Bundesamt für Strahlenschutz

Genehmigungsunterlagen

Konrad

EU 284

Gesamte Blattzahl dieser Unterlage: 297 Blatt

Die Übereinstimmung der vorstehenden Abschrift - auszugsweisen Abschrift -Fotokopie - mit der Urschrift wird beglaubigt.

Hannover, den 15. Jan. 98

BfS

Bundesamt für Strahlenschutz

001

n	ec	L	h	ï	9	H
IJ	tt	ĸ	IJ		а	ш

Projekt N A A N	иниииииии	Obj Kenn. NNNNNN	Aufgabe X A A X X	AA	Lfd.Nr N N N N	Rev. N N		Seite:	I
9K	5321		GV	ΤQ	0002	06	ĘU 284	Stand:	20,02.97

Titel der Unterlage:

Bewelterung

Ersteller:

DBE

Textnummer:

Stempelfeld:

Unterlage stimmt mit Original überein! Archiv Peine

Freigabe für Behörden:

Unterschrift:

26.02.9

Freigabe im

26.02.9

Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Dritten zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zustimmung des BfS.

BfS

Bundesamt für Strahlenschutz

					Re	vis	sionsblatt	egy(ETAL)	.002
Projekt N A A N	PSP-Element	ObjKenn. NNNNNN	A⊔lgabe XAAXX	UA A A		Flev Ni Ni			Seite: II
9K	5321) ,	G۷	ΤQ	0002	00	EU 284		Stand: 21.04.89

Titel der Unterlage:

Bewetterung

			I	<u></u>	 1	
Rev.	RevStand Datum	UVST	Prüfer (Kürzel)	rev. Seite	Kat. *)	Erläuterung der Revision
01	14.09.90	ЕТ-В			S	siehe Revision der DBE auf Blatt 2,2a, 2b von 288 01 vom 15.05.90 02 vom 14.09.90
02	28.01.92	ЕТ-В		!	s	siehe Revision der DBE auf Blatt 2c 03 vom 28.01.92
03	06.06.94	ET-B			R S V	siehe Revision der DBE auf Blatt 2d und 2e 04 vom 06.06.94
04	10.02.95	ET-B			S	siehe Revision der DBE auf Blatt 2e 05 vom 23.11.94 06 vom 10.02.95
05	15.02.96	ET-B			R S	siehe Revision der DBE auf Blatt 2f 07 vom 15.02.96
06	20.02.97	ЕТ-В			V R	siehe Revision der DBE auf Blatt 2f 08 vom 20.02.97
		•				Archiv Peins
		ī				08.

*) Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung

Kategorie S = substantielle Revision

mindestens bei der Kategorie S müssen Erläuterungen angegeben werden.

Datum / Unterschrift

Blatt: **DECKBLATT** Stand: 20.02.97 Baugr, Lfd.Nr, Projekt PSP-Element Obj.Kenn. Funktion Komp. Autgabe ŲĄ Projekt: ANNNAA NNAAANN AANNNA АА ииии иии NAAN NNNNNNNNNN AANN XAAXX KONRAD 9K TS G٧ LA 0005 08 5321 Titel der Unterlage Bewetterung Ersteller/Unterschrift: A:BEWETTER.08 Stempelfeld: T-KT1 Freigabe DBE-UVST Datum / Unterschrift Freigabe Auftragnehmer Datum / Unterschrift

Dieses Schriftstück unterliegt samt Inhalt dem Schutz des Urhebersechts und darf nur mit Zusimmung der UBE genutzt, vervefsfälligt. Dritten zugänglich gemacht oder in anderer Weise vervendet.

Blatt:

Stand:

15.05.1990

Revisionsst. 00:	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Benfinhha	Aufgabe	UA	Lfd. Nr.	Rev
	NAAN	иииииииии	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	ииии	NN
21.04.1989	9К	5321		TS			G۷	LA	0005	01

Titel der Unterlage:

Bewetterung

Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeichn.	rev. Seite	Kat.	Erläuterung der Revision
01	15.05.90	T-TB		2 6 12 13	R R S R	Blatt 2 a zusätzlich Gesamtblattzahl Ausgenommen Schacht Konrad 1, entfällt Literaturindex entfällt Textüberarbeitung
				14 20 21	S R S	I Maschinenlinie anstatt 2 Literaturindex entfällt Nach Räumung der Grube ersetzt durch
				23	S	unverzüglich Haufwerksversorgung Versatztransport-
				25	S	fahrzeug und Pumpversatz Abwettersammelstrecke über den Einlage- rungskammern Zweites Wetterbohrloch bei Sonderbe- wetterungslängen > 800 m, Sonderbe-
				26 29 31	R R R S	wetterungslängen Text von Seite 25 Abs. 3 Neuformulierung Zechenbuch/Betriebshandbuch Maßnahmen zur Überprüfung und Verdünnung möglicher Hz-Konzentrationen in Einlage-
	1			32	٧	rungskammern Betrieblich bedingte Ausschaltzeiten in Einlagerungskammern definiert
				33	S	Total-Netzausfall länger als 8 h wird
				35	S	Berücksichtigung der Ergebnisse des DMT- Gutachtens Nr. 11031490 - Ausfall der übergeordneten Energiever- sorgung bei hochsommerlichen Tempera- turen - Brand eines Transportfahrzeuges im Kon-
						trollbereich Blatt 35 a und 35 b zusätzlich
				36	S	Zusätzliche Maßnahmen bei Ausfall der übergeordneten Energieversorgung
				40	S	Auslegungsmerkmale für die saugende Sonderbewetterung in söhligen tongstrukturstrecken eingefügt Letzter Absatz entfällt

^{*)} Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden.

Blatt:

2 a Stand:

15.05.1990

Lfd. Nr.

LA 0005

NNNN NN

01

UA

AA

Revisionsst. 00: 21.04.1989

Projekt PSP Element Funktion Komponente Baugruppe Aufgabe Obj. Kenn. NAAN NNNNNNNNN NNNNNN NNAANN AANNNA AANN XAAXX 5321 TS GV

Titel der Unterlage:

Bewetterung

9K

Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeichn.	rev. Seite	Kat.	Erläuterung der Revision
01	15.05.90	Т-ТВ		52 55	S	105 dB durch 100 dB ersetzt Zechenbuch/Betriebshandbuch; Abs. 1 Neuformulierung
				60	S	Auslegungsmerkmale für Bereitschafts- wetterbauwerke eingefügt
				65	V S	Zechenbuch/Betriebshandbuch Zusätzliche Festlegungen für das Zechen- buch/Betriebshandbuch
				69 88	R	Literaturindex entfällt Literaturindex von 16 auf 17 geändert
				92	V	Messungen gemäß Kap. 3.2 der Fahrzeug- betriebsrichtlinien eingefügt Einzelheiten werden gemäß § 120 ABVO ge-
				95 101	V	regelt Zechenbuch/Betriebshandbuch
				bis 104	3	Literaturverzeichnis aktualisiert, zusätzliche Literaturquellen [1; 16; 21] eingestellt
					Ĭ	
						The Original line of the second secon
						Belle Balling and Company of the Com
						Archiv 98

*) Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden.

Blatt: 2 b

Stand: 14.09.90

Revisionsst. 00: Projekt PSP-Element Obj.Kenn. Funktion Baugr. Lfd.Nr. Komp. Aufgabe ANNNA NNAAANN AANNNA NNNN NN NAAA NNNNNNNNN AANN XAAXX AA 21.04.89 9K 5321 TS G٧ 0005 02 LA

Titel der Unterlage

Bewetterung

Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeichn.	rev. Seite	Kat.	Erläuterung der Revision
02	14.09.90	T-TB		2	R	Blatt 2 b zusätzlich
				6	R	Gesamtblattzahl
				10	S	Anlage 22 und 23 zusätzlich
				11	R	"Abgabe" durch "Ableitung" ersetzt und "u. a." eingefügt
				18	R	Höhe des Diffusors entfällt
				19	S	Begrenzung des Wetterstromes im Einlagerungsfüllort eingefügt
				26	R	"beim Errichten des Kammerabschluß- bauwerkes" entfällt
				29	R	Höhe des Diffusors entfällt
М				31	V	"vor Inbetriebnahme der Sonderbewetterung' entfällt
				35 35a 35b	V	Textüberarbeitung gemäß dem DMT-Gutachten Nr. 11031490; Nachtrag Nr. 11031890 zum Gutachten Nr. 11031490 in Text eingearbeitet; Literaturindex gestrichen; Text von 35 a auf 35 b; Text von 35 b auf 35 c; Blatt 35 c zusätzlich
				36	V	"des Betriebes" eingefügt Literaturindex gestrichen
				42	R	Bauhöhe des Diffusors entfällt max. durch ca. ersetzt
				52	S	Mindesthöhe 45 m
- 1				75	V	"abgeworfen" entfällt; Wetterbohr wird mit Betonversatz verfül
				103 und 104	S	Literaturquelle 16 und geschen und im Anlagenverzeichnis ausgenommen

^{*)} Kategorie R = redaktionelle Korrektur
Kategorie V = verdeutlichende Verbesserung
Kategorie S = substantielle Änderung
Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden

Blatt: 2c

Stand:

Revisionsst. 00: PSP-Element Funition Котр. Baugt. - Aufgabe I UA I Lig.Nr. - Rev. Projekt 1 Obj.Kenn. NAANI NNNNNNNNN NNNNNN I NNAAANN AANNA AANN I XAAXX I AA I NNNN I NN 21.04.89 9K 5321 LA 10005 103 TS GV

Titel der Unterlage

Bewetterung

Rev.	Revisionsst. Datum	Stelle	Gegenzeichn.	rev. Seite	. Kat. **)	Erläuterung der Revision						
03	28.01.92	т-тв		2	i R	Blatt 2c zusätzlich						
			10000	6	R	Blattzahl geändert						
				13	٧	"gleichzeitig" gestrichen						
				13	5	Text geändert						
				13	R	Blätter 13a und 13b zusätzlich						
				13a	S	Wetterverteilung im Einlagerungsfeld beschrieben						
		1		13b	S	Wetterverteilung im Einlagerungsfeld beschrieben						
				13Ь	S	Text geändert						
				14	' Š	Text geändert						
	:							16	S	Einhaltung der Wettergeschwindigkeiten beschrieben		
;		1 1		16	R	Blatt 16a zusätzlich						
				16a	S	Einhaltung der Wettergeschwindigkeiten beschrieben						
				18	S	An Kontrollbereichsgrenzen werden grund- sätzlich Wetterbauwerke vorgesehen						
				35c	S	Zusätzliches Bereitschaftswetterbauwerk						
				36	S	(Text geändert) Schließen des Bereitschaftswetterbauwerke						
						36 S Dieselkompressor wird nicht me	Dieselkompressor wird nicht mehr vor-					
				38	S	gehalten Zusätzliche Prüfungen des Betreibers ein-						
						i 	: - -	: 		gefügt 40 S "Sonderbewetterung" durch ersetzt		
				41	c							
				41 60	, V	UVV gestrichen; GesBergV eingefügt Wetterdrosseln können auch als Wettertür						
				70	_	im Bedarfsfall verwendet werden						
		E		79	, S	Text eingefügt						
				93	V							
				94	S	Manuelle Wettermessung in z. B. Sonder- räumen						
				101	R							
				102	R	Origin						
				103 104	R	Literaturquelle einsefüt Revisionsindex geändert						
						geandert						
						Archiv 20th						

Xategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Anderung Mindestens bei der Kategorie S müssen Erläuterungen angegeben wer-den

Blatt: 2d

Revisionsst. 00:

21.04.89

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	инининии	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	/

Titel der Unterlage

Bewetterung

Rev.	Revisionsst. Datum	verant. Stelle	rev. Seite	Kat. *)	Erläuterung der Revision
04	06.06.94	T-KT1	4	S	Kap. 2.5.2 Wetterklappe entfällt
04	00.00.54	1.4/(1.1		R	fortlaufende Numerierung neu
			4		
1			4	V	0,4 kV-Schaltanlage neu definiert
			6	R	Gesamtblattzahl
			7	S	Anpassung Grubengebäude, Anlage 1 ersetzt
			7	S	W-Kanalklappe entfällt, Anlage 3 bis 5 aktua- lisiert
			7	S	Anpassung Grubengebäude, Anlage 6 aktuali- siert
			8	S	
Ì			0	3	geänderte Anordnung Sonderbewetterung
				_	Anlage 7 aktualisiert, Anlage 8 ersetzt
- 3			8	S	Anlage 14 Kennfeld ersetzt
			9	S	Anlage 17 ersetzt
1			15	V	"für" durch "mit" und "ausgelegt" durch "be-
- 4					trieben" ersetzt
			16	V	"Volumenstromsteuerung" durch "Volumenstrom- regelung" ersetzt
			21	S	"einstufig" durch "zweistufig" ersetzt
1			25	S	"magalhama" oncotat "mit nalumechalthamam
					"regelbare" ersetzt, "mit polumschaltbarem Motor" gestrichen
			25	S	letzter Absatz, 2. Satz gestrichen
			32, 33	S	Bypassklappe entfällt, Absatz neu formuliert
			33	S	Satz "Ein außerbetrieblicher Total-Netzaus- fall" gestrichen
			42	S	Satz "Für die Dauer des" gestrichen
			43	S	Satz "Im Wattonkanal ist oing " agetnisha
. 9					Satz "Im Wetterkanal ist eine " gestricher
	8 Y		43	S	"freiausblasender Ventilator" durch "Ventila- tor im Einbauzustand" ersetzt
	· 1		44	S	"ohne" durch "mit" ersetzt
			45	S	Steuerspannungen ersetzt
			46	S	Kap. 2.3.1 vorletzter und letzter Satz ge- strichen
М			46	S	Wetterdaten konkretisiert, Text neu formu- liert
			4.7	-	
			47	S	"Bypassklappe" gestrichen
			48	S	"Wetterklappe" gestrichen
			48	S	Text Notbetrieb neu formuliert
			50	S	"einstufig" durch "zweistufig" ersetzt
			51	S	"für direkte Einschaltung" durch "Einschal-
					tung über Anlaßtransformator ersetzt

*) Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden

Blatt: Stand:

water to the same of the same										
Revisionsst, 00:	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Saugr.	Aufgebe	UA	Lfd.Nr.	Flev.
21 04 90	NAAN	инининини	NNNNNN	NNAAANN	AANNNA	AANN	XXAAX	AA	ииии	NN
21.04.89	9K	5321		TS			GV	LA	0005	/

Titel der Unterlage

Bewetterung

	visionsst. Datum	verant. Stelle	rev. Seite	Kat. *)	Erläuterung der Revision
04 06	.06.94	T-KT1	52	S	Kap. 2.5.2 gestrichen
04 00	.00.57	1-1/11	52	R	fortlaufende Numerierung neu
				S	"3000 Pa" durch "8000 Pa" ersetzt
			52		
			53	V	0,4 kV-Schaltanlage neu definiert
			54	S	"Bypassklappe" gestrichen
11			55	S	"Bypassklappe" gestrichen, Satz "Beim Anfah- ren" neu formuliert
			55	S	"Wetterklappe" gestrichen
			56	Š	Text Notbetrieb neu formuliert
			58		"Bereitschaftswetterbauwerke" ergänzt
			59	SSS	"Bereitschaftswetterbauwerke" ergänzt
				2	
			61	2	"Bereitschaftswetterbauwerke" ergänzt
			73	S	"regelbare" ergänzt, "polumschaltbar" gestri- chen
			92	S	letzter Absatz "in einer Wettermeßstelle
					gestrichen
			101-104	S	Literaturverzeichnis aktualisiert
05 23	.11.94	T-KT1	8	S	geänderte Anordnung Sonderbewetterung
05 25.	.11.24	ISKIT	O	2	
			24		Anlage 7 und 8 aktualisiert
			24	S	"getrennt-gegenläufige" durch "gerichtete" ersetzt
			24,25	S	Anordnung der Sonderbewetterungseinrichtungen
			,		im Vorortbereich geändert
					Absatz neu formuliert
			Anlage 7	S	geänderte Anordnung Sonderbewetterung,
			All Tage /	3	
			1-1 0		ersetzt durch Rev. 02
			Anlage 8	S	geänderte Anordnung Sonderbewetterung, ersetzt durch Rev. 01
06 10.	.02.95	T-KT1	12, 32	R	Herausnahme der Literaturverweise
10.			40	S	Text Einlagerung in söhligen Infrastruktur-
			10	'	strecken gestrichen
			41	S	
			41	3	statt sonstige Vorschriften, wie jetzt sonstige Vorschriften, insbesondere
					Herausnahme der VDMA-Blatt-Nummern
			51	S	Kühlart geändert in Eigenlüfter und Fremdbe-
				A	lüftungsanlage
				R	
			101-104	S	Literaturverzeichnis akt (al
*) Kategori Kategori	ie R = reda ie V = verd	aktionelle Ko leutlichende			Herausnahme des Literatur erweises

*) Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden

Blatt: 2f Stand:

Revisionsst. 00:	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
	NAAN	иииииииии	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
21.04.89	9K	5321		TS			GV	LA	0005	

Titel der Unterlage

Bewetterung

Rev.	Revisionsst. Datum	verant. Stelle	rev. Seite	Kat. *)	Erläuterung der Revision
07	15.02.96	T-KT1	2f 6 7 8 41 48 53 79, 104 94 Anlage 1	R R R R S R S R S	Zusätzliches Revisionsblatt Gesamte Blattzahl von 294 auf 295 geändert Anlage 1 und Anlage 6 neuer Revisionsstand Anlage 13 neuer Revisionsstand Abkürzung "(DruckbehV)" eingefügt Beschreibung des Notbetriebes verdeutlicht/ Abgleich zu EG 32 Blatt 33 Abkürzungsbezeichnung "Speicherprogrammier- bare Steuerung" eingefügt. Vorschrift aktualisiert Messung der Staubbelastung ergänzt/ Übernahme aus Plan Konrad Kapitel 3.2.4.3 Basisplan-Bezeichnung herausgenommen Änderung der Grubennebenräume: - Werkstattbereich verkleinert, Grubenbaue entfallen - Wendestelle mit Waschplatz verkleinert, Umfahrung entfallen
			Anlage 6	S	 Traforaum im Kontrollbereich der Versatz- aufbereitung verkürzt Streckenquerschnitt der Zufahrt Schleuder- versatzfahrzeug verkleinert Änderung der Grubennebenräume: Werkstattbereich verkleinert, Grubenbaue entfallen Wendestelle mit Waschplatz verkleinert, Umfahrung entfallen Traforaum im Kontrollbereich der Versatz- aufbereitung verkürzt Streckenquerschnitt der Zufahrt Schleuder- versatzfahrzeug verkleinert
,			Anlage 13	S	- Kontrollbereichsgrenzen geändert Wetterwege und Wettermengen, CO-Meßstellen aktualisiert/Abgleich zu EU 250 Anlage 1 CO-Meßstelle in Wetterweg von Knoten 3 nach 4 eingefügt
08	20.02.97	T-KT1	51	V R	Hinweis bezüglich der Verbindlichkeit der Darstellung der Kontrollberenchenzen hinzugefügt (Übernahme der Sachverheits von Blatt 46 der Unterlage "Assamment ellung der Änderungen in G-Unterlagen 28.03.1996 (DBE-Teil)", BfS-KZL: 9KV21442 (RB/1006) Angabe einer DIN-Norm aktwalisierte

 ^{*)} Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden

V 88 / 771 / 2

Stand: 21.04.89

Seite 3

Weitergabe sowie Vervielfältigung dieser Unterlage. Verwertung und Mitteilung ihres inhalts nicht gestaftet, sowel nicht ausdrucknich zugestanden. Zuwiderhand-lungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

	InhaltO	11 Seite
	Deckblatt	1
	Revisionsblatt	2
	Inhaltsverzeichnis	3
	Anlagenverzeichnis	7
1	Bewetterung - Allgemein -	11
1.1	Aufgabenstellung	11
1.2	Planungsgrundlagen	12
1.2.1	Randbedingungen	12
1.2.2	Berechnungen	13
1.3	Auslegungsanforderungen	17
1.3.1	Allgemein	17
1.3.2	Wetterdaten	17
1.3.3	Sicherheitsrelevante Auslegungsanforderungen	19
1.4	Beschreibung Bewetterung	20
1.4.1	Normalbetrieb	20
1.4.2	Wettermessung und Wetterüberwachung	29
1.4.3	Anomaler Betrieb	30
1.5	Komponentenbeschreibung	37
1.6	Inbetriebnahme	38
1.7	Betriebsbeschreibung	39
1.7.1	Betrieb	39
1.7.2	Änderungen im Grubengebäude	39
1.8	Qualitätssicherung (QS)	41
2	Hauptgrubenlüfteranlage	42
2.1	Aufgabenstellung	42
2.2	Planungsgrundlagen	43
2.3	Auslegungsanforderungen	46
2.3.1	Allgemein	46
2.3.2	Wetterdaten	Att Maria
2.3.3	Sicherheitsrelevante Auslegungsanforderungen	

30195/06-88 ---

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.	
NAAN	инининини	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	1
9K	5321		TS			GV	LA	0005	04	

Blatt 4

	012	Blatt
2.4	Beschreibung Hauptgrubenlüfteranlage	47
2.4.1	Normalbetrieb	47
2.4.2	Anomaler Betrieb	47
2.4.3	Leittechnik	48
2.5	Komponentenbeschreibung	50
2.5.1	Hauptgrubenlüfter (HGL) (Wechselaktivteil)	50
2.5.2	Wetterschieber	52
2.5.3	Diffusor	52
2.5.4	Mittelspannungsversorgung	52
2.5.5	0,4 kV-Schaltanlage	53
2.6	Inbetriebnahme	54
2.6.1	Probebetrieb	54
2.6.2	Leistungsnachweis	54
2.6.3	Abnahme	54
2.7	Betriebsbeschreibung	55
2.7.1	Automatikbetrieb	55
2.7.2	Handsteuerung	55
2.7.3	Wechselvorgang	56
2.8	Qualitätssicherung (QS)	57
3.	Wetterleiteinrichtungen	58
3.1	Aufgabenstellung	58
3.2	Planungsgrundlagen	59
3.3	Aus legungsanforderungen	60
	Wetterschleusen, Wetterdrosseln	60
	Sicherheitsrelevante Auslegungsanforderungen	60
3.4	Beschreibung Wetterleiteinrichtungen	61
3.4.1	Normalbetrieb	61
3.4.2	Anomaler Betrieb	61
3.4.3	Leittechnik	61
3.5	Komponentenbeschreibung	63

	9K	5321		TS		·	GV	LA	000	500		
PTB	NAAN	инииииииии	ииииии	NNAAANN	AANNA	AANN	XXAXX	АД	ииии	NN	DBE	
	Projekt	SP-Element	Obj Kenn	Funktion	Komponente	Baugruppe	Aufgabe	UΑ	Lfd.Nr	Rev	454	

Weitergabe sowie Verviellältigung dieser Unterlage, Verwerfung und Mitteilung ihres Inhalts nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwidenhandlungen verpflichten zu Schadenersatz. Alte Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

	Bewetterung Stand:	21.04.89	Seite 5
			Seite 013
3.6	Inbetriebnahme		64
3.7	Betriebsbeschreibung		65
3.8	Qualitätssicherung (QS)		66
4	Sonderbewetterungsanlagen		67
4.1	Aufgabenstellung		67
4.2	Planungsgrundlagen		68
4.3	Auslegungsanforderungen		69
4.3.1	Allgemein		69
4.3.2	Sicherheitsrelevante Auslegungsanford	erungen	69
4.4	Beschreibung Sonderbewetterungsanlgen		70
4.4.1	Normalbetrieb		70
4.4.2	Anomaler Betrieb		70
4.4.3	Leittechnik		71
4.5	Komponentenbeschreibung		72
4.5.1	Sonderbewetterung blasend; Auffahrung		72
4.5.2	Sonderbewetterung saugend; Einlagerun	g	73
4.6	Inbetriebnahme		74
4.7	Betriebsbeschreibung		75
4.7.1	Sonderbewetterung blasend		75
4.7.2	Sonderbewetterung saugend		75
4.8	Qualitätssicherung (QS)-		76
5	Wetterkühlanlage		77
5.1	Aufgabenstellung		77
5.2	Planungsgrundlagen		78
5.3	Auslegungsanforderungen		79
5.3.1	Allgemein		79
5.3.2	Sicherheitsrelevante Auslegungsanford	erungen	79
5.4	Beschreibung Wetterkühlanlage		80
5.4.1	Normalbetrieb		80
5.4.2	Anomaler Betrieb	Med enti	Caiging 8

Archiv Pair

5.4.3

30195/06-88 -

Leittechnik

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.	П
NAAN	имимимими	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	1
	5321		TS			GV	LA	0005	08	

Blatt 6

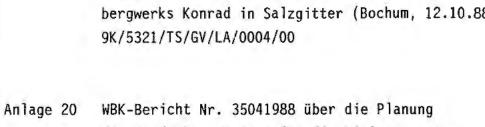
CHCLC	Tung	Diace o
	014	Blatt
5.5	Komponentenbeschreibung	82
5.6	Inbetriebnahme	84
5.7	Betriebsbeschreibung	85
5.8	Qualitätssicherung (QS)	86
6.	Wettermeß- und Überwachungseinrichtungen	87
6.1	Aufgabenstellung	87
6.2	Planungsgrundlagen	88
6.3	Auslegungsanforderungen	89
6.3.1	Wettermeßgeräte	89
6.3.2	Sicherheitsrelevante Auslegungsanforderungen	90
6.4	Beschreibung Wettermeß- und Überwachungseinrichtungen	91
6.4.1	Normalbetrieb	91
6.4.2	Anomaler Betrieb	95
6.4.3	Leittechnik	95
6.5	Komponentenbeschreibung	97
6.6	Inbetriebnahme	98
6.7	Betriebsbeschreibung	99
6.7.1	Betrieb	99
6.7.2	Änderungen im Grubengebäude	99
6.8	Qualitätssicherung (QS)	100
7.	Literatur	101

03 04 07 295 Gesamte Blattzahl dieser Unterlage einschl. Anlagen:

Die Darstellung der Kontrollbereichsgrenzen in den Anlagen dieser Unterlage sind nicht verbindlich. Verbindlich hierfür sind die Darstellungen in den Anlagen der EU 279. Der Grundsatz der wettertechnischen Trennung von Kontrollund Überwachungsbereich wird eingehalten.

	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Flev.	an i
	NAAN	инининини	ииииии	NNAAANN	AANNNA	AANN	XAAXX	A A	NNNN	NN	OB DBE
	9K	5321		TS			GV	LA	0005	07	e
Bewetterun	9										Blatt 7
Anlagenve	rzeich	nis					· ·	0	115		
Anlage 1	Wet	spektivische terriß Wette 5321/TS/GV/T	ernetzp	lan	rubenge	bäude					1 Blatt 04
Anlage 2	Ein Nor	chnung: Wet lagerung Fe malzustand 5321/TS/GV/	ld 5/1,	Auffahr		d 5/2					1 Blatt
Anlage 3	Hau Küh	chnung: Wet ptgrubenlüfi lung und Son 5321/TS/GV/	terstil nderbew	lstand b etterung	ei -10°	С		-			1 Blatt
Anlage 4	Hau Küh	chnung: Wet ptgrubenlüf lung und So 5321/TS/GV/	terstil nderbew	1stand b etterung	ei +25°	С					1 Blatt
Anlage 5	Hau Küh	chnung: Wet ptgrubenlüf lung und So 5321/TS/GV/	terstil nderbew	lstand b etterung	ei +25°	С					1 Blatt

Anlage 6 Zeichnung:
Schema Wettertrennung Felder 5/1 und 5/2
9K/5321/TS/GV/TF/0003/02



.

1 Blatt

		Projekt NAAN	PSP-Element NNNNNNNNNNN	Obj.Kenn.	Funktion NNAAANN	Komp.	Baugr.	Aufgabe XAAXX	UA	Lfd.Nr.	Rev.	allb	DBE	
		9K	5321		TS	1		GV	LA	-		•	DDL	
Bewetter	ung	,										Bla	att 8	1
Anlage	7	be i	ichnung: Sch i der Einlag /5321/TS/GV/	gerung		pewetter	rung	Mater	()16		1 B1	att 04	05
Anlage	8	Ein ein Abw	ichnung: Son nlagerungska nrichtungen wettersammel /5321/TS/GV/	ammern, in der Istrecke	Anordnur Kammerzu e	ng der E			s-			1 Bl	att 04	05
Anlage	9	bei	ichnung: Sch i der Auffah /5321/TS/GV/	nrung		pewetter	rung					1 B1	att	A CONTRACTOR OF THE CONTRACTOR
Anlage	10		ichnung: Ein /5321/TS/GV/			Wetterti	lr					1 BÌ	att	
Anlage	11		ichnung: Ein /5321/TS/GV/			euse						1 B1	att	
Anlage	12		ichnung: Pri /5321/TS/GV/	Secretary of		der Wei	tterki	üh lung				1 B1	att	
Anlage	13	Lag Ein	ichnung: Wet ge der Wette nlagerung Fe /5321/TS/GV/	ermeßste eld 5/1	ellen zu		der	-				1 B1	att 0	7
Anlage	14		ichnung: Mus /5321/TS/GV/			uptgrub	enlüfi	ter (The stand	en Origi	inal liberary	BT BT	latt	4

	Projekt NAAN 9K	PSP-Element NNNNNNNNNN 5321	Obj.Kenn. NNNNNN	Funktion NNAAANN TS	Komp A A N N N A	Baugr. A A N N	Aufgabe XAAXX GV	A A	Ud.Nr. NNNN 0005	1	DBE DBE
Bewetterund						1	L.,				Blatt 9
Anlage 15	Tab Mit Kno	elle 1 tlere Strec tenpunkten	und Lär	igen	zwisch	nen de	en	. 0	117		4 Blatt
Anlage 16	Zei Aus Eir	chnung: Wet fall der Sc lagerungska 5321/TS/GV/	ternetz onderbev ummern	zschaltpl vetterung		1					1 Blatt
Anlage 17	vor ber	chnung: Sch Kontroll- Teich in der 75321/TS/GV/	und bet Versat	trieblich tzaufbere	nem Über	rwachi	ings-	ng		,	1 Blatt
Anlage 18	wet Auf Kor	G-Gutachten Sterung für Ffahrung vor Brad in Salz 15321/TS/GV	die Ein 1 Feld ! zgitter	nlagerung 5/2 des f (Bochum	g im Fe Endlager	ld 5/1 rbergv	l und		?-		41 Blatt
Anlage 19	Nr. Bev und ber	chtrag Nr. 3 31041888 vetterung fi die Auffal rgwerks Konn 75321/TS/GV	vom 10.0 ir die l irung vo rad in :	08.88 übe Einlageri on Feld ! Salzgitte	er die l ung in l 5/2 des	Planu Feld : Endla	5/1 ager-				9 Blatt

WBK-Bericht Nr. 35041988 über die Planung der Sonderbewetterung für die Einlagerungsstrecken im Feld 5/1 des Endlagerbergwerks Konrad in Salzgitter (Bochum, 25.08.88) 9K/5321/TS/GV/LA/0002/00

Seite 10

018 Blatt-

- Anlage 21 WBK-Gutachten Nr. 33040889 zu Auswirkungen eines Hauptventilator-Ausfalls im ungünstigsten Fall (Totalausfall der Energieversorgung bei Tagesmitteltemperaturen > 25 °C) auf dem Endlagerbergwerk Konrad, Salzgitter (Bochum 19.04.88)

 Dok.-Nr. 9K/5321/TS/GV/LA/0006/00
- Anlage 22 Gutachten Nr. 11031490 über die Stabilität 68

 der Bewetterung für den Störfall in der Einlagerungsphase Feld 5/1 auf dem Endlagerbergwerk Konrad in Salzgitter

 DMT-Gesellschaft für Forschung und Prüfung mbH
 Institut für Bewetterung und Klimatisierung
 Prüfstelle für Grubenbewetterung
 Bochum, den 09.04.1990

 Dok.-Nr. 9K/5321/TS/GV/ET/0001/00
- Anlage 23 Nachtrag Nr. 11031890 zu dem Gutachten

 Nr. 11031490 über die Stabilität der Bewetterung für den Störfall in der Einlagerungsphase Feld 5/1 auf dem Endlagerbergwerk Konrad
 in Salzgitter

 DMT-Gesellschaft für Forschung und Prüfung mbH
 Institut für Bewetterung und Klimatisierung
 Prüfstelle für Grubenbewetterung
 Essen, den 01.06.1990

 Dok.-Nr. 9K/5321/TS/GV/ET/0002/00

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aulgabe	UA	Lfd.Nr.	Rev.
NAAA	инининини	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS	***		GV	LA	0005	02

Seite 11

Bewetterung - Allgemein -

019

1.1 Aufgabenstellung

- Bewetterung des Grubengebäudes mit den geforderten Wettermengen für Personal und Maschinen.
- Entsorgung des Grubengebäudes von Gasen (Dieselabgase, Radon u. a.).
- Einhaltung von geforderten Klimawerten.
- Trennung von Kontrollbereich und betrieblichen Überwachungsbereich durch geeignete Wetterführung.
- Begrenzung von Kontaminationsverschleppung innerhalb des Grubengebäudes.
- Kontrollierte Ableitung des ges. Abwetterstromes nur 02 über einen Pfad mit Aktivitäts- und Volumenstrommeß- stellen.
- Bilanzierung der Ableitung von luftgetragenen Aktivi- | OZ täten aus dem Grubengebäude.
- Ableitung des Abwetterstromes über den Diffusor und 02 somit Verhinderung von bodennaher Aktivitäts-Freisetzung.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	06

Blatt 12

1.2 Planungsgrundlagen

020

1.2.1 Randbedingungen

- Schacht Konrad 1 ist einziehender Wetterschacht.
- Schacht Konrad 2 ist ausziehender Wetterschacht.
- Das Grubengebäude dazwischen ist der zu bewetternde Bereich (Anlage 1).
- Alle Bereiche, in denen Abfallgebinde gelagert werden bzw. mit Abfallgebinden umgegangen wird sowie alle im Wetterstrom hinter oben genannten Betriebspunkten gelegenen Bereiche, sind Kontrollbereich [3].
- Alle übrigen Bereiche im Grubengebäude sind betrieblicher Überwachungsbereich.
- Bemessung der Wetterströme

Entscheidendes Kriterium für die Bemessung der im Grubengebäude notwendigen Wetterströme ist der Einsatz von Dieselfahrzeugen, deren Abgase durch die Wetter verdünnt und abgeführt werden müssen.

Die Bemessung der Wetterströme basiert auf der Summe der Teilströme, die sich nach der Motorleistung der für die einzelnen Betriebsabläufe eingesetzten Fahrzeuge mit Dieselmotoren ergibt. Gemäß der Fahrzeug-betriebsrichtlinien [4] sind den Grubenbauen für die darin verkehrenden Fahrzeuge ein Frischwetterstrom von 3,4 m³/min je kW installierter Dieselleistung zuzuführen.

Pro	ојект	PSP-Element	Obj.Kenn.	Funktion	Komp.	Saugr.	Aulgabe	UA	Lta.Nr	Sev
NA	AAN	· NNNNNNNNN!	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	ииии	NN
9K		5321		TS			GV	LA	0005	03

db DBI

Bewetterung

Seite 13

Zuzuführende Wettermengen für die Belegschaft (2 m^3/min je Person) spielen eine untergeordnete 021 Rolle.

1.2.2 Berechnungen

Auf dieser Bemessungsgrundlage sind die Wetterströme für die Betriebsabläufe im Auffahr- und Einlagerungsbereich sowie für die sonstigen befahrbaren Grubenbaue ermittelt und in die Wetternetzberechnugen eingesetzt worden.

 Bemessung der Wetterströme im Einlagerungsbereich Feld 5/1

Im Einlagerungsbereich südlich von Schacht Konrad 2 oberhalb der 850-m-Sohle werden das Einlagerungsfeld 5/1, die Einlagerungstransportstrecke zum Schacht Konrad 2, die Werkstatt und die Nebenräume im Bereich der 850-m-Sohle sowie die sonstigen befahrbaren Strecken mit Frischwettern versorgt, die von der 1100-m-Sohle über die Rampe Süd dem Einlagerungsbereich zugeführt werden (Anlage 2).

Der Transport der Abfallgebinde von Schacht Konrad 2 zu den Einlagerungskammern erfolgt mit dieselbetriebenen Transportwagen (204 kW Antriebsleistung) bis zur Entladekammer im Zugangsbereich der Einlagerungskammer. Hier übernimmt ein dieselbetriebenes Stapelfahrzeug (182 kW Antriebsleistung) die Gebinde zum Transport zur Einlagerung in die Kammer. Der entsprechende Wetterbedarf beträgt ca. 23 m³/s. Im Einlagerungsfeld werden zwei Kammern in einer Einlagerungsschicht befüllt. Eine gleichzeitige Einlagerung in diesen beiden Kammern ist aufgrung organisatorischer Maßnahmen nicht vorgesehen gegenstellt.

Seite 13a

Eine dritte Kammer steht zum Versatz an.

022

Für die Wetterverteilung ins Einlagerungsfeld sieht die Wetterstromverteilung folgendermaßen aus:

- 1. Für das Einlagerungsfeld 5/1 stehen insgesamt $46 \text{ m}^3/\text{s}$ zur Verfügung.
- 2. Da immer nur in einer Kammer, wie oben erwähnt, eingelagert wird, d. h. Transportwagen und Stapelfahrzeug fahren in der Einlagerungskammer, wird diese Kammer mit 23 m³/s bewettert. In der anderen Einlagerungskammer kann maximal das Stapelfahrzeug verkehren, so daß in dieser Kammer ein Wetterstrom von 11,5 m³/s benötigt wird. Auch in der dritten Kammer (Versatzkammer) wird maximal ein Wetterstrom von 11,5 m³/s benötigt, da während des Einlagerungsbetriebes keine Versatzarbeiten durchgeführt werden.

Wird während der Einlagerungsschicht die Einlagerungskammer gewechselt, wird diese Einlagerungskammer mit einem Wetterstom von 23 m^3/s versorgt, während die andere Kammer mit einem Wetterstrom von 11,5 m^3/s versorgt wird. Auch hier wird die dritte Kammer, die zum Versatz ansteht, mit einem Wetterstrom von 11,5 m^3/s bewettert.

Während des Versatzbetriebes wird aufgrund organisatorischer Festlegungen nicht eingelagert. Dies trifft auch für die Erstellung der Versatzwand zu.

Demzufolge werden die beiden Einlagerungskammern mit einem Wetterstrom von 11,5 m³ bewettert und die dritte Kammer, in der die drietzwänd errichtet bzw. Versatz eingebracht w , ist mit einem Wetterstrom von 23 m³/s zu versongen.

Projest	PSP-Element	Cbj.Kenn.	Funktion	Komp.	Saugr.	Aulgabe	UA	Ja.Nr.	nev.	un	
NAAN	имимимими	имимии	NNAAANN	AANNNA	AANN	XXAAXX	AA	ииии	NN	@ D	BE
9K	5321		TS			GV	LA	0005	03	•	= 4

Seite 130

03

Auch in diesem Fall wird das Einlagerungsfeld 5/1 mit einem Gesamtwetterstrom von 46 m³/s bewettert.

Die Wetterverteilung für die oben beschriebenen Fälle erfolgt durch eine Steuereinrichtung.

Die Zuführung der Frischwetter erfolgt über die Rampe 280. Hinzu kommt noch der benötigte Wetterstrom für die Einlagerungstransportstrecke zum Schacht Konrad 2 mit 13 m³/s. Für Werkstatt, Nebenräume und weitere Strecken steht eine Wettermenge von 34 m³/s zur Verfügung, welche den Bedarf gelegentlich verkehrender Dieselfahrzeuge abdeckt, so daß mit einem Wetterstrom im Einlagerungsbereich von ca. 93 m³/s gerechnet wird.

Projekt	PSP-Element	Op Kenn.	Funktion	nomo.	Baugr.	Autgabe	ŲA	Lid Nr.	Hev	1771
NAAN	. NNNNNNNNN	ииииии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	OB DBF
9K	5321		TS			GV	LA	0005	03	•

Bewetterung Seite

- Remossung der Wetterströme im Auffahrbereich Fold

- Bemessung der Wetterströme im Auffahrbereich Feld. 5/2

024

03

03

Im Auffahrbereich Feld 5/2 unterhalb der 850-m-Sohle südlich von Schacht 2 werden Strecken und Einlagerungskammern mit Teilschnittmaschinen aufgefahren
[9]. Zum Abtransport des anfallenden Haufwerks
werden dieselbetriebene Lade- und Transportfahrzeuge
eingesetzt, wobei je Teilschnittmaschine mit zwei
Dieselfahrzeugen je 210 kW und für Befahrungsfahrzeuge mit 30 kW Antriebsleistung gerechnet wird, so
daß für eine Maschinenlinie von 450 Diesel-kW auszugehen ist. Der daraus resultierende Frischwetterbedarf beträgt somit 26 m³/s.

Die Zuführung des Frischwetterstromes erfolgt getrennt vom Frischwetterstrom des Einlagerungsbereiches über die 1000-m-Sohle, Rampe Ost und beträgt ca. 78 m³/s, von dem die im Feld 5/2 eingesetzte Maschinenlinie mit 26 m³/s versorgt wird. Eine zusätzliche Anzahl von Vortrieben mit den jeweiligen Maschinenlinien richtet sich nach der zur Verfügung stehenden Wettermenge.

Für die Rückkühlung der Wasserkühlmaschine (Trockenluftbetrieb) im Niveau der 800-m-Sohle (Anlage 2, Wetterzweig 106 - 105) steht ein Wetterstrom von ca. 103 m³/s zur Verfügung.

- Bemessung der Wetterströme im sonstigen Grubengebäude

Der Bemessung der Wetterströme außerhalb des Einlagerungs- und des Auffahrbereiches liegen realistische Betriebsabläufe des bestehenden Grundentriebes
zugrunde, die den gesamten übrigen Fahrzeignertehr
für Transport und Kontrollzwecke beinha Zu
diesen Bereiche zählen:

die 1200-m-Sohle und Teilabschnitte im Feld 1,

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	LIA	Ľd.Nr.	Rev.	Г
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	1
9K	5321		TS			GV	LA	0005	04	

Blatt 15

OL

die 1300-m-Sohle,

025

- die Rampe 410 Nord und Teilbereiche der 1000-m-Sohle,
- . die Wendeln und Rampen im südlichen Bereich des Grubengebäudes als Verbindungen zwischen den Sohlen,
- . der Werkstattbereich, das Öl- und Schmiermittellager und der Waschplatz des Auffahrbereiches als selbständige Wetterabteilungen.

Die Summe der Wetterteilströme beträgt ca. 70 m³/s.

Gesamtwetterbedarf

Zusammengefaßt ergeben die in den vorstehenden Kapiteln ermittelten Werte folgenden Wetterbedarf:

. Einlagerungsbereich ca. $93 \text{ m}^3/\text{s}$

Auffahrbereich

ca. $78 \text{ m}^3/\text{s}$

übrige Wetterwege

ca. $70 \text{ m}^3/\text{s}$

Unter Berücksichtigung der Zustandsänderung des Wetterstromes wird die Hauptgrubenlüfteranlage mit einem Volumenstrom von ca. 260 m³/s betrieben.

Wettergeschwindigkeiten

Die Wettergeschwindigkeiten ergeben sich aus den Streckenquerschnitten und den Wetterströmen der Wetternetzberechnung.

Blatt 16

Bewetterung

026

Die höchsten Wettergeschwindigkeiten ergeben sich, wenn der Hauptgrubenlüfter einen Wetterstrom von ca. 260 m³/s fördert. Dabei betragen die Wettergeschwindigkeiten, bezogen auf den freien Schachtquerschnitt, 6,3 m/s im Schacht Konrad 1 bzw. 6,6 m/s im Schacht Konrad 2 und im Wetterkanal 12,4 m/s. In der Abwetterstrecke zum Schacht Konrad 2 (800-m-Sohle) beträgt die maximale Wettergeschwindigkeit 6 m/s.

Im Auffahr- und Einlagerungsbereich betragen die Wettergeschwindigkeiten:

- Im Streckenvortrieb ca. 0,92 m/s bei 40 m² Querschnitt und ca. 1,00 m/s bei 25 m² Querschnitt.
- In der Einlagerungskammer ca. 0,9 m/s bei 25 m² Querschnitt, 0,58 m/s bei 40 m² Querschnitt und im Vorortbereich ca. 0,33 m/s.
- In der Einlagerungstransportstrecke minimal 0,5 m/s und maximal 1,8 m/s bei den Streckenquerschnitten bis max. 28 m².
- In der Abwettersammelstrecke ca. 2,3 m/s bei 20 m² Querschnitt.
- Im Wetterbohrloch zur Abwettersammelstrecke ca. 20 m/s bei ca. 1,1 m2 Querschnitt.

Die Einhaltung der Wettergeschwindigkeiten wird durch

- die Volumenstromregelung der Luttenlüfter in den Abwetterluttentouren der Einlagerungskammern sowie die konstruktive Gestaltung der Lüfter (Lüfterkennlinie),
- die Wetterverteilung aufgrund der Wetterleiteinrichtungen,

Projekt	PSP-Element	Col.Kenn	Funktion	Komb.	Baugr.	Autgabe	UA	Ltd.Nr.	Rev.	im	
NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XXAXX	AA	NNNN	NN	90	DBF
9K	5321		TS			G۷	LA	0005	03	e	

Bewetterung Seite 16 a

- die konstruktive Gestaltung des Hauptgrubenlüfters

- die konstruktive Gestaltung des Hauptgrubenlüfters (Kennlinienfeld)

gewährleistet.

·Durch regelmäßige Wettermessungen in den Wetterabteilungen wird die Einhaltung der Wettergeschwindigkeiten überprüft.

Projekt SP-Element Obi Kenn Funktion Komponente Baugruppe Aufgabe UA Lfd Nr. PTB DBE имимимими ииииии NNAAANN AA NNNN NN NAAN AANNNA XXAAXX 9K 5321 TS GV LA 000500

Bewetterung

Stand: 21.04.89

Seite 17

1.3 Auslegungsanforderungen

Allgemein 1.3.1

- Der Kontrollbereich und der betriebliche Überwachungsbereich müssen getrennt bewettert werden und bilden eigene Wetterabteilungen.
- Kontrollbereich
 - Der Einlagerungsbereich muß mit Frischwettern getrennt vom übrigen Grubengebäude versorgt werden.
 - Die Abwetter des Einlagerungsbereiches müssen direkt zum Schacht abgeführt werden ohne anderen ständig belegten Betriebspunkten zugeführt zu werden.
 - . Die Einlagerungstransportstrecken müssen mit Frischwetter versorgt werden.
 - . Die Einlagerungskammern müssen saugend sonderbewettert werden.
- Betrieblicher Überwachungsbereich
 - Die Auffahrungs-Betriebspunkte müssen blasend sonderbewettert werden.

1.3.2 Wetterdaten

Wettergeschwindigkeit in befahrenen Strecken:

min. 0,25 m/smax. 6 m/s (Anlage 15)

Projest	PSP-Element	Obj.Kenn	Funktion	Komp	Baugr	Aurgabe	UA	Lid.Nr.	Rev
NAAN	инининини	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	03

all d

Bewetterung

Seite 18

- Wettertemperaturen in befahrenen Strecken (nach "KlimaBergV") ohne Arbeitszeitbeschränkungen:

Trockentemperatur < 28°C Effektivtemperatur < 25°C

029

- Wettermengen:

 $3,4~\mathrm{m^3/min}$ je Diesel-kW im Bereich für verkehrende Fahrzeuge

2 m³/min je Person

- Wetterführung
 - . An allen Kontrollbereichsgrenzen zum Überwachungsbereich ist eine Trennung durch Bauwerke
 vorzusehen. Bei den Bauwerken ist die Leckagerichtung ebenfalls <u>in den</u> Kontrollbereich zu
 führen [8].

An den Kontrollbereichsgrenzen zum Überwachungsbereich, die durch Frischwetterzuführung oder Abwetterabführung nicht durch geschlossene Bauwerke getrennt werden können, werden Bereitschaftswetterbauwerke [13] vorgesehen. Diese Bauwerke sind zusätzlich mit einem Hinweisschild "Schließen im Brandfall" zu versehen.

- . Die Abgabe der gesamten Abwetter muß im Wetterkanal überwacht erfolgen:
 - .. Probeentnahmestrecke zur Aktivitätsüberwachung
 - .. Volumenstrommessung zur Bilanzi
- . Die Ableitung erfolgt durch den Di

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr	Aufgabe	UA	Lid.Nr.	Rev
NAAA	иииииииии	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	02

Seite 19

1.3.3 Sicherheitsrelevante Auslegungsanforderungen

030

- Aufrechterhaltung der Wetterrichtung an den Kontrollbereichsgrenzen.
- Aufrechterhaltung der gesamten Abwetterführung über den Schacht 2.
- Der Wetterstrom im Einlagerungsfüllort wird auf max.
 42,5 m³/s begrenzt.
 - Brandschutzmaßnahmen haben keine Auswirkung auf die allgemeine Wetterführung.

Abgesperrt werden nur einzelne Räume (Tanklager etc.), die keine Auswirkung auf die gesamte Bewetterung haben (siehe "Brandschutz unter Tage II" [13]).

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAA	иииииииии	ииииии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	01

Seite 20

1.4 Beschreibung Bewetterung

1.4.1 Normalbetrieb

031

Die für die Bewetterung des Grubengebäudes erforderlichen Einrichtungen sind so ausgelegt, daß eine Versorgung aller befahrbaren Grubenbaue mit Wettern sowie die Verdünnung und Abführung auftretender schädlicher Gase gewährleistet ist.

01

- Hauptbewetterung

Die Hauptbewetterung erfaßt alle durchschlägigen und befahrbaren Grubenbaue. Sie wird durch natürlichen Wetterzug und durch eine Hauptgrubenlüfteranlage am Schacht Konrad 2 aufrechterhalten und durch Wetterdrosseln und Wetterschleusen gelenkt.

Die Frischwetter ziehen im Schacht Konrad 1 ein, werden im Grubengebäude auf die 1000-m-Sohle, die 1100-m-Sohle, die 1200-m-Sohle und die 1300-m-Sohle verteilt, gelangen über die Hauptabwetterwege zur 1000-m-Sohle und zur 800-m-Sohle und ziehen im Schacht Konrad 2 wieder aus.

Der Hauptfrischwetterstrom zum Kontrollbereich zieht über die 1100-m-Sohle und die Rampe Süd, der zum Auffahrbereich über die 1000-m-Sohle und die Rampe Ost zur 850-m-Sohle.

Der Abwetterstrom zieht über die 800-m-Sohle und Schacht Konrad 2 wieder aus.

Das Einlagerungsfüllort 850-m-Sohle Schacht Konrad 2 wird über die Einlagerungstransportstrecke mit Frischwettern versorgt.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	имимимими	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321	×	TS			GV	LA	0005	04

Blatt 21

032

Am Schacht Konrad 1 ist über Tage eine Schachtwetterheizung mit einer Nennleistung von 2 x 620 kW installiert. Über Luftkanäle wird die Warmluft an der Rasenhängebank in die Schachtröhre eingeleitet. Eine nennenswerte Auswirkung auf die Bewetterung besteht nicht.

Unterhalb der Rasenhängebank sind Schachtklappen angeordnet. Diese Klappen sind die brandschutztechnische Trennung der Bereiche "über Tage" und "unter Tage".

Bei einem Brand über Tage im Bereich Schacht Konrad 1 werden sie unverzüglich geschlossen.

- Hauptwetterzug

Der Hauptwetterzug wird durch eine Hauptgrubenlüfteranlage erzeugt, die über Tage am Schacht Konrad 2 installiert ist und mit einem Wetterkanal an die Schachtröhre Konrad 2 angeschlossen ist. Die Hauptgrubenlüfteranlage besteht aus zwei zweistufigen Axial-Grubenlüftern, von denen ein Grubenlüfter in Betriebsposition ist und der zweite Grubenlüfter in Reserveposition steht.

Zur Verhinderung von Wetterkurzschlüssen zwischen Schachthalle und der Hauptgrubenlüfteranlage trennt eine Schachtschleuse den Schacht und die Schachthalle voneinander.

Die Auslegung der Hauptgrubenlüfteranlage ist in Kapitel 2 "Hauptgrubenlüfteranlage" beschrieben.

01

PTB

verpfilchten zu ?

Projekt SP-Element
NAAN NNNNNNNNN

9K

Obj Kenn NNNNNN

NNAAANN
TS

Komponente AANNNA Baugruppe AANN Aufgabe XAAXX **GV** da AA **LA** NNNN NN 000500

DBE

Bewetterung

5321

Stand: 21.04.89

Seite 22

033

Wetterstromverteilung

Die Wetterstromverteilung erfolgt im Grubengebäude durch Einbau von Wetterschleusen und Wetterdrosseln in die Hauptwetterwege.

Wetterschleusen haben die Aufgabe, zwei Wetterwege voneinander zu trennen und trotzdem einen Personenund Fahrzeugverkehr zwischen den Strecken zu ermöglichen.

Mit Wetterdrosseln wird der durchziehende Wetterstrom durch Verringerung des Streckenquerschnitts über einstellbare Öffnungen auf das gewünschte Maß reguliert.

Die Auslegung der Wetterbauwerke ist in Kapitel 3 "Wetterleiteinrichtungen" beschrieben. Die Standorte der Wetterleiteinrichtungen und die im folgenden zitierten Knotenpunkte (Wetterzweig-Nr.) sind aus dem Wetternetzschaltplan (Anlage 2/Erläuterungen Anlage 18) ersichtlich.

- Bewetterung Kontrollbereich

Die Bewetterung des Kontrollbereichs erfolgt über die 1100-m-Sohle (Wetterzweig 401-407-404-405-418) und die Rampe Süd (Wetterzweig 418-419-420-320-205-206).

Die Frischwetter ziehen über die Einlagerungstransportstrecke zum Einlagerungsfüllort Schacht Konrad 2 (206-210-208) und zu dem Einlagerungsfeld 5/1 (206-221).

Die Abwetter werden über die 800-m-Sohle (107-105-109) zum Schacht Konrad 2 abgeführt. die Stabilität des Wetternetzes ist gewährleist daß keine Wetter aus dem Kontrollbereich in den

Sopying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages, All rights are reserved in the event of the grant of a palent or the registration of a utility model or design.

. 30195/06-88

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr,	Aufgabe	UA	Lfd.Nr.	Rev.
NAAA	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	01

db DBE

Bewetterung

Seite 23

trieblichen Überwachungsbereich gelangen können. Auf 034 der 850-m-Sohle sind die Wetterströme im Kontrollbereich (203-204; 203-208) durch Wetterschleusen vom Überwachungsbereich getrennt. Die Wetterrichtung an diesen Schleusen ist in den Kontrollbereich gerichtet, so daß Leckagen sowie Schleusvorgänge nur Wetter in den Kontrollbereich strömen lassen (Anlage 6).

Im Bereich der Versatzaufarbeitungsanlage wird eine wettertechnische Trennung mit dem Füllstand des Versatzbunkers erreicht (Anlage 17). Der Bunkereinlauf befindet sich im Überwachungsbereich und der Bunkeraustrag im Kontrollbereich, über den die Haufwerksversorgung für das Versatztransportfahrzeug und für die Pumpversatzherstellung erfolgt. Über die Verriegelung mit dem Füllstands-Grenzwert wird gewährleistet, daß der Bunker nicht leergefahren wird. Die Wetterrichtung ist so, daß Leckagen in den Kontrollbereich gerichtet sind. Die Beladestelle für Versatzfahrzeuge wird sonderbewettert.

Bewetterung Auffahrbereich

Die Bewetterung des Auffahrbereichs im Niveau der 850-m-Sohle erfolgt über die 1000-m-Sohle (301-300) und die Rampe Ost (300-201-203). In den Auffahrbereichen gelangen die Frischwetter über die Sonderbewetterungsanlagen bis vor Ort.

Die Abwetter ziehen über die Wendel 270 (202-200-106-105-109) zum Schacht Konrad 2.

- Sonderbewetterung

Sonderbewettert werden alle Grubenbaue, die bar und nicht durchschlägig sind.

Das sind alle Strecken und Räume, die im Rähm
Vorrichtung neuer Einlagerungsfelder bzw.

DBE DBE

Bewetterung

Blatt 24

aufgefahren werden sowie die Einlagerungskammern während der Einlagerung der Abfallgebinde.

Mit Hilfe von Luttenlüftern und Luttenleitungen wird in den sonderbewetterten Strecken eine gerichtete Wetterströmung realisiert.

Im Endlager Konrad sind Sonderbewetterungsanlagen

035

- . bis 1200 m Länge bei der Auffahrung und
- . bis 800 m Länge bei der Einlagerung

zu installieren.

Je nach Einsatzbereich wird die Sonderbewetterung

- . blasend im Auffahrbereich und
- . saugend im Einlagerungsbereich

durchgeführt.

Sonderbewetterung Einlagerungsbereich

Die Einlagerungskammern werden saugend sonderbewettert.

Die Frischwetter ziehen im freien Streckenquerschnitt aus der Einlagerungstransportstrecke bis in den Vorontbereich der Einlagerungskammer. Die Wetter aus dem Vorontbereich werden mit einem Lüfter über ein Wetterbohrloch und eine Luttentour abgesaugt und über die Abwettersammelstrecke und die Hauptabwetterstrecke zum Schacht Konrad 2 abgeführt (Anlage 7).

Die saugende Littentour endet maximal ca. 15 m vor der Ortsbrust. Der Freiraum zuschen der Ortsbrust und der saugenden Luttentour wird mit einer blasenden, "fliegenden" Luttentour bewettert.

Die saugende und blasende Luttentour werden jeweils an der gegenüberliegenden Stoßseite an der Firste angeordnet (Anlage 7). Die
saugende Luttentour ist an einer Schiene aufgehängt. Der Rückbau
der Luttentour erfolgt durch Herausnahme eines Zwischenstückes in
weiterer Entfernung von der Ortsbrust und Zurückziehen der ortsseitigen Luttentour als ganze Baueinheit. Die blasende Luttentour ist
ebenfalls an einer Schiene aufgehängt und kann an die Bennals ganze
Baueinheit verfahren werden. Das Ausblasende der blasenden Luttentour ragt ca. 1 m über das Ansaugende der saugemen Luttentour hinaus.

Baugr. | Aufgabe | UA | Ud.Nr. | Rev. NAANI NNNNNNNNNNNNNNNNNNNNNNNNNNNAANNIAANNIAANNIXAAXXIAA INNNN INN G۷ 5321 9K TS LA10005105

Bewetterung

Blatt 25

03

05

Der Abstand zwischen dem Ausblasende der blasenden Luttentour und der Ortsbrust soll ca. 8 m nicht unterschreiten.

Der in den Einlagerungskammern zur Bewetterung der Ortsbrust als Freistrahl austretende Wetterstrom beträgt ca. 5 m²/s.

Unter den Begingungen, daß im Rahmen des Betriebsplanverfahrens nachgewiesen wird, daß

- der lichte Ouerschnitt von mind. 0.5 m Abstand beim Einsatz der Fahrzeuge eingehalten wird,
- ein ausreichendes Freispülen der Ortsbrust sowie
- die Eingrenzung der Staubentwicklung bei den Versatzarbeiten

gewährleistet wird, ist die mittige Anordnung der saugenden und blasenden Luttentour unter der Firste zulässig.

Zur Abwetterführung werden über dem Einlagerungsfeld Abwettersammelstrecken in einem Abstand von mindestens 35 m und mit einem Querschnitt von 20 m² aufgefahren.

Jede Einlagerungs ammer wird im Bereich der Entladekammer mit einem Großbohrloch an die Abwettersammelstrecke angeschlossen. Bei Sonderbewetterungslängen > 800 m wird ein zweites Wetterbohrloch zur Abwettersammelstrecke gestoßen. Die Wetterbohrlöcher werden mit einem Durchmesser von 1400 mm aufgefahren und mit Eisenringen von 1200 mm Durchmesser ausgebaut. Zur Verlagerung des Ausbaues wird der untere Ringraum (mindestens 5 m Länge) mit Beton, der restliche Ringraum mit Kies verfüllt (Anlage 8). 01

Die Bohrlochlängen im Feld 5/1 liegen zwischen 35 m und 60 m. An das verrohrt- Wetterbohrloch wird mit einem Luttenkrümmer in der Einlagerungskammer die Luttentour und in der Abwettersammelstrecke der Luttenlüfter angeschlossen.

Es werden regelbare zweistufige Axiallüfter eingesetzt. Bis zu einer Sonderbewetterungslänge von ca. 600 m kann ein Axiallüfter zweistufig betrieben werden. Bei Sonderbewetterungslängen von mehr $|^{01}$ als 600 m werden zwei hintereinandergeschaltete Luttenlüfter benötigt, um im Vorortbereich eine Wettermenge von 23 m leisten (Anlage 20).

01

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAA	NNNNNNNNN	ииииии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	02

Seite 26

Im Feld 5/1 betragen die Sonderbewetterungslängen maximal 550 m. Es wird je Einlagerungskammer nur ein Axiallüfter eingesetzt.

01

Der Einlagerung folgend werden die Luttentouren kontinuierlich zurückgenommen (Anlage 8).

037

Da nach Abschluß der Einlagerung das Wetterbohrloch nicht mehr zugänglich ist, werden die Arbeiten in der Kammerzufahrt aus der Einlagerungstransportstrecke blasend sonderbewettert.

02

Die Auslegungsdaten der Sonderbewetterungsanlagen sind im Kapitel 4 "Sonderbewetterungsanlagen" beschrieben.

. Sonderbewetterung Auffahrbereich

Im Auffahrbereich werden alle Streckenvortriebe blasend sonderbewettert. Die Bewetterung vor Ort erfolgt nach den betrieblichen Regeln für den Teilschnittvortrieb:

- .. blasende Zuführung der Frischwetter über 2 Luttenleitungen bis in Ortsnähe
- .. Absaugen der Wetter vor Ort über eine Entstaubungsanlage
- .. Rückführung der Abwetter durch die Strecke zum Hauptwetterstrom

Dem Vortrieb folgend werden die Luttentouren kontinuierlich verlängert (Anlage 9).

Die Entstaubungsanlage ist bis maximal 180 m dem Vortrieb nachgeschaltet und wird in den schneidfreien Schichten umgesetzt.

Bewetterung sonstiger Grubenbaue

Funktion

Obj. Kenn

Projekt

SP-Element

Zu den sonstigen Grubenbauen zählen insbesondere die Werkstätten im Auffahr- und Einlagerungsbereich sowie die Räume für Betriebsstoffe:

Baugruppe

Komponente

Aufgabe

UA

Efd Nr

NNNN

Rev

NN

000500

DBE

Seite 27

- zentrales Tanklager
- Lager für Öl- und Schmiermittel
- Waschplätze für Fahrzeuge
- Sprengmittellager

Diese Grubennebenräume werden so angeordnet, daß ihre Abwetter direkt in den Abwetterstrom münden.

Die Wetterführung der einzelnen Grubennebenräume ist wie folgt geregelt:

- Werkstatt 850-m-Sohle (Kontrollbereich)
 - Frischwetterzuführung über Rampe Süd (320-205)
 - .. Abwetterabführung mit Luttenlüftern über Wetterbohrlöcher zum Berg 6 direkt in den Abwetterstrom zum Schacht Konrad 2 (337-220). Die 850-m-Sohle wird von der Abwetterstrecke Berg 6 mit einer Wetterbrücke überquert. Die im Werkstattbereich liegenden Tank-, Öl- und Schmiermittellager sowie Waschplätze für Maschinen sind so angeordnet, daß die Abwetterführung über Berg 6 erfolgt.

verpflichten zu

der

9K

5321

TS

NN

000500

AA

LA

DBE

Bewetterung

Stand: 21.04.89

GV

Seite 28

Werkstatt 1100-m-Sohle (Auffahrbereich)

039

- Frischwetterzuführung über die 1100-m-Sohle (408).
- Abwetterführung über das Wetteraufhauen zur 1000-m-Sohle (409-304-302-305-309) zum Schacht Konrad 2. Ein Teilabwetterstrom gelangt aus diesem Bereich über die Wendel Süd zum Schacht Konrad 2 (305-371-361-337-202-105).
- .. Die Abwetterführung des Öl- und Schmiermittellagers erfolgt über ein Wetterbohrloch zur Abwetterstrecke, Wetteraufhauen (409-304).
- Sprengmittellager
 - .. Frischwetterzuführung erfolgt über Rampe 410 Nord (460-462).
 - .. Die Abwetter gelangen über die Parallelstrecke zur 1000-m-Sohle Schacht Konrad 2 (302-305-209), ein Teilstrom gelangt über die 800-m-Sohle zum Schacht Konrad 2 (305-371-361-202-105).

Wetterkühlung

Die Kühlung der Wetter wird notwendig, wenn in sonderbewetterten Betriebspunkten die Trockentemperatur von 28 °C oder die Effektivtemperatur (KlimaBergV) von 25 °C überschritten wird [7].

Für die Wetterkühlung steht eine Wetterkühlanlage Verfügung, die im Bereich der 800-m-Sohle aufgestellt ist.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.	Γ
NAAA	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	ı
9K	5321		TS	-		GV	LA	0005	02	

@

Bewetterung

Seite 29

Der Wetterkühler ist in die vor Ort führende Luttentour der blasenden Sonderbewetterung im Auffahrbereich installiert.

Die Kondensatoren der Wetterkühlanlage zur Rückkühlung sind im Abwetterstrom des betrieblichen Überwachungsbereiches angeordnet.

Im Einlagerungsbereich ist eine Kühlung der Wetter in Einlagerungskammern nicht vorgesehen, da die eingesetzten Fahrzeuge mit einer Klimaanlage ausgerüstet sind. Bei Arbeiten durch sonstiges Personal in diesem Bereich ist die KlimaBergV zu beachten.

01

Durch Erwärmung des Abwetterstromes wird der Auftrieb im ausziehenden Schacht erhöht. Eine Beeinflussung der Bewetterung des gesamten Grubengebäudes wird also im positiven Sinne erfolgen. Der Hauptgrubenlüfter ist so ausgelegt, daß er ohne diese Temperaturerhöhung die geforderte Wettermenge bringt.

1.4.2 Wettermessung und Wetterüberwachung

Im Wetterkanal ist die Probeentnahmeeinrichtung sowie eine Volumenstrommeßstelle für die Aktivitätsbilanzierung installiert (siehe Kap. 6 "Wettermeß- und Über-wachungseinrichtungen").

Als zweite Volumenstrommessung steht der Differenzdruck an der Einlaufdüse des Hauptgrubenlüfters zur Verfügung.

Der gesamte Abwetterstrom wird über einen Diffusor abgegeben; somit wird eine bodennahe Aktivitätsfreisetzung verhindert.

02

Neben den nach

der

9K

5321

GV

UA

AA

LA

000500

Bewetterung

Stand: 21.04.89

Seite 30

- der Allgemeinen Bergverordnung (ABVO) in der gültigen Fassung [6],
- der Bergverordnung zum Schutz der Gesundheit gegen (41 Klimaeinwirkungen (KlimaBergV) in der gültigen Fassung [7],
- den Richtlinien für den Betrieb von Fahrzeugen und zugehörigen Einrichtungen in nicht durch Grubengas gefährdeten Grubenbauen (Fahrzeugbetriebsrichtlinien) in der gültigen Fassung [4] und
- der Rundverfügung 10.2.-6/85 des Oberbergamtes in Clausthal-Zellerfeld [5]

vorgeschriebenen Maßnahmen zur Wetterüberwachung und -messung und oben genannter Aktivitätsbilanzierung werden im Endlager Konrad Maßnahmen zur kontinuierlichen Wetterüberwachung mit ortsfesten Meßgeräten und einer zentralen Meßwerterfassung und -anzeige vorgesehen.

Die Wettermeßgeräte und die Einrichtungen sowie die Durchführung der Wettermessungen und die Maßnahmen zur Wetterüberwachung sind im Kapitel 6 "Wettermeß- und Überwachungseinrichtungen" beschrieben.

1.4.3 Anomaler Betrieb

Der anomale Betrieb kann durch Ausfall einer oder mehrerer Komponenten, die die Bewetterung beeinflussen und durch Ausfall der Energieversorgung entstehen.

- Ausfall Schachtwetterheizung, keine Auswirkung auf Bewetterung.
- Ausfall Wetterkühlmaschine

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.	
NAAA	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	АА	NNNN	NN	
9K	5321		TS			GV	LA	0005	02	

Seite 31

Betriebsbeschränkungen in nicht gekühlten Bereichen für das Personal.

Keine Auswirkung auf Wetterströme bzw. Wettermengen.

042

01

- Ausfall der Sonderbewetterung

Zum Ausfall der Sonderbewetterungsanlagen (Anlage 16) der Einlagerungskammer bei laufendem Hauptgrubenlüfter haben die Berechnungen der WBK ergeben, daß noch ein Restabwetterstrom von 0,75 m³/s über die Sonderbewetterungsanlage zur Abwettersammelstrecke geführt wird. Die Erfüllung der Anforderung, daß keine lokale Wetterumkehr aus dem Kontrollbereich heraus stattfindet, ist damit gewährleistet. Außerdem werden im Zechenbuch/Betriebshandbuch Maßnahmen verankert, die die Auswirkungen der Störung minimieren, wie z. B. Vorhalten von Reservematerial und Reservelüfter, die es gestatten, mit einer Sofortreparatur die Ausfallzeit zu begrenzen.

Die administrativen Maßnahmen bei Ausfall der Sonderbewetterung sind im konventionellen Regelwerk, im § 113a ABVO, geregelt und gelten grundsätzlich für die blasende Sonderbewetterung während der Auffahrung und die saugende Sonderbewetterung in der Einlagerungskammer.

Bei Ausfall einer Sonderbewetterungseinheit in einer in Befüllung befindlichen Einlagerungskammer kann aus radiologischer Sicht eine Beendigung eines begonnenen Einlagerungsvorganges ohne Bedenken vorgenommen werden [1]. Um mögliche H₂-Konzentrationen [1] auszuschließen, die den bergbehördlich festgelegten Maximalwert von 0,8 % überschreiten, werden Maßnahmen zur Verdünnung und Überprüfung der Gaskonzentrationen vorgesehen [1]. Betrieblich bedingte Ausschaltzeiten mit Personaleinsatz in den Einlagen rungskammern, z. B. beim Zürückbau von

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.	131
NAAN	иниииииии	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	ииии	NN	d
9K	5321		TS			GV	LA	0005	06	

DBE DBE

Bewetterung

Blatt 32

043

Lutten, betragen in der Regel 15 bzw. 30 min/Schicht. Sie sind aus Gründen der Direktstrahlung jedoch auf das unumgänglich notwendige Maß zu beschränken [1].

- Ausfall der Wetterleiteinrichtungen

Wetterleiteinrichtungen (Wetterschleusen und -drosseln) bestehen generell aus zwei hintereinander stehenden Bauwerken mit Wettertüren (Anlage 11).

Bei einer mechanischen Beschädigung eines Wetterbauwerkes, z.B.Beschädigung eines Tores durch Fahrzeugverkehr, kann die Funktion der Wettertrennung weiterhin bis zur Instandsetzung aufrecht erhalten werden.

Durch Verriegelung ist sichergestellt, daß nie beide Wettertüren gleichzeitig zu öffnen sind.

Eine weitere Störung ist der Ausfall der Energieversorgung für die Betätigungsvorrichtung für das Öffnen der Tore. In diesem Fall bleibt die Durchfahrt für den Fahrzeugverkehr gesperrt. Der Personenverkehr ist durch die Fahrtür gewährleistet, die Wettertrennung bleibt ständig erhalten.

- Ausfall des Hauptgrubenlüfters (HGL)

Da für den Hauptgrubenlüfter das Wechselaktivteil in Reserveposition steht und der Wechsel in ca. 1/4 h erfolgt, ist dieser Ausfall als entsprechend kurzfristig zu betrachten. Die Auswirkungen auf die Bewetterung sind nachfolgend unter "Ausfall der Energieversorgung" mit abgehandelt.

Für die Zeit des Austausches wird der Wetterschieber vor dem HGL geschlossen.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	04

Blatt 33

04

- Ausfall mehrerer Komponenten

044

Ein Ausfall mehrerer Komponenten gleichzeitig wird nur bei Energieausfall unterstellt.

- Ausfall der Energieversorgung

Die Tagesanlagen Konrad 1 und Konrad 2 haben getrennte 30-kV-Einspeisungen. Der Aufbau des innerbetrieblichen 6-kV-Verteilungsnetzes ist in der Systembeschreibung "Übergeordnete Energieversorgung" beschrieben [19]. Durch den gewählten Aufbau des innerbetrieblichen 6-kV-Verteilungsnetzes ist sichergestellt, daß bei Ausfall einer 30-kV-Einspeisung der ausgefallene Bereich spätestens nach einer Stunde weiter versorgt wird.

