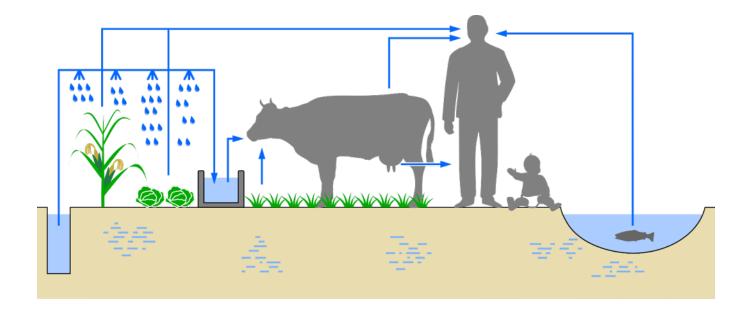


ÜsiKo Phase 2: Dosiskonversionsfaktoren

Fachöffentliche Ergebnispräsentation ÜsiKo Phase 2 23.10.2024

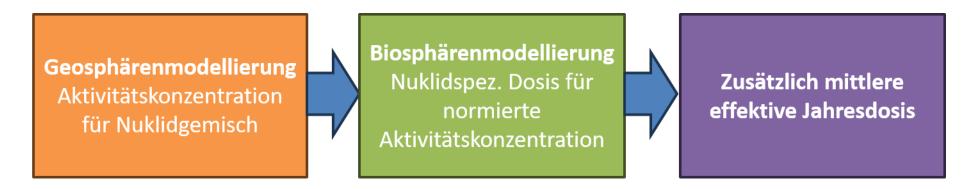
Überblick

- Δ33: Neuberechnung der Strahlenexposition in der Biosphäre nach den aktuell gültigen Vorschriften
 - Es ist zu zeigen, wie sich das geänderte gesetzliche Regelwerk zur Dosisberechnung auf die Berechnung der Strahlenexposition auswirkt
 - Es wurde festgestellt, dass sich die Dosiskonversionsfaktoren für die überwiegende Anzahl der betrachteten Radionuklide verringern und für einzelne Nuklide um weniger als einen Faktor 10 erhöhen



Gesetzliches Regelwerk nach Abschluss ÜsiKo Phase 1

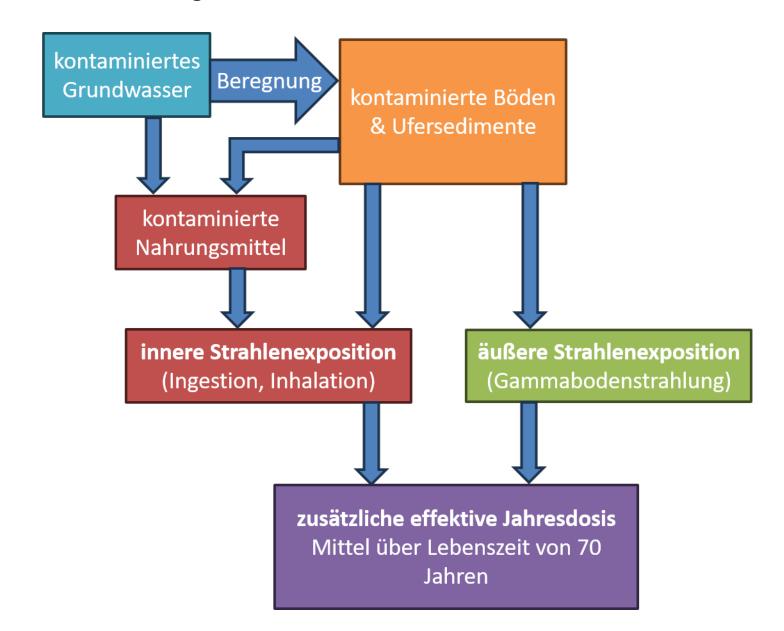
- Juni 2020: Inkrafttreten der AVV Tätigkeiten
 - Nach § 100 StrlSchV (2019) für prospektive Ermittlung anzuwenden
 - Setzt in ÜsiKo 1 genannte AVV zu § 47 der StrlSchV (2001) außer Kraft (§ 11.2)
- Gilt nicht für Prognoserechnungen in Langzeitsicherheitsanalysen (§ 1.3 Pkt. 2)
- In ÜsiKo Phase 1 genannte Vorgehensweise nicht umsetzbar
- BASE 2022: Berechnungsgrundlage für die Dosisabschätzung bei der Endlagerung von hochradioaktiven Abfällen (BG):
 - gilt nur im Standortauswahlverfahren für die Endlagerung hochradioaktiver Abfälle
 - gilt nicht für die zusätzliche Endlagerung von schwach- und mittelradioaktiven Abfällen in einem separaten Endlagerbergwerk (Kap. 2)
- Keine verbindliche Regelung für Dosisberechnung bei Endlagerung nicht-wärmeentwickelnder Abfälle zum Zeitpunkt der Bearbeitung des Deltas
- Aber: Berechnungsgrundlage aktuell gültige Verordnung, die konkrete Vorschriften zur Dosisberechnung für die Endlagerung macht
- Vorgehensweise in ÜsiKo Phase 2: Berechnung der Dosis in Anlehnung an Berechnungsgrundlage für Dosisabschätzung bei der Endlagerung von hochradioaktiven Abfällen



