100g	0,00004		
Lithium	K-UTEC 6: 2016-04	1,20	µg/g	0,08		
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39		
Cāsium	AAS*	0,38	µg/g	0,39		
Rubidium	AES*	16,98	µg/g	0,08		
Aluminium	K-UTEC 6: 2016-04	0,13	µg/g	0,04		
Barium	K-UTEC 6: 2016-04	n, n,	µg/g	0,02		
Blei	K-UTEC 6: 2016-04	1,61	µg/g	0,06		
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005		
Chrom	K-UTEC 6: 2016-04	0,02	µg/g	0,001		
Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01		
Kupfer	K-UTEC 6: 2016-04	0,12	µg/g	0,01		
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00		
Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02		
Zink	K-UTEC 6: 2016-04	3,46	µg/g	0,004		
Bor	K-UTEC 6: 2016-04	58,68	µg/g	0,01		
Phosphor	K-UTEC 6: 2016-04	0,77	µg/g	0,03		
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01		
Bromid	intern. Verfahren*	0,293	g/100g	0,00008		
Ammonium	K-UTEC 116: 2016-04	0,00168	g/100g	0,00005		
Nitrat	K-UTEC 5: 2017-11	0,0036	g/100g	0,00002		

Seite 6 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 750179

Proben-Nr.: 19-1926/06

Messzeitraum 01.10.2019 bis 15.10.2019 L 750179

		В				
Parameter	Verfahren	Messwert	Dim.	grenze		
Natrium	K-UTEC 110: 2016-03	0,34	g/100g	0,00039		
Kalium	K-UTEC 110: 2016-03	0,28	g/100g	0,00055		
Magnesium	K-UTEC 112: 2016-03	8,26	g/100g	0,00079		
Calcium	K-UTEC 6: 2016-04	0,0020	g/100g	80000,0		
Chlorid	K-UTEC 114: 2016-03	23,32	g/100g	0,00236		
Sulfat	K-UTEC 104: 2016-04	1,69	g/100g	0,00079		
Mangan	K-UTEC 6: 2016-04	6,32	µg/g	0,79		
Eisen	DIN 38406-E1*	157,16	µg/g	0,47		
Eisen (II)	DIN 38406-E1*	47,30	µg/g	0,47		
Eisen-III	DIN 38406-E1*	110,38	µg/g	0,47		
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004		
CO ₂	DIN EN 1484-H 3*	0,0069	g/100g	0,00003		
Hydrogencarbonat	DEV-D8*	0,0003	g/100g	0,00004		
Lithium	K-UTEC 6: 2016-04	26,24	µg/g	0,08		
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39		
Cāsium	AAS*	n. n.	µg/g	0,39		
Rubidium	AES*	0,29	µg/g	0,08		
Aluminium	K-UTEC 6: 2016-04	0,55	µg/g	0,04		
Barium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02		
Blei	K-UTEC 6: 2016-04	5,10	µg/g	0,06		
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005		
Chrom	K-UTEC 6: 2016-04	0,06	µg/g	0,001		
Cobalt	K-UTEC 6: 2016-04	0,15	µg/g	0.01		
Kupfer	K-UTEC 6: 2016-04	20,47	µg/g	0,01		
Nickel	K-UTEC 6: 2016-04	5,24	µg/g	0,00		
Silicium	K-UTEC 6: 2016-04	0,36	µg/g	0.02		
Zink	K-UTEC 6: 2016-04	121,35	µg/g	0,004		
Bor	K-UTEC 6: 2016-04	116,96	µg/g	0,01		
Phosphor	K-UTEC 6: 2016-04	0,29	µg/g	0,03		
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01		
Bromid	intern. Verfahren*	0,596	g/100g	80000,0		
Ammonium	K-UTEC 116: 2016-04	0,00032	g/100g	0,00005		
Nitrat	K-UTEC 5: 2017-11	0,0065	g/100g	0,00002		
			N. T. C. D. C. S. T. C.			

Seite 7 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

Destinon

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750184 19-1926/07

Proben-Nr.: 01.10.2019 bis 15.10.2019

Messzeitraum P 750184

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	0,44	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,44	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	8,03	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0015	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	22,46	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,35	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	26,14	µg/g	0,79
Eisen	DIN 38406-E1*	89,84	µg/g	0,47
Eisen (II)	DIN 38406-E1*	14,87	µg/g	0,47
Eisen-III	DIN 38406-E1*	75,11	µg/g	0,47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0045	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0002	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	5,10	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Cāsium	AAS*	n. n.	µg/g	0,39
Rubidium	AES*	1,55	µg/g	80,0
Aluminium	K-UTEC 6: 2016-04	2,47	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02
Blei	K-UTEC 6: 2016-04	8,69	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	0,02	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	2,11	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	0,20	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02
Zink	K-UTEC 6: 2016-04	16,94	µg/g	0,004
Bor	K-UTEC 6: 2016-04	138,44	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,89	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,380	g/100g	0,00008
Ammonium	K-UTEC 116: 2016-04	0,00064	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0057	g/100g	0,00002

Seite 8 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgetührten Akkrediterungsunding.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750153

Proben-Nr.: 19-1926/08

Messzeitraum 01.10.2019 bis 15.10.2019 P 750153

		Bes				
Parameter	Verfahren	Messwert	Dim.	grenze		
Natrium	K-UTEC 110: 2016-03	0,59	g/100g	0,00039		
Kalium	K-UTEC 110: 2016-03	0,74	g/100g	0,00055		
Magnesium	K-UTEC 112: 2016-03	7,67	g/100g	0,00079		
Calcium	K-UTEC 6: 2016-04	0,0021	g/100g	80000,0		
Chlorid	K-UTEC 114: 2016-03	22,10	g/100g	0,00236		
Sulfat	K-UTEC 104: 2016-04	2,32	g/100g	0,00079		
Mangan	K-UTEC 6: 2016-04	3,77	µg/g	0,79		
Eisen	DIN 38406-E1*	1,28	µg/g	0,47		
Eisen (II)	DIN 38406-E1*	0.74	µg/g	0,47		
Eisen-III	DIN 38406-E1*	0,54	µg/g	0.47		
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004		
CO ₂	DIN EN 1484-H 3*	0,0093	g/100g	0,00003		
Hydrogencarbonat	DEV-D8*	0,0050	g/100g	0,00004		
Lithium	K-UTEC 6: 2016-04	3.39	µg/g	0.08		
Strontium	K-UTEC 6: 2016-04	0.44	µg/g	0,39		
Cāsium	AAS*	n. n.	µg/g	0,39		
Rubidium	AES*	11,31	µg/g	0,08		
Aluminium	K-UTEC 6: 2016-04	0,30	µg/g	0,04		
Barium	K-UTEC 6: 2016-04	0,06	µg/g	0,02		
Blei	K-UTEC 6: 2016-04	3,65	µg/g	0,06		
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005		
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001		
Cobalt	K-UTEC 6: 2016-04	0,08	µg/g	0.01		
Kupfer	K-UTEC 6: 2016-04	0,87	µg/g	0,01		
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00		
Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02		
Zink	K-UTEC 6: 2016-04	6,93	µg/g	0,004		
Bor	K-UTEC 6: 2016-04	74,94	µg/g	0,01		
Phosphor	K-UTEC 6: 2016-04	0,44	µg/g	0,03		
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01		
Bromid	intern. Verfahren*	0,352	g/100g	0,00008		
Ammonium	K-UTEC 116: 2016-04	0,00071	g/100g	0,00005		
Nitrat	K-UTEC 5: 2017-11	0,0031	g/100g	0,00002		

Seite 9 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Bactimm -

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750154 19-1926/09

Proben-Nr.:

Messzeitraum 01.10.2019 bis 15.10.2019 P 750154

Natrium K-UTEC 110: 2016-03 0,69 g/100g 0 Kalium K-UTEC 110: 2016-03 1,06 g/100g 0 Magnesium K-UTEC 112: 2016-03 7,36 g/100g 0 Calcium K-UTEC 6: 2016-04 0,0010 g/100g 0 Chlorid K-UTEC 114: 2016-03 21,13 g/100g 0 Chlorid K-UTEC 114: 2016-03 21,13 g/100g 0 Sulfat K-UTEC 104: 2016-04 3,02 g/100g 0 Mangan K-UTEC 6: 2016-04 2,13 µg/g Eisen DIN 38406-E1* 0,53 µg/g Eisen (II) DIN 38406-E1* n, n, µg/g Carbonat DIN ISO 10693* n, n, g/100g 0 Hydrogencarbonat DEV-D8* 0,00125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 µg/g Cāsium AAS* n, n, µg/g Cāsium AAS* n, n, µg/g Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 n, n, µg/g Blei K-UTEC 6: 2016-04 n, n, µg/g Cadmium K-UTEC 6: 2016-04 n, n, µg/g Cink K-UTEC 6: 2016-04 n, n, µg/g Nickel K-UTEC 6: 2016-04 n, n, µg/g Silicium K-UTEC 6: 2016-04 n, n, µg/g Silicium K-UTEC 6: 2016-04 n, n, µg/g Cink K-UTEC 6: 2016-04 n, n, µg/g Silicium K-UTEC 6: 2016-04 n, n, µg/g Silicium K-UTEC 6: 2016-04 n, n, µg/g Cink K-UTEC 6: 2016-04 n, n, n, µg/g Cink	Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Kallium K-UTEC 110: 2016-03 1,06 g/100g 0 Magnesium K-UTEC 112: 2016-03 7,36 g/100g 0 Calcium K-UTEC 6: 2016-04 0,0010 g/100g 0 Chlorid K-UTEC 114: 2016-03 21,13 g/100g 0 Sulfat K-UTEC 104: 2016-04 3,02 g/100g 0 Mangan K-UTEC 6: 2016-04 2,13 μg/g Eisen DIN 38406-E1* 0,53 μg/g Eisen (II) DIN 38406-E1* n. n. μg/g Eisen-III DIN 38406-E1* n. n. g/100g 0 Carbonat DIN ISO 10693* n. n. g/100g 0 Co2 DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 n. n. μg/g Strontium K-UTEC 6: 2016-04 n. n. μg					0.00039
Magnesium K-UTEC 112: 2016-03 7,36 g/100g 0 Calcium K-UTEC 6: 2016-04 0,0010 g/100g 0 Chlorid K-UTEC 114: 2016-03 21,13 g/100g 0 Sulfat K-UTEC 104: 2016-04 3,02 g/100g 0 Mangan K-UTEC 6: 2016-04 2,13 μg/g 0 Eisen DIN 38406-E1* 0,53 μg/g 0 Eisen (II) DIN 38406-E1* n.n. μg/g 0 Carbonat DIN ISO 10693* n.n. g/100g 0 Carbonat DIN ISO 10693* n.n. g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 n.n. μg/g 0 Casium AAS* n.n. μg/g 0 Rubidium <td></td> <td></td> <td>14 TO 15 TO</td> <td></td> <td>0,00055</td>			14 TO 15 TO		0,00055
Calcium K-UTEC 6: 2016-04 0,0010 g/100g 0 Chlorid K-UTEC 114: 2016-03 21,13 g/100g 0 Sulfat K-UTEC 104: 2016-04 3,02 g/100g 0 Mangan K-UTEC 6: 2016-04 2,13 μg/g Eisen DIN 38406-E1* 0,53 μg/g Eisen (II) DIN 38406-E1* n. n. μg/g Eisen-III DIN 38406-E1* n. n. μg/g Carbonat DIN ISO 10693* n. n. μg/g Carbonat DIN ISO 10693* n. n. μg/g Co2 DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 μg/g Casium AAS* n. n. μg/g Rubidium AES* 23,83 μg/g Aluminium K-UTEC 6: 2016-04 n. n. μg/g Blei K-UTEC 6: 2016-04 <td< td=""><td></td><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td>0.00079</td></td<>			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.00079
Chlorid K-UTEC 114: 2016-03 21,13 g/100g 0 Sulfat K-UTEC 104: 2016-04 3,02 g/100g 0 Mangan K-UTEC 6: 2016-04 2,13 μg/g 0 Eisen DIN 38406-E1* 0,53 μg/g 0 Eisen (II) DIN 38406-E1* n. n. μg/g 0 Eisen-III DIN 180 10693* n. n. g/100g 0 Carbonat DIN ISO 10693* n. n. g/100g 0 Cy DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 n. n. μg/g Strontium K-UTEC 6: 2016-04 n. n. μg/g Casium AAS* n. n. μg/g Aluminium K-UTEC 6: 2016-04 n. n. μg/g Barium K-UTEC 6: 2016-04 n. n. μg/g Cadmium K-UTEC 6: 2016-04 n. n. μg/g Chrom K-UTEC 6: 2016-04 n. n. μg/g Kupfer K-UT			00 × 00 × 00 × 00 × 00 × 00 × 00 × 00	Committee of the commit	10.000000000000000000000000000000000000
Sulfat K-UTEC 104; 2016-04 3,02 g/100g 0 Mangan K-UTEC 6: 2016-04 2,13 µg/g 0 Eisen DIN 38406-E1* 0,53 µg/g 0 Eisen (II) DIN 38406-E1* n. n. µg/g 0 Eisen-III DIN 38406-E1* n. n. µg/g 0 Carbonat DIN ISO 10693* n. n. g/100g 0 Corporationat DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 n. n. µg/g Strontium K-UTEC 6: 2016-04 n. n.					0,00008
Mangan K-UTEC 6: 2016-04 2,13 μg/g Eisen DIN 38406-E1* 0,53 μg/g Eisen (II) DIN 38406-E1* n. n. μg/g Eisen-III DIN 38406-E1* n. n. μg/g Carbonat DIN ISO 10693* n. n. g/100g 0 CO2 DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 μg/g Strontium K-UTEC 6: 2016-04 n. n. μg/g μg/g Casium AAS* 23,83 μg/g Rubidium AES* 23,83 μg/g Aluminium K-UTEC 6: 2016-04 n. n. μg/g Bei K-UTEC 6: 2016-04 n. n. μg/g Cadmium K-UTEC 6: 2016-04 n. n. μg/g Chrom K-UTEC 6: 2016-04 n. n. μg/g Kupfer K-UTEC 6: 2016-04 n. n. μg/g Nickel <td></td> <td></td> <td></td> <td></td> <td>0,00236</td>					0,00236
Eisen DIN 38406-E1* 0,53 µg/g Eisen (II) DIN 38406-E1* n. n. µg/g Eisen-III DIN 38406-E1* n. n. µg/g Carbonat DIN ISO 10693* n. n. g/100g 0 CO2 DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 µg/g Strontium K-UTEC 6: 2016-04 n. n. µg/g Căsium AAS* n. n. n. µg/g Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 n. n. µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 n. n. µg/g Kickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. n. µg/g			0.000	CONT. 10.000 (N. 11)	0,00079
Eisen (II) DIN 38406-E1* n. n. pg/g Eisen-III DIN 38406-E1* n. n. pg/g Carbonat DIN ISO 10693* n. n. g/100g 0 CO2 DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 pg/g Strontium K-UTEC 6: 2016-04 n. n. pg/g Cāsium AAS* n. n. pg/g Rubidium AES* 23,83 pg/g Aluminium K-UTEC 6: 2016-04 0,09 pg/g Barium K-UTEC 6: 2016-04 n. n. pg/g Blei K-UTEC 6: 2016-04 n. n. pg/g Cadmium K-UTEC 6: 2016-04 n. n. pg/g Chrom K-UTEC 6: 2016-04 n. n. pg/g Cobalt K-UTEC 6: 2016-04 n. n. pg/g Kupfer K-UTEC 6: 2016-04 n. n. pg/g Nickel K-UTEC 6: 2016-04 n. n. pg/g Silicium K-UTEC 6: 2016-04 n. n. pg/g				and the second second second	0,79
Eisen-III DIN 38406-E1* n. n. pg/g Carbonat DIN ISO 10693* n. n. g/100g 0 CO2 DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 pg/g Strontium K-UTEC 6: 2016-04 n. n. pg/g Căsium AAS* n. n. pg/g Rubidium AES* 23,83 pg/g Aluminium K-UTEC 6: 2016-04 0,09 pg/g Barium K-UTEC 6: 2016-04 n. n. pg/g Blei K-UTEC 6: 2016-04 n. n. pg/g Cadmium K-UTEC 6: 2016-04 n. n. pg/g Cadmium K-UTEC 6: 2016-04 n. n. pg/g Cadmium K-UTEC 6: 2016-04 n. n. pg/g Chrom K-UTEC 6: 2016-04 n. n. pg/g Cobalt K-UTEC 6: 2016-04 n. n. pg/g Kupfer K-UTEC 6: 2016-04 n. n. pg/g Nickel K-UTEC 6: 2016-04 n. n. pg/g Sillicium K-UTEC 6: 2016-04 n. n. pg/g	COLUMN TO SERVICE	아이 살아내지 않아내는 얼마나가 되었다.			0,47
Carbonat DIN ISO 10693* n. n. n. g/100g 0 CO2 DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 µg/g Strontium K-UTEC 6: 2016-04 n. n. µg/g Rubidium AAS* n. n. µg/g Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 0,09 µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. n. µg/g	T-275-CAN-1-1007-101			7. 7. 7. 7.	0,47
CO2 DIN EN 1484-H 3* 0,0125 g/100g 0 Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 µg/g Strontium K-UTEC 6: 2016-04 n. n. µg/g Cāsium AAS* n. n. µg/g Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 n. n. µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Fhosphor K-UTEC 6: 2016-04 57,37 µg/g					0,47
Hydrogencarbonat DEV-D8* 0,0088 g/100g 0 Lithium K-UTEC 6: 2016-04 1,09 μg/g 0 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Cäsium AAS* n. n. μg/g 0 Rubidium AES* 23,83 μg/g 0 Aluminium K-UTEC 6: 2016-04 0,09 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g Zink K-UTEC 6: 2016-04 n. n. μg/g Bor K-UTEC 6: 2016-04 57,37 μg/g Phosphor K-UTEC 6: 2016-04 0,32 μg/g			n. n.	g/100g	0,00004
Lithium K-UTEC 6: 2016-04 1,09 µg/g Strontium K-UTEC 6: 2016-04 n. n. µg/g Cāsium AAS* n. n. µg/g Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 0,09 µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 1,30 µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 n. n. µg/g Sillcium K-UTEC 6: 2016-04 n. n. n. µg/g	CO ₂	DIN EN 1484-H 3*	0,0125	g/100g	0,00003
Strontium K-UTEC 6: 2016-04 n. n. µg/g Cāsium AAS* n. n. µg/g Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 0,09 µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 n. n. µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 2,65 µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Hydrogencarbonat	DEV-D8*	0,0088	g/100g	0,00004
Casium AAS* n. n. µg/g Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 0,09 µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 n. n. µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 0,35 µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 2,65 µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Lithium	K-UTEC 6: 2016-04	1,09	µg/g	0,08
Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 0,09 µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 1,30 µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 n. n. µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 2,65 µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Rubidium AES* 23,83 µg/g Aluminium K-UTEC 6: 2016-04 0,09 µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 1,30 µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 0,35 µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 2,65 µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Cāsium	AAS*	n. n.	µg/g	0,39
Aluminium K-UTEC 6: 2016-04 0,09 µg/g Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 1,30 µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 n. n. µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Sillcium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 n. n. µg/g Bor K-UTEC 6: 2016-04 p. n. n. µg/g Fhosphor K-UTEC 6: 2016-04 57,37 µg/g	Rubidium	AES*	23,83	0.70.070	0.08
Barium K-UTEC 6: 2016-04 n. n. µg/g Blei K-UTEC 6: 2016-04 1,30 µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 0,35 µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 2,65 µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Aluminium	K-UTEC 6: 2016-04	0.09	20.000	0.04
Blei K-UTEC 6: 2016-04 1,30 µg/g Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 n. n. µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 n. n. µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Barium	K-UTEC 6: 2016-04	n.n.	10 mm	0,02
Cadmium K-UTEC 6: 2016-04 n. n. µg/g Chrom K-UTEC 6: 2016-04 n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 0,35 µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 2,65 µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Blei	K-UTEC 6: 2016-04	1,30		0.06
Chrom K-UTEC 6: 2016-04 n. n. n. µg/g Cobalt K-UTEC 6: 2016-04 n. n. n. µg/g Kupfer K-UTEC 6: 2016-04 0,35 µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 n. n. µg/g Bor K-UTEC 6: 2016-04 2,65 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Cadmium	K-UTEC 6: 2016-04	n. n.	7,000,000	0.005
Cobalt K-UTEC 6: 2016-04 n. n. µg/g Kupfer K-UTEC 6: 2016-04 0,35 µg/g Nickel K-UTEC 6: 2016-04 n. n. µg/g Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 n. n. µg/g Bor K-UTEC 6: 2016-04 2,65 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Chrom	K-UTEC 6: 2016-04	n. n.	3.35.55	0,001
Kupfer K-UTEC 6: 2016-04 0,35 μg/g Nickel K-UTEC 6: 2016-04 n. n. μg/g Silicium K-UTEC 6: 2016-04 n. n. μg/g Zink K-UTEC 6: 2016-04 2,65 μg/g Bor K-UTEC 6: 2016-04 57,37 μg/g Phosphor K-UTEC 6: 2016-04 0,32 μg/g		K-UTEC 6: 2016-04		A	0.01
Nickel K-UTEC 6: 2016-04 n. n. μg/g Silicium K-UTEC 6: 2016-04 n. n. μg/g Zink K-UTEC 6: 2016-04 2,65 μg/g Bor K-UTEC 6: 2016-04 57,37 μg/g Phosphor K-UTEC 6: 2016-04 0,32 μg/g	Kupfer	K-UTEC 6: 2016-04		0.070,070	0.01
Silicium K-UTEC 6: 2016-04 n. n. µg/g Zink K-UTEC 6: 2016-04 2,65 µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g		K-UTEC 6: 2016-04	10.000		0.00
Zink K-UTEC 6: 2016-04 2,65 µg/g Bor K-UTEC 6: 2016-04 57,37 µg/g Phosphor K-UTEC 6: 2016-04 0,32 µg/g	Silicium	K-UTEC 6: 2016-04		G (-17.7-)	0.02
Bor K-UTEC 6: 2016-04 57,37 μg/g Phosphor K-UTEC 6: 2016-04 0,32 μg/g		K-UTEC 6: 2016-04			0.004
Phosphor K-UTEC 6: 2016-04 0,32 μg/g	770000		- Section (1)	20070-2707	0.01
[20] [20] [20] [20] [20] [20] [20] [20]	TO THE STATE OF TH		0.000	100,000,000	0,03
Quecksilber K-UTEC 121: 2016-03 n. n. μg/g	Quecksilber	K-UTEC 121: 2016-03	0.000		0.01
	777777777777777				80000,0
THE CONTROL					0.00005
	0.0000000000000000000000000000000000000				0,00002