Die planmäßige Bewetterung des Grubengebäudes erfolgt mit dem auf Schacht Konrad 2 über Tage aufgestellten Hauptgrubenlüfter. Zusätzlich zur mechanischen Bewetterung durch den Hauptgrubenlüfter besteht noch der Wetterzug durch den natürlichen Auftrieb, der von der Außentemperatur abhängig ist.

In den vorliegenden WBK-Gutachten (Anlagen 18 und 19) werden zur Untersuchung der Auswirkungen von Be-

PTB

sklich zugestanden. Zuwiderhand Schadenersatz Alle Rechte für der GM-Eintragung vorbehalter

soweit nicht ausdrückl lungen verpflichten zu S Fall der Patentierung o

nicht ausdrüch verpflichten zu

Projekt SP-Element NAAN инининини

5321

Obi Kenn NNNNNN

Funktion NNAAANN

TS

Komponente AANNNA

Baugruppe AANN

Aufgabe XAAXX

UA Lfd.Nr. AA ииии

LA

DBE

Bewetterung

9K

Stand: 21.04.89

GV

Seite 34

NN

000500

triebsunterbrechungen an der Hauptgrubenlüfteranlage mehrere Berechnungen des Wetternetzes unter Annahme unterschiedlicher Außentemperaturen durchgeführt. Dabei wird vorausgesetzt, daß die Schachtschleuse am Schacht Konrad 2 (2-3) und die Bypassklappe im Wetterkanal (3-4) geschlossen sind. In die Berechnungen gehen weiterhin Einflüsse aus dem Betrieb der Wetterkühlung und der Sonderbewetterungsanlagen ein. Die Funktionsfähigkeit der wettertechnischen Bauwerke wird unterstellt.

Die Ergebnisse der Berechnung zeigen:

- Zu einem vollständigen Stillstand der Bewetterung kommt es beim Ausfall des Hauptgrubenlüfters auch bei Tagesmittel-Temperaturen bis 25 °C nicht. Bei Ausfall des Hauptgrubenlüfters im Sommer werden noch 40 % des Wetterstromes im Normalbetrieb durch den Naturzug erzeugt (Anlage 4). Nur bei Ausfall des HGL und gleichzeitigem Ausfall aller Sonderbewetterungsanlagen und Wetterkühlanlagen reduziert sich der Wetterstrom auf 20 % des Normalbetriebes (Anlage 5).
- Im Winterbetrieb bleibt die Wetterführung im Grubenbetrieb durch den Naturzug weitgehend erhalten. Die Wetterrichtung ändert sich nicht (Anlage 3).
- Bei Eintritt eines Stillstandes des Hauptgrubenlüfters bei mittleren Tagestemperaturen bis 25 °C ergeben sich für die Teilwetterströme im Grubenbetrieb teilweise Änderungen:

communication of the contents thereof, are forbidden a express authority. Offenders are liable to the pay of damages. All rights are reserved in the event of the about of the elegistration of a utility model or design. Jobs use or con-without express ment of damages. All sent of a patent or the

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAA	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS		- 1	GV	LA	0005	02

Seite 35

- .. Im Einlagerungsfeld 5/1 kommt es bei laufender Sonderbewetterung zu Welterteilkreisläufen (Anlage 4).
- .. Diese Teilkreisläufe überschreiten in keinem Fall die Kontrollbereichsgrenze und sind somit tolerierbar.
- .. Ohne Sonderbewetterung verringert sich der Wetter strom wesentlich, die Wetterrichtung bleibt erhalten (Anlage 5).
- .. Im betrieblichen Überwachungsbereich tritt in einigen Streckenabschnitten örtlich eine Wetterumkehr ein (Anlage 4 und 5).
- . Es bleibt immer die Wetterrichtung in den Kontrollbereich erhalten.

Zum unterstellten ungünstigsten Fall des Ausfalls der zentralen Energieversorgung mit dadurch bedingtem Stillstand aller Grubenlüfter (HGL und Luttenlüfter) und dem gleichzeitigen Vorherrschen von sehr hohen Lufttemperaturen über Tage stellt das WBK-Gutachten (Anlage 21) fest, daß eine generelle Wetterumkehr in den Schächten auszuschließen ist. Bei Lufttemperaturen über 32 °C kann es zu kurzzeitigem Wetterstillstand in der Schachtröhre Konrad 2 und im Grubengebäude zu Teilkreisläufen kommen. Durch die hohe Gebirgswärme im Schacht Konrad 2 wird sich der natürliche Auftrieb und damit der ausziehende Wetterstrom wieder einstellen.

Zum unterstellten ungünstigsten Fall ist von der DMT Gesellschaft für Forschung und Prüfung mbH (ehemals 01 WBK) das Gutachten Nr. 11031490 (Anlage 22) und der Nachtrag Nr. 11031890 (Anlage 23) zum Gutachten Nr. 11031490 über die Stabilität der Bewettering den Störfall in der Einlagerungsphase Feld /5/1 Endlagerbergwerk Konrad in Salzgitter erst

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgaba	UA	Lfd.Nr.	Rev.
NAAA	инининини	ииииии	NNAAANN	AANNNA	AANN	XAAXX	AA	ииии	NN
9K	5321		TS			GV	LA	0005	02

Seite 35 a

um die von den Gutachtern der Genehmigunsbehörde eingebrachten Forderungen hinsichtlich zusätzlicher Wetterbauwerke zur Stabilisierung der Bewetterung im Störfall zu untersuchen.

Die Berechnungen im aktualisierten Wetternetz haben ergeben, daß

- das Wetterbauwerk im Berg 6 aus dem Wetterzweig 211 - 204 in den Wetterzweig 204 - 207 verlegt werden muß,
- ein zusätzliches Wetterbauwerk an der Kontrollbereichsgrenze im Wetterzweig 205 - 320 benötigt wird,
- zusätzliche Wetterbauwerke in den Wetterzweigen 306 - 312 und 510 - 507 errichtet werden müssen.

Die im Rahmen des Gutachtens durchgeführten Berechnungen bei Energieausfall und hochsommerlichen Tagestemperaturen von 25 °C bis 32 °C haben ergeben, daß bei Energieausfall ohne zusätzliche Maßnahmen bei Tagestemperaturen

- von 25 °C, 28 °C und 30 °C ein ausziehender Wetterstrom von 98,75 m³/s bis 52,50 m³/s über Schacht Konrad 2 vorhanden ist, Wetterübertritte aus dem Kontrollbereich in den betrieblichen Überwachungsbereich <u>nicht</u> erfolgen und in den Einlagerungskammern ein gerichteter Wetterstrom von 0,32 m³/s bis 0,13 m³/s ziehen wird,
- um 32 °C ein ausziehender Wetterstrom von 23 min über Schacht Konrad 2 vorhanden ist. Wetterübertritte aus dem Kontrollbereich in den betrieblichen überwachungsbereich gegeben sind und in den Einlagerusskammern ein minimaler Wetterstrom von 0,05 m³/sanim umgekehrter Richtung ziehen wird.

02

02

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAA	иниииииии	ииииии	NNAAANN	AANNNA	AANN	XXAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	02

db DBE

Bewetterung

Seite 35 b

048Um Wetterübertritte aus dem Einlagerungsbereich (Einlagerungstransportstrecke; Einlagerungskammern) und eine Wetterumkehr bzw. einen "Wetterstillstand" in den Einlagerungskammern zu verhindern, werden sogenannte Bereitschaftswetterbauwerke (vorhandene Wetterdrosseln in den Wetterzweigen 305-309 und 204-207) so hergerichtet, daß sie bei Ausfall der Energieversorgung und Temperaturen größer 25 °C manuell geschlossen werden können.

01

02

02

Durch Drosselung der oben genannten Wetterzweige wird die Wetterführung im Kontrollbereich stabilisiert, d. h. in den Einlagerungskammern ist ein gerichteter Mindestwetterstrom von 0,30 m3/s vorhanden, Wetterübertritte aus den Einlagerungsbereichen in den Überwachungsbereich erfolgen nicht (vgl. Anlage 21 im Gutachten Nr. 11031490 über die Stabilität der Bewetterung für den Störfall ... und Anlagen 5 und 7 im Nachtrag Nr. 11031890 zu dem Gutachten über die Stabilität der Bewetterung im Störfall ...).

01 02

Darüber hinaus enthält das Gutachten Nr. 11031490 Aussagen zu möglichen Bränden an gleislosen Fahrzeugen in den Transportwegen des Kontrollbereiches. Für die Stabilitätsbetrachtungen der Brände gilt die Vorgabe, daß sich die Bewetterung im Normalzustand befindet.

Stolek	t PSP-Element	Obj.Kenn.	Function	Komp	Saugr.	Autgabe	UA	Lta.Nr	Rev
NAA	и. иичииииии	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	ииии	NN
9K	5321		TS			GV	LA	0005	03

N49

Bewetterung

Seite 35c

Für die Beurteilung der Fahrzeugbrände wurden im Kontrollbereich die Wetterzweige

- ° 206 208, 850-m-Sohle, Zufahrt zur Rampe 280-
- ° 208 209, Einlagerungsfüllort Schacht Konrad 2
- ° 205 221, Rampe 280
- ° 320 205, Rampe Süd

ausgewählt.

In diesen Wetterzweigen verkehren Einlagerungs- und Versatztransportfahrzeuge.

Die Berechnungen haben ergeben, daß

- bei Fahrzeugbränden in den Wetterzweigen 206-208; 208-209; 206-221 Wetterübertritte aus dem Kontrollbereich in den betrieblichen Überwachungsbereich nicht gegeben sind und die Abführung der Brandgase über Schacht Konrad 2 gewährleistet ist,
- beim Fahrzeugbrand im Wetterzweig 320-205 (Versatztransportfahrzeug) ein Wetterübertritt aus den
 Kontrollbereich in den betrieblichen Überwachungsbereich nicht auszuschließen ist. Um dieses zu
 verhindern, werden in der Rampe Süd unterhalb der
 Pumpversatzanlage und in der Kühlstrecke südlich der
 Kühlmaschine zusätzliche Bereitschaftswetterbauwerke
 errichtet, die im Brandfall manuell geschlossen
 werden können. Damit wird sichergestellt, daß die
 Brandgase aus dem Kontrollbereich über Schacht
 Konrad 2 abgeführt werden (vgl. Anlage 23 im Gutachten Nr. 11031490 über die Stabilität der Bewetterung im Störfall ...).

Im Zechenbuch/Betriebshandbuch werden organisatorische Maßnahmen zu Messungen durch den Strahlenschutz, zur Beschränkung von Personenaufenthalten und zur Stabilisierung der Wetterführung des Kontrollbereiches für den Fall des Ausfalls der übergeordneten Energierersorgung und bei Bränden von Transportfahrzeugen festgeleit.

Desweiteren werden im Zechenbuch/Betriebshandbuch Festlegungen für das Schließen der Bereitschaftswetterbauwerke im Brandfall getroffen.

Projekt	- PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Autgabe	UA	Ltd.Nr.	Rev
NAAF	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	N.N.
9K	5321		TS	,,		GV	LA	0005	03

Bewetterung Seite 36

- Maßnahmen bei Ausfall des Hauptgrubenlüfters: $050\,$

- Bei Ausfall des Hauptgrubenlüfters erfolgt eine Störungsmeldung in der Zentralen Warte Konrad 1.
- . Von der Zentralen Warte werden die notwendigen Maßnahmen zur Schadensvorsorge der Belegschaft eingeleitet:
 - .. Alarmierung des Personals über die Kommunikationseinrichtungen in der Zentralen Warte [20]
 - .. Einstellen des Betriebes der dieselbetriebenen Fahrzeuge
 - .. Einstellen von Spreng- und Schweißarbeiten
 - .. Zurückziehen der Vorortbelegschaft.

Ein eingeschränkter Fahrzeugbetrieb zum Ausfahren der Belegschaft ist ohne Gefahr möglich.

- Zusätzliche Maßnahmen bei Ausfall sämtlicher Bewetterungseinrichtungen (HGL und Luttenlüfter):
 - . Schließen der Bereitschaftswetterbauwerke in den Wetterzweigen 305-309 und 204-207
 - Messen der Gaskonzentration in der Einlagerungskammer nach längerem Stillstand vor Inbetriebnahme der Sonderbewetterung.
- Zusätzliche Maßnahmen bei Brand eines Transportwagens im Kontrollbereich Rampe Süd:
 - . Drosselung des Wetterstromes mit dem der er Rampe Süd installierten Bereitschaftswesserbauwerk
 - . Schließen des Bereitschaftswetterbauwerkes auf der 800-m-Sohle südlich der Wasserkühlmaschine.

03

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung ihres Inhalts nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

Komponentenbeschreibung

5

Ist

in

den Kapiteln

N

9

enthalten.

PTB Projekt NAAN 9K Bewetterung NAAANN Stand: Aufgabe XAAXX GV 21.04.89 NNNN NN 000500 DBE 37

Projest	PSP-Element	Obj.Kenn.	Funktion	котр.	Baugr.	Aulgape	UA	Ud.Nr.	Rev.	1991	
NAAN	инининини	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	ииии	NN	(1) D	BE
9K	5321		TS			GV	LA	0005	03	e	

1.6 Inbetriebnahme

Bewetterung

Die Inbetriebnahme umfaßt:

052

Seite

- Die Funktionsprüfung der einzelnen Komponenten bzw. Baugruppen:
 - . Hauptgrubenlüfteranlage
 - . Sonderbewetterungsanlagen
 - . Wetterleiteinrichtungen
 - . Wetterkühlmaschine
 - . Schachtheizung
- Den Leistungsnachweis der einzelnen Komponenten bzw.
 Baugruppen.
- Den Nachweis der Wettermengen und Wettergeschwindigkeiten in den einzelnen Strecken.
- Den Nachweis der Wetterrichtungen an den Kontrollbereichsgrenzen.
- Zusätzliche Prüfungen des Betreibers, die in Betriebsanweisungen festgelegt sind.

Zusätzlich zur Inbetriebnahme durch Lieferanten/ Betreiber werden die nach dem Bergrecht erforderlichen Prüfungen durch die Bergbehörde vorgenommen.

Projekt SP-Element Komponente Aufgabe Lfd.Nr Baugruppe PTB DBE NAAN NNNNNNNNN NNNNNN NNAAANN AANNNA XAAXX AA NNNN NN AANN 9K GV LA 5321 TS 000500

Stand: 21.04.89

1.7 Betriebsbeschreibung

Bewetterung

053

Seite 39

1.7.1 Betrieb

Der Betrieb erfolgt nach den erteilten Genehmigungen und den im Zechenbuch/Betriebshandbuch zusammengefaßten Regelungen.

Verantwortung und Qualifikation des Personals:

Für alle Teilbereiche der Bewetterung einschließlich sämtlicher wettertechnischer Einrichtungen der Hauptund Sonderbewetterung sowie der Meßtechnik des Endlagers
ist als Beauftragter der Betriebsführung gemäß § 120 der
ABVO eine Aufsichtsperson (Wettersteiger) zuständig.
Er ist für die Überwachung des ordnungsgemäßen Zustandes
von Wetterdrosseln, -türen und -schleusen, Luttenlüftern, Lutten, Wetterkühlanlagen usw. verantwortlich.
Außerdem führt er die für die zusätzliche Überwachung
erforderlichen Handmessungen durch und führt das gemäß
ABVO vorgeschriebene Wetterbuch.

Dem Wettersteiger unterstehen 2 Mann des Betriebspersonals für die Wartung und das Umsetzen der wettertechnischen Einrichtungen.

1.7.2 Änderungen im Grubengebäude

Die dargestellte Bewetterung bezieht sich auf den Beginn der Einlagerung:

- Einlagerung in Feld 5/1
- Auffahrung in Feld 5/2

Die gesamte Einlagerungszeit beträgt ca. 40 Jahre.

30195/06-88

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	инининини	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	06

Blatt 40

In diesem Zeitraum werden weitere Einlagerungsfelder im Grubengebäude aufgefahren [9]. Mit der Einlagerung im jeweiligen Feld wird erst begonnen, wenn das Feld komplett für die Einlagerung hergerichtet ist.

Alle vorgenannten Bedingungen, Ausführungen und Verfahren sind für die gesamte Einlagerungszeit gültig und gelten entsprechend auch für die neuen Felder.

Durch jeweils neue Wetternetzberechnungen für die Bewetterung neuer Einlagerungsfelder muß über die DMT bzw. eine andere entsprechende Stelle belegt werden, daß

- die Wettermengen und -richtungen wieder äquivalent eingestellt werden,
- der Kontrollbereich und seine Zugänglichkeit analog errichtet ist (Wetterschleusen, Versatzbunker) und
- die Auslegungsmerkmale für die Bewetterung, wie im Kapitel 1.4.1 beschrieben, berücksichtigt werden.

03

03

UD

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	инининини	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	07

Blatt 41

1.8 Qualitätssicherung (QS)

055

Für die Auslegung, Fertigung und Errichtung gelten die einschlägigen Gesetze, Verordnungen, Richtlinien, Verfügungen und sonstige Vorschriften, insbesondere:

- Allgemeine Bergverordnung (ABVO)
- Druckbehälter Verordnung (DruckbehV)

07

- DIN-Normen
- VDI/VDE-Richtlinien
- VDMA-Blätter

06

- Klima-Bergverordnung (KlimaBergV)
- Gesundheitschutz-Bergverordnung (GesBergV)
- Fahrzeugbetriebsrichlinien

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp	Baugr.	Aufgabe	UA	Lfd.Nr.	Hev.	
NAAN	инининини	ииииии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	6
9K	5321		TS			GV	LA	0005	04	10

DBE DBE

Bewetterung

Blatt 42

Hauptgrubenlüfteranlage

056

2.1 Aufqabenstellung

Um den erforderlichen Wetterstrom aufrecht zu erhalten, wird am ausziehenden Wetterschacht ein Hauptgrubenlüfter (HGL) installiert. Er erzeugt den erforderlichen Unterdruck im ausziehenden Wetterschacht und gibt die gesamten Abwetter über den Diffusor an die Atmosphäre ab, so daß keine bodennahe Aktivitäts-Freisetzung erfolgt.

Es sind Vorkehrungen gegen Komponentenausfall zu treffen.

Für die Aktivteile (Lüfter/Motor/Hydraulik) ist eine Wechseleinheit vorhanden, die in weniger als 1/4 h automatisch gewechselt werden kann. Alle feststehenden Bauteile sind nicht redundant ausgelegt.

Wettermengen und erforderliche Depression des HGL werden entsprechend der Wetternetzberechnungen für 25 Jahre abdeckend ausgelegt (Lebensdauer des HGL = ca. 25 Jahre, Einlagerungszeitraum der Grube Konrad = ca. 40 Jahre).

Im Wetterkanal ist der Einbau der Probeentnahme für den Strahlenschutz vorzunehmen.

02

04

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XXAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	04

Blatt 43

057

Planungsgrundlagen 2.2

> - Die Lage des Wetterkanals, des Gebäudes für den HGL und des Diffusors sind durch die örtlichen Bedingungen vorgegeben. Wetterkanal und Gebäude werden unter dem Niveau der Rasenhängebank angeordnet.

- Der Zugang zum Gebäude erfolgt über eine Treppe. Im Dach des Gebäudes befinden sich zwei Montageluken, die mit Deckeln verschlossen sind. Die Deckel sind mit einer Schalldurchgangsdämmung von mindestens 40 dB(A) auszuführen.
- Der Zugang zum Wetterkanal erfolgt vom Innenraum des Gebäudes über eine Wetterschleuse. Zwischen Eingangstür zum Wetterkanal und Wetterschieber ist im Wetterkanal eine Schutzbarriere vorhanden.
- Der Schachtanschluß ist aufgrund der Gegebenheiten des Schachtkellers vorgegeben. Die Strömung wird vom Schacht in den Schachtkeller verzögert und von dort weiter zum Wetterkanal beschleunigt.
- Diffusor

zustand" betrachtet.

Die Druckverluste des Diffusors und der Umlenkecke werden innerhalb des Wirkungsgrades der Maschine berücksichtigt. Der Lüfter wird im Sinne der VDI 2044 als "Ventilator im Einbau-

DL

Blatt 44

04

- Geräusche

058

Gemäß TA-Lärm [14] ist für dieses Beurteilungsgebiet der Immissionsrichtwert

- . tagsüber = 60 dB(A)
- . nachts = 45 dB(A)

einzuhalten.

Die HGL-Anlage wird so ausgelegt, daß mit Schalldämpfer im Diffusor und Wetterkanal der Wert eingehalten wird.

Ein- und Austrittsöffnungen der Raumbelüftungen werden mit Schalldämpfern versehen.

- Heizung

Bei Stillstand der Anlage sorgen die Stillstandsheizungen im Motor, in der Schaltanlage und im Hydraulikaggregat dafür, daß die Anlage betriebsbereit bleibt und kein Korrosionsschaden auftritt.

Eine separate Heizung im Maschinenraum ist somit nicht notwendig. In den Meßräumen müssen Heizgeräte für eine Temperierung vorgesehen werden.

- Lastpunkte

An den Gebäuden müssen an den vorgegebenen Stellen belastbare Haltepunkte vorgesehen werden.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	инининини	NNNNNN	NNAAANN	AANNNA	AANN	XXAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	04

Blatt 45

- Energieversorgung (Spannungsebenen)

059

Mittelspannung 6000 V/50 Hz, DS
Niederspannung 380 V/50 Hz, DS
Steuerspannung 220 V/50 Hz, WS
Periphere Spannung 24 V GS
Steuerspannung 42 V/50 Hz, WS
Steuerspannung 220 V GS

nu

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.	1771
NAAN	имимимими	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	OB DRE
9K	5321		TS			G۷	LA	0005	04	•

Bewetterung Blatt 46

2.3 Auslegungsanforderungen

060

2.3.1 Allgemein

Es ist ein genügend großer Sicherheitsabstand der Betriebspunkte des Lüfters von der Abreißgrenze und die maximale Motorleistung festzulegen.

2.3.2 Wetterdaten

Der HGL ist für einen Wettervolumenstrom von ca.

 $290 \text{ m}^3/\text{s}$

bei einem mittleren Druckbedarf von ca.

2.500 Pa

sowie einem maximalen Druckbedarf von ca.

6.400 Pa

bei einer Dichte von 1,18 kg/m³ auszulegen (Anlage 14).

2.3.3 Sicherheitsrelevante Auslegungsanforderungen

Das Verfahren des Betriebsaggregates in Reparaturstellung und des Reserveaggregates in Betriebsstellung muß in < 1/4 h erfolgen können.

In den statischen Nachweisen für Lüftergebäude, Fundamente und Diffusor ist der Lastfall "seismische Einwirkungen" zu berücksichtigen.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XXAAXX	AA	NNNN	NN.
9K	5321		TS			GV	LA	0005	04

Blatt 47

2.4 <u>Beschreibung Hauptgrubenlüfteranlage</u>

061

2.4.1 Normalbetrieb

Der Wetterschieber ist geöffnet. Die Anlage ist kontinuierlich in Betrieb.

Der HGL wird durch Veränderung der Laufschaufelstellung - je nach vorhandener Grubenweite - auf die gewünschte Wettermenge eingesetellt. Die Wettermenge wird am örtlichen Steuerpult auf einen bestimmten Sollwert eingestellt.

Bei Änderung der Grubenweite, der Witterungsbedingungen oder der Druckverhältnisse wird die Wettermenge auf den eingestellten Sollwert nachgeregelt. Im Vorrohr des HGL werden die Drücke zur Bestimmung der Gesamtdepression und der Wettermenge gemessen und protokolliert.

Das Aktivteil des HGL ist redundant ausgelegt. Durch Verfahren der Aktivteile ist ein Wechsel möglich.

Im Gebäude befinden sich drei Positionen für die Wechselaktivteile

- Pos. 1 Reserveposition für Aktivteil A
- Pos. 2 Betriebsposition für A oder B
- Pos. 3 Reserveposition für Aktivteil B

2.4.2 Anomaler Betrieb

Bei Ausfall des HGL wird das Grubengebäude durch Naturzug über den Diffusor bewettert.

Zum Wechseln auf das Reserveaktivte il wird der Wetterschieber geschlossen. Dann wird der Wechselvorgang unter Sichtkontrolle vorgenommen und das Reserveaktivteil in Betrieb genommen.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	ииии	NN
9K	5321		TS			G۷	LA	0005	07

DBE DBE

Bewetterung

Blatt 48

Notbetrieb:

Bei Spannungsausfall (6 kV-Seite/Eigenbedarfstrafo) werden der Antrieb des Wetterschiebers, das Hydraulikaggregat und die Magnetventile über die zentrale Ersatzstrom-Dieselanlage betrieben. Die Steuereinrichtungen und die peripheren Geräte werden von einer unterbrechungsfreien Stromversorgung gespeist. Damit wird sichergestellt, daß ein eventuell eingeleiteter Aktivteil-Wechsel noch beendet werden kann.

Bei Spannungsausfall können alle Hydraulikfunktionen an den Wechselaktivteilen zusätzlich durch Betätigen einer Handpumpe und manuelle Betätigung der Ventile ausgeführt werden.

2.4.3 Leittechnik

Die Vorortsteuerung erfolgt über ein örtliches Steuerpult im Hauptgrubenlüftergebäude.

Die Fernsteuerung des HGL "Ein" – "Aus" sowie die Freigabe zum Wechsel des Aktivteils erfolgt aus der Zentralen Warte Konrad 1.

Des weiteren werden folgende Meldungen und Meßwerte an die Zentrale Warte Konrad 1 übertragen [17].

Meldungen:

- Hauptgrubenlüfter EIN
- Hauptgrubenlüfter AUS
- Fernbedienung EIN
- Ortsbedienung EIN
- Wetterschieber AUF
- Wetterschieber ZU
- Aktivteilpositionen
- Sammelstörung Aktivteile
- Sammelstörung Stationärteil
- Betriebsbereitmeldung Aktivteile
- Betriebsbereitmeldung Stationärteile
- Anlaufstörung
- Anlaufzeitstörung
- Lagerschwingungsgrenzwerte
- Wicklungstemperaturgrenzwerte

al.

Meßwerte:

			063
-	Wettermenge (Volumenstrom)	m^3/s	000
-	Drehzahl	U/s	
-	Schaufelstellung	Grad	
_	Lüftermotorwirkleistung	kW	
-	Lüftermotorstrom	A	
-	Lüfterlagertemperatur	°C	

30195/06-88

	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Ud.Nr.	Rev.	-
	NAAN	NNNNNNNNN	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	
4	9K	5321		TS			GV	LA	0005	04	•

Bewetterung Blatt 50

2.5 Komponentenbeschreibung

064

2.5.1 Hauptgrubenlüfter (Wechselaktivteil)

Der Lüfter ist als zweistufiger Axialventilator mit horizontaler Achse ausgeführt.

Das Gehäuse wird über Spaltdichter mit dem Wetterkanal verbunden und ist mit einer Fahreinrichtung, Zentrierung und Hub- und Senkvorrichtung versehen, so daß das eine Aktivteil in der Betriebsphase betrieben und das andere in der Reserveposition geparkt werden kann.

Jedes Wechselaktivteil besteht aus folgenden Teilen:

- Ventilatorgehäuse

obere Hälfte abnehmbar, untere Hälfte mit Fahreinrichtung, Zentriereinrichtung, Hub- und Senkvorrichtung, an der Stirnseite Spaltdichter

- Laufradmantel

mit einer Öffnung (Luke) für das Ein- bzw. Ausbauen einer Laufschaufel

Leitradgehäuse

mit profilierten Leitblechen und Innenmantel zur Aufnahme des Antriebsmotors,

die profilierten Leitbleche mit Durchführungen für Schaufelverstellung,

Temperatur- und SPM-Messung,

mit Aufhängeösen zum Transport des Gehäuses sowie der oberen Schale.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev	m
NAAN	иниииииии	NNNNNN	NNAAANN	AANNNA	AANN	XXAXX	AA	ииии	NN	d
9K	5321		TS			GV	LA	0005	08	e

Blatt 51

- Laufrad

Nabe in Schweißkonstruktion, — UOO mit Laufschaufeln aus Edelstahl.

Die Laufschaufeln sind während des Laufes stufenlos verstellbar.

Außerdem ist eine zentrale, mechanische Stillstandsverstellung (handbetätigt) vorhanden. Die Stellung der Laufschaufeln wird am Schaltschrank angezeigt.

- Antriebsmotor

für den Hauptgrubenlüfter:

Anzah l	2
Nennspannung	6000 V, 50 Hz
Läuferart	Käfigläufer, Einschalten über Anlaßtransformator 04
Schutzart	IP 54
Kühlart	Eigenlüfter und Fremdbelüftungsanlage
Lagerung	verstärkte Auslegung für 100.000 Betriebsstunden 06
Kühlmittel	Luft

- Hydraulikaggregat

als Kompletteinheit zur Verstellung der Laufschaufeln, mit Stillstandsheizung und mit einer Handpumpe, alle Ventile auch manuell bedienbar

Es sind Fahrschienen für eine Betriebs- und zwei Reservepositionen vorgesehen.

Als Fahrschienen werden Schienen S 49 DIN 5901 verwendet.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	04

Blatt 52

04

04

02

01

04

Die Fundamentkonsolen werden getrennt von den Fahrschienen auf das Fundament aufgesetzt.

066

2.5.2 Wetterschieber

Schieberplatte ausgelegt für einen Unterdruck von 8000 Pa, Schieberplatte zur Seite ausfahrbar, versehen mit einer optischen Stellanzeige sowie der Vorrichtung zum Anbringen der Endschalter. Zusätzlich für Handbetätigung ausgerüstet.

2.5.3 Diffusor

Ausführung in Stahlbetonbauweise, Mindesthöhe 45 m über Geländeoberkante.

Zur Einhaltung der Anforderungen nach der TA-Lärm ist der maximal zulässige Schalleistungspegel am Diffusoraustritt auf 100 dB zu begrenzen.

2.5.4 Mittelspannungsversorgung

Die HGL werden über eine eigene 6 kV-Mittelspannungs-Schaltanlage an das Betriebsnetz (Tagesanlage Konrad 2) über 2 Einspeisekabel angeschlossen.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN.
9K	5321		TS			GV	LA	0005	07

db DBE

Bewetterung

Blatt 53

2.5.5 0,4 kV-Schaltanlage

067

04

Das 0,4 kV-Einspeisungs- und Verteilerfeld, die Steuerfelder für beide Lüfter, das Wettermeßfeld, das Feld für die Haustechnik und das Feld für die Nachrichtentechnik sind zu einer Schaltanlage zusammengefaßt und im Elektro-Schaltraum des Lüftergebäudes aufgestellt. Die Steuerung des HGL erfolgt über eine Speicherprogrammierbare Steuerung (SPS).

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr,	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			G۷	LA	0005	04

Blatt 54

2.6 <u>Inbetriebnahme</u>

068

Nach Funktionsprüfung der betriebsbereiten HGL-Anlage wird diese durch das Fachpersonal des Herstellers in Betrieb genommen. Dieses Personal muß vom Hersteller des HGL unterwiesen werden.

2.6.1 Probebetrieb

Nach Inbetriebnahme erfolgt ein 24stündiger Probebetrieb. Für diesen Zeitraum muß das Fachpersonal des Herstellers anwesend sein. Nach Beendigung des Probebetriebes wird ein Protokoll mit allen ermittelten Daten erstellt.

2.6.2 Leistungsnachweis

Der Leistungsnachweis für den Lüfter erfolgt nach dem Probebetrieb unter Betriebsbedingungen am Einsatzort. Die Messungen werden von einem neutralen Institut vorgenommen (z.B. Westfälische Berggewerkschaftskasse, WBK, Bochum).

Für den Leistungsnachweis gelten die Verdichterregeln VDI 2044. Der Leistungsnachweis der Motoren erfolgt im Lieferwerk.

2.6.3 Abnahme

Die Abnahme erfolgt durch die Bergbehörde bzw. durch einen vom OBA beauftragten Sachverständigen.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.	1101
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	Jb DBE
9K	5321		TS			GV	LA	0005	06	•

Blatt 55

069

2.7 Betriebsbeschreibung

Der Betrieb erfolgt entsprechend den Festlegungen im Zechenbuch/Betriebshandbuch (ZB/BHB).

Beim Anfahren der Maschine wird grundsätzlich der Wetterschieber geschlossen und die Schaufelstellung auf den niedrigsten Wert gestellt.

Es sind drei Betriebsarten vorgesehen:

- Automatikbetrieb
- Handsteuerung
- Wechselvorgang

2.7.1 Automatikbetrieb

Bei Automatikbetrieb wird der HGL vom örtlichen Leitstand oder von der Zentralen Warte Konrad 1 aus gestartet oder stillgesetzt. Alle Abläufe danach laufen automatisch ab.

2.7.2 Handsteuerung

Bei Handsteuerung werden die verriegelten Antriebe in folgender Reihenfolge ein- und ausgeschaltet:

	Hauptmotor	EIN/AUS
-	Wetterschieber	AUF/ZU
-	Hydraulik	EIN/AUS
_	Schaufeln	+/-

HubwerkZentrierungHEBEN/SENKEN

Fahrwerk PU/PSSpaltdichter AUF/ZU

	Projekt.	PSP-Element	Ob].Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
1	NAAN	инининии	NNNNNN	NNAAANN	AANNNA	AANN	XXAAX	AA	NNNN	NN
-	9K	5321		TS			G۷	LA	0005	04

Blatt 56

070

Notbetrieb:

Der Wetterschieber kann bei Netzausfall über das zentrale Ersatznetz betrieben oder manuell betätigt werden. Die SPS-Steuerung wird von einer unterbrechungsfreien Stromversorgung gespeist. Alle Hydraulikfunktionen können durch Betätigen der Handpumpe und Betätigung der Ventile von Hand ausgeführt werden.

2.7.3 Wechselvorgang

Der Wechselvorgang kann durch manuellen Eingriff (Revision) oder in Folge einer Störung eingeleitet werden. Wenn das Aktivteil in der Betriebsposition durch eine Störung ausfällt, so wird es in die Reserveposition verfahren und das Wechselaktivteil aus der Reserveposition in die Betriebsposition verfahren.

Funktion

Obi Kenn

Projekt

SP-Element

 Vollständiger, betriebsfertiger und betriebsbereiter HGL nach dem neuesten Stand der Technik, wobei jeweils alle Einzelteile funktional und wirtschaftlich aufeinander abgestimmt sind.

Komponente

Baugruppe

UA

Lfd Nr

NNNN

NN

000500

DBE

Seite 57

Aufgabe

- Güte und Zweckmäßigkeit hinsichtlich Material, Konstruktion, Bearbeitung, Fertigung und Ausführung der Montage unter Berücksichtigung des Verwendungszweckes.
- Einhaltung der Funktionen.
- Auslegung der Anlage für ganzjährigen Betrieb und planmäßige Revisionen.
- Ersatzteilversorgung während der gesamten Betriebsdauer von 25 Jahren
- Es sind nur betriebsbewährte bzw. typgeprüfte Baugruppen einzusetzen.

Weitergabe sowie Vervielfaltigung dieser Unterlage Verwertung und Mitteilung ihres Inhaits nicht gestattel soweit nicht ausdrücklich zugestanden. Zuwdenfrant lungen verpflichten zu Schadenergatz. Alle Rechte für der Fall der Patentierung oder GM-Eintragung vorbehalten

opying of this document, and giving it to others and the se or communication of the contents thereof, are forbidden introut express authority. Offenders are liable to the payent of damages. All rights are reserved in the event of the ant of an age.

30195/06-88

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	инининини	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			G۷	LA	0005	04

DB DB

Bewetterung

Blatt 58

04

3. Wetterleiteinrichtungen

072

3.1 Aufgabenstellung

Durch die Wetterleiteinrichtungen werden die Hauptwetterströme im Grubengebäude verteilt, reguliert bzw. voneinander getrennt.

Wetterschleusen dienen zur Trennung von Wetterströmen.

Wetterdrosseln mit einstellbaren Öffnungen regulieren den durchziehenden Wetterstrom.

Bereitschaftswetterbauwerke sind Brandwettertüren, die im Bedarfsfall (Brand) geschlossen werden.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	иниииииии	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	04

Blatt 59

073

3.2 Planungsgrundlagen

- Wetterleiteinrichtungen bestehen in der Regel aus zwei aufeinanderfolgenden Bauwerken,
- Anzahl und Standorte werden im Rahmen der Wetternetzberechnungen festgelegt.
- Wetterleiteinrichtungen (Wetterschleusen, Wetterdrosseln, Bereitschaftswetterbauwerke) werden aus nicht brennbarem Material errichtet.

04

Protest	PSP-Element	Czi Kenn.	Funktion	Komb	Baugr.	Autgabe	JA	Ud.Nr	Hev.	Im	
NAAN	инининини	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	96	DBE
9K	5321		TS			G۷	LA	0005	03	•	

Bewetterung Seite 60

3.3 Auslegungsanforderungen

074

3.3.1 Wetterschleusen, Wetterdrosseln

Sowohl Wetterschleusen als auch Wetterdrosseln müssen aus zwei aufeinanderfolgenden druckentlasteten Wettertüren bestehen. Der Abstand der Bauwerke richtet sich nach der Länge der Fahrzeuge, die das Bauwerk passieren, und soll ca. 25 m betragen. Der Raum zwischen den Wettertüren wird als Schleusenkammer bezeichnet; von dieser dürfen keine durchgehend bewetterten Grubenbaue abzweigen.

Wetterdrosseln werden konstruktiv so gestaltet, daß diese im Bedarfsfall als Wettertür Verwendung finden, so daß eine Wetterumkehr ausgeschlossen ist.

Für die Fahrung durch die Wetterschleuse ist ein definierter Wetterstrom durch die Schleuse vorzusehen.

Die für den Bau und Betrieb von Wetterbauwerken anzuwendenden Empfehlungen sind in der DIN 21635 geregelt.

3.3.2 Sicherheitsrelevante Auslegungsanforderungen

Durch steuertechnische Verriegelung ist sicherzustellen, däß jeweils nur eine Wettertür geöffnet werden kann.

Als Fluchtweg für Personen muß eine Fahrtür vorhanden sein.

Bereitschaftswetterbauwerke sind so auszulegen, daß sie im Störfall manuell geschlossen werden können.

03

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	имимимими	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	АА	NNNN	NN
9K	5321		TS			G۷	LA	0005	04

DBI

Bewetterung

Blatt 61

04

3.4 <u>Beschreibung Wetterleiteinrichtung</u>

075

Die Wetterleiteinrichtungen unterteilen sich in Wetterschleusen und -drosseln sowie Bereitschaftswetterbauwerke. Im Wetternetzschaltplan ist die Position dieser Wetterbauwerke im jeweiligen Wetterzweig festgelegt. Je nach Einsatzbedingungen besitzen sie Einrichtungen zur Regelung des Wetterstromes und zum Durchlaß von Personen und Fahrzeugen. Die Wetterdrosseln besitzen zusätzlich verstellbare Öffnungen, um den Wetterstrom auf eine gewünschte Größe einzustellen.

3.4.1 Normalbetrieb

Das Öffnen und Schließen der Wettertüren erfolgt mit elektro-hydraulisch angetriebenen Türöffnern, die über Handschalter (Seilzugschalter) oder bei Fahrzeugverkehr über automatisch (z.B. Ultraschall) arbeitende Steuereinrichtungen betätigt werden.

3.4.2 Anomaler Betrieb

- Bei Defekten an einer Wettertür, die ein Schließen verhindern, ist die 2. Wettertür gesperrt.
- Bei Ausfall der Energieversorgung ist der Fahrzeugverkehr gesperrt, der Personenverkehr ist durch die Fahrtür (Fluchttür) ordnungsgemäß abwickelbar.

3.4.3 Leittechnik

- Die Steuerung und Verriegelung erfolgt durch einen örtlichen Steuerschrank.
- Die Freigabe der Schleusen an der Kontrollbereichsgrenze of the entsprechend der Zugangsregelung auszuführen.

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mittellung ihres inhalte nicht gestattet, sowein nicht ausdrücklich zugestanden. Zuwiderhand-Lungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

- Zur Zentralen Warte Konrad 1 werden die Sammelstörmeldungen der Schleusen an den Kontrollbereichsgrenzen übermittelt.

9K

TS

LA

000500

Bewetterung

5321

Stand: 21.04.89

GV

Seite 63

3.5 Komponentenbeschreibung

Wettertüren

077

Die druckentlastete Wettertür für Fahrzeugverkehr (Anlage 10) wird unter einem rechten Winkel zur Streckenachse in die Strecke eingebaut. Zur Aufnahme der Wettertür werden zwei senkrecht stehende Träger (Profilstahl) mit einer Kopf- und Fußplatte in der Strecke zwischen Firste und Sohle verankert. Ein Träger verbindet beide seitlichen Stützen.

In diesem Rahmen wird die Wettertür eingebaut. Sie besteht aus einem geschraubten U-Eisenrahmen mit Befestigungslaschen, den beiden Torflügeln mit verstärkter Rohrachse und dem Kupplungsgestänge. Ein Torflügel ist mit einer einflügligen Fahrtür, lichte Weite 750 mm, lichte Höhe 1800 mm und der zweite Torflügel mit einer verstellbaren Öffnung (Funktion der Wetterdrossel) versehen. Die Kuppelstange ist für das Anbringen des Raco-Verstellgerätes (Öffnungsgerät) vorgesehen. Fahrtür und Torflügel sind mit Gummilippendichtungen versehen.

- Weitere Bauteile sind:
 - . Verstellgerät
 - . Seilzugschalter/Ultraschallgerät
 - . Wendeschützsteuerungen
 - . der Verteilerkasten
- Der Zwischenraum zwischen Torrahmen und Streckenmantel wird mit Mauerwerk (ca. 0,25 m) ausgefüllt und die Mauer zum Gebirge abgedichtet.

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidded without express authority. Offenders are liable to the pay without express authority. Offenders are liable to the pay ment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design

078

3.6 Inbetriebnahme

Die Inbetriebnahme umfaßt eine Funktionsprüfung der Tore und Türen, insbesondere der Verriegelungen sowie eine Kontrolle der Ausführung verbunden mit einer Wettermessung.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAA	иниииииии	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	01

3.7 Betriebsbeschreibung

Bewetterung

079

Seite 65

Der Betrieb erfolgt entsprechend den Festlegungen im Zechenbuch/Betriebshandbuch (ZB/BHB). Hierzu gehören u.a., daß Wettertüren nach einer Beschädigung umgehend repariert bzw. bis zur Reparatur provisorisch abgedichtet werden.

01

Eine Fehlstellung von Wettertüren wird durch bautechnische Maßnahmen verhindert.

UA Lfd.Nr. Projekt SP-Element Obj.Kenn-Funktion Komponente Baugruppe Aufgabe PTB DBE NAAN инининини имимии NNAAANN ANNNA AANN XAAXX ДД NNNN NN 9K TS GV LA 000500 5321 Stand: 21.04.89 Bewetterung Seite 66

3.8 Qualitätssicherung (QS)

080

Der Bau und Betrieb erfolgt entsprechend DIN 21635. Es werden typgeprüfte und nach Bauart zugelassene Komponenten eingesetzt.

Die Errichtung der Wetterbauwerke bedarf der betriebsplanmäßigen Zulassung durch die Bergbehörde.

Verwertung und Mitteliung ihres Inhalts nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwiderhand-lungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

4

081

4.1 Aufgabenstellung

Sonderbewetterungsanlagen

Die Bewetterung nicht durchschlägiger, befahrbarer Grubenbaue ist durch blasende oder saugende Sonderbewetterung sicherzustellen.

Das sind alle Strecken und Räume, die im Rahmen der Vorrichtung neuer Einlagerungsfelder bzw. -kammern aufgefahren werden sowie die Einlagerungskammern während der Einlagerung.

5321

TS

UΑ

AA

LA

000500

Bewetterung

Stand: 21.04.89

GV

Seite 68

4.2 Planungsgrundlagen

082

- Streckenvortriebe im Auffahrbereich werden über blasende Sonderbewetterung mit Frischwettern versorgt.
- Einlagerungskammern im Einlagerungsbereich werden saugend sonderbewettert.
- Abwetter werden über Abwetterbohrlöcher zur Abwettersammelstrecke abgeführt.

30195/06-88 -

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAA	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	01

Seite 69

4.3 <u>Auslegungsanforderungen</u>

4.3.1 Allgemein

083

- Die blasenden Sonderbewetterungsanlagen sind für eine max. Länge von 1200 m und für einen Wetterstrom von 26 \rm{m}^3/\rm{s} auszulegen.

01

- Die saugenden Sonderbewetterungsanlagen sind für eine max. Länge von 800 m und für einen Wetterstrom von 23 $\rm m^3/s$ auszulegen.

01

4.3.2 Sicherheitsrelevante Auslegungsanforderungen

Es sind schwerentflammbare Werkstoffe einzusetzen.

gen verpflichten zu Schadenersatz. Alle Rechte für uder Patentierung oder GM-Eintrammen.

4.4 Beschreibung Sonderbewetterungsanlagen

084

Normalbetrieb 4.4.1

Die Sonderbewetterungsanlagen werden am Luttenlüfter mit Differenzdruckmeßgeräten auf ihren Betriebszustand überwacht. Mit Grenzwertmeßgebern erfolgt bei Unterschreitung eines vorgegebenen Sollwertes eine Warnmeldung in der Zentralen Warte Konrad 1.

4.4.2 Anomaler Betrieb

Bei Ausfalls eines Luttenlüfters wird der Betrieb in der entsprechenden Strecke stillgelegt.

In den Einlagerungskammern wird der Betriebszustand der saugenden Sonderbewetterung zusätzlich mit Signalleuchten angezeigt.

- Betrieb: grüne Signalleuchte
- Ausfall: rote Signalleuchte

Der Abgang der Signale erfolgt vom Meßwertgeber des Differenzdruckmeßgerätes.

Die Signalleuchten rot/grün, die jeweils mit 2 Glühlampen versehen sind, werden in der Einlagerungskammer

- am Eingang
- an der Entladekammer und
- vor Ort

installiert, damit das in der Kammer tätige Personal Betriebspunkt bei Ausfall der Sonderbewetterungsat verlassen kann.

30 195/06-88

der

Die administrativen Maßnahmen sind entsprechend § 113a. ABVO geregelt.

085

Der in die blasende Sonderbewetterung integrierte Wetterkühler wird bei Ausfall der Sonderbewetterung automatisch abgeschaltet. Die Störung wird am Standort der Kälteanlage optisch angezeigt und festgehalten, bis die Quittierung erfolgt.

4.4.3 Leittechnik

Die Steuerung der Sonderbewetterungs-Anlagen erfolgt von den örtlichen Steuerschränken aus.

Bei saugenden Sonderbewetterungen wird vor Ort am Zugang EIN/AUS signalisiert (Zugangsbeschränkung).

Zum örtlichen Leitstand (Konrad 1 1000-m-Sohle, Konrad 2 Füllort 850-m-Sohle) und zur Zentralen Warte Konrad l wird je Sonderbewetterungsanlage eine Sammelstörmeldung und die Betriebsanzeige EIN/AUS gemeldet.

soweit nicht ausdrücklich zugestanden. Zuwiderhand-lungen verpflichten zu Schadenersatz. Alle Rechte für den

der

9K

TS

LA

Bewetterung

5321

Stand: 21.04.89

Seite 72

NN

000500

4.5 Komponentenbeschreibung

086

Sonderbewetterung blasend; Auffahrung 4.5.1

Für die Sonderbewetterung der maschinellen Auffahrung werden vorhandene Komponenten eingesetzt. Diese bestehen aus:

- In Abhängigkeit von der Länge werden bis zu zwei schaufelverstell- und polumschaltbare Luttenlüfter mit 900 mm Laufraddurchmesser, die saug- und druckseitig mit Schalldämpfern ausgerüstet und übereinander angeordnet sind, eingesetzt.
- Zwei faltbaren Kunststoffluttentouren mit 1200 mm Durchmesser. Die in den Vorortbereich führenden Frischwettertouren werden an die im Hauptwetterstrom aufgestellte Lüfterstation angeschlossen.

Eine Luttentour wird bis in den Vorortbereich geführt, die zweite Luttentour bis vor die Entstaubungsanlage, die dem Vortrieb ca. 130 - 180 m nachgeschaltet ist.

Einer Entstaubungsanlage mit Filterbauteil und Lüfter. Sie ist für 600 m3/min Wetterdurchsatz mit 2 Lüftern und für 800 m3/min Wetterdurchsatz mit 3 Lüftern ausgerüstet. Sie sind hintereinander angeordnet und saug- und druckseitig mit Schalldämpfern ausgerüstet. Die Entstaubungsanlage saugt mit einer eigenen Luttenleitung von 700 mm Durchmesser die staubhaltigen Wetter vor Ort ab, reinigt sie und führt die gereinigten Wetter über den freien Streckenguerschnitt ab.

event of express authority. Offenders damages, All rights are reserve a patent or the registration of a communication of the Copying use or co without e ment of d grant of a

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	имимимими	ииииии	NNAAANN	AANNNA	AANN	XXAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	04

Blatt 73

- Einem Wetterkühler (bei Bedarf), der in die vorortführende Luttentour eingebaut ist.

087

04

4.5.2 Sonderbewetterung saugend, Einlagerung

Die Sonderbewetterungsanlage für die Einlagerungskammer besteht aus:

- Einer Blechluttentour von 1200 mm Durchmesser, mit Einzelluttenlängen von 2,00 m und verschraubbaren Flanschverbindungen.
- Einem regelbaren zweistufigen Axiallüfter mit gegenläufigen Laufrädern, 1200 mm Laufraddurchmesser, für Sonderbewetterungsanlagen bis 600 m Länge.

Bei Sonderbewetterungslängen von mehr als 600 m wird in der Abwettersammelstrecke zur Erhöhung der Druckerzeugung in der langen Luttentour ein zweiter Axiallüfter installiert.

Undichtigkeiten in der Luttentour verringern den Wetterstrom im Bereich der Einlagerungskammer. Die Wettermenge für eine Einlagerungskammer ist für 400-Diesel-kW bis zur Entladekammer ausgelegt. Da in der Einlagerungskammer von der Entladekammer bis vor Ort nur noch 1 Fahrzeug verkehrt, ist diese Verringerung tolerierbar.

- Einer fliegenden blasenden Luttentour im Vorortbereich mit einem Lüfter von 600 mm Durchmesser und Blechlutten von 600 mm Durchmesser.
- Einem Differenzdruckmeßgerät zur Überwachung des Betriebszustandes sowie einer optischen Anzeigevorrichtung in der Einlagerungskammer.

4.6 Inbetriebnahme

088

Die Inbetriebnahme umfaßt

- die Funktion der gesamten Sonderbewetterungsanlage
- den Wettermengennachweis.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd,Nr.	Rev.
NAAA	инининини	ииииии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS	-		GV	LA	0005	02

Seite 75

4.7 Betriebsbeschreibung

4.7.1 Sonderbewetterung blasend

089

Dem Vortrieb folgend werden die Luttentouren kontinuierlich verlängert, so daß die 1. ca. 20 m vor der Ortsbrust endet und die 2. im Bereich der Entstaubungsanlage.

Die Entstaubungsanlage wird bis max. 180 m dem Vortrieb nachgeschaltet und in den schneidfreien Schichten umgesetzt.

4.7.2 Sonderbewetterung saugend

Während der Einlagerungsphase wird die saugende Luttentour abschnittsweise in der einlagerungsfreien Schicht rückgebaut.

Nach Abschluß der Einlagerung wird die Lüfterstation in der Abwetterstrecke demontiert und das Wetterbohrloch mit Betonversatz verfüllt.

02

Weitergabe sowie Vervielfaltigung dieser Unterlage. Verwertung und Mittellung ihres inhafts nicht gestattet soweit nicht ausdrücklich zugestanden. Zuwiderhandlungen verpflichten zu Schadenrersatz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

4.8 Qualitätssicherung (QS)

090

Es werden typgeprüfte und bergrechtlich zugelassene Lüfter und Bauteile eingesetzt.

30195/06-88 --

Wettergabo sowie Vervielfättigung dieser Unterlage. Verwertung und Mittellung ihres Inhaits nicht gestattet. sowier nicht ausdrücklich zugestanden. Zuwidenhand-lungen verpflichten zu Schadenersatz Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

9K

5321

TS

AA

LA

000500

Bewetterung

Stand: 21.04.89

GV

Seite 77

5 Wetterkühlanlage

091

5.1 Aufgabenstellung

> In Streckenvortrieben mit Trockentemperaturen von > 28 °C bzw. Effektivtemperatur von > 25 °C ist das Grubenklima durch Wetterkühlung zu verbessern.

use or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

lungen verpflichten zu ? Fall der Patentierung

Stand: 21.04.89 Bewetterung

5.2 Planungsgrundlagen

092

- Die für die Kälteerzeugung vorhandene Wasser-Kühlmaschine wird zur Abführung der Kondensationswärme mit Trockenluftkondensatoren betrieben.
- Die Wasserkühlmaschine und die Kondensatoren zur Rückkühlung werden im Abwetterstrom in Nähe des Schachtes Konrad 2 im betrieblichen Überwachungsbereich angeordnet.
- Die Wetterkühler werden in einer blasenden Luttentour installiert.
- Zur trockenen Abführung der Kondensationswärme ist ein Wetterstrom von ca. 100 m3/s (bei ca. 32 °C) erforderlich.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	ииии	NN
9K	5321		TS			GV	LA	0005	07

Blatt 79

5.3 <u>Auslegungsanforderungen</u>

093

5.3.1 Allgemein

- Die Anlage ist für eine Nettokälteleistung von ca. 600 kW auszulegen.
- Für die Rückkühlung sind Trockenluftkondensatoren einzusetzen.

5.3.2 Sicherheitsrelevante Auslegungsanforderungen

Die Mindestabwettermengen zur Belüftung bei Frigenleckagen entsprechend der "Durchführungsanweisungen zur UVV-Kälteanlagen", VBG-20 [18] sind 07 einzuhalten.

Vor Einreichung eines Betriebsplanes wird erneut geprüft, ob der Betriebger der Wetterkühlanlage mit Frigen (R22) auf der Grundlage der "FCKW-Halon-Verbots-Verordnung" vom 06.05.91 weiterhin zulässig ist [22].

Stand: 21.04.89

Seite 80

DBE

5.4 Beschreibung Wetterkühlanlage

094

Die vorhandenen Wetterkühlanlagen sind Wasserkühlmaschinen mit zwei getrennten Kühlkreisläufen:

- dem Kältemittelkreislauf zwischen der Wasserkühlmaschine und den Kondensatoren zur Rückkühlung,
- dem Kaltwasserkreislauf zwischen der Kältemaschine und den Wetterkühlern im Vorortbereich

Die in der Wasserkühlmaschine erzeugte Kälteleistung wird an den Kälteträger - in diesem Fall Wasser - abgegeben und über den Kaltwasserkreislauf den Wetterkühlern zugeführt (Anlagen 12).

5.4.1 Normalbetrieb

- Kältemittelkreislauf

Das im Verdampfer durch den Wärmeaustausch mit dem zu kühlenden Wasser verdampfende Kältemittel (Frigen R22) wird vom Schraubenverdichter angesaugt, verdichtet und den Kondensatoren zugeführt, in denen die aufgenommene Wärmeenergie auf die Wetter übertragen und das Kältemittel verflüssigt wird.

Von den Kondensatoren wird dann das flüssige Kältemittel über eine Sammlerleitung wieder dem Verdampfer über das Expansionsventil zugeführt, wo es unter Wärmeaufnahme wieder verdampft.

Die Kapazität der Kühlanlage kann durch Änderungen Anzahl der Kondensatoren dem Bedarf angepaßt

Funktion

Obi.Kenn

Das im Verdampfer heruntergekühlte Wasser wird über die Vorlaufleitung zum Wetterkühler gepumpt, der im Vorortbereich in eine blasende Luttentour der Sonderbewetterung eingebaut ist, durchströmt die Rohrregister und kühlt den durchziehenden Wetterstrom. Die aufgenommene Wärme wird über die Kaltwasserrücklaufleitung wieder der Kühlmaschine zugeführt. Die zu den Wetterkühlern führende Vorlaufleitung ist isoliert.

Komponente

Baugruppe

UΑ

Aufgabe

Lfd Nr.

NNNN

NN

000500

DBE

095

Seite 81

5.4.2 Anomaler Betrieb

Projekt

SP-Element

Der Ausfall führt gemäß "KlimaBergV" [7] durch Temperaturanstieg vor Ort zu Betriebsbeschränkungen (Arbeitszeitverkürzungen).

5.4.3 Leittechnik

Die Steuerung der Wetterkühleinrichtung erfolgt von einem örtlichen Steuerschrank aus.

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

30195-06-88

der

5

5.5 Komponentenbeschreibung

096

Die Wetterkühlanlage besteht aus folgenden Komponenten:

- Wasserkühlmaschine

Die wesentlichen Bauteile der Wasserkühlmaschine im Kältemittelkreislauf (Frigenkreislauf) sind der Schraubenverdichter mit dem Antriebsmotor, der Verdampfer, luftgekühlte Kondensatoren, der Ölabscheider und der Ölkühler, die Verrohrung der Bauteile miteinander sowie die zur Steuerung und Regelung notwendigen Einrichtungen.

Die technischen Daten sind:

•	Kälteleistung	ca. 600 kW
•	Kältemittel	Frigen R22
	Antriebsleistung	
	Schraubenverdichter	295 kW
	Volumenstrom	ca. $40 \text{ m}^3/\text{h}$
	Wassereintritts-	
	temperatur	ca. 18 °C
	Wasseraustritts-	
	temperatur	ca. 12,5 °C
	Kreiselpumpe Kalt-	
	wasserkreislauf	37 kW
	Kaltwasserleitung	100 mm Durchmesser

- Kaltwasserkreislauf

Die wesentlichen Bauteile im Kaltwasserkreislauf sind die Kaltwasserpumpe und der in Ortsnähe aufgestellte Wetterkühler, die über einen geschlossenen Wasserkreislauf mit dem Verdampfer verbunden sind.

Copying of this document, and giving it to others and the use of communication of the contents thereof, are forbidder use of communication of the contents thereof, are forbidder without express authority. Offenders are fiable to the pay ment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design

Obj.Kenn

Projekt

SP-Element

Seite 83

DBE

Um die abzuführende Kondensationswärme der Wasserkühlmaschine an die Abwetter zu übertragen, werden 6 parallele Trockenluft-Kondensatoren in den Abwetterstrom eingebaut.

Komponente

Baugruppe

Aufgabe

UA

Lfd Nr.

NNNN

NN

000500

Die technischen Daten sind:

•	Kühlleistung	ca.	120 kW
	Wettereintritts-		
	temperatur	ca.	31 °C
Y	Wetteraustritts-		
	temperatur	ca.	40 °C
	Wetterstrom	ca.	$14 \text{ m}^3/\text{s}$
	Austauschfläche	ca.	325 m ²
•	Lüfter	ca.	45 kW

Streckenwetterkühler

Der Wetterkühler ist als Stahlblechgehäuse mit Kühlregister in einer Luttentour der Sonderbewetterungsanlage eingebaut.

Die technischen Daten sind:

	Kühlleistung	ca.	480 kW
	Wettervolumenstrom	ca.	$13,5 \text{ m}^3/\text{s}$
•	Wasservolumenstrom	ca.	$40 \text{ m}^3/\text{h}$
	Wassereintritts-		
	temperatur	са.	13 °C
	Wasseraustritts-		
	temperatur	ca.	18 °C
	Sprühwassertauchpumpe	7,5	kW

Weitergabe sowie Vervierfältigung dieser Unterlage, Verwertung und Mittellung Ihres Inhalts nicht gestaffet, soweit nicht ausdrücklich zugestanden. Zuwiderhand-lungen verpflichten zu Schadenersalz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

5.6 Inbetriebnahme

098

DBE

Seite 84

Nach Abschluß der Montage erfolgt die Funktionsprüfung der gesamten Anlage sowie ein Leistungsnachweis durch den Betreiber.

Zusätzlich erfolgt eine Abnahme durch das Bergamt.

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express, authority, Offenders are liable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

5.7

eitergabe sowie Vervietfältigung dieser Untertage zwertung und Mitteliung ihres inhalts nicht gestattet weit nicht ausdrücklich zugestanden. Zuwidenhand ngen verptlichten zu Schadenersatz. Alte Rechte für den ill der Patentierung oder GM-Eintragung vorbehalten ill der Patentierung oder GM-Eintragung vorbehalten.

Betriebsbeschreibung

099

Die Wetterkühler werden den Erfordernissen entsprechend in eine Luttentour des Streckenvortriebes eingesetzt.

Bei Verlagerung des Streckenvertriebs in größere Teufen wird ein Standortwechsel der Wasserkühlmaschine und der Kondensatoren notwendig. Dann muß die Wetternetzberechnung belegen, daß der erforderliche Wetterstrom zur Rückkühlung vorhanden ist.

Hierfür ist ein Betriebsplan einzureichen und durch das Bergamt genehmigen zu lassen.

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwerdung und Mittellung ihres inhalts nicht gestattet. soweit nicht ausdrücklich zugestenden. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

5.8

Qualitätssicherung (QS)

100

Es werden nur bauartgeprüfte und bergrechtlich zugelassene Komponenten verwendet.

Copying of this document, and gwing it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

6 Wettermeß- und Überwachungseinrichtungen

101

6.1 Aufgabenstellung

Wettermeß- und Überwachungseinrichtungen

Nach § 120 ABVO [6] sind zur Prüfung der Wetterversorgung in allen Hauptwetterstrecken und Wetterabteilungen Wettermeßstellen einzurichten. Die Haupteinzieh- und die Hauptausziehströme sowie die ein- und ausziehenden Ströme jeder Wetterabteilung sind in festgelegten Zeitabständen zu messen.

Zur Überwachung der Wetterströme im Endlager Konrad sind zusätzlich festinstallierte Meßgeräte vorzusehen.

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAA	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	01

Seite 88

6.2 Planungsgrundlagen

102

- Die Aktivitätsmessung ist nicht Bestandteil dieser Beschreibung.
- Die Volumenstrommessung am Abwetterkanal zur Aktivitätsbilanzierung ist Bestandteil dieser Beschreibung. Die Meßwerte werden dem Strahlenschutz zur Verfügung gestellt.

Die ermittelten Werte werden über Meßumformer und Fernübertragungseinrichtungen zur Zentralen Warte Konrad 1 übertragen, wo sie angezeigt und protokolliert werden [17].

01

Darüber hinaus bestehen Anzeigemöglichkeiten dieser Werte:

- . im örtlichen Leitstand Strahlenschutz Konrad 2 über Tage
- . im örtlichen Leitstand Einlagerungsfüllort 850-m-Sohle
- . im örtlichen Leitstand Strahlenschutz Stützpunkt 850-m-Sohle Werkstatt
- . im örtlichen Leitstand Füllort 1000-m-Sohle Schacht Konrad 1

וופונים חספי משרבוואפסטום יסומפוופוים

6.3 Auslegungsanforderungen

103

6.3.1 Wettermeßgeräte

Die Meßgeräte zur kontinuierlichen

- Messung der Wettergeschwindigkeit (w), z. B. das Flügelradanemometer,
- Temperatur- und Feuchtmessung (TT, RH), z. B. das Kombinationsgerät Vaisala,
- Überwachung der Luttenlüfter (DP), Differenzdruckmeßgeräte,
- CO-Messung aus der Abgasbelastung durch Dieselfahrzeuge und zur Brandfrüherkennung in Abwetterströmen,
 z. B. das Sifor 1

sind einzeln oder auch in Kombination mehrerer Meßgeräte in den Wettermeßstationen einzusetzen.

Die Wettermeßgeräte für Wettergeschwindigkeit, Differenzdruck- und CO-Messung sind mit Grenzwertschaltern auszurüsten. Bei Über- bzw. Unterschreitung einstellbarer Sollwerte müssen in der Zentralen Warte Konrad 1 sowie in den örtlichen Leitständen optische und akustische Meldungen ausgelöst werden. Die Meßwerte sollen ständig zur Verfügung stehen.

Die beispielhaft aufgeführten Wettermeßgeräte sind marktgängige Meßgeräte. Alle eingesetzten Meßgeräte müssen im Untertageeinsatz erprobt und bergbehördlich zugelassen sein.

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mittellung ihres inhalts nicht gesteffet, soweit nicht ausdrücklich zugestanden. Zuwiderhand-lungen verpflichten zu Schadenersatz. Alle Recht für den Fall der Patentlerung oder GM-Eintragung vorbehalten.

6.3.2 Sicherheitsrelevante Auslegungsanforderungen

104

Die Abwettermessungen im Abwetterkanal sind durch vergleichende Maßnahmen mit der Volumenstrommessung durch $\Delta \dot{p}$ an der Einlaufdüse des Hauptgrubenlüfters zu überwachen.

30195/06-88 - -

6.4 Beschreibung Wettermeß- und Überwachungseinrichtungen

105

6.4.1 Normalbetrieb

Wettermeßstellen

Die Wettermeßstellen, auch Wettermeßstationen genannt, zur kontinuierlichen Wetterüberwachung des Grubengebäudes werden

- . in den Hauptwetterströmen
- . im Abwetterkanal
- . am Hauptgrubenlüfter
- . in den Wetterabteilungen
- . an wesentlichen Sonderbewetterungsanlagen und
- . in den Abwetterwegen von Sonderräumen

eingerichtet und mit fest installierten Meßgeräten ausgerüstet, die folgende Werte kontinuierlich messen:

- . Wettergeschwindigkeit in m/s
- . Trockentemperatur in °C
- . relative Feuchte in %
- . Differenzdruck in Pa
- zusätzlich an einigen Meßstellen der CO-Wert in ppm.

Die Lage der Wettermeßstellen und die Art der Meßefühler sind im Wetternetzschaltplan (Anlage 3)

Blatt 92

106

Darüber hinaus werden Wetterstrommessungen gemäß Kap. 3.2 der Fahrzeugbetriebsrichtlinien durchgeführt.

- Wetterüberwachung Hauptwetterströme

Die Überwachung der Hauptwetterströme erfolgt einziehseitig mit Meßstationen in der Nähe von Schacht Konrad 1, auf der 1000-, 1100-,
1200- und der 1300-m-Sohle und ausziehseitig mit Meßstationen in der
Nähe von Schacht Konrad 2 auf der 1000-, 850- und der 800-m-Sohle sowie im Abwetterkanal über Tage. Es werden die Wettergeschwindigkeit,
Trockentemperatur und relative Feuchte sowie zusätzlich in den Abwetterströmen die CO-Konzentrationen gemessen. Einzelheiten werden gemäß
§ 120 ABVO geregelt.

Für die Aktivitätsüberwachung wird aus dem Abwetterkanal über einen Probenahmerechen kontinuierlich Luft entnommen und den Sammelgeräten zugeführt.

- Wetterüberwachung Hauptgrubenlüfter

Zur Überwachung des Betriebszustandes wird der Hauptgrubenlüfter u. a. mit einem Differenzdruckmeßgerät ausgerüstet.

- Wetterüberwachung Abwetterkanal

Zusätzlich zur Überwachung am Hauptgrubenlüfter erfolgt die kontinuierliche Erfassung des Abwetterstromes im Abwetterkanal. In einem definierten Wetterquerschnitt werden ständig die Wettergeschwindigkeit, die Trockentemperatur und die relative Feuchte ermittelt, leittechnisch erfaßt, ausgewertet und dem Strahlenschutz zur Verfügung gestellt.

04

Projekt	FSP-Element	Col.Kenn	=unktion	Komp.	Baugr.	Aulgabe	JA	CO.Nr	Rev.	un	
NAAN	инининини	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	N N	ab	DBE
9K	5321		TS			GV	LA	0005	03	•	

Bewetterung Seite 9:

- Wetterüberwachung Wetterabteilungen

107

In den Wetterabteilungen der Auffahr- und Einlagerungsbereiche sowie in Sonderräumen (z. B. Werkstätten und Tanklager), die eigene Wetterabteilungen
bilden, werden die zu- und abgeführten Wetterströme
auf Wettergeschwindigkeit, Trockentemperatur und
relative Feuchte sowie die Abwetterströme auf COKonzentration zusätzlich überwacht.

Wettermeßdaten

Mit den in den Wettermeßstellen/Wettermeßstationen installierten Meßgeräten ist eine kontinuierliche Überwachung der Wetterführung im Grubengebäude gewährleistet, und mit den Differenzdruckmeßgeräten ist an wesentlichen Luttenlüftern die Überwachung des Betriebszustandes gegeben.

Die gemessenen Werte der Wettergeschwindigkeit dienen zur Ermittlung des Volumenstromes in den Wetterwegen. Zu diesem Zweck werden die Wettermeßstellen im Streckennetz auf ca. 10 m Länge glattwandig hergerichtet und für jede Wettermeßstelle der Querschnitt bestimmt. Mit dem für jede Meßstelle zu ermittelnden Umrechnungsfaktor läßt sich die Wettermenge bestimmen.

Mit den Meßdaten

Wettergeschwindigkeit,	m/s		
Trockentemperatur,	°C		
relative Feuchte,	8		

03

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.	Г
NAAN	инининини	NNNNNN	NNAAANN	AANNNA	AANN		0000	NNNN	NN	1
9K	5321		TS			GV	LA	0005	07	

Bewetterung

108

Blatt 94

erfolgt die Klimaüberwachung der Hauptwetterwege sowie die Überwachung der Wasserdampfzunahme und des Wasseraustrages mit den Abwettern. Dazu muß der barometrische Druck der Wetterstation über Tage für die jeweilige Meßstelle unter Tage umgerechnet werden.

Die CO-Meßeinrichtungen, die schwerpunktmäßig in den Abwetterströmen eingesetzt sind, dienen der Brandfrüherkennung (siehe "Brandschutz unter Tage II" [13]) und der örtlichen Überwachung von Schadstoffkonzentrationen.

Die Differenzdruckmeßgeräte, die an den Luttenlüftern der Sonderbewetterungsanlagen installiert sind, dienen der Überwachung des Betriebszustandes des Luttenlüfters von der Zentralen Warte Konrad 1 aus.

Darüber hinaus werden bei Bedarf an den Meßwertgeber örtliche Signaleinrichtungen angeschlossen.

Handmessungen

Handmessungen sind für die arbeitsplatzbezogenen Wettermessungen nach ABVO und der KlimaBergV und zur Überprüfung der fest installierten Meßgeräte erforderlich sowie für Wettermessungen in Wetterabteilungen, in denen keine Wettermeßstationen installiert sind, wie z. B. in Sonderräumen. Die Wettermessungen werden in festgelegten Zeitabständen vom Wettersteiger durchgeführt.

Es werden gemessen:

Trockentemperatur	°C
Feuchtetemperatur	°C
Wettergeschwindigkeit/Volumenstrom und	m/s
CO-Gehalt	%
C1 - 1.1 - 1 - 1 - 7 - 1 - 1 - 1 - 1 - 1 - 1	

. Staubbelastung (nach den "Hinweisen zur Aufstellung von Plänen gem. § 10 Abs. 4 GesBergV" des Bergamtes)

07

03

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev
NAAA	инининини	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	01

Bewetterung

105

Seite 95

Die Werte werden in das von der Bergbehörde geforderte Wetterbuch eingetragen.

Die Trocken- und Feuchttemperatur sowie die Wettergeschwindigkeit sind die Ausgangsdaten zur Bestimmung der Effektivtemperatur (Klimawert).

6.4.2 Anomaler Betrieb

- Bei Ausfall einer Meßstelle ist eine Meßwerterfassung durch Handmessungen möglich. Erforderliche Regelungen werden im Zechenbuch/Betriebshandbuch festgelegt.
- Bei Ausfall der Wettermengenmessung im Abwetterkanal wird über die p-Messung an der Einströmdüse des Hauptgrubenlüfters der Volumenstrom berechnet und das Ergebnis dem Strahlenschutz zur Verfügung gestellt.

6.4.3 Leittechnik

- Zentrale Meßwertüberwachung

Die zentrale Meßwertüberwachung der Wetterdaten des Grubengebäudes erfolgt in der Zentralen Warte auf Schacht Konrad 1.

Alle in den Wettermeßstellen kontinuierlich erfaßten Meßwerte werden über das Zentrale Leitsystem zur Zentralen Warte Konrad 1 übertragen, wo sie angezeigt, ausgewertet und protokolliert werden. Bei Ansprechen von festgelegten Grenzwerten erfolgt eine optische und akustische Meldung in der Zentralen Warte Konrad 1 und in den örtlichen Leitständen.