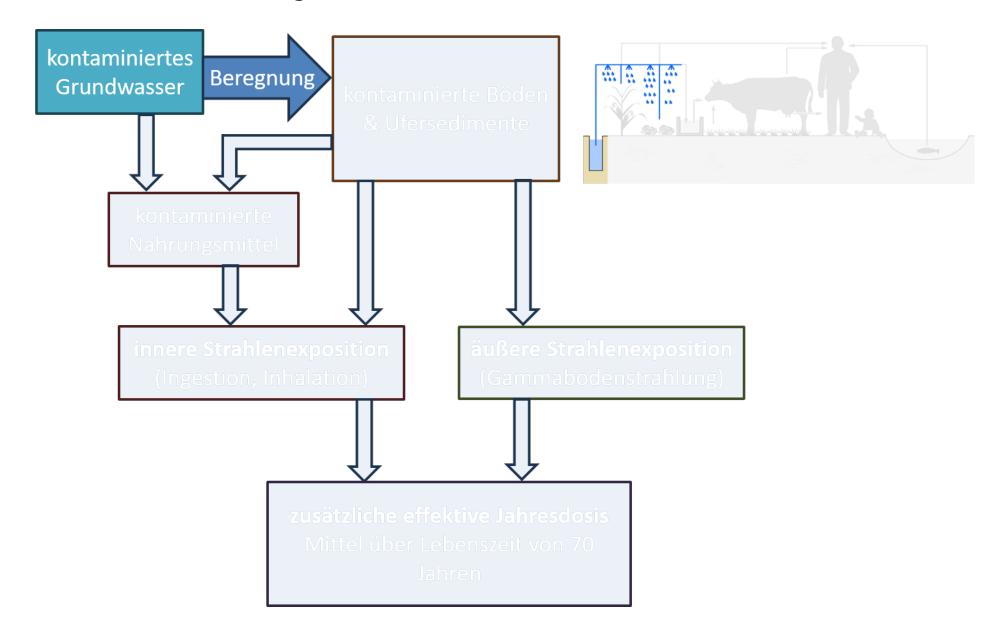
Dosiskonversionsfaktoren – worum geht es?

Methodik

- Biosphärenmodellierung erfolgt getrennt von Transportmodellierung in Geosphäre
- Nuklidspezifische Berechnung d. Dosis, die aus normierter Konzentration im oberflächennahen Grundwasser folgt
- Dosiskonversionsfaktor (DKF):
 - (Normierte) Aktivitätskonzentration [Bq/L] → zusätzliche mittlere effektive Jahresdosis [Sv/a] für repräsentative Person der Bevölkerung
- Betrifft alle 27 Radionuklide aus Langzeitsichersicherheitsanalyse (LZSA) Konrad [1, 2]
 - Dort Konzentrationen im oberflächennahen Aquifer berechnet
 - Ausschließlich im Grundwasser gelöste Radionuklide

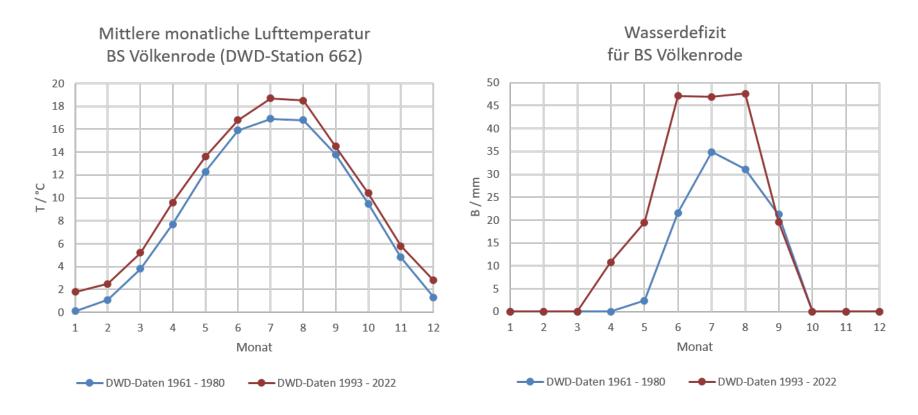

^{[1]:} Storck et al (1986), EU 076.1

^{[2]:} Pröhl (1991), EU 353 Rev. 1



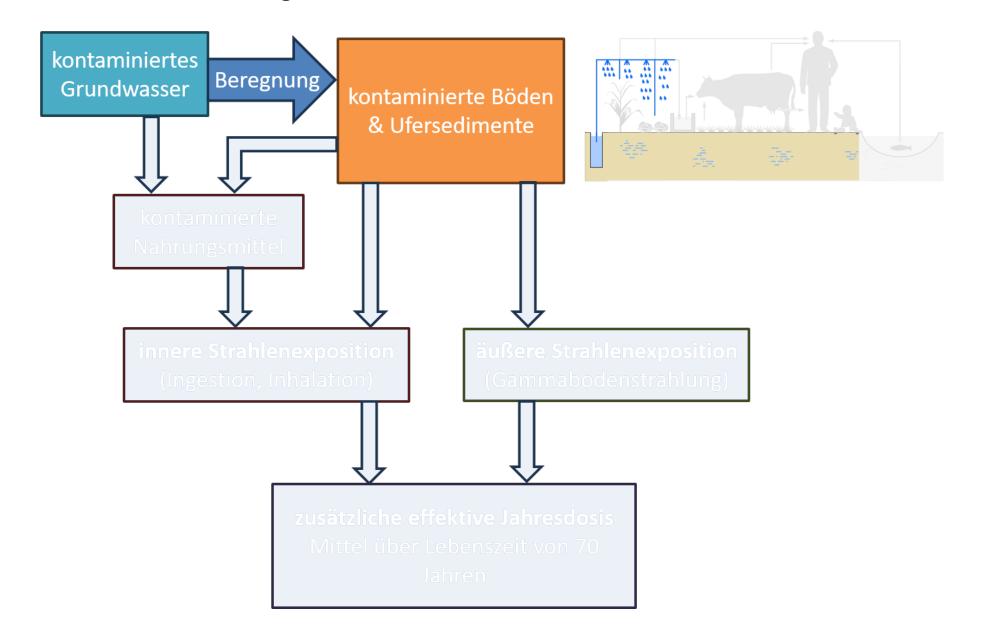
Vorgehen bei der Dosisberechnung nach Berechnungsgrundlage