Seite 10 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750185 19-1926/10

Proben-Nr.:

Messzeitraum 01.10.2019 bis 15.10.2019 P 750185

Natrium K-UTEC 110: 2016-03 0,68 g/100g 0,000 Kalium K-UTEC 110: 2016-03 1,01 g/100g 0,000 Magnesium K-UTEC 110: 2016-03 7,69 g/100g 0,000 Calcium K-UTEC 6: 2016-04 0,0014 g/100g 0,000 Chlorid K-UTEC 6: 2016-04 0,0014 g/100g 0,000 Chlorid K-UTEC 114: 2016-03 22,47 g/100g 0,000 Sulfat K-UTEC 104: 2016-04 2,25 g/100g 0,000 Mangan K-UTEC 6: 2016-04 14,85 µg/g 0 0,000 Mangan K-UTEC 6: 2016-04 14,85 µg/g 0 0 Eisen (II) DIN 38406-E1* 0,50 µg/g 0 0 Eisen (II) DIN 38406-E1* n.n.n. µg/g 0 0 Carbonat DIN ISO 10693* n.n.n. g/100g 0,000 CO2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 CO2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 Lithium K-UTEC 6: 2016-04 2,28 µg/g 0 0,000 CIsium AAS* n.n. µg/g 0 0 ASsium AAS* n.n. µg/g 0 0 ASsium AAS* n.n. µg/g 0 0 ASsium K-UTEC 6: 2016-04 n.n. µg/g 0 0 Casium K-UTEC 6: 2016-04			В				
Kalium K-UTEC 110: 2016-03 1,01 g/100g 0,000 Magnesium K-UTEC 112: 2016-03 7,69 g/100g 0,000 Calcium K-UTEC 6: 2016-04 0,0014 g/100g 0,000 Chlorid K-UTEC 114: 2016-03 22,47 g/100g 0,002 Sulfat K-UTEC 104: 2016-04 2,25 g/100g 0,000 Mangan K-UTEC 6: 2016-04 14,85 µg/g 0 Eisen DIN 38406-E1* 0,50 µg/g 0 Eisen (II) DIN 38406-E1* n.n. µg/g 0 Carbonat DIN ISO 10693* n.n. g/100g 0,000 Co2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 Hydrogencarbonat DEV-D8* 0,0050 g/100g	Parameter	Verfahren	Messwert	Dim.	grenze		
Magnesium K-UTEC 112: 2016-03 7,69 g/100g 0,000 Calcium K-UTEC 6: 2016-04 0,0014 g/100g 0,000 Chlorid K-UTEC 114: 2016-03 22,47 g/100g 0,000 Sulfat K-UTEC 6: 2016-04 14,85 μg/g 0,000 Mangan K-UTEC 6: 2016-04 14,85 μg/g 0 Eisen DIN 38406-E1* 0,50 μg/g 0 Eisen (II) DIN 38406-E1* n. n. μg/g 0 Carbonat DIN 180 10693* n. n. g/100g 0,000 Co2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,000 Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,000 Lithium K-UTEC 6: 2016-04 n. n. μg/g 0 Casium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g	Natrium	K-UTEC 110: 2016-03	0,68	g/100g	0,00039		
Calcium K-UTEC 6: 2016-04 0,0014 g/100g 0,000 Chlorid K-UTEC 114: 2016-03 22,47 g/100g 0,002 Sulfat K-UTEC 104: 2016-04 2,25 g/100g 0,000 Mangan K-UTEC 6: 2016-04 14,85 μg/g 0 Eisen DIN 38406-E1* 0,50 μg/g 0 Eisen (II) DIN 38406-E1* n.n. μg/g 0 Carbonat DIN 1950 10693* n.n. g/100g 0,000 Carbonat DIN ISO 10693* n.n. g/100g 0,000 Co2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 Co3 DEV-D8* 0,000 g/100g 0,000	Kalium	K-UTEC 110; 2016-03	1,01	g/100g	0,00055		
Chlorid K-UTEC 114: 2016-03 22,47 g/100g 0,002 Sulfat K-UTEC 104: 2016-04 2,25 g/100g 0,000 Mangan K-UTEC 6: 2016-04 14,85 μg/g 0 Eisen DIN 38406-E1* 0,50 μg/g 0 Eisen (II) DIN 38406-E1* n.n. μg/g 0 Eisen-III DIN 38406-E1* n.n. μg/g 0 Carbonat DIN ISO 10693* n.n. g/100g 0,000 CO2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,000 Lithium K-UT	Magnesium	K-UTEC 112: 2016-03	7,69	g/100g	0,00079		
Sulfat K-UTEC 104: 2016-04 2,25 g/100g 0,000 Mangan K-UTEC 6: 2016-04 14,85 μg/g 0 Eisen DIN 38406-E1* 0,50 μg/g 0 Eisen (III) DIN 38406-E1* n. n. μg/g 0 Eisen-III DIN 38406-E1* n. n. μg/g 0 Carbonat DIN ISO 10693* n. n. g/100g 0,000 Co2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,000 Lithium K-UTEC 6: 2016-04 2,28 μg/g 0 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Casium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 n. n. μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer	Calcium	K-UTEC 6: 2016-04	0,0014	g/100g	80000,0		
Mangan K-UTEC 6: 2016-04 14,85 μg/g 0 Eisen DIN 38406-E1* 0,50 μg/g 0 Eisen (II) DIN 38406-E1* n. n. μg/g 0 Eisen-III DIN 38406-E1* n. n. μg/g 0 Carbonat DIN ISO 10693* n. n. g/100g 0,000 CO₂ DIN EN 1484-H 3* 0,0076 g/100g 0,000 Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,000 Lithium K-UTEC 6: 2016-04 2.28 μg/g 0 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Cāsium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 n. n. μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0 Cobalt K-UTEC 6: 2016-04	Chlorid	K-UTEC 114: 2016-03	22,47	g/100g	0,00236		
Eisen DIN 38406-E1* 0,50 µg/g 0 Eisen (II) DIN 38406-E1* n. n. µg/g 0 Eisen-III DIN 38406-E1* n. n. µg/g 0 Carbonat DIN ISO 10693* n. n. g/100g 0,000 CO2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,000 Lithium K-UTEC 6: 2016-04 2,28 µg/g 0 Strontium K-UTEC 6: 2016-04 n. n. µg/g 0 Cāsium AAS* n. n. µg/g 0 Rubidium AES* 17,67 µg/g 0 Rubidium K-UTEC 6: 2016-04 n. n. µg/g 0 Barium K-UTEC 6: 2016-04 n. n. µg/g 0 Barium K-UTEC 6: 2016-04 n. n. µg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. µg/g 0,00 Chrom K-UTEC 6: 2016-04 n. n. µg/g 0,00 Chrom K-UTEC 6: 2016-04 n. n. µg/g 0,00 Cobalt K-UTEC 6: 2016-04 n. n. µg/g 0 Cobalt K-UTEC 6: 2016-04 n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. µg/g 0 Cink K-UTEC 6: 2016-04 n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UTEC 6: 2016-04 n. n. n. µg/g 0 Cilclum K-UT	Sulfat	K-UTEC 104: 2016-04	2,25	g/100g	0,00079		
Eisen (II) DIN 38406-E1* n. n. μg/g 0 Eisen-III DIN 38406-E1* n. n. μg/g 0 Carbonat DIN ISO 10693* n. n. g/100g 0,000 CO₂ DIN EN 1484-H 3* 0,0076 g/100g 0,000 Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,000 Lithium K-UTEC 6: 2016-04 2,28 μg/g 0 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Cāsium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 0,15 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Kickel K-UTEC 6: 2016-04 n. n. μg/g 0 Kickel K-U	Mangan	K-UTEC 6: 2016-04	14,85	µg/g	0,79		
Eisen-III DIN 38406-E1* n. n. n. µg/g 0,000 Carbonat DIN ISO 10693* n. n. g/100g 0,000 CO2 DIN EN 1484-H 3* 0,0076 g/100g 0,000 DIN EN 1484-H 3* 0,0050 DIN EN 1	Eisen	DIN 38406-E1*	0,50	µg/g	0,47		
Carbonat DIN ISO 10693* n. n. g/100g 0,000g CO2 DIN EN 1484-H 3* 0,0076 g/100g 0,000g Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,000g Lithium K-UTEC 6: 2016-04 2,28 μg/g 0 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Cāsium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 0,15 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Bele K-UTEC 6: 2016-04 n. n. μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kilckel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 n. n. μg/g 0 Bor K-U	Eisen (II)	DIN 38406-E1*	n, n.	µg/g	0,47		
CO ₂ DIN EN 1484-H 3* 0,0076 g/100g 0,000 Upday 1000g 0,000 p/100g 0	Eisen-III	DIN 38406-E1*	n. n.	µg/g	0,47		
Hydrogencarbonat DEV-D8* 0,0050 g/100g 0,0050 Lithium K-UTEC 6: 2016-04 2,28 μg/g 0 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Căsium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 0,15 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Bei K-UTEC 6: 2016-04 n. n. μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0 Bor K-UTEC 6: 2016-04 6,17 <td< td=""><td>Carbonat</td><td>DIN ISO 10693*</td><td>n. n.</td><td>g/100g</td><td>0,00004</td></td<>	Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004		
Lithium K-UTEC 6: 2016-04 2,28 μg/g 0 0 Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Căsium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 0,15 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Blei K-UTEC 6: 2016-04 5,64 μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 n. n. μg/g 0 Bor K-UTEC 6: 2016-04 6,17 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121:	CO ₂	DIN EN 1484-H 3*	0,0076	g/100g	0,00003		
Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Cāsium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 0,15 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Blei K-UTEC 6: 2016-04 n. n. μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 n. n. μg/g 0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Hydrogencarbonat	DEV-D8*	0,0050	g/100g	0,00004		
Strontium K-UTEC 6: 2016-04 n. n. μg/g 0 Cāsium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 0,15 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Blei K-UTEC 6: 2016-04 5,64 μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 n. n. μg/g 0 Bor K-UTEC 6: 2016-04 6,17 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Lithium	K-UTEC 6: 2016-04	2,28	µg/g	0.08		
Cāsium AAS* n. n. μg/g 0 Rubidium AES* 17,67 μg/g 0 Aluminium K-UTEC 6: 2016-04 0,15 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Blei K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 n. n. μg/g 0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Strontium	K-UTEC 6: 2016-04	n. n.	10.000	0,39		
Aluminium K-UTEC 6: 2016-04 0,15 μg/g 0 Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Blei K-UTEC 6: 2016-04 5,64 μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Cāsium	AAS*	n. n.	µg/g	0,39		
Barium K-UTEC 6: 2016-04 n. n. μg/g 0 Blei K-UTEC 6: 2016-04 5.64 μg/g 0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 0,26 μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. n. μg/g 0	Rubidium	AES*	17,67	µg/g	0.08		
Blei K-UTEC 6: 2016-04 5,64 μg/g 0,0 Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0,0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 n. n. μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 n. n. μg/g 0,0 Zink K-UTEC 6: 2016-04 f.,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 f.,17 μg/g 0,0 Phosphor K-UTEC 6: 2016-04 f.,17 μg/g 0,0 Quecksilber K-UTEC 6: 2016-04 n. n. μg/g 0	Aluminium	K-UTEC 6: 2016-04	0,15	µg/g	0,04		
Cadmium K-UTEC 6: 2016-04 n. n. μg/g 0,0 Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 0,26 μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Barium	K-UTEC 6: 2016-04	n, n,	µg/g	0,02		
Chrom K-UTEC 6: 2016-04 n. n. μg/g 0,0 Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 0,26 μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Blei	K-UTEC 6: 2016-04	5,64	µg/g	0,06		
Cobalt K-UTEC 6: 2016-04 n. n. μg/g 0 Kupfer K-UTEC 6: 2016-04 0,26 μg/g 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Cadmium	K-UTEC 6: 2016-04	n. n.	A 10 mm 1 mm 1	0,005		
Kupfer K-UTEC 6: 2016-04 0,26 μg/g 0 0 Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001		
Nickel K-UTEC 6: 2016-04 n. n. μg/g 0 Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Cobalt	K-UTEC 6: 2016-04	n, n,	µg/g	0.01		
Silicium K-UTEC 6: 2016-04 n. n. μg/g 0 Zink K-UTEC 6: 2016-04 6,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Kupfer	K-UTEC 6: 2016-04	0,26	µg/g	0,01		
Zink K-UTEC 6: 2016-04 6,17 μg/g 0,0 Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00		
Bor K-UTEC 6: 2016-04 82,25 μg/g 0 Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02		
Phosphor K-UTEC 6: 2016-04 0,53 μg/g 0 Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Zink	K-UTEC 6: 2016-04	6,17	µg/g	0,004		
Quecksilber K-UTEC 121: 2016-03 n. n. μg/g 0	Bor	K-UTEC 6: 2016-04	82,25	µg/g	0,01		
	Phosphor	K-UTEC 6: 2016-04	0,53	µg/g	0,03		
Bromid intern Verfahren* 0.302 g/100g 0.000	Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01		
bronne dittern verlanten 0,002 groog 0,000	Bromid	intern. Verfahren*	0,302	g/100g	80000,0		
Ammonium K-UTEC 116: 2016-04 0,00258 g/100g 0,000	Ammonium	K-UTEC 116: 2016-04	0,00258	g/100g	0,00005		
Nitrat K-UTEC 5: 2017-11 0,0028 g/100g 0,000	Nitrat	K-UTEC 5: 2017-11	0,0028	g/100g	0,00002		

Seite 11 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Destinon

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750189

Proben-Nr.: 19-1926/11

Messzeitraum 01.10.2019 bis 15.10.2019 P 750189

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	0,68	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	1,07	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	7,40	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0014	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	21,84	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,19	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	13,47	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0,47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0075	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0064	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	1,59	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Cäsium	AAS*	n. n.	µg/g	0,39
Rubidium	AES*	21,08	µg/g	80,0
Aluminium	K-UTEC 6: 2016-04	0,17	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n, n.	µg/g	0,02
Blei	K-UTEC 6: 2016-04	4,36	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02
Zink	K-UTEC 6: 2016-04	3,81	µg/g	0,004
Bor	K-UTEC 6: 2016-04	72,75	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,50	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	0,01	µg/g	0,01
Bromid	intern. Verfahren*	0,289	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00242	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0021	g/100g	0,00002

Seite 12 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750064

Proben-Nr.: 19-1926/12

Messzeitraum 01.10.2019 bis 15.10.2019 P 750064

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	0,25	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,14	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	8,93	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0022	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	24,33	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,80	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	17,28	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0,47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0100	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0034	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	2,28	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Căsium	AAS*	n. n.	µg/g	0,39
Rubidium	AES*	0,51	µg/g	80,0
Aluminium	K-UTEC 6: 2016-04	0,24	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02
Blei	K-UTEC 6: 2016-04	3,45	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	0,02	µg/g	0,02
Zink	K-UTEC 6: 2016-04	5,56	µg/g	0,004
Bor	K-UTEC 6: 2016-04	100,94	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,75	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,365	g/100g	0,00008
Ammonium	K-UTEC 116: 2016-04	0,00026	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0030	g/100g	0,00002

Seite 13 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750177

Proben-Nr.: 19-1926/13

Messzeitraum 01.10.2019 bis 15.10.2019 P 750177

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	0,54	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,58	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	7,90	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0023	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	22,13	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,74	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	6,74	µg/g	0,79
Eisen	DIN 38406-E1*	n. n.	µg/g	0,47
Eisen (II)	DIN 38406-E1*	n, n,	µg/g	0,47
Eisen-III	DIN 38406-E1*	n. n.	µg/g	0,47
Carbonat	DIN ISO 10693*	n. n.	g/100g	0,00004
CO ₂	DIN EN 1484-H 3*	0,0056	g/100g	0,00003
Hydrogencarbonat	DEV-D8*	0,0056	g/100g	0,00004
Lithium	K-UTEC 6: 2016-04	1,83	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	0,39	µg/g	0,39
Căsium	AAS*	n. n.	µg/g	0,39
Rubidium	AES*	8,87	µg/g	80,0
Aluminium	K-UTEC 6: 2016-04	0,09	µg/g	0,04
Barium	K-UTEC 6: 2016-04	0,08	µg/g	0,02
Blei	K-UTEC 6: 2016-04	1,95	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	0,28	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	n, n,	µg/g	0,02
Zink	K-UTEC 6: 2016-04	2,64	µg/g	0,004
Bor	K-UTEC 6: 2016-04	70,34	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	0,58	µg/g	0,03
Quecksilber	K-UTEC 121: 2016-03	n. n.	µg/g	0,01
Bromid	intern. Verfahren*	0,308	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00113	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0028	g/100g	0,00002

Seite 14 von 15

Durch die DAMS nach DIN EN ISO/IEC 17025 altkreditiertes Profaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750039

Proben-Nr.: 19-1926/14

Messzeitraum 01.10.2019 bis 15.10.2019 P 750039

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	0,42	g/100g	0,00039
Kalium	K-UTEC 110: 2016-03	0,36	g/100g	0,00055
Magnesium	K-UTEC 112: 2016-03	8,20	g/100g	0,00079
Calcium	K-UTEC 6: 2016-04	0,0024	g/100g	80000,0
Chlorid	K-UTEC 114: 2016-03	22,78	g/100g	0,00236
Sulfat	K-UTEC 104: 2016-04	2,71	g/100g	0,00079
Mangan	K-UTEC 6: 2016-04	7,33	µg/g	0.79
Eisen	DIN 38406-E1*	0,46	µg/g	0,47
Lithium	K-UTEC 6: 2016-04	1,78	µg/g	0,08
Strontium	K-UTEC 6: 2016-04	n. n.	µg/g	0,39
Casium	AAS*	n. n.	µg/g	0,39
Rubidium	AES*	3,49	µg/g	0,08
Aluminium	K-UTEC 6: 2016-04	0,14	µg/g	0,04
Barium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02
Blei	K-UTEC 6: 2016-04	1,46	µg/g	0,06
Cadmium	K-UTEC 6: 2016-04	n. n.	µg/g	0,005
Chrom	K-UTEC 6: 2016-04	n. n.	µg/g	0,001
Cobalt	K-UTEC 6: 2016-04	n. n.	µg/g	0,01
Kupfer	K-UTEC 6: 2016-04	0,17	µg/g	0,01
Nickel	K-UTEC 6: 2016-04	n. n.	µg/g	0,00
Silicium	K-UTEC 6: 2016-04	n. n.	µg/g	0,02
Zink	K-UTEC 6: 2016-04	5,44	µg/g	0,004
Bor	K-UTEC 6: 2016-04	69,25	µg/g	0,01
Phosphor	K-UTEC 6: 2016-04	1,18	µg/g	0,03
Quecksilber	K-UTEC 121; 2016-03	n. n.	µg/g	0.01
Bromid	intern. Verfahren*	0,326	g/100g	80000,0
Ammonium	K-UTEC 116: 2016-04	0,00077	g/100g	0,00005
Nitrat	K-UTEC 5: 2017-11	0,0042	g/100g	0,00002

Sondershausen, den 18.10.2019

Laborleiter

Seite 15 von 15

^{*} nicht akkreditierte Parameter

n.n. Messergebnis ist unterhalb Bestimmungsgrenze

Dim Dimension

TS bezogen auf Trockensubstanz

Durch die DAMS nach DIN EN ISO/IEC 17025 altkreditiertes Profaboratorium.