Die Wetterdaten werden über ein Bus-System und auf Bildschirmen in folgenden Bereichen

PTB NAAN NNNNNNNNNN NNNNNN XAAXX ΑА NNAAANN AANNNA AANN 9K GV LA 5321 TS Stand: 21.04.89 Bewetterung Zentrale Warte Konrad l 1000-m-Sohle Füllort Konrad 1 850-m-Sohle Füllort Konrad 2 850-m-Sohle Strahlenschutzstützpunkt Werkstatt

Obj.Kenn.

Funktion

Projekt

SP-Element

über Tage Leitstand-Strahlenschutz Konrad 2

Es werden Meßwerte, Grenzwerte und Störungsmeldungen angezeigt und protokolliert.

Aufgabe

Baugruppe

Komponente

UA

Lfd.Nr

NNNN

NN

000500

110

DBE

Seite 96

Die CO-Werte werden zusätzlich in der Zentralen Warte Konrad l auf einem Leuchtschaltbild angezeigt.

ment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design

30195/06-88

Bewetterung

Stand: 21.04.89

Seite 97

DBE

6.5 Komponentenbeschreibung

111

Die Meßgeräte zur Messung

- der Trockentemperatur, z. B. Testotherm,
- der Feuchttemperatur, z. B. mit dem Assmannschen Aspirationspsychrometer,
- der Wettergeschwindigkeit, z. B. mit dem Flügelradanemometer,
- des CO-Gehaltes im Abgas der Dieselfahrzeuge, z. B. mit dem Gasspürgerät,

sind auf der Grube vorhanden, langjährig im Einsatz und haben sich im Untertagebetrieb bewährt.

Zusätzlich werden in regelmäßigen Zeitabständen arbeitsplatzbezogene Feinststaubmessungen durchgeführt. Hierzu eignet sich z. B. das Staubmeß-Probenahmegerät MPG II.

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung ihres Inhaits nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwiderhandiungen verpilichten zu Schadenersatz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

6.6 Inbetriebnahme

112

Die Inbetriebnahme erstreckt sich auf die Kalibrierung der festinstallierten Geräte.

30195/06-88 -

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are listable to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

Projekt. SP-Element Obj Kenn Funktion Komponente Baugruppe Aufgabe Lfd.Nr PTB DBE NAAN имимимими NNNNNN NNAAANN AANNNA AANN XAAXX AA NNNN NN 9K TS GV LA 000500 5321 Stand: 21.04.89 Bewetterung Seite 99

6.7 Betriebsbeschreibung

113

6.7.1 Betrieb

Die Verarbeitung und Protokollierung der Meßwerte erfolgt gemäß ABVO im Wetterbuch.

6.7.2 Änderungen im Grubengebäude

Die in Anlage 13 dargestellten Meßpunkte beziehen sich auf den Beginn der Einlagerung

- Einlagerung im Feld 5/1
- Auffahrung im Feld 5/2.

Werden nach entsprechendem Einlagerungsfortschritt neue Einlagerungsfelder in Betrieb genommen, so sind nach den gleichen Bedingungen und Anforderungen der Wetternetzüberwachung neue Meßstellen einzurichten.

Dies ist durch einen neuen Wetternetzschaltplan entsprechend Anlage 13 zu belegen und von der Aufsichtsbehörde genehmigen zu lassen.

pying of this document, and giving it to others and the sor communication of the contents thereof, are forbidden hout express authority. Offenders are liable to the paying damages, All rights are reserved in the event of the rit of an appent or the registration of a utility model or design.

30195/06-88

Weltergabe sowie Vervieifälligung dieser Unterlage, Verwertung und Mittellung ihres inhalts nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwiderhandlungen verpilichten zu Schadenersatz. Alle Rechte für den Fall der Patentierung oder GM-Eintragung vorbehalten.

6.8 Qualitätssicherung (QS)

114

Es sind marktgängige, im Untertagebetrieb erprobte und bergbehördlich zugelassene Meßgeräte zu verwenden.

30195/06-88

Copying of this document, and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Otherders are flatible to the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design.

Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	06

Bewetterung

Blatt 101

0

db dbe

115

7. Literatur

- [1] Planfeststellungsverfahren Konrad, Stellungnahme des BfS (Radiologischer Teil) zu Fragen des TÜV laut Schreiben vom 30.03.87 ("Auslegungsanforderungen"); ET-IB-43 BfS-Dok.-Nr. LA/RB/0002 EU 283
- [2] Entfällt
- [3] Sicherheitskriterien für die Endlagerung radioaktiver Abfälle in einem Bergwerk, vom 20.04.83 GMBL 1983, Nr. 13
- [4] Richtlinien für den Betrieb von Fahrzeugen und zugehörigen Einrichtungen in nicht durch Grubengas gefährdeten Grubenbauen (Fahrzeugbetriebsrichtlinien)

 Vierte Auflage vom 12.08.81

 Oberbergamt in Clausthal-Zellerfeld

 10.2 03/81-B III a 5.1.2
- [5] Überwachung des Wetterstromes und der darin enthaltenen Gefahrstoffe beim Betrieb von Dieselmotoren unter Tage
 Oberbergamt in Clausthal-Zellerfeld
 Rundverfügung 10.2 6/85 III B III a 5.1.2
- [6] Allgemeine Bergverordnung über Untertagebetriebe, Tagebaue und Salinen im Oberbergamtsbezirk Clausthal-Zellerfeld (ABVO), vom 02.02.66 (Nds. MBl. Nr. 15/1966, S. 337), in der zuletzt geänderten 66 Fassung von 07/91 (Nds. MBl. Nr. 29/1986, S. 755) sowie der Markscheider-Bergverordnung MarkschBergV vom 19. Dezember 1986 (BGBl. I Nr. 69/1986, S. 2361) und der Gesundheitsschutz-Bergverordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 (BGBl. I Nr. 49/1991 ordnung GesBergV vom 31. Juli 1991 ordnung -

 Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Lfd.Nr.	Rev.
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN
9K	5321		TS			GV	LA	0005	06

DBE DBE

Bewetterung

16 Blatt 102

[7] Bergverordnung zum Schutz der Gesundheit gegen Klimaeinwirkungen (Klima-Bergverordnung/KlimaBergV) vom 09.06.83 (BGBl. I S. 685) Merkblatt des Bundesministers für Wirtschaft zum Untersuchungsbogen und zur ärztlichen Bescheinigung nach den Anlagen 2 und 3 der Klima-Bergverordnung vom 09.06.83 (BGBl. I S. 685) vom 12.01.84 (BAnz. S. 617)

Rundverfügung des Oberbergamtes in Clausthal-Zellerfeld zu den Verwaltungsvorschriften zur Klima-Bergverordnung für Betriebe des Salzbergbaues und außerhalb des Salzbergbaues mit Vordrucken für Aufzeichnungen nach § 13 Abs. 1 KlimaBergV vom 10.09.85

- [8] Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung - StrlSchV) vom 13. Oktober 1976 (BGB1. I S. 2905), in der Neufassung vom 30. Juni 1989 (BGB1. I S. 1321) unter Berücksichtigung der Berichtigungen vom 16. Oktober 1989 (BGB1. I S. 1262), zuletzt geändert durch 3. Strahlenschutz-Änderungsverordnung vom 30. Juli 1993, zuletzt geändert im Med PG vom 02.08.94
- [9] Planung Grubengebäude BfS-Dok.-Nr. G/BZ/0006 EU 279

[10] Entfällt

04

MAAN MANAMANAN ROMANA MASASAN SAMANAS ASAMA ASAAA AA MAAN MA	Projekt	PSP-Element	Obj.Kenn.	Funktion	Komp.	Baugr.	Aufgabe	UA	Ltd.Nr.	Rev.	allb	
9K 5321 TS GV LA 0005 06	NAAN	имимимими	ииииии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN		DRE
30 30 30 30 30	9K	5321		TS			GV	LA	0005	06	•	

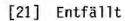
[11] Entfällt

117

[12] Entfällt 104

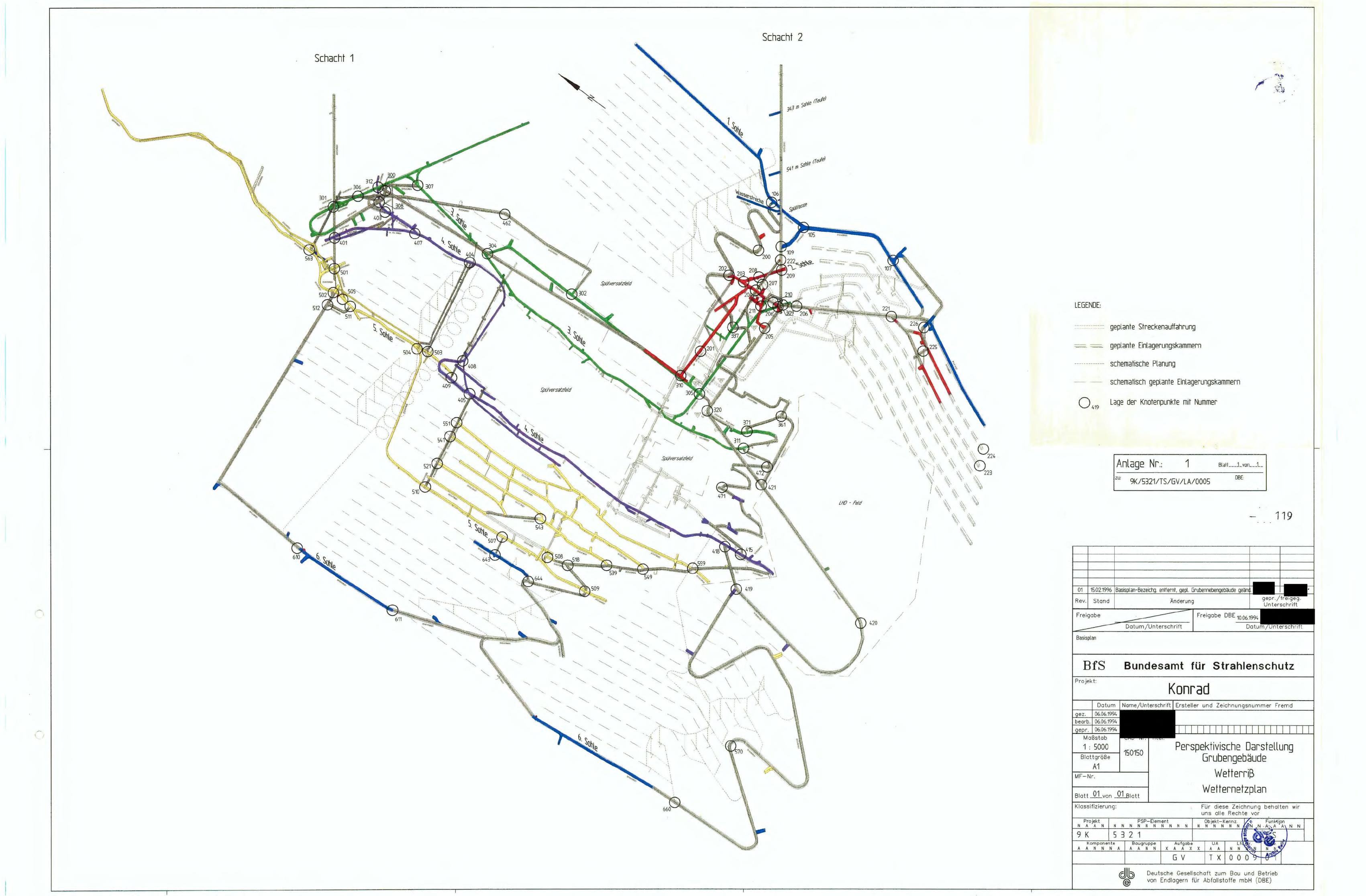
Brandschutz unter Tage II [13] BfS-Dok.-Nr. ND/TU/0001 EU 250

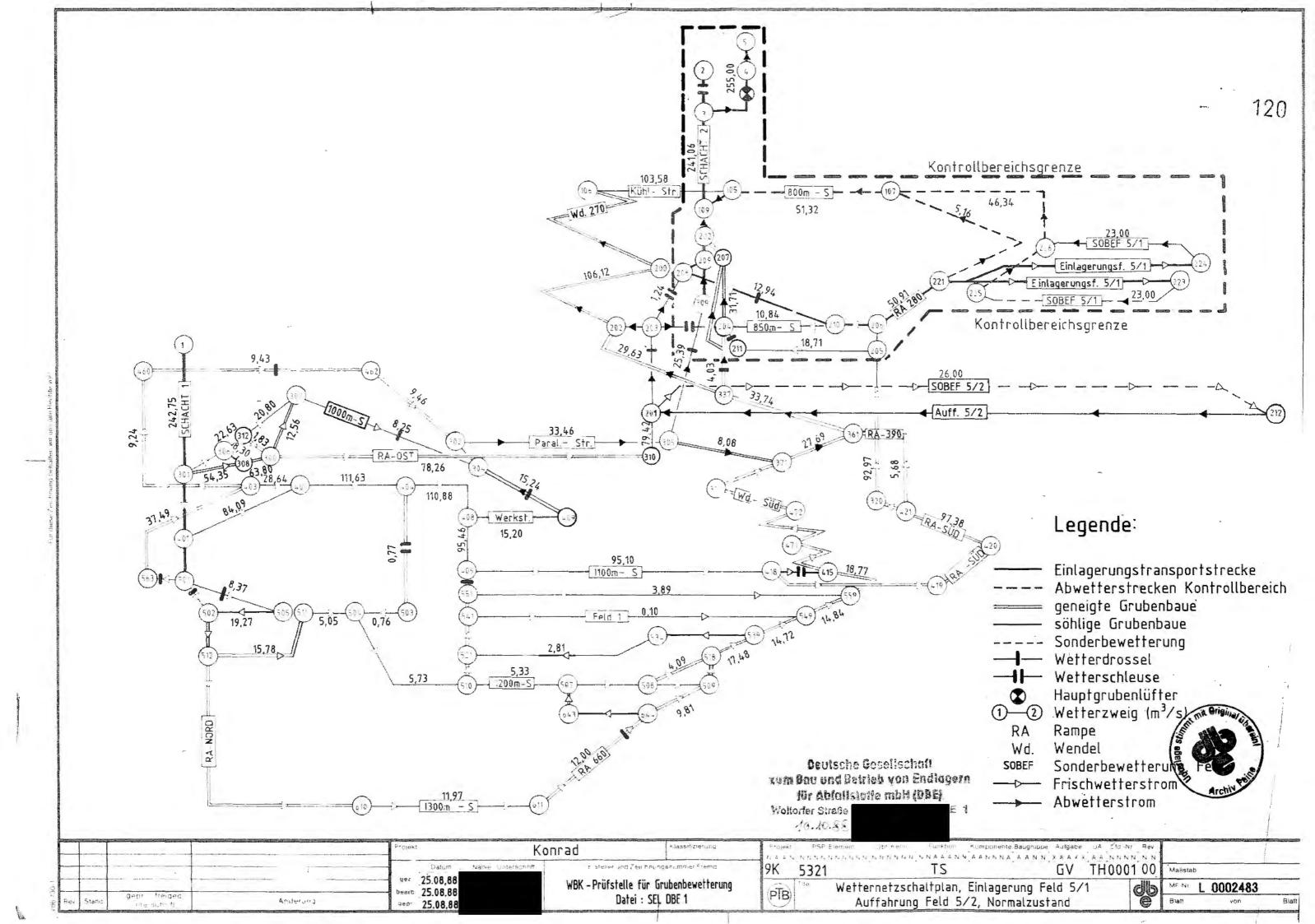
[14] TA Lärm

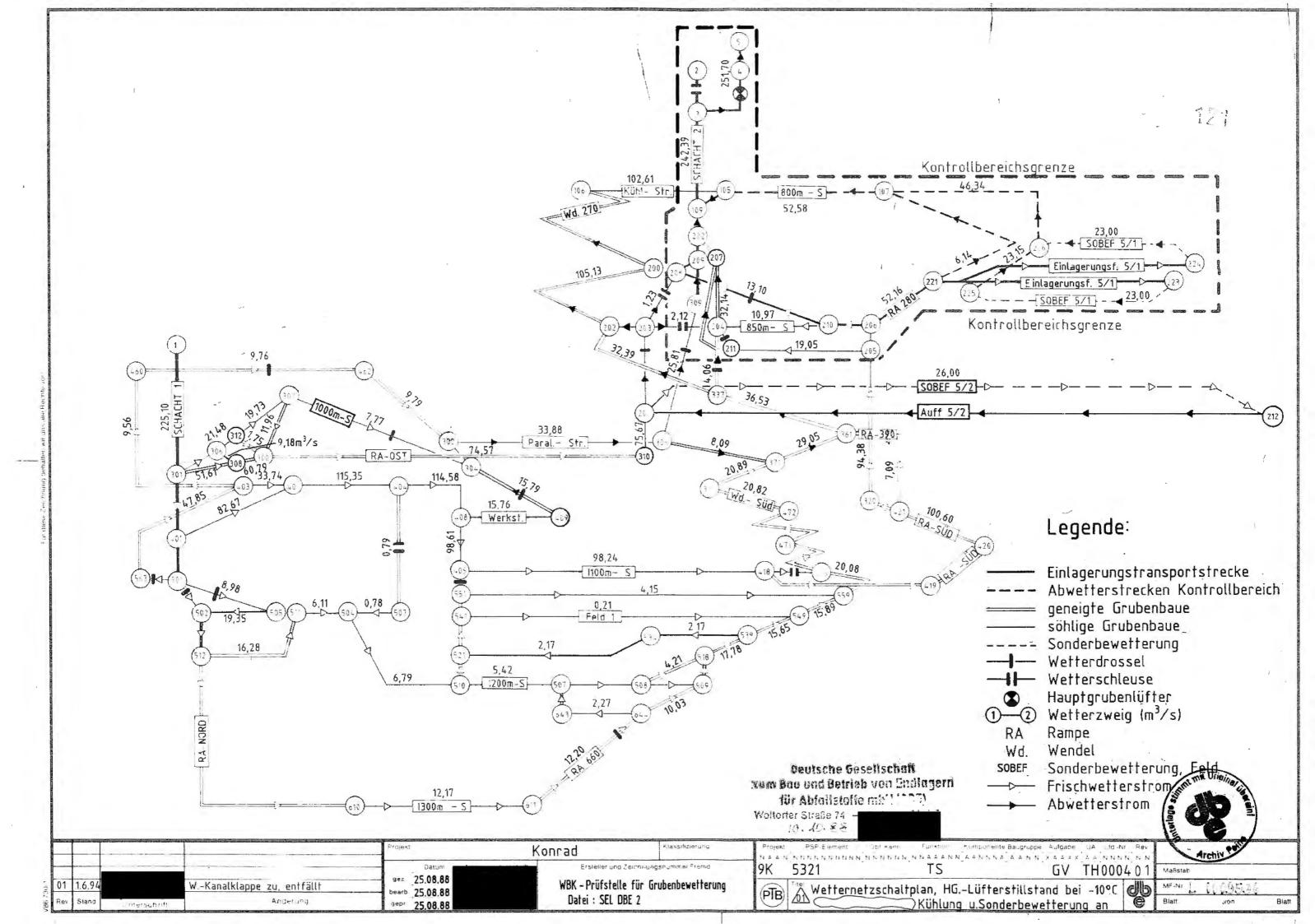

Allgemeine Verwaltungsvorschrift über genehmigungsbedürftige Anlagen nach § 16 der Gewerbeordnung - GewO Technische Anleitung zum Schutz gegen Lärm (TA Lärm) vom 16.07.68

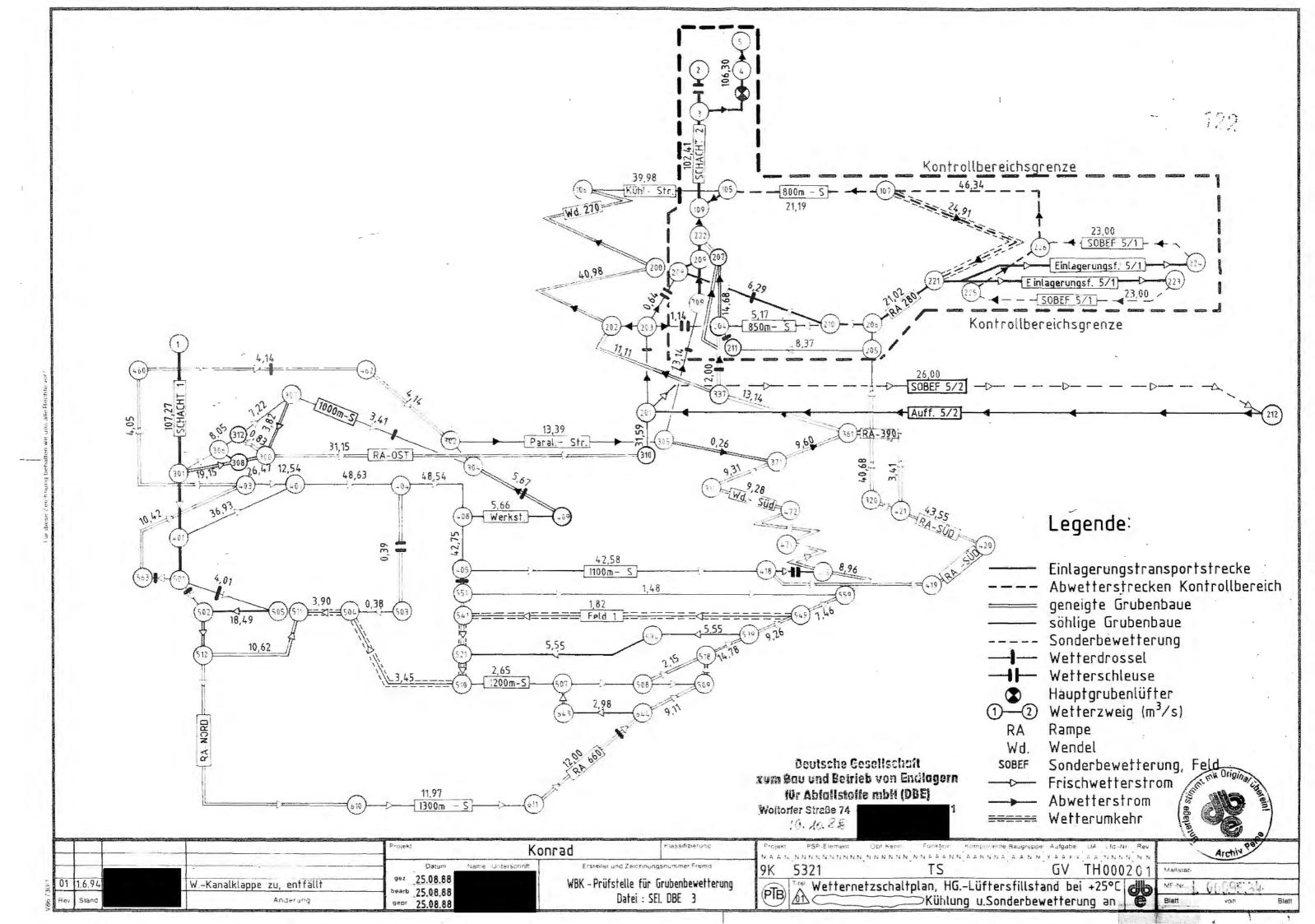
[15] Entfällt

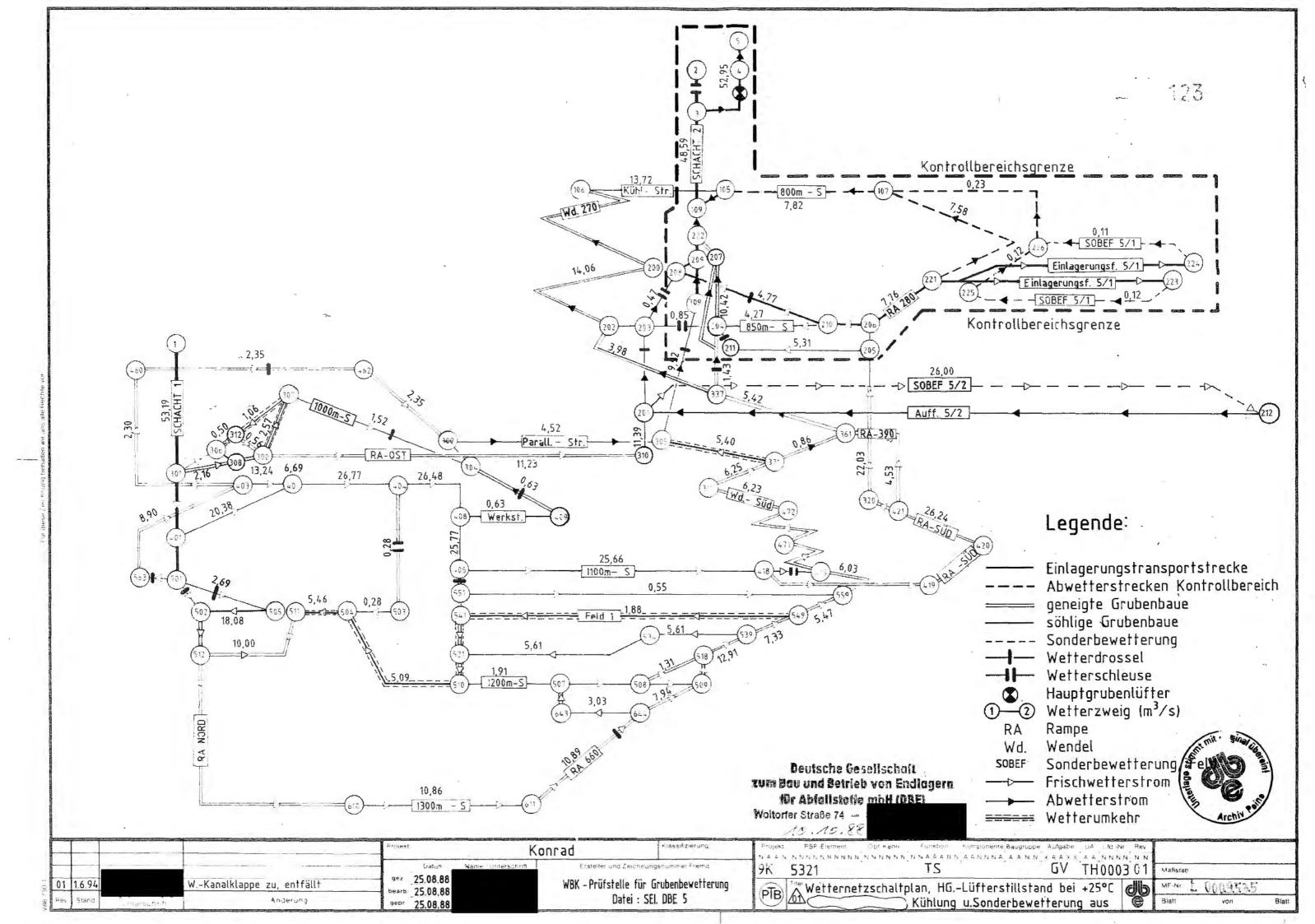
[16] Entfällt

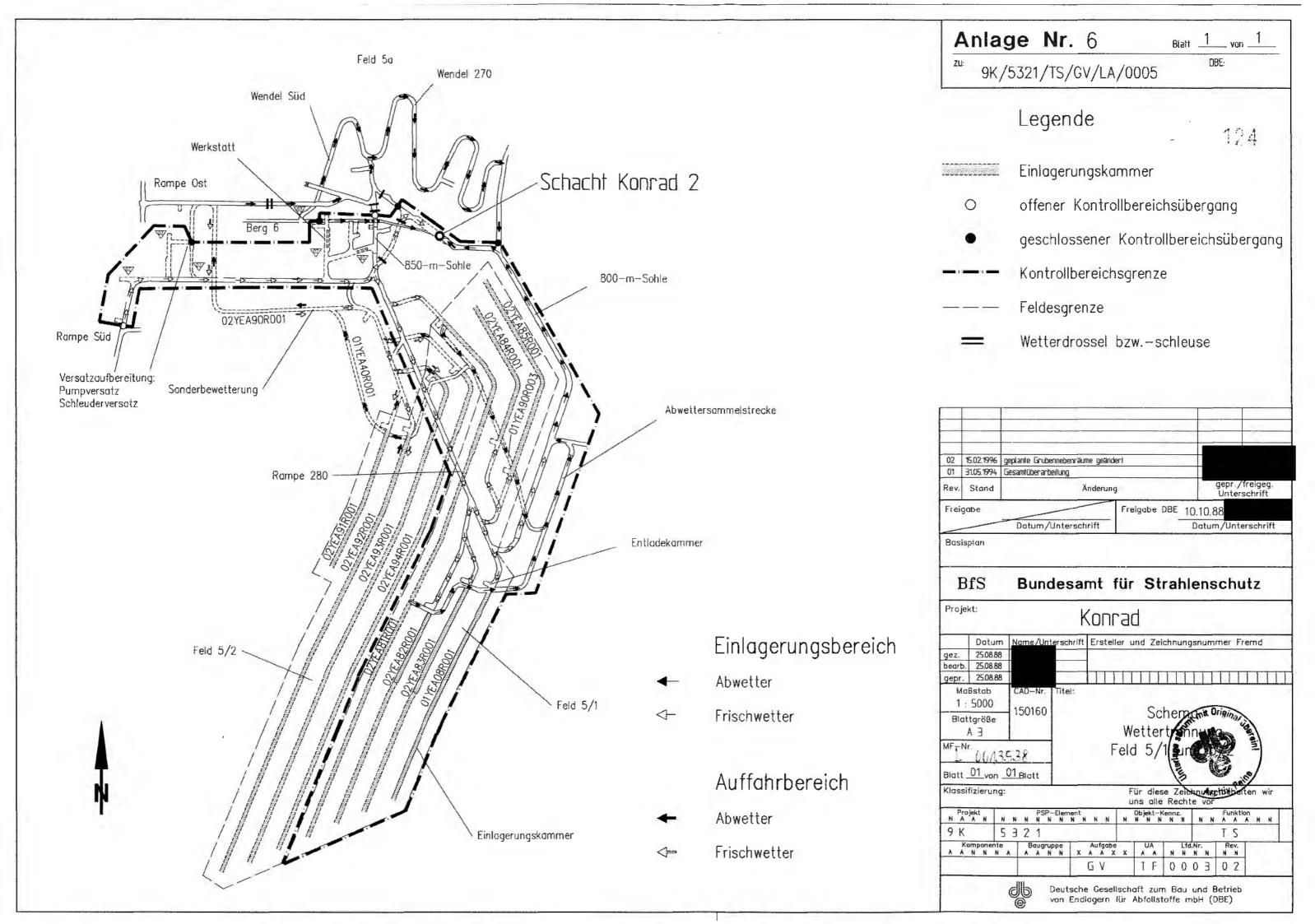


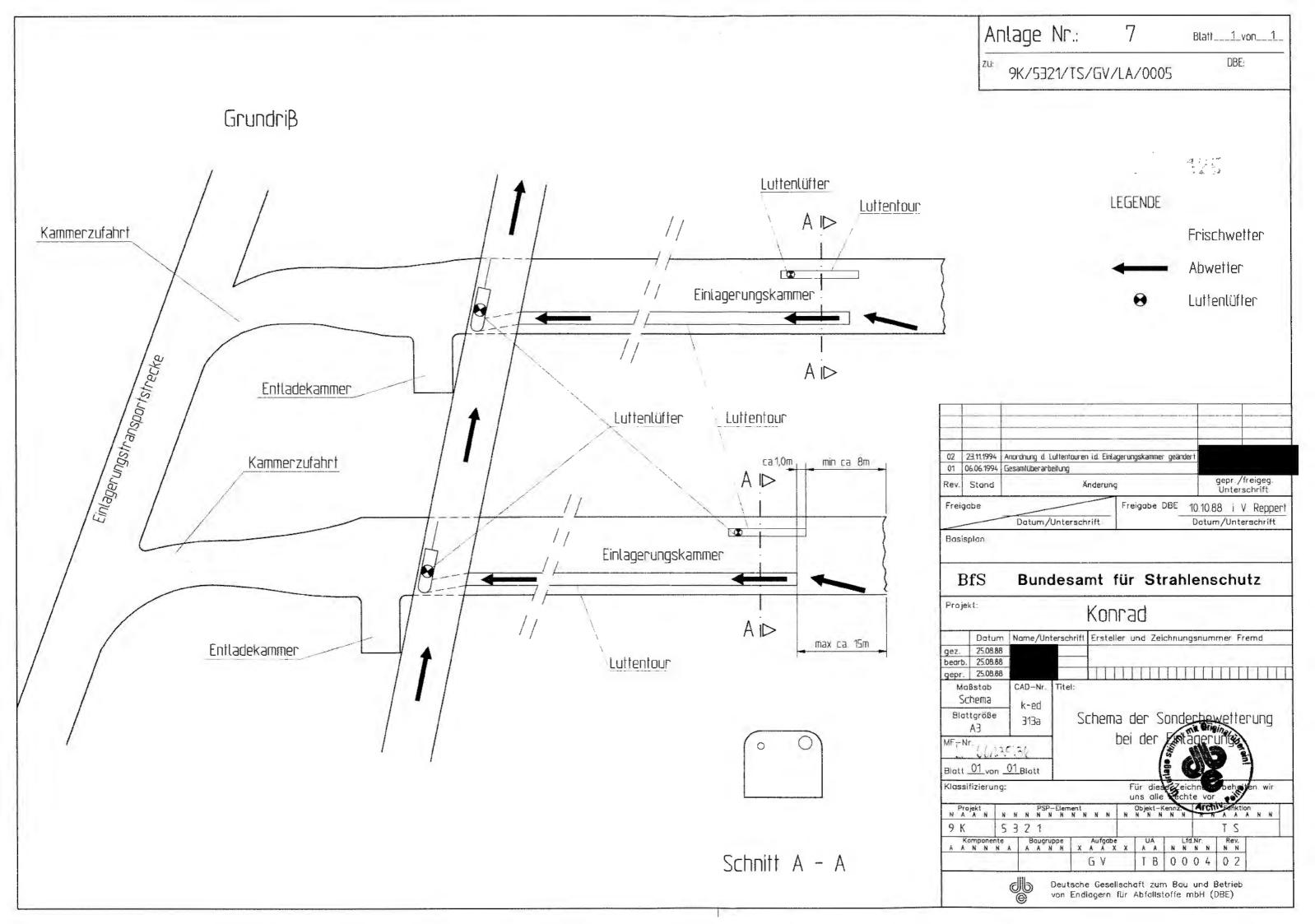

	Projekt NAAN	PSP-Element	Obj.Kenn.	Funktion NNAAANN	Komp.	Baugr.	Aufgabe X A A X X	UA A A	Lfd.Nr.	Rev.	dilla	DBE
		5321	NANANA	TS	AAAMAA	AANN	GV	-		-	•	DRE
ewetterung		,									Blatt	104
[17]	Sys	tembeschrei	bung					11	8		1	
	-	ttechnische		htungen							03.	
	BfS	-DokNr. KI	B/RB/00	09							0	4
	EU	400										106
[18]	Dur	chführungsa	nweisun	gen zur	UVV-Käl	teanl	agen,	VBG	20			
		nd 01.01.93									03	7
[19]	Sys	tembeschrei	bung									1
	"Üb gun	ergeordnete g"	Energi	eversorg	ung ein	sch1i	eßlich	Er	satzs	tro	mverso	r- 03
	BfS	-DokNr. K	A/RB/00	01							04	1 6
	EU	271										1
[20]	Sys	tembeschrei	bung									
	"Na	chrichtente	chnisch	e Einric	htungen	n					03	
	BfS	-DokNr. K	C/RB/00	01							04	06
	EU	270									l .	í

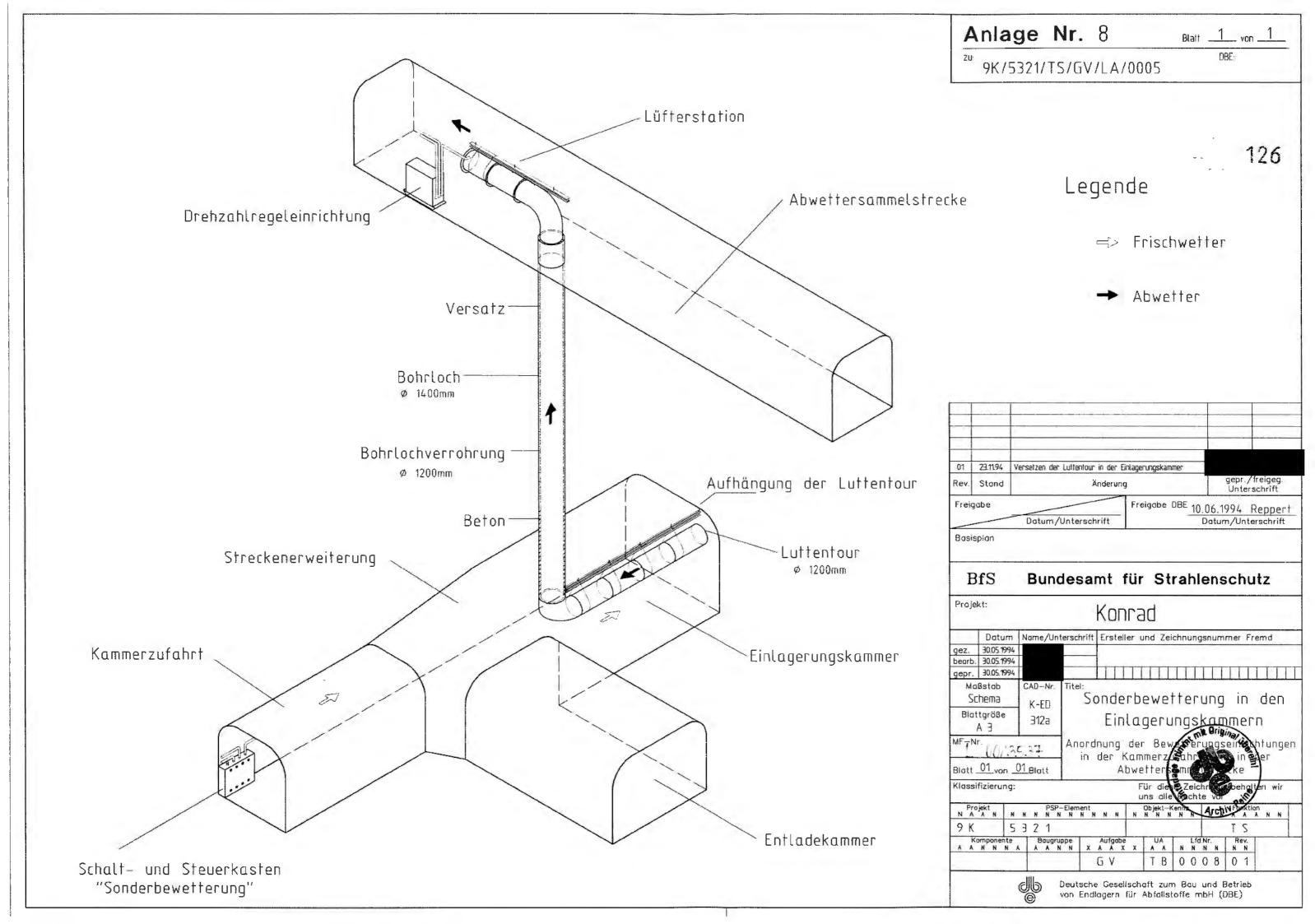


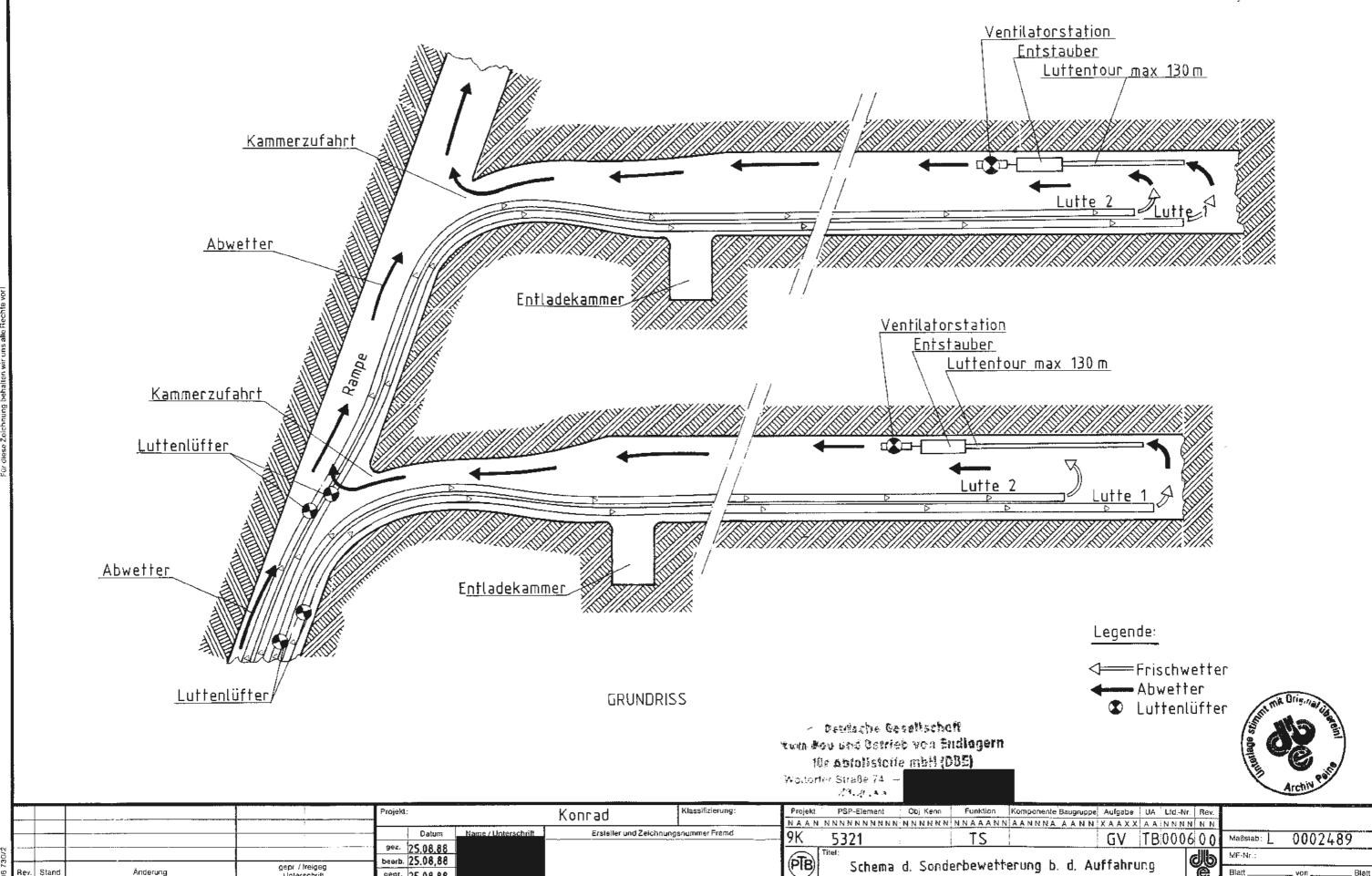

[22] Verordnung zum Verbot von bestimmten, die Ozonschicht abbauenden Halogenkohlenwasserstoffen (FCKW-Halon-Verbots-Verordnung) Bundesgesetzblatt, Jahrgang 1991, Nr. 30, Teil 1 vom 06.05.91

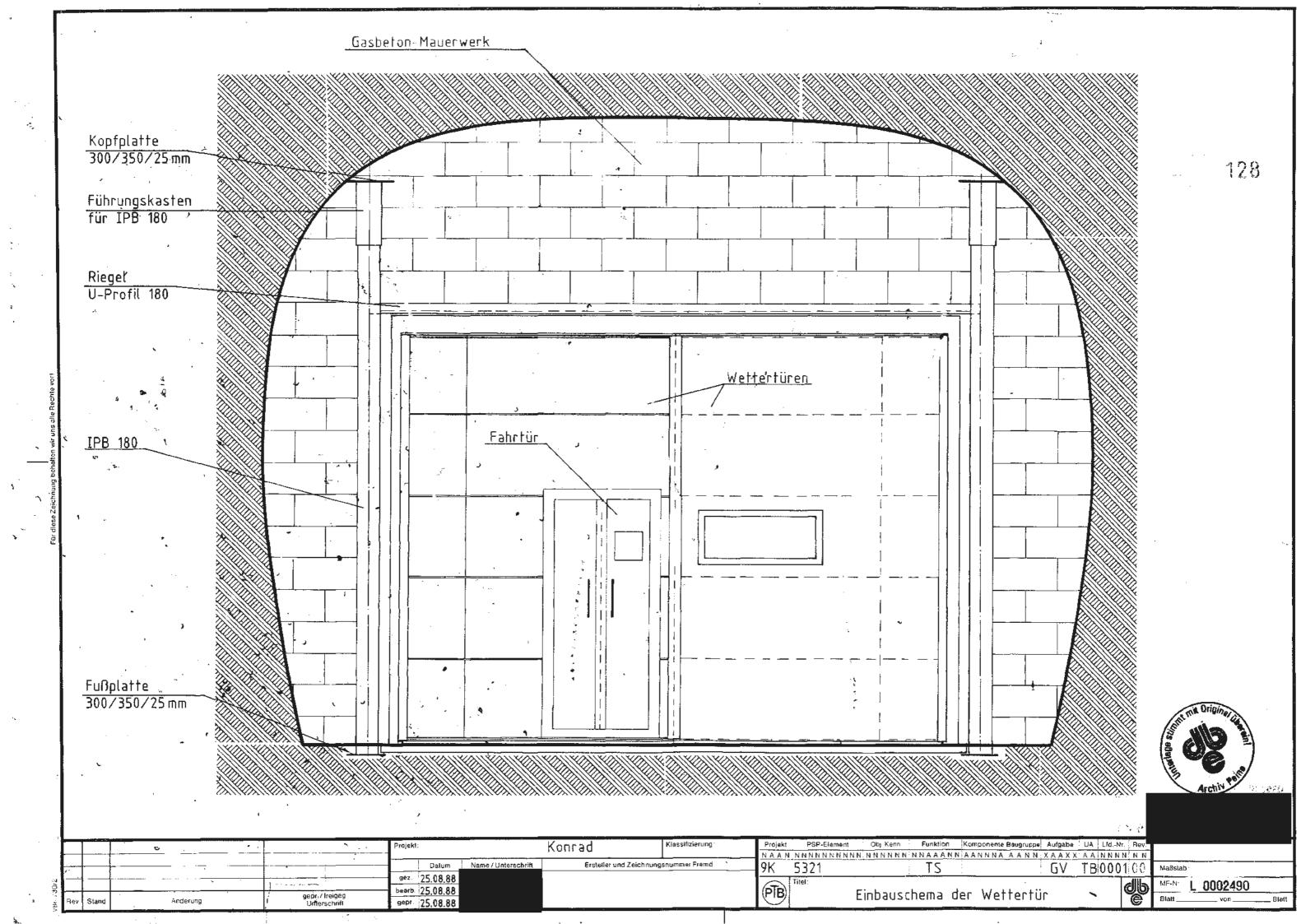


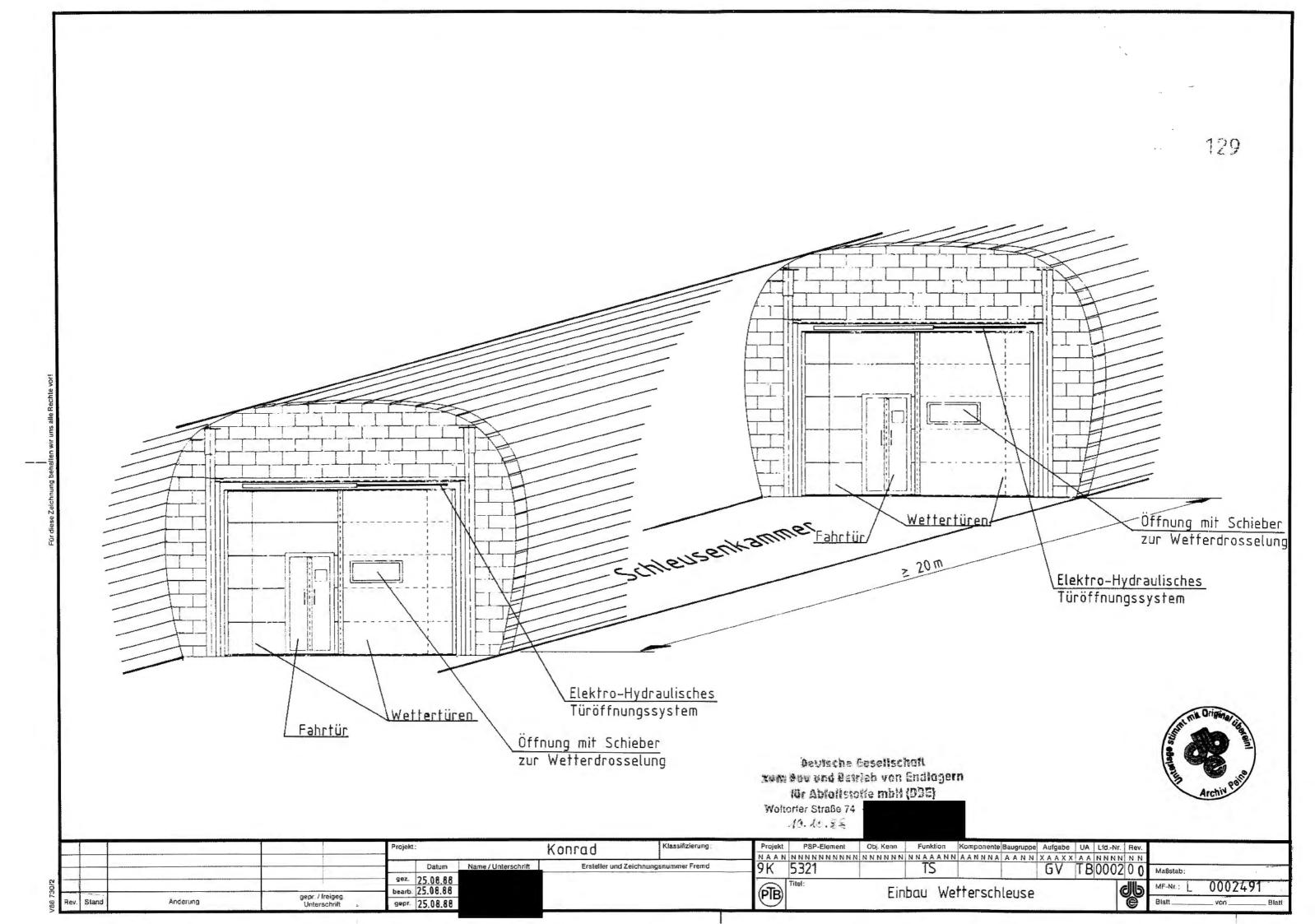


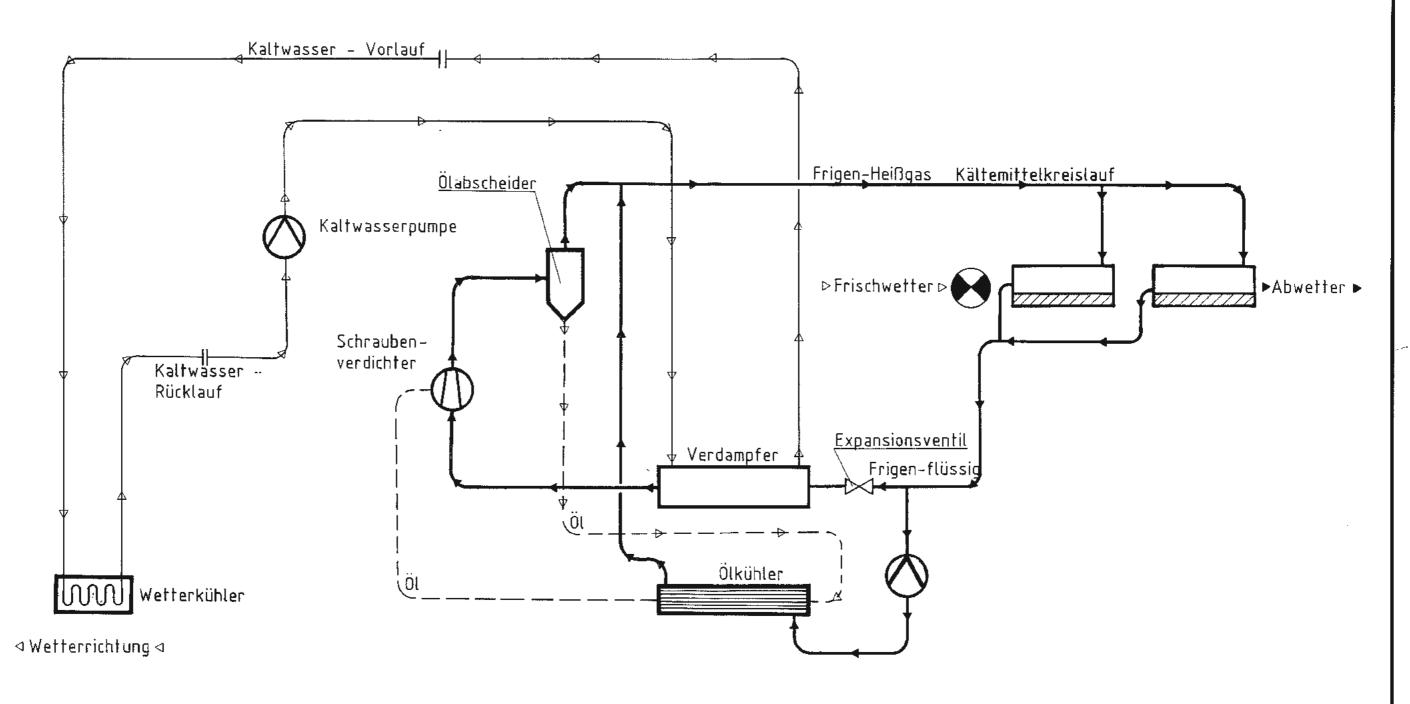


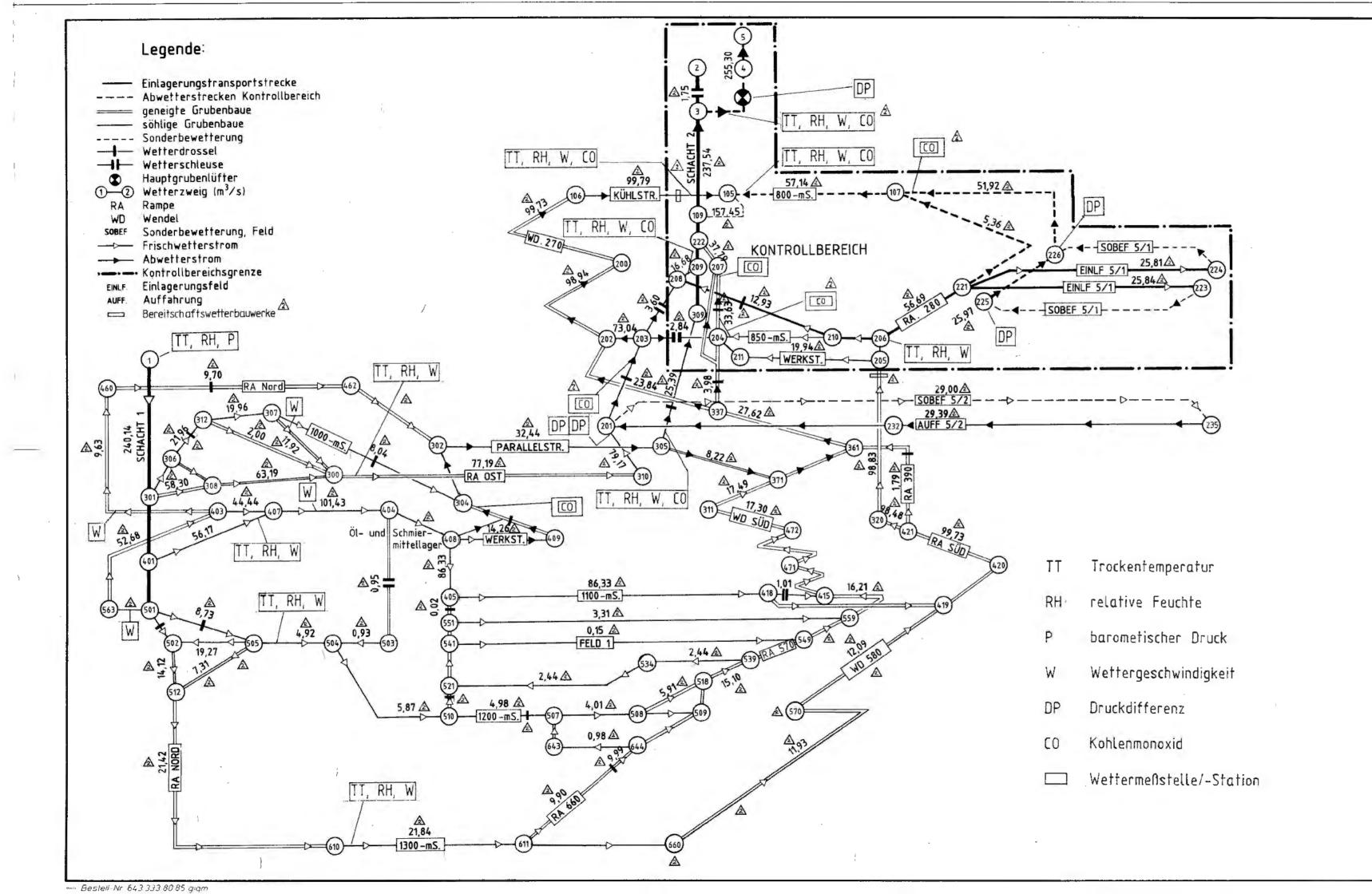












Deutsche Gesellschoft rom dan und Serieb von Endingern für Abfallstoffe mitH (DBS)


Woltorier Straße 74 10. AC.€€

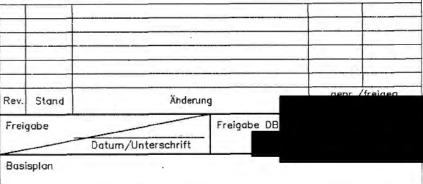
t me Original	
Sent Driginary	ETBIN!
Archiv	

г			!	Projek	d:	K	onrad	Klassifizierung;	Projekt	PSP-Element	Obj. Kenn. Funktion	Котролег	nte Baugruppe Aufgabe	UA LidNr. Rev.		· ·	
- 1	 		:	T			1		NAAN	NNNNNNNNN	NNNNNN NNAAA	NN AANNN	A A A N N X A A X	X A A NNNN N N			
-				· L	Datum	Name / Unterschrift	Ersteller und Zei	chnungsnummer Fremd	—9K	5321	! TS		GV	ISDN0011001	Maßstab:		
2 -			:	gez.	25.08.88					·- • • · · · · · · · · · · · · · · · · ·	1 1 2	·	1 1 1 1	-IIII-	MF-Nr :	0000400	
8			16:22	bearb	25.08.88				PIB	Drin	zipschaltbild d	or Wat	torkühlung		WIF-NIT;	L 0002492	
99	Rev. Stand	Ánderung	gepr. / freigeg Unterschrift		25,08.88					3 1 111	izipsciiati bitu i	161 1161	i ei voiltailă		Blatt	von	Blat
~ L					22,00.00	·											

Anlage Nr.:	13	Blatt <u>01</u> von <u>01</u>
ZU:		DBE:
9K/5321/TS/GV/L	A/0005	


Bundesamt für Strahlenschutz

Konrad terschrift Ersteller und Zeichnungsnummer Fremd Maßstab Schema Blottgröße 297 x 630 MFTNr. Beginn der Einlag Blott 01 von 01 Blott


Für diese Zeichnung behalten wir uns alle Rechte vor Projekt PSP-Element Objekt-Kennz. Funktion 5 3 2 1 GV TH 0005 02 Deutsche Gesellschaft zum Bau und Betrieb

von Endlagern für Abfallstoffe mbH (DBE)

Anlage Nr.: Blatt_1_von_1_ DBE: 9K/5321/TS/GV/LA/0005

BfS Bundesamt für Strahlenschutz

Projekt: Konrad Name/Unterschrift Ersteller und Zeichnungsnummer Fremd gez. 02.06.1994 bearb. 02.06.1994 gepr. 03.06.1994 Maßstab Schema Blattgröße Musterkennfeld Hauptgrubenlüft MF_Nr. 00/3539 Blatt 01 von 01 Blatt Klassifizierung: Für diese Zeich uns alle Rechte Objekt-Kennz. PSP-Element 5 3 2 1 9 K

TG 0002 00 GV

Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE)

Anlage 15
Mittlere Streckenquerschnitte zwischen den Knotenpunkten und Längen

Wetterzweig (Knotenpunkte)	Streckenquerschnitt n ²	Länge zwischen der Knotenpunkten
- Indone parties of	-	1
105 - 106	28	140
105 - 109	28	90
107 - 105	28	240
107 - 226	20	380
201 - 203	28	210
202 - 203	28	70
202 - 106	28	690
203 - 204	28	30
203 - 208	28	70
204 - 210	28	65
205 - 206	28	290
206 - 221	28	400
207 - 222	10	90
208 - 209	70	60
210 - 206	28	25
210 - 208	28	90
221 - 107	28	300
300 - 201	30	1380
301 - 300	28	420
301 - 306	14	90
302 - 305	28	570
304 - 302	20	190
305 - 371	28	240
306 - 312	20	150
307 - 300	28	130 /
307 - 304	14	130 310 200
311 - 371	25	200

15 7827

Promis	PSP-Element	Ots Kenn.	Funktion	Котролегие	Baugnope:	Autgabe	· UA : LIE HY. , RE
NAAM	-		-		AAHHI	XAAXX	AA.HHNNIN
9K	5321		TS			GV	MA 0001

Anlage 15

Wetterzweig	Streckenquerschnitt	Länge zwischen den
(Knotenpunkte)	m²	Knotenpunkten
		<u> </u>
312 - 307	25	240
312 - 300	25	310
320 - 305	28	310
337 - 202	28	270
337 - 207	10	150
361 - 337	25	650
371 - 361	25	120
401 - 407	18	300
403 - 407	25	170
403 - 460	28	500
404 - 408	25	120
405 - 418	25	1010
407 - 404	25	200
408 - 405	25	120
408 - 409	30	130
409 - 304	12	310
415 - 311	25	870
418 - 415	25	60
418 - 419	28	170
419 - 420	28	550
420 - 320	28	920
421 - 361	28	290
460 - 462	28	320
462 - 302	28	110
501 - 505	8	100
501 - 563	20	130

Projekt	PSP-Element	Obs. Kenn	Funktion	Komponente	Baugrupper	Aulgabe -	UA	LIG. Hr.	Acr
NAAN	-	****	MAAANN		AANN	XXXX	AA	NNNN	N N
9K	5321	. j	. TS			GV	MA	0001	

Anlage 15

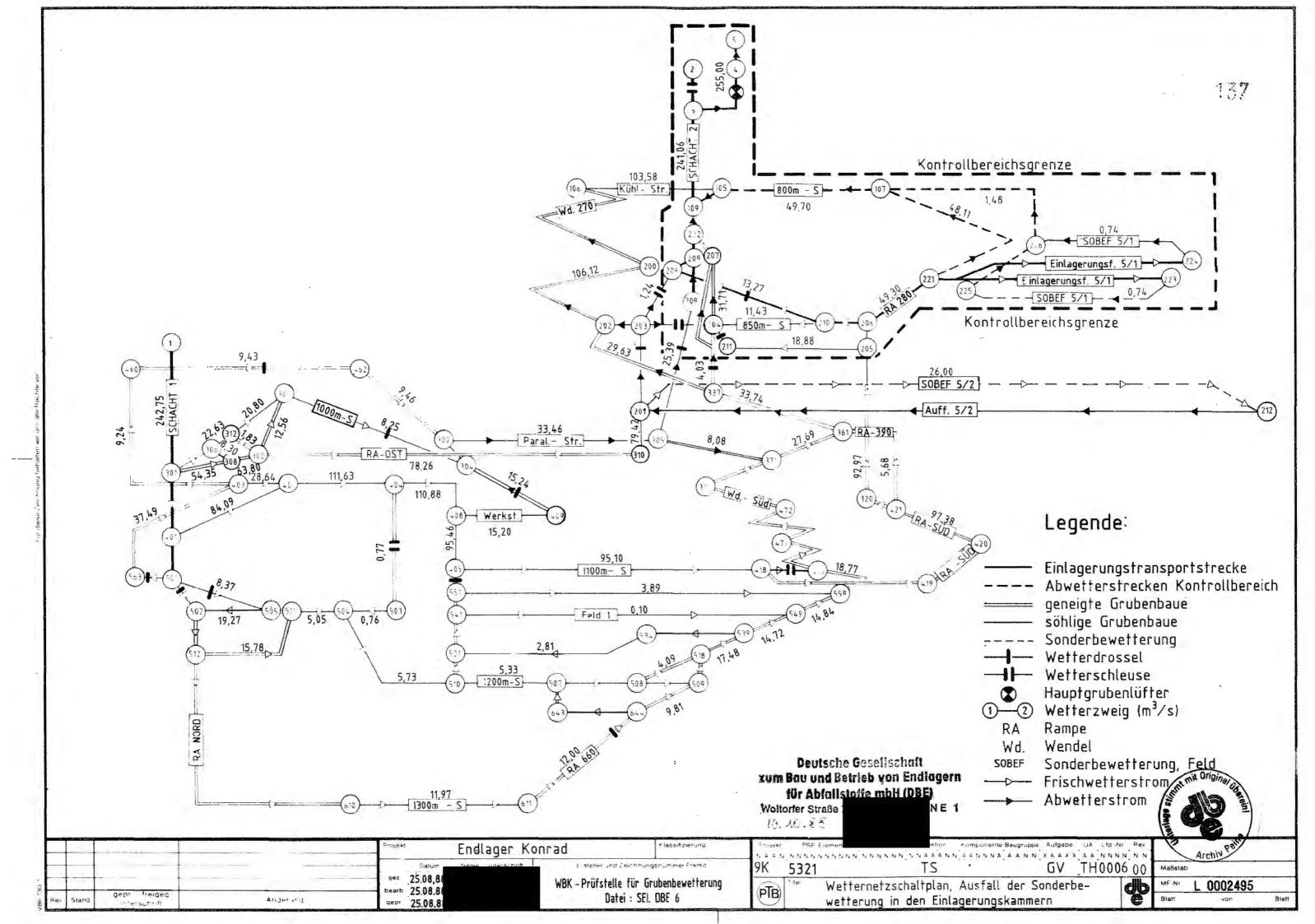
Mittlere Streckend	uerschnitte zwischen den	Knotenpunkten und Längen
Wetterzweig	Steckenquerschnitt	Längen zwischen den
(Knotenpunkte)	n²	Knotenpunkten

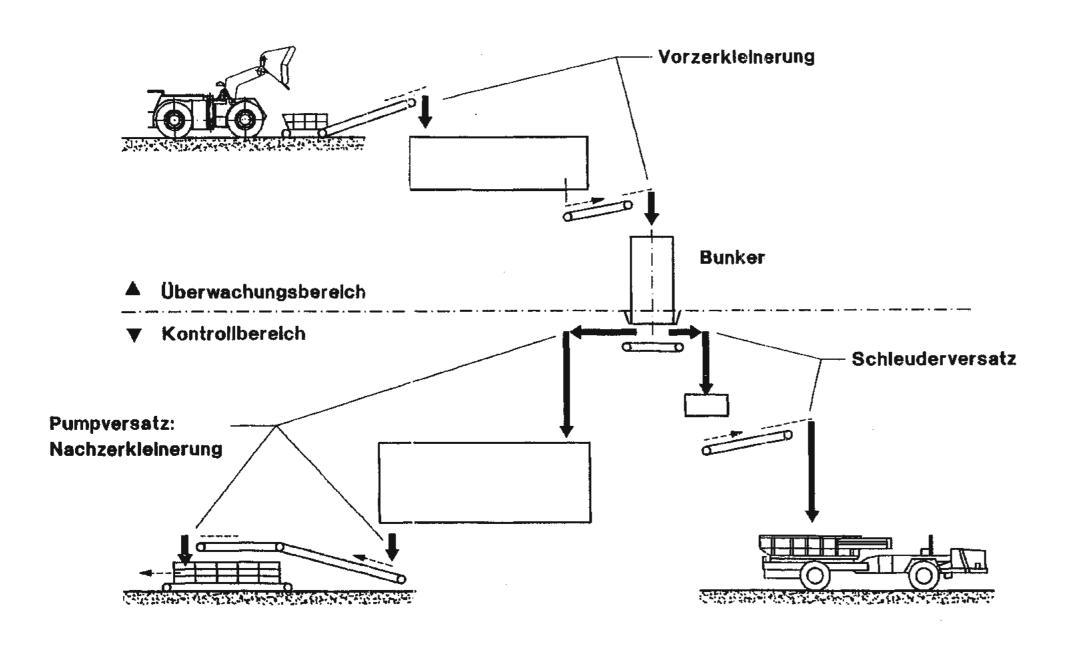
Wetterzweig (Knotenpunkte)	Steckenquerschnitt m ²	Längen zwischen den Knotenpunkten m
501 - 502	12	140
502 - 505	12	30
502 - 512	28	40
503 - 404	8	250
504 - 503	12	50
504 - 510	12	560
505 - 511	12	30
507 - 508	14	170
507 - 643	4	40
508 - 509	14	160
508 - 518	18	70
509 - 518	25	100
510 - 521	8	70
510 - 507	14	310
511 - 504	12	260
511 - 512	28	80
512 - 610	28	1230
518 - 539	25	150
521 - 541	3	90
521 - 534	25	270
534 - 539	25	260
539 - 549	25	130
541 - 551	8 .	50
541 - 549	20	720
549 - 559	25	170
551 - 405	8	90 /
551 - 559	20	90 940

Propest	PSP-Element	Ob. Kenn	Funition	Komponense	Baugruppe	Aufgabe	UA	Lid. Nr	24
NAAN		-	NNAAANN		AANN	XXAXX	AA	HNNNI	N N
9K	5321		TS			GV	MA	0001:	

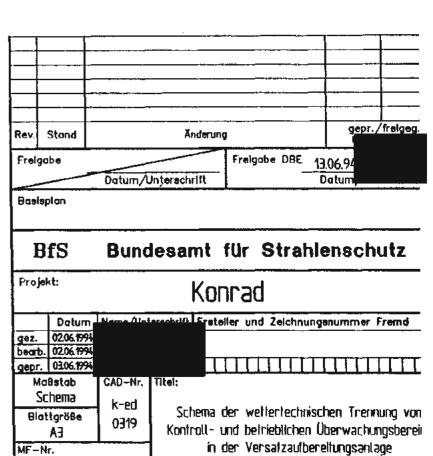
Anlage 15

Mittlere	Querschnitte	zwischen	Knotenpunkter	und Längen
*** * * * * * *	Aggrander of		THE PARTY AND ADDRESS OF THE	


Wetterzweig (Knotenpunkte)	Querschnitte m2	Längen zwischen de Knotenpunkte m		
559 - 415	25	400		
563 - 403	12	310		
610 - 611	28	350		
611 - 644	28	790		
643 - 644	28	150		
644 - 509	28	220		


Mittlere Querschnitte zwischen Knotenpunkten und Längen

Wetter:weig	erzweig Querschnitte				
Schacht Rol					
1 - 301	38.5	990			
301 - 401	38.5	102			
401 - 501	38.5	102			
Schacht Ko2					
2 - 3	38.5	5			
3 - 109	38.5	772			
109 - 209	38.5	75			
209 - 309	38.5	130			


Projekt	PSP-Element	Obs. Kenn	Funition	Komponente	Baugrupper	Autgace	LLA	List. Mr.	Rev
MAAN	**********	*****	NNAAANN;		AANN	XXAXX		HHNN	N N
9K	5321		. TS			GV	MA	0001	

Anlage Nr.: 17 Blatt__1_von__1_
ZU: 9K/5321/TS/GV/LA/0005/04

DBE:

> Deutsche Gesellschaft zum Bau und Betrieb von Endlagem für Abfallstoffe mbH (DBE)

Westfälische Berggewerkschaftskasse

	Rev	LJd Nr	e i UA	Autgeor	conemia Baugruppe	Funktion	Obs. Kenn.	PSP-Element	Projekt
WBK-Prüfstelle	NN I	NNNN	XIAA	XAAX	NNA - AANN	NNAAANN	NNNNNN	NNNNNNNNN	NAAN
für Grubenbewetterung	00	0001	LA	G۷	! -	TS		5321	9K

139

GUTACHTEN Nr. 31041888

Anlage Nr. 18	5 475	41
9K/\$321/TS/GV/L	A/0005	
GEÇE, STONG	· <u>- 21</u>	
Bewetterun	g	

über die Planung der Bewetterung für die Einlagerung im Feld 5/1 und die Auffahrung von Feld 5/2 des Endlagerbergwerks

Konrad in Salzgitter

bearbeitet von:

Bochum, den 10.08.1988

Westfälische Berggewerkschaftskasse Prüfstelle für Grubenbewetterung

Anlage Nr.	18	sum 2	., 41		
9K/5321/TS	/GV/L	A/0005		WBI	K
oegens fand		21.			
Bewette				Blatt	2
Dewelle	21 011	9		10 08	9.8

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

1. EINLEITUNG

140

Die Prüfstelle für Grubenbewetterung (PFG) der Westfälischen Berggewerkschaftskasse hat in der "Gutachtlichen Stellungnahme Nr. 31044685 über die Planung der Bewetterung unter Berücksichtigung einer geänderten Einlagerungsreihenfolge auf dem Endlagerbergwerk Konrad in Salzgitter" vom 20.12.85 zu der geplanten Wetterführung im Grubengebäude Konrad Stellung genommen. Da diese Planung erneut geändert werden mußte, wurde die PFG von der Deutschen Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe (DBE) beauftragt, die Wetterführung für den neuen Grubenzuschnitt durch entsprechende Wetternetzberechnungen zu überprüfen.