Abschätzung des Wasserbedarfs zur landwirtschaftlichen Beregnung (I)


- LZSA Konrad [1]:
 - Klimadaten: Deutscher Wetterdienst (DWD)
 - DWD-Station 662 in Braunschweig (BS) Völkenrode, 13 km
 - mittlere Monatsdaten Januar 1961 Dezember 1980
 - Einfache Abschätzung des jährlichen Wasserdefizits: 75 mm
 - Annahme: gleichbleibende, kühlgemäßigte klimatische Verhältnisse
- Berechnung gemäß BG:

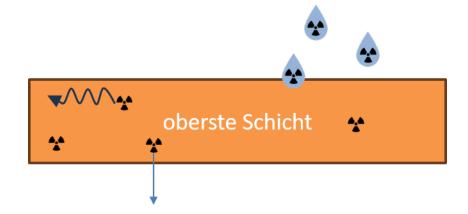
$$B_1 = (2 + 0.2 \cdot T_1) \cdot T_1 - 1.2 \cdot (F_1 - 80) - P_1$$

- Bezugsmonat I, monatliche Temperatur T_I, relative Feuchte F_I, Niederschlag P_I
- Erfordert lokale Klimadaten, z. B. gemittelt über 30 Jahre (BG)
- Vergleich: aus DWD-Klimadaten BS Völkenrode errechnetes Wasserdefizit für
 - Zeitraum von Januar 1961 Dezember 1980 (wie in LZSA)
 - Zeitraum von Januar 1993 Dezember 2022

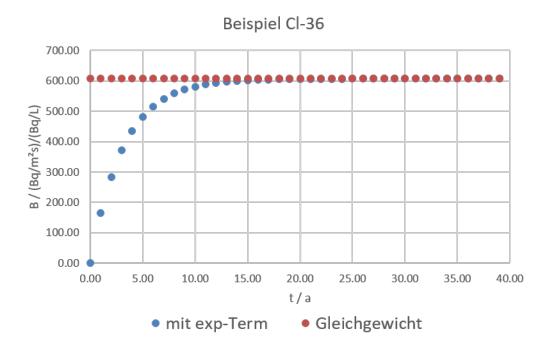


Abschätzung des Wasserbedarfs zur landwirtschaftlichen Beregnung (II)

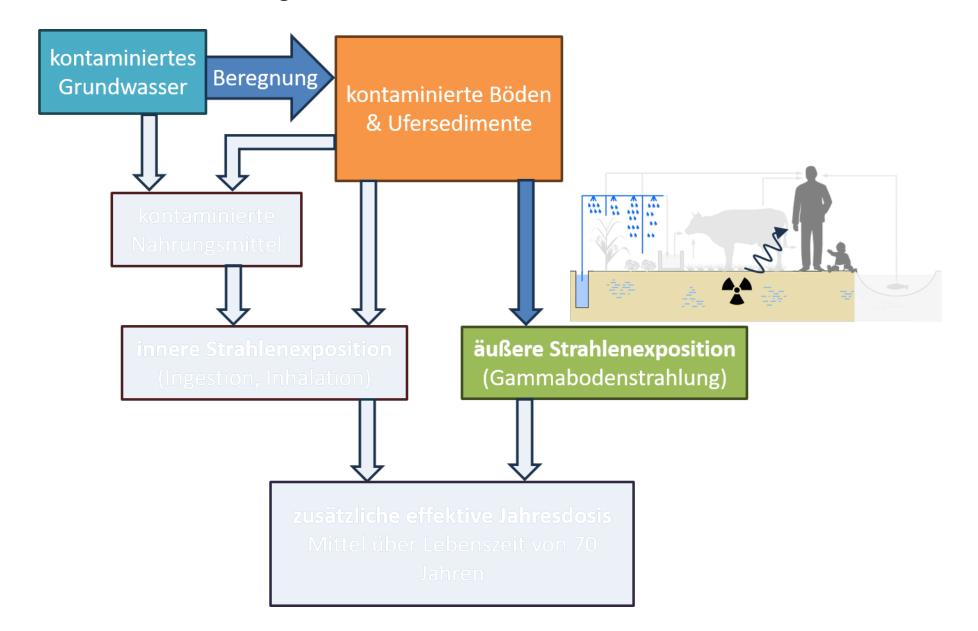
- Nach Modell (BG) kein Wasserdefizit für Monate mit T < 5 °C</p>
- DWD-Daten 1961 1980: 111,2 mm/a
- DWD-Daten 1993 2022: 191,5 mm/a → für weitere Berechnungen angesetzt
- Gleichbleibende klimatische Verhältnisse angenommen



Kontamination von Böden und Ufersedimenten (I)