Die Akkreditierung gilt nur für den in der Unsundenantage D-PL-14237-01-00 aufgeführten Akkreditierungsomfang.

Chemisch-physikalische Analytik

K-UTEC AG Salt Technologies Am Petersenschacht 7 99706 Sondershausen Tel.: (03632)61 01 50 Fax.: (03632)61 01 05 E-Mail: cpa@k-utec.de

Prüfbericht 19-1926-1

Hier: Stoffmengenkonzentrationen und Ionenbilanzierung

Auftrag: Lösungsuntersuchung Auftraggeber: IAF-Radioökologie GmbH

Wilhelm-Rönsch-Straße 9

01454 Radeberg

Probeneingang: 01.10.2019 Probennahme: Auftraggeber

Entnahmeort: Entnahmedatum:

Probenanzahl: 14

Prüfzeitraum: 01.10.2019 bis 15.10.2019

Proben-Nr.	Probentext	101400110011
19-1926/01	P 750010	
19-1926/02	P 750009	
19-1926/03	P 750061	
19-1926/04	P 750040	
19-1926/05	P 750148	
19-1926/06	L 750179	
19-1926/07	P 750184	
19-1926/08	P 750153	
19-1926/09	P 750154	
19-1926/10	P 750185	
19-1926/11	P 750189	
19-1926/12	P 750064	
19-1926/13	P 750177	
19-1926/14	P 750039	

Dieser Prüfbericht darf ohne Genehmigung der K-UTEC AG nicht auszugsweise vervielfältigt werden: Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände (DIN EN ISO/IEC 17025)

Seite 1 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750010

Proben-Nr.: 19-1926/01

Messzeitraum 01.10.2019 bis 15.10.2019 P 750010

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03		mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	2,05	mol/kmal H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	83,02	mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,009	mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	156,51	mol/kmol HyO	0,0152
Sulfat	K-UTEC 104: 2016-04	6,83	mol/lumal H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		220	mmol/f (eq)	
K ⁺		114	mmol/L(eq)	
Mg ²⁺		9216	mmol/l (eq)	
Ca ²⁺		0.96	mmol/l (eq)	
Σ Kationenäquivalente		9551	mmol/I (eq)	
CI		8688	mmol/L(eq)	
SO ₄ ² ·		758	mmol/l (eq)	
HCO ₃		0,60	mmol/l (eq)	
Br'		64,58	mmol/l (eq.)	
B ₈ O ₁₅ 5-		8,46	mmol/l (eq)	
Σ Anionenăquivalente		9519	mmol/I (eq)	
Relative Abweichung		0,33	%	

-0,47

Labor für Radionukildanalytik Radiologische Gutachten Consulting

Relative Abweichung

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750009

Proben-Nr.: 19-1926/02

Messzeitraum 01.10.2019 bis 15.10.2019

P 750009	7 (113) # 7 (12 (12 (12 (13 (13 (13 (13 (13 (13 (13 (13 (13 (13			50.4400 ag 00.000 c
Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	2,40 mo	å/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	0,70 mo	i/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	91,91 mo	i/kmol H₂O	0,0074
Calcium	K-UTEC 6: 2016-04	0,010 mo	Wkmol H₂O	0,0004
Chlorid	K-UTEC 114: 2016-03	172,77 mo	0'kmol HyO	0,0152
Sulfat	K-UTEC 104: 2016-04	6,85 mo	i/kmal H₂O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		133 m	mol/l (eq)	
K ⁺		39 m	mol/L(eq)	
Mg ²⁺		10204 m	mol/t (eq)	
Ca ²⁺		1,12 m	mol/l (eq)	
Σ Kationenäquivalente		10377 m	mol/I (eq)	
CI		9590 m	mol/L(eq)	
SO ₄ ²		760 m	mol/l (eq)	
HCO ₃		0,88 m	mol/ (eq)	
Br		64,58 m	(pe) Nom	
B ₈ O ₁₅ ⁶		9,71 m	mol/l (eq)	
Σ Anionenäquivalente		10425 m	mol/I (eg)	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750061

Proben-Nr.: 19-1926/03

Messzeitraum 01.10.2019 bis 15.10.2019 P 750061

P /50061				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	5,79	mol/kmol H₂O	0,0039
Kalium	K-UTEC 110: 2016-03	4,08	O ₂ H lom//lom	0,0032
Magnesium	K-UTEC 112: 2016-03	80,05	mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,022	moVkmol H₂O	0,0004
Chlorid	K-UTEC 114: 2016-03	146,85	mot/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	11,20	mol/lumol H₂O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		321	mmol/f (eq)	
K*		227	mmol/L(eq)	
Mg ²⁺		8887	mmol/f (eq)	
Ca ²⁺		2,43	mmol/l (eq)	
Σ Kationenäquivalente		9438	mmol/l (eq)	
CI		8152	mmol/l (eq)	
SO ₄ ² ·		1243	mmol/l (eq)	
HCO ₃		1,05	mmol/l (eq)	
Br		49,56	mmol/l (pg)	
B ₈ O ₁₅ ⁶		9,37	mmol/l (eq)	
Σ Anionenăquivalente		9455	mmol/I (eq)	
Relative Abweichung		-0,18	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750040

Proben-Nr.: 19-1926/04

Messzeitraum 01.10.2019 bis 15.10.2019 P.750040

P 750040			Bestimm
Parameter	Verfahren	Messwert Di	m. grenze
Natrium	K-UTEC 110: 2016-03	6,52 mol/km	ol H ₂ O 0,0039
Kalium	K-UTEC 110: 2016-03	5,16 mol/km	iol H ₂ O 0,0032
Magnesium	K-UTEC 112: 2016-03	72,64 mol/km	iol H ₂ O 0,0074
Calcium	K-UTEC 6: 2016-04	0,007 mol/km	iol H ₂ O 0,0004
Chlorid	K-UTEC 114: 2016-03	143,81 mol/km	iol H ₂ O 0,0152
Sulfat	K-UTEC 104: 2016-04	6,11 mol/km	ot H ₂ O 0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*		
Na*		362 mmol	it (eq)
K ⁺		286 mmol	A (eq)
Mg ² *		8064 mmol	A (eq)
Ca ²⁺		0,81 mmol	A (eq)
Σ Kationenäquivalente		8713 mmol	/I (eq)
CI		7982 mmol	A (eq)
SO ₄ ² ·		679 mmol	A (eq)
HCO ₃		1,77 mmol	/ (eq)
Br		44,55 mmol	(pg) N
B ₈ O ₁₅ 5-		6,02 mmol	/ (eq)
Σ Anionenăquivalente		8713 mmol	/I (eq)
Relative Abweichung		0,00 9	§ .

-0,45

Labor für Radionukildanalytik Radiologische Gutachten Consulting

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750148

Proben-Nr.: 19-1926/05

Relative Abweichung

Messzeitraum 01.10.2019 bis 15.10.2019 P.750148

P 750148			Bestimm
Parameter	Verfahren	Messwert Dim.	grenze
Natrium	K-UTEC 110: 2016-03	6,07 mol/kmol Hy	0,0039
Kalium	K-UTEC 110: 2016-03	4,59 mol/kmol H ₂	0,0032
Magnesium	K-UTEC 112: 2016-03	74,12 mol/kmol H _e	0,0074
Calcium	K-UTEC 6: 2016-04	0,008 mol/kmol H ₂	0,0004
Chlorid	K-UTEC 114: 2016-03	146,85 mol/kmol H ₂	0,0152
Sulfat	K-UTEC 104: 2016-04	5,89 mol/kmol H ₂ /	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*		
Na*		337 mmol/t (eq)	
K*		255 mmol/l (eq)	
Mg ² *		8229 mmol/t (eq)	
Ca ²⁺		0,91 mmol/l (eq)	
Σ Kationenäquivalente		8822 mmol/l (eq)	j .
CI		8152 mmol/l (eq.)	
SO ₄ ² ·		654 mmol/l (eq)	
HCO ₃		1,59 mmol/l (eq)	
Br'		48,81 mmol/l (eq)	
B ₈ O ₁₅ ⁵		5,42 mmol/l (eq)	
Σ Anionenäguivalente		8861 mmol/l (eq	

Seite 6 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: L 750179

Proben-Nr.: 19-1926/06

Messzeitraum 01.10.2019 bis 15.10.2019

L 750179

				Bestimm
Parameter	Verfahren	Messwert	Dim.	grenze
Natrium	K-UTEC 110: 2016-03	3,69	mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	1,78	mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	83,76	mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,012	mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	162,10	mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	4,33	mol/kmol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		205	mmol/l (eq)	
K ⁺		99	mmol/L(eq)	
Mg ²⁺		9298	mmol/l (eq)	
Ca ²⁺		1,39	mmol/l (eq)	
Σ Kationenāquivalente		9604	mmol/l (eq)	
CI		8998	mmol/l (eq)	
SO ₄ ² ·		481	mmol/l (eq)	
HCO ₃		0,06	mmol/l (eq)	
Br'		102,12	(pe) Nomm	
B ₈ O ₁₅ 6-		11,10	mmol/l (eq)	
Σ Anionenäquivalente		9592	mmol/I (eq)	
Relative Abweichung		0,12	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750184

Proben-Nr.: 19-1926/07

Messzeitraum 01.10.2019 bis 15.10.2019 P 750184

P /50184			Bestimm
Parameter	Verfahren	Messwert Dim.	
Natrium	K-UTEC 110: 2016-03	4,63 mol/kmol	4,0 0,0039
Kalium	K-UTEC 110: 2016-03	2,76 mol/kmol	4 ₀ 0,0032
Magnesium	K-UTEC 112: 2016-03	80,79 mol/kmol	H ₂ O 0,0074
Calcium	K-UTEC 6: 2016-04	0,009 mol/kmol	H ₂ O 0,0004
Chlorid	K-UTEC 114: 2016-03	154,98 mol/kmol	40 0,0152
Sulfat	K-UTEC 104: 2016-04	5,98 mol/kmol	H ₂ O 0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*		
Na*		257 mmol/t (e	eq)
K ⁺		153 mmol/L(e	eq)
Mg ² *		8969 mmol/l (e	eq)
Ca ²⁺		0,98 mmol/l (e	(p)
Σ Kationenäquivalente		9380 mmol/l (eq)
CI		8603 mmot/l (e	(Q)
SO ₄ ² ·		664 mmol/t (e	(pq)
HCO ₃		0,04 mmol/l (e	(pe
Br		64,58 mmol/l (e	eq)
B ₈ O ₁₅ 5-		13,04 mmot/t (e	rq)
Σ Anionenăquivalente		9345 mmol/l (eq)
Relative Abweichung		0,38 %	

Seite 8 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750153

Proben-Nr.: 19-1926/08

Messzeitraum 01.10.2019 bis 15.10.2019 P.750153

P.750153			Bestimm
Parameter	Verfahren	Messwert Dim.	grenze
Natrium	K-UTEC 110: 2016-03	6,07 mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	4,46 mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	74,86 mot/kmot H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,012 mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	147,87 mot/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	5,72 mol/kmol H ₂ O	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*		
Na*		337 mmol/l (eq)	
K*		248 mmol/l (eq)	
Mg ² *		8311 mmol/l (eq)	
Ca ²⁺		1,35 mmol/l (eq)	
Σ Kationenäquivalente		8897 mmol/l (eq)	
CI		8208 mmol/l (eq.)	
SO ₄ ² ·		635 mmol/l (eq)	
HCO ₃		1,08 mmol/l (eq)	
Br		57,94 mmol/l (eq.)	
B ₈ O ₁₅ 5-		6,85 mmol/l (eq)	
Σ Anionenăquivalente		8909 mmol/l (eq)	
Relative Abweichung		-0,14 %	

Seite 9 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage C-PL-14237-01-00 aufgetührten Akkrediterungsumfang.

19-1926-1 Prüfbericht-Nr.:

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750154 Proben-Nr.: 19-1926/09

Messzeitraum 01.10.2019 bis 15.10.2019 P 750154

P /50154	Wasseria	*************	Die	Bestimm
Parameter	Verfahren	Messwert		grenze
Natrium	K-UTEC 110: 2016-03		mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110; 2016-03		mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03		mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,006	mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	142,79	mol/kmol HyO	0,0152
Sulfat	K-UTEC 104: 2016-04	7,52	mol/kmol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		401	mmol/l (eq)	
K ⁺		361	mmol/L(eq)	
Mg ² *		8056	mmol/L(eq)	
Ca ²⁺		0,66	mmol/l (eq)	
Σ Kationenäquivalente		8818	mmol/I (eq)	
CI		7926	(pe) Nomm	
SO ₄ ² ·		835	mmol/l (eq)	
HCO ₃		1,92	mmol/l (eq)	
Br		50,06	(pe) Nomm	
B ₈ O ₁₅ 5-		5,29	mmol/l (eq)	
Σ Anionenäquivalente		8818	mmol/I (eq)	
Relative Abweichung		0,00	%	

Seite 10 von 15

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750185

Proben-Nr.: 19-1926/10

Messzeitraum 01.10.2019 bis 15.10.2019

P 750185				54-27-E00500
Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	7,03	moi/kmol H₂O	0,0039
Kalium	K-UTEC 110: 2016-03	6,08	mol/kmal H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	74,86	mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,008	moVkmol H₂O	0,0004
Chlorid	K-UTEC 114: 2016-03	149,90	mol/kmol HyO	0,0152
Sulfat	K-UTEC 104: 2016-04	5,55	mol/lumol H ₂ O	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		390	mmol/l (eq)	
K⁺		338	mmol/L(eq)	
Mg ²⁺		8311	mmol/l (eq)	
Ca ²⁺		0,94	mmol/l (eq)	
Σ Kationenäquivalente		9040	mmol/l (eq)	
CI		8321	mmol/l (eq)	
SO ₄ ² ·		616	mmol/l (eq)	
HCO ₃		1,08	mmol/l (eq)	
Br'		49,56	mmol/l (pg)	
B ₈ O ₁₅		7,49	mmol/l (eq)	
Σ Anionenăquivalente		8995	mmol/l (eq)	
Relative Abweichung		0,49	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750189

Proben-Nr.: 19-1926/11

Messzeitraum 01.10.2019 bis 15.10.2019 P 750189

Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	6,98 m	noi/kmal H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	6,50 m	O ₂ H loma/loc	0,0032
Magnesium	K-UTEC 112: 2016-03	72,05 m	nol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,008 m	nol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	145,84 m	O ₂ H lomx/lon	0,0152
Sulfat	K-UTEC 104: 2016-04	5,40 m	O ₂ H formalition	0,0019
Ionenbilanzierung	DIN 38402-A62:2014-12*			
Na*		388	mmol/l (eq)	
K ⁺		361	mmol/l (eq)	
Mg ²⁺		7998	mmol/l (eq)	
Ca ²⁺		0.90	mmol/l (eq)	
Σ Kationenäquivalente		8747	mmol/I (eq)	
CI		8095	mmol/l (eq)	
SO ₄ ² ·		600	mmol/l (eq)	
HCO ₃		1,38	mmol/l (eq.)	
Br		47,56	mmol/l (pg)	
B ₈ O ₁₅ 5-		6,63	mmol/l (eq.)	
Σ Anionenăquivalente		8750 1	mmol/I (eq)	
Relative Abweichung		-0,03	%	

Labor für Radionukildanalytik Radiologische Gutachten Consulting

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der undersanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumläng.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750064

Proben-Nr.: 19-1926/12

Messzeitraum 01.10.2019 bis 15.10.2019

P 750064				D
Parameter	Verfahren	Messwert	Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	2,74 mc	ol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	0,86 mc	ol/kmol H _e O	0,0032
Magnesium	K-UTEC 112: 2016-03	91,17 mc	ol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,014 mc	ol/kmol H₂O	0,0004
Chlorid	K-UTEC 114: 2016-03	170,23 mc	OyH lomx/lo	0,0152
Sulfat	K-UTEC 104: 2016-04	7,24 mc	ol/kmol H ₂ O	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*			
Na*		152 m	nmol/l (eq)	
K ⁺		48 m	nmol/L(eq)	
Mg ²⁺		10121 п	nmol/l (eq)	
Ca ²⁺		1,51 m	nmol/l (eq)	
Σ Kationenäquivalente		10323 m	nmol/I (eq)	
CI		9449 m	nmol/l (eq)	
SO ₄ ² ·		804 m	nmol/l (eq)	
HCO ₃		0,77 m	nmol/l (eq)	
Br'		62,95 п	(pe) Nomn	
B ₈ O ₁₅ 5-		9,64 m	nmol/l (eq)	
Σ Anionenăquivalente		10326 m	smol/I (eq)	
Relative Abweichung		-0,03	%	

Durch die DAKKS nach DIN EN ISOREC 17025 akkreditiertes Proflaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750177

Proben-Nr.: 19-1926/13

Messzeitraum 01.10.2019 bis 15.10.2019 P 750177

P. 750177			Bestimm
Parameter	Verfahren	Messwert Dim.	grenze
Natrium	K-UTEC 110: 2016-03	5,71 mol/kmol H	0,0039
Kalium	K-UTEC 110: 2016-03	3,59 mol/kmol H	0,0032
Magnesium	K-UTEC 112: 2016-03	78,57 mot/kmot H	0,0074
Calcium	K-UTEC 6: 2016-04	0,014 mot/kmol H	0,0004
Chlorid	K-UTEC 114: 2016-03	150,92 mol/kmol H	0,0152
Sulfat	K-UTEC 104: 2016-04	6,90 mol/lumol H	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*		
Na*		317 mmol/l (eq) ·
K ⁺		199 mmol/l (eq)
Mg ² *		8722 mmol/l (eq)
Ca ²⁺		1,55 mmol/l (eq)
Σ Kationenäquivalente		9240 mmol/l (ed	Ú
CI		8377 mmot/l (eq)
SO ₄ ² ·		766 mmol/l (eq)
HCO ₃		1,23 mmol/l (eq	0
Br		51,69 mmol/l (eq	0
B ₈ O ₁₅ 5-		6,55 mmol/l (eq	0
Σ Anionenäquivalente		9203 mmol/l (ed	Û
Relative Abweichung		0,41 %	

Durch die DAMS nach DIN EN ISO/IEC 17025 altkreditiertes Profaboratorium.

