

Sicherstellung der Unterkritikalität in der Nachbetriebsphase

Fachöffentliche Ergebnispräsentation ÜsiKo Phase 2, 23.10.2024

Überblick

Δ1: Spaltstoffkonzentration durch Ausfällung im Grubengebäude

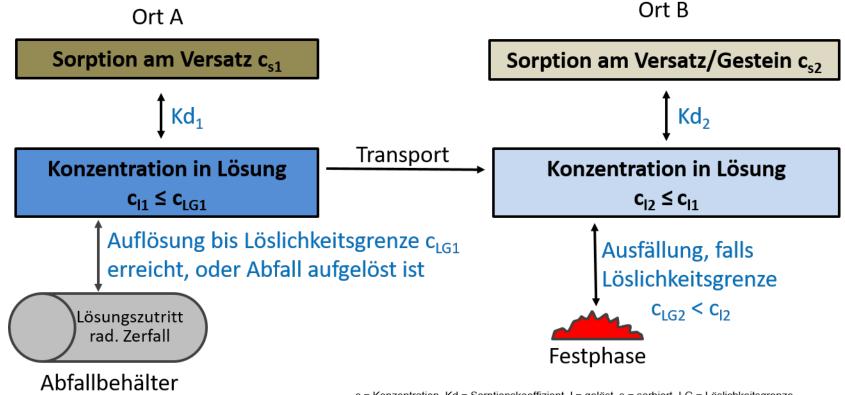
- Es ist zu zeigen, dass eine Kritikalität auf Grund einer Ausfällung von Spaltstoffen auszuschließen ist
- Es wurde festgestellt, dass keine Ausfällung von Spaltstoffen im Grubengebäude erfolgt

Δ2: Spaltstoffkonzentration durch Ausfällung in der Geosphäre

- Es ist zu zeigen, dass eine Kritikalität auf Grund einer Ausfällung in der Geosphäre auszuschließen ist
- Es wurde festgestellt, dass eine Ausfällung von Uran in der Geosphäre möglich ist, aber eine Kritikalität ausgeschlossen werden kann, wenn die mittlere Anreicherung an U-235 geringer als 5,3 % ist

Δ3: Nachweis der Kritikalitätssicherheit für alle höheren Actinoide

- Es ist zu zeigen, dass für die höheren spaltbaren Actinoide eine Kritikalität ausgeschlossen werden kann
- Es wurde festgestellt, dass die Kritikalität der höheren Aktinide ausgeschlossen werden kann, wenn die tatsächlich einzulagernde Masse an Am-243 klein gegen die zulässige Masse an U-235 ist


Δ4: Nachweis der Kritikalitätssicherheit bei der Anwesenheit spezieller Moderatormaterialien

- Es ist zu zeigen, dass für die höheren spaltbaren Actinoide eine Kritikalität bei der Anwesenheit von Moderatormaterialien ausgeschlossen werden kann
- Es wurde festgestellt, dass die Kritikalität der höheren Aktinide ausgeschlossen werden kann, wenn die tatsächlich einzulagernde Masse an Am-243 klein gegen die zulässige Masse an U-235 ist

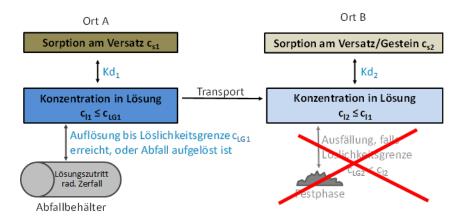
Einführung: Möglichkeiten kritischer Ansammlungen in der Nachbetriebsphase

- Entlang des Transportwegs der Actinoide (nach Verlust der Behälterintegrität)
 - gelöst in der Lösung,
 - sorbiert auf Oberflächen
 - ausgefällt in einer Festphase

Einführung: Betrachtungen zur Löslichkeiten von Actinoiden

- Relevante Stoffe für die geochemischen Bedingungen
 - Zufließendes tiefes Grundwasser (1)
 - Versatzmaterial: Abraummaterial + Zement (2)
 - Ausbau: Zement und metallisches Eisen (3)
 - Abfälle mit Organika und Komplexbildnern, Zementmatrix (4)
 - Abfallbehälter: metallisches Eisen (5)