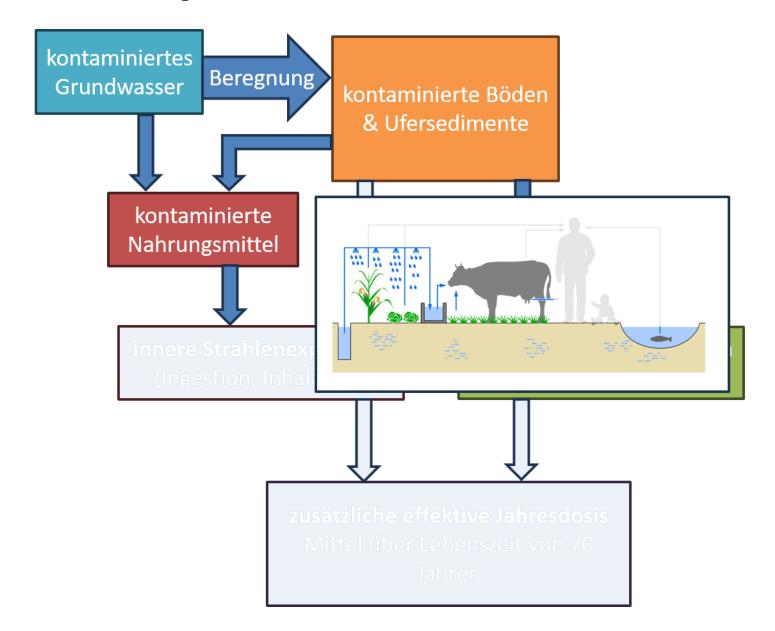

- Aktivität in oberster Boden-/Sedimentschicht
 - 20 cm (Acker)
 - 5 cm (Ufersediment)

- Zeitliche Änderung der Kontamination bestimmt durch:
 - Eintragsrate durch Bewässerung
 - physikalische Zerfallskonstante
 - Verweilkonstanten im Boden
 - Anlagerung an Schwebstoffe (Ufersediment)


Kontamination von Böden und Ufersedimenten (II)

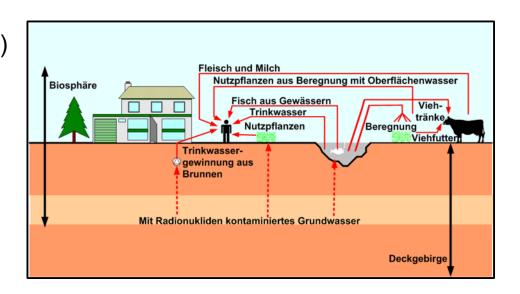
Obere Abschätzung:

- Gleichgewichtszustand
- Annahme: Ackerboden (höchste Verweildauern für alle Elemente)
- Rekursive Berechnungsvorschrift, analytische Lösung im Gleichgewicht

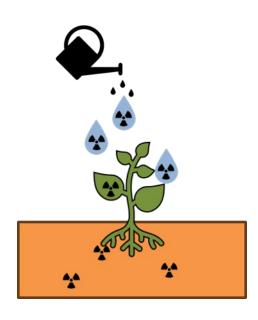


Äußere Strahlenexposition

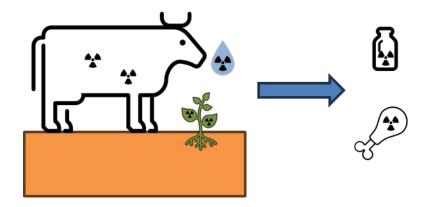
- Direkte γ-Strahlung der kontaminierten Umgebung auf den menschlichen Körper
- Dosisbeitrag äußerer Strahlenexposition wird berechnet anhand:
 - Kontamination von Böden/Ufersedimenten
 - Dosisleistungskoeffizienten (Effektivwerte für gesamten Körper nach ICRP)
 - berücksichtigen Aufbauprozesse über 50 Jahre
 - Keine gesonderte Betrachtung von Zerfalls- und Aufbauprozessen über die betrachteten Nuklide hinaus erforderlich
 - Faktor für Energiespektrum (Anteil mit E > 0,2 MeV)
 - Faktoren für Körpergeometrie (altersspezifisch, sechs Altersklassen)
 - Faktor für Ufergeometrie (obere Abschätzung: unendlich ausgedehnte Fläche)
 - jährliche Aufenthaltsdauern im Freien und an Ufern (ungünstigere Variante)