Die Akkreditierung gilt nur für den in der Unundenanlage D-PL-14237-01-00 aufgeführten Akkreditierungsumfang.

Prüfbericht-Nr.: 19-1926-1

Betreff: Lösungsuntersuchung

Probenart: Salzlösung Probenbez.: P 750039

Proben-Nr.: 19-1926/14

Messzeitraum 01.10.2019 bis 15.10.2019 P 750039

Parameter	Verfahren	Messwert Dim.	Bestimm grenze
Natrium	K-UTEC 110: 2016-03	4,34 mol/kmol H ₂ O	0,0039
Kalium	K-UTEC 110: 2016-03	2,17 mol/kmol H ₂ O	0,0032
Magnesium	K-UTEC 112: 2016-03	80,05 mol/kmol H ₂ O	0,0074
Calcium	K-UTEC 6: 2016-04	0,014 mol/kmol H ₂ O	0,0004
Chlorid	K-UTEC 114: 2016-03	152,44 mol/kmol H ₂ O	0,0152
Sulfat	K-UTEC 104: 2016-04	6,70 mol/kmol H ₂ O	0,0019
lonenbilanzierung	DIN 38402-A62:2014-12*		
Na*		241 mmol/t (eq)	
K ⁺		121 mmol/l (eq.)	
Mg ²⁺		8887 mmol/l (eq)	
Ca2+		1.55 mmel4 (ap)	

Control of the contro	121	minon (ed)
Mg ²⁺	8887	mmol/l (eq)
Ca ²⁺	1,55	mmol/l (eq)
Σ Kationenāquivalente	9250	mmol/l (eq)
CIT .	8462	(pe) Nomm
SO ₄ ² ·	743	mmol/l (eq)
HCO ₃	0,00	mmol/l (eq)
Br	53,81	(pe) Nomm
B ₈ O ₁₅ ⁶	6,33	mmol/l (eq)
Σ Anionenăquivalente	9265	mmol/I (eq)
Relative Abweichung	-0,16	%

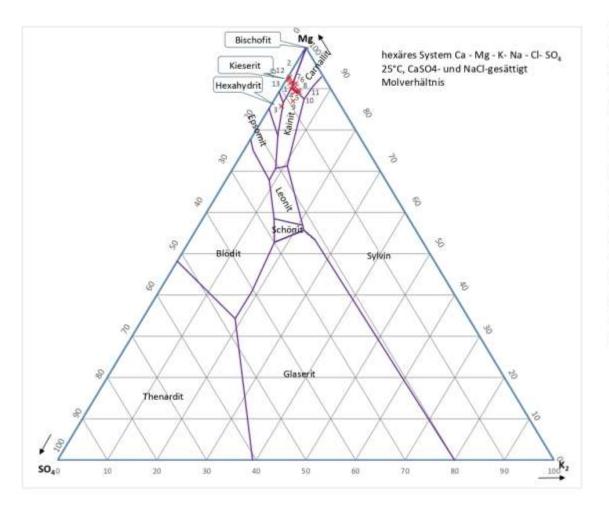
Sondershausen, den 18.10.2019

Laborleiter

nicht akkreditierte Parameter

n.n. Messergebnis ist unterhalb Bestimmungsgrenze

Dim Dimension


TS bezogen auf Trockensubstanz

Umrechnung de	er Konzentra	ationen von	g/l in Jäne	cke-Koordin	naten
	19-1926/01	19-1926/02	19-1926/03	19-1926/04	19-1926/05
	P 750010	P 750009	P 750061	P 750040	P 750148
MgSO ₄ g/l	45,5	45,7	74,6	40,8	39,2
MgCl ₂ g/l	398,0	448,0	361,0	349,0	359,0
KCl g/l	8,5	2,9	16,9	21,4	19,0
NaCl g/l	12,8	7,8	18,8	21,1	19,7
H₂O g/l	889,0	863,0	851,0	891,0	889,0
Temp	25	25	25	25	25
Dichte	1,329	1,338	1,328	1,308	1,308
MgSO ₄ g/1000g	51,2	53,0	87,7	45,8	44,1
MgCl ₂ g/1000g	447,7	519,1	424,2	391,7	403,8
KCl g/1000g	9,5	3,3	19,9	24,0	21,4
NaCl g/1000g	14,4	9,0	22,1	23,7	22,2
MgSO ₄ m/100m	0,77	0,79	1,31	0,69	0,66
MgCl ₂ m/100m	8,47	9,82	8,03	7,41	7,64
K ₂ Cl ₂ m/100m	0,12	0,04	0,24	0,29	0,26
Na ₂ Cl ₂ m/100m	0,22	0,14	0,34	0,36	0,34
Zw.Summe:	10,12	11,45	10,89	9,07	9,22
S0 ₄	7,6	6,9	12,0	7,6	7,2
Mg	91,3	92,7	85,7	89,2	90,0
K ₂	1,1	0,4	2,2	3,2	2,8
MgS0 ₄	120,369	120,369	120,369	120,369	120,369
MgCl ₂	95,2106	95,2106	95,2106	95,2106	95,2106
K ₂ Cl ₂	149,102	149,102	149,102	149,102	149,102
Na ₂ Cl ₂	116,88512	116,88512	116,88512	116,88512	116,88512
H₂O	18,0153	18,0153	18,0153	18,0153	18,0153

Umrechnung de	er Konzentra	ationen von	g/l in Jäne	cke-Koordin	naten
		19-1926/07			
	L 750179	P 750184	P 750153	P 750154	P 750185
MgSO ₄ g/l	28,9	40,0	38,2	50,2	37,1
MgCl ₂ g/l	414,0	391,0	363,0	341,0	362,0
KCl g/l	7,4	11,4	18,5	26,9	25,2
NaCl g/l	12,0	15,0	19,7	23,4	22,8
H₂O g/l	895,0	894,0	871,0	883,0	861,0
Temp	25	25	25	25	25
Dichte	1,320	1,321	1,310	1,310	1,305
MgSO ₄ g/1000g	32,3	44,7	43,9	56,9	43,1
MgCl ₂ g/1000g	462,6	437,4	416,8	386,2	420,4
KCl g/1000g	8,2	12,8	21,2	30,5	29,3
NaCl g/1000g	13,4	16,8	22,6	26,5	26,5
MgSO ₄ m/100m	0,48	0,67	0,66	0,85	0,64
MgCl ₂ m/100m	8,75	8,28	7,89	7,31	7,96
K ₂ Cl ₂ m/100m	0,10	0,15	0,26	0,37	0,35
Na ₂ Cl ₂ m/100m	0,21	0,26	0,35	0,41	0,41
Zw.Summe:	9,82	9,77	9,46	9,38	9,60
S0 ₄	4,9	6,9	6,9	9,1	6,7
Mg	94,1	91,6	90,3	87,0	89,6
K ₂	1,0	1,6	2,7	3,9	3,7
MgS0 ₄	120,369	120,369	120,369	120,369	120,369
MgCl ₂	95,2106	95,2106	95,2106	95,2106	95,2106
K ₂ Cl ₂	149,102	149,102	149,102	149,102	149,102
Na ₂ Cl ₂	116,88512	116,88512	116,88512	116,88512	116,88512
H₂O	18,0153	18,0153	18,0153	18,0153	18,0153

Umrechnung de	er Konzentra	ationen von	g/l in Jäned	cke-Koordinater
		19-1926/12		
	P 750189	P 750064	P 750177	
MgSO ₄ g/l	36,1	48,3	46,0	
MgCl ₂ g/l	350,0	440,0	375,0	
KCl g/l	26,9	3,5	14,9	
NaCl g/l	22,6	8,9	18,5	
H₂O g/l	874,0	870,0	883,0	
Temp	25	25	25	
Dichte	1,304	1,353	1,316	
MgSO ₄ g/1000g	41,3	55,5	52,1	
MgCl ₂ g/1000g	400,5	505,7	424,7	
KCl g/1000g	30,8	4,1	16,9	
NaCl g/1000g	25,9	10,2	21,0	
MgSO ₄ m/100m	0,62	0,83	0,78	
MgCl ₂ m/100m	7,58	9,57	8,04	
K ₂ Cl ₂ m/100m	0,37	0,05	0,20	
Na ₂ Cl ₂ m/100m	0,40	0,16	0,32	
Zw.Summe:	9,19	11,28	9,80	
S0 ₄	6,7	7,4	8,0	
Mg	89,2	92,2	90,0	
K ₂	4,0	0,4	2,1	
MgS0 ₄	120,369	120,369	120,369	
MgCl ₂	95,2106	95,2106	95,2106	
K ₂ Cl ₂	149,102	149,102	149,102	
Na ₂ Cl ₂	116,88512	116,88512	116,88512	
				-
H ₂ O	18,0153	18,0153	18,0153	

IAF - Radioökologie GmbH

11.	1	Legende	Te.
Nr.		Probe	Datum
1	P 750010	19-1926/01	
2	P 750009	19-1926/02	
3	P 750061	19-1926/03	
4	P 750040	19-1926/04	
5	P 750148	19-1926/05	
6	L 750179	19-1926/06	
7	P 750184	19-1926/07	
8	P 750153	19-1926/08	
9	P 750154	19-1926/09	
10	P 750185	19-1926/10	
11	P 750189	19-1926/11	
12	P 750064	19-1926/12	
13	P 750177	19-1926/13	1
			3
			3
	-		

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Anhang D - Ergebnisse der chemisch-physikalischen Analytik, Technische Universität Clausthal, Prüfberichte P750043, P750071 und P750084.

Auftraggeber: BGE Bundesgesellschaft für Endlagerung mbH

Eschenstraße 55 31224 Peine

Projektname: Beprobung und Analyse von Salzlösungen

in der Schachtanlage Asse II im Jahr 2019

Projektnummer: 190920-02

Auftragnehmer: IAF-Radioökologie GmbH

Autor: Dr. rer. nat.

Dr. rer. nat. habil.

Radeberg, den 24.07.2020

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-11201-01-00

Geschäftsführer

Wilhelm-Rönsch-Str. 9 01454 Radeberg Tel. +49 (0) 3528 48730-0 Fax +49 (0) 3528 48730-22 E-Mail info@iaf-dresden.de Geschäftsführer: Dr. rer. nat. habil. Hartmut Schulz Dr. rer. nat. Christian Kunze Dipl.-Ing. (BA) René Baumert Handelsregister: HRB 9185 Amtsgericht Dresden Bankverbindung: HypoVereinsbank Dresden IBAN: DE92 8502 0086 5360 1794 29 SWIFT (BIC): HYVEDEMM496

Anhang D

Ergebnisse der chemisch-physikalischen Analytik, Technische Universität Clausthal, Prüfberichte P750043, P750071 und P750084.

Institut für Endlagerforschung

Fachbereich Mineralogie, Geochemie, Salzlagerstätten

Ergebnisprotokoll Lösungsanalytik

Datum: 28.10.2019

Probenbezeichnung: P750043/20190916/01 vom 16.09.2019 Interne Nr./Flaschen-Nr.: IAF_2

Parameter	Wert	Bestimmungsgrenze	Einheit	Methode
Na	2.0	0.1	g/100g	IC
K	1.93	0.023	g/100g	IC
Ca	0.006	0.003	g/100g	IC
Mg	5.27	0.02	g/100g	IC
Cl	17.5	1.3	g/100g	IC
Br	0.211	0.006	g/100g	IC
SO_4	4.13	0.05	g/100g	IC
NH_4	0.083	0.002	g/100g	IC
NO_3	0.014	0.003	g/100g	IC
E-1				
Li	6.6	0.1	μg/g	ICP-MS
В	44.3	0.5	μg/g	ICP-MS
Al	< 0.5	0.5	μg/g	ICP-MS
PO ₄	<5.0	5	μg/g	ICP-MS
Fe	<5.0	5	μg/g	ICP-MS
Mn	12.4	0.05	μg/g	ICP-MS
Cu	1.62	0.01	μg/g	ICP-MS
Zn	42.4	0.01	μg/g	ICP-MS
Br	2296	10	μg/g	ICP-MS
Rb	21.9	0.01	μg/g	ICP-MS
Sr	0.019	0.005	μg/g	ICP-MS
Cd	< 0.001	0.001 0.002	μg/g	ICP-MS ICP-MS
Cs Ba	0.240	0.002	μg/g	ICP-MS
Pb	< 0.01 4.83	0.01	μg/g μg/g	ICP-MS
U		0.0005		ICP-MS
Si	<0.0005	5	μg/g μg/g	ICP-MS
Cr	<5.0	0.1	μg/g μg/g	ICP-MS
Ni Ni	< 0.1 0.074	0.008	μg/g μg/g	ICP-MS
Co	0.074	0.008		ICP-MS
CU	0.013	0.001	μg/g	101-1419

Bemerkungen: IC = Ionenchromatographie. ICP-MS = Massenspektrometrie mit induktiv gekoppeltem Plasma

Kursiv/ Fett: Gehalte unterhalb der dort angegebenen Bestimmungsgrenze

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik Radiologische Gutachten Consulting

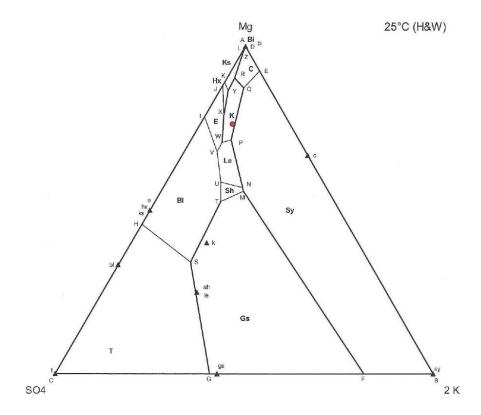
Parameter	Wert	Einheit
Na	25.6	g/L
K	24.7	g/L
Ca	0.077	g/L
Mg	67.4	g/L
CI	224	g/L
Br	2.70	g/L
SO ₄	52.8	g/L
NH_4	1.06	g/L
NO_3	0.179	g/L
Li	8.4	mg/L
В	56.7	mg/L
Al	<0.6	mg/L
PO ₄	< 6.4	mg/L
Fe	< 6.4	mg/L
Mn	15.9	mg/L
Cu	2.07	mg/L
Zn	54.2	mg/L
Br	2937	mg/L
Rb	28.0	mg/L
Sr	0.024	mg/L
Cd	< 0.001	mg/L
Cs	0.307	mg/L
Ba	<0.01	mg/L
Pb	6.18	mg/L
U	< 0.0006	mg/L
Si	<6.4	mg/L
Cr	<0.1	mg/L
Ni	0.095	mg/L
Со	0.017	mg/L

 $Kursiv/Fett: Gehalte \ unterhalb \ der \ auf \ Blatt \ 1 \ angegebenen \ Bestimmungsgrenze. \ umgerechnet \ auf \ g/L \ bzw. \ mg/L \ bzw. \ hzw. \$

Seite 2 von 4

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik Radiologische Gutachten Consulting


1.279	kg/L
1.279	kg/L
34.5	°C
0.07	Aff. (kcal)
-2.6	Aff. (kcal)
-0.80	Aff. (kcal)
-1.4	Aff. (kcal)
-0.32	Aff. (kcal)
-0.69	Aff. (kcal)
-0.06	Aff. (kcal)
-0.38	Aff. (kcal)
-0.46	Aff. (kcal)
-1.0	Aff. (kcal)
-0.80	Aff. (kcal)
1.3	Aff. (kcal)
-0.26	Aff. (kcal)
	1.279 34.5 0.07 -2.6 -0.80 -1.4 -0.32 -0.69 -0.06 -0.38 -0.46 -1.0 -0.80 1.3

Bemerkungen: Berechnet aus den gewichtsbezogenen Daten der Analyse (siehe S. 1) und der gemessenen Dichte (BGE). Dichteberechnung nach Ezrochi (1959). Bei den mittels EQ3NR berechneten Mineralsättigungen wird ab einer Affinität von -0.3 kcal eine Sättigung angenommen. Gesättigte Phasen sind fett gesetzt.

Parameter	Wert	Einheit
NaCl	65.2	g/L
KCl	47.2	g/L
MgCl ₂	213	g/L
Na ₂ SO ₄	0.0	g/L
K_2SO_4	0.0	g/L
MgSO ₄	66.2	g/L
CaSO ₄	0.262	g/L
CaCl ₂	0.0	g/L
$Mg_3B_8O_{15}$	0.262	g/L
H ₂ O	885	g/L

Seite 3 von 4

Probenbezeichnung: P750043/20190916/01 vom 16.09.2019. Darstellung im quinären System (Daten nach Harvie, C.E., Weare, J.H. 1980, Geochim. Cosmochim. Acta, 44 (1980), pp. 981–997)

Seite 4 von 4

Institut für Endlagerforschung

Fachbereich Mineralogie, Geochemie, Salzlagerstätten

Ergebnisprotokoll Lösungsanalytik

Datum: 28.10.2019

Probenbezeichnung: P750071/20190916/01 vom 16.09.2019 Interne Nr./Flaschen-Nr.: IAF_1

Parameter	Wert	Bestimmungsgrenze	Einheit	Methode
Na	0.3	0.1	g/100g	IC
K	0.244	0.023	g/100g	IC
Ca	0.010	0.003	g/100g	IC
Mg	8.08	0.02	g/100g	IC
Cl	23.3	1.3	g/100g	IC
Br	0.490	0.006	g/100g	IC
SO_4	1.12	0.05	g/100g	IC
NH_4	< 0.002	0.002	g/100g	IC
NO_3	0.032	0.003	g/100g	IC
Li	8.9	0.1	$\mu g/g$	ICP-MS
В	24.9	0.5	$\mu g/g$	ICP-MS
Al	<0.5	0.5	μg/g	ICP-MS
PO ₄	<5.0	5	μg/g	ICP-MS
Fe	<5.0	5	μg/g	ICP-MS
Mn	1.4	0.05	$\mu g/g$	ICP-MS
Cu	0.79	0.01	μg/g	ICP-MS
Zn	7.89	0.01	μg/g	ICP-MS
Br	5004	10	μg/g	ICP-MS
Rb	0.79	0.01	μg/g	ICP-MS
Sr	0.390	0.005	μg/g	ICP-MS
Cd	< 0.001	0.001	μg/g	ICP-MS
Cs	0.056	0.002	μg/g	ICP-MS
Ba	0.09	0.01	μg/g	ICP-MS
Pb	3.19	0.01	μg/g	ICP-MS
U	< 0.0005	0.0005	μg/g	ICP-MS
Si	<5.0	5	μg/g	ICP-MS
Cr	<0.1	0.1	μg/g	ICP-MS
Ni Ga	0.187	0.008	μg/g	ICP-MS
Co	0.005	0.001	$\mu g/g$	ICP-MS

Bemerkungen: IC = Ionenchromatographie, ICP-MS = Massenspektrometrie mit induktiv gekoppeltem Plasma

Kursiv/Fett: Gehalte unterhalb der dort angegebenen Bestimmungsgrenze

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik Radiologische Gutachten Consulting