Insbesondere sind dabei

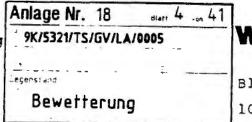
- die Teilung von Feld 5 in die Teilfelder 5/1 (Einlagerung) und 5/2 (Auffahrung),
- die neuen Schachteinbauten im Schacht Konrad 1 (nach Umrüstung) und
- der neue wettertechnische Zuschnitt der 1000 m-Sohle am Schacht 1

zu berücksichtigen.

Außerdem sollen die Bewetterungsverhältnisse nach des Hauptgrubenventilators untersucht werden.

der PFG durchaeführt.

Anlage Nr. 18 . 3 41
9K/5321/TS/GV/LA/0005


Blatt 2
Bewetterung 10.03.88

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

Die folgenden Ausführungen basieren auf Angaben der DBE; die zugehörigen Wetternetzberechnungen (kompressibel) wurden von

2. MESSUNGEN DES AERODYNAMISCHEN WIDERSTANDES

Zur Bestimmung des aerodynamischen Widerstandes R_n bzw. des Reibungsbeiwertes λ wurden in vier Grubenbauen des Bergwerkes mit drei unterschiedlichen Querschnitten Druckmessungen durchgeführt. In 200 bis 390 m langen Abschnitten der Grubenbaue wurden am Vortag der eigentlichen Messungen Meßschläuche verlegt, damit eine Temperaturangleichung stattfinden konnte. Außerdem wurden in mehreren Ebenen dieser Abschnitte jeweils die Querschnittsflächen bestimmt. Es handelte sich um Grubenbaue mit Nennquerschnittsflächen von 12, 17 und 28 m², in denen einen Tag später die Messungen erfolgten. Dazu wurde jeweils ein elektronisches Differenzdruck-Meßgerät an die Schlauchleitung und der elektrische Meßwertausgang des Druckmeßgerätes an einen Linienschreiber angeschlossen. Während der Aufzeichnung des Druckverlaufes wurden mit Handmeßgeräten der Absolutdruck, die Trocken- und die Feuchttemperatur und außerdem die Wettergeschwindigkeiten in den Querschnitten gemessen, die am Vortag bestimmt wurden. In der Tabelle 1 sind die Mittelwerte der einzelnen Messungen aufgeführt. Bei den Berechnungen des Wetternetzes konnte anhand dieser Messungen in den meisten Fällen ein Mittelwert für die Rohrreibungszahl λ von 0,06 zugrundegelegt werden. Da jedoch im Schacht 2 noch keine Messungen mit den neuen Einbauten vorgenommen werden konnten, wurde hier auf Erfahrungswerte zurückgegriffen.

Blatt 4 10.08.88

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

142

Tabelle 1

Grubenbau	im	Ļ	A	Δp	
	Wetterzweig	m	m ²	Pa	$m s^{-1}$
1100 m-Sohle	407 - 404	200	16,7	19,0	3,19
800 m-Sohle	207 - 105	311	27,8	21,5	2,95
Rampe 85 m-Sohle	206 - 220	390	27,9	17,0	3,01
1000 m-Sohle Schachtqu.Scht.2	305 - 309	204	12,0	44,0	3,70

WETTERNETZBERECHNUNGEN

3.1 Normalbetrieb

Das Wetternetz der Planungsstufe 2 aus der o. g. Stellungnahme wurde entsprechend den Vorgaben, den Ergebnissen der Messungen von aerodynamischen Widerständen und den Erfahrungswerten für den Schachtwiderstand von Schacht 2 geändert und die Wetterverteilung entsprechend den Vorgaben eingestellt. Die Ergebnisse sind in den Anlagen 1 und 2 in einem DV-Ergebnisprotokoll und einem Wetternetzschaltplan (Plotterzeichnung) dargestellt, wobei der Kontrollbereich besonders gekennzeichnet ist.

Zur besseren Lesbarkeit der Plotterzeichnungen wurden die Wetterzweige entsprechend ihrer Lage im Wetternetz oder ihrer betrieblichen Funktion mit unterschiedlichen Stricharten und -stärken wie folgt gekennzeichnet:

- eine Doppellinie für seigere oder geneigte Grubenbaue mit Ausnahme der Schächte,
- eine Linie mit großer Strichstärke für Schächze
- eine dünne gestrichelte Linie für Sonderbewer
- eine gestrichelte Linie mittlerer Strichstärk

Anlage Nr. 18 5 . 4	.1]
9K/5321/TS/GV/LA/0005	WBK
Gegenstand	Blatt 5
Bewetterung	10.08.88

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

143

wetterweg aus den Einlagerungsstrecken (Kontrollbereich), ebenfalls ohne Berücksichtigung der Neigung des Wetterzweiges,

 eine durchgezogene Linie mit dünner Strichstärke für alle anderen Wetterzweige.

Darüberhinaus weisen die mit einem Querstrich versehenen Wetterzweige auf gedrosselte Wetterströme hin: in den mit doppelten Querstrichen versehenen Wetterzweigen ist eine Wetterschleuse notwendig.

Zur besseren Übersicht sind wichtige Wetterzweige beschriftet. Allgemein bedeuten darin

- RA Rampe,
- SOBE Sonderbewetterung,
- WD Wendel,
- AUFF Auffahrungsort.

Die beigefügten DV-Ergebnisprotokolle sind so kommentiert, daß sie keiner weiteren Erklärung bedürfen. Für Wetterzweige, die in den Schaltplänen ohne Angabe von Wetterrichtung und Wetterstrom gezeichnet sind (maschinell bedingt), sind diese Angaben in den Ergebnisprotokollen dokumentiert; die Knotenpunkte, die den jeweiligen Zweig begrenzen, sind so angeordnet, daß die Wetter stets vom Anfangs- zum Endpunkt ziehen.

In der Tabelle 2 sind die in einzelnen Wetterzweigen bzw.

-wegen wegen des Fahrzeugverkehrs bzw. wegen der Kondensationswärmeabfuhr - Wärmetauscher der Kühlmaschine im Wetterzweig

106-105 - geforderten Wetterströme den bei der Wetternet Weisen
rechnung nach entsprechenden Eingriffen in das Wetternet weisen
ergebenden Werten gegenübergestellt. Die geforderten Weisen
konnten überall erreicht werden.

Anlage Nr. 18	5an 6	. 41	
" 9K/5321/TS/GV/L	A/0005		WBK
	, <u>a'</u>		
Gegenstand			Blatt 6
Bewetterun	9		10.08.88

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

144

Bei der Festlegung des aerodynamischen Widerstandes der "Kühlerstrecke" (Wetterzweig 106-105) auf der 800 m-Sohle an Schacht 2 wurde davon ausgegangen, daß die Wärmetauscher mit

Tabelle 2

			vette bzw. (note		-weg	-				strom	(m ³ s ⁻¹) berechnet
40	3	-	460	_	462	_	302	5	bis	8	9,2
			421	-	361			5	bis	8	5,7
			221	-	107			5	bis	8	5,2
			305	_	371			5	bis	8	8,1
			401	_	407				74		84,1
			563	-	403				33		37,5
			106	_	105				≈ 80		103,6

Hilfe von besonderen Ventilatoren zwangsdurchströmt werden, so, daß sie für den durchgehenden Wetterstrom keinen zusätzlichen Widerstand darstellen. Es muß allerdings durch Drosselung des Wetterzweiges zwischen den Knotenpunkten 305 und 309 auf der 1000 m-Sohle an Schacht 2 dafür gesorgt werden, daß ein genügend großer Wetterstrom (etwa 80 m³ s⁻¹) für die Abfuhr der Kondensationswärme der Wetterkühlanlage in der "Kühlerstrecke" zur Verfügung steht (vgl. auch Tab. 2).

Wegen des großen geforderten Wetterstromes von 74 m³ s-1 zwischen den Knotenpunkten 401 und 407 auf der 1100 m-Sohle an
Schacht 1 müssen alle Abgänge von Schacht 1 auf den 1200 m-Sohle gedrosselt werden. Auch die Wetterströme in der 1200 m-Sohle strecke auf der 1000 m-Sohle (z.B. im Zweig 460-26) and dem

Anlage Nr. 18 7 41	
" 9K/5321/TS/GV/LA/0005	WBK
Regrissia 3	
Bewetterung	Blatt 7
Beweiterung	10.08.88

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

145

Wetterzweig 201-203 sind zu drosseln. Das gleiche gilt für die Werkstätten auf der 850 m-Sohle (Zweig 211-204). In der Tabelle 3 sind alle nach den Ergebnissen der Berechnungen notwendigen wettertechnischen Bauwerke zur passiven Wetterstromregelung übersichtlich aufgeführt.

Tabelle 3

Wetterzwei	g	Druckverbrauch
		in Pa
2 - 3		587
203 - 204		82
203 - 208		125
210 - 208	*	49
305 - 309	*	169
307 - 304	*	555
404 - 503		341
408 - 304	*	236
405 - 551		242
418 - 415		125
460 - 462	*	356
501 - 502	*	599
501 - 505	*	598
501 - 563	*	175
611 - 644	*	33

^{* -} neu zu installieren

Anlage Nr. 18 8 41
9K/5321/TS/GV/LA/0005

WER

Blatt 9

Bewetterung

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

46

Bei den Wetternetzberechnungen wurde besonders darauf geachtet, daß in allen Verbindungen des Kontrollbereichs mit dem übrigen Grubengebäude das Druckgefälle zum Kontrollbereich hin sichergestellt ist; das heißt, daß die Wetter in diesen Verbindungen sicher in den Kontrollbereich ziehen: es handelt sich um die Wetterzweige 203-208, 203-204, 305-309, 337-207, 320-205, 106-105, vgl. Anlage 2.

Die Wetterstromverteilung, wie sie sich durch die oben beschriebenen Maßnahmen einstellt und in dem Wetternetzschaltplan, Anlage 2, dargestellt ist, ergibt den erforderlichen Betriebspunkt des Hauptgrubenventilators so, wie er in der Anlage 3 in das Kennlinienblatt aus der o.a. Stellungnahme eingezeichnet ist. Der Hauptgrubenventilator muß hier bei einem Wetterstrom von 255 m³ s⁻¹ einen Druck von etwa 862 Pa arbeiten. Vergleicht man die bei den alten Planungen in das Kennlinienfeld eingesetzten Betriebspunkte 1 bis 10 der verschiedenen Phasen mit dem neu errechneten Betriebspunkt, stellt man fest, daß er wegen der Änderungen im Grubengebäude bei einer größeren Grubenweite liegt. Er ist mit diesem Ventilator, wenn auch mit verhältnismäßig schlechtem Wirkungsgrad, zu erreichen. Die Auslegung des Hauptgrubenventilators wurde damals so vordegeben, daß er über alle Zeitphasen bis zur Stillegung der Grube in Betrieb bleiben soll. Da, wie schon erwähnt, mit einem erweiterten Wetternetz gerechnet werden muß, sollten die Planungen für den Hauptgrubenventilator noch einmal unter Einbeziehung der Zeiten, die der Ventilator bei bestimmten Betriebspunkten und Wirkungsgraden läuft, überdacht werden. Es erscheint empfehlenswert, vor Abgabe einer Bestellung A slegung Hauptgrubenventilator bezüglich seiner zweckmäßigsten mit der PFG Rücksprache zu nehmen.

Anlage Nr. 18	nam 9	. 41		
9K/5321/TS/GV/LA	/0005		WBK	
egenstand	·		Blatt '	a
Bewetterung	0 _ =		10.08.	

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

127

3.2 STILLSTAND DES HAUPTGRUBENVENTILATORS

Um Auswirkungen einer Betriebsunterbrechung am Hauptgrubenventilator zu erfassen, wurden für verschiedene Außentemperaturen (-10° und +25°C) Ventilatorstillstandsuntersuchungen durchgeführt. Bei den dazu erforderlichen Berechnungen wurde vorausgesetzt, daß sämtliche wettertechnischen Bauwerke unter Tage in ihrem normalen Zustand verharren. In der Tabelle 4 sind die einzelnen Varianten dieser Berechnungen zusammengefaßt, die Tabelle 5 zeigt für diese Varianten die Wetterstromrückgänge in den Hauptwetterwegen im Vergleich mit dem Normalzustand (NZ) der Bewetterung.

Tabelle 4

Wetternetz- schaltplan	Außen- temperaturen	Schacht- schleuse	Betrieb der Kühlung und der
in Anlage	° C	Schacht 2	Sonderbewetterung
4	-10	zu	ja
5	+25	zu	ja
6	+25	zu	nein
7	+25	auf	nein

Die Anlage 4 zeigt, daß bei dem Tagesmittelwert der Außentemperaturen im Winter von -10°C, der nur selten auftritt, und den angeführten Voraussetzungen die Wetterführung weitgehend erhalten bleibt: die Wetterrichtungen ändern sich nicht, die Wetterströme verringern sich nur geringfügig. In den Anlagen 5 bis 7 sind die Situationen bei dem sommerlichen Tagesmittelwert der Außentemperaturen von 25°C dargestellt.

Anlage Nr. 18	Biarr 10 .on 41	
" 9K/5321/TS/GV/L	A/0005	WBK
egenstand	2:	Blatt 10
Bewetterung		Pract 10
DEMELLE OIL	9	10.08.88

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

ontactifat ut. 21041000) Engladerperdmerk would a

148

Tabelle 5

	0-1	2	a-hh		D	
	Schacht	1	Schach	t 2	Rampe	2
	1 - 30	01	109 -	3	200 - 3	221
	Ÿ		Ÿ		Ÿ	
Anlage	m ³ s ⁻¹	8	m^3s^{-1}	8	m^3s^{-1}	8
2(NZ)	242,75	100	241,06	100	50,91	100
4	225,10	93	242,39	101	52,16	102
5	107,27	44	102,41	42	21,02	42
6	53,19	22	48,59	20	7,76	15
7	54,82	23	50,09	21	8,08	16

Bei diesen Berechnungen stellte sich heraus, daß es im Kontrollbereich in der Nähe der Einlagerungsstrecken zu Wetterteilkreisläufen bzw. Wetterstillständen kommt, weil die Ventilatoren der Sonderbewetterungen wie Zusatzventilatoren wirken oder außer Betrieb sind. Außerdem kommt es in einigen Grubenbauabschnitten des übrigen Grubengebäudes zur Wetterumkehr. Maschinell bedingt bleibt bei den Plotterzeichnungen der Wetterrichtungspfeil für die ursprüngliche Wetterrichtung bei einer Wetterumkehr erhalten: der Wert des umgekehrten Wetterstromes wird jedoch als negativer Wert ausgedruckt. Darüberhinaus sind Wetterzweige mit Wetterumkehr farbig gekennzeichnet.

Wie die Anlage 5 zeigt, kehrt im Kontrollbereich zwischen den Knotenpunkten 221 und 107 die Wetterrichtung um; es fließen hier etwa 25 m³ s⁻¹ von Knotenpunkt 107 nach 221 000 km² es kommt zu Wetterteilkreisläufen im Bereich der Einlagerung tracken (221-223-225-226-107-221 und 221-224-226-107-221) sch im

Anlage Nr. 18 11 41	
9K/5321/TS/GV/LA/0005	WBK
veyenstand	Blatt 11
Bewetterung	10.08.88

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

149

übrigen Grubengebäude kommt es in einigen Wetterzweigen zur Wetterumkehr, wobei auch Teilkreisläufe entstehen. Wie der Vergleich der Anlagen 5 und 6 zeigt, trägt der Betrieb der Wetterkühlung im Zweig 106-105 zur besseren Stabilität der Bewetterung bei: der hier fließende Wetterstrom verringert sich bei Ausfall der Kühlung vom Zustand in Anlage 5 um 66 %. Unter der sehr wichtigen o.g. Annahme, daß nämlich alle Drosseln und Schleusen unter Tage wie im Normalbetrieb erhalten bleiben, weisen die Berechnungen ein Übertreten von Wettern aus dem Kontrollbereich in das übrige Grubengebäude nicht aus.

4.ZUSAMMENFASSUNG

Für die DBE wurde für den zuletzt geänderten Grubenzuschnitt des Bergwerks Konrad die vorgegebene Wetternetzplanung anhand von Wetternetzberechnungen überprüft.

Durch zusätzlich eingesetzte Wetterdrosseln und -schleusen konnte die Wetterverteilung so eingestellt werden, daß sie den Anforderungen entspricht. Der dazugehörige Ventilatorbetriebs-punkt ist in dem vorgesehenen Kennlinienfeld, allerdings bei verhältnismäßig schlechtem Wirkungsgrad, zu erreichen. Die Auslegung des Hauptgrubenventilators sollte jedoch unter Berücksichtigung der Betriebszeiten in den einzelnen Betriebspunkten bei den verschiedenen Wirkungsgraden überdacht werden.

Berechnungen der Wetterverteilung beim Stillstand des Hauptgrubenventilators haben gezeigt, daß ein Übertreten von Wettern aus dem Kontrollbereich in das übrige Grubengebärgen ei Einhaltung der o.g. Annahme über die wettertechnischen Bauwense nicht wahrscheinlich ist. Weil jedoch nicht sichergeste werden kann, daß diese Bauwerke in ihrem Zustand verharren und weil

ļ	Anlage Nr. 18 12 41	
,	" 9K/5321/TS/GV/LA/0005	WBK
	on df	
	Gegenstand Bewetterung	Blatt 12
l	Dewellerding	10.08.88

Gutachten Nr. 31041888, Endlagerbergwerk Konrad

150

Wetterumkehrungen und daf. Wetterteilkreisläufe sowohl im Kontrollbereich als auch im übrigen Grubengebäude beim Ventilatorstillstand stattfinden, ist es angeraten, parallel zu dem Hauptgrubenventilator einen zweiten Hauptventilator mit gleicher Kennlinie aufzustellen, der bei Ausfall des in Betrieb befindlichen Ventilators unverzüglich in Betrieb genommen werden sollte.

Bochum, den 10.08.88

Anlagen

DATUM: 4. 8. 38

_HRZEIT: 13.46

ENDLAGERBERGUERK	NONE	AD		
EINLAGERUNG FELD	5/1.	HUFFAHRUNG	FELD	5/2
SERICHT-NR.310419	888	DATEI:	SEI.DE	E.

Anlage Nr. 18	13 41
9K/5321/TS/GV/LA	A/0005
. » uege. 5° = :0	da da
	a

Anlage 13

151

* FROGRAMM WETTER * PRUEFSTELLE FUER GRUBENBEUETTERUNG

ANOTEN ANFANG	NHÚTEN ENDE	HAME	EIGTYP	VOL-STR. AMFANG	WIDERSTAND AN	URUCK- VERBRAUCH	TEMPER ANFANG		MITTL. DICHTE	MASSEN -STROM	LSTG.		TEUFEN- DIFFER.	mASSG
				CBM/S	hG/M**7	PASCAL	GR4	AD C	NG/CBM	NG/S	÷ú	mBAR	8	-
1	301	SCHACHT1		242.75	0.0049	259.0	15.0	24.0	1.261	293.43	60.3	1000.00	-999.5	0.00
2	3	UNZ		2.50	100.0000	587.3	15.0	15.0	1.206	3.03	1.5	1001.01	0.0	0.00
3	4	HV UE T	.1-STROM		-0.0148	-861.9	25.0	25.0	1.158	296.45	-219.8	995.14	0.3	0.00
4	5	SCHLOT		252.82	0.0050	288.B	25.0	20.0	1.177	296.45	72.7	1003.73	49.8	0.00
105	109			163.65	0.0008	20.6	40.0	30.0	1.230	197.97		1087.58		0.00
106	:05	KUEHLSTR		103.58	0.0013	14.5	20.0	45.0	1.241	133.85		1087.60		0.00
107	:05	800-MS		51.32	0.0022	5.7	30.0	30.0	1.250	64.13		1087.52		0.00
109	3	SCHACHT2		241.06	0.0026	145.6	38.0	25.0	1.190	293.43	35.9	1087.38	778.0	0.00
200	106	RA 210		105.90	0.0032	34.7	28.0	20.0	1.278	133.85	3.6	1092.71	38.0	0.00
201	203			79.42	0.0791	490.4	30.0	30.0	1.264	100.63	37.0	1102.71	0.0	0.00
201	212	SOBE.5/3		26.00	0.0000	0.0	30.0	30.0	1.267	32.94	0.0	1102.71	0.0	0.00
202	200			106.12	0.0032	35.1	30.0	28.0	1.263	133.85	3.7	1097.77	0.85	0.00
203	202			76.38	0.0006	3.7	30.0	30.0	1.261	76.34	3.3	1097.81	0.0	0.00
203	204			2.16	18.0000	82.0	30.0	30.0	1.261	2.72	0.2	1097.81	0.0	0.00
203	208			1.24	83.5000	125.2	30.0	30.0	1.261	1.56	0.2	1097.81	0.0	0.00
204	207			31.71	0.0300	29.5	30.0	30.0	1.258	39.97	0.9	1096.99	30.0	0.00
205	211	WERKST		18.71	0.0000	0.0	30.0	30.0	1.260	23.59	0.0	1096.95	0.0	0.00
305	106			74.65	0.0027	14.6	30.0	30.0	1.260	94.09	1.1	1096.95	4.0	0.00
206	221	RAMPE		50.91	0.0070	17.7	30.0	30.0	1.256	64.13		1096.31		0.00
206	210			23.79	0.0002	0.1	30.0	30.0	1.260	29.97		1096.31		0.00
207	222			35.89	0.0100	12.5	30.0	30.0	1.256	45.07		1092.99		0.00
208	209			14.18	0.0001	0.0	30.0	30.0	1.260	17.87		1096.56		0.00
209	222	SCH 2		40.26	0.0000	0.1	32.0	30.0	1.254	50.39		1096.56		0.00
210	204	850-mS		10.84	0.0500	5.7	30.0	30.0	1.240	13.66		1096.92		0.00
210	208	VERB		12.94	0.3000	49.0	30.0	30.0	1.260	16.30		1096.92		0.00
211	204			18.71	0.0600	20.5	30.0	30.0	1.260	23.59		1096.95		0.00
212	201	AUFF.S/2	VI-STROM		0.0000	0.0	30.0	30.0	1.267	32.94	0.0			0.00
171	:07			5.16	0.0019	0.1	30.0	30.0	1.251	6.46		1089.85		
221	223	EINLF5/1		23.04	0.0031	1.6	30.0	30.0		28.85	0.0			
221	224	EINLF5/1		23.01	0.0031	1.6	30.0	30.0		28.81	0.0			
	109	SCHT.2		76.77	0.0002	0.9	33.0	32.0		95.45	2.1			
223	125		1-STROM		-0.0118	-6.1	30.0	30.0		28.85		1091.80		
224	125	_	11-STROM		-0.0105	-5.4	30.0	30.0		28.81	-0.1			
125	226			23.15	0.0013	0.7	30.0	30.0		28.85	5.0			
224	107			46.34	0.0019	1.8	30.0	30.0		57.67		1083.15		
200	310	RA OST		78.26	0.0128	78.5	30.0	30.0		100.63		1119.14		
301	308			54.35	0.0019	5.9	24.0	30.0		71.42		1121.05		
301	306			30.92	0.0071	6.7	30.0	30.0		39.83		1121.05		
301		SCH 1		138.64	0.0005	9.7	24.0	25.0		182.18		1121.05		
302		PAR.STR		33.46	0.0053	5.9	30.0	30.0		42.87		1115.11		
304	302			23.96		1.9	30.0	30.0		30.70		1115.13		
. 305	309			25.39		168.6	30.0	30.0		32.52		1114.55		
305	371			8.08	0.0022	0.1	30.0	30.0		10.35		1114.55		
306	312			22.53	0.0058	3.0	30.0	30.0	1.238	29-14		1120.86		
306	308			8.30		0.1	30.0	30.0		10.69		1120.86		
307	300			12.56		1.8	30.0	28.0		16.17		1120.80		
307	304			8.25	8.1644	554.9	30.0	30.0		10.62	0.0	1120.00	1.0	
308	300			63.80		7.9		30.0		82.11	7.0	1120.00	7.0	
		cru a		25.49		0.5	30.0			70 50	or Origi	nav.	170.0	
309	209 201	SCH 2		79.42		11.8	33.0	32.0		32.52 100,63	Un. 0.0	1100	130.0	
310	Cot			77.7L	0.0017	11.6	30.0	30.0	1.267	100/83	2	1120.80 1120.10 1120.10 1102.83	0.0	0.00

WBK PFG

Gutachten Nr.31041888
Endlagerbergwerk Konrad

inlage 15

Anlage Nr. 18 91311 14 ... 41 9K/5321/TS/GV/LA/0005

DATUM: 4. 8. 38 .mRZEIT: 13.46

ENDLAGERBERGUERK NONRAD EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 BERICHT-NR.31041888 DATEI:SEI.DBE.1 Bewetterung

Gegenstand

FROGRAMM UETTER * FRUEFSTELLE FUER GRURENBEHETTERUNG

NOTEH AUFAUG	NHOTEN ENDE	NAME	CHEIGTYP VOL-STR. ANFANG	HIDERSTAND RN	DRUCK- VERBRAUCH	TEMPE		HITTL. DICHTE	MASSEN -STROM	LSTG.		TEUFEN- DIFFER.	mass/ massg
			CBM/S	KG/H**7	PASCAL	GR	AD C	KG/CBM	KG/S	νW	HBAR	.1	
311	371		19.55	0.0245	9.3	30.0	30.0	1.279	25.03	0.2	1114.51		0.00
312	307		20.80	0.0062	2.7	30.0	30.0	1.288	26.79	0.1	1120.83		0.00
312	300		1.83	1.5000	5.0	30.0	30.0	1.287	2.35	0.0	1120.83	13.0	0.00
320	205		92.97	0.0100	84.9	30.0	30.0	1.263	117.68	7.9	1101.63	31.0	0.00
337	202		29.63	0.0231	19.9	30.0	30.0	1.263	37.50	0.6	1101.44	29.0	0.00
337	207	BERG &	4.03	9.0000	127.6	30.0	30.0	1.261	5.10	0.5	1101.44	58.0	0.00
361	337		33.74	0.0160	17.8	33.0	32.0	1.240	42.40		1109.90		0.00
371	361		27.69	0.0015	1.1	30.0	30.0	1.276	35.38		1112.04		0.00
401	407		84.09	0.0318	227.0	30.0	30.0	1.302	109.57	19.1	1134.15	3.0	0.00
104	501	SCH. 1	54.80	0.0005	1.5	25.0	24.0	1.330	72.60	0.1	1134.15	-99.0	0.00
403	407		2B.64	0.0021	1.8	24.0	25.0	1.324	37.98	0.1	1131.52	0.0	0.00
+03	460		9.24	0.0054	0.5	26.0	30.0	1.304	12.18		1131.52		0.00
404	408		110.88	0.0052	65.5	25.0	25.0	1.321	146.54		1131.31		0.00
404	503	AUFHAUEN		572.7500	341.2	25.0	24.0	1.329	1.01	0.3	1131.31	-99.0	0.00
405	418	1100 MS	95.10	0.0125	116.5	25.0	28.0	1.312	125.54	11.1	1130.00	11.0	0.00
405	551		0.71	472.8300	242.0	30.0	30.0	1.299	0.93	0.2	1130.00	-28.0	0.00
+07	404		111.63	0.0025	31.6	25.0	25.0	1.322	147.56	3.5	1131.50	-1.0	0.00
408	+05		95.46	0.0015	13.9	24.0	25.0	1.322	126.47	1.3	1130.27	1.0	0.00
408	409	WERKST	15.20	1.0000	236.5	25.0	25.0	1.319	20.07	3.6	1130.27	0.0	0.00
409	304	ABU WAST		0.0243	5.8	25.0	25.0	1.310	20.07	0.1	1127.90	99.0	0.00
415	471	WD SUED	19.34	0.0036	1.4	30.0	30.0	1.291	25.03	0.0	1126.67	50.0	0.00
418	415		0.50	500.0000	125.4	30.0	30.0	1.295	0.65	0.1	1127.42	-4.0	0.00
+18	419	VB RA ED		0.0016	14.7	30.0	30.0	1.296	124.89	1.4	1127.42	-10.0	0.00
419	420	RA SUED	96.32	0.0051	47.7	30.0	30.0	1.290	124.89	4.6	1128.54		0.00
420	421	FA SUED	97.38	0.0081	76.3	30.0	30.0	1.277	124.89	7.5	1116.30	75.0	0.00
421	320		92.59	0.0005	3.9	30.0	30.0	1.268	117.68	0.4	1106.15		0.00
421	361	5A 390	5.68	0.0027	0.1	30.0	30.0	1.273	7.22	0.0			0.00
460	-62		9.43	4.0000	356.1	30.0	30.0	1.289	12.18	3.4	1123.33		0.00
462	302		9.46	0.0010	0.1	30.0	30.0	1.284	12.18	0.0	1119.77		0.00
+71	472	FORTS.WD		0.0036	1.4	30.0	30.0	1.286	25.03	0.0	1120.33	15.0	0.00
+72	311	-IJ-SUED	19.48	0.0034	1.4	30.0	30.0	1.283	25.03	0.0		31.0	0.00
201	505		8.37	8.2000	598.0	25.0	25.0	1.336	11.22	5.0		1.0	0.00
E01	502		8.38	3.2140	599.2	35.0	25.0	1.336	11.22	5.0	1147.05	1.0	0.00
501	563		37.54	0.1200	175.1	26.0	26.0	1.335	50.16	6.6	1147.05		0.00
502	512		28.15	0.0004	0.3	30.0	30.0	1.310	36.91	0.0	1140.93		
503	504		0.76	0.0053	0.0	25.0	25.0	1.333	1.01		1140.68		0.00
504	510		5.73	0.0594	2.0	25.0	25.0		7.64	0.0	1140.48	3.0	
505	502		19.27	0.0032	1.2	25.0	25.0	1.333	25.48	0.0	1140.94	0.0	0.00
507	508		7.58	0.0120	0.7	27.0	27.0	1.323	10.03		1140.00		0.00
-508	509		3.50	0.0214	0.3	27.0	28.0	1.321	4.63	0.0	1139.99	1.0	0.00
. 508	518		4.09	0.0026	0.0	28.0	30.0	1.313	5.40	0.0	1139.99	13.0	0.00
509	518		13.34	0.0012	0.2	30.0	30.0	1.309	17.47	0.0			0.00
510	521		0.45	0.0217	0.0	27.0	28.0	1.319	0.59	0.0	1140.26		0.00
510	507	1200-mS	5.33	0.0218	0.6	27.0	28.0	1.321	7.05	0.0	1140.26	2.0	0.00
511	504		5.05	0.0276	0.7	30.0	30.0	1.311	6.62	0.0	1140.68	0.0	0.00
511	505		10.85	0.0032	0.4	25.0	25.0	1.333	14.46	0.0	1140.68	-2.0	0.00
512	511		15.78	0.0007	0.2	24.0	25.0	1.334		0.0	1139.77	-7.0	0.00
512	à10	RA NORD	11.88	0.0114	1.6	25.0	25.0	1.340	15.82	dito	MP1391.77	-108.0	0.00
518	539	RA 570	17.48	0.0019	0.6	30.0	30.0	1.306	22.87	10.0	1138.32	21.0	0.00
521	541	AUFH	3.26	0.0279	0.3	30.0	30.0	1.304	4,26	Stin	1138.32 1138.32 90	当29.0	

Gutachten Nr.31041888 Endlagerbergwerk Konrad

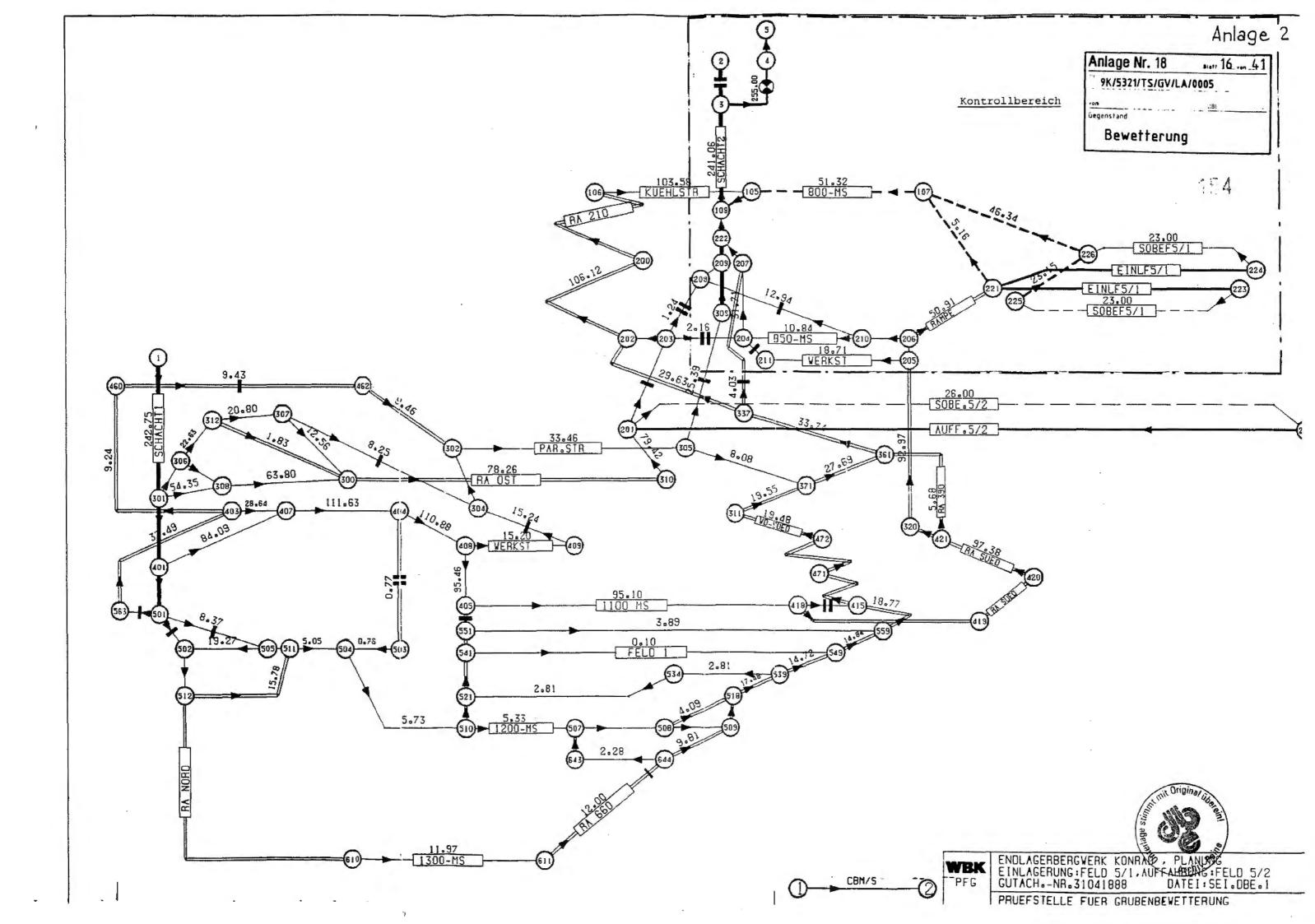
Anlage 1c

DATUM: 4. 8. 88

_HRZEIT: 13.46

ENDLAGERBERGHERK KONRAD EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 BERICHT-NR.31041888 DATEI:SEI.DBE.1

Anlage Nr. 18	3:an 15 41
9K/5321/TS/GV/	LA/0005
degenstand	ar .
Bewetteru	nπ


PROGRAMM WETTER

*	FRUEFSTELLE	FUER	GRUBENRELETTERUNG

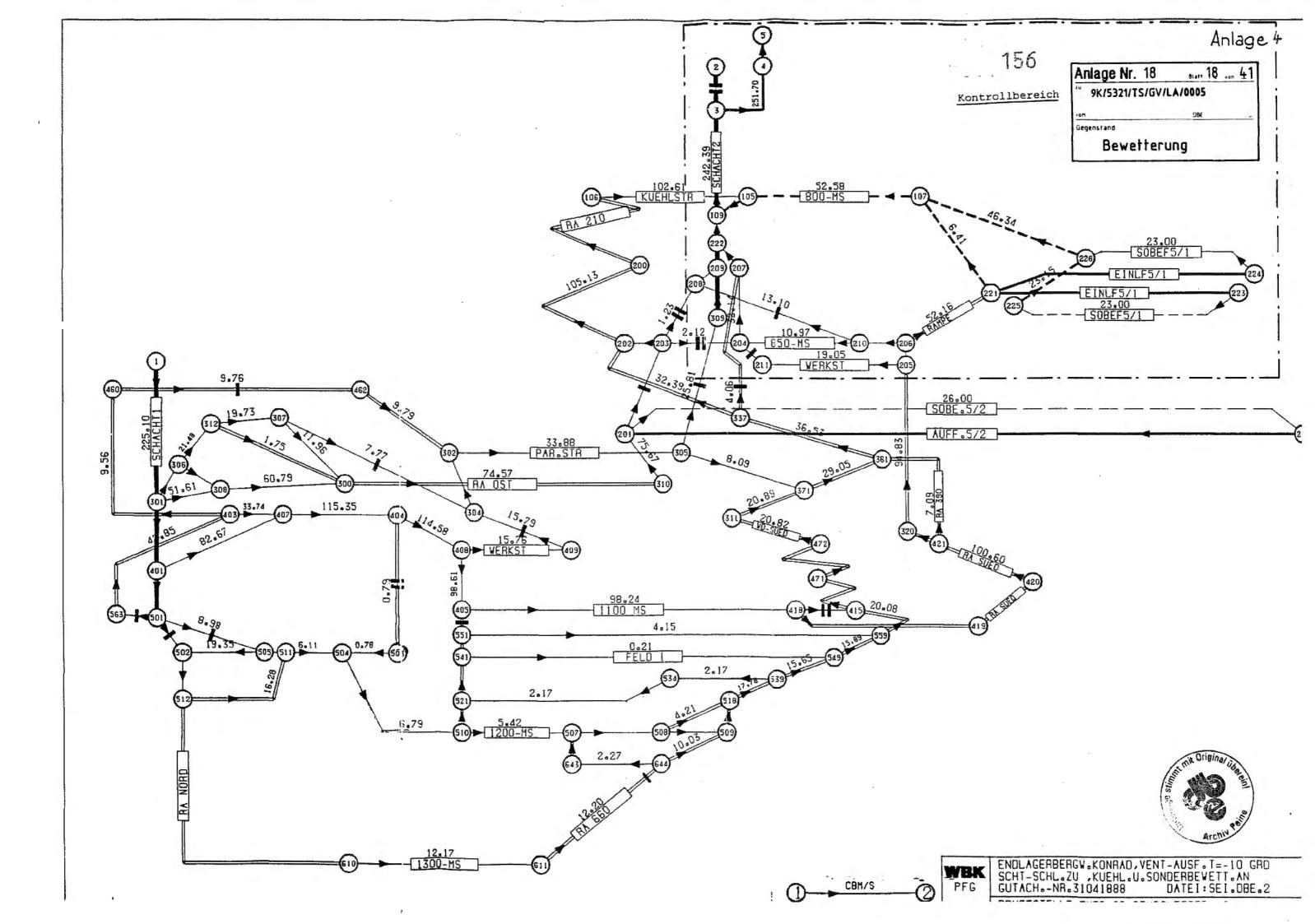
MOTEN ANFANG	KNOTEN	ZWEIG- NAME	CHEIGTYP	VOL-STR. ANFANG	WIDERSTAND KN	DRUCK- VERBRAUCH	TEMPER ANFANG	210.000	MITTL. DICHTE	HASSEN -STRON	LSTG.	DRUCK ANFANG	TEUFEN- DIFFER.	MASSG
				CBM/S	KG/H**7	PASCAL	GRA	AD C	KG/CBM	KG/S	KU	MBAR	н	-
534	521			2.81	0.0033	0.0	30.0	30.0	1.305	3.67	0.0	1135.11	-14.0	0.00
539	534			2.81	0.0032	0.0	30.0	30.0	1.305	3.67	0.0	1135.62	4.0	0.00
539	549			14.72	0.0016	0.4	30.0	30.0	1.304	19.20	0.0	1135.62	15.0	0.00
541	551	AUFH		3.17	0.0155	0.2	30.0	30.0	1.301	4.13	0.0	1133.19	16.0	0.00
541	549	FELD 1		0.10	0.0157	0.0	30.0	30.0	1.302	0.13	0.0	1133.19	-4.0	0.00
549	559			14.84	0.0021	0.5	30.0	30.0	1.301	19.33	0.0	1133.70	22.0	0.00
559	415			18.77	0.0050	1.8	30.0	30.0	1.297	24.38	0.0	1130.89	33.0	0.00
551	559			3.89	0.0205	0.3	30.0	30.0	1.300	5.05	0.0	1131.15	2.0	0.00
563	403	AUFHAUEN		37.49	0.0329	48.1	25.0	25.0	1.330	50.16	1.8	1145.30	102.0	0.00
610	611	1300-AS		11.97	0.0032	0.5	31.0	32.0	1.320	15.82	0.0	1153.94	-9.0	0.00
611	644	RA 660		12.00	0.2224	32.9	32.0	32.0	1.311	15.82	0.4	1155.10	94.0	0.00
643	507			2.28	0.0787	0.4	32.0	32.0	1.303	2.98	0.0	1142.69	21.0	0.00
544	509			9.81	0.0020	0.2	31.0	30.0	1.309	12.84	0.0	1142.69	22.0	0.00
544	643			2.28	0.0014	0.0	31.0	31-0	1.309	2.98	0.0	1142.69	1000	0.00
1	2	ATM		2.50	0.0000	0.0	15.0	15.0	1.209	3.03	0.0	1000.00		0.00
1	5	ATM		-245.25	0.0000	0.0	15.0	15.0	1.206	-296.45	0.0	1000.00		0.00

Westfälische Beragewerkschaftskasse - Prüfstelle für Grühenhewetterung

Abreil Greeke

60

62


Anlage 3

 ΔP_{fa}

in Pa 3000

2500

2000

ENDLAGERDERGUERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE≂-10 GRB SCHT-SCHLEUSE ZU, KUEHL. U. SOHDERBEUETT. AN BEKICHT-NR.31041980 DATET:SEL.DUE.2

PROGRAMM WETTER * PRUEFSTELLE FUER GRUBENBEUETTERUNG

	1. Carlot 2. I	a cut	and the same					. Levile		STATISTICS	0.10	T.C. LOW	TEUECU	MACL
NHOTEN ANFANG	KHOTEN	ZWEIG- NAME	ZWEIGTYF VOL-S	ANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPEF ANFANG		MITTL. DICHTE	MASSEN -STROM	LSIG.	DRUCK ANFANG	DIFFER.	MASSG
			CBM	'S	KG/M#*7	FASCAL	GRA	30 G	KG/CIM	KG/S	NU	MBAR	M	-
1	301	SCHACHT1	225	.10	0.0049	246.5	-10.0	6.5	1.366	297.95	53.8	1000.00	-999.5	0.00
2	3	WKZ	-2	.04	100.0000	-387.9	15.0	15.0	1.212	-2.47	0.8	1001.01	0.0	0.00
3	4	HV UE T	251	.70	0.0020	115.2	25.0	25.0	1.173	295.48	29.0	1004.89	0.3	0.00
4	5	SCHLOT	251	.99	0.0050	287.0	25.0	20.0	1.177	295.48	72.0	1003.71	49.8	0.00
105	109		163	.92	0.000B	20.9	40.0	30.0	1.242	200.24	3.4	1098.26	0.0	0.00
104	105	KUEHI STR	102	.61	0.0013	14.4	20.0	45.0	1.254	133.90	1.5	1098.28	-1.0	0.00
107	105	800-mS	52	.58	0.0022	6.0	30.0	30.0	1.262	66.34	0.3	1098.19	-1.0	0.00
109	3	SCHACHT2	242	.39	0.0026	148.7	38.0	25.0	1.202	297.95	36.9	1098.05	778.0	0.00
200	106	RA 210	104	.92	0.0032	34.4	28.0	20.0	1.291	133.90	3.6	1103.43	38.0	0.00
201	203		75	.67	0.0791	449.2	30.0	30.0	1.276	96.78	34.1	1113,06	0.0	0.00
201	212	SOBE .5/2	26	.00	0.0000	0.0	30.0	30.0	1,279	33.25	0.0	1113.06	0.0	0.00
202	200		105	.13	0.0032	34.8	30.0	28.0	1.275	133.90	3.7	1108.53	38.0	0.00
203	202	453	72	.63	0.0006	3.4	30.0	30.0	1.274	92.51	0.2	1108.56	0.0	0.00
203	204		2	.12	18.0000	79.7	30.0	30.0	1.273	2.70	0.2	1108.56	0.0	0.00
203	208			.23	83.5000	124.5	30.0	30.0	1.273	1.57	0.2	1108.56	0.0	0.00
204	207		32	.14	0.0300	30.6	30.0	30.0	1.270	40.90	1.0	1107.77	30.0	0.00
205	211	WERKST		.05	0.0000	0.0	30.0	30.0	1.273	24.24	0.0	1107.73	0.0	0.00
205	206		76	.19	0.0027	15.4	30.0	30.0	1.272	96.98	1.2	1107.73		0.00
206	221	RAMPE	50	.16	0.0070	18.8	30.0	30.0	1.268	66.34	1.0	1107.08	51.0	0.00
206	210			.08	0.0002	0.1	30.0	30.0	1.272	30.63	0.0	1107.08	-5.0	0.00
207	222		36	.34	0.0100	13.0	30.0	30.0	1.268	46.09	0.5	1103.72	0.0	0.00
2509 age	511m200		14	.33	0.0001	0.0	30.0	30.0	1.272	18.24	0.0	1107.32	0.0	0.00
209	23	SCH 2		.83	0.0000	0.1	32.0	30.0	1.266	51.61	0.0	1107.32		0.00
210	200	850-MS	10	.97	0.0500	5.9	30.0	30.0	1.273	13.96	0.1	1107.70	-1.0	0.00
are.	209.	VERB	13	.10	0.3000	50.7	30.0	30.0	1.272	16.67	0.7	1107.70	-1.0	0.00

Anlage Nr. 9K/53Z1/TS/GV/LA/0005 Bewetterung

Anlage 4.1

EHDLAGERBERGWERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE=-10 GRD SCHT-SCHLEUSE ZU, KUEHL.U. SONDERBEWETT.AN BERICHT-NR.31041888 DATEI:SEI.DBE.2

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUDENBEWETTERUNG

×

KNOTEN ANFANG	KNOTEN Ende	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	IJRUCK- VERBRAUCH	TEMFEF ANFANG		MITTL. DICHTE	MASSEN -STROM	LSTG.	• • • • • • • • • • • • • • • • • • • •	TEUFEN- DIFFER.	MASS/ MASSG	
				CBM/S	KG/M**7	FASCAL	GKA	AD C	K6/CBM	KG/S	KW	MUAR	M 		
211	204			19.05	0.0600	21.4	30.0	30.0	1.273	24.24	0.4	1107.73	-2.0	0.00	
212	201	AUFF.5/2	V1-STROM	26.00	0.0000	0.0	30.0	30.0	1.279	33.25	0.0	1113.06	0.0	0.00	
221	107			6.41	0.0019	0.1	30.0	30.0	1.263	8.11	0.0	1100.55	19.0	0.00	
221	223	EIMLF5/1		23.04	0.0031	1.6	30.0	30.0	1.266	29.14		1100.55	-16.0	0.00	
221	224	EINLF5/1		23.01	0.0031	1.6	30.0	30.0	1.265	29.10		1100.55	-4.0	0.00	
222	109	SCHT.2		77.82	0.0002	0.9	33.0	32.0	1.254	97.70	0.1		45.0	0.00	
223	225	SOBEF5/1	V1-STROM		-0.0118	-6.1	30.0	30.0	1.263	29.14		1102.52	58.0	0.00	
224	226	SOBEF5/1	V1-STROM		-0.0104	-5.4	30.0	30.0	1.261	29.10	-0.1	1101.03	59.0	0.00	
225	226	abustr		23.15	0.0013	0.7	30.0	30.0	1.258	29.14	0.0	1095.40	13.0	0.00	
226	107			46.34	0.0019	3.9	30.0	30.0	1.259	58.23	0.2	1093.79	-36.0	0.00	
300	310	RA OST		74.57		72.0	30.0	30.0	1.288	96.78		1129.55	124.0	0.00	
301	308			51.61	0.0019	5.4	24.0	30.0	1.313	68.44		1131.47	7.0	0.00	
301	306			29.56	0.0071	6.2	30.0	30.0	1.300	38.43	0.2		1.0	0.00	
301	401	SCH 1		135.58	0.0005	10.0	6.5	8.0	1.414	191.07	1.3	1131.47	-102.0	0.00	
302	305	PAR.STR		33.86	0.0053	6.1	30.0	30.0	1.294	43.84		1126.11	4.0	0.00	
304	302		i	24.05	0.0033	1.9	30.0	30.0	1.294	31.12		1126.13	0.0	0.00	
305	309			25.81	0.2636	175.9	30.0	30.0	1.292	33.38		1125.54	2.0	0.00	
305	371			8.09	0.0022	0.1	30.0	30.0	1.292	10.46		1125.54	20.0	0.00	
306	312			21.48	0.0058	2.7	30.0	30.0	1.300	27.91	0.1	1131.28	0.0	0.00	
3Hage	308			8.09	0.0010	0.1	30.0	30.0	1.299	10.52		1131.28	6.0	0.00	.D
4rchiv 310	260 Elen			11.96	0.0113	1.6	30.0	28.0	1.303	15.54		1131.23	13.0	0.00	An 1 a
/ 300	34			7.77	8.1644	497.3	30.0	30.0	1.297	10.10		1131.23	1.0	0.00	age
Archiv	300			60.79	0.0019	7.2	30.0	30.0	1.298	78.97		1130.52	7.0	0.00	
10000	19 199	SCH 2		26.11	0.0008	0.5	33.0	32.0	1.271	33.38		1123.53	130.0	0.00	-[->
310	1			75.67	0.0019	10.8	30.0	30.0	1.279	96.78	8.0	1113.17	0.0	0.00	2

<u>က</u> က

Bewetterung

ENDLAGERBERGWERK KONRAD, VENTILATORAUSFALL, T WEBER TAGE=-10 GRD SCHT-SCHLEUSE ZU, KUEHL. U. SONDERBEWETT. AN BER1CHT-HR.31041888 DATEL:SEL.DE.2

FROGRAMM WETTER * FRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN	KNOTEN	ZUE 1G-	ZWEIGTYP VOL-STR.	WIDERSTAND	DRUCK-	TEMPER	ATUR	MITTL.	MASSEN	LSTG.	DRUCK	TEUFEN-	MASS/	
ANFANG	ENGE	HAME	ANFANG	KN	VERBRAUCH	ANFANG		DICHTE	-STROM			DIFFER.	MASSG	
			CBM/S	No/m**7	PASCAL	GRA	D C	кб/сьм	KG/S	KW	ALUAR	W	_	
311	371	,	20.89	0.0245	10.7	30.0	30.0	1.292	27.02	0.2	1125.52	19.0	0.00	
312	307		19.73	0.0062	2.4	30.0	30.0	1.300	25.64	0.0	1131.25	0.0	0.00	
312	300		1.75	1.5000	4.6	30.0	30.0	1.299	2.27	0.0	1131.25	13.0	0.00	
320	205		94.83	0.0100	89.2	30.0	30.0	1.275	121.22	8.5	1112.50	31.0	0.00	
337	202		32.39	0.0231	24.0	30.0	30.0	1.276	41.39	0.8	1112.27	28.0	0.00	
337	207	BERG 6	4.06	8.0000	130.9	30.0	30.0	1.273	5.19	0.5	1112.27	58.0	0.00	
361	337		36.53	0.0160	21.1	33.0	32.0	1.272	46.58	0.8	1120.85	67.0	0.00	
371	361		29,05	0.0015	1.3	30.0	30.0	1.289	37.48	0.0	1123.01	17.0	0.00	
401	407		82.67	0.0318	221.7	30.0	30.0	1.315	108.81	18.3	1145.52	3.0	0.00	
401	501	SCH. 1	57.96	0.0005	1.8	8.0	9.5	1.424	82.25	0.1	1145.52	-99.0	0.00	
403	407		33.74	0.0021	2.5	24.0	25.0	1.337	45.20	0.1	1142.94	0.0	0.00	
403	460		9.56	0.0056	0.5	26.0	30.0	1.317	12.72	0.0	1142.94	64.0	0.00	
404	408		114.58	0.0052	70.7	25.0	25.0	1.334	152.96	8.1		3.0	0.00	
404	503	AUFHAUEN	0.79	572.7500	364-4	25.0	24.0	1.343	1.05	0.3	1142.70	-98.0	0.00	
405	418	1100 MS	98.24	0.0125	125.5	25.0	28.0	1.325	130.99	12.4	1141.32	11.0	0.00	
405	551		0.74	472.8300	259.6	30.0	30.0	1.312	0.96	0.2	1141.32	-28.0	0.00	
407	404		115.35	0.0025	34.1	25.0	25.0	1.335	154.01	3.9	1142.91	-1.0	0.00	
408	405		98.61	0.0015	15.0	24.0	25.0	1.336	131.95	1.5	1141.60	1.0	0.00	
408	409	WERKST	15.76	1.0000	256.6	25.0	25.0	1.332	21.01	4.0	1141.60	0.0	0.00	
409	304	ARW WKST		0.0243	6.3	25.0	25.0	1.323	21.01	0.1	1139.04	99.0	0.00	
415	471	WE SHED	20.67	0.0036	1-6	30.0	30.0	1.304	27.02	0.0	1137.81	50.0	0.00	7111
1418 St	2 415		0.51	500.0000	134.2	30.0	30.0	1.308	0.67	0.1	1138.64	-4.0	0.00	4
410.	3419	VE RA SE		0.0016	15.8	30.0	30.0	1.309	130.31	1.6	1138.64	-10.0	0.00	•
(19	aho	RA SUED	99.51	0.0051	51.5	30.0	30.0	1.302	130.31	5.1	1139.76	93.0	0.00	
415 418 30 418,	1	RA SUEL	100.60	0.0081	82.2	30.0	30.0	1.269	130.31	8.3	1127.37	75.0	0.00	C

Anlage Nr. 9K/5321/TS/GV/LA/0005

Bewetterung

ENDLAGERBERGWERK KONKAD, VENTILATORAUSFALL, T UEBER TAGE=-10 GRD SCHT-SCHLEUSE ZU, KUEHL.U.SONDERBEWETT.AN BERICHT-NR.31041888 DATEL:SEL.DRE.2

PROGRAMM WEITER

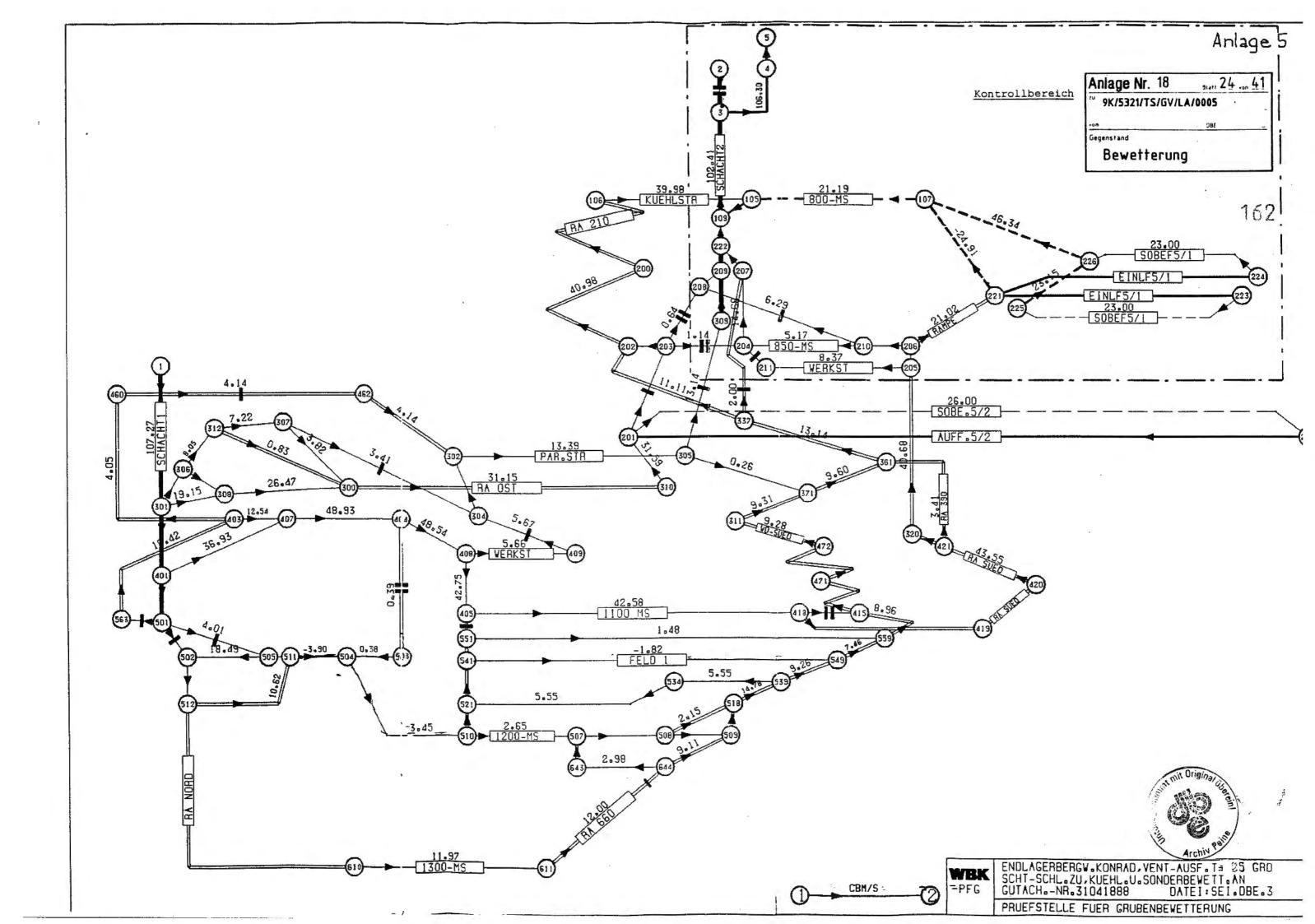
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KHÛTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMFER ANFANG		MITTL. DICHTE	MASSEN -STROM	LSTG.		TEUFEN- DIFFER.	
			CHM/S	KG/m**7	PASCAL	6RA	iD C	KG/CBM	KG/S	Ku	mbar	N	-
421	320		94.44	0.0005	4.1	30.0	30.0	1.261	121.22	0.4	1117.06	36.0	0.00
421	361	RA 390	7.09	0.0027	0.1	30.0	30.0	1.286	9.10	0.0	1117.06	-30.0	0.00
460	462		9.76	4.0000	385.0	30.0	30.0	1.301	12.72	3.8	1134.67	0.0	0.00
462	302		9.79	0.0010	0.1	30.0	30.0	1.297	12.72	0.0	1130.82	37.0	0.00
471	472	FORTS.WD	20.79	0.0036	1.6	30.0	30.0	1.299	27.02	0.0	1131,40	15.0	0.00
472	311	WD-SUED	20.82	0.0036	1.6	30.0	30.0	1.295	27.02	0.0	1129.48	31.0	0.00
501	505		8.98	8.2000	695.7	25.0	25.0	1.350	12.17	6.3	1159.32	1.0	0.00
501	502		8.98	B.2140	696.9	25.0	25.0	1.350	12.17	6.3	1159.32	1.0	0.00
501	563		42.91	0.1200	231.1	26.0	26.0	1.348	57.92	9.9	1159.32	0.0	0.00
502	512		26.86	0.0004	0.3	30.0	30.0	1.323	38.21	0.0	1152,22	9.0	0.00
503	504		0.78	0.0053	0.0	25.0	25.0	1.346	1.05	0.0	1151.96	0.0	0.00
504	510		6.79	0.0594	2.8	25.0	25.0	1.346	9.14	0.0	1151.96	3.0	0.00
505	502		19.35	0.0032	1.2	25.0	25.0	1.346	26.04	0.0	1152.23	0.0	0.00
507	508		7.66	0.0120	0.7	27.0	27.0	1.336	10.24	0.0	1151,27	0.0	0.00
508	509		3.47	0.0214	0.3	27.0	28.0	1.334	4-64	0.0	1151.26	1.0	0.00
508	518		4.21	0.0026	0.0	28.0	30.0	1.326	5.60	0.0	1151.26	13.0	0.00
509	518		13.53	0.0012	0.2	30.0	30.0	1.322	17.89	0.0	1151.13	12.0	0.00
510	521	AUFH	1.42	0.0217	0.0	27.0	28.0	1.332	1.89	0.0	1151.54	26.0	0.00
510	507	1200-MS	5.42	0.0218	0.7	27.0	28.0	1.334	7.24	0.0	1151.54	2.0	0.00
			6.11	0.0276	1.1	30.0	30.0	1.324	8.08	0.0	1151.97	0.0	0.00
511	505		10.31	0.0032	0.4	25.0	25.0	1.346	13.88	0.0	1151.97	-2.0	0.00
513	504 505 311		16.28	0.0007	0.2	24.0	25.0	1.348	21.96	0.0	1151.05	-7.0	0.00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	800	RA HORD	12.08	0.0114	1.7	25.0	25.0	1.353	16.25	0.0	1151.05	-108.0	0.00
	\$ 19	RA 570	17.78	0.0019	0.6	30.0	30.0	1.319	23.49	0.0	1149.57	21.0	0.00
521	3,500,341	AUFH	3.60	0.0279	0.4	30.0	30.0	1.317	4.75	0.0	1148.14	29.0	0.00

Bewetterung 9K/5321/TS/GV/LA/0005 ENDLAGERBERGWERK KOHRAD, VENTILATORAUSFALL, T UEBER TAGE=-10 GRUSCHT-SCHLEUSE ZU, KUEHL.U.SONDERBEWETT.AN
BERICHT-NR.31041888 DATEI:SEI.DBE.2

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG


*

NNOTEN ANFANG	KNOTEN Ende	ZWEIG- NAME	ZWEIGTYF	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPER ANFANG		MITTL. DICHTE	MASSEN -STROM	LSTG.	DKUCK ANFANG	TEUFEN- DIFFER.	MASS/ MASSG
				CHM/S	KG/M**7	PASCAL	GRA	AD C	KG/CBM	KG/S	KU	MBAR	M	-
534	521	·		2.17	0.0033	0.0	30.0	30.0	1.318	2.86	0.0	1146.33	-14.0	0.00
539	534		•	2.17	0.0032	0.0	30.0	30.0	1.317	2.86	0.0	1146.85	4.0	0.00
539	549			15.65	0.0016	0.4	30.0	30.0	1.317	20.63	0.0	1146.85	15.0	0.00
541	551	AUFH		3.41	0.0155	0.2	30.0	30.0	1.314	4.48	0.0	1144.39	16.0	0.00
541	549	FELD 1		0.21	0.0157	0.0	30.0	30.0	1.315	0.27	0.0	1144.39	-4.0	0.00
549	559			15.89	0.0021	0.5	30.0	30.0	1.314	20.90	0.0	1144.91	22.0	0.00
559	415			20.08	0.0050	2.0	30.0	30.0	1.310	26.35	0.0	1142.07	33.0	0.00
551	559			4.15	0.0205	0.4	30.0	30.0	1.312	5.45	0.0	1142.33	2.0	0.00
563	403	AUFHAUEN		42.85	0.0329	63.5	25.0	25.0	1.343	57.92	2.7	1157.01	102.0	0.00
610	611	1300~HS		12.17	0.0032	0.5	31.0	32.0	1.333	16.25	0.0	1165.36	-9.0	0.00
611	644	RA 660		12.20	0.2224	34.3	32.0	32.0	1.324	16.25	0.4	1166.54	94.0	0.00
643	507	tui oco		2.27	0.0787	0.4	32.0	32.0	1.316	3.00	0.0	1153.98	21.0	0.00
644	509			10.03	0.0020	0.2	31.0	30.0	1.322	13.25	0.0	1153.98	22.0	0.00
	643			2.27	0.0014	0.0	31.0	31.0	1.322	3.00	0.0	1153.98	0.0	0.00
644	2	ATM		-2.04	0.0000	0.0	15.0	15.0	1.209	-2.47	0.0	1000.00	-8.5	0.00
1	5			-244.45	0.0000	0.0	15.0	15.0	1.206	-295.48	9 10	1000.00		0.00

Anlage 4.5

Anlage Nr. 18 sun 23 cm 41
9K/5321/TS/GV/LA/0005
pregenstand
Bewetterung

UHRZEIT: 10.34

ENDLAGERBERGUERN KUHRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU, KULIL. U. SONDERBEWETT. AH BERICHT-NR.31041800 DATEL:SEL.DUE.3

PROGRAMM WETTER

* PRUEFSTELLE FUER GRUDENBEUETTERUNG

KNOTEH	KNOTEN	ZWE 16-	ZWEIGTYF !	VOL-STR.	WIDERSTAND	DRUCK-	TEMPER	ATUR	MITTL.	MASSEN	LSTG.	DRUCK	TEUFEN-	MASS/
ANFANG	EHDE	HAME		ANFANG	RN	VERBRAUCH	ANFANG	EHDE	DICHTE	-STROM			DIFFER.	MASSG
				CIM/S	NG/M#X7	PASCAL	GRA	AD C	KG/CDM	NG/S	KW	MBAR	М	-
1	301	SCHACIT1		107.27	0.0049	48.1	25.0	25.0	1.239	125.32	4.9	1000.00	-999.5	0.00
2	3	UKZ		-0.78	100.0000	-56.5	15.0	15.0	1.210	-0.94	0.0	1001.01	0.0	0.00
3	4	HV LIE T		106.30	0.0020	20.5	25.0	25.0	1.170	124.38	2.2	1001.57	0.3	0.00
4	5	SCHLUT		106.33	0.0050	50.9	25.0	20.0	1.176	124.38	5.4	1001.34	49.8	0.00
105	109			64.58	0.0008	3.2	40.0	30.0	1.236	78.53	0.2	1093.19	0.0	0.00
106	105	KUEHLSTR		39.98	0.0013	2.2	20.0	45.0	1.248	51.92	0.1	1093.09	-1.0	0.00
107	105	800-h5		21.19	0.0022	1.0	30.0	30.0	1.256	26.61	0.0	1093.07	-1.0	0.00
109	3	SCHACHT2		102.41	0.0026	26.4	38.0	25.0	1.197	125.32	2.8	1093.15	778.0	0.00
200	105	RA 210		40.89	0.0032	5.2	28.0	20.0	1.284	51.92	0.2	1097.92	38.0	0.00
201	203		į.	31.59	0.0791	77.5	30.0	30.0	1.267	40.05	2.4	1103.48	0.0	0.00
201	212	SOBE.5/2		26.00	0.0000	0.0	30.0	30.0	1.268	32.96	0.0	1103.48	0.0	0.00
202	. 200			40.98	0.0032	5.3	30.0	28.0	1.268	51.92	0.2	1102.70	38.0	0.00
203	202			29.83	0.0006	0.6	30.0	30.0	1.267	37.80	0.0	1102.71	0.0	0.00
203	204			1.14	18.0000	23.0	30.0	30.0	1.267	1.45	0.0	1102.71	0.0	0.00
203	208			0.64	83.5000	33.3	30.0	30.0	1.267	0.81	0.0	1102.71	0.0	0.00
204	207			14.68	0.0300	6.3	30.0	30.0	1.265	18.59	0.1	1102.48	30.0	0.00
205	211	WERKST		8.37	0.0000	0.0	30.0	30.0	1.266	10.60	0.0	1102.27	0.0	0.00
205	206			32.46	0.0027	2.8	30.0	30.0	1.266	41.11	0.1	1102.27	4.0	0.00
206	221	RAMPE		21.02	0.0070	3.0	30.0	30.0	1.262	26.61	0.1	1101.75	51.0	0.00
206	210			11.46	0.0002	0.0	30.0	30.0	1.266	14.51	0.0	1101.75	-5.0	0.00
207	222			16.74	0.0100	2.7	30.0	30.0	1.262	21.13	0.0	1098.70	0.0	0.00
208	209			6.92	0.0001	0.0	30.0	30.0	1.267	8.77	0.0	1102.38	0.0	0.00
201100	8 50 222	SCH 2		20.39	0.0000	0.0	32.0	30.0	1.260	25.66	0.0	1102.38	30.0	0.00
10	3 Stimes	850-MS		5.17	U.0500	1.3	30.0	30.0	1.267	6.55	0.0	1102.37	-1.0	0.00
210	202	VERB		6.29	0.3000	11.6	30.0	30.0	1.267	7.96	0.1	1102.37	-1.0	0.00

Anlage Nr. 9K/5321/TS/GV/LA/0005 Bewetterung

Anlage 5.1

ENDLAGERBERGHERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU, KUEHL.U. SONDERBEHETT.AN BERICHT-NR.31041800 DATEI:SEI.DBE.3

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

×

KNOTEN	KNOTEN	ZWEIG-	ZWEIGTYP	VOL-STR.	WIDERSTAND	DRUCK-	TEMFER		MITTL.	MASSEN	LSTG.	DRUCK	TEUFEN-	MASS/
ANFANG	ENDE	NAME		ANFANG	RH	VERBRAUCH	ANFANG	ENDE	DICHTE	-STROM		ANFANG	DIFFER.	MASSG
				CDM/S	KG/M**7	PASCAL	GRA	AD C	KG/CBM	KG/S	KU	MEAR	М	-
211	204			8.37	0.0600	4-1	30.0	30.0	1.267	10.60	0.0	1102.27	-2.0	0.00
212	201	AUFF.5/2	V1-STROM	26.00	0.0000	0.0	30.0	30.0	1.268	32.96	0.0	1103.48	0.0	0.00
221	107			-24.91	0.0019	-1.2	30.0	30.0	1.257	-31.35	0.0	1095.40	19.0	0.00
221	223	EINLF5/1		23.04	0.0031	1.6	30.0	30.0	1.260	29.00	0.0	1095.40	-16.0	0.00
221	224	EINLF5/1		23.01	0.0031	1.6	30.0	30.0	1.259	28.96	0.0	1095.40	-4.0	0.00
222	109	SCHT.2		37.44	0.0002	0.2	33.0	32.0	1.249	46.79	0.0	1098.67	45.0	0.00
223	225	SOBEF5/1	V1-STROM	23.00	-0.0142	-7.3	30.0	30.0	1.257	29.00	-0.2	1097.36	58.0	0.00
224	226	SOBEF5/1	VI-STROM	23.00	-0.0129	-6.6	30.0	30.0	1.255	28.96	-0.2	1095.88	59.0	0.00
225	226	ABUSTR		23.15	0.0013	0.7	30.0	30.0	1.252	29.00	0.0	1090.29	13.0	0.00
226	107			46.34	0.0019	3.8	30.0	30.0	1.253	57.96	0.2	1088.49	-36.0	0.00
300	310	RA OST		31.15	0.0128	12.4	30.0	30.0	1.277	40.05	0.4	1119.15	124.0	0.00
301	308			19.15	0.0019	0.7	24.0	30.0	1.300	25.16	0.0	1120.95	7.0	0.00
301	306			14.97	0.0071	1.6	30.0	30.0	1.288	19.2B	0.0	1120.95	1.0	0.00
301	401	SCH 1		61.76	0.0005	1.9	25.0	25.0	1.317	80.88	0.1	1120.95		0.00
302	305	PAR.STR		13.39	0.0053	0.9	30.0	30.0	1.286	17.23	0.0	1119.73	4.0	0.00
304	302			9.24	0.0033	0.3	30.0	30.0	1.287	11.88	0.0	1119.73		0.00
305	309			13.14	0.2636	45.3	30.0	30.0	1.286	16.89	0.6	1119.22	2.0	0.00
305	371			0.26	0.0022	0.0	30.0	30.0	1.284	0.34	0.0	1119.22	20.0	0.00
306	312			B.05	0.0058	0.4	30.0	30.0	1.288	10.37	0.0	1120.81	0.0	0.00
306	308			6.92	0.0010	0.0	30.0	30.0	1.287	8.91	0.0	1120.81	6.0	0.00
307	300			3.82	0.0113	0.2	30.0	28.0	1.291	4.92	0.0	1120.80	13.0	0.00
30 xel	age 5504	\		3.41	8.1644	94.4	30.0	30.0	1.287	4.39	0.3	1120.80	1.0	0.00
/308	300	GCH 2		26.47	0.0019	1.4	30.0	30.0	1.286	34.07	0.0	1120.05	7.0	0.00
309	09	GCH 2		13.27	0.0008	0.1	33.0	32.0	1.265	16.89	0.0	1118.51	130.0	0.00
331	101	<u>9</u>		31.59	0.0019	1.9	30.0	30.0	1.268	40.05	0.1	1103.50	0.0	0.00