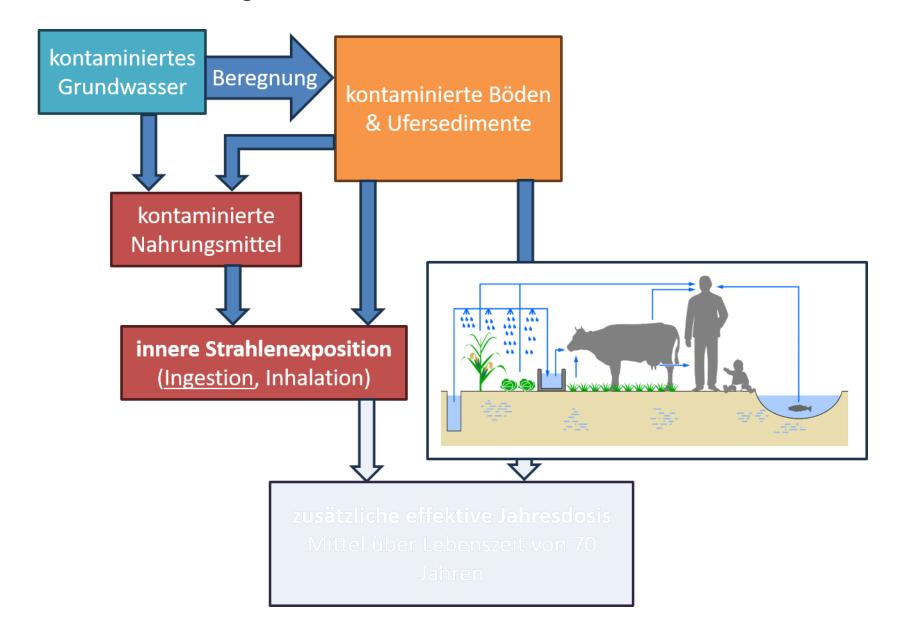


Innere Expositionspfade in der Biosphäre


- Ingestion kontaminierter Lebensmittel auf den Pfaden:
 - Trinkwasser
 - Wasser → Süßwasserfisch
 - Viehtränke → (Kuh/Milch) und → (Rind/Fleisch)
 - Bewässerung → Futterpflanze → (Kuh/Milch) und → (Rind/Fleisch)
 - Bewässerung → Pflanze/Blattgemüse
 - Boden → Futterpflanze → (Kuh/Milch) und → (Rind/Fleisch)
 - Boden → Pflanze
 - Muttermilch/Milchfertigprodukte (Altersklasse ≤ 1 a)
- Unbeabsichtigte Ingestion von Bodenpartikeln
- Inhalation resuspendierter Staubpartikel

Kontamination von Pflanzen


- Aufnahme von Aktivität auf zwei Wegen:
 - Beregnung (Ablagerung <u>auf</u> der Pflanze):
 - Bewässerungsrate,
 - Aktivitätskonzentration im Grundwasser
 - Anteil abgelagerter Aktivität (0,3)
 - Verweilkonstante
 - Bewuchsdichte
 - Aufnahme durch die Wurzeln:
 - Aktivitätskonzentration im Oberboden
 - Elementspezifische Transferfaktoren
 - Dosisbeiträge aufgeteilt in:
 - Blattgemüse
 - Andere Pflanzliche Lebensmittel (Getreide, Obst, Gemüse, Kartoffeln, Wurzelgemüse & daraus erzeugte Produkte)


Kontamination tierischer Lebensmittel

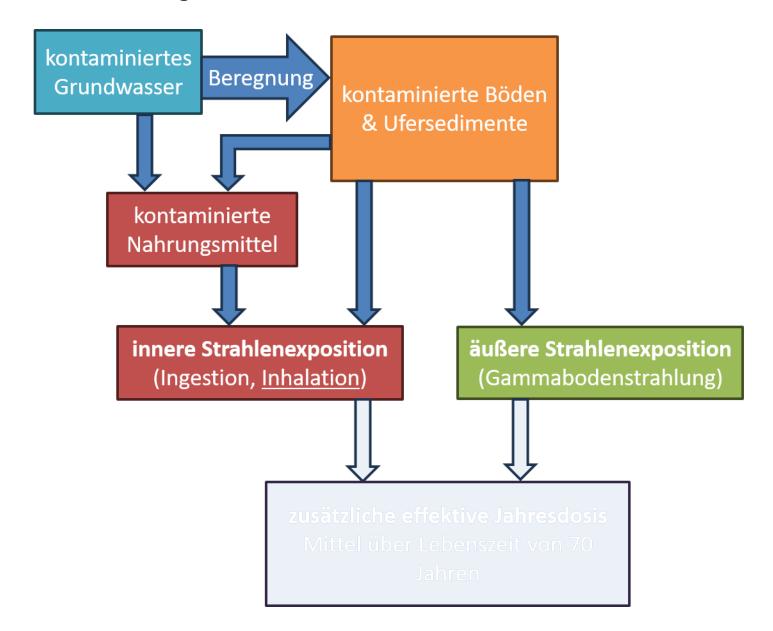
- Zwei Lebensmittelgruppen:
 - Milch & Milchprodukte
 - Fleisch, Wurst, Eier

- Kontamination durch:
 - Tränkwasser: Aktivitätskonzentration im Grundwasser, tägl. Wasserkonsum
 - Weidefutter: Aktivitätskonzentration in Weidepflanzen, tägl. Futteraufnahme
 - Elementspezifische Transferfaktoren für Aufnahme in Fleisch & Milch

Innere Strahlenexposition: Beitrag von Ingestion

- Dosisbeiträge von Ingestion werden berechnet mit:
 - kontaminierter Anteil (Muttermilch, Trinkwasser: 1, andere Lebensmittel 0,5)
 - Dosiskoeffizienten (altersspezifisch, Ganzkörper-Effektivwerte nach ICRP)
 - Verzehrsmenge (altersspezifisch)

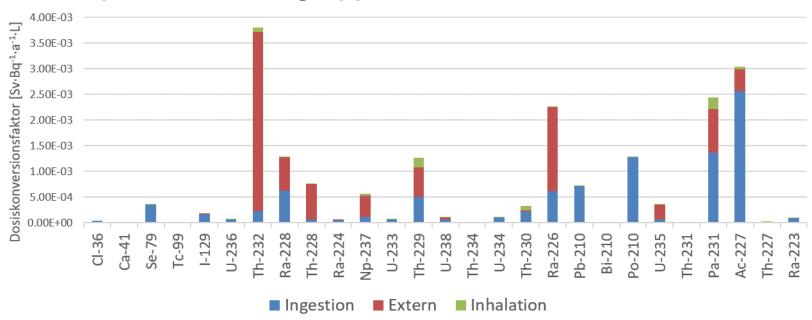
Jährliche Verzehrsmenge in kg


1	2	3	4	5	6	7
Altersgruppe	≤1 Jahr	> 1 - ≤ 2 Jahre	> 2 - ≤ 7 Jahre	> 7 - ≤ 12 Jahre	> 12 - ≤ 17 Jahre	> 17 Jahre
Lebensmittel						
Trinkwasser	55 ¹⁾	100	100	150	200	350
Muttermilch, Milchfertigprodukte mit Trinkwasser	200 1,2)	-	-	-	-	-
Milch, Milchprodukte	45	160	160	170	170	130
Fisch 3)	0,5	3	3	4,5	5	7,5
Fleisch, Wurst, Eier	5	13	50	65	80	90
Getreide, Getreideprodukte	12	30	80	95	110	110
einheimisches Frischobst, Obstpro- dukte, Säfte	25	45	65	65	60	35
Kartoffeln, Wurzelgemüse, Säfte	30	40	45	55	55	55
Blattgemüse	3	6	7	9	11	13
Gemüse, Gemüseprodukte, Säfte	5	17	30	35	35	40