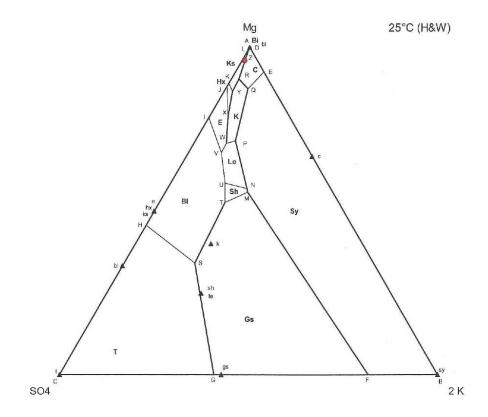
Parameter	Wert	Einheit
Na	4.0	g/L
K	3.22	g/L
Ca	0.132	g/L
Mg	107	g/L
Cl	308	g/L
Br	6.47	g/L
SO_4	14.8	g/L
NH ₄	<0.03	g/L
NO_3	0.422	g/L
Li	11.7	mg/L
В	32.9	mg/L
Al	< 0.7	mg/L
PO ₄	<6.6	mg/L
Fe	<6.6	mg/L
Mn	1.8	mg/L
Cu	1.04	mg/L
Zn	10.4	mg/L
Br	6605	mg/L
Rb	1.04	mg/L
Sr	0.515	mg/L
Cd	< 0.001	mg/L
Cs	0.074	mg/L
Ba	0.12	mg/L
Pb	4.21	mg/L
\mathbf{U}	< 0.0007	mg/L
Si	<6.6	mg/L
Cr	<0.1	mg/L
Ni	0.247	mg/L
Со	0.007	mg/L
Ni	0.247	mg/

Kursiv/Fett: Gehalte unterhalb der auf Blatt 1 angegebenen Bestimmungsgrenze. umgerechnet auf g/L bzw. mg/L

Seite 2 von 4

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik Radiologische Gutachten Consulting


Dichte berechnet	1.311	kg/L
Dichte (BGE)	1.320	kg/L
T (BGE)	34.2	°C
Anhydrit	0.77	Aff. (kcal)
Bischofit	-0.72	Aff. (kcal)
Bloedit	-2.8	Aff. (kcal)
Carnallit	-0.13	Aff. (kcal)
Epsomit	-0.77	Aff. (kcal)
Glauberit	-2.1	Aff. (kcal)
Halit	-0.09	Aff. (kcal)
Hexahydrit	-0.62	Aff. (kcal)
Kainit	-0.58	Aff. (kcal)
Kieserit	-0.24	Aff. (kcal)
Leonit	-3.8	Aff. (kcal)
Polyhalit	0.11	Aff. (kcal)
Sylvin	-0.81	Aff. (kcal)

Bemerkungen: Berechnet aus den gewichtsbezogenen Daten der Analyse (siehe S. 1) und der gemessenen Dichte (BGE). Dichteberechnung nach Ezrochi (1959). Bei den mittels EQ3NR berechneten Mineralsättigungen wird ab einer Affinität von -0.3 kcal eine Sättigung angenommen. Gesättigte Phasen sind fett gesetzt.

Parameter	Wert	Einheit
NaCl	10.1	g/L
KCl	6.13	g/L
$MgCl_2$	403	g/L
Na ₂ SO ₄	0.0	g/L
K_2SO_4	0.0	g/L
MgSO ₄	18.1	g/L
CaSO ₄	0.448	g/L
CaCl ₂	0.0	g/L
$Mg_3B_8O_{15}$	0.152	g/L
H ₂ O	884	g/L

Seite 3 von 4

Probenbezeichnung: P750071/20190916/01 vom 16.09.2019. Darstellung im quinären System (Daten nach Harvie, C.E., Weare, J.H. 1980, Geochim. Cosmochim. Acta, 44 (1980), pp. 981–997)

Seite 4 von 4

Institut für Endlagerforschung

Fachbereich Mineralogie, Geochemie, Salzlagerstätten

Ergebnisprotokoll Lösungsanalytik

Datum: 28.10.2019

Probenbezeichnung: P750084/20190916/01 vom 16.09.2019 Interne Nr./Flaschen-Nr.: IAF_3

Parameter	Wert	Bestimmungsgrenze	Einheit	Methode
Na	0.4	0.1	g/100g	IC
K	0.450	0.023	g/100g	IC
Ca	0.007	0.003	g/100g	IC
Mg	7.88	0.02	g/100g	IC
Cl	22.2	1.3	g/100g	IC
Br	0.385	0.006	g/100g	IC
SO_4	2.20	0.05	g/100g	IC
NH_4	0.005	0.002	g/100g	IC
NO_3	0.067	0.003	g/100g	IC
Li	0.0	0.1	uala	ICP-MS
В	9.0	0.1	μg/g	ICP-MS
Al	63.6	0.5	μg/g	ICP-MS
PO ₄	< 0.5	5	μg/g	ICP-MS
	5.7	5	μg/g	ICP-MS
Fe	69.0	0.05	μg/g	ICP-MS
Mn	13.1	0.03	μg/g	
Cu	0.78	0.01	μg/g	ICP-MS ICP-MS
Zn Br	54.0	10	μg/g	ICP-MS
БГ Rb	4010	0.01	μg/g	ICP-MS
Sr	2.23 0.377	0.005	μg/g μg/g	ICP-MS
Cd		0.003	μg/g μg/g	ICP-MS
Cs	< 0.001 0.159	0.001	μg/g μg/g	ICP-MS
Ba	0.139	0.002	μg/g μg/g	ICP-MS
Pb	4.92	0.01	μg/g μg/g	ICP-MS
U	0.0010	0.0005	μg/g μg/g	ICP-MS
Si	<5.0	5	μg/g μg/g	ICP-MS
Cr		0.1	μg/g μg/g	ICP-MS
Ni Ni	< 0.1 0.253	0.008	μg/g μg/g	ICP-MS
Co	0.233	0.001	μg/g μg/g	ICP-MS
Cu	0.030	0.001	MB/B	101-1415

Bemerkungen: IC = Ionenchromatographie. ICP-MS = Massenspektrometrie mit induktiv gekoppeltem Plasma

Kursiv/Fett: Gehalte unterhalb der dort angegebenen Bestimmungsgrenze

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik Radiologische Gutachten Consulting

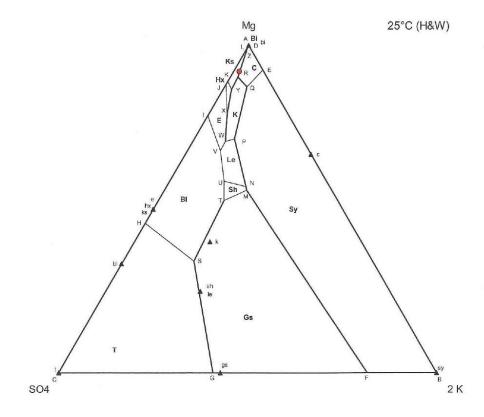
Parameter	Wert	Einheit
Na	5.3	g/L
K	5.94	g/L
Ca	0.092	g/L
Mg	104	g/L
CI	293	g/L
Br	5.08	g/L
SO ₄	29.0	g/L
NH_4	0.066	g/L
NO_3	0.884	g/L
Li	11.9	mg/L
В	83.9	mg/L
Al	<0.7	mg/L
PO ₄	7.5	mg/L
Fe	91.0	mg/L
Mn	17.3	mg/L
Cu	1.03	mg/L
Zn	71.2	mg/L
Br	5289	mg/L
Rb	2.94	mg/L
Sr	0.497	mg/L
Cd	< 0.001	mg/L
Cs	0.210	mg/L
Ba	0.08	mg/L
Pb	6.49	mg/L
U	0.0013	mg/L
Si	<6.6	mg/L
Cr	<0.1	mg/L
Ni	0.334	mg/L
Co	0.040	mg/L

Kursiv/Fett: Gehalte unterhalb der auf Blatt 1 angegebenen Bestimmungsgrenze. umgerechnet auf g/L bzw. mg/L

Seite 2 von 4

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik Radiologische Gutachten Consulting


Dichte berechnet	1.314	kg/L
Dichte (BGE)	1.319	kg/L
T (BGE)	32.9	°C
Anhydrit	0.81	Aff. (kcal)
Bischofit	-0.89	Aff. (kcal)
Bloedit	-1.8	Aff. (kcal)
Carnallit	-0.01	Aff. (kcal)
Epsomit	-0.39	Aff. (kcal)
Glauberit	-1.4	Aff. (kcal)
Halit	-0.03	Aff. (kcal)
Hexahydrit	-0.27	Aff. (kcal)
Kainit	-0.02	Aff. (kcal)
Kieserit	-0.01	Aff. (kcal)
Leonit	-2.4	Aff. (kcal)
Polyhalit	1.6	Aff. (kcal)
Sylvin	-0.52	Aff. (kcal)

Bemerkungen: Berechnet aus den gewichtsbezogenen Daten der Analyse (siehe S. 1) und der gemessenen Dichte (BGE). Dichteberechnung nach Ezrochi (1959). Bei den mittels EQ3NR berechneten Mineralsättigungen wird ab einer Affinität von -0.3 kcal eine Sättigung angenommen. Gesättigte Phasen sind fett gesetzt.

Parameter	Wert	Einheit
NaCl	13.4	g/L
KCl	11.3	g/L
$MgCl_2$	378	g/L
Na ₂ SO ₄	0.0	g/L
K_2SO_4	0.0	g/L
MgSO ₄	36.0	g/L
CaSO ₄	0.313	g/L
CaCl ₂	0.0	g/L
$Mg_3B_8O_{15}$	0.387	g/L
H_2O	882	g/L

Seite 3 von 4

Probenbezeichnung: P750084/20190916/01 vom 16.09.2019. Darstellung im quinären System (Daten nach Harvie, C.E., Weare, J.H. 1980, Geochim. Cosmochim. Acta, 44 (1980), pp. 981–997)

Seite 4 von 4

IAF - Radioökologie GmbH

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Beprobung und Analyse von Salzlösungen in der Schachtanlage Asse II im Jahr 2019

Anhang E – BfS: Externe Qualitätskontrolle im Rahmen der Charakterisierung von Salzlösungen in der Schachtanlage Asse II

Auftraggeber: BGE Bundesgesellschaft für Endlagerung mbH

Eschenstraße 55 31224 Peine

Projektname: Beprobung und Analyse von Salzlösungen

in der Schachtanlage Asse II im Jahr 2019

Projektnummer: 190920-02

Auftragnehmer: IAF-Radioökologie GmbH

Autor: Dr. rer. nat.

Dr. rer. nat. habil.

Radeberg, den 24.07.2020

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-11201-01-00

Geschäftsführer

Wilhelm-Rönsch-Str. 9 01454 Radeberg Tel. +49 (0) 3528 48730-0 Fax +49 (0) 3528 48730-22 E-Mail info@iaf-dresden.de Geschäftsführer: Dr. rer. nat. habil. Hartmut Schulz Dr. rer. nat. Christian Kunze Dipl.-Ing. (BA) René Baumert Handelsregister: HRB 9185 Amtsgericht Dresden Bankverbindung: HypoVereinsbank Dresden IBAN: DE92 8502 0086 5360 1794 29 SWIFT (BIC): HYVEDEMM496

Anhang E

BfS: Externe Qualitätskontrolle im Rahmen der Charakterisierung von Salzlösungen in der Schachtanlage Asse II

Externe Qualitätskontrolle im Rahmen der Charakterisierung von Salzlösungen in der Schachtanlage Asse II

Juli 2020 UR - 01 / 2020

Abteilung Umweltradioaktivität

Köpenicker Allee 120 – 130 10318 Berlin

Der Bericht ist unter der Nummer UR - 01 / 2020 in der internen Berichtsdokumentation der Abteilung Umweltradioaktivität (UR) des Bundesamtes für Strahlenschutz registriert. Diese Registriernummer hat nur internen Charakter und bedeutet nicht die Freigabe zur Veröffentlichung.

Inhaltsverzeichnis

1	Einl	eitung	5
2	Fest	tlegung des externen QS-Messprogramms	7
3	Tec	hnische Durchführung der Probeentnahme	9
4	Aus	wertung und Ergebnisse	13
	4.1	Messstelle L658008	13
	4.2	Messstelle P725019	14
	4.3	Messstelle P750043	14
	4.4	Messstelle P750084	15
	4.5	Messstelle P750185	16
	4.6	Messstelle P750189	16
5	Disl	kussion der Ergebnisse	17
	5.1	Grundlegende Definitionen	17
	5.2	Durchführung des Vergleichs	
	5.3	Diskussion der Ergebnisse für K-40	20
	5.4	Diskussion der Ergebnisse für künstliche Gammastrahler	20
	5.5	Diskussion der Ergebnisse für künstliche Betastrahler	21
	5.6	Diskussion der Ergebnisse für die natürlichen Blei- und Radiumisotope	22
	5.7	Diskussion der Ergebnisse für die Alphastrahler	24
6	Zus	ammenfassung	26
7	Lito	ratur	27

Abbildungsverzeichnis

Abb. 1:	Bestimmung der In-situ-Parameter an Salzlösungsproben
Abb. 2:	Probeentnahme an der Messstelle L658008 am Abbau 3/658 auf der 658-m-Sohle
Abb. 3:	Probeentnahme an der Messstelle P725019, Erkundungsbohrung 08/725, auf der 725-m-Sohle.
Abb. 4:	Probeentnahme an der Messstelle P750043, Zugang zur Einlagerungskammer 8E, auf der 750-m-Sohle
Abb. 5:	Probeentnahme an der Messstelle P750084, vor Einlagerungskammer 12, auf der 750-m-Sohle.
Abb. 6:	Probeentnahme an der Messstelle P750185, Erkundungsbohrung 11/750, auf der 750-m-Sohle
Abb. 7:	Probeentnahme an der Messstelle P750189, Erkundungsbohrung 11.1/750, auf der 750 m-Sohle
Abb. 8:	Relativer Streubereich in Abhängigkeit der Aktivitätskonzentration für ausgewählte natürliche Radionuklide im Ringversuch Trinkwasser [15]
Tabeller	nverzeichnis
Tabelle 1:	Messergebnisse für die Messstelle L658008
Tabelle 2:	Messergebnisse für die Messstelle P725019
Tabelle 3:	Messergebnisse der Messstelle P750043
Tabelle 4:	Messergebnisse der Messstelle P750084
Tabelle 5:	Messergebnisse der Messstelle P750185
Tabelle 6:	Messergebnisse der Messstelle P750189
Tabelle 7:	Ergebnisse für K-40
Tabelle 8:	Ergebnisse für künstliche Gammastrahler
Tabelle 9:	Ergebnisse für künstliche Betastrahler
Tabelle 10:	Ergebnisse für die Blei- und Radiumisotope
Tabelle 11	Ergobnisso für die Alphastrabler

1 Einleitung

Die Schachtanlage Asse II ist ein ehemaliges Salzbergwerk in Niedersachsen, in dem in den Jahren 1909 bis 1964 Kali- und Steinsalze abgebaut wurden. Das Bergwerk liegt im gleichnamigen Höhenzug Asse zehn Kilometer südöstlich von Wolfenbüttel.

In den Jahren 1965 bis 1967 wurde die Schachtanlage Asse II zur Erforschung der Einlagerung radioaktiver Abfälle umgebaut. Die als Forschung deklarierte Einlagerung erfolgte im Zeitraum zwischen 1967 und 1978. Im genannten Zeitraum wurden 125.787 Gebinde (ca. 47.000 m³) mit schwach- und mittelradioaktiven Abfällen (LAW und MAW) eingelagert [1].

Im November 2008 wurde durch Beschluss des Bundeskabinetts entschieden, dass die Schachtanlage Asse II zukünftig rechtlich als Endlager zu behandeln ist und dass für den Betrieb und die Stilllegung der Schachtanlage die für Anlagen des Bundes nach § 9a Abs. 3 AtG geltenden Vorschriften anzuwenden sind. In diesen Zusammenhang ist der Betrieb der Schachtanlage Asse II zum 1. Januar 2009 auf das für die Endlagerung radioaktiver Abfälle in Deutschland zuständige Bundesamt für Strahlenschutz (BfS) übergegangen. Das BfS war als Betreiber sowohl für die Schließung der Schachtanlage Asse II im Rahmen eines atomrechtlichen Planfeststellungsverfahrens gemäß § 9b AtG als auch für den Offenhaltungsbetrieb der Anlage bis zur Stilllegung verantwortlich. Hierzu bediente sich das BfS der im Eigentum des Bundes stehenden Asse-GmbH als Betriebsführerin.

Am 25. April 2017 sind die Betreiberaufgaben für die Schachtanlage Asse II, das Endlager Konrad und das Endlager Morsleben auf die Bundesgesellschaft für Endlagerung mbH (BGE) übertragen worden. Die Weichen für den Betreiberwechsel stellte das "Gesetz zur Neuordnung der Organisationsstruktur im Bereich der Endlagerung", das am 30. Juli 2016 in Kraft trat [2].

In der Schachtanlage Asse II treten auf verschiedenen Sohlen Salzlösungen auf, die radioaktive Kontaminationen aufweisen können. Die Salzlösungen sind wie folgt zu unterscheiden:

- Lösungen, die dem Grubengebäude zutreten und kontinuierlich auf den Sohlen 553 m, 574 m, 658 m, 725 m und 750 m im Umfang von ca. 12,4 m³ pro Tag gefasst werden. Davon werden rd. 11,8 m³ pro Tag auf der 658-m-Sohle aufgefangen [3]. Die Zutrittslösung ist primär kontaminationsfrei und wird erst beim Kontakt mit der Grubenluft durch in der Grubenluft vorhandene volatile Radionuklide, insbesondere Tritium (H-3) kontaminiert. Des Weiteren kann es beim Kontakt der Zutrittslösungen auf der 750-m-Sohle mit radioaktiven Kontaminationen in Strecken und Einlagerungskammern (ELK) bzw. den Abfällen selbst zum Aktivitätseintrag kommen.
- Lösungen, die aus versetzten Kaliabbauen in die zugänglichen Grubenbereiche austreten.

Zur Gewährleistung des betrieblichen Strahlenschutzes in der Schachtanlage Asse II wurden im Jahre 2009 unter Beteiligung des BfS und in den Jahren 2011 [6], 2013 [7], 2015 [8] sowie 2017 [9] die radiologische Charakterisierung der Salzlösungen und Salze federführend vom BfS durchgeführt.

Zur Absicherung der Ergebnisse wurde die Beprobung und Analyse der gefassten Salzlösungen zunächst jährlich und seit dem Jahr 2011 zweijährlich wiederholt [4, 5, 6, 7, 8, 9].

Mit dem Übergang der Betreiberaufgaben an die BGE waren die formalen Voraussetzungen für eine Fortführung der radiologischen Charakterisierung der Salzlösungen und Salze für die Schachtanlage II durch das BfS im Rahmen interner Überprüfungen nicht mehr gegeben. Die Vergabe für die Beprobung und Analyse von Salzlösungen im Jahre 2019 erfolgte seitens der BGE über eine öffentliche Ausschreibung.

Auf Grund der langjährigen Erfahrungen bei der Analyse von schwierigen Probenmatrices in gesättigten Salzlösungen wurde das BfS für die Charakterisierungsmessungen im Jahre 2019 als unabhängiges Labor für die Qualitätssicherung (QS) an ausgewählten Salzlösungen gewonnen. Damit kam die BGE der Empfehlung aus dem Jahre 2017 nach [9], bei zukünftigen Charakterisierungsmessungen eine externe Qualitätssicherung (QS-Messprogramm) zu etablieren.

2 Festlegung des externen QS-Messprogramms

Im Rahmen eines gemeinsamen Treffens von Vertretern der BGE, des BfS und dem mit der Charakterisierung von Salzlösungen im Jahre 2019 beauftragten Labor IAF-Radioökologie GmbH (IAF) am 21. August 2019 erfolgten u. a. Festlegungen für das externe QS-Messprogramms [10].