- Geochemische Modellrechnungen für das Grubengebäude und die Geosphäre
 - Thermodynamische Gleichgewichtsrechnungen mit zwei Codes
 - Datenbasis: THEREDA Release 2020, erweitert um zusätzliche Daten
 - Berechnung maximaler Lösungskonzentrationen für Actinoide U, Pu, Np, Cm, Am
 - Variationen zur Untersuchung der Ungewissheit der Ergebnisse


Einführung: Betrachtungen zur Löslichkeiten von Actinoiden: Ergebnisse

- Geochemische Bedingungen im Grubengebäude
 - Die pH-Werte sind nach dem Kontakt mit Zement hoch (> 13) und durch Zement gepuffert
 - Konzentrationen wichtiger Komponenten wie Ca und gelöster inorganischer Kohlenstoff (DIC) bleiben gering und sind durch Portlandit und Calcit gepuffert
 - Ternäre Ca-An-Hydroxo-, bzw. Ca-U-Carbonato-Komplexe spielen keine Rolle
 - Schon geringe Mengen an metallischem Eisen reichen, dass die Speziation von Uran durch U(IV) dominiert ist
 - Maximale Konzentration der betrachteten Actinoiden in Lösung ist nahezu unabhängig von den erwarteten Bandbreiten der eingelagerten Stoffmengen
- Natürliche geochemische Bedingungen in der Geosphäre sind durch das Grundwasser bestimmt und weichen erheblich von denen im Grubengebäude ab
- Rechnungen liegen den Betrachtungen zu allen vier Deltas zu Grunde

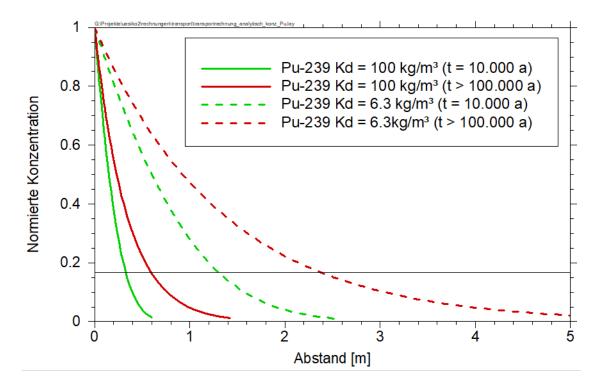
Δ1 Spaltstoffkonzentration durch Ausfällung im Grubengebäude

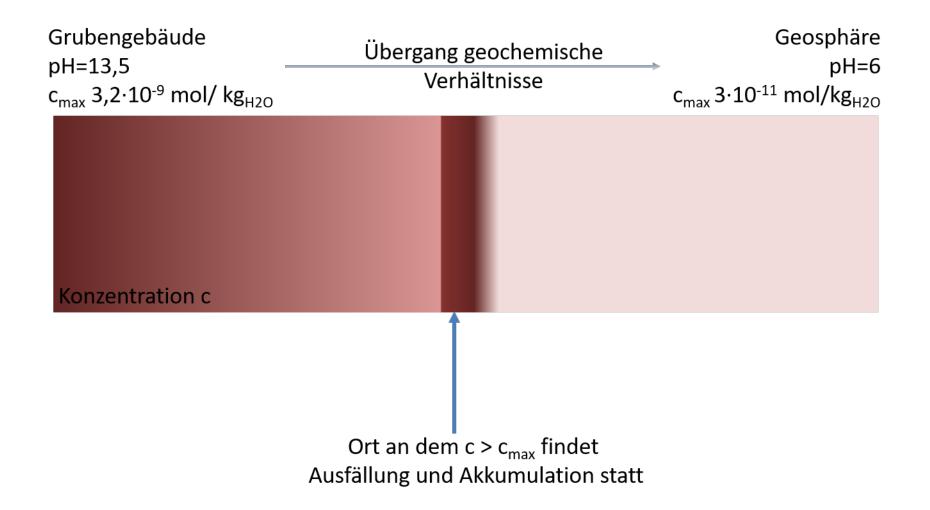
- Untersuchung der Möglichkeit einer Akkumulation von Spaltstoffen im Endlager auf Grund von Ausfällungen
- Geochemische Rechnungen
 - Maximale Konzentration der betrachteten Actinoiden in Lösung ist unabhängig von den erwarteten Bandbreiten der Stoffmengen
 - Es findet keine Ausfällung der betrachteten Actinoiden im Grubengebäude statt
- Keine kritische Ansammlung der betrachteten Actinoide im Grubengebäude möglich
- Keine numerischen Kritikalitätsrechnungen notwendig
- Das ∆1 ist vollständig bearbeitet und nicht sicherheitsrelevant