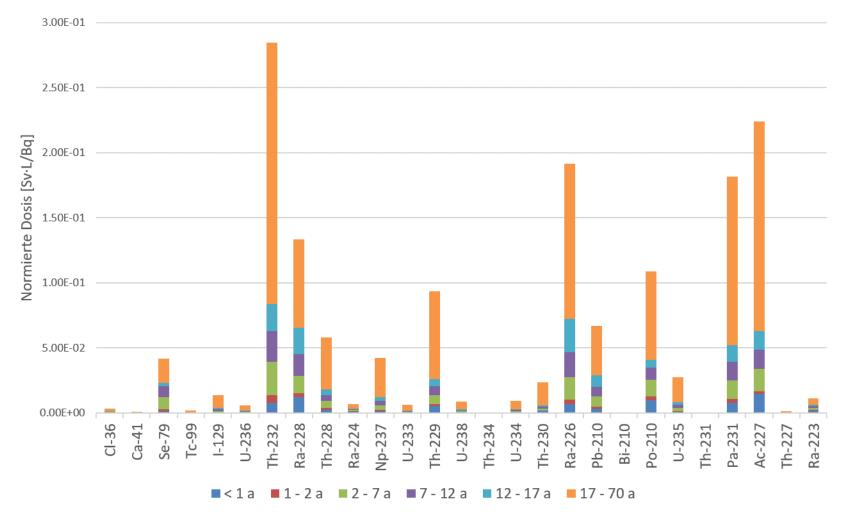
Innere Strahlenexposition: Beitrag von Ingestion

- Dosisbeiträge von Ingestion werden berechnet mit:
 - kontaminierter Anteil (Muttermilch, Trinkwasser: 1, andere Lebensmittel 0,5)
 - Dosiskoeffizienten (altersspezifisch, Ganzkörper-Effektivwerte nach ICRP)
 - Verzehrsmenge (altersspezifisch)
 - Muttermilch (≤ 1 a): Fallunterscheidung (Milch oder Milchersatzprodukte)
 - Aktivitätskonzentration in Lebensmittelgruppen
 - Abbildung Schnittstellen mit Transferfaktoren
 - Dosisdominierende Lebensmittelgruppe wird gewichtet
 - Multiplikator für Verzehrsmenge
 - Obere Abschätzung: nuklidspez. Identifikation & Gewichtung
 - Für meiste Nuklide: Muttermilch (≤ 1 a), pflanzl. Nahrungsmittel, Trinkwasser
- Unbeabsichtigte Ingestion von Bodenpartikeln:
 - Aktivitätskonzentration im Boden, obere Abschätzung: Weideboden
 - Aufkonzentrierungsfaktor (Staubfraktion < 500 μm)
 - Aufnahmemenge (gering), Dosiskoeffizient (ICRP)

Innere Strahlenexposition: Beitrag von Inhalation


- Dosisbeitrag von Inhalation wird berechnet aus:
 - Aktivitätskonzentration in bodennaher Luft
 - Bodenkontamination
 - Flächentrockenmasse (obere Abschätzung: Wert für Weideboden)
 - Staubkonzentration
 - Aufkonzentrierungsfaktor (Staubfraktion mit Partikelgröße < 20 μm)
 - Atemrate (altersspezifisch)
 - Dosiskoeffizienten (altersspezifisch, Ganzkörper-Effektivwerte nach ICRP)

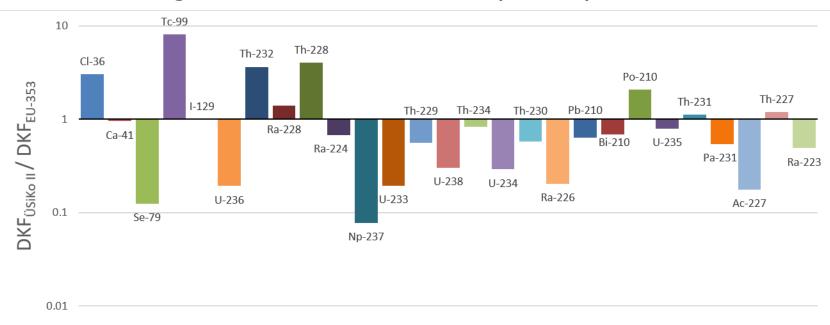
Diskussion der Ergebnisse


Beiträge zur Gesamtexposition: Altersgruppe > 17 a

- Externe Strahlung dominiert bei:
 - Th- und Ra-Isotopen
 - Np-237, U-235, Pa-231, Ac-227
 - Hohe Dosisleistungskoeffizienten für Gammabodenstrahlung (enthalten auch Gamma-Übergänge d. Töchter)
- Für meiste Nuklide Ingestionsdosis durch kontam. Lebensmittel dominierend
- Vergleichbare Verhältnisse für andere Altersgruppen