Nachfolgende Festlegungen wurden getroffen:

- Das BfS bestimmt an sechs Salzlösungen die Aktivitätskonzentrationen für ausgewählte Radionuklide. Die Messergebnisse vergleicht das BfS als unabhängige Institution mit den IAF-Messergebnissen und bewertet die Vergleichbarkeit der Ergebnisse in einem QS-Bericht. Der Bericht wird der BGE und dem Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) zur Verfügung gestellt.
- Der Vergleich der Ergebnisse erfolgt nur für Radionuklide, die von mindestens einem der beiden Labore nachgewiesen wurden (Werte oberhalb der Erkennungsgrenze).
- Die Probenahme der Salzlösung und deren Aliquotierung erfolgt in der Verantwortung der IAF. Bei der Probenahme und Aliquotierung der Salzlösungen wird ein Vertreter des BfS anwesend sein.
- Die Auswahl der sechs vom BfS zu untersuchenden Salzlösungen und die Festlegung der zu bestimmenden Radionuklide erfolgt durch die BGE, wobei schwernachweisbare Radionuklide präferiert werden.

Seitens der BGE wurden nachfolgend beschriebene Messstellen für das QS-Messprogramm ausgewählt:

<u>L658008</u>: Bei der Salzlösung von der Messstelle L658008 handelt es sich um eine NaCl-reiche Salzlösung, die nicht mit künstlichen Radionukliden kontaminiert ist. Die Messstelle L658008 befindet sich im Abbau 3/658 auf der 658-m-Sohle. Für den Vergleich vorgesehen waren alle in der Salzlösung gammaspektrometrisch nachweisbaren Radionuklide, wie z. B. Ra-224, Ra-228 und K-40, sowie die über radiochemische Methoden zu bestimmenden Radionuklide Pb-210, Po-210, Ra-226, Th-228 und Th-232.

<u>P725019</u>: Bei der Salzlösung von der Messstelle P725019 handelt es sich um eine NaCl- und MgCl₂-reiche Salzlösung, die nicht mit künstlichen Radionukliden kontaminiert ist. Die Messstelle P725019 ist die Erkundungsbohrung 08/725 im Pfeiler 2-3 auf der 725-m-Sohle. Für den Vergleich vorgesehen waren alle in der Salzlösung gammaspektrometrisch nachweisbaren Radionuklide, sowie die alphaspektrometrisch zu bestimmenden Uranisotope.

<u>P750043</u>: Bei der Salzlösung von der Messstelle P750043 handelt es sich um eine Salzlösung mit den Hauptbestandteilen MgCl₂, NaCl und KCl, die mit künstlichen Radionukliden kontaminiert ist. Bei der Messstelle P750043 handelt es sich um einen Schlitz in der Sohle vor dem Zugang zur Einlagerungskammer 8 auf der 750-m-Sohle. Die Messstelle ist aufgrund der Verfüllung der Strecke nicht mehr zugänglich. Die Beprobung erfolgte über eine Bohrung von der 679-m-Sohle. Für den Vergleich vorgesehen waren die in der Salzlösung gammaspektrometrisch nachweisbaren Radionuklide K-40 und Cs-137, sowie die alphaspektrometrisch zu bestimmenden Plutoniumisotope und Am-241 und die Betastrahler C-14 und Ni-63.

<u>P750084:</u> Bei der Salzlösung von der Messstelle P750084 handelt es sich um eine MgCl₂-reiche Salzlösung, die mit künstlichen Radionukliden kontaminiert ist. Die Messstelle P750084 ist eine Bohrung in der Sohle vor der Einlagerungskammer 12 in der nördlichen Richtstrecke nach Osten auf der 750-m-Sohle. Für den Vergleich vorgesehen waren alle in der Salzlösung gammaspektrometrisch nachweisbaren Radionuklide, sowie der Betastrahler Ni-63.

<u>P750185</u>: Bei der Salzlösung von der Messstelle P750185 handelt es sich um eine MgCl₂-reiche Salzlösung, die nicht mit künstlichen Radionukliden kontaminiert ist. Die Messstelle P750185 ist die Erkundungsbohrung 750-11 in der Nähe der Reicheltsümpfe auf der 750-m-Sohle. Für den Vergleich vorgesehen waren alle in der Salzlösung gammaspektrometrisch nachweisbaren Radionuklide, wie z. B. K-40 und Pb-210, sowie die über radiochemische Analysen zu bestimmenden Radionuklide Ra-226, Ra-228, Th-228 und Th-232.

<u>P750189</u>: Bei der Salzlösung von der Messstelle P750189 handelt es sich um eine MgCl₂-reiche Salzlösung, die nicht mit künstlichen Radionukliden kontaminiert ist. Die Messstelle P750189 ist die Erkundungsbohrung 750-11.1 in der Nähe der Reicheltsümpfe auf der 750-m-Sohle. Für den Vergleich vorgesehen waren alle in der Salzlösung gammaspektrometrisch nachweisbaren Radionuklide, wie z. B. K-40 und Pb-210, sowie die über radiochemische Methoden zu bestimmenden Radionuklide Ra-226, Ra-228, Th-228 und Th-232.

3 Technische Durchführung der Probeentnahme

Die Probeentnahme der Salzlösungen für die Charakterisierungsmessungen 2019 fand vom 16. September bis 18. September 2019 statt und erfolgte gemäß den Empfehlungen der Arbeitsanweisungen für die "Probenahme von salzhaltigen Lösungen in der Schachtanlage Asse II im Zusammenhang mit Charakterisierungsmessungen" [11, 12]. Verantwortlich für die Durchführung der Probeentnahme war die IAF. Beteiligt waren seitens der BGE die zuständigen Mitarbeiter aus den Bereichen der "Standortüberwachung", des "Betrieblichen Strahlenschutzes" sowie des "Laugenmanagements". Von der IAF beteiligten sich zwei Mitarbeiter an der Probeentnahme und das BfS war mit einem Mitarbeiter vor Ort vertreten.

Die Bestimmung der In-situ-Parameter Dichte, Temperatur, Leitfähigkeit und der pH-Wert für die jeweiligen Proben wurde von einem Mitarbeiter der "Standortüberwachung" am jeweiligen Probenahmeort durchgeführt (Abb. 1).

Abb. 1: Bestimmung der In-situ-Parameter an Salzlösungsproben.

Die für das QS-Messprogramm ausgewählten Messstellen konnten aus organisatorischen Gründen nicht nacheinander beprobt werden, sondern die Probenentnahme erfolgte nach einem von der BGE vorgeschlagenen, den Betriebsabläufen in der Schachtanlage Asse II angepassten, Probeentnahmeablaufplan.

Die nachfolgende Dokumentation der Probeentnahme entspricht nicht dem zeitlichen Ablauf der Probenahme, sondern orientiert sich an der Reihenfolge der Messstellen in den von der BGE und dem IAF festgelegten Vorgaben zur Probeentnahme.

In Abbildung 2 ist die Probeentnahme an der Messstelle P658008 dokumentiert. Die Probeentnahme erfolgte am 18. September 2019 beginnend ab 10:15 Uhr.

Abb. 2: Probeentnahme an der Messstelle L658008 am Abbau 3/658 auf der 658-m-Sohle.

Abbildung 3 zeigt die Probenahme an der Messstelle P725019 auf der 725-m-Sohle. Die Probeentnahme begann am 17. September 2019 um 08:15 Uhr.

Abb. 3: Probeentnahme an der Messstelle P725019, Erkundungsbohrung 08/725, auf der 725-m-Sohle.

Die Probeentnahme an der Messstelle P750043 erfolgte über eine Bohrung von der 679-m-Sohle aus. Die Beprobung begann am 16.09.2019 um 16:00 Uhr und musste aufgrund einer gerissenen Förderleine abgebrochen werden. Am 17.09.2019 um 09:10 Uhr wurde die Probeentnahme mittels einer herabgelassenen Kolbenpumpe fortgesetzt.

In Abbildung 4 ist die Probeentnahme an der Messstelle P750043 fotographisch festgehalten.

Abb. 4: Probeentnahme an der Messstelle P750043, Zugang zur Einlagerungskammer 8E, auf der 750-m-Sohle.

In Abbildung 5 ist die Messstelle P750084 abgebildet. Mit der Probeentnahme an dieser Messstelle wurde am 16.09.2019 um 14:35 Uhr begonnen.

Abb. 5: Probeentnahme an der Messstelle P750084, vor Einlagerungskammer 12, auf der 750-m-Sohle.

In Abbildung 6 ist die Probeentnahme an der Messstelle P750185 dokumentiert, die am 18.09.2019 ab 08:45 Uhr stattfand.

Abb. 6: Probeentnahme an der Messstelle P750185, Erkundungsbohrung 11/750, auf der 750-m-Sohle

Die Probeentnahme an der Messstelle P750185 und der Messstelle P750189 erfolgte parallel am 18.09.2019 ab 08:45 Uhr. Beide Messstellen liegen unmittelbar nebeneinander. Abbildung 7 zeigt die Probeentnahme an der Messstelle P750189.

Abb. 7: Probeentnahme an der Messstelle P750189, Erkundungsbohrung 11.1/750, auf der 750 m-Sohle.

Die für die Charakterisierungsmessung und das QS-Messprogramm in einem 10-Liter-Kanister gefassten Proben wurden in den untertägigen Probenaufbereitungsraum der Schachtanlage Asse II auf der 750-m-Sohle gebracht. Im Probenaufbereitungsraum erfolgte die Aufteilung der Proben für das BfS und die IAF. Dabei wurde die jeweilige Ausgangsprobe vor der Aliquotierung durch mehrmaliges, kräftiges Schütteln des 10-Liter-Kanisters homogenisiert und auf Niederschläge kontrolliert. Die Aliquotierung der Teilproben wurde durch einen Mitarbeiter der IAF durchgeführt.

Von den Messstellen L658008, P725019, P750185 und P750189 wurden dem BfS jeweils ein Liter Salzlösung zur Verfügung gestellt. Aufgrund der Vielzahl der zu bestimmenden Radionuklide im QS-Messprogramm erhielt das BfS von der Messstelle P750043 zwei Liter Salzlösung. Demgegenüber war für die Messstelle P750084 eine Menge von 0,5 Litern ausreichend.

4 Auswertung und Ergebnisse

Im Folgenden werden für jede Messstelle die Ergebnisse der Analysen zusammengestellt. Die Angabe der Aktivitätskonzentrationen sowie der Unsicherheiten erfolgt jeweils in Bq/l. Als Unsicherheit wird im ganzen Dokument die erweiterte Standardmessunsicherheit mit dem Erweiterungsfaktor k=2 verstanden. Diese begrenzt den Wertebereich, in dem der wahre Wert mit einer Wahrscheinlichkeit von 95 % liegen sollte. Zum Vergleich werden, falls vorhanden, die Messergebnisse von 2017 angegeben. Zwar sind in den Salzlösungen Veränderungen der Aktivitätskonzentrationen der einzelnen Radionuklide über die Jahre durchaus messbar, die Größenordnung der Messergebnisse blieb jedoch erhalten.

4.1 Messstelle L658008

In den Proben aus der Messstelle L658008 (Zutrittslösung) wurden die Radionuklide Pb-210 und Po-210 sowie die Isotope des Thoriums bestimmt. Mit der gammaspektrometrischen Messung konnten zusätzlich die Radionuklide K-40, Ra-224 und Ra-228 nachgewiesen werden. Das gammaspektrometrisch erhaltene Messergebnis für Ra-228 wurde mittels Alphaspektrometrie verifiziert. Das Radionuklid Th-228 konnte zwar in der Salzlösung nachgewiesen werden, jedoch kann die zum Zeitpunkt der Messung ermittelte Th-228-Aktivitätskonzentration auf das Nachwachsen von Ra-228 aus der Probe zum Zeitpunkt der Probeentnahme zurückgeführt werden.

In Tabelle 1 sind die Messergebnisse der IAF und des BfS für die Messstelle L658008 gegenüber gestellt.

Tabelle 1: Messergebnisse für die Messstelle L658008.

Nuklid	Methode (BfS)	Messergebnis BfS	Messergebnis IAF	Messergebnis
		[Bq/l]	[Bq/l]	2017 [9] [Bq/l]
K-40	Gammaspek.	80 ± 6	79,7 ± 5,6	87 ± 6
Pb-210	Beta-LSC	0,015 ± 0,007	0,033 ± 0,016	0,037 ± 0,009
Po-210	Alphaspek.	< 0,005	< 0,005	< 0,011
Ra-224	GIK	1,63 ± 0,49	1,71 ± 0,35	2,92 ± 0,30
	Gammaspek.	2,10 ± 0,20		
Ra-226	Emanometrie	0,265 ± 0,062	0,254 ± 0,025	0,243 ± 0,029
	GIK	0,235 ± 0,071		
Ra-228	Low-Level Beta	0,64 ± 0,14	0,583 ± 0,053	0,71 ± 0,11
	Gammaspek.	0,67 ± 0,12		
Th-228	Alnhasnek	< 0.010	< 0.010	0.047 + 0.010

Die Messergebnisse von BfS und IAF stimmen für die Radium-Isotope gut mit den Vergleichswerten der Charakterisierungsvorhaben 2017 [9] überein.

Neben Th-228 war auch das Radionuklid Po-210 zum Zeitpunkt der Probeentnahme nicht in nachweisbaren Aktivitätskonzentrationen vorhanden. Bei den vergangenen Charakterisierungsmessungen erfolgte keine Korrektur für das Aufklingen der Po-210- bzw. Th-228-Aktivitätskonzentrationen nach der Probeentnahme. Die im Jahre 2017 angegebenen Werte sind auf das Nachwachsen der genannten Radionuklide in den entnommenen Proben

zurückzuführen und waren in den Salzlösungen zum Zeitpunkt der Probeentnahme nicht in nachweisbaren Aktivitätskonzentrationen vorhanden.

4.2 Messstelle P725019

In den Proben aus der Messstelle P725019 wurden die Uran-Isotope bestimmt. Gammaspektrometrisch konnte zusätzlich K-40 nachgewiesen werden. Tabelle 2 gibt die Messergebnisse vom BfS und der IAF wider.

Tabelle 2: Messergebnisse für die Messstelle P725019.

Nuklid Methode (BfS)		Messergebnis BfS	Messergebnis IAF	Messergebnis
		[Bq/l]	[Bq/I]	2017 [9] [Bq/l]
K-40	Gammaspek.	318 ± 28	307 ± 21	340 ± 30
U-234	Alphaspek.	0,121 ± 0,014	0,116 ± 0,020	0,137 ± 0,026
U-235	Alphaspek.	0,003 ± 0,002	0,0031 ± 0,0027	<0,014
U-238	Alphaspek.	0,074 ± 0,010	0,073 ± 0,015	0,080 ± 0,017

Die aktuellen Messergebnisse aus dem Jahre 2019 für K-40 und die Uran-Isotope stimmen im Rahmen ihrer Messunsicherheiten überein (vgl. Kapitel 5). Im Jahre 2017 hat das BfS für diese Radionuklide vergleichbare Werte bestimmt.

4.3 Messstelle P750043

Die Messstelle P750043 ist eine der beiden vom BfS untersuchten Messstellen, die Kontaminationen mit künstlichen Radionukliden aufweist (vgl. Tabelle 3). Vereinbarungsgemäß waren die künstlichen Radionuklide C-14, Ni-63, Sr-90 sowie die Plutonium- und Americium-Isotope zu bestimmen. Gammaspektrometrisch konnte zusätzlich das natürliche Radionuklide K-40 und das künstliche Radionuklid Cs-137 ermittelt werden.

Tabelle 3: Messergebnisse der Messstelle P750043.

Nuklid	Methode (BfS)	Messergebnis BfS	Messergebnis IAF	Messergebnis
		[Bq/I]	[Bq/I]	2017 [9] [Bq/l]
C-14 _{ges}	Beta-LSC	230 ± 70	298 ± 58	356 ± 52
	(ohne anorg.)			
K-40	Gammaspek.	757 ± 70	749 ± 52	680 ± 50
Ni-63	Beta-LSC	28,7 ± 7,4	27,8 ± 2,5	%
Sr-90	Beta-LSC	< 0,06	< 0,035	< 0,04
Cs-137	Gammaspek.	9760 ± 1000	9700 ± 680	13200 ± 1000
Pu-238	Alphaspek.	0,0021 ± 0,0014	< 0,0017	<0,005
Pu-239/240	Alphaspek.	0,0023 ± 0,0014	0,0025 ± 0,0016	<0,004
Am-241	Alphaspek.	0,0086 ± 0,0023	0,0109 ± 0,0032	<0,006

Die Messergebnisse der IAF und des BfS stimmen im Rahmen ihrer Messunsicherheiten gut überein (vgl. Kapitel 5). Bezogen auf die Charakterisierungsmessung von 2017 wurde von beiden Laboren für das Radionuklid Cs-137 eine deutlich geringere Aktivitätskonzentration ermittelt. An der Messstelle 750043 (aktuell) werden die Salzlösungen aus den Messstellen

> P750043 (alt) und P750044 (alt) zusammengefasst. Die Veränderung der Anteile beider Zuführungen könnte eine Ursache für die Abnahme der Cs-137-Aktivitätskonzentration zum Zeitpunkt der Probeentnahme sein.

> Zudem wurde von beiden Laboren eine sehr geringe Menge des Radionuklids Am-241 (ca. 10 mBq/l) in der Salzlösung nachgewiesen, wohingegen bei den vorangegangenen Charakterisierungsmessungen kein Nachweis dieses Radionuklids erfolgte. Am-241 ist die langlebige Tochter (HWZ: 432,6 Jahre) des Radionuklides Pu-241 (HWZ: 14,325 Jahre), das im Jahr 1980 noch ca. 39 % des Nuklidinventars der Schachtanlage Asse II [13] ausmachte und dessen Anteil aktuell noch ca. 24 % beträgt. Das Messergebnis ist daher als plausibel anzusehen.

4.4 Messstelle P750084

Die Messstelle P750084 ist die zweite der beiden im BfS untersuchten Messstellen, die Kontaminationen mit künstlichen Radionukliden aufweist. Zu bestimmen waren hier Ni-63 und Tc-99 (siehe Tabelle 4).

Gammaspektrometrisch wurden das natürliche Radionuklid K-40 und die künstlichen Radionuklide Co-60 und Cs-137 in der Salzlösung bestimmt. Zusätzlich zu den geplanten Untersuchungen des BfS stellte die IAF, auf Bitte des BfS, eine Teilprobe für die Bestimmung von C-14ges zur Verfügung.

Tabelle 4: Messergebnisse der Messstelle P750084.

Nuklid	Methode (BfS)	Messergebnis BfS	Messergebnis IAF	Messergebnis
		[Bq/I]	[Bq/I]	2017 [9] [Bq/l]
C-14 _{ges}	Beta-LSC	37 ± 11	38,3 ± 7,7	n. b.
K-40	Gammaspek.	170 ± 16	177 ± 12	135 ± 10
Co-60	Gammaspek.	1,05 ± 0,10	1,05 ± 0,15	1,8 ± 0,3
Ni-63	Beta-LSC	900 ± 140	867 ± 55	880 ± 130
Tc-99	Beta-LSC	28,8 ± 3,5	22,3 ± 2,8	21,0 ± 2,3
Cs-137	Gammaspek.	105.200 ± 10.000	106.600 ± 8.200	89.000 ± 7.000

Die Messergebnisse der IAF und des BfS stimmen im Rahmen ihrer Messunsicherheiten gut überein (vgl. Kapitel 5).