Δ2 Spaltstoffkonzentration durch Ausfällung in der Geosphäre

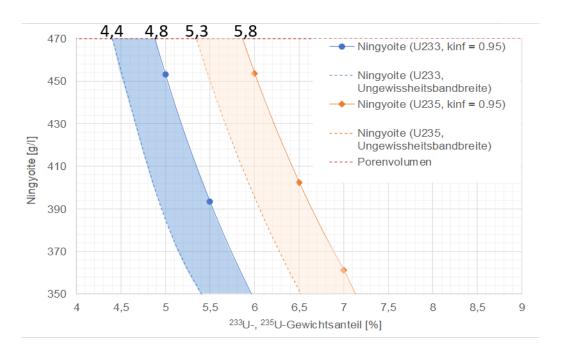
- Geochemische Rechnungen zeigen für die Geosphäre
 - Löslichkeiten für Np, Cm, Am, Cf sind gleich oder höher als im Grubengebäude
 - Plutonium kann bei Komplexbildung mit Isosaccarinsäure (ISA) im Grubengebäude eine höhere Löslichkeit als in der Geosphäre haben (Faktor 6)
 - Uran hat eine geringere Löslichkeit gegenüber Grubengebäude (Faktor 100)
 - Möglicherweise gebildetes Uran-Mineral ist Ningyoite (gelbes Mineral in dem Bild)
 - Pu und U sind weiter zu betrachten

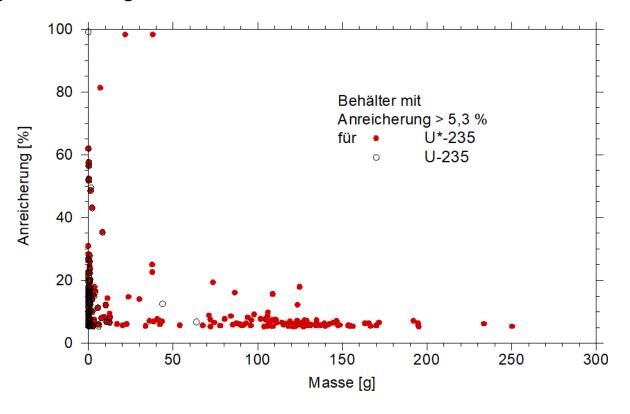
c_I = maximale Konzentration in Lösung


Element	c _l Gruben-	c _l Geosphäre	Faktor c _l	
	gebäude	[kg/m³]	Gruben-	
	[kg/m³]		gebäude / c _l	
			Geosphäre	
Cm (Cf)	1,9·10 ⁻⁰⁷	2,5·10 ⁻⁰⁴	7,5·10 ⁻⁰⁴	
Am	2,1·10 ⁻⁰⁷	2,5·10 ⁻⁰⁴	8,4·10 ⁻⁰⁴	
Pu	3,7·10 ⁻⁰⁹	1,6·10 ⁻⁰⁸	0,2	
Pu (mit ISA)	9,9·10 ⁻⁰⁸	1,6·10 ⁻⁰⁸	6,1	
Np	2,4·10 ⁻⁰⁷	7,0·10 ⁻⁰⁷	0,5	
U	7,6·10 ⁻⁰⁷	≈ 7,3·10 ⁻⁰⁹	≈ 104	