Anlage Nr. 18 26 9K/532I/TS/GV/LA/0005

Bewetterung

ENDLAGERBERGWERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU, KUEHL.U. SONDERBEWETT.AN BERICHT-NR.31041800 DATEI:SEI.DBE.3

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

*

samreu.	Western	70070	THETETAGE HOLLOTE	LITECOCTANE	DRUCK-	TEMPER	ATHE	MITTL.	MASSEN	LSTG.	DRUCK	TEUFEN-	MASS/
KNOTEH ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	KH	VERBRAUCH	ANFANG		DICHTE	-STROM	Laio.		DIFFER.	MASSG
			CBM/S	KG/M**7	PASCAL	GRA	AD C	KG/CBM	KG/S	ĸu	MHAR	н	-
311	371		9.31	0.0245	2.1	30.0	30.0	1.284	11.98	0.0	1119.11	19.0	0.00
312	307		7.22	0.0062	0.3	30.0	30.0	1.288	9.30	0.0	1120.81	0.0	0.00
312	300		0.83	1.5000	1.0	30.0	30.0	1.287	1.07	0.0	1120.81	13.0	0.00
320	205		40.68	0.0100	16.3	30.0	30.0	1.269	51.71	0.7	1106.29	31.0	0.00
337	202		11.11	0.0231	2.8	30.0	30.0	1.269	14.12	0.0	1106.22	28.0	0.00
337	207	BERG 6	2.00	8.0000	31.6	30.0	30.0	1.267	2.54	0.1	1106.22	58.0	0.00
361	337		13.14	0.0160	2.7	33.0	32.0	1.265	16.66	0.0	1114.56	67.0	0.00
371	361		9.40	0.0015	0.1	30.0	30.0	1.282	12.31	0.0	1116.70	17.0	0.00
401	407		36.93	0.0318	43.8	30.0	30.0	1.303	48.13	1.6	1134.11	3.0	0.00
401	501	SCH. 1	24.72	0.0005	0.3	25.0	25.0	1.332	32.75	0.0	1134.11	-99.0	0.00
403	407		12.54	0.0021	0.3	24.0	25.0	1.326	16.65	0.0	1133.29	0.0	0.00
403	460		4.05	0.0056	0.1	26.0	30.0	1.306	5.35	0.0	1133.29	64.0	0.00
404	408		48.54	0.0052	12.6	25.0	25.0	1.324	64.27	0.6	1133.36	3.0	0.00
404	503	AUFHAUEN		572.7500	87.6	25.0	24.0	1.333	0.51	0.0	1133.36	-98.0	0.00
405	418	1100 MS	42.58	0.0125	23.4	25.0	28.0	1.316	56.35	1.0	1132.68	11.0	0.00
405	551	A - 0 - 10 - 10 - 10 - 10 - 10 - 10 - 10	0.32	472.8300	49.6	30.0	30.0	1.303	0.42	0.0	1132.68	-28.0	0.00
407	404		48.93	0.0025	6.1	25.0	25.0	1.324	64.78	0.3	1133.29	-1.0	0.00
408	405		42.75	0.0015	2.8	24.0	25.0	1.326	56.77	0.1	1132.84	1.0	0.00
100	100	WERKST	5.66	1.0000	32.9	25.0	25.0	1.323	7.50	0.2	1132.84	0.0	0.00
400096	Stim 304	ABU UKST		0.0243	0.8	25.0	25.0	1.316	7.50	0.0	1132.51	99.0	0.00
415	Stimpo4	WD SUED	9.21	0.0036	0.3	30.0	30.0	1.296	11.98	0.0	1131.29	50.0	0.00
1 1 4 40	ALLE .		0.22	500.0000	24.9	30.0	30.0	1.300	0.29	0.0	1131.03	-4.0	0.00
A CAR	410	VB RA SI	43.14	0.0016	2.9	30.0	30.0	1.300	56.06	0.1	1131.03	-10.0	0.00
Archive A20	478	RA SUED	43.09	0.0051	9.6	30.0	30.0	1.294	56.06	0.4	1132.28	93.0	0.00
CA20	Menni Marin	RA SUED	43.55	0.0081	15.3	30.0	30.0	1.282	56.06	0.7	1120.38	75.0.	0.00

Anlage Nr. 18 27
9K/5321/TS/GV/LA/0005

Bewetterung

ENDLAGERBERGUERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU, KUEHL.U.SONDERBEUETT.AN BERICHT-NR.31041800 DATEI:SEI.DBE.3

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

×

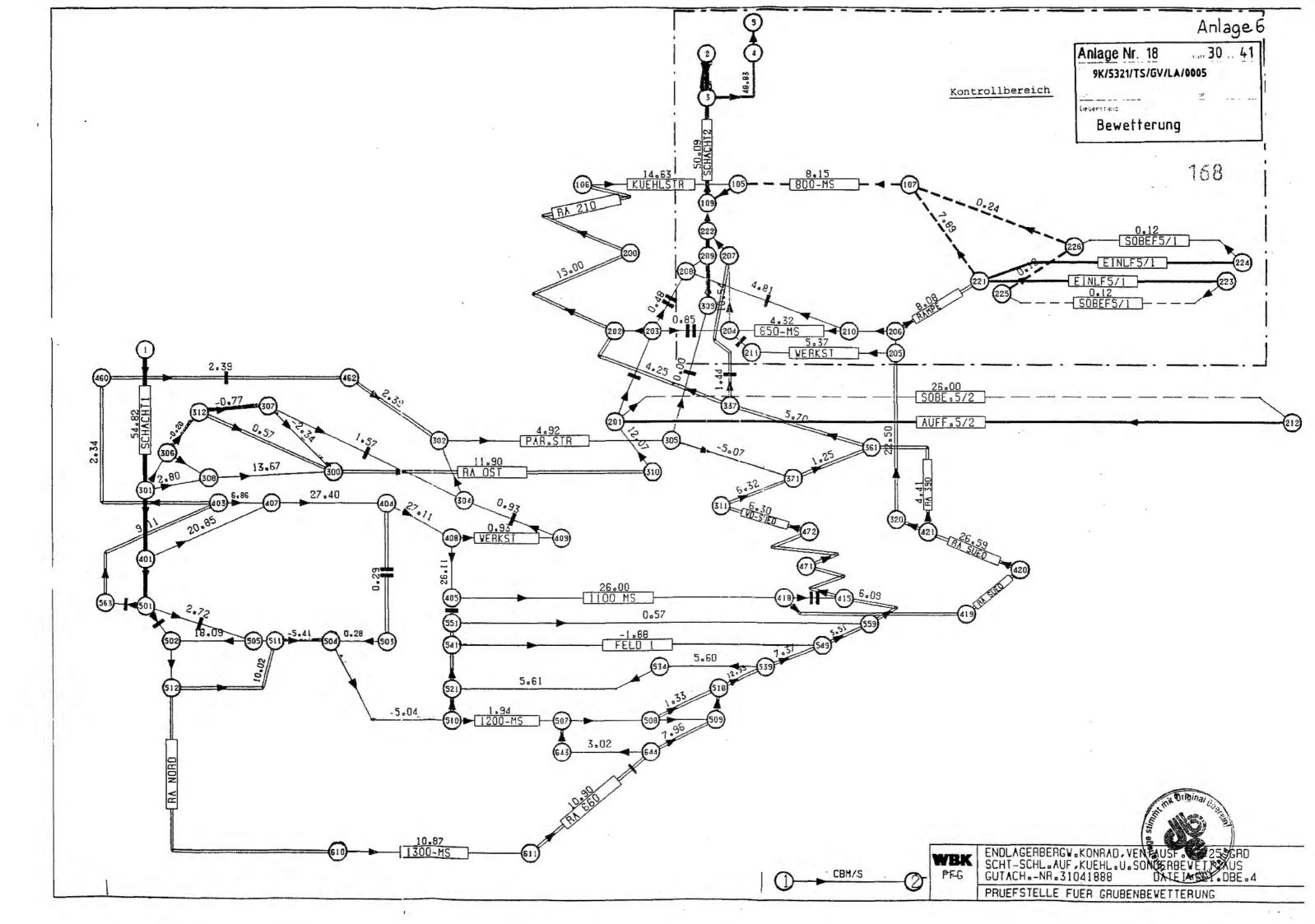
KNOTEN ANFANG	KNOTEN ENDE	ZWE1G- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMFEF ANFANG		MITTL. DICHTE	Massen -Strom	LSTG.	DRUCK ANFANG	TEUFEN- DIFFER.	MASS/ MASSG
		,,,,,,,	CBM/S	KG/M**7	PASCAL	GRA	AD C	KG/CBM	KG/S	ĸW	MBAR	М	-
421	320		40.52	0.0005	0.B	30.0	30.0	1.274	51.71	0.0	1110.80	36.0	0.00
421	361	RA 390	3.41	0.0027	0.0	30.0	30.0	1.278	4.35	0.0	1110.80	-30.0	0.00
460	462		4-14	4.0000	68.5	30.0	30.0	1.292	5.35	0.3	1125.09	0.0	0.00
462	302		4.14	0.0010	0.0	30.0	30.0	1.289	5.35	0.0	1124.41	37.0	0.00
471	472	FORTS.WD	9.27	0.0036	0.3	30.0	30.0	1.291	11.98	0.0	1124.93	15.0	0.00
472	311	WID-SUED	9.28	0.0036	0.3	30.0	30.0	1.288	11.98	0.0	1123.03	31.0	0.00
501	505		4.01	8.2000	136.6	25.0	25.0	1.339	5.37	0.5	1147.04	1.0	0.00
501	502		4.02	8.2140	137.7	25.0	25.0	1.339	5.38	0.6	1147.04	1.0	0.00
501	563		16.47	0.1200	33.7	26.0	26.0	1.335	22.00	0.6	1147.04	0.0	0.00
502	512		22.89	0.0004	0.2	30.0	30.0	1.316	30.13	0.0	1145.53	9.0	0.00
503	504		0.38	0.0053	0.0	25.0	25.0	1.338	0.51	0.0	1145-29	0.0	0.00
504	510		-3.45	0.0594	-0.7	25.0	25.0	1.338	-4.62	0.0	1145.29	3.0	0.00
505	502		18.49	0.0032	1.1	25.0	25.0	1.338	24.75	0.0	1145.54	0.0	0.00
507	508		5.40	0.0120	0.4	27.0	27.0	1.328	7.43	0.0	1144.65	0.0	0.00
508	509		3.45	0.0214	0.3	27.0	28.0	1.326	4.58	0.0	1144.64	1.0	0.00
508	518		2.15	0.0026	0.0	28.0	30.0	1.319	2.85	0.0	1144.64	13.0	0.00
509	518		12.59	0.0012	0.2	30.0	30.0	1.314	16.55	0.0	1144-51	12.0	0.00
510	521	AUFH	-6.13	0.0217	-0.8	27.0	28.0	1.324	-B.14	0.0	1144.91	26.0	0.00
510	507	1200-MS	2.65	0.0218	0.2	27.0	28.0	1.326	3.52	0.0	1144.91	2.0	0.00
511	504		-3.90	0.0276	-0-4	30.0	30.0	1.316	-5.13	0.0	1145.29	0.0	0.00
511	505		14.49	0.0032	0.7	25.0	25.0	1.338	19.38	0.0	1145.29	-2.0	0.00
5/218	(1age 517)		10.62	0.0007	0.1	24.0	25.0	1.340	14.25	0.0	1144.37	-7.0	0.00
512	X 10	NORD 570 FINH	11.88	0.0114	1.7	25.0	25.0	1.345	15.89	0.0	1144.37	-108.0	0.00
518		B 570	14.78	0.0019	0.4	30.0	30.0	1.312	19.41	0.0	1142.96	21.0	0.00
821		ANIH.	-0.66	0.0279	0.0	30.0	30.0	1.309	-0.87	0.0	1141.54	29.0	0.00

Anlage Nr. 18 28...4

ENDLAGERBERGUERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU, KUEHL.U.SONDERBEWETT.AN BERICHT-NR.31041800 DATEI:SEI.DBE.3

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG


*

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPER ANFANG		MITTL. DICHTE	MASSEN -STROM	LSTG.	DRUCK ANFANG	TEUFEN- DIFFER.	MASS/ MASSG
				CBM/S	KG/M**7	PASCAL	GRA	AD C	KG/CBM	KG/S	ĸu	MBAR	н	
534	521			5.55	0.0033	0.1	30.0	30.0	1.311	7.27	0.0	1139.74	-14.0	0.00
539	534			5.55	0.0032	0.1	30.0	30.0	1.310	7.27	0.0	1140.26	4.0	0.00
539	549			9.26	0.0016	0.1	30.0	30.0	1.309	12.13	0.0	1140.26	15.0	0.00
541	551	AUFH		1.16	0.0155	0.0	30.0	30.0	1.306	1.51	0.0	1137.81	16.0	0.00
541	549	FELD 1		-1.02	0.0157	-0.1	30.0	30.0	1.308	~2.38	0.0	1137.81	-4.0	0.00
549	559			7.46	0.0021	0.1	30.0	30.0	1.306	9.75	0.0	1138.33	22.0	0.00
559	415			8.96	0.0050	0.4	30.0	30.0	1.302	11.69	0.0	1135.51	33.0	0.00
551	559			1.48	0.0205	0.0	30.0	30.0	1.305	1.93	0.0	1135.77	2.0	0.00
563	403	AUFHAUEN		16.42	0.0329	9.2	25.0	25.0	1.332	22.00	0.2	1146.70	102.0	0.00
610	611	1300-MS		11.97	0.0032	0.5	31.0	32.0	1.325	15.89	0.0	1158.60	-9.0	0.00
611	644	RA 660	V1-STROM	12.00	0.1899	28.2	32.0	32.0	1.317	15.89	0.3	1159.77	94.0	0.00
					DROSSELANTEI									
643	507			2.99	0.0787	0.7	32.0	32.0	1.308	3.91	0.0	1147.35	21.0	0.00
644	509			9.11	0.0020	0.2	31.0	30.0	1.314	11.97	0.0	1147.35	22.0	0.00
644	643			2.98	0.0014	0.0	31.0	31.0	1.314	3.91	0.0	1147.35	0.0	0.00
1		ATM		-0.78	0.0000	0.0	15.0	15.0	1.209	-0.94	0.0	1000.00	-8.5	0.00
1		ATM		-102.90	0.0000	0.0	15.0	15.0	1.206	-124.38		1000.00	41.5	0.00

Anlage 5.5

Anlage Nr. 18 ... 29... 9K/5321/TS/GV/LA/0005
Bewetterung

UHRZEIT: 10.38

ENDLAGERBERGNERN KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE AUF, KUEHL.U. SONDERBERWETT. AUS BERICHT-NR.31041888 DATEI:SEI.DBE.4

PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

H

	PHOTEN	PHOTEN	70010	THETETYD HOLETE	HIECOSTANI	DRUCK-	TEMPER	ATIID	MITTL.	MASSEN	LSTG.	DRUCK	TEUFEN-	MASS/
	KNOTEN ANFANG	KNOTEH	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	VERBRAUCH	ANFANG	ENDE	DICHTE	-STROM	Lame		DIFFER.	MASSG
				CBM/S	KG/M**7	FASCAL	GRA	D C	KG/CBM	KG/S	KU	MEIAR	М	-
-	1	301	SCHACHT1	54.82	0.0049	12.6	25.0	25.0	1.239	64.04	0.7	1000.00	-999.5	0.00
	2	3	UKZ	-5.74	0.0010	0.0	15.0	15.0	1.210	-6.94	0.0	1001.01	0.0	0.00
	3	4	HV LE T	48.83	0.0020	4.3	25.0	25.0	1.169	57.10	0.2	1001.01	0.3	0.00
	4.	5	SCHLOT	48.83	0.0050	10.7	25.0	20.0	1.176	57.10	0.5	1000.94	49.8	0.00
	105	109		22.89	0.0008	0.4	25.0	25.0	1.279	29.27	0.0	1094.47	0.0	0.00
	106	105	KUEHLSTR	14.63	0.0013	0.3	20.0	25.0	1.289	19.03	0.0	1094.34	-1.0	0.00
	107	105	800-NS	8.15	0.0022	0.1	30.0	30.0	1.257	10.24	0.0	1094.34	-1.0	0.00
	109	3	SCHACHT2	50.09	0.0026	6.7	25.0	25.0	1.224	64.04	0.4	1094.46	778.0	0.00
	200	106	RA 210	14.97	0.0032	0.7	28.0	20.0	1.286	19.03	0.0	1099.14	38.0	0.00
	201	203		12.07	0.0791	11.3	30.0	30.0	1.268	15.31	0.1	1103.99	0.0	0.00
	201	212	SOBE .5/2	26.00	0.0000	0.0	30.0	30.0	1.268	32.98	0.0	1103.99	0.0	0.00
	202	200		15.00	0.0032	0.7	30.0	28.0	1.270	19.03	0.0	1103.88	38.0	0.00
	203	202		10.74	0.0006	0.1	30.0	30.0	1.268	13.63	0.0	1103.88	0.0	0.00
	203	204		0.85	18.0000	12.8	30.0	30.0	1.268	1.08	0.0	1103.88	0.0	0.00
	203	208		0.48	83.5000	18.7	30.0	30.0	1.268	0.61	0.0	1103.88	0.0	0.00
	204	207		10.54	0.0300	3.3	30.0	30.0	1.266	13.36	0.0	1103.75	30.0	0.00
	205	211	WERKST	5.37	0.0000	0.0	30.0	30.0	1.268	6.81	0.0	1103.52	0.0	0.00
	205	206		17.21	0.0027	0.8	30.0	30.0	1.268	21.82	0.0	1103.52	4.0	0.00
1	erla@ 288m	221	RAMPE	8.08	0.0070	0.4	30.0	30.0	1.264	10.24	0.0	1103.02	51.0	0.00
3	206	3 210		9.13	0.0002	0.0	30.0	30.0	1.268	11.57	0.0	1103.02	-5.0	0.00
	Carrie	£ 222		12.02	0.0100	1.4	30.0	30.0	1.264	15.20	0.0	1100.00	0.0	0.00
0	1001	210 222 200 222 209		5.29	0.0001	0.0	30.0	30.0	1.268	6.71	0.0	1103.69	0.0	0.00
Ž,	200 200 210 iui	222	SCH 2	15.54	0.0000	0.0	32.0	30.0	1.262	19.57	0.0	1103.69	30.0	0.00
1	A. 210	204	850-MS	4.32	0.0500	0.9	30.0	30.0	1.268	5.47	0.0	1103.64	-1.0	0.00
	210	208	VERB	4.81	0.3000	6.8	30.0	30.0	1.268	6.10	0.0	1103.64	-1.0	0.00

Anlage Nr. 18 ...31
9K/5321/TS/GV/LA/0005
Bewefferung

ENDLAGERBERGWERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE AUF, KUEHL.U. SONDERBERWETT. AUS BERICHT-NR. 31041888 DATEI: SEI. DBE. 4

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

*

NNOTEH ANFANG	KHOTEN Ende	ZWEIG- NAME	ZWEIGTYF	VOL-STR. AMFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPER ANFANG		MITTL. DICHTE	MASSEN -STROM	LSTG.	DRUCK ANFANG	TEUFEN- DIFFER.	MASS/ MASSG
				CBM/S	KG/M**7	PASCAL	GRA	AD C	KG/CBM	KG/S	KU	MBAR	Н	
211	204			5.37	0.0400	1.7	30.0	30.0	1.268	6.81	0.0	1103.52	-2.0	0.00
212	201	AUFF .5/2	V1-STROM	26.00	0.0000	0.0	30.0	30.0	1.268	32.98	0.0	1103.99	0.0	0.00
221	107			7.89	0.0019	0.1	30.0	30.0	1.259	9.94	0.0	1096.69	19.0	0.00
221	223	EINLF5/1		0.12	0.0031	0.0	30.0	30.0	1.261	0.15	0.0	1096.69	-16.0	0.00
221	224	EINLF5/1		0.12	0.0031	0.0	30.0	30.0	1.260	0.15	0.0	1096.69	-4.0	0.00
222	109	SCHT.2		27.78	0.0002	0.1	33.0	32.0	1.250	34.77	0.0	1099.98	45.0	0.00
223	225	SOBEF5/1		0.12	8.2490	0.1	30.0	30.0	1.258	0.15	0.0	1098.67	58.0	0.00
224	226	SOBEF5/1		0.12	8.2490	0.1	30.0	30.0	1.256	0.15	0.0	1097.19	59.0	0.00
225	226	ABUSTR		0.12	0.0013	0.0	30.0	30.0	1.253	0.15	0.0	1091.51	13.0	0.00
226	107			0.24	0.0019	0.0	30.0	30.0	1.255	0.30	0.0	1089.91	-36.0	0.00
300	310	RA OST -		11.90	0.0128	1.8	30.0	30.0	1.277	15.31		1119.55	124.0	0.00
301	308			2.80	0.0019	0.0	24.0	30.0	1.301	3.67	0.0		7.0	0.00
301	306			10.60	0.0071	0.8	30.0	30.0	1.288	13.66	0.0		1.0	0.00
301	401	SCH 1		35.65	0.0005	0.6	25.0	25.0	1.318	46.70	0.0	7		0.00
302	305	PAR.STR		4.92	0.0053	0.1	30.0	30.0	1.288	6.34		1120.87	4.0	0.00
304	302			2.52	0.0033	0.0	30.0	30.0	1.288	3.25		1120.87	0.0	0.00
305	309			10.00	0.2636	26.3	30.0	30.0	1.287	12.87	0.3	1120.36	2.0	0.00
305	371			-5.07	0.0022	-0.1	30.0	30.0	1.286	-6.53	0.0	1120.36	20.0	0.00
306	312			-0.20	0.005B	0.0	30.0	30.0	1.288	-0.26	0.0	1121.19	0.0	0.00
306	308			10.81	0.0010	0.1	30.0	30.0	1.288	13.92	0.0	1121.19	6.0	0.00
				-2.34	0.0113	-0.1	30.0	28.0	1.292	-3.01	0.0	1121.19	13.0	0.00
107 (erla 98 5 lin	304			1.57.	8.1644	20.1	30.0	30.0	1.288	2.02	0.0	1121.19	1.0	0.00
ATOB_	3.300			13.67	0.0019	0.4	30.0	30.0	1.287	17.60		1120.44	7.0	0.00
100	0209	SCH 2		10.10	0.0008	0.1	33.0	32.0	1.267	12.87	0.0	1119.85	130.0	0.00
(VMO)	9109 \$101			12.07	0.0019	0.3	30.0	30.0	1.268	15.31	0.0	1104.00	0.0	0.00

Anlage Nr. 18
9K/5321/TS/GV/LA/0005
Bewetterung

DATUM: 25. 8. 88

ENDLAGERBERGUERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE AUF, KUEHL.U. SONDERBERUETT. AUS BERICHT-NR.31041888 DATEI:SEI.DBE.4 * PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

×

KHOTEN	KNOTEN	ZWEIG-	ZWEIGTYP VOL-STR.	WIDERSTAND	DRUCK-	TEMPER	ATUR	MITTL.	MASSEN	LSTG.	DRUCK	TEUFEN-	MASS/
ANFANG	ENDE	HAME	ANFANG	RN	VERBRAUCH	ANFANG	ENDE	DICHTE	-STROM		ANFANG	DIFFER.	MASSG
			. CBM/S	KG/M**7	PASCAL	GRA	AD C	KG/CBM	KG/S.	KÜ	MBAR	H	-
311	371		6.32	0.0245	1.0	30.0	30.0	1.286	8.13	0.0	1120.24	19.0	0.00
312	307		-0.77	0.0062	0.0	30.0	30.0	1.288	-0.99	0.0	1121.19	0.0	0.00
312	300		0.57	1.5000	0.5	30.0	30.0	1.287	0.73	0.0	1121.19	13.0	0.00
320	205		22.50	0.0100	5.0	30.0	30.0	1.270	28.62	0.1	1107.43	31.0	0.00
337	202		4.25	0.0231	0.4	30.0	30.0	1.270	5.40	0.0	1107.37	28.0	0.00
337	207	BERG 6	1.44	8.0000	16.4	30.0	30.0	1.268	1.83	0.0	1107.37	58.0	0.00
361	337		5.70	0.0160	0.5	33.0	32.0	1.267	7.24	0.0	1115.70	67.0	0.00
371	361		1.25	0.0015	0.0	30.0	30.0	1.283	1.60	0.0	1117.84		0.00
401	407		20.85	0.0318	14.0	30.0	30.0	1.303	27.18	0.3	1134.50		0.00
401	501	SCH. 1	14.73	0.0005	0.1	25.0	25.0	1.333	19.53	0.0	1134.50		0.00
403	407		6.86	0.0021	0.1	24.0	25.0	1.327	9.12	0.0	1133.98		0.00
403	460		2.34	0.0056	0.0	26.0	30.0	1.307	3.09	0.0	1133.98		0.00
404	408		27.11	0.0052	3.9	25.0	25.0	1.325	35.92	0.1	1134.09	3.0	0.00
404	503	AUFHAUEN	0.29	572.7500	47.9	25.0	24.0	1.334	0.38	0.0	1134.09	-98.0	0.00
405	418	1100 MS	26.00	0.0125	8.7	25.0	28.0	1.317	34.43	0.2	1133.52		0.00
405	551		0.20	472.8300	19.4	30.0	30.0	1.304	0.26	0.0	1133.52	-28.0	0.00
407	404		27.40	0.0025	1.9	25.0	25.0	1.325	36.30	0.1	1133.98		0.00
408	405		26.11	0.0015	1.0	24.0	25.0	1.327	34.69	0.0	1133.66		0.00
408	409	WERKST	0.93	1.0000	0.9	25.0	25.0	1.324	1.23	0.0	1133.66		0.00
		ABU UKST	0.93	0.0243	0.0	25.0	25.0	1.317	1.23	0.0	1133.65		0.00
MEILA 18 St	mm. 471	UD SUED	6.25	0.0036	0.1	30.0	30.0	1.297	8.13	0.0	1132.43	50.0	0.00
AIB	3415		0.13	500.0000	9.1	30.0	30.0	1.301	0.18	0.0	1132.01	-4.0	0.00
414	919	VE RA SE	26.34	0.0016	1-1	30.0	30.0	1.301	34.26	0.0	1132.01	-10.0	0.00
449	320	RA SUED	26.31	0.0051	3.6	30.0	30.0	1.295	34.26	0.1	1133.28	93.0	0.00
420	471 115 115 120 121	ra sued	26.59	0.0081	5.7	30.0	30.0	1.283	34.26	0.2	1121.43	75.0	0.00

Anlage Nr. 18 33
9X/5321/TS/GV/LA/0005
Bewetterung

DATUM: 25. 8. 88

ENDLAGERBERGHERN NONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE AUF, NUEHL, U. SONDERBERWETT. AUS

BERICHT-NR.31041888

DATEI:SEI.DBE.4

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUDENBEWETTERUNG

×

KNOTEN	KNOTEN	ZUEIG~	ZWEIGTYP	VOL-STR.	WIDERSTAND	DRUCK-	TEMPER	ATUR	MITTL.	MASSEN	LSTG.		TEUFEN-	MASS/
ANFANG	ENDE	HAME		AMFANG	RH	VERBRAUCH	ANFANG	ENDE	DICHTE	-STROM		ANFANG	DIFFER.	MASSG
				CBM/S	KG/M**7	PASCAL	GRA	D C	KG/CBM	KG/S	KU	MUAR	Н	-
421	320			22.40	0.0005	0.2	30.0	30.0	1.275	28.62	0.0	1111.94	36.0	0.00
421	361	RA 390		4.41	0.0027	0.1	30.0	30.0	1.280	5.63	0.0	1111.94	-30.0	0.00
460	462			2.39	4.0000	22.8	30.0	30.0	1.293	3.09	0.1	1125.78	0.0	0.00
462	302			2.39	0.0010	0.0	30.0	30.0	1.291	3.09	0.0	1125.55	37.0	0.00
471	472	FORTS.WD		6.29	0.0036	0.1	30.0	30.0	1.293	8.13	0.0	1126.07	15.0	0.00
472	311	WD-SUED		6.30	0.0036	0.1	30.0	30.0	1.289	8.13	0.0	1124.17	31.0	0.00
501	505			2.72	8.2000	62.9	25.0	25.0	1.340	3.64	0.2	1147.44	1.0	0.00
501	502			2.74	8.2140	64.0	25.0	25.0	1.340	3.67	0.2	1147-44	1.0	0.00
501	563			9.14	0.1200	10.4	26.0	26.0	1.336	12.21	0.1	1147.44	0.0	0.00
502	512			21.18	0.0004	0.2	30.0	30.0	1.317	27.90	0.0	1146.67	9.0	0.00
503	504			0.28	0.0053	0.0	25.0	25.0	1.339	0.38	0.0	1146.44	0.0	0.00
504	510			-5.04	0.0594	-1.6	25.0	25.0	1.339	-6.75	0.0	1146.44	3.0	0.00
505	502			18.09	0.0032	1.1	25.0	25.0	1.340	24.23	0.0	1146.68	0.0	0.00
507	508			4.93	0.0120	0.3	27.0	27.0	1.330	6.55	0.0	1145.80	0.0	0.00
508	509			3.60	0.0214	0.3	27.0	28.0	1.327	4.79	0.0	1145.79	1.0	0.00
508	518			1.33	0.0026	0.0	28.0	30.0	1.320	1.77	0.0	1145.79	13.0	0.00
509	518			11.58	0.0012	0.2	30.0	30.0	1.315	15.25	0.0	1145.66	12.0	0.00
510	521	AUFH		-7.01	0.0217	-1.1	27.0	28.0	1.326	-9.32	0.0	1146.06	26.0	0.00
510	507	1200-MS		1.94	0.0218	0.1	27.0	28.0	1.328	2.58	0.0	1146.06	2.0	0.00
511	504			-5.41	0.0276	-0.B	30.0	30.0	1.317	-7.13	0.0	1146.43	0.0	0.00
selfant si	505			15.37	0.0032	0.8	25.0	25.0	1.339	20.59	0.0	1146.43	-2.0	0.00
512	504 505 505 511 510 511			10.02	0.0007	0.1	24.0	25.0	1.341	13.46	0.0	1145.51	-7.0	0.00
502	340	RA NORD		10.79	0.0114	1-4	25.0	25.0	1.347	14.44	0.0	1145.51	-108.0	0.00
	E 39	RA 570		12.95	0.0019	0.3	30.0	30.0	1.313	17.02		1144.11	21.0	0.00
	\$ 541	AUFH		-1.50	0.0279	-0.1	30.0	30.0	1.311	-1.97	0.0	1142.69	29.0	0.00

Bewetterung

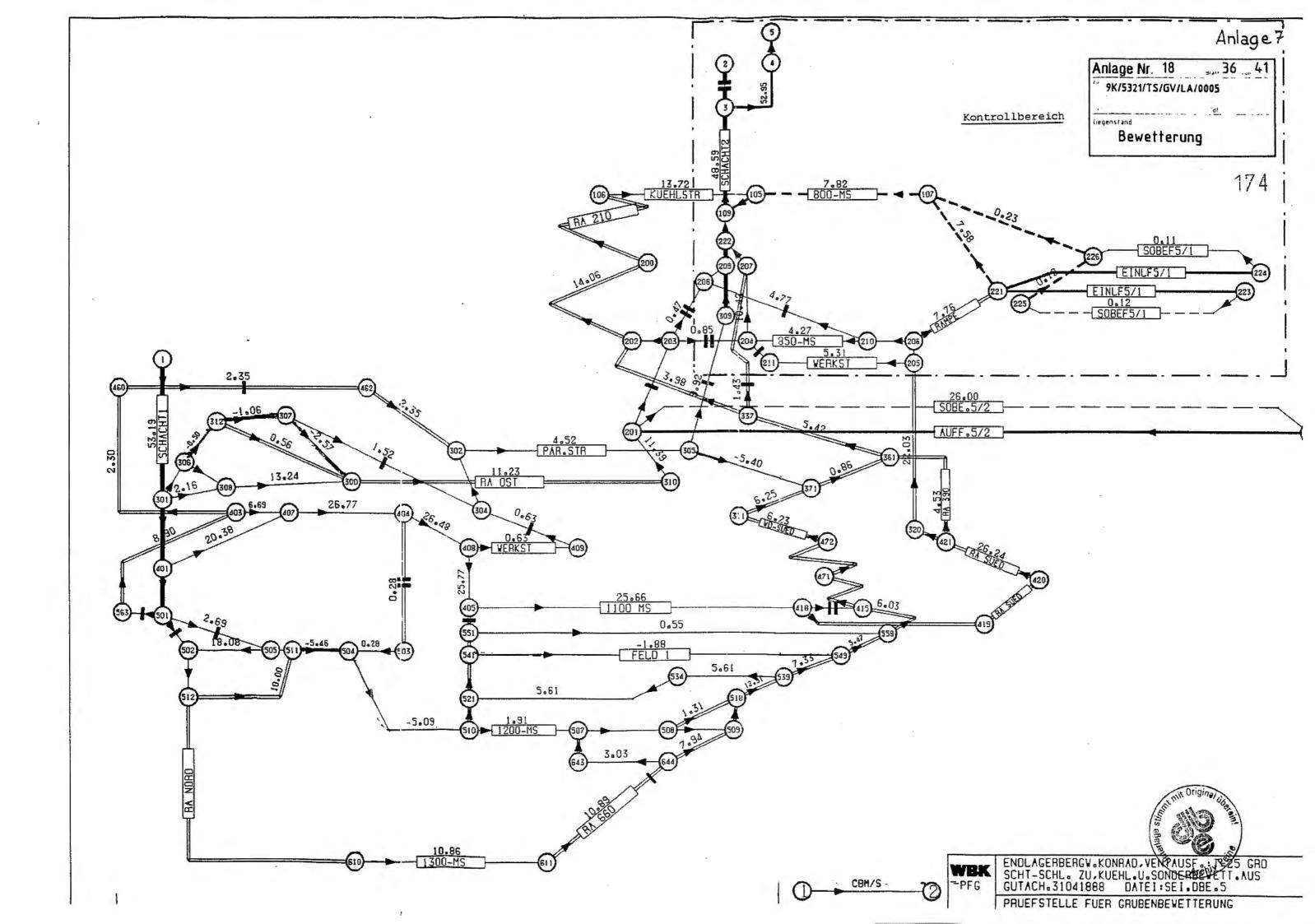
172

9K/5321/TS/GV/LA/0

ENDLAGERBERGHERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE AUF, KUEHL.U.SONDERBERWETT.AUS BERICHT-NR.31041888 DATEI:SEI.DBE.4

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG


*

KNOTEN ANFAN	KNOTEN 6 Ende	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	I/RUCK- VERBRAUCH	TEMPE!		MITTL. DICHTE	Massen -Strom	LSTG.	DRUCK ANFANG	TEUFEN- DIFFER.	MASS/ MASSG
				CBM/S	KG/M**7	PASCAL	GR	AD C	KG/CBM	KG/S	KW	MBAR	н	-
534	521			5.61	0.0033	0.1	30.0	30.0	1.312	7.35	0.0	1140.89	-14.0	0.00
539	534			5.60	0.0032	0.1	30.0	30.0	1.311	7.35	0.0	1141.40	4.0	0.00
539	549			7.37	0.0016	0.1	30.0	30.0	1.310	9.67	0.0	1141.40	15.0	0.00
541	551	AUFH		0.37	0.0155	0.0	30.0	30.0	1.307	0.48	0.0	1138.96	16.0	0.00
541	549	FELD 1		-1.80	0.0157	-0.1	30.0	30.0	1.309	-2.46	0.0	1138.96	-4.0	0.00
549	559			5.51	0.0021	0.1	30.0	30.0	1.308	7.21	0.0	1139.47	22.0	0.00
559	415			6.09	0.0050	0.2	30.0	30.0	1.304	7.96	0.0	1136.65	33.0	0.00
551	559			0.57	0.0205	0.0	30.0	30.0	1.306	0.75	0.0	1136.91	2.0	0.00
563	403	AUFHAUEN		9.11	0.0329	2.8	25.0	25.0	1.333	12.21	0.0	1147.34	102.0	0.00
610	611	1300-MS		10.87	0.0032	0.4	31.0	32.0	1.327	14.44	0.0	1159.76	~9.0	0.00
611	644	RA 660		10.90	0.2224	27.2	32.0	32.0	1.318	14.44	0.3	1160.92	94.0	0.00
643	507			3.03	0.0787	0.7	32.0	32.0	1.309	3.98	0.0	1148.50	21.0	0.00
644	509			7.96	0.0020	0.1	31.0	30.0	1.316	10.46	0.0	1148.50	22.0	0.00
644	643			3.02	0.0014	0.0	31.0	31.0	1.315	3.98	0.0	1148.50	0.0	0.00
1	2	MTA		-5.74	0.0000	0.0	15.0	15.0	1.209	-6.94	0.0	1000.00	-8.5	0.00
1	5	ATM		-47.24	0.0000	0.0	15.0	15.0	1.206	-57.10	0.0	1000.00	41.5	0.00

Anlage 6.5

Anlage Nr.

UHRZEIT: 10.42

ENDLAGERBERGWERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU , KUEHL.U.SONDERBERWETT.AUS BERICHT-HR.31041888 DATEI:SEI.DBE.5

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEUETTERUNG

×

KNOTEN ANFANG	KNOTEN Ende	ZWEIG- NAME	ZUEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPER ANFANG		MITTL. DICHTE	MASSEN -STROM	LSTG.	DRUCK ANFANG	TEUFEN- DIFFER.	MASS/ MASSG
			CBM/S	KG/M**7	PASCAL	GRA	AD C	KG/CBM	KG/S	KU	MHAR	М	-
1	301	SCHACHT1	53.19	0.0049	11.8	25.0	25.0	1.239	62.13	0.6	1000.00	-999.5	0.00
2	3	WKZ	-0.17	100.0000	-2.7	15.0	15.0	1.210	-0.21	0.0	1001.01	0.0	0.00
3	4	HV LIE T	52.95	0.0020	5.1	25.0	25.0	1.169	61.93	0.3	1001.03	0.3	0.00
4	5	SCHLOT	52.96	0.0050	12.6	25.0	20.0	1.176	61.93	0.7	1000.96	49.8	0.00
105	109		21.64	0.0008	0.4	25.0	25.0	1.279	27.67	0.0	1094.49	0.0	0.00
106	105	KUEHLSTR		0.0013	0.2	20.0	25.0	1.289	17.83	0.0	1094.37	-1.0	0.00
107	105	800-MS	7.82	0.0022	0.1	30.0	30.0	1.257	9.84	0.0	1094.37	-1.0	0.00
109	3	SCHACHT2		0.0026	6.4	25.0	25.0	1.224	62.13	0.3	1094.49	778.0	0.00
200	106	RA 210	14.03	0.0032	0.6	28.0	20.0	1.286	17.83	0.0	1099.16	38.0	0.00
201	203	101 000	11.39	0.0791	10.1	30.0	30.0	1.268	14.45	0.1	1104.00	0.0	0.00
201	212	SOBE .5/2		0.0000	0.0	30.0	30.0	1.268	32.98	0.0	1104.00	0.0	0.00
202	200		14.06	0.0032	0.6	30.0	28.0	1.270	17.83	0.0	1103.90	38.0	0.00
203	202		10.07	0.0004	0.1	30.0	30.0	1.268	12.77	0.0	1103.90	0.0	0.00
203	204		0.85	18.0000	12.7	30.0	30.0	1.268	1.07	0.0	1103.90	0.0	0.00
203	208		0.47	83.5000	18.5	30.0	30.0	1.268	0.60	0.0	1103.90	0.0	0.00
204	207		10.42	0.0300	3.2	30.0	30.0	1.266	13.22	0.0	1103.78	30.0	0.00
205	211	WERKST	5.31	0.0000	0.0	30.0	30.0	1.268	6.73	0.0	1103.54	0.0	0.0
205	206		16.80	0.0027	0.7	30.0	30.0	1.268	21.30	0.0	1103.54		0.00
204	221	RAMPE	7.76	0.0070	0.4	30.0	30.0	1.264	9.84	0.0	1103.04	51.0	0.00
206	210		9.05	0.0002	0.0	30.0	30.0	1.268	11.47	0.0	1103.04	-5.0	0.00
207/11	ellage Stro	2	11.90	0.0100	1.4	30.0	30.0	1.264	15.04	0.0	1100.02	0.0	0.00
208	erlage styp	1	5.25	0.0001	0.0	30.0	30.0	1.268	6.65	0.0	1103.72		0.00
208 209 210		SEP 2	15.42	0.0000	0.0	32.0	30.0	1.262	19.43	0.0	1103.72	30.0	0.00
210	(1) (20%)	BSO-MS UEKB	4.27	0.0500	0.9	30.0	30.0	1.268	5.42	0.0	1103.66	-1.0	0.00
ata	208	NEKB	4.77	0.3000	6.7	30.0	30.0	1.268	6.05	0.0	1103.66	~1.0	0.00

Anlage 7.1

Anlage Nr. 18 37
9K/5321/TS/GV/LA/0005
Beweiterung

ENDLAGERBERGUERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU , KUEHL.U. SONDERBERWETT. AUS BERICHT-NR.31041888 DATEI:SEI.DBE.5

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

×

KNOTEN	KNOTEN	ZWEIG-	ZWEIGTYP	VOL-STR.	WIDERSTAND	DRUCK-	TEMPER	ATUR	MITTL.	MASSEN	LSTG.	DRUCK	TEUFEN-	MASS/
ANFANG	ENDE	NAME		ANFANG	RN	VERBRAUCH	ANFANG	ENDE	DICHTE	-STROM		ANFANG	DIFFER.	MASSG
				CBM/S	KG/M**7	PASCAL	GRA	D C	KG/CBM	KG/S	KU	MBAR	М	_
211	204			5.31	0.0600	1.7	30.0	30.0	1.268	6.73	0.0	1103.54	-2.0	0.00
212	201	AUFF.5/2	V1-STROM	26.00	0.0000	0.0	30.0	30.0	1.268	32.98	0.0	1104.00	0.0	0.00
221	107			7.58	0.0019	0.1	30.0	30.0	1.259	9.55	0.0	1094.72	19.0	0.00
221	223	EINLF5/1		0.12	0.0031	0.0	30.0	30.0	1.261	0.15	0.0	1096.72	-16.0	0.00
221	224	EINLF5/1		0.11	0.0031	0.0	30.0	30.0	1.260	0.14	0.0	1096.72	-4.0	0.00
222	109	SCHT.2		27.54	0.0002	0.1	33.0	32.0	1.250	34.46	0.0	1100.01	45.0	0.00
223	225	SOBEF5/1		0.12	8.2490	0.1	30.0	30.0	1.258	0.15	0.0	1098.69	58.0	0.00
224	226	SOBEF5/1		0.11	8.2490	0.1	30.0	30.0	1.256	0.14	0.0	1097.21	59.0	0.00
225	226	ABUSTR		0.12	0.0013	0.0	30.0	30.0	1.253	0.15	0.0	1091.54	13.0	0.00
226	107			0.23	0.0019	0.0	30.0	30.0	1,255	0.29	0.0	1089.94	-36.0	0.00
300	310	RA OST		11.23	0.0128	1.6	30.0	30.0	1.277	14.45	0.0	1119.56	124.0	0.00
301	308			2.16	0.0019	0.0	24.0	30.0	1.301	2.83	0.0	1121.34	7.0	0.00
301	306			10.53	0.0071	0.8	30.0	30.0	1.288	13.56	0.0	1121.34	1.0	0.00
301	401	SCH 1		34.91	0.0005	0.6	25.0	25.0	1.318	45.73	0.0	1121.34	-102.0	0.00
302	305	PAR.STR		4.52	0.0053	0.1	30.0	30.0	1.288	5.83	0.0	1120.89	4.0	0.00
304	302			2.17	0.0033	0.0	30.0	30.0	1.288	2.79	0.0	1120.89	0.0	0.00
305	309			9.92	0.2636	25.9	30.0	30.0	1.287	12.77	0.3	1120.38	2.0	0.00
305	371			-5.40	0.0022	-0.1	30.0	30.0	1.286	-6.95	0.0	1120.38	20.0	0.00
306	312			-0.50	0.0058	0.0	30.0	30.0	1.288	-0.65	0.0	1121.20	0.0	0.00
306	308			11.03	0.0010	0.1	30.0	30.0	1.288	14.21	0.0	1121.20	6.0	0.00
307	300			-2.57	0.0113	-0.1	30.0	28.0	1.292	-3.32	0.0	1121.20	13.0	0.00
307	304			1.52	8.1644	18.7	30.0	30.0	1.288	1.95	0.0	1121.20	1.0	0.00
308ig9	Stim 300			13.24	0.0019	0.3	30.0	30.0	1.287	17.05	0.0	1120.44	7.0	0.00
309	51/m 300 201	SCH 2		10.02	0.0008	0.1	33.0	32.0	1.267	12.77	0.0	1119.87	130.0	0.00
310	204			11.39	0.0019	0.2	30.0	30.0	1.268	14.45	0.0	1104.01	0.0	0,00

nlage Nr. 18 38 41
9K/S3Z1/TS/GV/LA/0005
Bewetterung

ENDLAGERBERGUERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU , KUEHL.U.SONDERBERWETT.AUS BERICHT-NR.31041888 DATEI:SEI.DBE.5

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN KNOTEN ZWEIG- ZWEIGTYP VOL-STR. WIDERSTAND DRUCK-TEMFERATUR MITTL. MASSEN LSTG. DRUCK TEUFEN- MASS/ ANFANG ENDE NAME **ANFANG** ANFANG ENDE -STROM ANFANG DIFFER. MASSG RN VERBRAUCH DICHTE CBM/S KG/M**7 **FASCAL** GRAD C KG/CHM KG/S KU MBAR M

		DETIN G	1107 177	1110011			1107 0211	,,,,,,	1	******	••	
311	371	6.25	0.0245	1.0	30.0	30.0	1.286	8.05	0.0	1120.27	19.0	0.00
312	307	-1.06	0.0062	0.0	30.0	30.0	1.288	-1.36	0.0	1121.20	0.0	0.00
312	300	0.56	1.5000	0.5	30.0	30.0	1.287	0.72	0.0	1121.20	13.0	0.00
320	205	22.03	0.0100	4.8	30.0	30.0	1.270	28.03	0.1	1107.45	31.0	0.00
337	202	3.98	0.0231	0.4	30.0	30.0	1.270	5.06	0.0	1107.39	28.0	0.00
337	207 RERG 6	1.43	8.0000	16.2	30.0	30.0	1.268	1.82	0.0	1107.39	58.0	0.00
361	337	5.42	0.0160	0.5	33.0	32.0	1.267	6.88	0.0	1115.72	67.0	0.00
371	361	0.86	0.0015	0.0	30.0	30.0	1.283	1.10	0.0	1117.86	17.0	0.00
401	407	20.38	0.0318	13.3	30.0	30.0	1.303	26.57	0.3	1134.51	3.0	0.00
401	501 SCH. 1	14.46	0.0005	0.1	25.0	25.0	1.333	19.17	0.0	1134.51	-99.0	0.00
403	407	6.69	0.0021	0.1	24.0	25.0	1.327	8.89	0.0	1134.00	0.0	0.00
403	460	2.30	0.0056	0.0	26.0	30.0	1.307	3.04	0.0	1134.00	64.0	0.00
404	408	26.48	0.0052	3.7	25.0	25.0	1.325	35.08	0.1	1134.11	3.0	0.00
404	503 AUFHAUEN	0.28	572.7500	47.3	25.0	24.0	1.334	0.38	0.0	1134.11	-98.0	0.00
405	418 1100 MS	25.66	0.0125	8.5	25.0	28.0	1.317	33.98	0.2	1133.54	11.0	0.00
405	551	0.20	472.B300	18.9	30.0	30.0	1.304	0.26	0.0	1133.54	-28.0	0.00
407	404	26.77	0.0025	1.8	25.0	25.0	1.325	35.46	0.0	1133.99	-1.0	0.00
408	405	25.77	0.0015	1.0	24.0	25.0	1.327	34.24	0.0	1133.68	1.0	0.00
408	409 WERKST	0.63	1.0000	0.4	25.0	25.0	1.324	0.84	0.0	1133.68	0.0	0.00
409	304 ABU UKST	0.63	0.0243	0.0	25.0	25.0	1.317	0.84	0.0	1133.67	99.0	0.00
415	Jage 471 WD SUED	6.19	0.0036	0.1	30.0	30.0	1.298	8.05	0.0	1132.45	50.0	0.00
ANDIE	Stage Stranger	0.13	500.0000	8.9	30.0	30.0	1.301	0.17	0.0	1132.03	-4.0	0.00
/418	419 WH RA SD	26.00	0.0016	1.1	30.0	30.0	1.301	33.81	0.0	1132.03	-10.0	0.00
≥A19	20 RA SUED	25.97	0.0051	3.5	30.0	30.0	1.295	33.81	0.1	1133.30	93.0	0.00
2420	SUED SUED	26.24	0.0081	5.6	30.0	30.0	1.283	33.81	0.1	1121.45	75.0	0.00
12												

Anlage 7.3

ENDLAGERBERGWERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU , KUEHL. D. SONDERBERWETT. AUS BERICHT-NR. 31041888 DATEI: SEI. DBE. 5

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

-

KNOTEN ANFANG	KNOTEN Ende	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPER ANFANG	RATUR ENDE	MITTL. DICHTE	MASSEN -STROM	LSTG.	DRUCK	TEUFEN- DIFFER.	MASS/ MASSG
rui ruio	Line	THE IL	CBM/S	KG/M**7	PASCAL		AD C	KG/CBM	KG/S	KU	MBAR	М	-
	700		D. 54	0.0005		70.0	70.0	1 075	20.02	0.0	1111.96	36.0	0.00
421	320	EM 700	21.94	0.0005	0.2	30.0 30.0	30.0	1.275	28.03 5.78	0.0	1111.76	-30.0	0.00
421	361	RA 390	4.53	0.0027 4.0000	22.1	30.0	30.0	1.293	3.04	0.1	1125.79	0.0	0.00
460	462		2.35		0.0	30.0	30.0	1.273	3.04	0.0	1125.57	37.0	0.00
462	302	FORTE US	2.35	0.0010	0.1	30.0	30.0	1.293	8.05	0.0	1126.09	15.0	0.00
471	472	FORTS.WD	6.22	0.0036	0.1	30.0	30.0	1.289	8.05	0.0	1124.19	31.0	0.00
472	311 505	WD-SUED	6.23 2.69	8.2000	61.6	25.0	25.0	1.340	3.61	0.2	1147.45	1.0	0.00
501 501	502		2.71	B.2140	62.7	25.0	25.0	1.340	3.63	0.2	1147.45	1.0	0.00
501	563		8.93	0.1200	9.9	26.0	26.0	1.336	11.93	0.1	1147.45	0.0	0.00
502	512		21.14	0.0004	0.2	30.0	30.0	1.317	27.85	0.0	1146.69	9.0	0.00
503	504		0.28	0.0053	0.0	25.0	25.0	1.339	0.38	0.0	1146.46	0.0	0.00
504	510		-5.09	0.0594	-1.6	25.0	25.0	1.339	-6.81	0.0	1146.46	3.0	0.00
505	502		18.08	0.0032	1.1	25.0	25.0	1.340	24.22	0.0	1146.70	0.0	0.00
507	508		4.91	0.0120	0.3	27.0	27.0	1.330	6.52	0.0	1145.82	0.0	0.00
508	509		3.60	0.0214	0.3	27.0	28.0	1.327	4.79	0.0	1145.81	1.0	0.00
508	518		1.31	0.0026	0.0	28.0	30.0	1.320	1.74	0.0	1145.B1	13.0	0.00
509	518		11.57	0.0012	0.2	30.0	30.0	1.315	15.23	0.0	1145.68	12.0	0.00
510	521	AUFH	-7.03	0.0217	-1.1	27.0	28.0	1.326	-9.35	0.0	1146.08	26.0	0.00
510	507	1200-MS	1.91	0.0218	0.1	27.0	28.0	1.328	2.54	0.0	1146.08	2.0	0.00
CLL	FAA	2200 112	-5.46	0.0276	-0.8	30.0	30.0	1.317	-7.19	0.0	1146.45	0.0	0.00
Interest	mm 505		15.39	0.0032	0.B	25.0	25.0	1.339	20.61	0.0	1146.45	-2.0	0.00
5130	31		10.00	0.0007	0.1	24.0	25.0	1.341	13.42	0.0	1145.53	-7.0	0.00
519	80	RA NORD	10.78	0.0114	1.4	25.0	25.0	1.347	14.43	0.0	1145.53	-108.0	0.00
Chief J21		RA 570	12.91	0.0019	0.3	30.0	30.0	1.313	16.97	0.0	1144.13	21.0	0.00
321	A1	AUFH	-1.52	0.0279	-0.1	30.0	30.0	1.311	-2.00	0.0	1142.71	29.0	0.00

Bewettering	pur, sadbe ;	707	Anlage N
		187	S/GY/LA/000
			40 41

ENDLAGERBERGUERK KONRAD, VENTILATORAUSFALL, T UEBER TAGE= 25 GRD SCHT-SCHLEUSE ZU , KUEHL.U.SONDERBERUETT.AUS BERICHT-NR.31041888 DATEI:SEI.DBE.5

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

×

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG CBM/S	WIDERSTAND RN KG/M**7	Druck- Verbrauch Pascal	TEMPERATUR ANFANG ENDE GRAD C		MITTL. DICHTE KG/CBM	MASSEN -STROM KG/S	LSTG. Ku	DRUCK ANFANG MBAR	TEUFEN- DIFFER. M	MASSC MASSC
539	534			5.61	0.0032	0.1	30.0	30.0	1.311	7.35	0.0	1141.43	4.0	0.00
539	549			7.33	0.0016	0.1	30.0	30.0	1.310	9.61	0.0	1141.43	15.0	0.00
541	551	AUFH		0.35	0.0155	0.0	30.0	30.0	1.307	0.46	0.0	1138.98	16.0	0.00
541	549	FELD 1		-1.88	0.0157	-0.1	30.0	30.0	1.309	-2.46	0.0	1138.98	-4.0	0.00
549	559			5.47	0.0021	0.1	30.0	30.0	1.308	7.16	0.0	1139.50	22.0	0.00
559	415			6.03	0.0050	0.2	30.0	30.0	1.304	7.88	0.0	1136.67	33.0	0.00
551	559			0.55	0.0205	0.0	30.0	30.0	1.306	0.72	0.0	1136.93	2.0	0.00
563	403	AUFHAUEN		8.90	0.0329	2.7	25.0	25.0	1.333	11.93	0.0	1147.35	102.0	0.00
610	611	1300-HS		10.86	0.0032	0.4	31.0	32.0	1.327	14.43	0.0	1159.78	-9.0	0.00
611	644	RA 660		10.89	0.2224	27.2	32.0	32.0	1.318	14.43	0.3	1160.94	94.0	0.00
643	507			3.04	0.0787	0.7	32.0	32.0	1.309	3.98	0.0	1148.52	21.0	0.00
644	509			7.94	0.0020	0.1	31.0	30.0	1.316	10.44	0.0	1148.52	22.0	0.00
644	643			3.03	0.0014	0.0	31.0	31.0	1.315	3.98	0.0	1148.52	0.0	0.00
1	2	ATH		-0.17	0.0000	0.0	15.0	15.0	1.209	-0.21	0.0	1000.00	-8.5	0.00
1	5	ATM		-51.23	0.0000	0.0	15.0	15.0	1.206	-61.93		1000.00		0.00

Anlage 7.5

9K/5321/TS/GV/LA/0005

PRISTAND

Beweiterung

Westfälische Berggewerkschaftskasse

180

Projekt N A A N	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lid.Nr.	Rev.
9K	5321		TS	AANINA	RANN	GV	LA.	0004	00

WBK-Prüfstelle für Grubenbewetterung

N A C H T R A G Nr. 31042688

zum Gutachten Nr. 31041888 vom 10.08.88 über die Planung der Bewetterung für die Einlagerung in Feld 5/1 und die Auffahrung von Feld 5/2 des Endlagerbergwerks Konrad in Salzgitter

bearbeitet von:

Bochum, den 12.10.1988

Westfälische Berggewerkschaftskasse Prüfstel<u>le für Grubenbewette</u>rung

- 181

Blatt 2

12.10.88

Nachtrag Nr. 31042688 Endlagerbergwerk Konrad

Die Physikalisch Technische Bundesanstalt in Braunschweig als Auftraggeber für die Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH in Peine äußerte zu dem Gutachten Nr. 31041888 der Prüfstelle für Grubenbewetterung der Westfälischen Berggewerkschaftskasse folgende Ergänzungswünsche:

- 1. Es soll explizit gesagt werden, daß im ungünstigsten Fall zwar lokal eine Wetterumkehr möglich ist, daß aber auch beim Ausfall sämtlicher Bewetterungseinrichtungen über und unter Tage eine solche Wetterumkehr ausgeschlossen ist, bei der die Wetter über den Schacht 1 ausziehen.
- 2. Es soll der Fall berechnet werden, daß die Bewetterungseinrichtungen unter Tage ausfallen und nur der Hauptgrubenventilator arbeitet. Dabei muß eine auch lokale Wetterumkehr aus dem Kontrollbereich heraus ausgeschlossen sein.
- 3. Es soll erläutert werden, welche Wetterströme bei Temperaturen über 25 °C zu erwarten sind oder weshalb dieser Temperaturbereich nicht mehr gesondert betrachtet werden muß.
- 4. Es soll erläutert werden, mit welcher Reparaturzeit bei Ausfall eines Ventilators in der Abwetterstrecke oder in dem Fall, daß eine Luttentour abreißt, zu rechnen ist.

zu 1:

In dem o. g. Gutachten (Kap. 3.2) sind die bei den Berechnungen der Wetterstrom- und Druckverteilung beim Ausfall des Hauptgrubenventilators angenommenen Bedingungen ausführlich beschrieben. Wie die Ergebnisse dieser Berechnungen zeigen, kommt es dabei zu keiner Wetterumkehr im Schacht 1. Sollten andere Bedingungen für den "ungünstigsten Fall" als die dort beschriebenen angenommen werden, müßten diese explizit definiert werden. Es ist sicher vorstellbar, daß es extreme Bedingungen gen gen ben kann, bei denen sich beim Ausfall des Hauptgrube sein

182

Blatt 3

12.10.88

Nachtrag Nr. 31042688 Endlagerbergwerk Konrad

tors die Wetterrichtung auch im Schacht ländert. Nicht zuletzt aus diesem Grunde wurde in dem o.g. Gutachten ein zweiter, in Reserve stehender Hauptgrubenventilator empfohlen, der bei Ausfall des in Betrieb befindlichen Ventilators unverzüglich in Betrieb genommen werden kann.

zu 2:

Berechnungen für einen solchen Fall wurden bislang nicht verlangt; sie wurden nachträglich durchgeführt, und es wurde angenommen, daß die Bewetterung der Einlagerungskammern ausfällt, wobei alle anderen Bewetterungseinrichtungen intakt bleiben. Wie die Anlagen 1 und 2 zeigen, kommt es dabei in den Einlagerungsstrecken praktisch zu Wetterstillstand. Eine Wetterumkehr in den Wetterzweigen zwischen dem Kontrollbereich und dem übrigen Grubengebäude wurde nicht festgestellt. Der Ausfall anderer Bewetterungseinrichtungen – es sind Wetterschleusen und Drosseln – ist unwahrscheinlich. Aus Sicherheitsgründen sollten jedoch solche Einrichtungen grundsätzlich verdoppelt, gegenseitig verriegelt und so eingerichtet werden, daß sie im Störfall in die gewünschte (geplante) Stellung gehen, damit die Wetterführung nicht unnötig gestört wird und auch für die Belegschaft notwendige Fluchtwege bestehen bleiben.

zu 3:

In dem o. g. Gutachten wurden für die Berechnungen Ausfall des Hauptgrubenventilators die Tagesmitteltemperaturen -10 °C und +25 °C angenommen, weil solche Tagesmitteltemperaturen nur sehr selten unter- oder überschritten werden und die Wahrscheinlichkeit, daß an einem solchen Tage der Ventilator längerfristig ausfällt, sehr klein ist. In der Anlage 3 sind die Tagesmitteltemperaturen über 25 °C und Tagesmaximaltemperaturen über 30 °C nach entsprechender Nachfrage beim Wetteramt Hannover für die

183

Blatt 4

12.10.88

Nachtrag Nr. 31042688 Endlagerbergwerk Konrad

Gegend der Grube Konrad (Meßstation Braunschweig-Völkenrode) zusammengefaßt. Danach sind in den letzten 10 Jahren insgesamt an 6 d Tagesmitteltemperaturen über 25 °C und an 22 d Maximaltemperaturen über 30 °C gemessen worden. Sollten also auch für Temperaturen über 25 °C entsprechende Berechnungen durchgeführt werden, sollte die Häufigkeit solcher Tage berücksichtigt werden, wobei dies mit in den Begriff "ungünstigster Fall" gehört. Darüber hinaus müßten die Wettertemperaturen im Grubengebäude auch genauer untersucht werden, damit für solche kritischen Fälle die Berechnungen möglichst genau sind.

zu 4:

Reparaturarbeiten an Bewetterungseinrichtungen dauern in der Regel längere Zeit – auf jeden Fall länger als ein nicht ordnungsgemäßer Zustand der Bewetterung toleriert werden kann. Um Störungen der Bewetterung auf eine möglichst kurze Zeitdauer zu beschränken, sollten daher z.B. in dem Einlagerungsbereich – oder in seiner Nähe – Ersatzlutten und -ventilatoren, ansonsten in der Nähe aller anderen Bewetterungseinrichtungen entsprechende Ersatzteile bereitgehalten werden, damit defekte Teile unverzüglich ausgetauscht werden können, ohne an Ort und Stelle repariert werden zu müssen.