Kumulierte Lebenszeitdosen normiert auf Aktivitätskonzentration

Größter Dosisbeitrag für alle Nuklide im Erwachsenenalter


Betrachtung des Deltas: Vergleich mit DKF aus LZSA

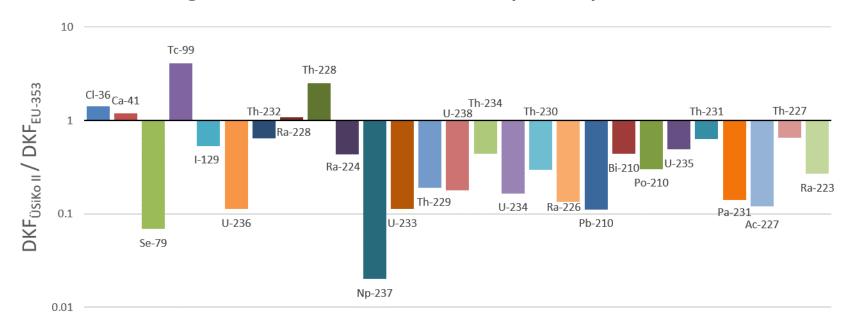
- DKF aus LZSA: abgeleitet aus Radionuklidkonzentrationen und effektiven Dosen [1]
- Dort gemäß zum damaligen Zeitpunkt gültigem Regelwerk zwei Altersgruppen betrachtet (Kleinkinder, Erwachsene)
- Vorgehensweise in ÜsiKo Phase 2:
 - Vergleichende Betrachtung von zwei korrespondierenden Altersgruppen
 - Altersgruppe 1 2 a (entspricht Kleinkindern)
 - Altersgruppe > 17 a (entspricht Erwachsenen)

[1]: Pröhl (1991), EU 353 Rev. 1

Betrachtung des Deltas: Vergleich mit DKF aus LZSA (1 – 2 a)

Vergleich:

- Neuberechnung führt für meiste Nuklide zu geringeren DKF
- Abweichungen gering, meist gleiche Größenordnung

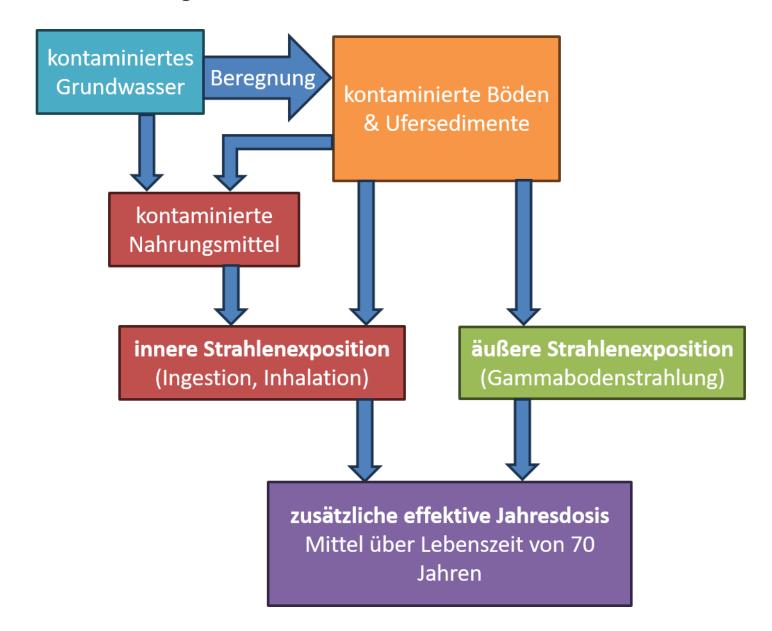

Alle Nuklide:

- nur 50 % aus lok. Erzeugung angenommen → dämpft Ingestionsdosis
- Höhere Bewässerungsrate -> erhöht interne und externe Dosisbeiträge
- Nuklidspez.: geänderte Ernährungsgewohnheiten, Dosiskoeff., Transferfaktoren

[1]: Pröhl (1991), EU 353 Rev. 1

Betrachtung des Deltas: Vergleich mit DKF aus LZSA (> 17 a)

Vergleich:


- Neuberechnung führt für meiste Nuklide zu geringeren DKF
- Abweichungen gering, meist gleiche Größenordnung

Alle Nuklide:

- nur 50 % aus lok. Erzeugung angenommen → dämpft Ingestionsdosis
- Höhere Bewässerungsrate -> erhöht interne und externe Dosisbeiträge
- Nuklidspez.: geänderte Ernährungsgewohnheiten, Dosiskoeff., Transferfaktoren

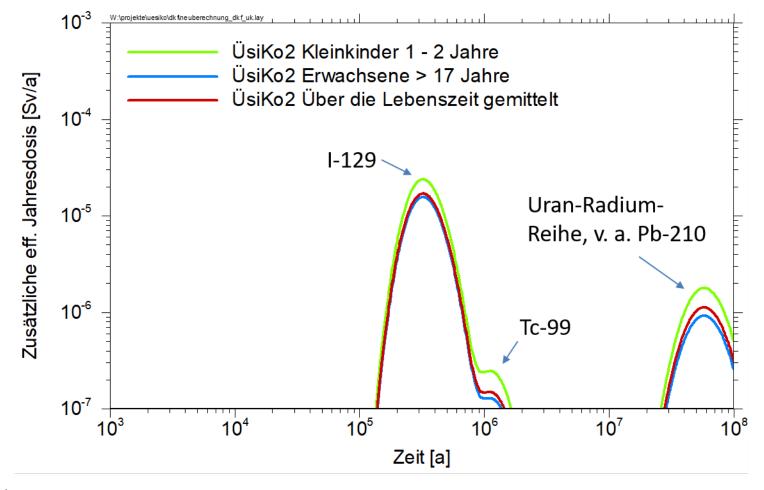
[1]: Pröhl (1991), EU 353 Rev. 1

Über Lebenszeit gemittelte zusätzliche effektive Jahresdosis

$$\overline{E}_{Jahr} = \frac{1}{70} \cdot \sum_{j=1}^{70} \sum_{r} (E_{a,r,j} + E_{i,r,j})$$