Wikimedia Commons

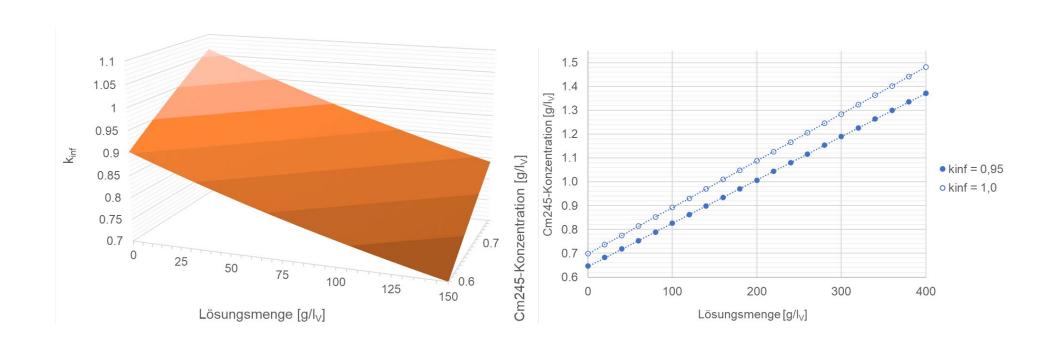
- Auf Grund des langsamen Transports von Pu-239 zerfällt dies zu einem großen Teil während der Transportzeit
- Die Konzentration verringert sich um einen Faktor 10 während weniger Meter Transportdistanz und ist dann unterhalb der Löslichkeitsgrenze in der Geosphäre
- Eine Akkumulation von Pu-239 in der Geosphäre ist auszuschließen





- Inventar an Uran besteht weit überwiegend aus U-238, alle Uran-Isotope verhalten sich bezüglich Transport und Ausfällung gleich
- Berechnung des Neutronenmultiplikators für ausgefälltes Ningyoite
- Angesetzter Sicherheitsmaßstab: Neutronenmultiplikator k_{inf} < 0,95</p>
- Ausfällung als Ningyoite ist durch den Porenraum des Wirtsgesteins räumlich auf 470 g/l beschränkt
- Mögliche kritische Ansammlungen können theoretisch durch U-233 und U-235 entstehen

- U-233 kommt im Abfall nicht in ausreichender Menge vor
- Kritische Akkumulation von U-235 erfordert entsprechend der Berechnung mindestens 5,3 % Anreicherung
- U-235 kann zusätzlich durch Zerfall erzeugt werden (U*-235 = U-235 + Pu-239 + Am-243)
- Die Gesamtmasse an U*-235 in den bisher produktkontrollierten Gebinden mit einem Gewichtsanteil von U*-235 über 5,3 % beträgt etwa 20 kg



- U-233 kommt im Abfall nicht in ausreichender Menge vor
- Kritische Akkumulation von U-235 erfordert entsprechend der Berechnung mindestens 5,3 % Anreicherung
- U-235 kann zusätzlich durch Zerfall erzeugt werden (U*-235 = U-235 + Pu-239 + Am-243)
- Die Gesamtmasse an U*-235 in den bisher produktkontrollierten Gebinden mit einem Gewichtsanteil von U*-235 über 5,3 % beträgt etwa 20 kg
- Bei reinem U-235 wird mindestens eine Masse von 3,4 kg für eine kritische Ansammlung benötigt, bei einem Uran-Gemisch ist die Masse höher
- Mengen Uran mit Anreicherungsgrad U*-235 > 5,3 % in einzelnen Behältern sind gering
- Wenn die Behälter im Endlager so positioniert werden, dass der mittlere Gewichtsanteil des in die Geosphäre transportierten Urans unterhalb von 5,3 % U*-235 liegt, dann ist eine Sicherheitsrelevanz des Deltas ausgeschlossen
- Es wird eine Empfehlung zur Positionierung der Behälter gegeben

- Betrachtung für 29 relevante Actinoide
- Angesetzter Sicherheitsmaßstab: Neutronenmultiplikator k_{inf} < 0,95</p>
- Berechnung der kleinsten kritischen Konzentration g_{Actinoid}/I_{Volumen} in Abhängigkeit der Lösungsmenge