Bochum, den 12.10.1988

DATUM: 11.10. 88

UHRZEIT: 9.19

ENDLAGERBERGWERK KONRAD
AUSF.D.SOBE I.D.EINLAGERUNG
BERICHT-NR.31042688 DATEI:SEI.DBE.6

* PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN KNOTEN ZWEIG-ZWEIGTYP VOL-STR. **UIDERSTAND** DRUCK-TEMPERATUR MASSEN MITTE. DRUCK TEUFEN-MASS/ STG. ANFANG ENDE NAME ANFANG RM VERBRAUCH ANFANG ENDE DICHTE -STROM ANFANG DIFFER. MASSG CRM/S KG/M**7 PASCAL GRAD C KG/CBM KG/S KU MBAR H 1 301 SCHACHT1 242.74 0.0049 259.0 15.0 -999.5 24.0 293.42 1.261 60.3 1000.00 0.00 2 3 **WKZ** 2.50 100.0000 588.2 15.0 15.0 1.206 3.03 1.5 1001.01 0.0 0.00 3 4 HV UE T V1-STROM 255.00 -0.0148 862.8 25.0 25.0 1.168 296.45 -219.1995.13 0.3 0.00 4 5 SCHLOT 252.82 0.0050 288.8 25.0 20.0 1.177 296.45 72.7 1003.73 49.8 0.00 105 109 162.43 0.0008 20.3 40.0 30.0 196.49 1.230 1087.57 3.2 0.0 0.00 104 105 KUEHLSTR 104.00 0.0013 14.6 20.0 45.0 1.241 134.40 1087.59 1.6 -1.00.00 107 105 800-MS 1087.50 49.70 0.0022 5.3 30.0 1.250 30.0 62.10 0.3 -1.00.00 SCHACHT2 145.6 109 3 0.0026 241.06 38.0 25.0 1.190 293.42 35.9 1087.37 778.0 0.00 200 106 RA 210 0.0032 1092.71 106.34 35.0 28.0 20.0 1.278 134,40 0.00 3.7 38.0 201 203 0.0791 79.46 490.9 30.0 30.0 1.264 100.68 39.1 1102.71 0.0 0.00 201 212 SOBE .5/2 26.00 0.0000 0.0 30.0 30.0 1.267 32.94 0.0 1102.71 0.0 0.00 202 200 106.55 0.0032 35.4 30.0 28.0 1.263 134.40 3.8 1097.77 38.0 0.00 203 202 76.44 0.0006 3.7 30.0 30.0 1.261 1097.80 96.42 0.3 0.0 0.00 203 204 2.14 18.0000 80.4 30.0 30.0 1.261 1097.80 2.70 0.2 0.0 0.00 208 203 1.24 B3.5000 125.5 30.0 30.0 1.261 1097.80 1.56 0.2 0.0 0.00 207 204 32.45 0.0300 30.9 30.0 30.0 1.2581.0 1097.00 40.90 30.0 0.00 205 WERKST 0.0000 211 18.88 0.0 30.0 30.0 1.260 23.80 0.0 1096.96 0.0 0.00 205 206 73.96 0.0027 14.3 30.0 30.0 1.260 93.22 1096.96 0.00 4.0 1.1 206 221 RAMPE 0.0070 49.30 30.0 1.256 16.6 30.0 62.10 0.8 1096.32 51.0 0.00 206 210 24.71 0.0002 0.1 30.0 1096.32 30.0 1.260 31.12 0.0 -5.0 0.00 207 222 0.0100 36.63 13.0 30.0 1092.99 30.0 1.256 46.00 0.5 0.0 0.00 20R 209 14.51 0.0001 0.0 30.0 30.0 1096.55 1.260 18.29 0.0 0.0 0.00 209 222 SCH 2 40.69 0.0000 0.1 32.0 30.0 1.254 50.93 1096.55 30.0 0.00 0.0 0.0500 204 850-MS 210 11.43 6.4 30.0 30.0 1.260 14.40 0.1 1096.94 -1.00.00 210 209 VERB 13.27 0.3000 51.5 30.0 30.0 16.72 1096.94 1.260 -1.0 0.00 0.7 0.0600 211 204 18.88 20.9 30.0 30.0 1.260 23.80 0.4 1096.96 -2.0 0.00 212 201 AUFF.5/2 V1-STROM 0.0000 26.00 0.0 30.0 30.0 1.267 32.94 0.0 1102.71 0.0 0.00 221 107 48.11 0.0019 30.0 1.251 1089.87 4 4 30.0 60.25 0.2 19.0 0.00 221 223 EINLF5/1 0.74 0.0031 0.0 30.0 1089.87 30.0 1.253 0.92 0.0 -16.0 0.00 EINLF5/1 221 224 0.74 0.0031 0.0 30.0 30.0 1.253 0.92 1089.87 -4.0 0.0 0.00 222 109 SCHT.2 0.0002 77.96 0.9 33.0 32.0 1.242 96.93 1092.86 45.0 0.1 0.00 223 225 SOBEF5/1 0.74 8.2490 4.4 30.0 30.0 1.250 0.92 0.0 1091.84 58.0 0.00 224 226 SOBEF5/1 0.74 8.2490 30.0 4.4 30.0 1.249 0.92 0.0 1090.37 59.0 0.00 225 226 ABUSTR 0.74 0.0013 0.0 30.0 30.0 1.245 0.92 0.0 1084.69 13.0 0.00 226 107 0.0019 1.48 0.0 30.0 1083.10 30.0 1.247 1.85 0.0 -36.00.00 300 310 RA OST 78.30 0.0128 78.6 30.0 1119.14 30.0 1.276 100.68 6.2 124.0 0.00 301 308 54.37 0.0019 5.9 24.0 30.0 1121.05 1.301 71.45 0.3 7.0 0.00 306 301 30.93 0.0071 30.0 1.288 1121.05 6.7 30.0 39.85 0.2 1.0 0.00 301 401 SCH 1 138.60 0.0005 9.7 24.0 25.0 1.3 1121.05 -102.0 1.320 182-12 0.00 305 PAR.STR 302 33.45 0.0053 5.9 30.0 30.0 1.281 42.B6 1115.11 0.00 0.2 4.0 0.0 304 302 23.95 0.0033 1.9 30.0 30.0 1.281 30.69 1115.13 0.0 0.00 305 309 25.49 0.2636 169.9 30.0 30.0 1.279 32.64 4.3 1114.55 2.0 0.00 305 371 7.98 0.00220.1 30.0 30.0 1.279 1114.55 20.0 0.00 10.22 0.0 306 312 22.64 0.0058 3.0 30.0 30.0 1.288 29.15 0.1 1120.86 0.0 0.00 306 30B 0.0010 8.30 0.130.0 30.0 1,287 10.69 0.0 1120.86 0.00 6.0 307 300 0.0113 12.57 1.8 30.0 28.0 1.291 1120.80 16.18 0.0 13.0 0.00 307 304 8.25 8.1644 554.6 30.0 30.0 1.285 1120.80 10.62 4.6 1.0 0.00 308 300 63.83 0.0019 7.9 30.0 1.286 1120.10 30.0 82.14 7.0 0.00 0.5 309 209 SCH 2 25.79 0.0008 0.5 33.0 32.0 1.259 32.64 0.0 1112.60 130.0 0.00 Origina/ Judge 310 201 79.46 0.0019 100.68 11.8 30.0 30.0 1.267 0.0 0.00

DATUM: 11.10. 88

UHRZEIT: 9.19

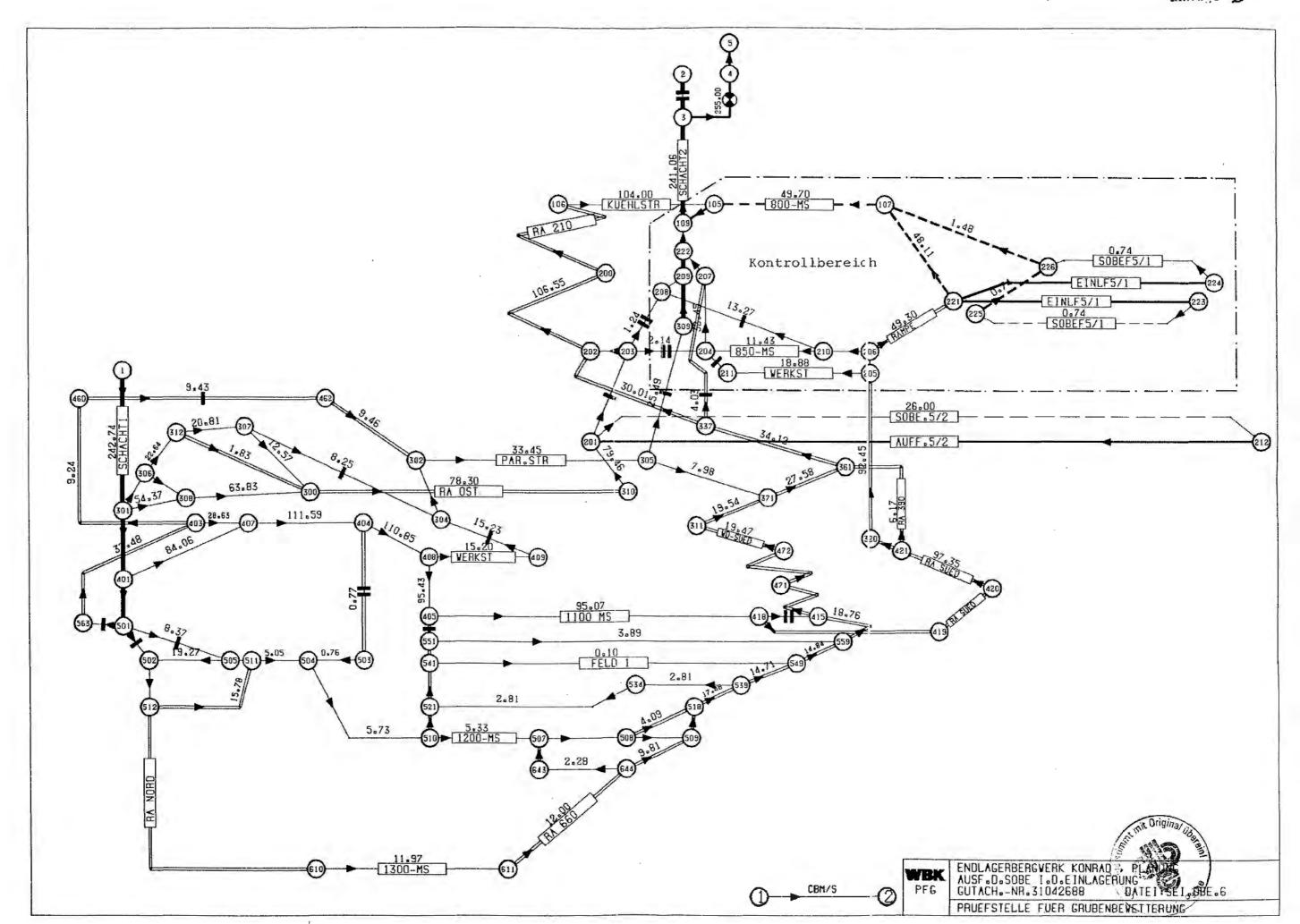
ENDLAGERBERGUERK KOMRAD AUSF.D.SOBE I.D.EINLAGERUNG BERICHT-NR.31042688 DATEI:SEI.DBE.6 * PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

NOTEN ANFANG	KNOTEN	ZUEIG- NAME	ZWEIGTYP	VOL-STR.	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPE		MITTL. DICHTE	MASSEN -STROM	LSTG.		TEUFEN- DIFFER.	MASS
THE COLOR	CHIC	,,,,,		CBH/S	KG/H**7	PASCAL		AD C	KG/CBM	KG/S	ĸu	MBAR	н	-
311	371			19.54	0.0245	9.3	30.0	30.0	1.279	25.03		1114.51	19.0	0.0
312	307			20.81	0.0062	2.7	30.0	30.0	1.288	26.80		1120.83	0.0	0.0
312	300			1.83	1,5000	5.0	30.0	30.0	1.287	2.35		1120.83	13.0	0.0
320	205			92.45	0.0100	83.9	30.0	30.0	1.263	117.02		1101.64	31.0	0.0
337	202				0.0231	20.4	30.0	30.0	1.263	37.98		1101.44	28.0	0.0
		rene /		30.01						5.10		1101.44	58.0	0.0
337	207 337	BERG 6		4.03	8.0000	128.0	30.0	30.0	1.261			1107.90	67.0	0.0
361				34.12	0.0160	18.2	33.0	32.0	1.260	43.08				0.
371	361			27.58	0.0015	1.1	30.0	30.0	1.276	35.24		1112.04	17.0	
401	407	70U 4		84.06	0.0318	226.9	30.0	30.0	1.302	109.54		1134.15		0.
401	501	SCH. 1		54.78	0.0005	1.5	25.0	26.0	1.330	72.58		1134.15	-99.0	0.
403	407			28.63	0.0021	1.8	24.0	25.0	1.324	37.97		1131.52	0.0	0.
403	460			9.24	0.0056	0.5	26.0	30.0	1.304	12.17		1131.52	64.0	0.0
404	408			110.85	0.0052	65.5	25.0	25.0	1.321	146.50		1131.31	3.0	0.0
404	503	ALIFHAUEN		0.77	572.7500	341.1	25.0	24.0	1.329	1.01		1131.31	-98.0	0.4
405	418	1100 MS		95.07	0.0125	116.4	25.0	28.0	1.312	125.51		1130.00	11.0	0.1
405	551			0.71	472,8300	241.9	30.0	30.0	1.299	0.93		1130.00	-28.0	0.
407	404			111.59	0.0025	31.6	25.0	25.0	1.322	147.51	3.5	1131.50	-1.0	0.
408	405			95.43	0.0015	13.9	24.0	25.0	1.322	126.43	1.3	1130.27	1.0	0.
40B	409	WERKST		15.20	1.0000	236.4	25.0	25.0	1.319	20.07	3.6	1130.27	0.0	0.
409	304	ABU UKST		15.23	0.0243	5.8	25.0	25.0	1.310	20.07	0.1	1127.91	99.0	0.
415	471	WD SUED		19.33	0.0036	1.4	30.0	30.0	1.291	25.03	0.0	1126.68	50.0	0.
418	415			0.50	500.0000	125.3	30.0	30.0	1.295	0.65	0.1	1127.42	-4.0	0.
418	419	VB RA SD		96.39	0.0016	14.7	30.0	30.0	1.296	124.86	1.4	1127.42	-10.0	0.
419	420	RA SUED		96.29	0.0051	47.7	30.0	30.0	1.290	124.86		1128.55	93.0	0.
420	421	RA SUED		97.35	0.0081	76.2	30.0	30.0	1.277	124.86	7.5	1116.31	75.0	0.
421	320			92.07	0.0005	3.9	30.0	30.0	1.268	117.02	0.4	1106.16	36.0	0.
421	361	RA 390		6.17	0.0027	0.1	30.0	30.0	1.273	7.84	0.0	1106.16		0.
460	462			9.43	4.0000	356.0	30.0	30.0	1.289	12.17	3.4	1123.33		0.
462	302			9.46	0.0010	0.1	30.0	30.0	1.284	12.17	0.0	1119.77		0.
471	472	FORTS. WD		19.44	0.0036	1.4	30.0	30.0	1.286	25.03	0.0	1120.33		
472	311	WID-SUED		19.47	0.0036	1.4	30.0	30.0	1.283	25.03	0.0	1118.43		0.
501	505	ND GOLD		8.37	8.2000	597.7	25.0	25.0	1.336	11.22	5.0	1147.05		0.
501	502			8.37	8.2140	598.9	25.0	25.0	1.336	11.22	5.0	1147.05		
501	563			37.55	0.1200	175.0	26.0	26.0	1.335	50.14	6.6	1147.05		0.
502	512			28.15	0.0004	0.3	30.0	30.0	1.310	36.90	0.0	1140.93		
503	504			0.76	0.0053	0.0	25.0	25.0	1.333	1.01	0.0	1140.68		
												1140.68		
504	510			5.73	0.0594	2.0	25.0	25.0	1.332	7.63	0.0			
505	502			19.27	0.0032	1.2	25.0	25.0		25.68	0.0	1140.94		
507	508			7.58	0.0120	0.7	27.0	27.0		10.03	0.0	1140.00		
508	509			3.50	0.0214	0.3	27.0	28.0		4.63	0.0			
508	518			4.09	0.0026	0.0	28.0	30.0		5.40		1139.99		
509	518			13.34	0.0012	0.2	30.0	30.0		17.47		1139.86		0
510	521	AUFH		0.44	0.0217	0.0	27.0	28.0		0.58		1140.27		
510	507	1200-HS		5.33	0.0218	0.6	27.0	28.0		7.05		1140.27		
511	504			5.05	0.0276	0.7	30.0	30.0		6.62		1140.69		
511	505			10.85	0.0032	0.4	25.0	25.0		14.46		1140.69		
512	511		•	15.78	0.0007	0.2	24.0	25.0		21.08		1139.77		
512	610	RA NORD		11.88	0.0114	1.6	25.0	25.0	1.340	15.82		1139.77		
518	539	RA 570		17.48	0.0019	0.6	30.0	30.0		22.87	0.0	1138.32	21.0	0.
521		AUFH		3.26	0.0279	0.3	30.0	30.0		4.26		1136.90		

186

DATUM: 11.10. 88


UHRZEIT: 9.19

ENDLAGERBERGUERK KONRAD AUSF.D.SOBE I.D.EINLAGERUNG BERICHT-NR.31042688 DATEI:SEI.DBE.6 * FROGRAMM WETTER
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

*

KNOTEN ANFANG	KNOTEN ENDE	ZUEIG- NAME	ZWEIGTYP VO	OL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPER ANFANG	60,0	MITTL. DICHTE	MASSEN -STROM	LSTG.	DRUCK ANFANG	TEUFEN- DIFFER.	MASS/ MASSG
			C	BM/S	KG/H**7	PASCAL	GRA	D C	KG/CBM	KG/S	KU	HEAR	Н	
534	521			2.81	0.0033	0.0	30.0	30.0	1.305	3.67	0.0	1135.11	-14.0	0.00
539	534			2.81	0.0032	0.0	30.0	30.0	1.305	3.67	0.0	1135.62	4.0	0.00
539	549			14.71	0.0016	0-4	30.0	30.0	1.304	19.20	0.0	1135.62	15.0	0.00
541	551	AUFH		3.17	0.0155	0.2	30.0	30.0	1.301	4.12	0.0	1133.19	16.0	0.00
541	549	FELD 1		0.10	0.0157	0.0	30.0	30.0	1.302	0.13	0.0	1133.19	-4.0	0.00
549	559			14.84	0.0021	0.5	30.0	30.0	1.301	19.33	0.0	1133.70	22.0	0.00
559	415			18.76	0.0050	1.8	30.0	30.0	1.297	24.38	0.0	1130.89	33.0	0.00
551	559			3.89	0.0205	0.3	30.0	30.0	1.300	5.05	0.0	1131.15	2.0	0.00
563	403	AUFHAUEN		37.48	0.0329	48.1	25.0	25.0	1.330	50.14	1.8	1145.30	102.0	0.00
610	611	1300-MS		11.97	0.0032	0.5	31.0	32.0	1.320	15.82	0.0	1153.95	-9.0	0.00
611	644	RA 660		12.00	0.2224	32.9	32.0	32.0	1.311	15.82	0.4	1155.11	94.0	0.00
643	507			2.28	0.0787	0.4	32.0	32.0	1.303	2.98	0.0	1142.69	21.0	0.00
644	509			9.81	0.0020	0.2	31.0	30.0	1.309	12.84	0.0	1142.69	22.0	0.00
644	643			2.28	0.0014	0.0	31.0	31.0	1.309	2.98	0.0	1142.69	0.0	0.00
1	2	ATH		2.50	0.0000	0.0	15.0	15.0	1.209	3.03	0.0	1000.00	-9.5	0.00
1	5	ATM	-	-245.25	0.0000	0.0	15.0	15.0	1.206	-296.45	0.0	1000.00	41.5	0.00

Station:	Draunsch	v e i g	-	Vő l	kenro	ode	- 188
1979 :	Tage smitteltemp. Maximum	über 25 über 30	0	C: C:		Tage Tage	
1980 :	Tagesmitteltemp. Maximum	über 25 über 30	0	C: C:		Tage Tage	
1981 :	Tagesmitteltemp. Maximum	über 25 über 30	0	C: C:		Tage Tag	07.08.81 = 31,2 ° C
1982 ;	Tagesmitteltemp. Maximum	über 25 über 30	0	G: C:		Tage Tage	02.06.82 = 30,5 ° C 03.06.82 = 31,0 ° C 04.06.82 = 31,6 ° C 05.06.82 = 30,8 ° C 03.08.82 = 30,1 ° C
1983:	Tage smittel temp.	über 25	0	C:	2	Tege	$11.07.83 = 25.0 \stackrel{\text{c}}{_{0}} \text{C}$ $26.07.83 = 26.9 \stackrel{\text{c}}{_{0}} \text{C}$
	Maximum	über 30	0	C:	10	Tage	10.07.83 = 30,5 ° C 11.07.83 = 30,3 ° C 12.07.83 = 30,1 ° C 17.07.83 = 30,7 ° C 24.07.83 = 30,3 ° C 26.07.83 = 32,1 ° C 31.07.83 = 31,2 ° C 01.08.83 = 30,5 ° C 19.08.83 = 30,2 ° C 20.08.83 = 30,1 ° C
1984:	Tage smitteltemp.					Tag	31.07.84 = 25,2 ° C
1985:	Maximum Tagesmitteltemp. Maximum		0	C:	1	Tag Tag	31.07.84 = 31.5 ° C 14.08.85 = 25.6 ° C 14.07.85 = 30.5 ° C 14.08.85 = 33.1 ° C
1986:	Tagesmitteltemp. Maximum	über 25 über 30	_			Tag Tag	03.08.86 = 26,7 ° C 03.08.86 = 32,2 ° C
1987:	Tagesmitteltemp.	über 25 über 30	_			Tag Tage	30.06.87 = 25,1 ° C 30.06.87 = 31,0 ° C 22.08.87 = 30,1 ° C
1988:	Tage smittel temp. Maximum	über 25 über 30	0	C:		Tage Tage	originar Originar

Projek NAA	- O TURNINGIN	Obj. Kenn. NNNNNN	Funktion NNAAANN	Komponenie A A N N N A	Aufgabe XAAXX	UA AA	Lfd.Nr NNNN	Rev.	
111	15527	<u> </u>	TS		 Gv	LA	0002		

B E R I C H T Nr. 35041988

über die Planung der Sonderbewetterung für die Einlagerungsstrecken im Feld 5/l des Endlagerbergwerks Konrad in Salzgitter

Bearbeitet von:

Bochum, den 25.08.1988

Westfälische Berggewerkschaftskasse Prüfstell

Blatt 2

25.08.88

Sonderbewetterung der Einlagerungsstrecken im Feld 5/1 des Endlagerbergwerkes Konrad

1. EINLEITUNG

Die Prüfstelle für Grubenbewetterung (PFG) der Westfälischen Berggewerkschaftskasse wurde von der Deutschen Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE) beauftragt, die Sonderbewetterung der Einlagerungsstrecken im Feld 5/1 zu berechnen (vgl. auch Bericht Nr. 30104184 über die Planung der Bewetterung der Auffahrungs- und Einlagerungsörter auf dem Endlagerbergwerk Konrad in Salzgitter der PFG vom 06.12.84).

Nach den vorliegenden Unterlagen der DBE wird jede Einlagerungsstrecke von einer saugenden Hauptluttenleitung bewettert,
die aus Blechlutten von 1,2 m Durchmesser bestehen soll und an
ein Abwetterbohrloch angeschlossen wird. Das Abwetterbohrloch
reicht bis in die Abwettersammelstrecke, in der die Ventilatorstation installiert ist. Es werden zweistufige Axialventilatoren mit gegenläufigen Laufrädern des Typs GAL 120-750 PU/750
der Firma Korfmann eingesetzt. Die Berechnungen sollen für Längen der saugenden Luttenleitung von 450 und 940 m (einschließlich der Abwetterbohrlöcher) durchgeführt werden.

2. PLANUNG

2.1 Hauptluttenleitung

Bei der Berechnung wurde das Kennlinienblatt OL-3-2902 (Anlage 1) der Firma Korfmann zugrundegelegt. Um u. U. eine andere Auswahl treffen zu können, wurde auch bei der Fa. Turmag AG nachgefragt, da im deutschen Bergbau vorwiegend Ventaumen eingesetzt werden. Ein solcher Ventalator mit polumschaltbarem Motor ist von dieser Firma jesioch noch

Blatt 3

25.08.88

Sonderbewetterung der Einlagerungsstrecken im Feld 5/1 des Endlagerbergwerkes Konrad

nicht gebaut worden. Die Firma empfiehlt, mehrere einstufige Ventilatoren hintereinanderzuschalten. Inwieweit auch andere Firmen geeignete Ventilatoren liefern können, wurde nicht untersucht.

Es wurde mit einer Rohrreibungszahl $\lambda = 0.02$, einem Widerstand für die Einströmung und die Krümmer $\zeta = 3$ und einer Undichtheitszahl $\mu = 6 \cdot 10^{-5}$ (entspricht im Mittel einem Leckstrom von etwa 1,5 % je 100 m) gerechnet.

Das Ergebnis dieser Berechnungen ist in der Anlage 2 als Kennfeld der Sonderbewetterungsanlage für verschiedene Betriebsweisen des Ventilators und für eine Ventilatorstation bestehend aus zwei hintereinandergeschalteten Ventilatoren dargestellt. Es ist jeweils die höchstmögliche Flügelstellung ausgewertet worden. Über der Leitungslänge sind die Wetterströme V. am Ventilator und V vor Ort sowie der vom Ventilator erzeugte Druck Δp., aufgetragen. Außerdem ist eine Linie bei

eingetragen.

 $\dot{v}_v = \dot{v}_{o min} = 26 \text{ m}^3 \text{s}^{-1}$

In der Anlage ist zu erkennen, daß z.B. beim Unterschreiten einer Leitungslänge von etwa 590 m ein Ventilator ausgebaut werden kann und daß beim Unterschreiten einer Leitungslänge von etwa 190 m der Ventilator nur mit der 1. Stufe betrieben zu werden braucht, um einen Mindestwetterstrom von 26 $\mathrm{m}^3~\mathrm{s}^{-1}$ vor Ort abzusaugen.

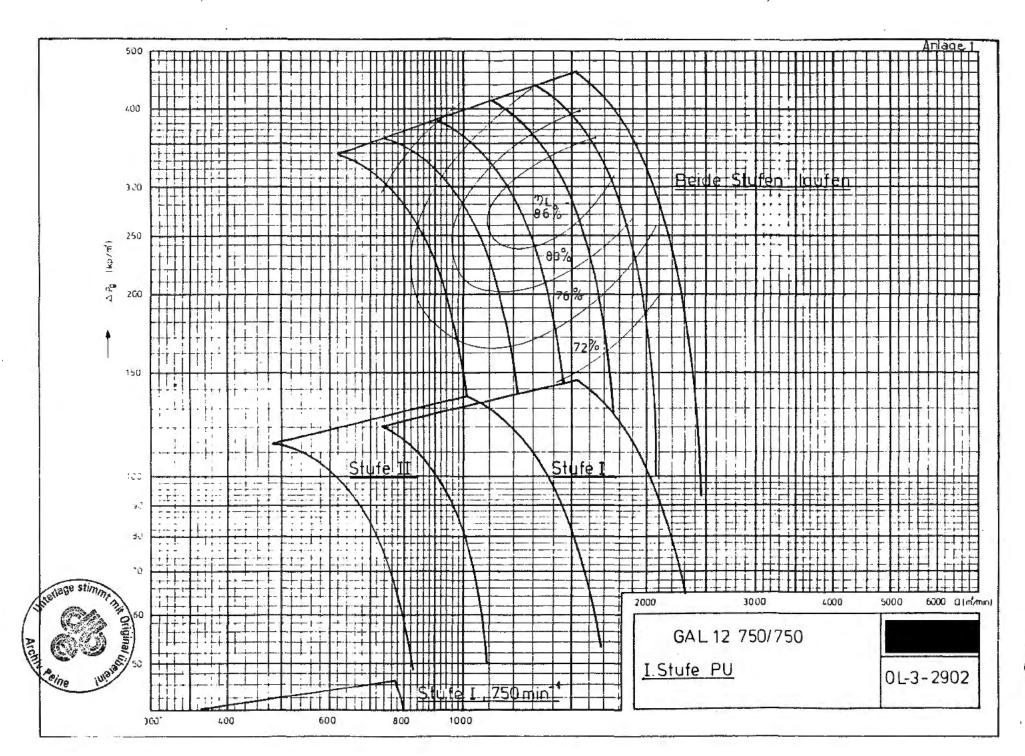
192

Blatt 4

25.08.88

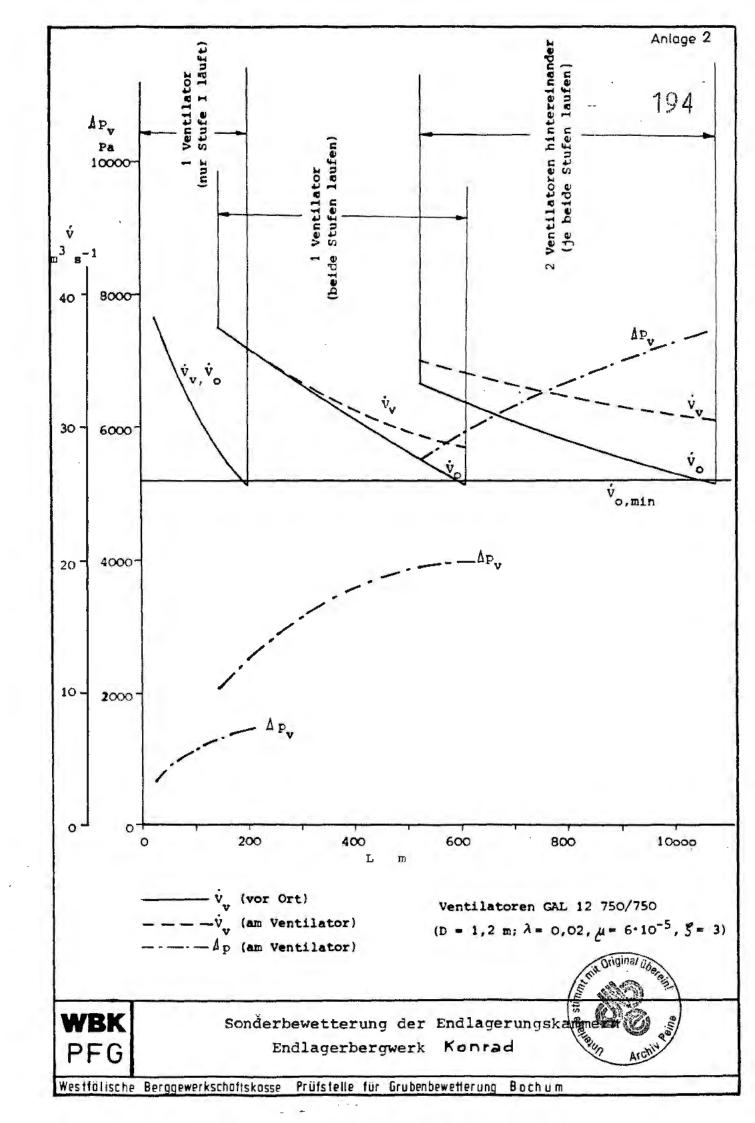
Sonderbewetterung der Einlagerungsstrecken im Feld 5/1 des Endlagerbergwerkes Konrad

3.2 Parallele Nebenluttenleitung


Für die parallele Nebenluttenleitung zur unmittelbaren Bewetterung der Ortsbrust sollte ein Wetterstrom von 6 m^3 s⁻¹ bei einem Durchmesser der Luttenleitung von 0,6 m ausreichen. Mit diesen Werten ergibt sich eine Austrittsgeschwindigkeit der Wetter aus der Lutte von 21 m s⁻¹. (Im Steinkohlenbergbau ist für die blasende Bewetterung der Ortsbrust ein Mindestwetterstrom von 1,5 m³ s⁻¹ m⁻² vorgeschrieben.) Unter der Annahme, daß die Nebenluttenleitung 20 m lang wird, muß der Ventilator einen Druck von etwa 490 Pa erzeugen. Dazu wäre ein Ventilator von 0,6 m Durchmesser und 11 kW Antriebsleistung (z.B. Typ ESN6-110 der Fa. Korfmann) erforderlich.

ZUSAMMENFASSUNG

Wie aus der Anlage 2 ersichtlich, ist bei einer Luttenleitungslänge von 450 m ein Ventilator des Typs GAL 12 750/700 und bei einer solchen von 940 m eine Ventilatorstation bestehend aus zwei hintereinandergeschalteten Ventilatoren erforderlich, um den geforderten Mindestwetterstrom von 26 m³ s $^{-1}$ vor Ort abzusaugen. Bei Längen unter etwa 190 m genügt hierzu der Betrieb nur der 1. Stufe eines Ventilators. Für die 20 m lange blasende Nebenluttenleitung werden ein Durchmesser von 0,6 m und ein Wetterstrom von 6 m³ s $^{-1}$ vorgeschlagen. Diesen Wetterstrom fördert in dieser Leitung ein Ventilator von 0,6 m Durchmesser und 11 kW Antriebsleistung.


Bochum, den 25.08.1988

0

Anlage 1

Projekt N A A N	PSP-Element	Obj. Kenn.	Funktion NNAAANN	Komponente A A N N N A	Baugruppe AANN	Aufgabe XAAXX	UA A A	Ltd.Nr.	Rev. N N
9K	5321		TS			GV	LA	0006	00

G U T A C H T E N Nr. 33040889

zu Auswirkungen eines Hauptventilator-Ausfalls im ungünstigsten Fall (Totalausfall der Energieversorgung bei Tagesmitteltemperaturen größer als 25°C) auf dem Endlagerbergwerk Konrad in Salzgitter

bearbeitet von:

Bochum, den 19.04.89

Westfälische Berggewerkschaftskasse Prüfstell<u>e für Gruben</u>bewetterung

196

Blatt 2

19.04.89

Gutachten Nr. 33040889 Endlagerbergwerk Konrad

1. EINLEITUNG

Die Prüfstelle für Grubenbewetterung der Westfälischen Berggewerkschaftskasse (PFG) hat mit dem Gutachten Nr. 31041888 vom 10.08.88 zu der Planung der Bewetterung für die Einlagerung im Feld 5/1 und die Auffahrung von Feld 5/2 auf dem Bergwerk Konrad Stellung genommen. Die Physikalisch-Technische Bundesanstalt in Braunschweig (PTB) als Auftraggeber für die Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH in Peine (DBE) äußerte zu diesem Gutachten einige Ergänzungswünsche, auf die in dem Nachtrag Nr. 31042688 vom 12.10.88 durch die PFG eingegangen wurde. Unter anderem wurde hier erläutert, daß für die Wetternetzberechnungen für den Ausfall des Hauptventilators die Tagesmitteltemperaturen von -10 °C und +25 °C angenommen wurden, da diese Temperaturen nicht allzu häufig unter- oder überschritten werden und die Wahrscheinlichkeit, daß an einem solchen Tag der HV längerfristig ausfällt, sehr gering ist.

In der Besprechung am 06.01.89 wünschte die PTB, und die DBE beauftragte danach die PFG, die Betrachtungen für den HV-Ausfall auch auf den ungünstigsten Fall - Tagestemperaturen über 25 °C - zu erweitern.

Die Beurteilung basiert auf Angaben des Wetteramtes in Hannover, langfristigen Messungen des Temperaturverlaufs im Grubengebäude Konrad durch die Gesellschaft für Strahlen- und Umweltforschung in Braunschweig (GSF) und auf Angaben der Werksleitung.

WBK

197

19.04.89

Blatt 3

Gutachten Nr. 33040889 Endlagerbergwerk Konrad

2. GRUNDLAGEN FÜR DIE BEURTEILUNG DER BEWETTERUNGSVERHÄLTNISSE

Auf Anfrage beim Wetteramt Hannover bekam die DBE von diesem eine Zusammenstellung der Tagesmitteltemperaturen über 25 °C und Tagesmaximaltemperaturen über 30 °C, gemessen an der mete-orologischen Station Braunschweig - Völkenrode in dem Zeitraum 1979 bis 1988 (vgl. Anlage 1). Danach wurden in diesen 10 Jahren insgesamt an 6 Tagen Mitteltemperaturen über 25 °C und an 22 Tagen Maximaltemperaturen über 30 °C gemessen. Allein in dem extrem warmen Jahr 1983 wurden an insgesamt 10 Tagen Temperaturen über 30 °C erreicht. Als Maximalwert in diesem Jahr wurde an einem Tag die Temperatur von 32,1 °C ermittelt. In den anderen Jahren sind dagegen keine so lange anhaltenden Maximaltemperaturperioden eingetreten. Der in diesen 10 Jahren gemessene Höchstwert betrug am 14.08.85 33,1 °C.

Im Jahre 1985 wurde durch die GSF mit der kontinuierlichen Fernüberwachung und Speicherung einiger wettertechnischer Parameter an verschiedenen Stellen im Grubengebäude Konrad begonnen. Nachdem das Meßprogramm der GSF im Jahre 1987 beendet war, wurden das Meßsystem seitens der Werksleitung übernommen und die Messungen weitergeführt.

Die Wettertemperaturen wurden an folgenden Stellen gemessen:

- Rasenhängebank Schacht 1,
- Füllort Schacht 1, 1000 m-Sohle,
- Bereich Aufhauen 1200 m-S. 1100 m-S. auf der 1200 m-S.,
- Rampe 562 im Bereich der 1100 m-Sohle,
- Zufahrt zur Wendel Süd auf der 1100 m-Sohle,
- Füllort Schacht 2, 1000 m-Sohle,
- Füllort Schacht 2, 850 m-Sohle.

198

Blatt 4

19.04.89

Gutachten Nr. 33040889 Endlagerbergwerk Konrad

Da jedoch das Meßsystem mehrere Jahre lang nicht mehr gewartet wurde, wurden seitens der PFG einige Kontroll- und Vergleichsmessungen durchgeführt, bei denen zum Teil größere Abweichungen der Meßwerte der stationären Geräte von denen der Handmessungen festgestellt wurden. Für die weitere Auswertung wurden deshalb - in Übereinstimmung mit der DBE - nur Temperaturmessungen aus den Jahren 1985 und 1986 herangezogen.

Die Werksleitung stellte zusätzlich auch die Angaben der vierteljährlichen Messungen aus dem Wetterbuch der Grube für den Zeitraum 1976 bis 1984 zur Verfügung.

3. AUSFALL DES HAUPTVENTILATORS

3.1 Allgemeines

Beim Ausfall des Hauptventilators wird das Grubengebäude nur durch die thermische Depression (den sog. natürlichen Auftrieb) bewettert. Sie hängt von der Differenz der beiden Luftsäulen-Massen über der Teufe des Grubengebäudes - ein- und ausziehseitig -, also im gegebenen Fall im wesentlichen von der Differenz der Wetterdichte in den Tagesschächten und ihren Seehöhen ab. Die Rasenhängebänke der beiden Schächte sind praktisch im gleichen Niveau (Schacht 1 mit 98,5 m NN, Schacht 2 mit 90,5 m NN), der Fußpunkt Schacht 1 liegt bei -1102 m NN, derjenige von Schacht 2 bei -893 m NN, und der tiefste Punkt im Grubengebäude ist der Knotenpunkt 610 (vgl. Wetternetzschaltplan in der Anlage 5) auf der 1300 m-Sohle mit -1200 m NN.

WBK

199

Blatt 5

19.04.89

Gutachten Nr. 33040889 Endlagerbergwerk Konrad

3.2 Temperaturverlauf in den Schächten

Die Temperatur der Wetter im Einziehschacht nimmt mit der Wetterrichtung durch die adiabatische Kompression zu, im Ausziehschacht jedoch durch die adiabatische Expansion ab. In beiden Fällen wird dieser Vorgang durch die Gebirgstemperatur mit beeinflußt, und im Laufe der Jahre bildet sich in den Schächten und allgemein in den Grubenbauen – der sog. Wärmeausgleichsgebirgsmantel aus. Dies hat zur Folge, daß die Schwankungen der Wettertemperatur vom Einziehschacht zum Ausziehschacht geringer werden. Dort ist sie praktisch konstant und nimmt in Wetterrichtung ab.

Während die Angaben über Temperaturen einziehseitig einigermaßen vollständig sind, liegen keine Meßwerte für Temperaturen am Austritt der Wetter in die Atmosphäre am Schacht 2 vor; die Temperaturänderung zwischen dem Füllort 850 m-Sohle und dem Wetterkanal mußte abgeschätzt werden, wobei der Temperaturgradient mit etwa 0,01 K m $^{-1}$ angenommen werden kann.

Für die nachfolgenden Betrachtungen wurde allgemein ein linearer Zusammenhang zwischen der Über-Tage-Lufttemperatur und der Temperaturänderung der Wetter im Schacht zugrundegelegt.

3.3 Temperaturverhältnisse in den Sommermonaten 1985 und 1986

In den Anlagen 2 (für das Jahr 1985) und 3 (für das Jahr 1986) sind die Temperaturdifferenzen ΔT_{mA-E} zwischen den mittleren Wettertemperaturen im Ausziehschacht T_{mA} und im Einziehschacht T_{mE} in Abhängigkeit von den Über-Tage-Temperaturen Tage-tragen. Dabei wurde die T_{mE} als Mittelwert der als Mattelwert der

200

Blatt 6

19.04.89

Gutachten Nr. 33040889 Endlagerbergwerk Konrad

am jeweiligen Tag gemessenen $T_{\ddot{u}T}$ und der $T_{1000m-S}$ gebildet: im Ausziehbereich kam es erwartungsgemäß zu keinen von der Tageszeit abhängigen Temperaturschwankungen.

Wie dem Diagramm für das Jahr 1985 (Anlage 2) zu entnehmen ist, wurde nur an einem Tage – im August – die Temperaturdifferenz $\Delta T_{\text{mA-E}}$, die sich dem 0 °C-Unterschied (0,6 °C) zwischen dem ein- und ausziehenden Wetterstrom nähert, festgestellt (in einem Falle – im Juli – liegt sie bei 1,7 °C). Das Diagramm für das Jahr 1986 (Anlage 3) weist die kleinste Temperaturdifferenz $\Delta T_{\text{mA-E}}$ im Juli mit 1,4 °C auf.

Die in den Anlagen 2 und 3 so dargestellten Ergebnisse zeigen eine lineare Abhängigkeit der Temperaturdifferenzen der beiden Schächte von den Über-Tage-Temperaturen. Durch die Berechnung der Regressionsgeraden und ihrer Extrapolation konnte festgestellt werden, daß es zu einem Ausgleich der Temperaturen in den Schächten (0 °C Unterschied) im Jahre 1985 bei Über-Tage-Temperaturen zwischen 34 und 35 °C und im Jahre 1986 bei solchen zwischen 32 und 33 °C gekommen wäre.

3.4 Temperaturverhältnisse am 14.08.85

Wie aus der Anlage 1 ersichtlich, wurde in den zurückliegenden 10 Jahren nur an einem Tag der Maximalwert der Lufttemperatur von 33,1 °C an der meteorologischen Beobachtungsstelle in Braunschweig-Völkenrode gemessen. Die Temperaturverläufe an diesem Tag - dem 14.08.85 - wurden näher untersucht. In der Anlage 4 sind die Ergebnisse für den Zeitraum von Tage dargestellt.

201

Blatt 7

19.04.89

Gutachten Nr. 33040889 Endlagerbergwerk Konrad

Der Zeitraum der Auswertung beginnt morgens um 06.00 Uhr und endet abends um 24.00 Uhr. Nach Aufzeichnungen der GSF sind hier in Abhängigkeit von der Uhrzeit der Temperaturverlauf der freien Atmospäre an der Rasenhängebank Schacht 1 sowie der Temperaturverlauf des aus dem Schacht 1 im Bereich der 1000 m-Sohle in das Grubengebäude austretenden Wetterstroms aufgetragen, darüber hinaus ist hier auch die Entwicklung der Temperaturdifferenz zwischen den Wetterströmen in den Schächten dargestellt.

Dem Diagramm ist zu entnehmen, daß an diesem Tage die Über-Tage-Temperatur von etwa 16 °C gegen 06.00 Uhr bis etwa gegen 15.15 Uhr allmählich auf etwa 33,5 °C ansteigt (die Messung in Völkenrode ergab 33,1 °C). Danach geht sie wieder zurück und erreicht gegen 24.00 Uhr einen Wert von etwa 19 °C.

Die Wettertemperatur der aus dem Schacht 1 (Einziehschacht) in das Grubengebäude ziehenden Wetter nimmt im gleichen Zeitraum nahezu geradlinig von etwa 27 °C auf den Maximalwert von etwa 30 °C gegen 21.00 Uhr zu. Dieser Sachverhalt zeigt deutlich, daß die Entwicklung – der Anstieg – der Wettertemperatur im Schacht infolge der Wirkung des Wärmeausgleichsmantels verzögernd und gedämpft eintritt: im Schacht wird der Maximalwert mit einer Verzögerung von etwa 6 h gegenüber dem Maximalwert über Tage erreicht.

Am Fußpunkt des Schachtes 2 (Ausziehschacht) lagen über den gesamten Beobachtungszeitraum konstante Temperaturverhältnisse vor, so daß in diesem Schacht die mittlere Temperatur bei 32 °C lag.

Der Verlauf der Temperaturdifferenz ΔT_{mA-E} zwi Schachtwetterströmen erreichte den kleinsten We

202

Blatt 8

19.04.89

Gutachten Nr. 33040889 Endlagerbergwerk Konrad

etwa zeitgleich mit dem Maximalwert der Über-Tage-Temperatur: d.h., während über Tage die Temperatur der freien Atmosphäre mit 33,5 °C gemessen wurde, war die mittlere Wettertemperatur im Ausziehschacht um 0,6 °C größer als im Einziehschacht.

3.5 Wetternetzberechnung für den 14.08.85

Um zeigen zu können, welche Auswirkungen der HV-Ausfall an diesem Tag – wäre hier das Grubengebäude im Zustand der Planungsphase 3 (Einlagerung im Feld 5/2) – haben könnte, wurde hierfür eine Wetternetzberechnung durchgeführt. Das Ergebnis ist in der Anlage 5 dargestellt: der Hauptausziehwetterstrom im Wetterkanal hat noch die Größe von etwa 7,5 m³s-1, das Grubengebäude ist mit minimalen Wetterströmen bewettert, in verschiedenen Zweigen kommt es zur Wetterumkehr mit dadurch bedingten Teilkreisläufen der Wetterströme.

4. WERTUNG DER ERGEBNISSE

Die Temperaturen der Ausziehwetter im Schacht 2 bewegen sich in Sommermonaten nach der Auswertung der GSF-Aufzeichnungen zwischen 35 und 37 °C. Infolge der jahreszeitlichen Schwankungen der Über-Tage-Temperatur geht die Wettertemperatur im Schacht 2 bis um etwa 2 bis 3 °C zurück. Eine zusätzliche Wärmequelle stellt die in Schachtnähe auf der 800 m-Sohle installierte Wetterkühlmaschine dar, deren Kondensationswärme an den ausziehenden Wetterstrom dieser Sohle abgegeben wird. Durch die PFG wurde die Temperatur dieses Wetterstroms mit etwa 38 °C gemessen. Beim Ausfall der Kühlmaschine geht diese Temperatur hach Angaben der Werksleitung sehr schnell um etwa 4 °C zurück.

WBK

203

Blatt 9 19.04.89

Gutachten Nr. 33040889 Endlagerbergwerk Konrad

Wie der Anlage 1 zu entnehmen ist, sind die wärmsten Monate, in denen sich die Temperaturdifferenz der Schächte dem Nullwert nähert, Juli und August. In der Regel lag jedoch diese Differenz oberhalb 1 °C, nur in einem Fall war sie kleiner. Etwa gleiche mittlere Temperatur hätten 1985 (vergl. Anlage 2) die Luftsäulen in den Schächten bei der Über-Tage-Temperatur von 34,5 °C erreicht. Im Jahre 1986 (Anlage 3) wäre dies schon bei der Über-Tage-Temperatur von etwa 32,5 °C eingetreten; es ist anzunehmen, daß zu dieser Zeit die mittlere Über-Tage-Temperatur höher als im Jahre 1985 lag, so daß eine stärkere Erwärmung des Gebirgsmantels im Einziehschacht erfolgte. Nach den Auswertungen der GSF-Aufzeichnungen können die Maximalwerte der Über-Tage-Temperatur etwa zwischen 30 und 150 min anhalten.

Da für die in den Anlagen 2 und 3 dargestellten Temperaturverhältnisse in den Schächten jeweils die Maximalwerte der Über-Tage-Temperatur und der Temperatur einziehseitig unter Tage miteinander verglichen wurden, ist die errechnete Differenz der mittleren Temperaturen im Ein- und Ausziehschacht zwangsläufig kleiner als die in situ vorhandene.

Als Ergebnis kann festgestellt werden, daß der Schacht 2 durch den natürlichen Auftrieb bis etwa zu der Über-Tage-Temperatur von 32 °C ausziehend bleibt. Durch den weiteren Anstieg dieser Temperatur kommt es zu Wetterstillstand in den Schächten. Durch Tagesschwankungen der Über-Tage-Temperatur bedingt, wäre nach mehrstündigem Wetterstillstand der Schacht 2 wieder ausziehend, und bei längerfristigem Hauptventilator-Ausfall käme es dadurch zu einem etwa periodischen Pulsieren der Wetter im Schacht 2. Die Maximalwerte der Über-Tage-Temperaturen nach den gestellten Aufzeichnungen können etwa zwischen 30 und 150 min anhalten, d.h.

WBK

204

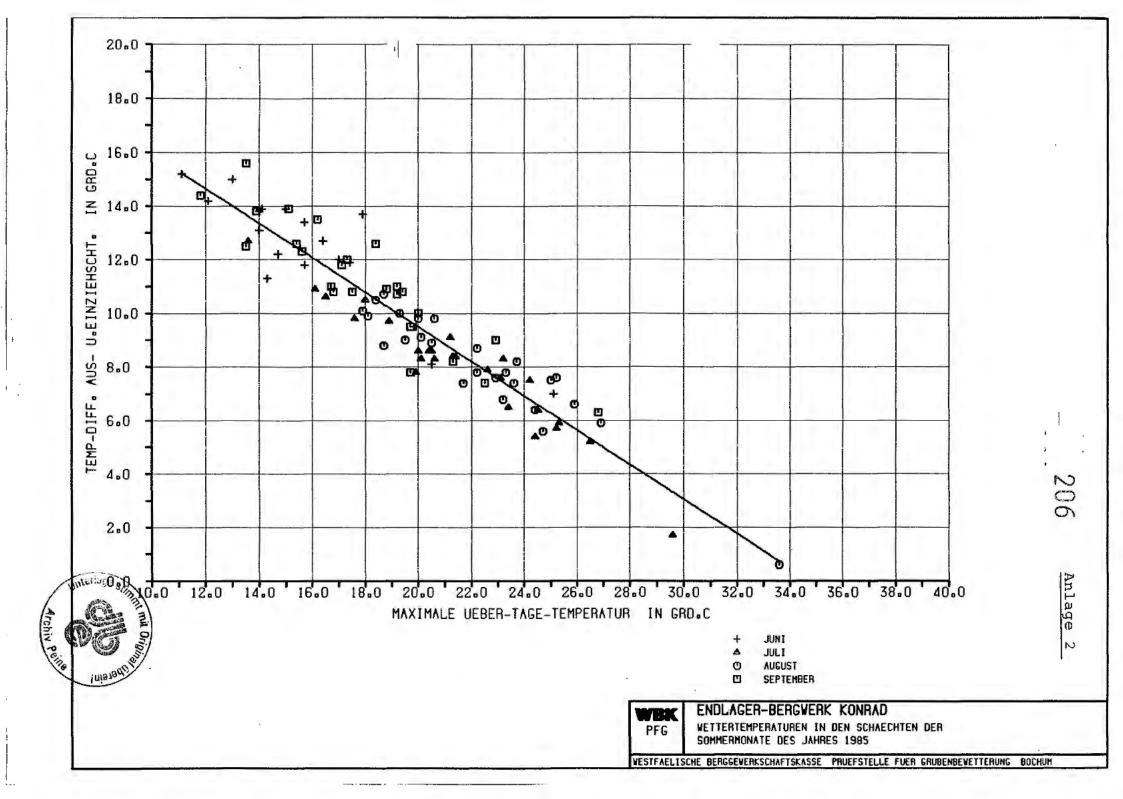
Blatt 10 19.04.89

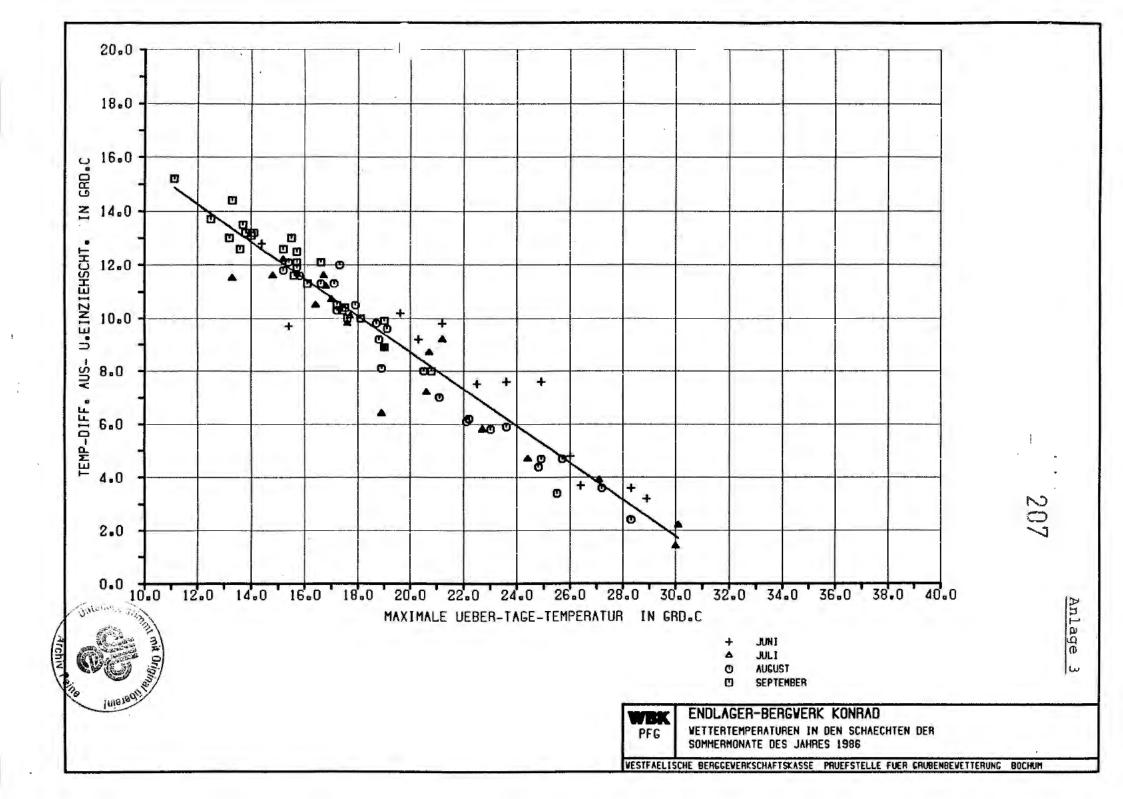
Gutachten Nr. 33040889 Endlagerbergwerk Konrad

nicht länger als 2,5 h. Die Anlage 1 des Gutachtens zeigt, daß Temperaturen über 32 °C in den letzten 10 Jahren an 3 d beobachtet wurden. Daraus ergibt sich, daß in den letzten 10 Jahren insgesamt etwa 7,5 h lang Temperaturen über 32 °C herrschten, also ist die Eintrittswahrscheinlichkeit eines solchen Ereignisses (Temperaturen > 32 °C) mit etwa 7,5 h in 10 Jahren anzugeben. Um die beim Hauptventilator-Ausfall oben annähernd geschilderten Auswirkungen in diesen 7,5 h zustandebringen zu können, müßte vorausgesetzt werden, daß an denselben drei Tagen für je 2,5 h auch die Elektrizitätsversorgung vollständig ausfällt und, selbst bei einem solchen Zusammentreffen, ist eine generelle Wetterumkehr in den Schächten auszuschließen.

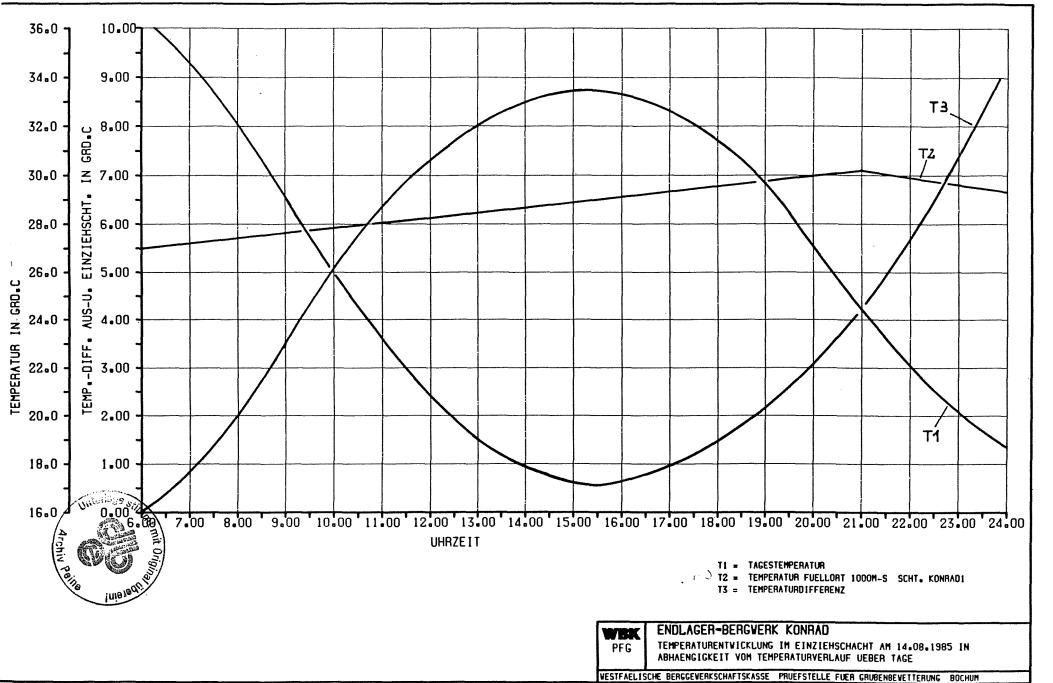
Wetterstillstände mit Wetterumkehrungen in einzelnen Zweigen und dadurch Teilkreisläufe der Wetter im Grubengebäude - und somit auch im Kontrollbereich und den angrenzenden Grubenbauen - können auch bei niedrigeren Über-Tage-Temperaturen als 32 °C nicht ausgeschlossen werden.

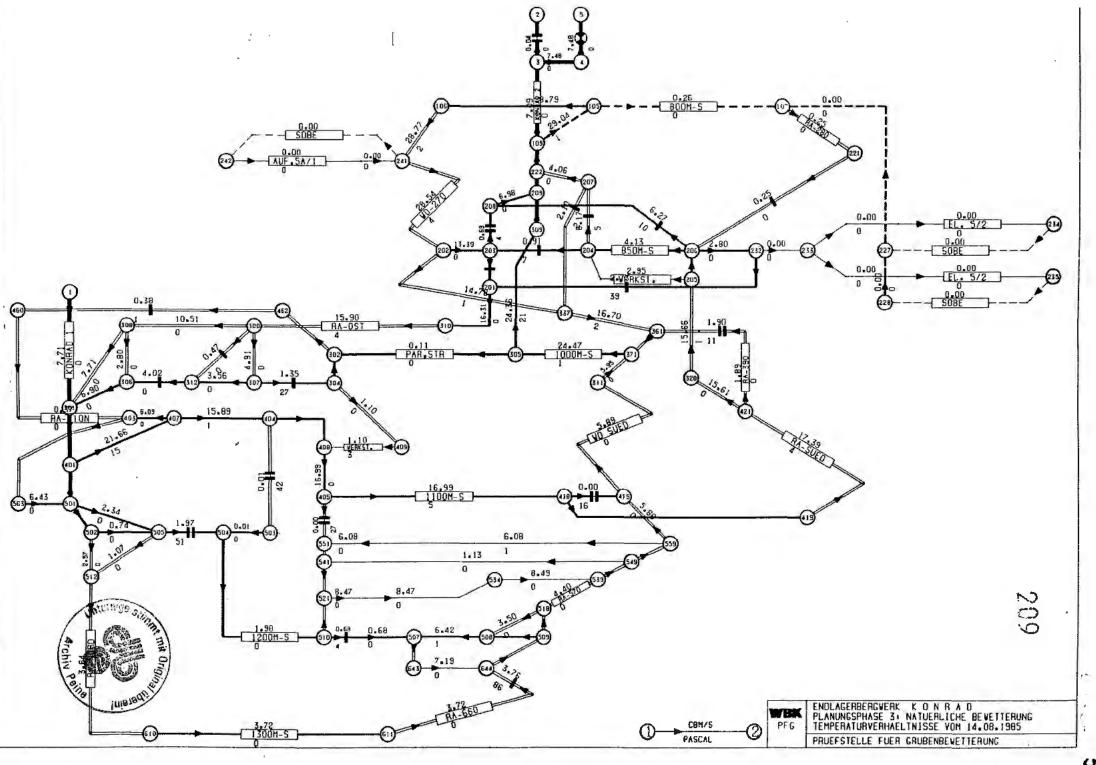
Bochum, den 19.04.1989


	Anlage
1 =	


0	0	E
1	U	U

Take	i	ttemperatu			ximalwert	
Jahr	Tagesmi d	ittelwert >	25 C .	layesma d	am	°C
	u u	am			am	
1979	0	_	-	0	-	- <u>-</u> -
1980	. 0	_	-	0	-	
1981	0	-	-	1	07.08.	31,2
1982	0	_	_	5	02.06.	30,5
					03.06.	31,0
					04.06.	31,6
				1	05.06.	30,8
					03.08.	30,1
1983	2	11.07.	25,0	10	10.07.	30,5
		26.07.	26,9		11.07.	30,3
					12.07.	30,1
					17.07.	30,7
					24.07.	30,3
					26.07.	32,1
	1				31.07.	31,2
					01.08.	30,5
					19.08.	30,2
					20.08.	30,1
1984	1	31.07.	25,2	1	31.07.	31,5
1985	1	14.08.	25,6	2	14.07.	30,5
				İ	14.08.	33,1
1986	1	03.08.	26,7	1	03.08.	32,2
1987	1	30.06.	25,1	2	30.06.	31,0
			4 -		22.08.	30,1
1988	0	_	_	0		_


WBK PFG



Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente			UA	Lld.Nr	Rev.
NAAN	инииниини	ииииии	NNAAANN	AANNNA	AANN	XXAAXX	ДД	NNNN	NN
9K	5321		TS			GV	ЕТ	0001	00

OhiT Positach t0 27 49 ID-4630 Bochum 1

G U T A C H T E N Nr. 11031490

über die Stabilität der Bewetterung für den Störfall in der Einlagerungsphase Feld 5/1 auf dem Endlagerbergwerk Konrad in Salzgitter

Anlage Nr. 22 Blatt 1 von 68

zu: DBE: 9K/5321/-/TS/-/-/GV/LA/0005

Bochum, den 09.04.1990

DMT-Gesellschaft für Forschung und Prüfung mbH Institut für Bewetterung und Klimatisierung Prüfste ung

- 211

09.04.90

Blatt 2

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

1. EINLEITUNG

Die Prüfstelle für Grubenbewetterung (PFG) der DMT-Gesellschaft für Forschung und Prüfung mbH wurde von der Deutschen Gesellschaft zum Bau und Betrieb von Endlagern für Absallstoffe mbH (DBE) beauftragt, die Stabilität der Bewetterung im Störfall für das Endlagerbergwerk Konrad in Salzgitter zu beurteilen. Es sollen anhand der entsprechend den Vorgaben der DBE aktualisierten Wetternetzberechnungen des Normalzustandes der Bewetterung für den Planungsfall "Einlagerung im Feld 5/1" mögliche Auswirkungen von

- Energieversorgungsausfall bei lange andauernden hochsommerlichen Temperaturen,
- Grubenbränden an gleislosen Fahrzeugen in den Transportwegen des Kontrollbereiches

begutachtet werden.

Die folgenden Ausführungen basieren auf Angaben der DBE; die entsprechenden mit DV-Anlage durchgeführten Wetternetzberechnungen ("kompressibel") wurden durch die PFG durchgeführt.

2. NORMALZUSTAND DER BEWETTERUNG

Die Planung der Bewetterung für die Einlagerung im Feld 5/1 wurde zuletzt in dem "Gutachten Nr. 31041888 über die Planung der Bewetterung für die Einlagerung im Feld 5/1 und die Auffahrung von Feld 5/2 des Endlagerbergwerks Konrad in State Gitter" vom 10.08.88 der PFG beurteilt. Da die Bewetterungs-

Blatt 3

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

pläne für die Einlagerung in den übrigen Feldern zu einem späteren Zeitpunkt anhand einer Änderung der Planungsunterlagen überarbeitet wurden (vgl. den "Bericht Nr. 31041389 über die Planung der Bewetterung für die Einlagerung in den Feldern der Phasen 3 bis 9 des Endlagerbergwerks Konrad in Salzgitte: vom 22.06.89 der PFG), wurden für die Aktualisierung der Bewetterung – Planung Feld 5/1 – die Änderungen der Vorgaben aus dem o.g. Bericht Nr. 31041389 übernommen; darüber hinaus wurden in das Wetternetz die jetzt neu geplanten Wendeln 680 (zwischen 1300 m- und 1200 m-Sohle, Wetterzweig 660-570) und 580 (zwischen 1200 m- und 1100 m-Sohle, Wetterzweig 570-419) mit den Querschnittsflächen von je 30 m² und den Längen von je 1000 m einbezogen.

Durch die Aktualisierung auf diesen neuesten Stand der Planung ergaben sich für die Bewetterung des Grubengebäudes einige Änderungen (vgl. die Anlagen 1 und 2 des o.g. Gutachtens Nr. 31041888) mit den Anlagen 1 (Wetternetzschaltplan) und 2 (DV-Ausgabeprotokoll) dieses Gutachtens): es mußten, um die Wetterstromverteilung nach den neuesten Vorgaben erhalten zu können, einige Wetterbauwerke umgesetzt werden; die Wetterversorgung des Kontrollbereiches wurde dabei entsprechend den Vorgaben eingestellt.

Für die Wetternetzberechnungen wurden auch gemäß o.g. Bericht Nr. 31041389 nur die auf der Saugseite des Ventilators am Schacht Konrad 2 befindlichen Grubenbaue betrachtet; die ihm nachgeschalteten Einrichtungen müssen bei der Ventilatorkennfeldauslegung besonders berücksichtigt werden.

Blatt 4

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

Die neue Berechnung ergab, daß die Stabilität der Bewetterung im Normalzustand gegeben ist: sie ist auch durch die im Grubengebäude generell praktizierte steigende Bewetterung positiv beeinflußt, da die in Wetterrichtung bei dieser Bewetterungsart wirkenden Auftriebskräfte die Stabilität unterstützen (dies gilt nicht für den Bereich des Einziehschachtes). Weiterhin ist die Stabilität, auch wenn im Wetternetz einige Wetterzweige nur geringe Wetterströme bei verhältnismäßig kleinen Druckverbräuchen führen, durch die Vielzahl von Wetterbauwerken in allen für den Betrieb wichtigen Wegen gegeben.

Es sei bemerkt, daß es von Bedeutung ist, alle Wetterbauwerke auf die geplante Wetterdurchlässigkeit genau einzustellen und im Betrieb in diesem Zustand ständig zu halten; es sollte vermieden werden, daß sie z.B. durch den Fahrzeugbetrieb offen gelassen oder sogar beschädigt werden.

3. AUSFALL DER ENERGIEVERSORGUNG

3.1 Allgemeines

Für die Stabilitätsbetrachtungen beim Ausfall der Energieversorgung der Grube gilt die Vorgabe, daß sich sämtliche Ventilatoren und auch die Kühlanlage am Schacht Konrad 2, 800 m-Sohle, außer Betrieb befinden; der Energieausfall soll bei hochsommerlichen Tagestemperaturen über 32 °C, die länger als 24 h andauern, simuliert werden.

Die PFG hat in dem "Gutachten Nr. 33040889 zu A eines Hauptventilatorausfalls im ungünstigsten Falk

Blatt 5

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

fall der Energieversorgung bei Tagesmitteltemperaturen größer als 25 °C) auf dem Endlagerbergwerk Konrad in Salzgitter" vom 19.04.89 eine ähnliche Betrachtung für die Planungsphase "Einlagerung im Feld 5/2" bereits durchgeführt. Dem o.g. Gutachten Nr. 33040889 lag als eine der Unterlagen die vom Wetteramt Hannover zusammengestellten Tagesmitteltemperaturen über 25 °C und Tagesmaximaltemperaturen über 30 °C, die in den Jahren 1979 bis 1988 an der der Grube Konrad am nächsten liegenden meteorologischen Station in Braunschweig-Völkenrode gemessen wurden (vgl. Anlage 1 des Gutachtens Nr. 33040889) bei. Danach wurden in diesen zehn Jahren insgesamt an sechs Tagen Mitteltemperaturen über 25 °C und an 22 Tagen Maximaltemperaturen über 30 °C gemessen. Der in diesen zehn Jahren gemessene Maximalwert der Tagestemperatur betrug 33,1 °C am 14.08.85.

Um einen Überblick über den Tagesverlauf der Temperaturen an diesem Tage erhalten zu können, wurden aus den direkt auf der Grube Konrad betrieblich gemessenen Temperaturen die im Bild 1 dargestellten Kurven für den Zeitraum zwischen 06.00 und 24.00 Uhr zusammengestellt. Danach wurde auf dem Gelände der Grube die maximale Tagestemperatur von 33,5 °C gemessen; an diesem Tage dauerte die Temperatur über 32 °C insgesamt 4 h 22 min lang an. Die mittlere Temperatur im Einziehschacht Konrad 1 ist bis über 31 °C angestiegen und dauerte 2 h 19 min lang an, die mittlere Temperatur im Ausziehschacht Konrad 2 lag während des ganzen Zeitraums über 31 °C und blieb praktisch konstant. Es konnte jedoch an keinem Tage des untersuchten zehnjährigen Zeitraumes eine Tagestemperatur von über 32 °C, die länger als 24 h anhielt, ermittelt werden; es erscheint auch äußerst" wahrscheinlich, daß eine solche Tagestemperatur an dem B grad der Grube Konrad irgendwo in Europa überhaup (über 24 h) anhalten kann.

215

Blatt 6

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

Für die nachstehenden Stabilitätsbetrachtungen – um im realen Bereich zu bleiben – wurde deshalb als Beispiel der Temperaturverlauf vom 14.08.85 in Verbindung mit dem geplanten Wetternetz für die Einlagerung im Feld 5/1 und das Simulieren des Energieausfalls zugrunde gelegt. Die Ergebnisse dieser Betrachtung – für die Temperaturen vom 14.08.85 und ein noch nicht vorhandenes, geplantes Wetternetz – können nur zum Exempel richtungsweisend gelten.

Aus dem Verlauf der Temperaturkurven im Bild 1 ist ersichtlich, daß die Tagestemperatur von über

25 °C eine Zeitlang von 11 h 47 min,

28 °C 9 h 10 min,

30 °C 7 h 27 min,

32 °C 4 h 22 min

andauerte. Die Wetternetzberechnungen wurden demnach für diese Temperaturstufen durchgeführt, damit die Entwicklung der Bewetterung in dieser Situation näher betrachtet werden kann. Es wurde dabei angenommen, daß sämtliche Wetterbauwerke in dem betrieblich notwendigen Zustand bleiben und daß der Bypass im Wetterkanal geöffnet wird, so daß die Abwetter aus der Grube sowohl über den nicht mehr in Betrieb befindlichen Hauptventilator als auch über den geöffneten Bypass der Atmosphäre zugeführt werden.

3.2 Auswirkungen

Der Wetternetzschaltplan in der Anlage 3 im Zusammenhang mit dem DV-Ausgabeprotokoll in der Anlage 4 zeigen, daß bei 25°C Tagestemperatur die Bewetterung des Grubengebäudes mit vermin-

Prüfstelle für Grubenbewetterung

Blatt 7

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

derten Wetterströmen noch aufrecht erhalten bleibt; es sind hier Wetterumkehrungen im Zweig 2-3 (Schacht Konrad 2 zwischen Wetterkanal und Schachthalle) und in den Wetterzweigen 371-305, 507-643 und 643-644 zu verzeichnen. Die Wetterströme in den Einlagerungskammern betragen je 0,32 m 3 s $^{-1}$; aus dem Kontrollbereich treten keine Wetter in den betrieblichen Bereich über.

Die Wetternetzberechnung für die Tagestemperatur von 28 °C zeigt in dem Wetternetzschaltplan (Anlage 5) und dem DV-Ausgabeprotokoll (Anlage 6) eine weitere Verminderung der Wetterströme: die o.g. Wetterumkehrungen dauern an, und zusätzlich erscheinen Wetterumkehrungen in den Zweigen 306-308, 504-510, 505-504, 510-507, 510-521 und 541-549. Die Wetterströme in den Einlagerungskammern liegen bei 0,22 m³ s⁻¹; auch in diesem Zustand treten keine Wetter aus dem Kontroll- in den betrieblichen Bereich über.

Bei 30 °C Tagestemperatur (Wetternetzschaltplan in der Anlage 7, DV-Ausgabeprotokoll in der Anlage 8) verschärfen sich die Ausfallauswirkungen weiter: die Anzahl der Wetterzweige mit Wetterumkehr vergrößert sich – zusätzlich kehren die Wetter in den Zweigen 201-203, 203-202, 300-310, 301-306, 306-312, 307-300, 310-201, 312-300 und 312-307 um. Die Wetterströme in den Einlagerungskammern betragen nur noch 0,13 m³ s⁻¹, aber auch in diesem Zustand treten keine Wetter aus dem Kontrollbereich in den betrieblichen Bereich über.

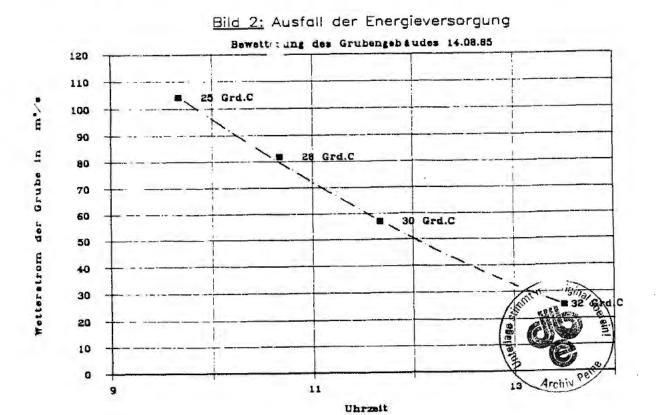
Die weiteren Berechnungen - für den Zustand bei 32 °C Tagestemperatur - zeigen zum ersten Mal den totalen Zusammenbruch der Bewetterung (vgl. Wetternetzschaltplan in der Anlage vund Distausgabeprotokoll in der Anlage 10): es erscheinen her in

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

Vielzahl an Wetterumkehrungen, verschiedene Teilkreisläufe der Wetter und im Zusammenhang damit auch der Übertritt der Wetter aus dem Kontrollbereich in das übrige Grubengebäude in den Wetterzweigen 106-105 und 203-205. Die Wetter in den Einlagerungskammern strömen in der umgekehrten Richtung und haben nun die eher hypothetische Größe von je 0,05 m 3 s $^{-1}$.

Bild 1 Temperaturverh altnisse vom 14.08.1985 Ord.C Temperatur in Z Uhrzeit Tm Schacht Konrad 1 Tm Schacht Konrad


09.04.90

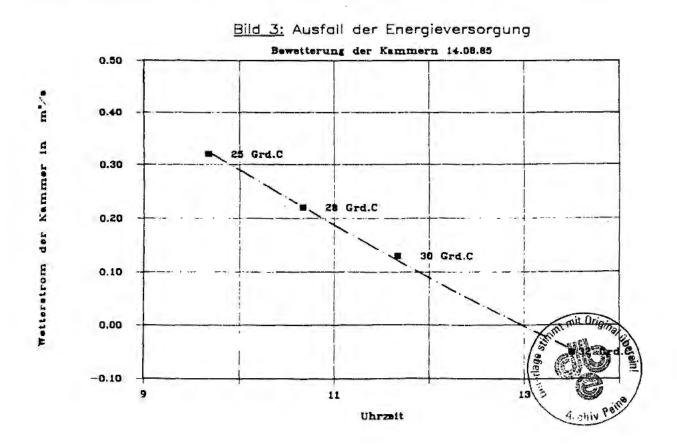
Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

T.

3.3 Wertung

Das Bild 1 zeigt die kontinuierliche Änderung der Temperaturen an dem ausgewählten Tag innerhalb von 18 h, d.h. zwischen 06.00 und 24.00 Uhr. Die Wetternetzberechnungen können dagegen nur als einzelne Momentaufnahmen der Bewetterungsentwicklung gelten: mit ansteigender Tagestemperatur verschlechtert sich die Bewetterung kontinuierlich, nachdem die Tagesmaximaltemperatur überschritten ist, kommt es wieder zur allmählichen Verbesserung der Bewetterung. Um diese Kontinuität darstellen zu können, wurden in den Anlagen 3, 5, 7 und 9 Wetterzweige mit Wetterumkehr rot markiert; darüber hinaus wurde eine zeitabhängige Kurve der Wetterstromverminderung in der Grube errechnet. Sie ist im Bild 2 dargestellt: gegen 9.28 Uhr erreicht die Tagestemperatur 25 °C, der in die Grube einziehende Wetterstrom beträgt 104 m³ s-1. Um 10.23 Uhr und bei der Temperatur

Prüfstelle für Grubenbewetterung



09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

von 28 °C ist dieser Wetterstrom schon auf 82 m 3 s $^{-1}$ gesunken, gegen 11.19 Uhr mit 30 °C Temperatur über Tage liegt er bei 57 m 3 s $^{-1}$, um schließlich gegen 13.23 Uhr bei 32 °C Tagestemperatur den Wert von 25 m 3 s $^{-1}$ zu unterschreiten.

Während beim Erreichen von 30 °C Tagestemperatur die Bewetterung (einziehend 57 m 3 s $^{-1}$) zwar mit größeren Teilkreisläufen noch einigermaßen aufrecht erhalten wird und keine Wetter aus dem Kontrollbereich in den betrieblichen Bereich strömen, wurde im Vergleich dazu beim Erreichen von 32 °C Tagestemperatur der Einziehwetterstrom mehr als halbiert. Er beträgt in dem Augenblick nur noch 25 m 3 s $^{-1}$. Die Entwicklung der Bewetterung im Zustand mit 32 °C und mehr würde am 14.08.85 etwa 4 h 22 min lang andauern, im Zustand mit mehr als 30 °C etwa 7 h 27 min.

Blatt 11

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

Da die Bewetterung der Einlagerungskammern für die Betrachtung ausschlaggebend ist, wurde auch hierfür die Entwicklung der durchgehenden Wetterströme näher betrachtet: sie ist im Bild 3 für die gleichen Zeitpunkte wie oben dargestellt. Allgemein ist offensichtlich, daß hier die Wetterströme mit 0,32 m³ s $^{-1}$ (bei 25 °C Tagestemperatur) schon sehr klein sind. Bei 40 m² Querschnittsfläche ergibt sich damit eine Wettergeschwindigkeit von etwa 0,01 m s $^{-1}$. Sie verringert sich allmählich und gegen 13.00 Uhr wird der absolute Wetterstillstand erreicht. Danach, mit weiter ansteigender Tagestemperatur, kommt es zu leichter, kaum nennenswerter Wetterbewegung in umgekehrter Richtung. Bei 32 °C gegen 13.23 Uhr sind es noch 0,05 m³ s $^{-1}$, d.h. die Wettergeschwindigkeit nimmt auf etwa 0,0013 m s $^{-1}$ ab. Wie lange, d.h. wieviel Minuten der absolute Wetterstillstand herrscht, läßt sich nicht beurteilen.

4. GRUBENBRÄNDE

4.1 Allgemeines

Für die Stabilitätsbetrachtungen bei Grubenbränden gilt die Vorgabe, daß sich die Bewetterung im Normalzustand befindet und daß es in unterschiedlichen Wetterzweigen zu einem Grubenbrand an einem gleislosen dieselangetriebenen Fahrzeug kommt. Für die Beurteilung solcher Brände wurden vier Wetterzweige (vgl. Anlage 1) ausgewählt, nämlich

320-205: Rampe Süd in dem letzten Abschnitt vor dem Abzweig zu den Hilfsräumen im Zweig 205-204; Wetterzweig-Abschnitt mit dem simulierten Brand state 1500 m lang mit einer Neigung von 8,7 gon, steigen besetzert

Prüfstelle für Grubenbewetterung

Blatt 12

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

- 206-208: 850 m-Sohle, Zufahrt der Transportfahrzeuge in die Rampe 280. Dieser Zweig ist etwa 90 m lang mit einem Einfallen von 4,7 gon, fallend bewettert.
- 208-209: Anschlag Schacht Konrad 2 auf der 850 m-Sohle; er ist etwa 70 m lang, horizontal bewettert.
- 206-221: Rampe 280 zwischen 850 m-Sohle und dem Abzweig in die Einlagerungskammern. Dieser Zweig ist etwa 400 m lang mit einer Neigung von 7,9 gon, steigend bewettert.