- Indikator zur Einhaltung von Schutzzielen
- Für jedes Jahr im Bewertungszeitraum:
 - Summe aus äußerer und innerer Exposition für jedes Nuklid r
 - Summe über alle Nuklide
 - Summe über 70 Lebensjahre, verteilt auf sechs Altersgruppen
- Bei Betrachtung der Dosiskonversionsfaktoren:
 - Reihenfolge der Summation ändert sich
 - Gewichtung mit spezifischen Aktivitäten muss vor Summation erfolgen
 - → innere Summation wird nicht ausgeführt, DKF werden nuklidspez. ausgewiesen
 - Indikator: Summation der mit spez. Aktivitäten gewichteten DKF

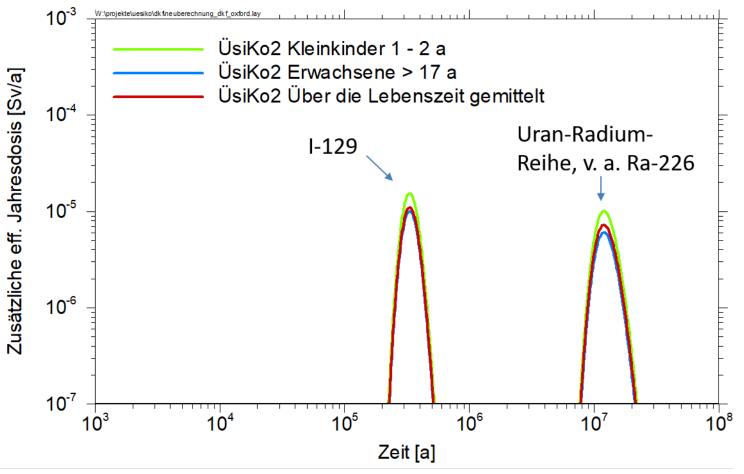
Neuberechnung der Strahlenexposition (I)


- Freisetzungsrechnungen mit Programmpaket RepoTREND für:
 - Unterkreidepfad, Annahme: keine Sorption für lod in Plänerkalken (Delta 32)
 - Oxfordpfad, Modellparameter wie in LZSA [1]

[1]: Storck *et al* (1986), EU 076.1

Neuberechnung der Strahlenexposition (II)

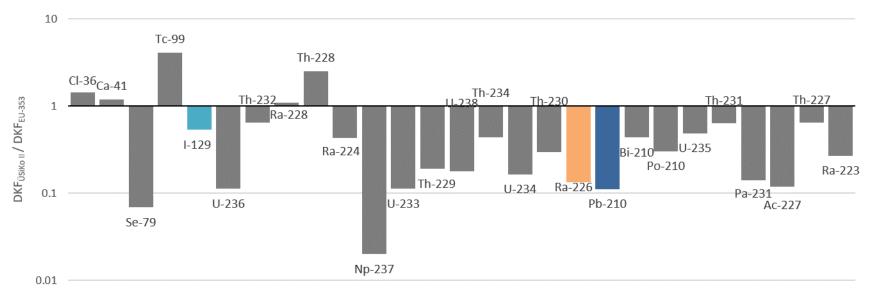
- Freisetzungsrechnungen mit Programmpaket RepoTREND für:
 - Unterkreidepfad, Annahme: keine Sorption für lod in Plänerkalken (Delta 32)



[1]: Storck *et al* (1986), EU 076.1

Neuberechnung der Strahlenexposition (III)

- Freisetzungsrechnungen mit Programmpaket RepoTREND für:
 - Oxfordpfad, Modellparameter wie in LZSA [1]


[1]: Storck et al (1986), EU 076.1

Neuberechnung der Strahlenexposition (IV)

- Vergleich mit LZSA [1, 2]:
 - Beide Pfade: absolutes Maximum von ca. 1 2·10⁻⁵ Sv/a nach etwa. 300.000 a
 - Unterschiede in DKF übertragen sich auf Zeitverläufe der zus. eff. Jahresdosis

^{[1]:} Storck *et al* (1986), EU 076.1 [2]: Pröhl (1991), EU 353 Rev. 1

Fazit

- Berechnung der Dosis in Anlehnung an Berechnungsgrundlage (BASE 2022)
 - Indikator: über Lebenszeit (70 Jahre) gemittelte zusätzliche effektive Jahresdosis
- Vergleich mit LZSA Konrad:
 - Geringere Dosiskonversionsfaktoren für die meisten Nuklide
 - Abweichungen gering, meist in gleicher Größenordnung
 - Ernährungsgewohnheiten, Bewässerungsbedarf, lokale Erzeugung
 - aktualisierte Dosiskoeffizienten & Transferfaktoren
 - Trotz angenommener Null-Sorption in Plänerkalken: eff. Dosis < 0,3 mSv/a</p>
- Auch unter Zugrundelegung der aktuellen Berechnungsgrundlage BASE 2022 bleibt die Dosis unterhalb der im PFB bestimmten Vorgaben
- Delta 33 damit vollständig bearbeitet, keine weitere Maßnahmen erforderlich