- Betrachtung für 29 relevante Actinoide
- Angesetzter Sicherheitsmaßstab: Neutronenmultiplikator k_{inf} < 0,95</p>
- Berechnung der kleinsten kritischen Konzentration g_{Actinoid}/I_{Volumen} in Abhängigkeit der Lösungsmenge
 - Tabelle zeigt Ausschnitt aus der Liste der Actinoide für 8 Curiumisotope

Nuklid	Kleinste Konzentration zu k _{inf} = 0,95 [g/l _V]	Kleinste Konzentration zu $k_{inf} = 0,95$ bei vollständig gesättigtem Porenraum $[g/l_V]$		
Cm-242	859	2 404		
Cm-243	1,91	4,41		
Cm-244	2 034	5 449		
Cm-245	0,65	1,37		
Cm-246	3 705	10 010		
Cm-247	8,63	22,64		
Cm-248	3 978	9 855		
Cm-250	27 830	68 430		

- Elementweiser Vergleich der kleinsten kritischen Konzentration mit der maximalen Konzentration aus den geochemischen Modellrechnungen in Lösung und sorbiert auf Oberflächen
- Konzentration für alle Elemente in Lösung und sorbiert auf Oberflächen ist kleiner als die kleinste kritische Konzentration

	Th	U	Pu	Np	Am	Cm	Cf
Reaktivstes Isotop	229	233	241	236	242m	245	251
Maximalkonzentration in Lösung und sorbiert [g/l _v]	0,007	0,167	0,022	0,053	0,045	0,041	0,041
Kleinste Konzentration zu k _{inf} = 0,95 [g/l] für das reaktivste Isotop	200	3,24	1,42	0,25	0,157	0,43	0,133
Quotient	28571	19,4	64,5	4,7	3,5	10,5	3,2

- Berücksichtigung des radioaktiven Zerfalls und der Zunahme der Menge der Tochterisotope
 - z. B. Am-243 \rightarrow Np-239 \rightarrow Pu-239 \rightarrow U-235
- Zuwachs der Menge nicht relevant außer für den Zerfall von Am-243 (Halbwertszeit 7.364 Jahre)
- Laut Endlagerungsbedingungen (ELB) sind bis zu 487g Am-243 in einem Container Typ-5 zulässig, ohne Anforderung für die Homogenisierung
- Bei U-235 und Pu-239 können sich die Mengen aus dem Zerfall von Am-243 theoretisch nahezu verdoppeln bzw. im Fall von U-235 sogar mehr als verdoppeln
- Eine kritische Anordnung wäre dann nicht ausgeschlossen, wenn die formal zulässigen Maximalmengen an U-235 und Am-243 mehrerer Behälter ausgeschöpft würden und in den Ecken der Behälter aufeinanderträfen
- Die Menge von Am-243 in den Abfällen ist vernachlässigbar gering, in den bisher produktkontrollierten
 Abfällen, die etwa 6 bis 10 % aller Abfälle darstellen, beträgt die Gesamtmenge an Am-243 weniger als 1 g
- Wenn das eingelagerte Inventar von Am-243 klein gegen die zulässige Masse an U-235 ist, dann kann eine Sicherheitsrelevanz des Deltas ausgeschlossen werden

- In den bisher produktkontrollierten Abfällen ist keine relevante Menge an Am-243 vorhanden
- Es liegen keine Informationen über die noch zu erwartenden Mengen an Am-243 vor
- Es wird daher empfohlen zu überprüfen, ob relevante Mengen an Am-243 in den im Endlager Konrad endzulagernden Abfällen vorkommen können
 - Falls keine relevanten Mengen an Am-243 zur Endlagerung in Konrad existieren, dann ist das Delta nicht sicherheitsrelevant
 - Für den Fall, dass relevante Mengen an Am-243 in den Abfällen auftreten können, werden mögliche
 Optionen zur Änderung der ELB im Bericht diskutiert

Δ4 Nachweis der Kritikalitätssicherheit bei der Anwesenheit spezieller Moderatormaterialien