In diesen Wetterzweigen bewegen sich Einlagerungs- oder Versatztransportfahrzeuge vom Typ T-A25 der Fa. MAN GHH. An brennbaren Materialien führen sie im wesentlichen 300 l Dieselkraftstoff, 400 l Öl und 1300 kg Gummi mit.

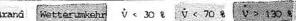
Für die nachstehenden Stabilitätsbetrachtungen wurde angenommen, daß die an dem brennenden Fahrzeug vorhandene bordfeste Feuerlöschanlage ausgefallen ist oder nicht betätigt wird und daß auch keine andere in den Grubenbauen vorhandene Löscheinrichtung betätigt wird. Für die vier einzeln zu simulierenden Brände wurden die jeweiligen Abkühlkurven der Brandwetter für das Brandmaximum (BM) unter Berücksichtigung der potentiellen Brandlasten, der geometrischen, thermodynamischen und wettertechnischen Parameter der von den Brandgasen durchströmten Grubenbaue errechnet und in die Berechnung für den Normalzustand (NZ) eingesetzt.

4.2 Auswirkungen

In der Anlage 11 ist der Wetternetzschaltplangung lage 12 das DV-Ausgabeprotokoll für den im Wetterz

≨nt An− 20−205

09.04.90


Gutachten über die Stabilität der Bewetterung,

Endlagerbergwerk Konrad

simulierten Brand beigefügt. Die im Brandmaximum vorhandenen Wetterumkehrungen in den Zweigen 2-3, 202-203, 203-204, 327-202 und 421-361 haben zur Folge, daß die Wetter aus dem Kontrollbereich austreten, daß es zu einem größeren Teilkreislauf der Wetter kommt und die Brandwetter - stark verdünnt - in die Schachthalle am Schacht Konrad 2 eindringen. Der Teilkreislauf der Wetter in der Masche 320-205-(206)-204-203-202-337-361-421-320 hat zur Folge, daß die Brandwetter - jedoch auch hier stark verdünnt - dem Brandherd von der Frischwetterseite wieder zugeführt werden. Die Tabelle 1 gibt bemerkenswerte Wetterstromänderungen in einzelnen Wetterzweigen wieder.

Tabelle 1:

	N	2		BM	
Wetterzweig	v	Δр	ů	LP	m _{BM}
	m ³ s ⁻¹	Pa	m ³ s ⁻¹	Pa	m _{NZ}
1	2	3	4	5	6.
4-5	255,00	-448.0	275,04	148,0	104
2-3	1,76	294,9	-0,50	23,8	28
106-105	99,67	13,6	40,11	2,2	40
107-105	57,07	7,7	107,51	26,9	187
202-241	98,82	47,4	39,79	7,7	40
203-204	2,83	64,3	-1,14	10,5	40
204-207	33,59	27,5	63,29	85,9	165
205-206	80,37	18,5	188,62	75,4	181
205-204	19,91	18,6	47,26	75,8	179
206-221	56,62	12,7	116,33	48,4	187
206-204	10,84	0,1	24,31	0,4	195
206-208	12,92	40,2	21,66	95,2	146
207-222	37,75	14,4	66,57	39,8	156 -
208-209	16,66	0	23,99	0	134
221-107	5,29	0,1	56,70	6,3	1022
241-106	99,63	19,4	40,09	3,1	40
305-371	8,21	0,2	14,73	0,5	179
320-205	98,72	30,5	245,69	126,4	181
337-202	23,83	1,5	-41,97	4,7	176
361-337	27,60	6,1	-38,50	11,8	139
421-320	98,37	19,5	178,03	63,9	181
421-361	1,81	0	70,92	14,6	3948

Blatt 14

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

Für den im Wetterzweig 206-208 simulierten Brand sind die Auswirkungen in dem Wetternetzschaltplan in der Anlage 13 und dem DV-Ausgabeprotokoll in der Anlage 14 dargestellt. Durch den Brand werden gemäß der Berechnung für das Brandmaximum Wetterumkehrungen in drei Zweigen verursacht: 2-3, 221-107 und 305-371. Während die erste Wetterumkehr verdünnte Brandwetter wieder in die Schachthalle am Ausziehschacht führt, hat die zweite einen Teilkreislauf der Wetter in der Masche 107-221-(224)-(223)-(225)-(226)-107 zur Folge (Einlagerungskammern); die dritte Wetterumkehr (im Zweig 305-371) ist für den Ernstfall bedeutungslos. Zu einem Übertritt der Wetter aus dem Kontrollbereich in das übrige Grubengebäude kommt es nicht. In der Tabelle 2 sind die wesentlichen Auswirkungen wiedergegeben.

Tabelle 2:

	N	2		BM	
Wetterzweig	v	Δр	ν	Lр	m _{BM}
	m ³ s ⁻¹	Pa	m ³ s ⁻¹	Pa	^m N2 8
11	2	3	4	.5	. б
4-5	255,00	-448,0	273,78	-165,7	103
2-3	1,76	294,9	-0,20/	3,8	11
203-208	3,60	106,5	5,11	209,5	138
204-207	33,59	27,5	46,76	53,3	139
206-204	10,84	0,1	23,72	0,5	218
206-208	12,92	40,2	31,24	30,2	101
207-222	37,75	14,4	51,44	26,9	136
221-107	5,29	0,1	-7,81	0,1	. 146
222-109	79,69	0,5	116,39	1,0	132
305-371	8,21	0,2	-0.53	0	6
305-309	24,81	104,2	34,95	206,7	141
309-209	24,84	0,8	35,02	1,5	1.41
371-361	25.74	1,0	17,70	0,5	69
421-361	1,81	0	5,21	0,1	290

Brand Wetterunkehr $\dot{V} < 30$ % $\dot{V} < 70$ % $\dot{V} > 130$ % $\dot{V} > 170$ %

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

Für den im Wetterzweig 208-209 simulierten Brand sind die Auswirkungen in dem Zustand für das Brandmaximum ähnlich wie in dem Vorhergehenden, oben beschriebenen Fall: der Wetternetzschaltplan in der Anlage 15 und das DV-Ausgabeprotokoll in der Anlage 16 sowie die Tabelle 3 zeigen die gleichen Wetterumkehrungen mit praktisch den gleichen Auswirkungen (das Eindringen der Brandwetter in die Schachthalle am Ausziehschacht, und den Teilkreislauf der Wetter im Bereich der Einlagerungskammern). Die Wetterumkehr im Zweig 305-371 ist auch diesmal bedeutungslos, und es kommt auch diesmal zu keinem Übertritt der Wetter aus dem Kontrollbereich in den betrieblichen Bereich.

Tabelle 3:

	N	Z		BM	
Wetterzweig	v	Δр	· l	ΔP	m _{BM}
	m ³ s ⁻¹	Pa	m³ s-1	Ра	m _{NZ}
1	2	3	4	5	6
4-5	255,00	-448,0	308,22	309,6	108
2-3	1,76	294,9	-2,32	509,6	131
107-105	57.07	7,7	23,07	1,2	40
203-208	3,60	106,5	6,11	299,2	165
204-207	33,59	27,5	56,18	76,9	167
206-221	56,62	12,9	22,89	2,1	40
206-204	10,84	0,1	31,64	0,9	291
206-208	12,92	40,2	30,35	222,0	234
207-222	37,75	14,4	61,49	38,4	163
208-209	16,66	0	96,65	0,3	219
209-222	41,76	0,2	111,50	1,1	188
221-107	5,29	0,1	-28,59	1,7	534
222-109	79,69	0,5	173,29	2,0	176
305-371	8,21	0,2	-5,34	0,1	65
305-309	24,81	104,2	41,76	294,9	168
309-209	24,84	0,8	41,88	2,1	168
337-202	23,83	1,5	13,84	0,5	58
361-337	27,60	6,1	18,86	2,8	68
371-361	25,74	0,1	13,92	0,3	54
421-361	1,81	0	4,92	0,1	274

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad


Der im Wetterzweig 206-221 simulierte Brand bewirkt in seinem Maximum einige Wetterumkehrungen: es sind dies die Wetterzweige 204-207, 206-204, 206-208, 207-222, 208-209 und 421-361. Die erstgenannten verursachen, daß Wetter aus dem Schacht Konrad 2 über die 850 m-Sohle in die Rampe 280 strömen; die Wetterumkehr in 421-361 ist im Ernstfall ohne Bedeutung. Da sich der Rückstrom der Wetter aus dem Schacht Konrad 2 im Kontrollbereich befindet, kommt es dabei zu keinem Austritt der Wetter aus diesem Bereich. Die Tabelle 4 verdeutlicht die wichtigsten Auswirkungen dieses Brandes.

Tabelle 4:

	N	Z		BM	
Wetterzweig	v m ³ s ⁻¹	Δp	v m³s ⁻¹	∠p Pa	m _{NZ}
1	2	3	4	5	.6
4-5	255,00	-448,0	267,08	-266,4	102
2-3	1,76	294,9	1,04	102,6	59
105-109	157,27	21,7	231,19	45,7	143
107-105	57,07	7,7	147,89	49,0	247
204-207	33,59	27,5	-8,35	1,7	25
206-221	56,62	12,7	222,43	119,6	247
206-204	10,84	0,1	-35,92	1,1	331
206-208	12,92	40,2	-5,00	6,0	39
207-222	37,75	14,4	-4,12	0,2	11
208-209	16,66	0	-1,46	0	9
209-222	41,76	0,2	22,31	0,1	54
221-107	5,29	0,1	102,56	18,2	1660
222-109	79,69	0,5	18,28	0	23
337-202	23,83	1,5	6,34	0,1	27
361-337	27,60	6,1	10,48	0,9	38
421-361	1,81	D	-17,87	0,9	995

Prand Wettermkehr

V < 30 8 V < 70 8

Blatt 17

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

4.3 Wertung

Die Wetternetzberechnungen für die vier simulierten Brände zeigen, daß nur für den ersten Fall ein Übertreten der Wetter aus dem Kontrollbereich zu erwarten ist. Zur besseren Darstellung sind die Wetterumkehrungen in den Anlagen 11, 13, 15 und 17 farbig (rot) markiert; in der Anlage 11 (simulierter Brand im Wetterzweig 320-205) ist zu erkennen, daß verdünnte – also mit Sauerstoff aufgefrischte – Brandwetter dem Brandherd wieder zuströmen. Da diese Tatsache die Situation verschlechtern könnte, wäre es angebracht – vorausgesetzt, so ein Fall ist nicht völlig auszuschließen – eine entsprechende Stabilisierungsmaßnahme, die gleichzeitig auch den Austritt der Wetter aus dem Kontrollbereich verhindert, zur Verhinderung eines solchen Teilkreislaufes im Ernstfall bereitzuhalten.

In den Wetternetzschaltplänen (Anlagen 11, 13, 15 und 17) sind darüber hinaus die Wege der Brandwetter blau markiert: es zeigt sich, daß im ersten und letzten Fall Brandwetter die Einlagerungskammern durchströmen. In die Schachthalle am Schacht Konrad 2 dringen sie in den ersten drei Fällen ein. Diese Tatsache sollte bei der Zusammenstellung der Fluchtpläne für die Belegschaft berücksichtigt werden.

5. SCHLUSSFOLGERUNGEN

Die Stabilitätsbetrachtungen ergaben zwei verhältnismäßig kritische Situationen:

- den totalen Zusammenbruch der Bewetterung beim STMW12eren des Ausfalls der Energieversorgung bei Tagestemperaturen um 32°C

Prüfstelle für Grubenbewetterung

227

Blatt 18

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

- den Teilkreislauf der Brandwetter über den Brandherd beim Simulieren des Grubenbrandes im Wetterzweig 320-205.

In beiden Fällen kommt es zu einem unerwünschten Übertritt der Wetter aus dem Kontrollbereich in den betrieblichen Bereich.

Um den geschilderten Auswirkungen in dem erstgenannten Fall vorbeugen zu können, wurde seitens DBE geplant, ein Bereitschaftswetterbauwerk im Zweig 106-105 zu errichten, das bei Energieausfall und hochsommerlichen Tagestemperaturen schließen wäre. Eine Kontrollberechnung hierzu ergab (vgl. Wetternetzschaltpläne in den Anlagen 9 und 19 und DV-Auswerteprotokolle in den Anlagen 10 und 20), daß auch eine starke Drosselung des Wetterstroms in diesem Zweig keine zufriedenstelle Lösung bringen würde: es käme dabei zwar zu einer Vergrößerung der in falscher Richtung strömenden Wetterströme im Bereich der Einlagerungskammern (von 0,05 auf 0,13 m^3 s⁻¹), iedoch der Wetterstillstandszeitraum (vgl. Bild 3) und der Übertritt der Wetter aus dem Kontrollbereich blieben erhalten. Danach wurde versucht, durch den Einsatz von zwei Bereitschaftswetterbauwerken (in den Zweigen 305-309 und 204-207, vgl. den Wetternetzschaltplan in der Anlage 21 und das DV-Ausgabeprotokoll in der Anlage 22) die dem Schacht Konrad 2 zuströmenden Wetter entsprechend zu drosseln und dadurch die Kontrollbereich einigermaßen zu stabilisieren. Situation im Wie den Anlagen 21 und 22 (im Vergleich zu den Anlagen 19 und 20) zu entnehmen ist, kann man durch diese Maßnahme die Bewetterung der Einlagerungskammern insoweit erhalten, daß hier 0,3 m 3 s $^{-1}$ Wetter in der ursprünglichen Richtun \mathfrak{G}^3 zwischenzeitlich eine Wetterumkehr erfolgte wenn der Austritt der Wetter aus dem Kontrollbefeic

Prüfstelle für Grubenbewetterung

Blatt 19

09.04.90

Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

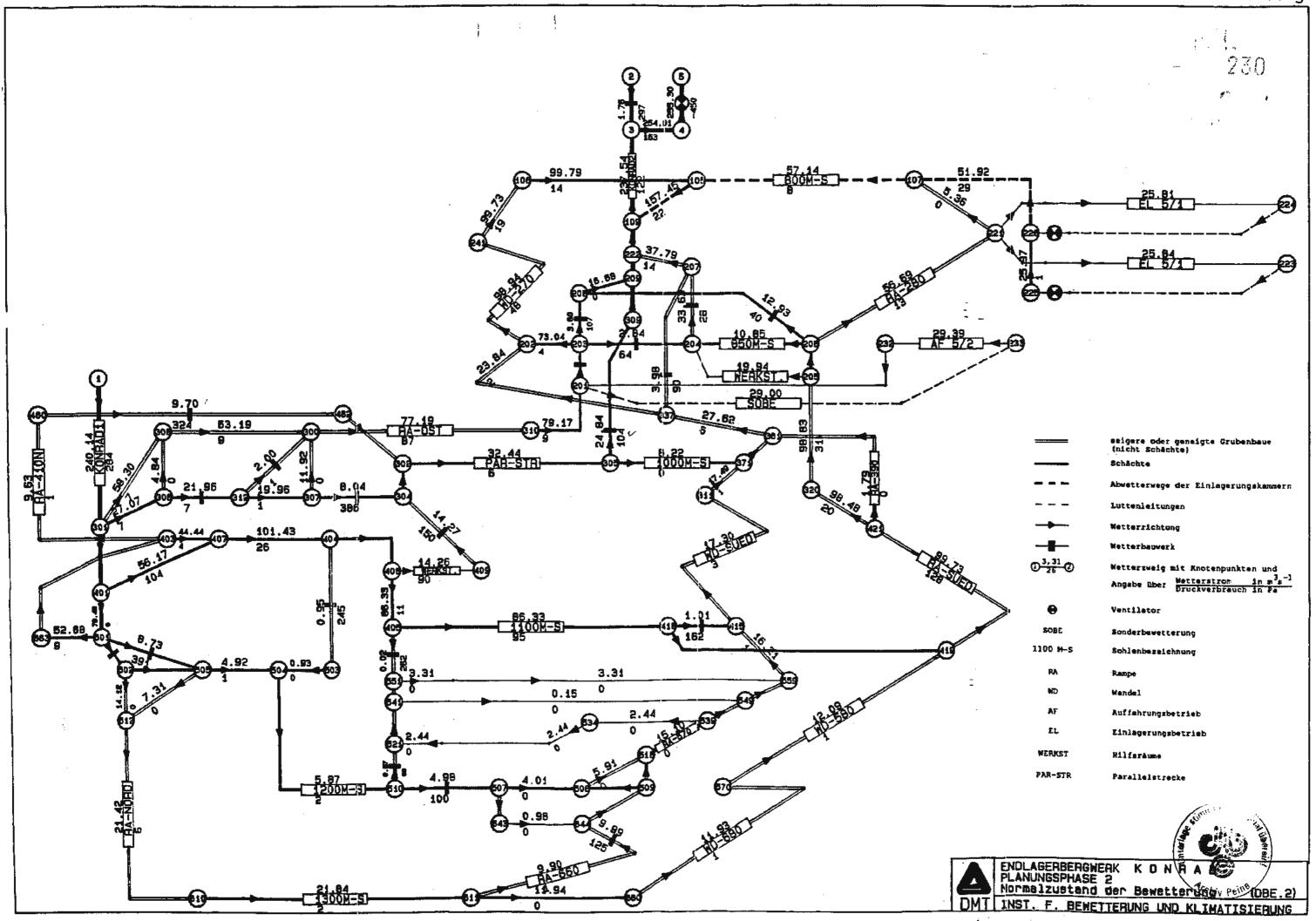
Zweig 203-204 nicht verhindert werden kann. Es kommt also zu einer Abströmung der Wetter aus den Hilfsräumen (Wetterzweig 205-204) über den Zweig 203-204 in den betrieblichen Bereich.

Den ungünstigsten Auswirkungen des zweitgenannten Falls - Brand im Zweig 320-205 - kann, wie die Berechnungsergebnisse in den Anlagen 23 (Wetternetzschaltplan) und 24 (DV-Ausgabeprotokoll) zeigen, durch ein Bereitschaftswetterbauwerk im Zweig 320-205 begegnet werden. Aus dem Vergleich der Anlagen 11 und 23 geht hervor, daß die Bewetterungssituation im Kontrollbereich durch entsprechende Drosselung des Wetterstroms in diesem Zweig weitgehend erhalten bleiben kann, es zu keinem Austritt der Wetter aus dem Kontrollbereich kommen muß und auch die Schachthalle am Ausziehschacht von den Brandschwaden freigehalten werden kann.

Es müßten also, um den beiden o.g. Störfällen entgegenwirken zu können, im Wetternetz insgesamt drei Bereitschaftswetterbauwerke (Bereitschaftsdrosseln) errichtet werden. Die beiden für den ersten Fall in den Wetterzweigen 305-309 und 204-207: in diesen beiden Zweigen sind zum Zwecke der gewünschten Wetterstromverteilung im Normalzustand der Bewetterung ohnehin Wetterbauwerke erforderlich, die dann auch als Bereitschaftsdrosseln präpariert werden müßten. Die dritte Bereitschaftsdrossel – für den Ernstfall im Zweig 320-205 – sollte im gleichen Zweig errichtet werden. Da die Fahrzeuge sich nur in dem oberen Abschnitt des Zweiges auf einer Länge von maximal 160 m bewegen und der Zweig selbst 310 m lang ist, kann dieses Bauwerk problemlos im unteren Zweigabschnitt noch auf der Frischwetterseite errichtet werden.

Blatt 20

09.04.90


Gutachten über die Stabilität der Bewetterung, Endlagerbergwerk Konrad

Alle drei Bereitschaftsdrosseln sollten von einer zentralen Stelle über Tage (Sicherheitswarte) ferngesteuert werden: die in den Zweigen 305-309 und 204-207 sollten an die Energieversorgung des Hauptventilators gekoppelt werden, die in dem Zweig 320-205 an die CO-Überwachung in diesem Wetterzweig, so daß beim Erreichen einer bestimmten CO-Konzentration Alarm ausgelöst und die Bereitschaftsdrossel geschlossen wird.

Bochum, den 09.04.1990

DATUM: 30, 3,1990

UHRZEIT: 6.8

ENDLAGERRERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 BERICHT NR.: **Norma/Justaud der Bowetterung** datei: DBI.2 * PROGRAMM WETTER
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	ı	TEUFE	M/M(. BZい P/Ł(.
				CBM/S	KG/M**7	PASCAL	M/S	GRD C	*	ΚW	MBAR	M ^ ^ 2	M	M	, ,
4	5	HGL	Ax-Vent -4.4 SKT	255.30	-0.0077	-450.4 RHO-SAUG	0.0 SETTE =	24.8	0.0 KG/CBM	-114.7	997.19	0.0	0	0	0,00
1	301	KONRAD1	7.7 3.1	240.14 1.76 254.91 157.45 99.79 57.14 237.54 79.23	0.0054	284.1	6.2	15.0	0,0	65.5	1000.00		1000	-1000	0.06
2 3	3 4	WKZ		1.76	100.0000	296.8 153.4	0.0 9.8	10.0 24.8	Ø.0 Ø.0	0.5 39.1	1001.09 998.72	0.0 26.0	9 50	- 5 0	0.00
105	109	W-KANAL		157.45	0.0009	21.8	5.6	33.0	0.0	39.1	1091.41	28.0	9 0 9 0	. 1	0.00
106	105			99.79	0.0014	13.6	3.6	32.0	0.0	1.4	1091.42	28.0	140	-1	0.00
107 109	105 3	800M-S		57.14	0.0024	7.7 122.3	2.0 6.2	32. 0 28.7	0.0 0.0	30.4	1091.48 1091.31	28. 0 38.5	240 778	773	0.00
201	203	KUMMMUZ		79.23	0.0384	241.4	2.8	24.0	0.0	19.1	1103.26	28.0	210	7 7 9	0 00
201	233	SOBE	V1-STROM	29.00	-0.0053	-4.5	0.0	24.0	0.0	-0.1	1103.26	0.0	0	- 1	1.00
202 203	241 202	WD-270		98.94 73.04	0.0050 0.0007	47.6 3.8	3.5 2.6	32.0 24.0	0.0 0.0	4./ 0.3	1100.80	28.0 28.0	490 70	6.7 10	0.00
203	.204			2.84 3.60	8.2397	64.5	0.1	32.0	0.0	0.2	1100.84	28.0	30	ĕ	0.00
203	208			3.60	8.2397 0.0251	106.7	0.1	24.0	0.0	0.4	1100.84	28.0	70	6 7	0.00
204 205	207 206			33.63 80.46	0.0751 0.0029	27.6 18.5	3.4 2.9	32.0 32.0	0.0 0.0	1.5	1100.20	10.0 28.0	30 290	é	0.06 0.06
205	204	WERKST.		19.94 56.69 10.85	0.0482	18.6	0.5	32.0	0.0	0.4	1100.38	40.0	250	ø	0.00
206	221	RA-280		56.69	0.0041 0.0009	12.7 0.1	2.0	32.0	0.0	0.7 0.0	1100.20	28.0 28.0	400 90	5 1 0	0.00
206 206	204 208	850M-S		12.93	0.0009	40.3	0.4 0.5	32.0 32.0	0.0 0.0	0.5	1100.20	28.0	90	- 6	0.00
207	222			37.79	0.0105	14.5	3.8	33.0	0.0	0.5	1099.06	10.0	90	17	0.00
208	209	FUELLORT		16.68	0.0001	0.0 0.2	0.3	33.0	0.0 0.0		1100.53	60.0 38.5	70 46	9 30	0.00
2 0 9 221	222 107	KONRAD2 Ra-280		41.81 5.36 25.85	0.0001	0.2	$\frac{1.1}{0.2}$	31,2 32.0	0.0	0.0	1093.81	28.0	210	19	0.00
221	A223	EK-282		25.85	0.0022	1.4	1.0	32.0	0.0	0.0	1093.81	25.0	180	- 3	0 00
221	A224	EK-283 Konrad2		25.81 79.78 25.84	0.0009 0.0001	0.6 0.5	1.3	32.0 31.7	0.0 0.0	0.0 0.0	1093.81	25.0 38.5	70 30	- 3 45	0 00
222 A223	109 223	EL 5/1		25.84	0.0015	0.9	0 , 6	32.0	0.0	0.0	1094.16		370	-13	0.00
223	225	Z-VENT	V1-STROM	25.80	-0.0487	-31.5	0.0	32.0	0.0		1095.74	0.0	0	62	1.00
A224	22 4 226	EL 5/1	V1-STROM	25.81	0.0016	1.0 -30.1	0.6 0.0	32.0 32.0	0.0 0.0	0.0 -0.8	1094.17 1094.40	40.0 0.0	400	-2 53	0.00
224 225	226	Z-VENT	VI-SIRUM	25.97	-0,0467 0.0008	0.5	1.3	32.0	0.0	0.0	1088,48	20,0	35	2	0.06
226	107			61 92	0.0110	28.6	2.6	32.0	0.0	1.5	1088,23	20.0	480	29	0 00
232 233	2 0 1 232	AF 5/2		29.00	0.0036 0.0018	3.0 1.5	1,0	24.0 28.0	0.0 0.0	0.1	1103.41	28.0 40.0	350 450	1	0.00
241	106	WD270		29.00 29.39 99.73 77.19	0.0020	19.5	3.6	32.0	0.0	1.9	1092.10	28.0	200	4	0.00
300	310	RA-OST		77.19	0.0140	86.9	2.8	22.5	0.0	6.8	1120,91 1122.90	28.0 28.0	1380	1.25	0.00
301 301	308 306			58.30 27.07	0.0021	7.5 7.1	2.1 2.3	22.5	0.0	0.4	1122.90	12.0	90	í	0.00
. 301	401	KONRAD1		136.60	0.0003	6,6	3.5	20.5	0.0	0.9	1122.90	38.5	101	-102	0.00
302	305	PAR-STR		32.44 22.67	0.0058 0.0037	6.2 1.9	1,2 08	29.0 26.0	0.0 0.0	0.2	1118.34	28.0 28.0	570 360	3 0	0.00
304 305	302 371	1000M-S		8.27	0.0024	0.2	0.3	32.0	0.0	0.0	1117.90	28.0	240	J 9	0.00
305	309	1000M-S		8.22 24.84	0.1709	104.4	2.1	31.5	0.0	2.6	1117.90	12.0		1	0.00
3 0 6 3 0 6	31? 308			21.96 4.84	0.0149	7.4 0.1	1.1 0.2	21.0 21.0	0.0 0.0	0.2 0.0	1122.70	20.0 28.6	210	6	0 00
307	300			11.92	0.0013	0.2	0.4	21.0	0.0	0.0	1177,61	28.0	150	15	0 00
307	304	1000M-S		8.04	5.7810	385.6 8.8	0.6	21.0	0.0	3.1 0.6	1122.61		310	, i	0 00
308	300			63.19	0.0021	8.8	2.3	21,0	0 .0	v.6	1171791	.00	2 10	. '	, ,

l TEUFE

M/MC BZW P/PC

DATUM: 30, 3.1990

KNOTEN

ENDE

KNOTEN ANFANG UHRZEIT: 6.8

ZWEIG- ZWEIGTYP VOL-STR. WIDERSTAND NAME ANFANG RN

CBM/S

ENDLAGERBERGWERK KONRAD
PROGRAMM WETTER
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
BERICHT NR.: Vernah mitand der Bawetterung

datei: DBE.2

DRUCK-

PASCAL

VERBRAUCH

KG/M**7

MITTL. TEMP.

GRD C

ANFG.

M/S

C H 4 -

KONZ.

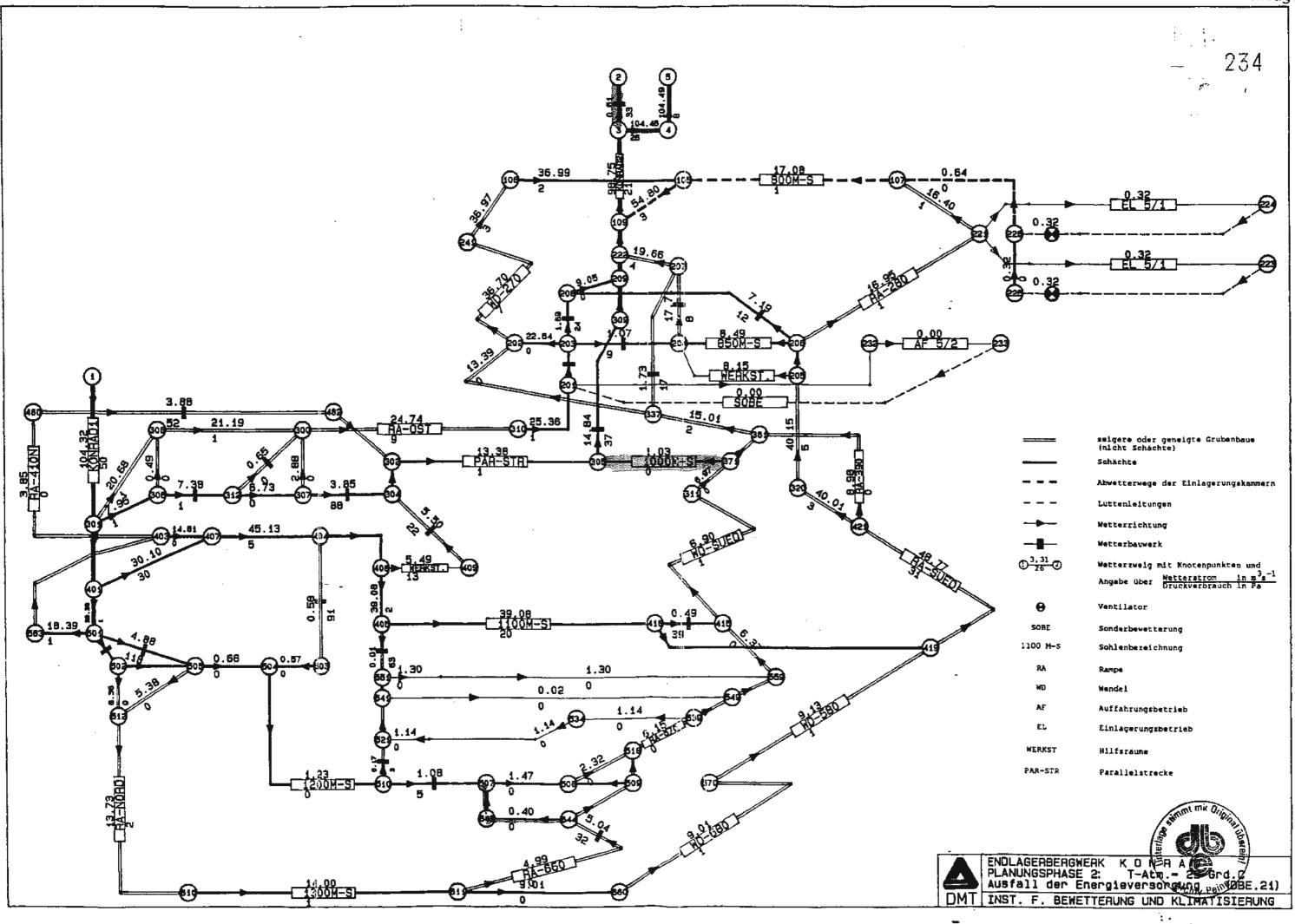
LSTG.

DRUCK

ANFANG

MBAR

			051170	Kujii ,	i noone	11,73	GND C			1101111		111	
309	209	KONRAD2	24.87	0.0012	0.8	0.0	30.9	0.0	0.0	1116.73	38.5 130	130	0.00
310	201	KOMMADE	79.17	0.0014	8.9	2.8	24.0	0.0	0.7	1103.98	28.0 140	136	0.00
311	371	WD-SUED	17.49	0.0025	0.8	0.7	32.0	0.0	0.0	1118 03	25.0 200	20	0.00
312	367			0.0025 0.0030	1 2	0.8	21.0	0.0	0.0	1118.03 1122.62	25.0 240	- ŏ	0.00
312	300		2 44	0.3429	1.2	0.1	21.0	0.0	0.0	1177 67	25.0 310	13	0.00
	205	DA CHED	2.90 98.83 3.98 23.84 27.62	0.0031	1.4 30.6 90.0 1.5 6.1	3.5	32.0	0.0	3.0	1122.62 1117.82 1105.02 1105.02 1113.40	28.0 310	138	0.00
320 337		KW-20ED	30.03	5.7941	04.0	0.4	32.0	0.0	0.4	1117.02	10.0 150	41	0.00
	207	DE KG 6	3.30	0.0027	1 5	0.9	32.0	0.0	0.0	1105.02	28.0 270	34	0.00
337	202		23.04	0.0081	6.1	1.1	32.0	0.0	0.2	11100.02	25.0 650	67	0.00
361	337		27.02	0.0001	1.0		32.0 32.0 22.0	0.0	0.0	1113.40	25.0 120	17	0 00
371	361		25.77	0.0015 0.0318	104.2	1.0 4.7	32.0	0.0	5.9	1115.53 1136.23	12.0 300	2	0 00
401	407	KONDAGA	56.17	0.0012	104.2		22.0	0.0	3.9	1130.23	38.5 99	- 9 9	0.00
401	501	KONRAD1	25.77 56.17 79.48	0.0012	7.9 4.3	2.1 1.8	21.5		0.0	1136.23	25.0 170	- 9 9	0.00
403	407	5	77.20	0.0021	4.3		26.0	0.0	0.2	1134.84		- 1 6 4	0.00
403	460	KA-410N	9.63 100.52	0.0061 0.0052	0.6	0.3	26.0	0.0	0.0	1134.84 1134.54	28.0 600	2	0.00
404	408		100.52	0.0052	53.8	4.0	26.0	0.0	5.4	1134.54	25.0 420		0.00
404	503	AUFH.	0.95	266.5/50	245.0	0.1	26.5	0.0	0.2	1134.54	8.0 110	9 9	
405	418	1100M-S	100.53 100.55 0.95 86.329 101.43 86.33 14.26	0.0125	95.4 261.6 26.1 11.3	3.5	26.5 26.0 29.0	0.0	8.2	1133.50 1133.50	25.0 1010	- 3	0.00
405	551		0.029	99999.0000	261.6	0.0	29.0	0.0	0.0	1133,50	8.0 0	- 28	0.00
407	404		101.43	0.0025	26.1	4.1	26.0	0.40	2.6	1133.50 1133.74 1133.74 1132.84 1130.02 1132.93 1137.84 1121.78	25,0 200	1	0.00
408	405		86.33	0.0015	11.3	3.5	26.0	0.0	1.0	1133.74	25.0 120	1	0.00
408	409	WERKST.	14.26	0.4321	89.8	0.0	26.0	0.0	1.3	1133.74	0.0	0	0.00
409	304		14.26 14.27 17.30 1.01 86.51	0.7152	149.7	1.2	26.0	0.0	2.2	1132.84	12.0 310	161	0.00
415	311	WD-SUED	17.30	0.0108	3.2	0.7	32.0 26.0	0.0	0.1	1130.02	25.0 870	95	0.00
418	415		1.01	155.6905	162.0	0.0	26.0	0.0	0.2	1132.93	28.0 0	10	0.00
418	419		1.01 86.51 99.73 98.48 1.79 1.80 9.70 9.74 8.73	0.0050	162.0 37.5 128.1	3.5	30.0	0.0	3.3	1132.93	25.0 400	37	0.00
419	421	RA-SUED	99.73	0.0129	128.1	3.6	32.0	0.0	12.8	1127.84	28.0 1270	38	0.00
421	320	RA-SUED	98.48	0.0020	19.6	3.5	32.0	0.0	1.9	1121.78	28.0 200	30	0.00
421	A421	RA-390	1.79	0.0029	0.0	0.1	32.0	0.0	0.0	1121.78 1113.40 1126.57	28.0 290	6.7	0 06
A421	361	SCHLEUSE	1.80	0.0000 3.3816	0.0 323.5	0.0	32.0	0.0	0.0	1113.40	0.0	0	0.00
460	462	RA-410N	9.70	3.3816	323.5	0.3	26.0	0.0	3.1	1126.57	28.0 320	Ø	0.06
462	302		9.73	0.0011 1.2216		0.3	26.0	0.0	0 A	1172 24	28,0 110	39	0.00
501	502		17.44	1.2216	391.4	1.5	22.5	0.0	6.8	1149.27	12.0 140	1	0.00
501	505		8.73	4.8760	391.4	1.1	22.5 22.5	0.0	3.4	1149.27 1149.27 1149.27 1145.22	8,0 100	1	0,08
501	563		52.68	0.0030	8.7	2.6	22.5	0,0	0.5	1149.27	:0.0 130	0	0.00
502	512	RA-NORD	14.12	0.0004	0.1	0.5	23,0	0.0	0.0	1145,22	28,0 40	- €	0.00
507	505		3.44	0.0032	0.0	0.3	23.0	0.0	0.0	1145,77	12.0 30	0	0 00
503	504		0.93	0.0053	0.0	0.1	23.0	0.0	6.6	1144.95	12.0 50	Ø	0.00
504	510	1200M · S	5.73 52.68 14.12 3.44 0.93 5.87	0.0594	2.1	0.5	26.0	0.0	0.0	1144,95	12.0 560	3	0.00
505	504		4.92	0.0307	91.4 391.4 6.7 0.1 0.0 0.0 2.1 0.8 0.4 0.4	0.4	23.5	0.0	0.0	1144.95 1145.22	12.0 290	2	0.00
505	512		7.31	0.0008	0.0	0.3	23.0	0.0	0.0	1145.22 1143.28	28.0 80	6	0 00
507	508		4.01	0.0218	0.4	0.3	28.0	0.0	0.0	1143.28	14.0 310	0	0.00
507	643		0.98	0.0485	9.0	0.2	32.0	0.0	0.0	1143.28	4.0 40	2.1	0.00
508	518		5.91	0.0019	A 1	0,2	32.0 32.0 32.0	0.0	0.0	1143.28 1143.27 1143.15	25.0 70	13	0.00
509	508		1,84	0.0113	0.0	0.1	32.0	0.0	0.0	1143.15	14.0 160	- 1	0.00
509	518		0 17	0.0012	0.1	0.4	32.0	0.0	0.0	1143.15	25.0 100	1.2	0.00
510	507	1200M-S	9.17 4.98	3 9209	99.7	0.4	28.0	0.0	0.5	1144,54	14.0 310	24	0.00
510	521	AUFH.	a 97	3.9209 100.9420	98.6	0.1	30.0	0.0	0.1	1144.54	8.0 70	26	0.00
512	610	RA-NORD	0.97 21.42	0.0125	6 A	0.8	25.5	0.0	0.1	1146.01	28.0 1230	83	0 00
	539	RA-570	15.10	0.0019	9.0 9.1 99.7 98.6 6.0 9.4	0.6	32.0	0.0	0.0	1141,61	25 0 150	21	0 00
518 521	541	AUTH.	3.43	0.0187	ø. 2	0.4	32.0	0.0	0.0	1140.26	8.0 90	29	0.00
521	241	AUTH.	3.43	0.0137	v. L	v , 7	0		•				


DATUM: 30, 3.1990

UHRZEIT: 6.8

ENDLAGERBERGWERK KONRAD		PROGRAMM WETTER
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2	*	PRUEFSTELLE FUER GRUBENBEWETTERUNG
BERICHT NR.: Normalzustand der Bewetternne datei: DBE.2	*	
***************************************	* * *	***************

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG~ NAME	ZWEIGTYP VOL-	STR. Fang	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTI. TEMP.	CH4- KONZ.	ιsτς.	DRUCK ANFANG	Α	ι	TEUFL	M/MC BZW P/PG
			CBM	/s	KG/M**7	PASCAL	M/S	GRD C	8	K₩	MBAR	M^^2	M	M	7710
A521	521			2.44	0.0000	0.0	0.0	32,0	0.0	0.0	1140.20	0.0	Ø	0	0.00
534	A521			2.44	0.0033	0.0	0.1	32.0	0.0	0.0	1138.42	25,0	270	14	0.00
539	534			2.44	0.0032	0.0	0.1	32,0	0.0	0.0	1138,93	25.0	260	4	0.00
539	549			2.70	0.0016	0.3	0.5	32.0	0.0	0.0	1138.93	25.0	130	15	0.00
541	551	AUFH.		3,29	0.0104	0.1	0.4	32.0	0.0	0.0	1136.50	8.0	50	16	0.00
541	549	FELD 1		0.15	0.0166	0.0	0.0	32.0	0.0	0.0	1136.50	20.0	720	- 4	0.00
549	559			2.87	0.0021	0.4	0.5	32.0	0.0	0.0	1137.01	25.0	170	22	0.00
551	A551			3.31	0.0000	0.0	0.0	32.0	0.0	0.0	1134.47	0.0	0	0	0.00
A551	559			3.31	0.0216	0.2	0.2	32.0	0.0	0.0	1134,47	20.0	940	2	0.00
559	415			6.21	0.0050	1.3	0,6	32.0	0.0	0.0	1134.21	25.0	400	33	0.00
563	403	AUFH.		2.86	0.0329	97.2	4.4	24.5	0.0	5.2	1149.18	12.0	310	102	0.00
570	419	WD-580		2,09	0.0083	1.2	0.4	32,0	0.0	0,0	1143.23	30.0		121	0.00
610	611	1300M-S		1.84	0.0036	1.7	0 .8	32.0	0.0	0.0	1158.21	28.0	350	0	0.00
611	A 6 4 4	RA-660		9.90	0.0080	0.8	0.4	32.0	0.0	0.0	1158.19	28.0	790	8:5	0.00
611	660			1.94	0.0009	0.1	0.4	32.0	0.0	0.0	1158.19	28.0	90	- 4	0.00
643	644			0.98	0.0016	0.0	0.0	32.0	0.0	0.0	1145.97	28,0	160	O	0 00
A 6 4 4	644			9.99	1.2302	124.6	0.0	32.0	0.0	1.2	1147.21	0,0	0	0	0.08
644	509		1	0.99	0.0022	0.3	0.4	32.0	0.0	0.0	1145.97	28.0	270	∵2	0.00
660	570	WD-680	1	1.93	0.0083	1.2	0.4	32.0	0.0	0.0	1158.71	30.0	1000	120	0,00
1.	2	ATM		1.77	0.0000	0.0	0.0	10.0	0.0	0.0	1000.00	0.0	Ø	- 9	0,00
5	ī	ATM	24	1.50	0.0000	0.0	0.0	10.0	0.0	0.0	1001.69	0.0	. 6	1 4	0,00

DATUM: 30, 3,1990

UHR7E17: 6.10

ENDLAGERBERGWERK KONRAD
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Alm.= 25 Grd.C

* PROGRAMM WETTER REPORTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWE I G- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	1516.	DRUCK ANFANG	Α	i	TEUFE	M/MG BZW P/PG
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	૧	KW	MBAR	M**2	M	M	
4 1 2 3 105 106	5 301 3 4 109 105	HGL KONRAD1 WKZ W-KANAL	104.49 104.32 -0.61 104.46 54.80	0.0008 0.0054 100.0000 0.0026 0.0009	7.8 50.3 -33.4 25.6 2.6	0.0 2.7 0.0 4.0 2.0 1.3	27.7 26.4 25.0 27.7 36.1 32.0	0.0 0.0 0.0 0.0	0.8 5.0 0.0 2.7 0.1	1001.68 1000.00 1001.03 1001.94 1092.80 1092.69	0.0 38.5 9.0 26.0 28.0 28.0	1000 0 50 90 140	0 - 1000 - 5 0 - 1 - 1	0 , 0 ¢ 0 , 0 ¢ 0 , 0 ¢ 0 , 0 ¢ 0 , 0 ¢
107 109 201 201	105 3 203 233	800M-S KONRAD2 SOBE	17.08 98.75 25.37 0.00	0.0024 0.0022 0.0384 5,5000	0.7 21.0 24.7 0.0	0.6 2.6 0.9 0.0	32.0 31.5 24.0 24.0	0.0 0.0 0.0	0.0 2.1 0.6 0.0	1092.80 1092.89 1101.76 1101.76	28.0 38.5 28.0 0.0	240 778 210 0	773 0 -1	0.00 0.00 0.00 0.00
202 203 203 203 204	241 202 204 208 207	WD-270	36.70 22.64 1.07 1.69 17.71	0.0050 0.0007 8.2397 8.2397 0.0251	6.5 0.4 9.2 23.6 7.7	1.3 0.8 0.0 0.1 1.8	32.0 24.0 32.0 24.0 32.0	0.0 0.0 0.0 0.0	0.2 0.0 0.0 0.0	1101.50 1101.51 1101.51 1101.51	28.0 28.0 28.0 10.0	490 70 30 70 30	6 7 0 6 7	0 00 0 00 0 00 0 00
205 205 206 206 206	206 204 221 204 208	WERKST, RA-280 850M-S	32.63 8.15 16.95 8.49 7.19	0.0029 0.0482 0.0041 0.0009 0.2481	3.0 3.1 1.1 0.1 12.5	1 0 . 2 0 . 6 0 . 3 0 . 3	32.0 32.0 32.0 32.0 32.0	0.0 0.0 0.0 0.0	0.1 0.0 0.0 0.0 0.1	1101.45 1101.45 1101.42 1101.42 1101.42	28.0 40.0 28.0 28.0 28.0	290 250 400 90 90	6 5 1 0 - 6	0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0
207 208 209 221 221	222 209 222 107 A223	FUELLORT KONRAD2 RA-280 EK-282	19.66 9.05 24.05 16.40 0.32	0.0105 0.0001 0.0001 0.0021 0.0022	3.9 0.0 0.1 0.6 0.0	2.0 0.2 0.6 0.6	35.1 36.1 34.5 32.0 32.0	0.0 0.0 0.0 0.0	0.1 0.0 0.0 0.0	1100.48 1102.03 1102.03 1095.14 1095.14	10.0 60.0 38.5 26.0 25.0	90 70 46 210 180	17 9 30 19 -3	0,00 0,00 0,00 0,00 0,00
221 222 A223 223	A224 109 223 225	EK-283 KONRAD2 EL 5/1 Z-Vent	0.32 43.80 0.32 0.32	0.0009 0.0001 0.0015 5.5000	0.0 0.2 0.0 0.5	0.0 1.1 0.0 0.0	32.0 34.5 32.0 32.0	0,0 0.0 0,0	0.0 0.0 0.0	1095.14 1098.37 1095.50 1097.10	25.0 38.5 40.0 0.0	70 30 370 0	-3 45 13 62	0.00 0.00 0.00 0.00
A224 224 225 226 232	224 226 226 107 201	EL 5/1 Z-Vent	0.32 0.32 0.32 0.64 0.00	0.0016 5.5000 0.0008 0.0110 0.0036	0.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0	32.0 32.0 32.0 32.0 24.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1095.50 1095.75 1089.51 1089.26 1101.88	40.0 0.0 20.0 20.0 28.0	400 35 480 350	-2 53 2 29	0,00 0,00 0,00 0,00
233 241 300 301 301	232 106 310 308 306	AF 5/2 WD-270 RA-0ST	0.00 36.97 24.74 20.68 7.95	0.0018 0.0020 0.0140 0.0021 0.0095	0.0 2.7 8.9 0.9 0.6	0.0 1.3 0.9 0.7	28.0 32.0 22.5 22.5 24.0	0.0 0.0 0.0 0.0	0.0 0.1 0.2 0.0	1101.88 1093.21 1118.52 1120.36 1120.36	40.0 28.0 28.0 28.0 12.0	450 200 1380 210 90	0 4 125 7	0 00 0 00 0 00 0 00 0 00
301 302 304 305	401 305 302 371	KONRAD1 PAR-STR 1000M-S	64.78 13.38 9.48 -1.03	0.0003 0.0058 0.0037 0.0024	1 · 4 1 · 1 0 · 3 0 · 0	1.7 0.5 0.3 0.0	28.0 29.0 26.0 32.0	0.0 0.0 0.0	0.1 0.0 0.0 0.0	1120.36 1118.94 1118.94 1118.55	38.5 28.0 28.0 28.0	101 570 360 240	107 3 0 19	0 00 0 00 0 00 0 00
305 306 306 307 307	309 312 308 300 304	1000M-S	14.84 7.38 0.49 2.88 3.85	0.1709 0.0149 0.0021 0.0013 5.7810	36.8 0.8 0.0 0.0 88.1	1,2 0.4 0.0 0.1 0.3	35.1 21.0 21.0 21.0 21.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0	11.18.55 1120.22 1120.22 1120.21 1120.21	12.0 20.0 28.0 28.0 14.0	410 150 110 130 310	1 0 6 1 3	0 00 0 00 0 00 0 00 0 00
308 309	300 209	KONRAD2	21.19	0.0021	1.0	0.8 0.4	21. 0 34.5	0,0	0.0	1119,44 1118 06	28. 0 38.5	210 130	1 3 0	0.00

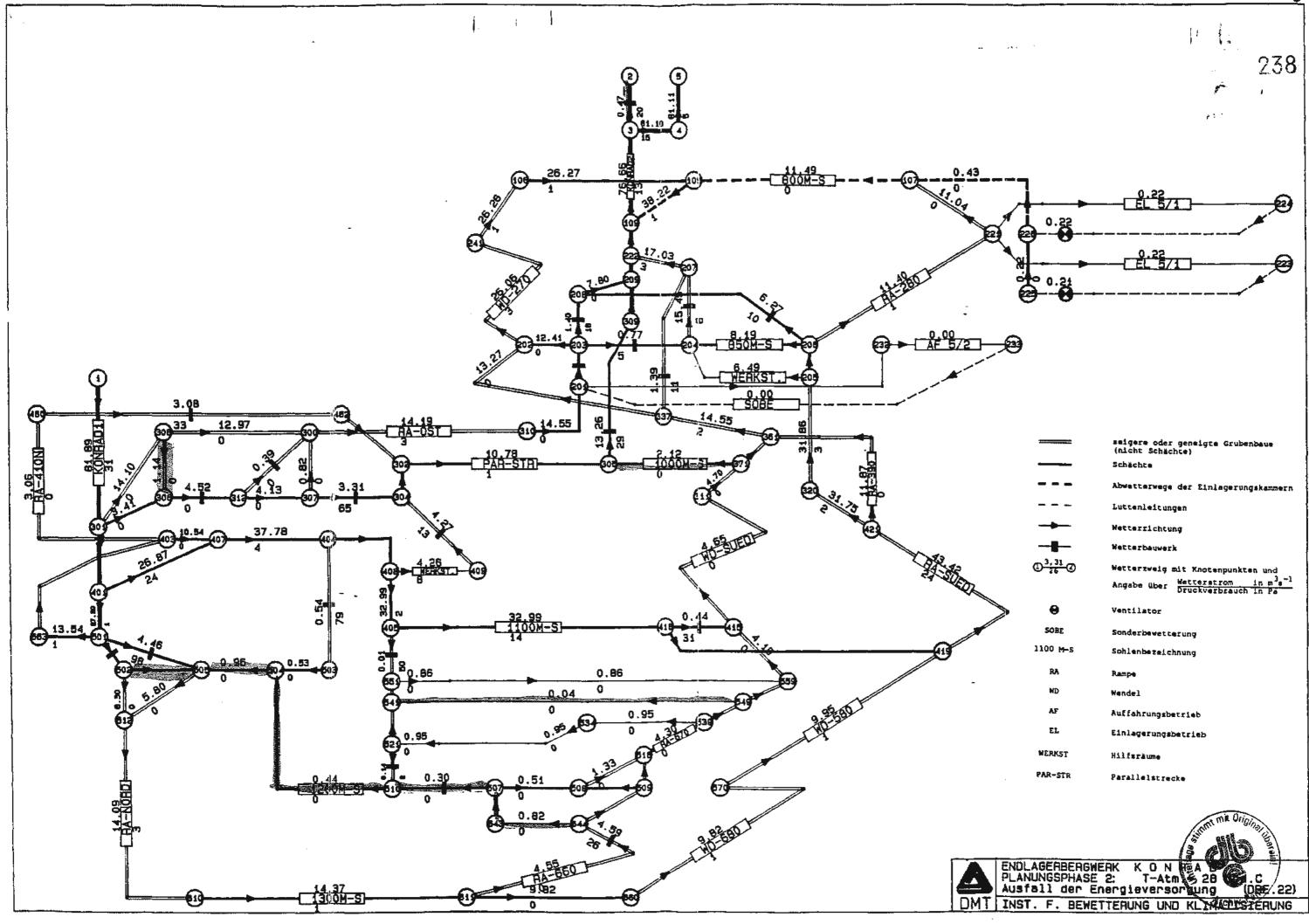
DATUM: 30. 3,1990

UHRZEIT: 6,10

FNDIAGERRFRGWERK KONRAU
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 25 Grd.C

* PROGRAMM WETTER
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	Ł	TEUFL	M/MU BZW: P/PG
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	&		MBAR	M**2	М	M	
310 311 312 312	201 371 307 300	WD-SUED	6.73	0.0014 0.0025 0.0030 0.3429	0.9 0.1 0.1 0.1	0,9 0.3 0.3	24.0 32.0 21.0 21.0	0.0 0.0 0.0	0.0 0.0 0.0	1102.40 1116.68 1120.22 1120.22	28.0 25.0 25.0 25.0	140 200 240 310	0 13	0.00 0.00 0.00 0.00
320 337 337 361 371	205 207 202 337 361	RA-SUED BERG 6	0.65 40.15 1.73 13.39 15.01	0.0031 5.7941 0.0027 0.0081 0.0015	5.1 17.0 0.5 1.8 0.1	1.4 0.2 0.5 0.6	32.0 32.0 32.0 32.0 32.0	0.0 0.0 0.0 0.0	0.2 0.0 0.0 0.0	1118.64 1105.71 1105.71 1114.05 1116.17 1133.38	28.0 10.0 28.0 25.0 25.0	310 150 270 650 120	41 34 67	0.00 0.00 0.00 0.00 0.00
401 401 403 403	407 501 407 460	KONRAD1 RA-410N	30.10 33.38 14.61	0.0318 0.0012 0.0021	29.9 1.4 0.5 0.1	2.5 0.9 0.6 0.1	22.0 28.2 26.0 26.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	1133.38 1132.70 1132.70	12.0 38.5 25.0 28.0	300 99 170 600	- 9 9 - 1 6 4	0.00 0.00 0.00
404 404 405 405 407	408 503 418 551 404	AUFH. 1100M-S	3.85 44.56 0.58 39.08 0.01 45.13 39.08	0.0052 266.5750 0.0125 999999.0000	10.6 90.8 19.5 63.3 5.2	1.8 0.1 1.6 0.0 1.8	26.0 26.5 26.0 29.0 26.0	0.0 0.0 0.0 0.0	0.0	1132.64 1132.64 1132.13 1132.13	25.0 8.0 25.0 8.0 25.0	420 110 1010 200	-99 -3 -28	0.00 0.00 0.00 0.00 0.00
407 408 408 409 415	405 409 304 311	WERKST. WD-SUED	5.49 5.50 6.90	0.4321 0.7152 0.0108	2.3 13.3 22.2 0.5	1.6 0.0 0.5 0.3	26.0 26.0 26.0 32.0	0.0 0.0 0.0	0.1	1132.82 1132.28 1132.28 1132.15 1130.64	25.0 0.0 12.0 25.0	120 0 310 870	1 0 101 95	0.00 0.00 0.00 0.00
418 418 419 421	415 419 421 32 0	RA-SUED RA-SUED	0.49 39.09 48.77 40.01	155.6905 0.0050 0.0129 0.0020	38.5 7.6 30.6 3.2	0 . 6 1 . 7 1 . 4	26.0 30.0 32.0 32.0	0,0 0.0 0.0	0.0 0.3 1.5 0.1	1132.32 1132.32 1127.53 1122.44	28.0 25.0 28.0 28.0	200		0.00 0.00 0.00 0.00
421 4421 460 462	A421 361 462 302	RA-390 SCHLEUSE RA-410N	8.98 9.05 3.88 3.88	0.0029 0.0000 3.3816 0.0011	0.2 0.0 51.6 0.0	0.3 0.0 0.1 0.1	32.0 32.0 26.0 26.0	0.0 0.0 0.0 0.0	0.2	1122.44 1114.05 1124.45 1123.93 1146.16	28.0 0.0 28.0 28.0 12.0	290 320 110 140		0.00 0.00 0.00 0.00
501 501 501 502 502	502 505 563 512 505	RA-NORD	9.76 4.88 18.39 8.36 1.24	1.2216 4.8760 0.0030 0.0004 0.0032	118.2 118.2 1.0 0.0 0.0	0.8 0.6 0.9 0.3 0.1	25.6 25.6 25.6 23.0 23.0	0.0 0.0 0.0	0.6 0.0	1146.16 1146.16 1144.85 1144.85	20.0 28.0 28.0 12.0	100 130 40 30	1 0 6	0 0 0 0 0 0 0 0 0 0 0 0
503 504 505 505	504 510 504 512	1200M-S	0.57	0.0053 0.0594 0.0307 0.0008 0.0218	0.0 0.1 0.0 0.0	0.0 0.1 0.1 0.2 0.1	23.0 26.0 23.5 23.0 28.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1144.58 1144.58 1144.85 1144.85 1144.85	12.0 12.0 12.0 28.0 14.0	50 560 290 80 310	0 3 2 -6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 507 507 506 509 509	508 643 518 508 518		-0.40 2.32 0.83 4.82	0.0485 0.0019 0.0113 0.0012	0.0 0.0 0.0	-0.1 0.1 0.1 0.2	32.0 32.0 32.0 32.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	1143.88 1143.88 1143.76 1143.76 1144.19	4.0 25.0 14.0 25.0 14.0	40 70 160 100 310	13 -1	0 00 0 00 0 00 0 00
510 510 512 518 521	507 521 610 539 541	1200M-S AUFH. RA-NORD RA-570 AUFH.	6.15 1.31	3.9209 100.9420 0.0125 0.0019 0.0187	4.7 2.9 2.5 0.1 0.0	0.1 0.0 0.5 0.2 0.2	28.0 30.0 25.5 32.0 32.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1144.19 1145.64 1142.22 1140.81	8.0 28.0 25.0 8.0	7 0 15 3 0 1 5 0 9 0	. 26 93 21 29	0 00 0 00 0 00 0 00
A521	521		1.14	0.0000	0.0	0.0	32,0	0.0	0.0	1140.81	0.0	0	. 0	0.00



DATUM: 30. 3.1990

UHRZEIT: 6.10

PLANU	GERBERGW INGSPHASE Inliche B		N R A D GERUNG FLLD 5/1, AU g T-Atm.= 25 Grd.	FFAHRUNG FEL	D 5/2	latei: D	BE . 21			PROGRAMM FSTELLE F	UER GRU			UNG
KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG CBM/S	WIDERSTAND RN KG/M**7	DRUCK- VERBRAUCH PASCAL	W Anfg. M/s	MITTL. TEMP. GRD C	CH4- KONZ.	LSTG. KW	DRUCK ANFANG MBAR	M * * 2	į M	TEUFE	M / M C. B Z W . P / P C.
53499 53399 5411 55491 55593 55570 6111 66444 6644 6644	A 554991955555555555555555555555555555555	AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660 WD-680 ATM	1 . 1 4 1 . 1 4 5 . 0 3 1 . 2 9 0 . 0 2 5 . 0 5 1 . 3 0 6 . 3 7 18 . 0 6 9 . 13 14 . 0 0 4 . 9 9 9 . 0 1 - 0 . 4 0 4 . 6 4 9 . 0 1 1 . 0 4 1 . 0 6 1 .	0.0033 0.0033 0.0032 0.0164 0.0166 0.0021 0.0216 0.0216 0.0250 0.0250 0.0350 0.0360 0.	0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 11.3 0.7 0.7 0.7 0.2 0.1 0.0 0.0	0002202013535230023000000000000000000000	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	0 . 0 0 . 0 .	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1139.54 1139.54 1137.12 1137.63 1135.08 1135.08 1135.08 1135.08 1136.15 1142.91 1157.86 1146.58 1157.86 1146.58	225 88 98 98 98 98 98 98 98 98 98 98 98 98	270 260 130 720 1720 1720 1720 1940 310 100 100 100 220 100 0	- 1 4 15 16 - 4 - 22 02 33 102 1 21 0 85 - 4 0 0 27 12 14	0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .

DATUM: 30. 3,1990

UHRZEIT: 6.12

ENDLAGERBFRGWERK KONRAD
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1. AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 28 Grd.C

Adtei: DBE.22

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	ι	TEUFF	M / M (B Z G B / D (
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	8.	κW	MBAR	M^^2	M	M	1 /1 0
NOTEAN G AN TEAN G 107 1091 1007	TEN		ANFANG CBM/S 81.11 81.89 -0.47 81.22 26.26 11.666 14.666 12.77 15.45 25.87 61.49 81.17 25.87 61.40 81.17 17.03 71.20 211.04 9.222 38.31 9.222	RN	VERBRAUCH	ANFG.	TEMP. GRD C	KONZ.	W . 4 4 4 9 . 9 3 9 9 . 1 9 9 9 . 1 9 9 9 9 9 9 9 9 9 9 9	ANFANG MBAR 1001.64 1000.000 1001.79 10922.563 10922.75 1101.38 1101.38 1101.30 1101.30 1101.325 1101.225 1101.225 1101.225 1101.225 1101.233 1101.89 1101.89 1101.89 1101.90 1101.90 1101.90 1101.90 1101.90	1 05000005000000000000000500050000000000	10000000000000000000000000000000000000		UP
225 2232 2340 3001 3001 3002 3005 3007 3007 3007 3009	2267 1203260 22131606152 1300152 130013307 1300133000 130009 130009	AF 5/2 WD-270 RA-OST KONRAD1 PAR-STR 1000M-S 1000M-S	7.68 -2.12 1 a 26 4.52 -1.14 0.82 3.31 12.97	0.008 0.0110 0.0036 0.0018 0.00140 0.0140 0.0021 0.0093 0.0058 0.0058 0.0024 0.1709 0.0149 0.0149 0.0021	0.0 0.0 0.0 0.0 1.4 2.9 0.1 1.1 0.7 0.2 29.4 0.3 0.9 0.9 65.4	0.00 0.00 0.5534 431120 0.53 10.00 0.53	32.0 32.0 28.0 28.0 32.5 22.5 24.1 29.0 26.0 35.1 21.0 21.0 21.0 34.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1089.35 1089.10 1101.50 1101.50 1093.03 1119.90 1119.90 1118.72 1118.33 1118.33 1119.77 1119.76 1118.99 1117.92	00000000000000000000000000000000000000	350 4850 3450 3450 3450 1070 1070 1070 1070 1070 1070 1070 10	29 -29 1 0 4 1 25 1 1 0 3 0 1 9 1 0 6 1 3 3 7 1 5 0	0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

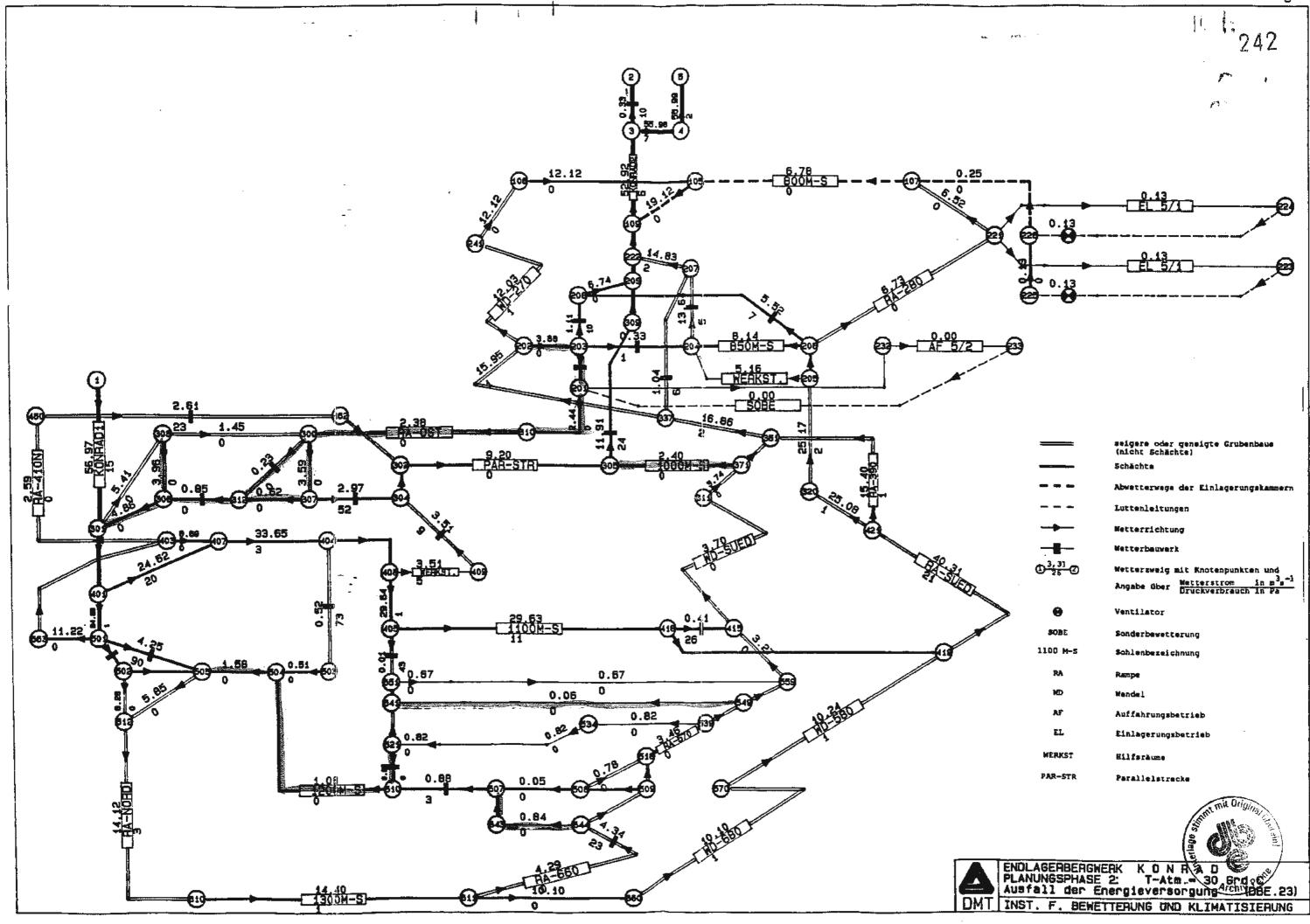
DATUM: 30, 3.1990

UHRZEIT: 6.12

K	NOTEN ANFANG	KNOTEN ENDE		ZWE 1GTYP		WIDERSTAND RN		W ANFG.	MITTL. TEMP.	CH4- KONZ.	iSTG.	DRUCK ANFANG	Α	L	11011	M/MG BZい。 P/Pら
					CBM/S	KG/M**7	PASCAL	M/S	GRD C	£	ΚW	MBAR	M * * 2	M	M	
к	ANFANG 3311122332371312233337140113344044409544095440954409544095440954409		NAME		ANFANG	RN	VERBRAUCH PASCAL 0.3 0.1 0.1 3.2 10.5 1.7 23.8 0.2 0.7 478.6 13.9 49.7	ANFG. M/S-52200.200.1100.61220.7400.1300.03611.300.03611.300.03611.400.01	TEMP. GRD C	KONZ. 1. 0.00 0.00 0.00 0.00 0.00 0.00 0.0	X	ANFANG MBAR 1102.01 1118.46 1119.76 1118.50 1113.84 1132.91 1132.91 1132.25 1132.25 1131.77 1131.91 1131.91 1131.83 1132.02 1122.23 1122.23 1122.23	* 18055589885528585858580000000000000000000	1400 2400 31100 1500 6550 1200 1010 1010 1010 1010 1010 1010 1	M 500 138 138 144 147 172 991 642 993 8 1 1 9 1 5 1 3 7 8 8 7 8 7	## P
	4602 4602 55001 55002 5500 5500 5500 5500 5500	462225325404283888719911 5505555555555555555555555555555555	RA-NORD 1200M-S		3.089 3.091 4.464 8.395 0.453 -0.980 -0.985 -0.980 -0.990 -0.990 -0.990 -0.995	3.3816 0.08116 1.2216 4.87630 0.0004 0.00053 0.05597 0.00594 0.0598 0.0218 0.0485 0.0419 0.0112 3.9209 100.9420 0.0125 0.0119 0.0119	2	0.1 0.7 0.67 0.67 0.00 0.00 0.1 0.00 0.1 0.00 0.1	266.666.666.25533.005.005.005.005.005.005.005.005.005	0 . 0 0 . 0 .	940000000000000000000000000000000000000	1124.04 1123.71 1145.68 1145.68 1145.68 1144.57 1144.31 1144.31 1144.31 1144.57 1144.57 1143.66 1143.66 1143.66 1143.66 1143.91 1145.36 1143.91	21 2 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 8 5 8	110 140 130 40 30 560 290 80 310 70 160 310 310 1250	9 11 06 00 32 60 13 12 26 31 19	0 . 00 0 0 0 0

DATUM: 30, 3.1990

UHRZEIT: 6.12


ENDLAGERBERGUERK KONRAD

* PROGRAMM WITTER
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 28 Grd.C

** PRUEFSTELLE FUER GRUBENBEWETTERUNG
** PRUEFSTELLE FUER GRUBENBEWETTERUNG
** Oder: DBE.22

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	ı	TEUFE	M/MG BZW. P/PG
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	Ł	KIJ	MBAR	M^*2	M	M	
539 539 5391 5541 5551 5551 6611 6644 6644 6666	A 5349 5549 5559 A 5559 A 5559 4013 419 6644 6644 6644 6507	AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660	0.95 0.95 3.36 0.85 -0.04 3.33 0.86 0.86 4.19 13.30	0.0032 0.0032 0.0016 0.0106 0.0121 0.0021 0.0021 0.0050 0.0329 0.0083 0.0080 0.0080 0.0080 0.0080	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.1 0.1 0.1 0.2 0.2 10.3 0.5 0.2 0.4 0.9	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	0.0000000000000000000000000000000000000	0 . 0 0 . 0	1136.89 1139.31 1139.31 1136.89 1137.40 1134.86 1134.86 1134.60 1157.58 1157.58 1157.58 1157.58	20000000000000000000000000000000000000	2760 1300 720 1700 9400 3100 3500 7900 1600 2001	4 156 -4 2 2 2 3 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5	2 1	ATM ATM	-0.47 81.29	0.0000 0.0000	0.0 0.0	0.0 0.0	28.0 28.0	0.0 0:0	0,0 0.0	1000.00 1001.59	0.0 0.0	0	- 9 1 4	0.00

DATUM: 30. 3.1990

UHRZEIT: 6.15

ENDLAGERBERGWERK K O N R A D
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 30 Grd.C