Das Radionuklid Ni-63 wurde bei den bisherigen Charakterisierungsmessungen nicht bestimmt, da Ni-63 kaum dosisrelevant ist. Es muss aber beachtet werden, dass Ni-63 aktuell über 30 % der Restaktivität in den Abfällen der Schachtanlage Asse II ausmacht. Deshalb hatte das BfS im Nachgang der Charakterisierungsmessung 2017 eine Analyse der Probe der Messstelle P750084 vorgenommen. Diese Messstelle wurde ausgewählt, da hier Co-60 nachgewiesen wurde und deshalb seitens der zuständigen Mitarbeiter der Asse II und des BfS vermutet wurde, dass Ni-63 in der Salzlösung dieser Probeentnahmestelle vorhanden sein könnte. Die Vermutung der Experten wurde bestätigt. Die ermittelte Ni-63-Aktivitätskonzentration betrug im Jahre 2017 (880 ± 130) Bq/I.

4.5 Messstelle P750185

In den Proben der Messstelle P750185 waren die Radium- und Thorium-Isotope zu bestimmen. Gammaspektrometrisch wurden zusätzlich die natürlichen Radionuklide K-40 und Pb-210 nachgewiesen. In Tabelle 5 sind die Ergebnisse der IAF und des BfS dargestellt.

Tabelle 5: Messergebnisse der Messstelle P750185.

Nuklid	Methode (BfS)	Messergebnis BfS	Messergebnis IAF	Messergebnis
		[Bq/I]	[Bq/I]	2017 [9] [Bq/l]
K-40	Gammaspek.	365 ± 35	391 ± 27	290 ± 25
Pb-210	Beta-LSC	1,61 ± 0,54	1,15 ± 0,24	n.b.
	Gammaspek.	1,40 ± 0,40		
Ra-226	Emanometrie	0,016 ± 0,004	0,015 ± 0,008	0,070 ± 0,008
Ra-228	Low-Level-Beta	0,052 ± 0,015	0,035 ± 0,011	0,049 ± 0,019
Th-228	Alphaspek.	< 0,007	< 0,010	n. b.

Aufgrund des gammaspektrometrischen Nachweises des Radionuklides Pb-210 in der Salzlösung wurde zusätzlich eine Bestimmung von Pb-210 mittel Beta-LSC durchgeführt, um das Ergebnis der gammaspektrometischen Messung zu verifizieren.

4.6 Messstelle P750189

In den Proben der Messstelle P750189 waren die Radium- und Thorium-Isotope zu bestimmen. Tabelle 6 enthält die Ergebnisse beider Labore für die genannte Messstelle.

Tabelle 6: Messergebnisse der Messstelle P750189.

Nuklid	Methode (BfS)	Messergebnis BfS [Bq/l]	Messergebnis IAF [Bq/I]
K-40	Gammaspek.	415 ± 40	421 ± 29
Pb-210	Beta-LSC	1,23 ± 0,42	0,91 ± 0,20
	Gammaspek.	1,80 ± 0,40	
Ra-226	Emanometrie	0,013 ± 0,004	0,010 ± 0,005
Ra-228	Low-Level-Beta	0,043 ± 0,019	0,017 ± 0,009
Th-228	Alphaspek.	< 0,004	< 0,010

Die gammaspektrometrische Messung erbrachte den Nachweis von Pb-210. Zur Verifizierung des gammaspektrometrischen Pb-210-Ergebnisses wurde auch für diese Messstelle eine Bestimmung von Pb-210 mittels Beta-LSC durchgeführt.

Neben dem natürlichen Radionuklid Pb-210 wurde auch das natürliche Radionuklid K-40 bei der gammaspektrometrischen Messung erfasst.

5 Diskussion der Ergebnisse

5.1 Grundlegende Definitionen

Für ein besseres Verständnis sollen an dieser Stelle verschiedene Begriffe, wie Erkennungsgrenze, Nachweisgrenze, Messunsicherheit, Ringversuch, Streubereich und Vergleichbarkeit definiert werden. Die Definitionen dienen dazu, die unter Kapitel 5.3 bis 5.7 geführten Diskussionen besser nachvollziehen zu können.

<u>Erkennungsgrenze</u>: Wert der Messgröße, bei dem mit großer Wahrscheinlichkeit ein Messeffekt vorliegt. Überschreitet der primäre Wert der Messgröße die Erkennungsgrenze, so wird der Messwert mit seiner Unsicherheit angegeben. Die erweiterte Unsicherheit bei Werten, die in etwa der Erkennungsgrenze entsprechen, beträgt 60 bis 70 % und wird durch den zählstatistischen Fehler dominiert. Beim Vergleich zweier Messwerte an der Erkennungsgrenze ist daher mit großen relativen Abweichungen zu rechnen.

<u>Nachweisgrenze</u>: Wert der Messgröße, bei dem mit einer vorgegebenen, hohen Wahrscheinlichkeit das Vorliegen eines Messeffektes durch das Messverfahren festgestellt werden kann. Dementgegen sind Messwerte zwischen Erkennungs- und Nachweisgrenze nicht sicher reproduzierbar. Die erweiterte Unsicherheit bei Werten, die der Nachweisgrenze entsprechen, beträgt 40 bis 50 % und wird ebenfalls durch den zählstatistischen Fehler dominiert.

Messunsicherheit: nichtnegativer Parameter, der die Streuung der Werte charakterisiert, die vernünftigerweise der Messgröße auf der Grundlage der benutzten Information zugeordnet werden können [14]. Die Messunsicherheit setzt sich aus Typ-A- und Typ-B-Unsicherheiten zusammen. Die zählstatistische Unsicherheit ist dabei eine Typ-A-Unsicherheit. In die Typ-B-Unsicherheiten gehen beispielsweise Unsicherheiten der Wägung und Volumenmessung, der Aktivitätsangabe des Kalibrierstandards und der Ausbeutebestimmung ein. Bei der Berechnung der Unsicherheit wird versucht, alle Einflussfaktoren zu berücksichtigen.

<u>Ringversuch</u> (auch Ringvergleich): Methode der externen Qualitätssicherung, bei der vorgegebene Messparameter durch verschiedene Laboratorien ermittelt werden sollen. Jedes Labor erhält dabei eine möglichst identische Probe. Aus den Ergebnissen von Ringversuchen lassen sich Aussagen zur Messqualität und Genauigkeit der eingesetzten Verfahren treffen. Anhand der bei einem Ringversuch ermittelten Streubereiche lässt sich beispielsweise abschätzen, wie hoch Messabweichungen üblicherweise sind.

<u>Streubereich</u>: Wertebereich um den Messwert, in dem der richtige Wert mit einer Wahrscheinlichkeit von 95 % liegen soll. Der Streubereich entspricht der erweiterten Unsicherheit mit dem Erweiterungsfaktor 2. Beim Ringversuch ist der Streubereich der Bereich um den Gesamtmittelwert, innerhalb dessen 95 % der ausreißerfreien Messergebnisse der Teilnehmer liegen und entspricht der doppelten Vergleichsstandardabweichung.

Die Abbildung 8 zeigt am Beispiel der Auswertung des Trinkwasserringversuchs 2019 [15] wie sich der relative Streubereich für die natürlichen Radionuklide U-234, Ra-226, Ra-228 und Pb-210 mit der Aktivitätskonzentration ändert. Für die Alphastrahler U-234 und Ra-226 ist der Verlauf der gefitteten Kurve recht flach, da die jeweilige Nachweisgrenze wahrscheinlich nicht

> erreicht wurde. Bei den Betastrahlern steigt der relative Streubereich für Aktivitätskonzentrationen unterhalb von 0,1 Bq/l stark an.

> Beim Trinkwasserringversuch hatte man ähnlich wie bei diesem Messvergleich nur ein begrenztes Kontingent an Probenmaterial zur Verfügung (beispielsweise 1 Liter). Ein Herabsenken der Nachweisgrenze durch Einsatz großer Probenvolumina war daher nicht möglich.

<u>Vergleichbarkeit</u>: Die Vergleichbarkeit ist ein Maß zur Beurteilung, ob zwei unter Vergleichsbedingungen ermittelte Messergebnisse übereinstimmen. Vergleichsbedingungen liegen dann vor, wenn zur Ermittlung des Analysenergebnisses dasselbe Verfahren auf eine Teilprobe der Gesamtmenge der Probe angewendet worden ist. Dabei dürfen das Messgerät, der bearbeitende Laborbeschäftigte sowie Zeitpunkt und Ort der Messung variieren.

Bei Messungen mittels direkter Gammaspektrometrie durch unterschiedliche Laboratorien liegen in der Regel Vergleichsbedingungen vor, solange die Teilproben zur Messung aus einer Gesamtprobe entnommen worden sind oder die gleiche Teilprobe gemessen worden ist. Bei umfangreichen radiochemischen Analysen, die mehrstufige Trennschritte vorsehen, kann oft nicht von Vergleichsbedingungen ausgegangen werden.

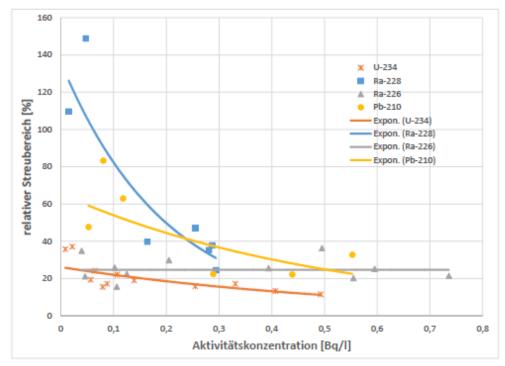


Abb. 8: Relativer Streubereich in Abhängigkeit der Aktivitätskonzentration für ausgewählte natürliche Radionuklide im Ringversuch Trinkwasser [15].

5.2 Durchführung des Vergleichs

In der chemischen Analytik ist die Vergleichbarkeit zweier Ergebnisse dann gegeben, wenn deren Abweichung voneinander kleiner als das 2,8-fache der Vergleichsstandardabweichung ist. Da bei diesem Messvergleich aber nicht immer von Vergleichsbedingungen (siehe 5.1) ausgegangen werden kann und die Vergleichsstandardabweichung konzentrations- und wahrscheinlich auch matrixabhängig ist, wird ein Bewertungsansatz gewählt, der die Vergleichbarkeit dann als erfüllt ansieht, wenn die Streubereiche der Messergebnisse beider Labore miteinander überlappen.

Um die Bewertung der Vergleichbarkeit zu verfeinern (Benotung statt erfüllt oder nicht erfüllt), wird die Größe z* nach Gleichung (1) berechnet:

$$z^* = \frac{|c_{BfS} - c_{IAF}|}{u(c_{BfS}) + u(c_{IAF})}$$
(1)

Ist z*=2 bedeutet dies, dass sich die Streubereiche der Messwerte beider Labore gerade noch überlappen. Dies kann als unteres Akzeptanzkriterium herangezogen werden. Sofern die Aktivitätskonzentration deutlich oberhalb (10-fach) der Nachweisgrenze liegt und die zählstatistische Unsicherheit keinen signifikanten Beitrag zur Gesamtmessunsicherheit liefert, sollte z*=1 erreicht werden können.

Allgemein gilt für z*:

$$z^* \leq 0,5$$
 sehr gut $0,5 < z^* \leq 1,0$ gut $1,0 < z^* \leq 2,0$ akzeptabel $2,0 < z^* < 3,0$ fragwürdig $z^* \geq 3,0$ nicht akzeptabel

Zusätzlich wird die relative Abweichung der Ergebnisse des BfS und der IAF betrachtet. Die relative Abweichung sollte entsprechend der angewandten Messverfahren und dem Niveau der Aktivitätskonzentration in einem vorbestimmten Bereich liegen. Bei Aktivitäten nahe der Erkennungs- oder Nachweisgrenze ergibt ein Vergleich hier aber wenig Sinn, da aufgrund der Zählstatistik selbst Abweichungen in der Größenordnung von 100 % tolerabel sein können. Die relative Abweichung wird in Gleichung (2) definiert:

$$\Delta_{rel} = \frac{c_{IAF} - c_{BfS}}{c_{BfS}} \cdot 100\% \tag{2}$$

In den nachfolgenden Kapiteln 5.3 bis 5.7 werden die Ergebnisse des BfS und der IAF einander gegenübergestellt. Dabei werden nicht einzelne Proben betrachtet, sondern es werden die zu messenden Radionuklide unter Berücksichtigung der jeweils verwendeten Messverfahren verglichen. Dies bietet sich an, da für unterschiedliche Radionuklide unterschiedliche Messverfahren mit unterschiedlichen Messunsicherheiten verwendet werden mussten.

5.3 Diskussion der Ergebnisse für K-40

In Tabelle 7 werden die K-40-Aktivitätskonzentrationen für alle Proben der sechs für den Vergleich herangezogenen Messstellen sowie die berechneten z*-Scores und relativen Abweichungen dargestellt. In der letzten Spalte der Tabelle wird eine Bewertung der Ergebnisse anhand des z*-Scores (siehe Kapitel 0) vorgenommen.

Tabelle 7: Ergebnisse für K-40.

Messstelle	Ergebnis BfS	Ergebnis IAF	z*	Δ_{rel}	Vergleichbarkeit
	[Bq/l]	[Bq/I]	[1]	[%]	
L658008	80 ± 6	79,7 ± 5,6	0,05	-0,4	Sehr gut
P725019	318 ± 28	307 ± 21	0,45	-3,5	Sehr gut
P750043	757 ± 70	749 ± 52	0,13	-1,1	Sehr gut
P750084	170 ± 16	177 ± 12	0,5	4,1	Gut
P750185	365 ± 35	391 ± 27	0,84	7,1	Gut
P750189	415 ± 40	421 ± 29	0,17	1,5	Sehr gut

Beim Vergleich der K-40-Werte nach Gleichung (1) sind in allen sechs untersuchten Salzlösungen z*-Scores kleiner als 1 zu verzeichnen. Das bedeutet, dass der Streubereich der Messung des einen Labors das Messergebnis des anderen Labors einschließt und damit schon eine Übereinstimmung der Ergebnisse festgestellt werden kann. Mit Ausnahme von P750185 sind sämtliche relative Abweichungen unter 5 %. Bei der direkten (ohne Probenvorbereitung) Gammaspektrometrie wird üblicherweise eine Standardmessunsicherheit der Kalibrierung im Energiebereich oberhalb 300 keV von 2 bis 5 % angenommen. Als maximal akzeptable Abweichung kann man auf die doppelte Standardmessunsicherheit – also den Streubereich – zurückgreifen. Sofern die zählstatistische Unsicherheit vernachlässigt werden kann, liegt dieser zwischen 4 und 10 %. Folglich ist eine Abweichungen bis 10 % akzeptabel.

5.4 Diskussion der Ergebnisse für künstliche Gammastrahler

In Tabelle 8 werden die Ergebnisse der IAF und des BfS für die gammaspektrometrisch nachgewiesenen künstlichen Radionuklide Co-60 und Cs-137 gegenübergestellt und bewertet.

Tabelle 8: Ergebnisse für künstliche Gammastrahler.

Isotop	Messstelle	Ergebnis BfS	Ergebnis IAF	z*	Δ_{rel}	Vergleich-
		[Bq/I]	[Bq/l]	[1]	[%]	barkeit
Cs-137	P750043	9760 ± 1000	9700 ± 680	0,07	-0,6	Sehr gut
Cs-137	P750084	105200 ± 10000	106600 ± 8200	0,15	1,3	Sehr gut
Co-60	P750084	1,05 ± 0,10	1,05 ± 0,15	0,00	0,0	Sehr gut

Beim Vergleich der gammaspektrometrisch erhaltenen Ergebnisse für die künstlichen Gammastrahler nach Gleichung (1) sind die z^* -Scores deutlich unter 0,5. Die gegenübergestellten relativen Abweichungen beider Labore nach Gleichung (2) liegen unter 2 %. Die Vergleichbarkeit der erhaltenen Ergebnisse ist gegeben.

5.5 Diskussion der Ergebnisse für künstliche Betastrahler

In Tabelle 9 sind die Ergebnisse für die künstlichen Betastrahler aufgeführt.

Tabelle 9: Ergebnisse für künstliche Betastrahler.

Isotop	Messstelle	Ergebnis BfS	Ergebnis IAF	z*	Δ_{rel}	Vergleich-
		[Bq/I]	[Bq/l]	[1]	[%]	barkeit
C-14ges	P750043	230 ± 70	298 ± 58	1,06	29,6	Akzeptabel
C-14ges	P750084	37 ± 11	38,3 ± 7,7	0,14	3,5	Sehr gut
Ni-63	P750043	28,7 ± 7,4	27,8 ± 2,5	0,18	-3,1	Sehr gut
Ni-63	P750084	900 ± 140	867 ± 55	0,34	-3,7	Sehr gut
Sr-90	P750043	< 0,06	< 0,035	%		Akzeptabel
Tc-99	P750084	28,8 ± 4,3	22,3 ± 2,8	1,84	-22,6	Akzeptabel

Im Allgemeinen sind bei der Bestimmung von Betastrahlern höhere Standardmessunsicherheiten der Ergebnisse zu erwarten als bei der direkten Gammaspektrometrie an der ansonsten unbehandelten Probe. Im Gegensatz zur Gammaspektrometrie werden mehrere chemische Trennverfahren und eine anschließende Ausbeutebestimmung durchgeführt, die in einer höheren Standardmessunsicherheit resultiert.

Bei den Ergebnissen für die künstlichen Betastrahler sollten die berechneten z*-Scores nach Gleichung (1) nicht größer als 2 sein, um insgesamt eine gute Vergleichbarkeit zu ergeben.

Für die Ergebnisse für C-14_{ges} wurden z*-Scores von 1,06 für die Messstelle P750043 und von 0,14 für die Messstelle P750084 berechnet. Die Ergebnisse für C-14_{ges} in den Proben von der Messstelle P750043 haben eine relative Abweichung in Höhe von ca. 30 %. In Anbetracht dessen, dass nach dem in [8] beschriebenen Verfahren eine Ausbeutebestimmung kaum möglich ist, kann man dieses Ergebnis als zufriedenstellend bewerten. Die Ergebnisse für C-14_{ges} an der Messstelle P750084 zeigen, dass beide Labore für diese Messstelle übereinstimmende Ergebnisse liefern. In Ermangelung eines entsprechenden Ringversuchs zur Bestimmung von C-14_{ges} in gesättigten Salzlösungen, bestand für beide Labore keine Möglichkeit ihre verwendeten Messverfahren im Rahmen einer externen Prüfung zu validieren, sodass das erhaltene Ergebnis aus Sicht des BfS über den Erwartungen liegt.

Beim Vergleich der Ni-63-Aktivitätskonzentrationen nach Gleichung (1) sind die z*-Scores deutlich unter 0,5. Die gegenübergestellten relativen Abweichungen beider Labore nach Gleichung (2) liegen unter 4 %. Die Vergleichbarkeit der erhaltenen Ergebnisse ist gegeben.

Anmerkung:

Für die Bestimmung von Ni-63 wurde im BfS ein extraktionschromatografisches Verfahren in Anlehnung an das beim Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU) hinterlegte Messverfahren H-Fe-55/Ni-63-AWASS-01 [16] angewandt. Für die Bestimmung der chemischen Ausbeute musste im Gegensatz zum bewährten Vorgehen ein Standardadditionsverfahren genutzt werden, da die hohe Salzfracht die Messung des inaktiven Nickels erheblich stört. Analysen für Ni-63 werden im BfS regelmäßig durchgeführt. Zudem bietet das BfS einen Ringversuch zur Bestimmung von Ni-63 an. Bei den letzten drei Ringversuchen für Abwässer aus kerntechnischen Anlagen [17] waren im Modellwasser für Ni-63 Vergleichsstandardabweichungen von 23,0 % (2017), 26,9 % (2018) und 17,3 % (2019) zu verzeichnen. Verglichen mit diesen Erfahrungswerten aus Ringversuchen sind die Ergebnisse beider Labore für Ni-63 ausgezeichnet.