- Zu berücksichtigende Moderatormaterialien
 - Schweres Wasser (darf nach ELB nur fixiert in Beton vorliegen)
 - Graphit
 - Beryllium
- Vorgehen analog zu Δ3 bei zusätzlicher Berücksichtigung der Moderatormaterialien
 - Berechnung der kleinsten kritischen Konzentration g_{Actinoid}/Liter_{Volumen} in Abhängigkeit der Lösungsmenge
 - Elementweiser Vergleich der kleinsten kritischen Konzentration mit der maximalen Konzentration aus den geochemischen Modellrechnungen in Lösung und sorbiert auf Oberflächen
 - Berücksichtigung des radioaktiven Zerfalls zwischen verschiedenen Actinoiden

Δ4 Nachweis der Kritikalitätssicherheit bei der Anwesenheit spezieller Moderatormaterialien

- Kritikalität eingebrachter Actinoide mit Moderatormaterialien
 - Die kleinsten kritischen Massen verringern sich zum Teil
 - Es kann keine kritische Anordnung entstehen durch den Transport
 - der spaltbaren Nuklide mit der Lösung in das Fixierungsmittel des schweren Wassers bzw. in das Graphit, noch
 - des schweren Wassers oder des gelösten Berylliums in die Abfallmatrix oder in den Versatz
- Berücksichtigung des radioaktiven Zerfalls
 - Zerfall von Am-243 führt zum Anwachsen von Pu-239 und U-235, was wie bei Δ3 theoretisch zu einer kritischen Anordnung führen könnte
 - Wenn das eingelagerte Inventar von Am-243 klein gegen die zulässige Masse an U-235 ist, dann kann eine Sicherheitsrelevanz des Deltas ausgeschlossen werden

Δ4 Nachweis der Kritikalitätssicherheit bei der Anwesenheit spezieller Moderatormaterialien

- In den bisher produktkontrollierten Abfällen ist keine relevante Menge an Am-243 vorhanden
- Es liegen keine Informationen über die noch zu erwartenden Mengen an Am-243 vor
- Es wird daher empfohlen zu überprüfen, ob relevante Mengen an Am-243 in den im Endlager Konrad endzulagernden Abfällen vorkommen können
 - Falls keine relevanten Mengen an Am-243 zur Endlagerung in Konrad existieren, dann ist das Delta nicht sicherheitsrelevant
 - Für den Fall, dass relevante Mengen an Am-243 in den Abfällen auftreten können, werden mögliche
 Optionen zur Änderung der ELB im Bericht diskutiert

Fazit

- Δ1: Spaltstoffkonzentration durch Ausfällung im Grubengebäude
 - Geochemische Rechnungen zeigen, dass keine Ausfällung stattfindet
 - Das Delta ist nicht sicherheitsrelevant
- Δ2: Spaltstoffkonzentration durch Ausfällung in der Geosphäre
 - Kritische Ansammlung von U-235 als Mineral Ningyoite wäre prinzipiell denkbar
 - Wenn die Behälter im Endlager so positioniert werden, dass der mittlere Gewichtsanteil des in die Geosphäre transportierten Urans unterhalb von 5,3 % U*-235 liegt, dann ist eine Sicherheitsrelevanz des Deltas ausgeschlossen
- Δ3: Nachweis der Kritikalitätssicherheit für alle höheren Actinoide
 - Das Delta ist für alle höheren Actinoide außer Am-243 nicht sicherheitsrelevant
 - Wenn das eingelagerte Inventar von Am-243 klein gegen die zulässige Masse an U-235 ist, dann ist eine Sicherheitsrelevanz des Deltas ausgeschlossen
- Δ4: Nachweis der Kritikalitätssicherheit bei der Anwesenheit spezieller Moderatormaterialien
 - Das Delta ist für alle höheren Actinoide außer Am-243 nicht sicherheitsrelevant.
 - Wenn das eingelagerte Inventar von Am-243 klein gegen die zulässige Masse an U-235 ist, dann ist eine Sicherheitsrelevanz des Deltas ausgeschlossen