Bei der Bestimmung von Sr-90 haben beide Labore lediglich Nachweisgrenzen angegeben. Da Sr-90 aktuell etwa 11 % des Radionuklidinventars der Schachtanlage Asse II ausmacht, ist der fehlende Nachweis dieses Radionuklids in der Salzlösung ein möglicher Hinweis auf die geringe Mobilität von Strontium unter den geochemischen Randbedingungen in der Schachtanlage Asse II. Während der bisherigen Charakterisierungsmessungen wurde Sr-90 zuletzt im Jahre 2015 mit einer sehr geringen Aktivitätskonzentration von $(0,10\pm0,04)$ Bq/l in der Probe von der Messstelle P750042 nachgewiesen.

Tc-99 wurde in den Proben von der Messstelle P750084 bereits in den Jahren 2015 (20,4 Bq/l) und 2017 (21,0 Bq/l) vom BfS bestimmt. Die bei den QS-Messungen vom BfS ermittelte Aktivitätskonzentration für Tc-99 mit 28,8 ± 4,3 Bq/l liegt deutlich oberhalb der Werte der letzten Charakterisierungsmessungen. Aus welchen Grund höhere Aktivitätskonzentration für Tc-99 an dieser Probeentnahmestelle vom BfS nachgewiesen wurden, kann an dieser Stelle nicht abschließend beantwortet werden. Die vom IAF ermittelte Aktivitätskonzentration für Tc-99 von 22,3 ± 2,8 Bq/l entspricht etwa den Werten der vorangegangenen Charakterisierungsvorhaben. Die Abweichung der Messergebnisse zwischen den beiden Laboren beträgt –23 %, der z*-Score liegt bei 1,84. Beim Vergleich der Messwerte für Tc-99 kann nicht auf typische Streubreiten aus Ringversuchen zurückgegriffen werden. Für beide Labore bestand weder eine Möglichkeit ihre verwendeten Messverfahren im Rahmen einer externen Prüfung an gesättigten Salzlösungen noch in regelmäßigen Abständen in anderen Medien zu validieren, sodass das erhaltene Ergebnis aus Sicht des BfS akzeptiert werden kann. Wird die Vergleichsstandardabweichungen von Ni-63 (im Mittel 22,4 %) betrachtet, wird aus Sicht des BfS für Tc-99 ein Streubereich von ca. 45 % (*k*=2) erwartet.

5.6 Diskussion der Ergebnisse für die natürlichen Blei- und Radiumisotope

In Tabelle 10 werden die jeweiligen Ergebnisse für Pb-210 und für die Radium-Isotope verglichen und eine Bewertung vorgenommen.

Tabelle 10: Ergebnisse für die Blei- und Radiumisotope.

Isotop	Messstelle	Ergebnis BfS	Ergebnis IAF	z*	Δ_{rel}	Vergleich-
		[Bq/l]	[Bq/l]	[1]	[%]	barkeit
Pb-210	L658008	0,015 ± 0,007	0,033 ± 0,016	1,57	120	Akzeptabel
Pb-210	P750185	1,61 ± 0,54	1,15 ± 0,24	1,18	-28,6	Akzeptabel
Pb-210	P750189	1,23 ± 0,42	0,91 ± 0,20	1,03	-26,0	Akzeptabel
Ra-224	L658008	1,63 ± 0,49	1,71 ± 0,35	0,42	4,9	Sehr gut
Ra-226	L658008	0,265 ± 0,062	0,254 ± 0,025	0,25	-4,2	Sehr gut
Ra-226	P750185	0,016 ± 0,004	0,015 ± 0,008	0,17	-6,3	Sehr gut
Ra-226	P750189	0,013 ± 0,004	0,010 ± 0,005	0,67	-23,1	Gut
Ra-228	L658008	0,64 ± 0,14	0,583 ± 0,053	0,59	-8,9	Gut
Ra-228	P750185	0,052 ± 0,015	0,035 ± 0,011	1,3	-32,7	Akzeptabel
Ra-228	P750189	0,043 ± 0,019	0,017 ± 0,009	1,86	-60,5	Akzeptabel

Pb-210 ist ein niederenergetischer Betastrahler, der auch eine starke niederenergetische Gammalinie aufweist. Mögliche Messverfahren sind ohne Anspruch auf Vollständigkeit eine LSC-Messung nach extraktionschromatografischer Trennung, eine Betamessung des kurzlebigen Tochternuklides Bi-210 nach Spontanabscheidung auf Nickel im Proportionalzähler,

eine direkte Gammamessung der Salzlösung oder eine Gammamessung nach Anreicherung als Sulfat (PbSO₄ oder BaSO₄). Aus dieser Vielzahl möglicher Messverfahren ergeben sich teilweise sehr unterschiedliche Nachweisgrenzen. Auch können die Ergebnisse der unterschiedlichen Verfahren deutlich voneinander abweichen. Im "Ringversuch Trinkwasser 2019" [15] betrug der Streubereich z. B. im Modellwasser 63 % bei einer mittleren Aktivitätskonzentration von 0,12 Bq/l. Die in den Proben von den Messstellen P750185 und P750189 bestimmten Werte sind zwar deutlich höher, jedoch sind die eingesetzten Volumina der Salzlösung matrixbedingt niedriger als bei einer Trinkwasserprobe. Die relativen Abweichungen sind mit –26 % und –29 % als akzeptabel einzuschätzen. Die z*-Scores von kleiner 2 können mit dem Prädikat "akzeptabel" bewertet werden. Für die Zutrittslösung (L658008) liegen die Messwerte für Pb-210 nur knapp oberhalb der jeweiligen Nachweisgrenze. Beide Labore geben daher erweiterte Unsicherheiten von ca. 50 % an. Der z*-Scores von kleiner 2 kann mit dem Prädikat "akzeptabel" bewertet werden. Die relative Abweichung von 120 % entspricht der erwarteten Größenordnung bei dieser geringen Pb-210-Aktivitätskonzentration.

Anmerkung:

Die gemessene Pb-210-Aktivitätskonzentration von wenigen mBq/l weist auf die Kompetenz beider Labore hin, selbst in diesem niedrigen Aktivitätsbereich in den Salzlösungen Pb-210 qualitativ nachweisen zu können. Bei dem im Jahre 2018 durchgeführten Ringversuch [18] mit der Salzlösung der Messstelle P750071 übermittelten lediglich 12 von 25 teilnehmenden Laboren ein Ergebnis für Pb-210. Von den 12 Laboren übermittelten 7 Labore lediglich ihre Nachweisgrenze, obwohl die spezifischen Pb-210-Aktivitätskonzentration mit ca. 0,64 Bq/l um mehr als eine Größenordnung höher liegt, als in der für den Vergleich zwischen BfS und IAF untersuchten Salzlösung von der Messstelle L658008.

Die Messverfahren für die verschiedenen Radium-Isotope sind, wie die Radionuklide selbst, sehr unterschiedlich. Für Ra-224 und Ra-226 sind alphaspektrometrische Messungen möglich. Der Betastrahler Ra-228 wird meist über sein kurzlebiges Tochternuklid Ac-228 bestimmt. Ferner ist es möglich, alle Radium-Isotope gammaspektrometrisch direkt oder nach Anreicherung beispielsweise an Bariumsulfat zu bestimmen.

Das Radionuklid Ra-224 wurde lediglich in der Probe von der Messstelle L658008 von beiden Laboren nachgewiesen. Der z^* -Score liegt unter dem Wert von 0,5, die relative Abweichung unter 5 %. Damit ist die Vergleichbarkeit der Ergebnisse gegeben.

Beim Vergleich der Ra-226-Aktivitätskonzentrationen nach Gleichung (1) liegen die z*-Scores unter einem Wert von 0,7. Die gegenübergestellten relativen Abweichungen nach Gleichung (2) liegen für die Ergebnisse von den Proben der Messstellen L658008 und P750185 unter 7 %. Dies führt für beide Ergebnisse zu einer Bewertung der Vergleichbarkeit mit dem Prädikat "Sehr gut". Die relative Abweichung für die Ergebnisse der Probe von der Messstelle P750189 mit ca. 23 % liegt höher. Für die Ergebnisse von den Proben dieser Messstelle stimmen die Werte "gut" überein, wobei diese Beurteilung die sehr niedrige Aktivitätskonzentration in diesen Proben nicht berücksichtigt. Die Vergleichbarkeit der erhaltenen Ergebnisse für Ra-226 in allen Proben ist gegeben.

Für das Radionuklid Ra-228 wurde nach Auswertung gemäß Gleichung (1) und Gleichung (2) für die Messstelle L658008 ein gute Übereinstimmung der Ergebnisse erhalten, für die Messstelle P750185 und P750189 ein akzeptable Übereinstimmung ermittelt.

Anmerkung:

Das BfS führt seit 2012 Ringversuche für Trinkwasser durch, bei denen regelmäßig Ra-226 und Ra-228 zu bestimmen sind. Die Ergebnisse für Ra-226 sind bei den Ringvergleichen überwiegend sehr gut (vgl. Abbildung 8). Selbst bei niedrigen Aktivitätskonzentrationen von 40 mBq/l wurden in den Realwässern der Ringversuche RV4/2018 [15] und RV4/2019 [15] relative Streubereiche von 35 % bzw. 21 % erreicht. Diese in den Ringvergleichen erhaltenen Ergebnisse spiegeln sich beim Vergleich der von der IAF und dem BfS ermittelten Ra-226-Werte wider. Bei den Ergebnissen für das Radionuklid Ra-228 wurden bei Ringversuchen generell höhere Streubereiche beobachtet. Bei Ra-228-Aktivitätskonzentration kleiner 100 mBq/l waren die Streubereiche teilweise deutlich höher als 100 % (vgl. Abbildung 8). Beim Ringversuch RV4/2016 [15] wurde im Realwasser beispielsweise bei einem Sollwert von 49 mBq/l ein Gesamtmittelwert von 47 mBq/l und ein relativer Streubereich von fast 150 % ermittelt. Diese Problematik führt dazu, dass die Ergebnisse der Messungen für P750185 und P750189 relativ große Abweichungen zeigen.

5.7 Diskussion der Ergebnisse für die Alphastrahler

Tabelle 11: Ergebnisse für die Alphastrahler.

Isotop	Messstelle	Ergebnis BfS	Ergebnis IAF	z*	Δ_{rel}	Vergleich-
		[Bq/I]	[Bq/I]	[1]	[%]	barkeit
Po-210	L658008	< 0,005	< 0,005	ı	ı	Akzeptabel
Th-228	L658008	< 0,010	< 0,010	ı	ı	Akzeptabel
Th-228	P750185	< 0,007	< 0,010	ı	ı	Akzeptabel
Th-228	P750189	< 0,004	< 0,010	ı	ı	Akzeptabel
U-234	P725019	0,121 ± 0,014	0,116 ± 0,020	0,29	-4,1	Sehr gut
U-235	P725019	0,003 ± 0,002	0,0031 ± 0,0027	0,04	3,3	Sehr gut
U-238	P725019	0,074 ± 0,010	0,073 ± 0,015	0,08	-1,4	Sehr gut
Pu-238	P750043	0,0021 ± 0,0014	< 0,0017	-	-	Akzeptabel
Pu-239/240	P750043	0,0023 ± 0,0014	0,0025 ± 0,0016	0,13	8,7	Sehr gut
Am-241	P750043	0,0086 ± 0,0026	0,0109 ± 0,0032	0,79	26,7	Gut

Bei den in Tabelle 11 aufgeführten Alphastrahlern ist die Alphaspektrometrie das Verfahren der Wahl für die Analytik, sofern die Aktivitätskonzentration nur wenige mBq/l beträgt. Ein großer Vorteil der Alphaspektrometrie besteht darin, dass sich die Messunsicherheiten der Ergebnisse auf die zählstatistische Unsicherheit und die Unsicherheit der zugegebenen Traceraktivität beschränken, sofern die Probe homogen bzw. das entnommene Aliquot repräsentativ sind.

Die Radionuklide Po-210 und Th-228 konnten in den Proben nicht nachgewiesen werden. Die messtechnische nachgewiesene Aktivitätskonzentration ist auf das Aufklingen dieser Radionuklide aus Pb-210 bzw. Ra-228 zurückzuführen und wurde rechnerisch korrigiert sowie bei der Bewertung der Messwerte berücksichtigt. Beide Labore gaben deshalb für diese Radionuklide übereinstimmend nur Nachweisgrenzen an.

Für die Uranisotope sind die erreichten Abweichungen nach Gleichung (2) unter 5 % und die z*-Scores sind nach Gleichung (1) deutlich kleiner als 0,5. Somit kann eine "sehr gute" Übereinstimmung der Ergebnisse festgestellt werden.

Auch bei den Plutonium- und Americium-Isotopen ist das Ergebnis des Messvergleichs überzeugend, obwohl die Nuklide in sehr niedrigen Aktivitätskonzentrationen vorliegen. Für Pu-238 und Pu-239/240 entsprechen die Messergebnisse in etwa den Nachweisgrenzen. Dadurch sind die erweiterten, relativen Messunsicherheiten auch größer als 50 %. Bei Pu-238 hat das BfS einen Messwert unterhalb der Nachweisgrenze bestimmt und der IAF keinen Messeffekt festgestellt. Diese Aussagen widersprechen sich nicht, da die Unsicherheit des Messergebnisses so groß ist, dass der Streubereich die von der IAF angegebene Nachweisgrenze umfasst. Die relative Abweichung bei Am-241 scheint mit ca. 27 % recht hoch zu sein. Allerdings genügt hier bereits die zählstatistische Unsicherheit, um diese Messabweichung zu erklären.

Anmerkung:

In den Ringversuchen des BfS [15, 17] wurden für die Uranisotope U-234 und U-238 relative Vergleichsstandardabweichungen von ca. 6 % erreicht. Für die Americium- und Plutonium-Isotope werden ebenfalls niedrige relative Vergleichsstandardabweichungen um ca. 10 % erreicht.

6 Zusammenfassung

Das BfS führte als qualitätssichernde Institution an sechs Salzlösungen Untersuchungen für ausgewählte Radionuklide durch. Die Messergebnisse des BfS wurden den Messergebnissen der von der BGE beauftragten IAF GmbH gegenübergestellt und in diesem Bericht die Vergleichbarkeit der Ergebnisse bewertet.

Zusammenfassend wird festgestellt, dass die Messergebnisse von BfS und der IAF im Rahmen der jeweiligen berechneten Messunsicherheiten gut übereinstimmen. Der Vergleich der Messergebnisse für die direkt gemessenen Gammastrahler, die Alphastrahler und auch für den Betastrahler Ni-63 ergaben die besten Übereinstimmungen.

Erwartungsgemäß sind Messwerte nahe der Nachweisgrenze nur bedingt vergleichbar, da die Messunsicherheiten in diesem Fall sehr hoch und dadurch große relative Abweichungen unvermeidlich sind. Aus Sicht des BfS ist besonders hervorzuheben, dass in den Salzlösungen von beiden Laboren Radionuklide selbst mit sehr niedrigen Aktivitätskonzentrationen von wenigen mBq/l nachgewiesen werden konnten. Als sehr gutes Ergebnis der Vergleichsmessung ist festzuhalten, dass sich bei diesen niedrigen Aktivitätskonzentrationen und der anspruchsvollen Probenmatrix für die Mehrzahl der Ergebnisse eine "gute" bis "sehr gute" Vergleichbarkeit ergeben hat.

Aus Sicht des BfS wird dem Betreiber der Schachtanlage Asse II empfohlen, auch bei zukünftigen Charakterisierungsvorhaben ein unabhängiges QS-Messprogramm durchzuführen.

7 Literatur

- BUNDESGESELLSCHAFT FÜR ENDLAGERUNG: Was ist die Asse? Die Geschichte der Asse: Vom Salzbergwerk zum Atomlager, https://www.bqe.de/asse/kurzinformationen/qeschichte-der-schachtanlage-asse-ii, Stand 24.01.2020
- [2] Gesetz zur Neuordnung der Organisationsstruktur im Bereich der Endlagerung vom 26.07.2016 (BGBI. I S. 1843 (2016))
- ASSE-GMBH: Jahresbericht "Salzlösungsmonitoring 2016", BfS-KZL:
 9A/64222100/HE/RA/0023/00, Asse-KZL: 9A/64222100/HDR/HE/BT/0006/00, 12.06.2017
- [4] BRENK SYSTEMPLANUNG GMBH: Standortbezogene Freigabe von Zutrittslösungen aus der Schachtanlage Asse – Zwischenbericht zur Freigabe von Zutrittslösungen auf der Basis vollständiger Freigabemessungen. Aachen, 12.10.2008
- BRENK SYSTEMPLANUNG GMBH: Beprobung und Analyse von Salzlösungen 2009, Schachtanlage Asse II – Endbericht. Aachen, 16.12.2009
- BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen und Salzen 2011 –
 Schachtanlage Asse II, BfS, 9A–65161000, LE-RB-0008, 18.11.2011
- BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen, Salzen und Grundwässern 2013 – Schachtanlage Asse II, BfS, 9A–65161000, LE-RB-0013, 13.11.2013
- BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen und Salzen 2015 –
 Schachtanlage Asse II, BfS, 9A–65161000, LE-RB-0014, 13.11.2015
- BUNDESAMT FÜR STRAHLENSCHUTZ: Beprobung und Analyse von Salzlösungen und Grundwässern 2017 – Schachtanlage Asse II, BGE, 9A–65161000, LE-RB-0015, 21.11.2017
- [10] BUNDESGESELLSCHAFT FÜR ENDLAGERUNG, Besprechungsbericht Schachtanlage Asse II, Charakterisierung Salzlösungen 2019, BGE, 9A–65000000, 01STS, DA-BK-0001-00, 29.08.201
- [11] ASSE-GMBH: Arbeitsanweisung Probenahme Salzlösungen, 9A-65250000-01STS/LE/DA/0001/00, 15.03.2013
- [12] ASSE-GMBH: Strahlenschutzfachanweisung STS-FAW-013 Probenahme, 9A-62530000/01STS/LE/DA/0004/xx
- [13] BUNDESAMT FÜR STRAHLENSCHUTZ (HRSG.): "Asse-Einblicke 4", https://archiv.bge.de/archiv/www.asse.bund.de/SharedDocs/Downloads/Asse/DE/asse-einblicke/asse-einblicke-09-04.html, 2009
- [14] JCGM 200:2012, 2.26, "International vocabulary of metrology Basic and general concepts and associated terms".
- [15] Ringversuch 4/2010; 4/2012; 4/2014; 4/2016; 4/2017; 4/2018; 4/2019 Bestimmung von natürlichen Radionukliden in Trinkwasser, interne Berichte zum Versand an die Teilnehmer sowie die zuständigen Stellen für Überwachung der Radioaktivität in Trinkwasser. RV4/2012 wurde unter der URN urn:nbn:de:0221-2012120510259 frei zugänglich veröffentlicht.

- [16] DER BUNDESMINISTER FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT (Hrsg.): "Messanleitungen für die Überwachung radioaktiver Stoffe in der Umwelt und externer Strahlung" https://www.bmu.de/themen/atomenergie-strahlenschutz/strahlenschutz/radioaktivitaet-in-der-umwelt/leitstellen-zur-ueberwachung-der-umweltradioaktivitaet/messanleitungen-leitstelle-h/
- [17] Ringversuch "Abwasser 2019", UR 01/2019, interner Bericht des BfS zum Versand an die Teilnehmer des Ringversuchs. Dieser Ringversuch wird j\u00e4hrlich angeboten und richtet sich an die Betreiber kerntechnischer Anlagen bzw. die Labore, die im Auftrag der Betreiber Radionuklide bestimmen.
- [18] Ringversuch 5/2018 Bestimmung natürlicher und künstlicher Radionuklide in Salzlösungen aus der Schachtanlage Asse II, interner Bericht des BfS zum Versand an die Teilnehmer des Ringversuchs sowie die Betreiber der Schachtanlage Asse II.