* PRUEFSTELLE FUER GRUBENBEWETTERUNG
datei: DBC.23

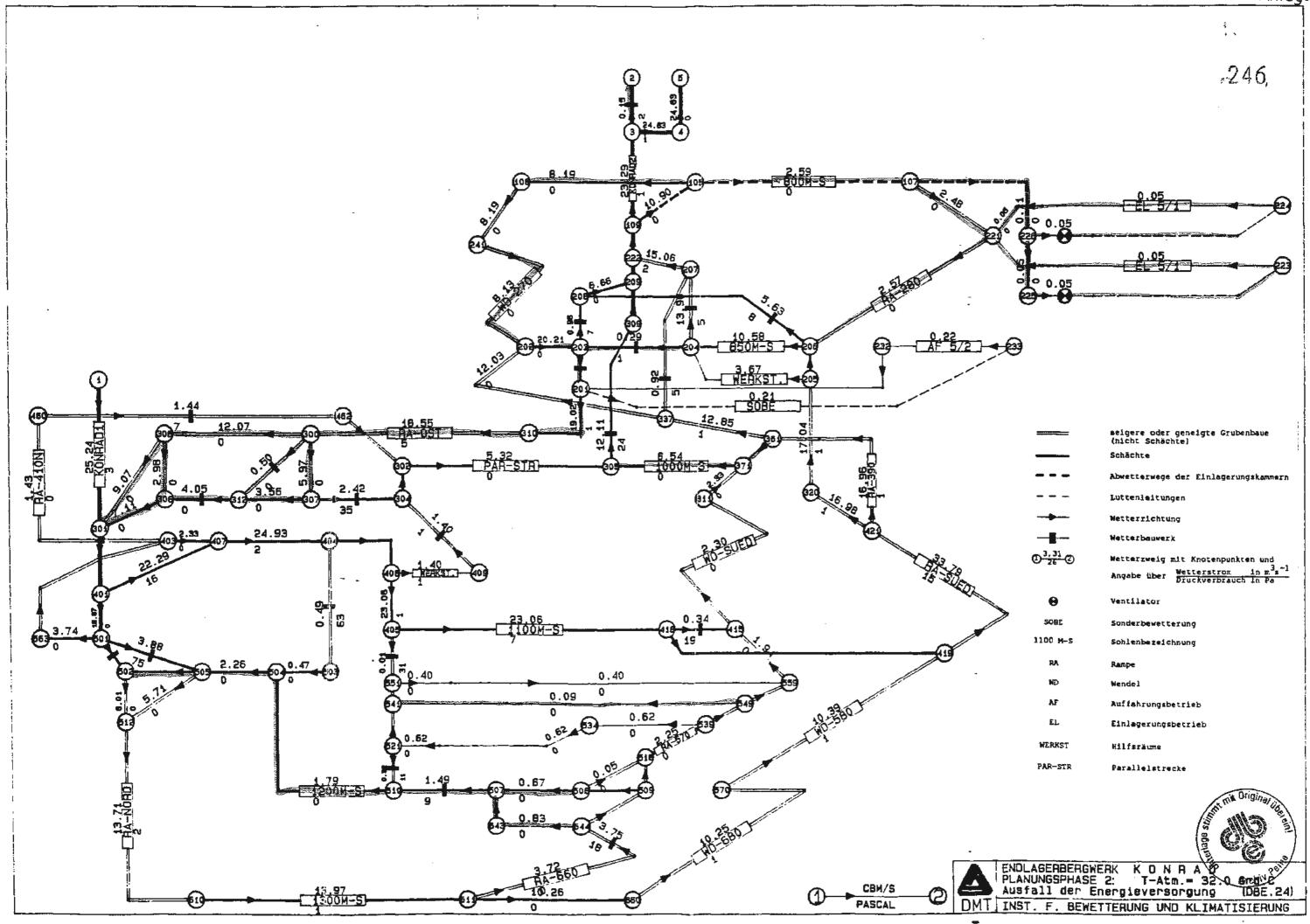
	DTEN NFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG,	URUCK ANFANG	A	L	TEUIL	M/MG BZW: P/PG
					CBM/S	KG/M**7	PASCAL	M/S	GRD C	ર	ĸ₩	MBAR	W ~ ~ 5	M	M	
•	4 1 2 3 1066 1009 1201 2203 2203 2203 2204	3 0 1 3 4 1 0 9 5 1 0 0 5 1 0 0 5 2 0 3 2 2 0 4 2 2 0 8 2 2 0 7	HGL KONRAD1 WKZ W-KANAL 800M-S KONRAD2 SOBE WD-270		56.97 -0.33 55.98 19.12 12.12 2.12 -2.92 -2.94 12.00 12.03 -3.88 0.33 1.164	0.0054 100.0006 0.0026 0.0026 0.0024 0.0024 0.0024 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	2 . 3 14 . 6 -9 . 6 7 . 4 0 . 3 0 . 1 6 . 0 -0 . 0 0 . 7 0 . 9 10 . 9	M/S - 1.50	27.0 29.1 30.0 37.0 37.0 37.0 30.7 24.0 32.0 30.7 24.0 32.0 32.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 . 1 0 . 8 0 . 0 0 . 0	1001.60 1000.00 1001.01 1001.67 1092.57 1092.57 1092.68 1101.17 1101.17 1101.17	0.0	000 000 500 140 240 778 210 490 70 30	7 7 3 6 7 6 6 7	0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	205 206 206 206 207 208 2021 2221 2221	206 204 2204 208 2209 2227 107 A223 A224	WERKST. RA-280 850M-S FUELLORT KONRAD2 RA-280 EK-282 EK-283		20.40 5.16 6.73 8.14 5.52 14.83 16.74 18.77 6.52 0.13	0.0029 0.0481 0.0081 0.2089 0.2185 0.0001 0.0021 0.0022	1.2 1.2 0.1 7.4 2.2 0.0 0.0	0.7 0.1 0.3 0.5 0.5 0.5 0.0	322.0 3322.0 3322.0 335.0 335.2 332.0 332.0	0.00 0.00 0.00 0.00 0.00 0.00	0 . 0 0 . 0 0 . 0 0 . 0	1101.18 1101.16 1101.16 1101.16 1101.26 1101.83 1101.83 1101.83 1094.89 1094.89	28.0 28.0 28.0 28.0 10.0 60.5 28.0 25.0 25.0	290 250 400 90 90 70 46 210 180 70	0 0 51 -6 17 0 30 19 -3	9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
	2223 42223 422224 622223 722233 7222331	109 223 2254 226 226 107 201 232 106	KONRAD2 EL 5/1 SOBE EL 5/1 SOBE AF 5/2 WD-270		33.68 0.13 0.13 0.13 0.13 0.25 0.00 0.00	0.0001 0.0010 5.5000 0.0016 5.50008 0.0110 0.0036 0.0020	0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0	0.9 0.0 0.0 0.0 0.0 0.0	34.2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1098.16 1095.26 1095.26 1095.57 1089.03 1101.30 1101.30	38.5 40.0 40.0 20.0 20.0 20.0 28.0	30 370 400 35 480 350 450 200	45 -13 622 532 -29 -0 4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
\	3001 3001 3001 3004 3005 3006 3007 3009 3009 3009 3009	31086 3006 4001 30071 30071 3000 3000 3000 3000 3000	KONRAD1 PAR-STR 1000M-S 1000M-S 1000M-S		-2.38 5.486 49.97 9.258 -2.491 -0.3.959 -3.959 11.492	0.0140 0.0095 0.0095 0.0003 0.00037 0.0024 0.1749 0.0123 5.7810 0.0012	-0.1 -0.2 -0.9 0.5 0.2 0.0 23.7 0.0 0.0 52.5	-0.1 0.2 -0.4 1.3 0.3 0.1 1.0 -0.1 -0.1 -0.2 0.3	22.550 22.00 22.00 22.00 23.00 23.00 21.00 21.00 21.00 21.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1117.83 1119.65 1119.65 1119.65 1118.60 1118.61 1118.22 1118.22 1119.52 1119.52 1119.53	28.0 128.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	1380 290 1070 1070 15760 4150 4150 1310 1310 1300	125 7 1 ~102 3 0 19 1 1 6 13	0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 0 0 0 0

DATUM: 30, 3,1990

UHRZEIT: 6.15

ENDLAGERBERGWERK K O N R A D
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 30 Grd.C
Atterliche Bewetterung T-Atm.= 30 Grd.C

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK VERBRAUCH	W ANFG	MITTL. TEMP.	CH4- KONZ,	istg.	DRUCK ANFANG	A	ι	TEUFL	M/MC BZW. P/PC
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	¥	ĸω	MBAR	M * * 2	M	М	.,
310 311 312 312	201 371 307 300	WD-SUED	-2.44 3.74 -0.62 -0.23 25.17	0.0014 0.0025 0.0030 0.3429 0.0031	0.0 0.0 0.0	-0.1 0.1 0.0 0.0	24,0 32.0 21.0 21.0	0.0 0.0 0.0	0.0 0.0 0.0	1101.80 1118.35 1119.52 1119.52	28.0 25.0 25.0 25.0	140 200 240 310	5 20 0 13	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
320 337	205 207	RA-SUED BERG 6	25.17	0.0031	2.0	0.9 0.1	32.0 32.0	0.0	0.1 0.0	1118.34	28.0	310 150	138 41	0.00
337	202	DERG 6	1.04 15.95	5.7941 0.0027	0.7	0.6	32.0	0.0	0.0	1105.38 1105.38	28,0	270	34	0.00
361 371	337 361		16.86 1.34	0.0081 0.0015	2.3 0.0	0.7 0.1	32.0 32.0	0.0 0.0	0.0 0.0	1113.72 1115.84 1132.66	25.0 25.0	650 120	67 17	0.00
401 401	407 501	KONRAD1	1.34 24.62 24.25 8.69 2.59	0.0318 0.0012	20.0 0.7	2.1 0.6	22.0 27.9	0.0 0.0	0.5 0.0	1132.66 1132.66	12.0 38.5	300 99	- 9 9	0.00
403	407		8.69	0.0021 0.0061	0.2	0.3	26.0	0,0	0.0	1132.07	25.0	170	- 1	0.00
403 404	460 408	RA-410N	2.59 33.14	0.0061 0.0052	0.0 5.8	0.1 1.3	26.0 26.0	0.0 0.0	0.0 0.2	1132.07	28.0 25.0	600 420	6 4 2	0 00
4 0 4	503	AUFH.	33.14 0.52	0.0052 266.5750 0.0125	72.8	0.1	26.5	0.0	0.0	1132.04 1132.04 1131.58	8. 0 25. 0	110	- 99	0.06
405 405	418 551	1100M-S	29.63 0.019		11.2 43.0	1.2	26.0 29.0	0,0 0,0	0.3 0.0	1131.58	8.0	9 10 10	- 3 - 28	0.00
407	404		33.65	0.0025	2.9 1.3	1.3	26,0	0.0	0.1 0.0	1131.58 1132.20 1131.73	25.0	200	1 1	0.00
408 408	405 409	WERKST.	33.65 29.64 3.51	0.0025 0.0015 0.4321 0.7152 0.0108 155.6905 0.0050	5 . 4	1.2	26.0 26.0	0.0	0.0	1131.73	25.0 0.0	0	0	0.00
409	304		3.51 3.70	0.7152	9.0 0.1	0.3 0.1	26.0 32.0	0.0 0.0	0.0 0.0	1131.67 1130.30	12.0 25.0	310 870	101 95	0.00
415 418	311 415	WD-SUED	0.41 29.61	155.6905	26.5	0.0	26.0	0.0	0.0	1131.86	28,0	0	10	0.00
418 419	419	RA-SUED	44 21	0.0050 0.0129	4.4 20.9	1.2 1.4	30.0 32.0	0.0 0.0	0.1 0.8	1177 11	25.0 28.0	400	37 38	0.00
421	421 320	RA-SUED	25.08	0.0020	1.3	0.9	32.0	0.0	0,0	1122.11	28.0	200	30	0.00
421 A421	A421 361	RA-390 SCHLEUSE	15.40	0.0029	0.7 0.0	0.6 0.0	32.0 32.0	0.0 0.0	0.0 0.0	1122.11	28.0 0.0	290	67 8	0 00
460	462	RA-410N	25.08 15.40 15.56 2.61 8.49 4.25	0.0029 0.0029 0.0000 3.3816 0.0011	23.3	0.1	26.0	0.0	0.1	1122.11 1122.11 1113.72 1123.83 1123.60 1145.45	28.0	320	ě	0.00
462 501	302 502		2.61	0.0011	0.0 89.7	0.1 0.7	26. 0 25.4	0.0 0.0	0.0 0.8	1123.60	28.0 12.0	110 140	39 1	0.00
501	505		4.25	1.2216 4.8760 0.0030	89.7	0.5	25.4	0.0	0.4	1145,45 1145,45 1144,42	8,0	100	į	0.00
501 502	563 512	RA-NORD	11.22 8.28	0.0030 0.0004	0.4 0.0	0.6 0.3	25.4 23.0	0.0 0.0	0.0 0.0	1145.45	20.0 28.0	130	6	0.00
502	505	KA-KOKD	6,28 0.08 0.51	0.0032	0.0	0.0	23.0	0.0	0.0	1144 42	12.0	30	0	0.00
503 504	504 510	1200M-S	0.51 -1.08	0.0053 0.0594	0.0 -0.1	0.0 -0.1	23.0 26.0	0.0	0.0 0.0	1144.16	12.0	50 560	и 3	0.00
505	504	120011 3	-1.08 -1.58	0.0307	-0.1	-0.1	23.5	0.0	0.0	1144.42 1144.42 1143.54	12.0	290	2	0.00
505 507	512 508		5.85 -0.05	0.0008 0.0218	0.0 0.0	0.2	23.0	0.0 0.0	0.0 0.0	1144.42	28.0 14.0	80 310	- 6 Ø	0 00
507	643		-0.84	0.0485	0.0	-0.2	32.0	0.0	0.0	1143.54	4.0	40	-21 13	0.00
508 509	518 508		0.78 0.83	0.0019 0.0113	0.0 0.0	0.0	32.0 32.0	0.0 0.0	0.0 0.0	1143.54 1143.54 1143.41	25.0 14.0	70 160	-1	0.00
509	518		2,68	0.0012	0.0	0.1	32.0	0.0	0.0	1143.41 1143.77	25.0	100	1 2	0 00
510 510	507 521	1200M-S AUFH.	-0.88 -0.22	0.0012 3.9209 100.9420	-3.1 -4.9	-0.1 0.0	28.0 30.0	0.0 0.0	0.0 0.0	1143.77	14.0	310 70	, 26	0.00
512	610	RA-NORD	14.12	0.0125 0.0019	2,6	0.5	25.5	0.0	0.0	1145.21	28.0 25.0	1230	93	0.00
518 521	539 541	RA-570 Aufh.	3.46 0.60	0.0019 0.0187	0.0 0.0	0.1 0.1	32.0 32.0	0.0 0.0	0.0 0.0	1141.88	8.0	350 90	2.9	0.00
A521	521		0.82	0,0000	0.0	0.0	32.0	0.0	0.0	1140,47	0.0	0	0	0.00


DATUM: 30. 3.1990

UHRZEIT: 6.15

ENDLAGERBERGWERK KONRAD	* PROGRAMM WETTER
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1. AUFFAHRUNG FELD 5/2	* PRUEFSTELLE FUER GRUBENBEWLITERUNG
Natuerliche Bewetterung T-Atm.= 30 Grd.C datei: DBF.23	*
**************************************	**********************

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	t	TEUFF	M/NC BZW. P/PG
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	Ł	КW	MBAR	M**2	M	М	. , , , ,
534 539	A521 534		0.82 0.82	0.0033 0.0032	0.0	0.0	32.0	0.0	0.0	1138.69	25.0 25.0	270	-14	0 01
539 541	549 551	AUFH.	2.65 0.66	0.0016 0.0104	0.0 0.0	0.1	32.0	0.0 0.0	0.0	1139.20	25.0 8.0	130	15 16	0.00
541 549	549 559	FELD 1	-0.06 2.60	0.0166 0.0021	0.0 0.0	0.0	32.0 32.0	0.0 0.0	0.0 0.0	1136.77 1137.28	20.0	720 170	- 4 22	0.00
551 A551	A551 559		0.67 0.67	0.0000 0.0216	0.0 0.0	0.9 6.0	32.0 32.0	0.0 0.0	0.0 0.0	1134.74 1134.74	0.0 20.0	940 940	0 2	0.00
559 563	415 403	AUFH.	3.27 11.04	0.0050 0.0329	0.1 4.2	0.i 0.9	32.0 24.5	0.0 0.0	0.0 0.0	1134.49	25, 0 12.0	400 310	33 102	0.00
570 610	419 611	WD-580 1300M-S	10.24 14.40 4.29	0.0083 0.0036 0.0080	0.9 0.8	0.3 0.5	32.0 32.0	0.0 0.0 0.0	0.0 0.0 0.0	1142,49 1157.43 1157.43	28.0	1000 350 790	121 0 85	0.00 0.00 0.00
611 611 643	A 6 4 4 6 6 0 6 4 4	RA-660	10.10 -0.84	0.0009 0.0016	0.2 0.1 0.0	0.2 0.4 0.0	32.0 32.0 32.0	0.0 0.0	0.0 0.0	1157.43	28.0 28.0 28.0	90	4 4	0.00
A 6 4 4	644 509		4.34	1.2302	23.4 0.0	0.0	32.0 32.0	0.0 0.0	0.1 0.0	1146.46	0.0 28.0	220	.: 2	0.00
660	570	WD-680 ATM	10.10	0.0083	0.9 0.0	0.3 0.0	32.0 30.0	0.0 0.0	0.0	1157.94		1000	120	0 00
5	ī	ATM	56.55	0.0000	0.0	0.0	30.0	0.0	0.0	1001.58	ø.ø	ø	14	0.00

I TEUFL

DATUM: 30. 3.1990

KNOTEN KNOTEN ANFANG ENDE

UHR2E1T: 6.16

ENDLAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FILD 5/1, AUFFAHRUNG FELD 5/2 Natuerliche Bewetterung T-Alm.= 32.0 Grd.C

* PRUGRAMM WETTER * PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	ANFANG	۸	ı	TEUFL	M/MG BZW P/PG
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	ą.	K₩	MBAR	M**2	М	M	eyro
4	5	HGL	24.63	0.0008	0.4	0.0	26.9	0.0		1001.57	0.0	0	0	0.00
1	301	KONRAD1	25.24 -0.15	0.0054 100.0000	2.8	0.7	30.3	0.0	0.1 0.0	1000.00 1001.01		1000	- 1000 -5	0.00
2 3	3	WKZ W-KANAL	-0.15 24.63	0.0026	-1,9 1.4	0.0 0.9	32.0 26.9	0.0 0.0	0.0	1001.01	0.0 26.0	5 O		0,00
105	109	M-VHINT	-10.90	0.0009	-0.1	-0.4	35.2	0.0	a a	1092 43	28.0	90		0.00
106	105		-8.19	0.0014	-0.1	-0.3	32.0	ě.ě	0.0	1092.31	28.0	140		0 00
107	105	800M-S	-2.59	0.0024	0.0	-0.1	32.0	0.0	0.0	1092.43	28.0	240	0	0,00
109	3	KONRAD2	23.29	0.0022	1.2	0.6	30.7	0.0	0.0	1092.31 1092.43 1092.56	38.5	778		0.00
201	203		-19.03	0.0384	-13.9	-0.7	24.0	0.0	0.3	1100.88	28.0	210		0.00
201	233	SOBE	0.21	5.5000	0.3	0.0	24.0	0.0		1100.88	0.0	. 0		0.00
202	241	WD-270	-8.13	0.0050	-0.3	-0.3	32.0	0.0	0.0 0.0	1101.02 1101.02	28.0	490 70		0.00
203	202		-20.21 -0.29	0.0007	-0.3 -0.7	-0.7 0.0	32.0 32.0	0,0 0,0	0.0	1101.02	28.0 28.0	30		0.00
203 203	204 208		0.96	8.2397 8,2397	7.4	0.0	30.0	0.0	0.0	1101.02	28.0	70		0.00
204	207		13.96	0.2357	4.8	1.4	32.0	0.0	0.1	1101.03	10.0	30		0 00
205	206		13.63	. 0.0251 0.0029	0.5	0.5	32.0	0.0	0.0	1101.03	28.0	290		0.00
205	204	WERKST.	3.67	0.0482	0.6	0.1	32.0	0.0	0.0	1101.03	40.0	250	0	0.06
206	221	RA-280	-2.57	0.0482 0.0041 0.0009	0.0	-0.1	32.0	0.0	0.0	1101.03	28.0	400		0.00
206	204	850M-S	10.58	0.0009	0.1	0.4	32.0	0.0	0.0	1101.03	28.0	90		0.00
206	208		5.63	0.2481	7.6	0.2	32.0	0.0	0.0	1101.03 1100.12 1101.69	28.0	90		0.00
207	222		15.06	0.0105	2.3	1,5	35.6	0.0	0.0	1100.12	10.0	90		0,00
208	209	FUELLORT		0.0001	0.0	0.1	35.2	0.0	0.0 0.0	1101.69	60.0 38.5	70 46		0.00
209	222	KONRAD2 Ra-280	18.90 -2.48	0.0001 0.0021	0.0 0.0	0.5	34.5 32.0	0.0 0.0	0.0	1101.69	28.0	210		0.00
221 221	107	EK-282	-2.48 -0.05	0.0021	0.0	-0,1 0.0	32.0	0.0	a a	1000 76	25.0	180		0.00
221	A223 A224	EK-283	-0.05	0.0009	0.0	0.0	32.0	0.0	0.0	1094.76	25.0	70		0 00
222	109	KONRAD2	34.03	0.0001	0.1	0.9	34.7	0.0	0.0	1094.76 1098.03 1095.13	38.5	30	45	0.00
A223	223	EL 5/1	-0.05	0.0015 5.5000	0.0	0.0	32.0	0.0	0.0	1095.13	40.0	370		0 00
223	225	Z-Vent	-0.05	5.5000	0.0	0.0	32.0	0.0	0.0	1096.72	0.0	. 0		0.00
A224	224	EL 5/1	-0.05 -0.05	0.0016 5.5000	0.0	0.0	32.0	0.0	0.0	1095.13	40.0	400		0.00
224	226	Z-Vent	-0.05	5.5000	0.0	0.0	32.0	0.0	0.0	1095.37	0.0	9 35		0.00
225	226		-0.05	0.0008	0.0	0.0	32.0	0.0 0.0	0.0 0.0	1088.89	20.0 20.0	480		0.00
226	107		-0.11	0.0110	0.0 0.0	0.0 0.0	32.0 30.0	0.0	0.0	1101.00	28.0	350	1	0.00
232 233	. 201 232	AF 5/2	0.22 0.22	0.0036 0.0018	0.0	0.0	28.0	0.0	0.0	1101.00	40.0	450		0.00
241	106	WD-270	-8.19	0.0010	-0.1	-0.3	32.0	0.0	0.0	1092.80	28.0	200		0.00
300	310	RA-OST	-18.55	0.0020	-5.0	-0.7	22.5	0.0	0.1	1092.80 1117.48	28.0	1380		0.06
301	306		-9.07	0.0021	-0.2	-0.3	22.5	0.0	00	1119 29	28.0	210		0.00
301	306		-7.11	0.0095	-0.5	-0.6	24.0	0.0	0.0	1119.29 1119.29 1118.43	12.0	90		0.00
301	401	KONRAD1	38.82 5.32	0.0003	0.5	1.0	28.5	0.0	0.0	1119.29	38,5	101		0.00
302	305	PAR-STR	5.32	0.0058	0.2	0.2	29.0	0.0	0.0	1118.43	28.0	570 360		0.00
304	302		3.87	0.0037 0.0024	0.1	0.1	26,0	0.0 0.0	0,0 0,0	1118.43	28.0 28.0	240	19	0.00
305	371	1000M-S	-6.54	0.0024	-0.1 24.5	-0.2 1.0	32.0 35.6	0.0	0.3	1118.05 1118.05	12.0	410		0.00
305 306	309 312	1000M-S	12.11 -4.05	0.0149	-0.3	-0,2	21.0	0.0	0.0	1119.17	20.0	150		0 00
306	308		-2.98	0.0021	0.0	-0.1	21.0	0.0	0.0	1119.17	28.0	210	€,	0 00
307	300		-5.97	0.0013	ø. ĕ	-0.2	21.0	0.0	0.0	1119.17	28.0	130	1,3	0 00
307	304	1000M-S	2.42	5.7810	34.6	0.2	21.0	0.0	0.1	1119.17	14.0	310	₽	0 00
308	300		-12.07	0.0021 0.0012	-0.3 0.2	-0.4	21.0	0,0		1118,39	28.0	210	, 7	0.00
309	209	KONRAD2	12.11	0.0012	0.2	0.3	35.0	0.0	0.0	1117.68	38,5	130	300	-0 00
														•

ZWEIG- ZWEIGTYP VOL-STR. WIDERSTAND DRUCK- W MITTL. CH4-NAME ANFANG RN VERBRAUCH ANFG. TEMP. KONZ.

. 00

DATUM: 30. 3.1990

UHRZEIT: 6.16

ENDLAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Natuerliche Bewetterung T-Atm.= 32.0 Grd.C • PROGRAMM WETTER
• PRUEFSTELLE FUER GRUBENBEWETTERUNG

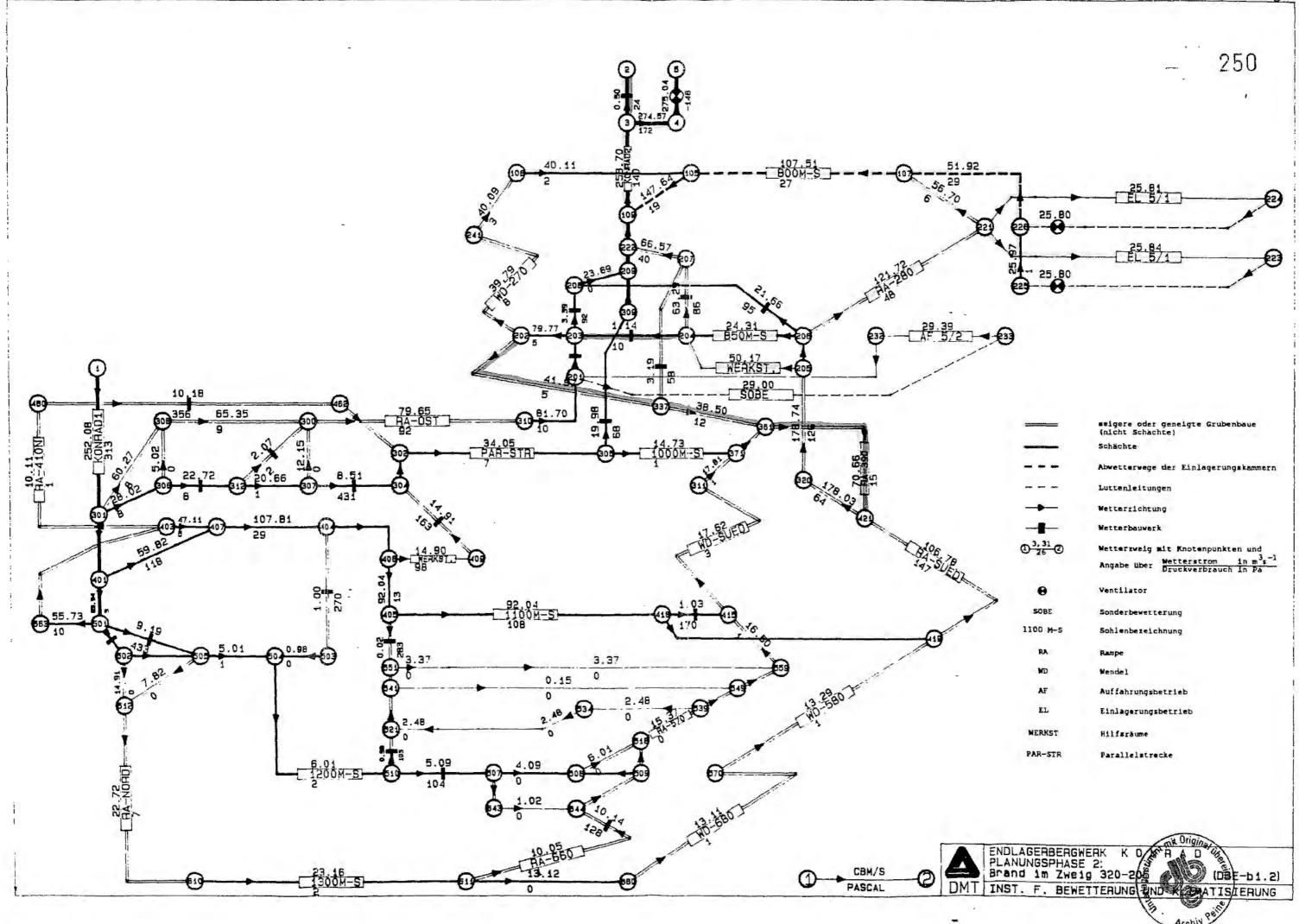
KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTI. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	L	TEUFE	M / M C B Z W P / P C
				CBM/S	KG/M**7	PASCAL	M/S	GRD C	8	ΚW	MBAR	M ^ * ?	M	M	. ,
ANFANG 311123337733671140133409440440957408840954118894111146021150022503		NAME WD-SUED		ANFANG CBM/S -19.02 3.33 -3.56 -0.54 0.92 12.085 -4.23 21.557 2.33 24.45 0.496	RN KG/M**7	VERBRAUCH PASCAL	ANFG.	TEMP.	KONZ.	☐	ANFANG	* 000000000000000000000000000000000000	M 4000031100099000011000001100000000000000	M . 5003814477729144293881101507807009110600	
504 505 507 507 508 509 510 510 512 518 521 A521	5104 5104 5108 5108 5108 5108 5109 5109 5411 5411	1200M-S AUFH. RA-NORD RA-570 AUFH.		-1.76 -5.71 -0.84 -0.85 -0.73 -1.49 -0.32 13.71 -0.30 -0.30	0.0307 0.0008 0.0218 0.0485 0.0019 0.0113 0.0012 3.9209 100.9420 0.015 0.015 0.015 0.0187	-0.2 -0.0 0.0 0.0 0.0 -9.0 -10.8 20.0 0.0	-0.12 0.20 0.02 0.01 0.11 0.05 0.10	23.0 23.0 28.0 32.0 32.0 32.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	0 . 0 0 . 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1144.19 1143.37 1143.37 1143.37 1143.24 1143.54 1143.54 1143.54 1144.71 1140.30	12.0 28.0 14.0	290 80 310 40 70 160 310 70 1230 150	21 13 12 26 29 27 26 29 27	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

datei: DBF.24

DATUM: 30. 3.1990

UHRZEIT: 6.16

ENDLAGERBERGWERK KONRAD


PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2

Natuerliche Bewetterung T-Atm.≈ 32.0 Grd.C

date: DBE.24

	KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	L	TEUFE	M/MG BZW. P/PG
				CBM/S	KG/M^*7	PASCAL	M/S	GRD C	Ł	κW	MBAR	M^*2	M	M	77.0
-	5349 5339 5441 5451 5551 5553 5570 6111 6444 6644	- 144919 - 555555555555555555555555555555555555	AUFH. FELD 1 AUFH. WD-580 1300M-5 RA-660	0.62 0.62 1.63 0.39 -0.09 1.54 0.40 1.94 3.67	0.0033 0.0032 0.0016 0.0104 0.0166 0.021 0.0216 0.0221	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	0 . 0 0 . 0	0.000000000000000000000000000000000000	1138.57 1139.07 1136.60 1136.60 1137.11 1134.57 1134.57 1134.32 1145.07 1157.19 1157.19 1157.19 1157.19	222 22 22 22 22 22 22 22 22 22 22 22 22	7200 1300 7200 1700 9400 3100 7900 1600 200	15 16 16 22 2 33 102 121 85 -4 0 22	60 - 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1 5	2	ATM ATM	-0.15 25.05	0.0000 0.0000	0.9 0.0	0.0	32.0 32.0	0.0	0.0	1000,00	0.0	0	-9 14	0.00

DATUH: 30. 3.1990

UHRZEIT: 9.15

ENDLAGERBERGWERK KONRAD
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Brand 1m Zeig 320 nach 205
datei: DBE-b1.2

PRUEFSTELLE FUER GRUBENBENETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	L	TEUFE	H/MG BZW. P/PG
				CBH/S	KG/H**7	PASCAL	M/S	GRD C	1	KW	MBAR	H2	М	М	1710
4	5	HGL	Ax-Vent	275.04	-0.0022	-148.0	0.0	36.5	0.0	-40.7	1000.21	0.0	0	0	1.04
12356791112333445 100091122333445 11110002222222222222222222222222222222	3 13495533331244887 6 4 14882927334935466712260886 AAA 22222222222222222222222222222222	XONRAD1 W-KANAL 800M-S2 800M-S2 S0BE WD-270 WERKST. WERKST. WERKST. RA-2880 RAS-2880 RAS-2880 RAS-2880 RAS-2880 RAS-2880 RAS-280 ELLORRD FUENRAB0 EK-2883 ELLORD EK-2831 ELV5/1 Z-Vent AF-270 RA-287	V1-STROM TEMP(X) TEMP(X) TEMP(X)			-100 G -100 G -1	0 6063487904801339523213210987410119604036074823 0 1600513620120067666111144444006012112000001212101222	36.5	- M - OLBO - O O O O O O O O O O O O O O O O O O				100 5000 1400 12478 1000 11000	- 10 7 - 6 - 70000000000000000000000000	4 58440753000901511111999777775664120070000000000000000000000000000000000
301 302	305	KONRAD1 PAR-STR		34.05	0.0058	7.5 6.8	1.2	29.0	0.0	0.2	1117.57	28.0	570	-102	1.05

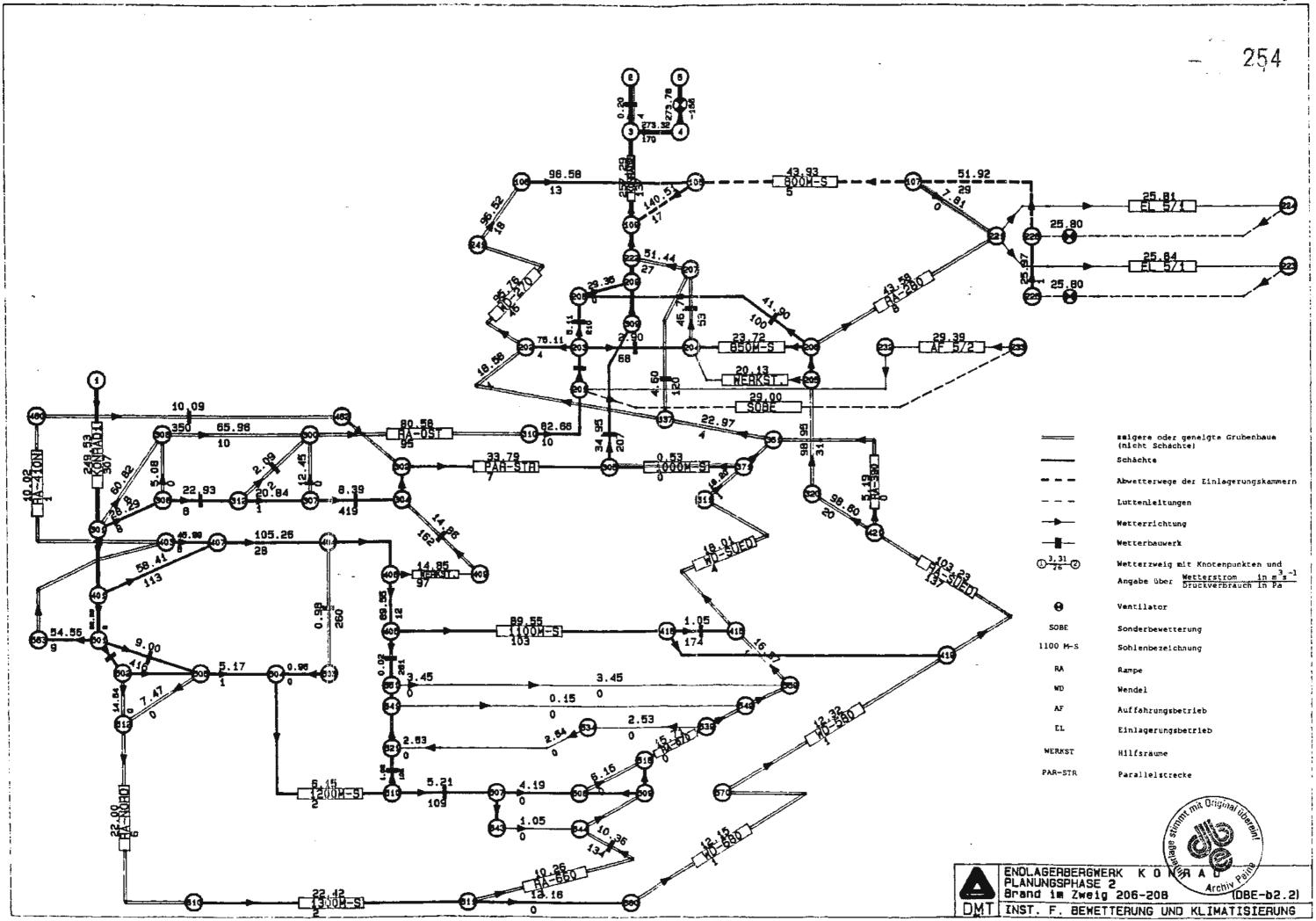
UHRZEIT: 9.15

ENDLAGERBERGWERK K O N R A D
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Brand im Zeig 320 nach 205

datei: DBE-b1.2

* PROGRAHM W E T T E R
PRUEFSTELLE FUER GRÜBENBEWETTERUNG
datei: DBE-b1.2

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	L	TEUFE	M/HG BZW. P/PG
				CBM/S	KG/M**7	PASCAL	M/S	GRD C	3	KW	MBAR	M**2	М	М	
304 305 305 306 306	302 371 309 312 308	1000M-S 1000M-S		23.79 14.73 19.98 22.72 5.02	0.0037 0.0024 0.1709 0.0149 0.0021	2.1 0.5 67.5 7.9 0.1	0.8 0.5 1.7 1.1 0.2	26.0 32.0 31.5 21.0 21.0	0.0 0.0 0.0 0.0	0.0 0.0 1.3 0.2 0.0	1117.59 1117.12 1117.12 1122.38 1122.38	28.0 28.0 12.0 20.0 28.0	360 240 410 150 210	0 19 1 0 6	1.05 1.79 0.80 1.03 1.04
307 307	300 304	1000H-S		12.15 8.51	0.0013 5.7810	431.0	Ø.4 Ø.6	21.0 21.0	0.0 0.0	3.7	1122.38 1122.29 1122.29	28.0 14.0	130 310	13	1.06
308 309	300 209	KONRAD2		65.35 20.00 81.70	0.0021 0.0012	9.4 0.5	2.3 0.5	21.0 30.9	0.0 0.0	Ø.6 Ø.0	1121.60 1116.32	28.0 38.5	210 130	130	1.03 0.80 1.03
310 311 312	201 371 307	WD-SUED		81.76 17.81 20.66 2.07	0.0014 0.0025 0.0030	9.5 0.8 1.3	2.9 0.7 0.8	24.0 32.0 21.0	0.0 0.0 0.0	0.8 0.0 0.0	1116.32 1103.61 1117.25 1122.30	28.0 25.0	140 200 240	20	1.03
312 320	300	DA_SHED	TEMP/V)	2.07	0.3429	1.5 47.1	6.1 6.4	21.0	Ø. Ø	Ø. Ø 8. 5	1122.30	25.0 25.0 28.0	310 149	13 66	1.03
****	****	RA-SUED RA-SUED	******	2.07 1780.14 1808.14 3088.69 272.197 -41.197 -38.50 32.62 83.94	0.0015 0.0000 0.0005	0.4	6.4	32.0 141.0 232.5	Ø. Ø	A 1	1116.44 1107.71	28.0	1 50	22	1.81
	205	RA-SUED RA-SUED RA-SUED	****	288.69	0.0005 0.0006 5.7941	26.3 24.7	10.3	200.5	Ø. Ø Ø. Ø	6.9 7.4	1107.67 1105.74 1103.72 1104.41	28.0	50 60	22 26	1 81 1 81
337 337	207 202	BERG 6		3.19	5.7941	27.9 57.5 -4.7	0.3 -1.5	171.5 33.0 32.0	Ø. Ø	Ø. 2 Ø. 2	1104.41	10.0	150 270	41	0.80 -1.76
361	337			-38.50	0.0027 0.0081 0.0015	-11.8 1.6	-1.5 -1.5 1.3	32.0 32.0	Ø. Ø	0.5 0.1	1104.41	28.0 25.0 25.0	650 120	34 67 17	-1.39 1.26
371 401	361 407	VONDAD.		59.82	0.0318 0.0012	118.1	5.0	22.0	Ø. Ø Ø. Ø	7.1 0.7	1114.74	12.0 38.5	300	- 9 9	1.06
401 403	501 407	KONRAD1			0.0021 0.0061	8.9 4.8 0.6	2.2 1.9	21.5 26.0 26.0	Ø.0	0.2 0.0	1135.91 1134.39 1134.39	25.0 28.0	170 600	-1 64	1.06
403 404	460 408	RA-410N		106.85	0.0052	60.8 270.3	0.4 4.3	26.0	Ø. Ø Ø. Ø	6.5	1134.04	25.0 25.0 8.0	420	2	1.06
404 405	503 418	AUFH. 1100M-S		92.04	0.0052 266.5750 0.0125	108.4	0.1 3.7	26.5 26.0	Ø. Ø Ø. Ø	0.3 10.0	1134.04 1132.92 1132.92	25.0	110 1010	-99 -3	1.07
405 407	551 404			0.029 107.81	99999.0000	282.9 29.5 12.9	0.0 4.3	29.0 26.0	0.0 0.0	0.0 3.2	1134 47	8.0 25.0	200	-28 1	1.09
408 408	405	WERKST.		92.04 14.90	0.0015	98.0	3.7 0.0	26.0 26.0	0.0 0.0	1.2 1.5	1133.18 1133.18 1132.20	25.0 0.0	120	0	1.07
409 415	304 311	WD-SUED		14.91 17.62	0.4321 0.7152 0.0108	163.3 3.4	1.2 0.7	26.0 32.0	0.0 0.0	2.5 0.1	1132.20 1129.23	12.0 25.0	310 870	101 95	1.04
418 418	415 419			1.03 92.28 106.78	155.6905	170.3 42.6	0.0 3.7	26.0 30.0	Ø.Ø Ø.Ø	Ø.2 3.9	1129.23 1132.22 1132.22	28.0 25.0	400	10 37	1.03
419 421	421 320	RA-SUED RA-SUED		106.78	0.0129	146.8 63.9	3.8 6.4	32.0 32.0	0.0 0.0	15.7 11.4	1127.09	28.0 28.0	1270	38 30	1.07
421	A421	RA-390 SCHLEUSE		178.03 -70.66 -71.18	0.0020 0.0029 0.0000	-14.6 0.0	-2.5 0.0	32.0 32.0	Ø.0 Ø.0	0.0	1120.84 1120.84 1112.61	28.0	290	67	-39.48 -39.48
A421 460	361 462	RA-410N		10.18	3.3816	356.2	0.4	26.0	0.0 0.0	3.6 0.0	1126.12 1122.56	28.0 28.0	320 110	39	1,05
462 501	302 502			10.18 10.21 18.35	0.0011 1.2216	0.1 433.4	0.4 1.5	26.0 22.5	0.0	8.0	1148.93 1148.93	12.0	140	1	1.05
501 501	505 563			9.19 55.73 14.91	4.8760 0.0030	433.5 9.8	2.8	22.5	0.0 0.0	4.0 0.5	1148.93	8.0 20.0	130	, ō	1.06
502 502	512 505	RA-NORD		3.57	0.0004 0.0032	0.1 0.0	0.5 0.3	23.0	0.0 0.0	Ø.0 Ø.0	1144.47	28.0 12.0	30	i -6	1.04
503 504	504 510	1200M-S		0.98 6.01	0.0053 0.0594	0.0 2.2	0.1 0.5	23.0 26.0	0.0 0.0	0.0 0.0	1144.20 1144.20	12.0 12.0	50 560	ğ	1.05 1.02



UHRZEIT: 9.15

PL	DLAGERBERGY ANUNGSPHASE and im Zeic	2 : EINLA	N R A D GERUNG FE h 205	LD 5/1, AL	JFFAHRUNG FEL	D 5/2 datei	: DBE-1	01.2	*****	* PRUE	PROGRAHM FSTELLE F	W E I UER GRU	BENB	EWETTER	UNG
KNOTE ANFA	n knoten	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	L	TEUFE	M/MG BZW. P/PG
				CBH/S	KG/M**7	PASCAL	M/S	GRD C	.	KW	MBAR	M**2	М	М	
50	5 504			5.01	0.0307	0.8	0.4	23.5	0.0	0.0	1144.47	12.0	290	2	1.02

	ANFANG	ENDE	NAME -	ZWEIGTYP	ANFANG	RN	VERBRAUCH	ANFG.	TEMP.	KONZ.	LSTG.	ANFANG	А	Ь	TEUFE	BZW. P/PG
_					CBH/S	KG/M**7	PASCAL	M/S	GRD C	3	KW	MBAR	M**2	М	М	
-	55577789990028111499555555555555555555555555555555555	42838887109111149199195391440449021 556418488871091111491991953914404449021 A5555555555555545441140664449021 A666644077	1200M-S AUFH. RA-NORD RA-570 AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660 WD-680 ATH		10129921794888310770031997379992153.44883150770031653.1001113.1506	0.0021859 0.0021859 0.0021859 0.0021859 0.0021859 0.002197 0.0011129 0.002197 0.00215297 0.00215293 0.0021661 0.00215293 0.0021620 0.002	0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	433321441864011540502774845004400		000000000000000000000000000000000000000	000000051120000000000001000000000000000	1144.47 1144.47 1144.48 1142.48 1142.35 1143.78 11443.78 11443.78 1143.76 1149.40 11338.7.26 1149.40 11338.7.22 11338.7.22 11338.37 11335.72 11338.44 11333.48 1145.77 1157.74 1145.77 1145.77 1145.77 1145.77 1145.77 1146.49 1190.69	00000000000000000000000000000000000000	298000000000000000000000000000000000000	- 260 - 2131 - 12263 - 292290 - 14564202321021 - 202321021 - 202321021 - 20202321021 - 20202321021 - 20202321021	11.0042122222222222222222222222222222222

UHRZEIT: 9.20

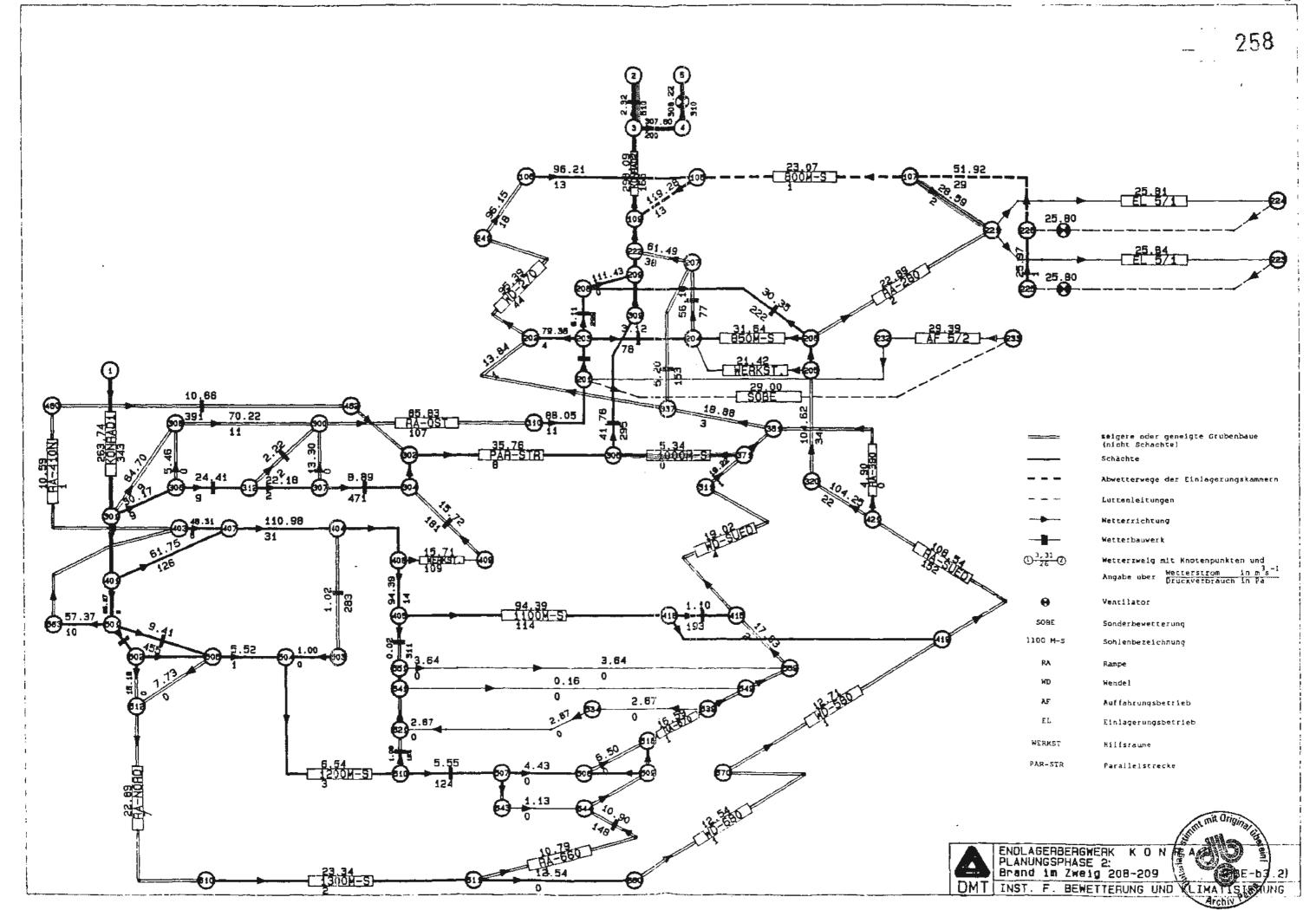
ENDLAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Brand im Zweig 206 nach 208 datei: DBE-b2.2 PROGRAMM WETTER K PRUEFSTELLE FUER GRUBENBEWEITERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPE: ANFANG	RATUR ENDE	MITTL. DICHTE	MASSEN -STROM	LSTG.	DRUCK ANFANG	TEUFEN DIFFER.	M/MU BZW.
				CBM/S	KG/M**7	PASCAL	GR	AD C	KG/CBM	KG/S	K₩	MBAR	M	P/PG -
4	5	HGL	Ax-Vent -4.4 SKT	273.78	-0.0026	-165.7 RHO-SAUG	37.8	37.8	1.121 Ø KG/CBM	306.70	-45.3	1000.03	0.0	1.0
1	301	KONRAD1	7.7 567	249.53	0.0054	306.8	10.0	20.0	1.282	306.95	73.5	1000.00		1.04
3	3 4	WKZ W-KANAL		-0.20 273.32	100.0000	-3.8 169.5	10.0 37.8	10.0 37.8	1.232	-0.25 306.70	0.0 46.4	1001.09	-5,0 0.0	0.11
105 106	109			140.51 96.58	0.0009	17.4	32.0	32.0	1:245	174.96	2.4	1090.91	-1.0	0.8:
107	105 105	800M-S		43.93 257.29	0.0014 0.0024	12.8 4.5	32.0 32.0	32.0 32.0	1.245	120,26 54.70	1.2 0.2	1090.91	-1.0	0,97 0,77
109 201	3 203	KONRAD2		257.29	0.0022 0.0384	137.5 263.1	45.3 24.0	37.8 24.0	1.158 1.291	306.95 106.93	36.5 21.8	1090.85	773.0 0.0	1.04
201	233	SOBE	V1-STROM	82.71 29.00	-0.0053	-4.5	24.0	24.0	1.293	37.49	-0.1	1102.92	-1.0	1.00
202 203	241	WD-270		95.76 75.11	0.0050 0.0007	44.5 4.0	32.0 24.0	32.0 24.0	1.251 1.290	120.26 96.87	4.3 0.3	1100.25 1100.29	67,0 0.0	0.97 1.05
203	204			2.90	8.2397	67.5	32.0	32.0	1.256	3.65	0.2	1100.29	0.0	1.02
203 204	208 207			5.11 46.76	8.2397 0.0251	209.5 53.3	32.0 32.0	32.0 31.9	1.255	6.42 58.69	1,1 2,5	1100.29 1099.61	-6.0 7.0	1.38
205	206	1150467		80.39	0.0251 0.0029	18.5	32.0	32.0	1.255	100.91	1.5	1099.80	0.0	1.00
205 206	204 221	WERKST. RA-280		20.13 43.58	0.0482 0.0041	19.0 7.5	32.0 32.0	32.0 31.5	1.255 1.253	25.27 54.70	0.4 0.3	1099.80	51.0	0.77
206 206	204	850M-S	TEMP(X)	43.58 23.72 41.90	0.0009 0.0827	0.5 39.7	32.0 703.0	32.0 521.0	1.255 0.437	29.77 16.44	0.0 1.5	1099.62 1099.62	0,0 -2,0	2,18 1,01
0.00.00	11 11 11 11			34.09 28.39	0.0827	32.7	521.0	388.0	0.531	16.44	1.0	1099.31	-2,0	1.01
207	208 222			28.39 51.44	0.0827 0.0105	27.6 26.9	388.0 32.0	291.0 31.9	0.629 1.252	16.44 64.47	0.7 1.4	1099.08 1098.22	-2.0 17.0	1.01
208	209	FUELLORT		29.35	0.0001	0.1	218.2	218.2	0.779	22.86	0.0	1098.93	0.0	1.00
2 0 9 221	222 107	KONRAD2 RA-280		64.74 -7.81	0.0001 0.0021	0.4 -0.1	93.9 31.5	93.6 31.3	1.042 1.249	67.51 -9.77	0.0	1098,93 1093.28	30.0 19.0	1.26
221	A223	EK-282		25.80	0.0022	1.4	31,5	31.5	1.250	32.25	0.0	1093.28	-3.0 -3.0	1.00
221 222	A224 109	EK-283 Konrad2		25.77 116.39	0.0009 0.0001	0.6 1.0	31.5 63.4	31.5 63.0	1.250 1.132	32.21 131.98	0.0 0.1	1093.28 1095.86	45.0	1.37
A223 223	223 225	EL 5/1 Z-Vent	V1-STROM	25.84 25.80	0.0015 -0.0482	0.9 -31.2	32.0 32.0	32.0 32.0	1.249 1.246	32.25 32.25	0.0 -0.8	1093.63	-13.0 62.0	1 06
A224	224	EL 5/1		25.81	0.0016	1.0	32.0	32.0	1.248	32.21	0.0	1093.64	-2.0	1.00
224 225	226 226	Z-Vent	V1-STROM	25.80 25.97	-0.0462 0.0008	-29.8 0. 5	32.0 32.0	32.0 32.0	1.245 1.242	32.21 32.25	-0.8 0.0	1093.87 1087.95	53.0 2.0	0.00 1.00
226	107			51.92	0.0110	28.6	32.0	32.0	1.243	64.47	1.5	1087.70	- 29.0	1.00
232 233	201 232	AF 5/2		29.00 29.39	0.0036 0.0018	3. 0 1.5	24.0 28.0	24.0 28.0	1,293 1,276	37.49 37.49	0.1	1103.08 1103.09	1.0	1.00
241 300	106	WD-270		96.52 80.58	0.0020	18.2 94.6	32.0	32.0	1.246	120.26 106.93	1.8 7.7	1091.58	4,0 125.0	0.97
301	310 308	RA-OST		60.82	0.0021	8.2	21.0 21.0	24.0 24.0	1.322	80.85	0.5	1122.66	7.0	1.04
301 301	306 401	KONRAD1		28.29 141.59	0.0095 0.0003	7.8 7.1	24.0 20.0	24.0 21.0	1,316 1,340	37.23 188.87	0.2 1.0	1122.66	1.0 -102.0	1.04
302	305	PAR-STR		33.79	0.0058	6.7	26,0	32.0	1.288	43.97	0.2	1117.75	3.0	1.01
304 305	302 371	1000M-S		23.62 -0.53	0.0037 0.0024	2.1 0.0	26.0 32.0	26. 0 32.0	1.301	30.74 -0.68	0.0 0.0	1117.77 1117.31	0.0 19.0	1.04 0.06
305	309	1000M-S		34.95 22.93	0.1709 0.0149	206.7	31.5	31.5	1.276	44.65	7.2 0.2	1117.31	1.0	1 . 4 1 1 . 0 4
306 306	312 308			22.93 5. 0 8	0.0021	8.1 0.1	21.0 21.0	21.0 21.0	1.329	30.47 6.76	0,0	1122.45	6.10	1 , 0 :
307	300			12.45	0,0013	0.2	21.0	21.0	1.328	16.55	0.0	1122.35	1370	1 04

UHRZEIT: 9,20

ENDIAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Brand im Zweig 206 nach 208 datei: DBF-b2.2 PROGRAMM WETTERUNG
PRUEFSTELLE FUER GRUBENBLWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN		TEMPERATUR ANFANG ENDE		MASSEN -STROM	LSTG.		TEUFEN DIFFER.	M/MG BZW. P/PG
			CBM/S	KG/M**7	PASCAL	GRAD C	KG/CBM	KG/S	ΚW	MBAR	M	
307	304	1000M-S	8.39	5.7810	419.1	21.0 21.0	1.326	11.15	3.5	1122.35	3.0	1.04
308 309 310	300 209 201	KONRAD2	CBM/S 85.962 82.666 180.9666 180.809 4.666 180.9701 82.770 882.990 4.566 100.022 104.980 105.265 114.861 180.12 104.87 103.693 10.723 103.693 10.922 104.547 103.693 10.922 104.547 109.541 109.541 109.541 109.541 109.541	0.0021 0.0012	419.1 9.5 9.7 0.8 1.3 1.5 30.7 119.6 0.5 112.6 8.5 4.6 58.0	21.0 21.0 31.5 30.2 24.0 24.0 32.0 32.0 21.0 21.0 32.0 32.0	1.328 1.268 1.293 1.274	11.15 67.61 44.65 106.93 27.78 126.18 25.78 23.40 29.18 22.530 110.57 60.75 137.79 118.14	0.6 0.1 0.8	1121.357.333 1115.4377335 111097.43733 1111097.4373 1111094.4813 1111094.4813 1111094.4813 111334.8998 111334.8998 111334.8998 1113333.347.6999 1113333.347.6999 1113333.347.6999 1113333.347.6999 1113333.347.6999 11133292.4464 11133292.4464 11133292.4464 11133292.4464 11133292.4464 11133292.4464 11133292.4464 11133292.4464 11133292.4464 11133292.4464 1113333.347.81999	7.0 130.0 5.0	1.04 1.41 1.04
311 311 312	371 307	WD-SUED	18.20 20.80	0.0025	0.8 1.3	24.0 24.0 32.0 32.0 21.0 21.0	1.274	23.21	0.0	1117.44	20.0	1.04
312	300		2.09	0.3429	1.5	21.0 21.0 21.0 21.0 32.0 32.0	1.329 1.328 1.265	2.78	0.0	1122.37	13,0	1.04
320	205	RA-SUED	98.95	0.0031	30.7	32.0 32.0	1.265	126.18	3.1	1117.23	138.0	1.00
337	2 07 2 0 2	BERG 6	4.50	5./941	119.6	33.0 33.0 32.0 32.0 32.0 32.0	1.253 1.258 1.265 1.271 1.340 1.351	23.48	Ø . O	1104.45	34.0	0.78
337 361	337		10.50 22 97	0.0027	4.2	32.0 32.0	1.265	29.18	0.1	1112.81	67.0	0 .8∋
371	361		17.70	0.0015	0.5	32.0 32.0 22.0 22.0	1.271	22.53	0.0	1114.93	17.0	0.69
461	407		58.41	0.0318	112.6	22.0 22.0	1.340	78.30	6.6	1135.98	2.0	1.04
401	501	KONRAD1	82.20	0.0012	8.5	21.0 22.0	1.351	110.57	0.7	1135.98	-99.0	1 . 0 .1
403	407	DA 410N	45.99	0.0021	4.6	32.0 32.0 22.0 22.0 21.0 22.0 26.0 26.0 26.0 26.0 27.0 26.0	1.321	19 23	0 · 2	1134.51	-1.0 64.0	1.03
403 404	460 408	KM-410N	10.02	0.0001	58 A	26.0 26.0	1.316 1.320 1.324	137.76	6.0	1134.18	2.0	1.04
404	503	AUFH.	0.98	266.5750	259.6	27 A 26 A	1.324	1.29	0.3	1134.18	- 99.0	1.03
405	418	1100M-S	89.55	0.0125	102.6	20.W 20.W	1.324 1.319 1.307 1.321 1.319 1.319 1.310 1.282 1.298 1.283	118.14 0.02 139.05	9.2	1133.09	-3.0	1.04
4 6 5	551		0.02	999999.0000	280.9	26.0 32.0 26.0 26.0	1.307	0.02	0.0	1133.09	-28.0	1.09
407	404		105.26	0.0025	28.1	26.0 26.0	1.321	139.05	3.0	1134.59	1.0	1.04
408	405	HEDROT	89.55	0.0015	12.2	26.0 26.0	1.319	110.10	1 1	1133,34	0.0	1.04
408 409	409 304	WERKSI.	14.05	0.4321	162 2	26.0 26.0 26.0 26.0 26.0 26.0	1 310	19.59	2.4	1132.37	101.0	1.04
415	311	WD-SUED	18.01	0.0108	3.5	32 A 32 A	1.282	23.21	0.1	1129.42	95.0	1.04
418	415	****	1.05	155.6905	174.2	26.0 26.0	1.317	1.38	0,2	1132.46	10.0	1.04
418	419		89.74	0.0050	40.3	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	1.298	0.02 139.05 118.16 19.59 19.59 23.21 1.38 116.76 132.88	3.6	1132.46	37.0	1.04
419	421	RA-SUED	103.23	0.0129	137.2	32.0 32.0	1.283	132.83	14.2	112/.34	38.0 30.0	1.03
421	320	RA-SUED	98.60	0.0020	19.6	32.0 32.0 32.0 32.0	1 275	6 65	a a	1121.13	67.0	2 90
421 A421	A421 361	SCHIFUSE	5.19	0.0023	0.0	32.0 32.0	1.270	6.65	0.0	1112.81	0.0	2.90
460	462	RA-410N	10.09	3.3816	350.0	26.0 26.0	1.309	13.23	3.5	1126.24	0.0	1.04
462	302		10.12	0.0011	0.1	26.0 26.0 26.0 26.0 22.0 23.0	1.278 1.275 1.270 1.309	126.18 6.65 6.65 13.23 13.23 24.38 12.21	0.0	1122.74	39.0	1,04 1,03
501	502		17.98	1.2216	416.1	22.0 23.0	1.351	24.38	7.5	1149.01	1.0 1.0	1.03
501	505		9.00	4.8/60	416.1	22.0 23.0	1.351	73 08	3.0	1149.01	9 9	1.04
501	563 512	0.4 N.O.D.D	54.55	0.0030	9.4	22.0 23.0 23.0 23.0	1.351 1.351 1.354 1.354 1.346 1.346 1.332 1.347 1.322	24.38 12.21 73.58 19.58 1.29 6.96	0.0	1121.19 1121.19 11126.24 11126.27 11149.01 11149.01 11149.72 11144.72 11144.74 11144.77 11142.68	0 0 -6.0	1.0
502 502	505	KM-NOND	3 57	0.0032	0.0	22 B 22 B	1.346	4.81	0.0	1144,72	0.0	1 04
503	504		0.96	0.0053	0.0	23.0 23.0	1.346	1.29	0.0	1144.44	0.0	1.03
504	510	1200M-S	6.15	0,0594	2.3	24.0 28.0	1.332	8.25	0.0	1144,44	3.0	1.05
, 50 5	504		5.17	0.0307	0.9	23.0 24.0	1.344	6.96	0.0	1144.72	2,0 -6,0	1 0:
505	512		7.47	0.0008	0.0	23.0 23.0 28.0 28.0	1.34/	10.06	0.0	1144.72	0.0	1.04
507	508 643		4.19	0.0410	Ø.4 Ø.1	32.0 32.0	1 306	5.53 1.37 8.02	0.0	1142.68	71.0	1.07
507 508	518		6.15	0.0019	0.1	32.0 32.0		8.02	0.0	1142.67	13.0	1.04
5 0 9	508		1.91	0.0113	0.0	32,0 32.0	1 300	2 49	0.0	1142.55	-1.0	1 04
509	518		9.54	0.0012	0.1	32.0 32.0	1.303	12.44	0.0	1142.55	11 2 . 0	1 0 4
510	507	1200M-S	5.21	3.9209	109.2	28.0 28.0	$\frac{1.372}{1.312}$	5,90 1 35	v. 6	1144.03		1.01
510	521	AUFH,	1.02	100.9420	108.2	28.0 32.0 23.0 28.0	1.312	12.44 6.90 1.35 29.63	0.1	1142.68 1142.68 1142.67 1142.55 1142.55 1144.03 1144.03	93.8	1 0
512	610	KW-W0KD	22.00	v.v125	4.6 68.6 68.6 69.6 1080.9 1182.3 128.1 129.7 129.7 137.2 141.7 137.2 141.7 137.2 141.7	23.0 20,0	1.545	. , , , ,	~	,0,		



UHRZEIT: 9.20

ENDLAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Brand im Zweig 206 nach 208 datei: DBE-b2.2 PROGRAMM WETTER
PRUEFSTELLE FUER GRUBENBEWLTTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG		DRUCK- VERBRAUCH	TEMPERATUR ANFANG ENDE	MITTL. DICHTE	MASSEN -STROM	LSTG.		TEUFEN DIFFER.	M/MC BZW. P/PG
			CBM/S	KG/M**7	PASCAL	GRAD C	KG/CBM	KG/S	ΚW	MBAR	M	
55233991 A 5555670 A 5555670 A 555670 A 66444 A 666	- 3911114911991140911406644990 - 6522149119911406644990 - 666444990 - 666444990	AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660	15.71 3.57 2.53 2.54 2.53 13.22 0.15 13.39 3.45 16.87 54.75	0.01187 0.00187 0.00003 0.00032 0.00164 0.0166 0.00166 0.00216 0.00529 0.00529 0.00529 0.00529 0.00529	0.5 0.2 0.0 0.0 0.3 0.1 0.0 0.4 0.3 1.4.2 1.3 1.3 0.9 0.1	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	1.301 1.309 1.301 1.299 1.299 1.299 1.299 1.299 1.299 1.299 1.294 1.294 1.294 1.315 1.315 1.315	20.46 4.64 3.29 3.29 17.17 4.44 0.20 17.37 4.46 21.83 16.07 29.63 16.07 13.56 16.07	0.0000000000000000000000000000000000000	1141.01 1139.60 1139.60 1137.83 1138.33 1138.91 1136.41 1133.87 1133.87 1142.73 1157.68 1157.68 1157.68 1145.70 1145.37	21.0 29.0 29.0 14.0 15.0 16.0 22.0 2.0 33.0 102.0 121.0 65.0 -4.0 22.0	1 . 0 4 1 . 0 6 1 . 0 7 1 . 0
4 5	2 1	ATM ATM	-0.20 248.90	0.0000 0.0000	0.0 0.0	10.0 10.0 10.0 10.0	1.231 1.231	-0.25 306.70	0.0 0.0	1000.00	-9.0 14.0	- 0 . 1 1 1 . 05

UHR7E1T: 9.22

ENDLAGERBERGWERK KONRAD
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Brand im Zweig 208 nach 209 datei: DBE-b3.2

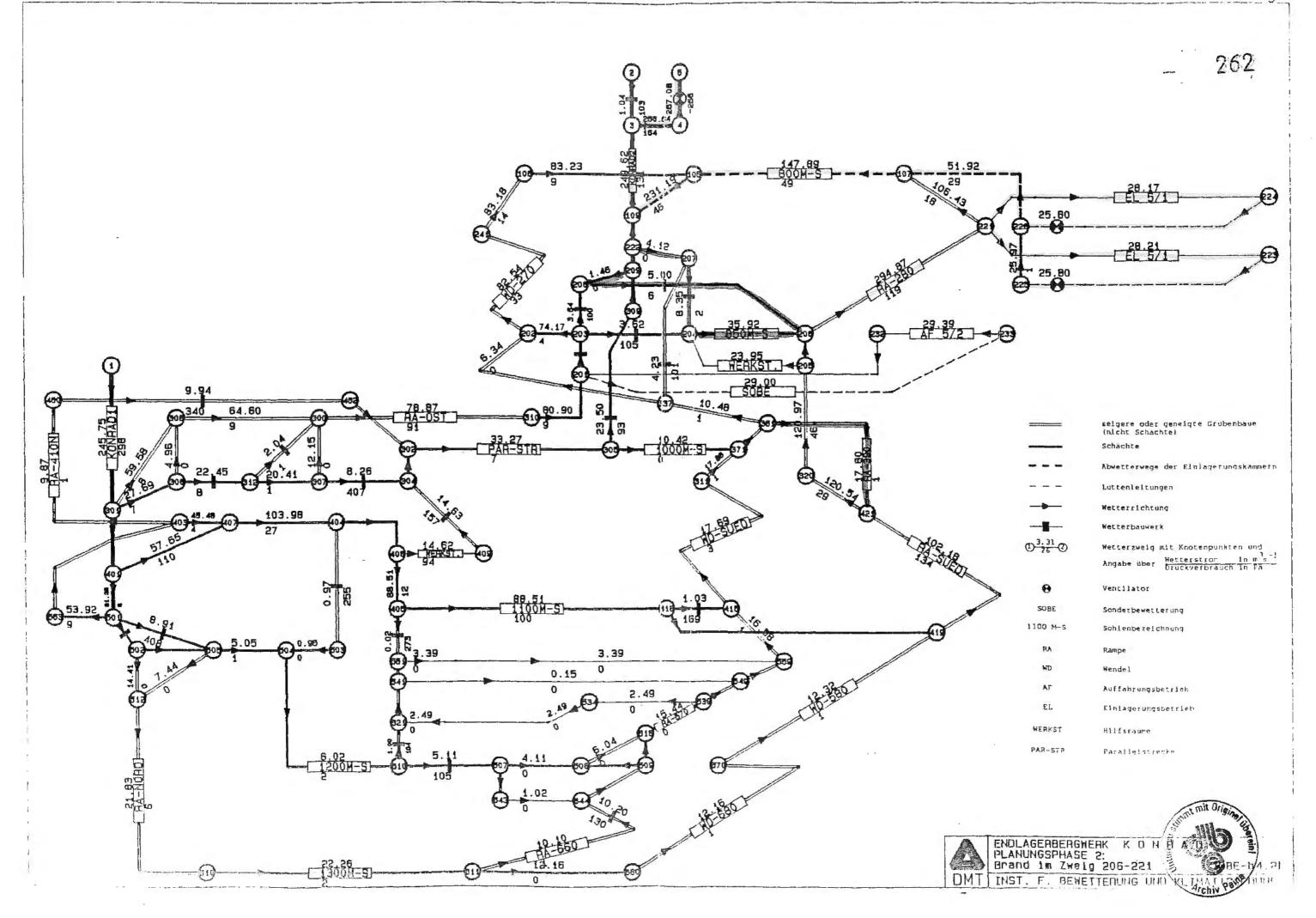
PROGRAMM WETTLER R
PRUEFSTELLE FUER GRUBENBEWLTTERUNG

K NOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	ANFANG	WIDERSTAND RN		TEMPER ANFANG	ATUR ENDE	MITTL. DICHTE	MASSEN -STROM	LSTG.	DRUCK ANFANG	TEUFEN DIFFER.	M/MC BZW. P/PG
				CBM/S	KG/M**7	PASCAL	GRA	D C	KG/CBM	KG/S	κω	MBAR	M	
4	5	HGL	Ax-Vent	308.22	KG/M**7 0.0040 0.0054 100.0000 0.0026 0.0014 0.0024 0.0024 0.0384 -0.0053	309.6 RHO-SAUG	62.3 SETTE =	62.3	1.042 3 KG/CBM	321.58		1004.79	0.0	1.0%
1	301	KONRAD1	-4.4 581	263.74	0.0054	342.8	10.0	20.0	1.282	324.43		1000.00		1 16
2 3	3 4	WKZ LI-KANAI		-2.32 307 60	100.0000 0.0026 0.0009 0.0014 0.0024 0.0022 0.0384 -0.0053 0.0057	-509.6 200 1	10.0	10.0	1.235	-2.85 321.58	61 6	1001.09	~5.0 0.0	1.51 1.08
105	109	W-KHIKHL		119.28	0.0009	12.5	32.0	32.0	1.244	148.41 119.70 28.71	1.5	1090.02	-1.0	0.71
106	105	0004 6		96.21	0.0014	12.7	32.0	32.0	1.244 1.244	119.70	1,2	1090.03	-1,0 0.0	0.96
107 109	105 3	KONRAD2		293.09	0.0024	165.2	32.10 69.8	32.0 62.3	1.076	324.43	49.8	1090.04	773.0	0.40
201	203		V1-STROM	88.11	0.0384	298.5	24.0	24.0	1.290	113.86	26.3	1162.38	0.0	1.11
201	233 241	SOBE	V1-STROM	29. 00 95.39	-0.0053	-4.5	24.0 32.0	24.0 32.0	1.292	37.47 119.70	-0.1	1102.38 1099.35	-1.0 67.0	1.00 0.96
202 203	202	WD-2/0		79.36	0.0007	4.5	24.0	24.0	1,289	102.27	0.4	1099.40	0.0	1.09
203	204			3.12	8.2397	78.1	32.0	32.0	1.254	3.92	0.2	1099.40	0.0	1.10
203 204	208 207			29.00 95.36 79.36 6.11 84.87 21.49 31.64 30.35 111.43 81.80	8.2397 0.0251	78.1 299.2 76.9 20.6 21.5	32.0 32.0	32.0 31.9	1.254	7.67 70.45	1.8	1099.40	-6.0 7.0	1.65 1.67
205	206			84.87	A AA20	20.6	32.0	32.0	1.254	106.44	1.7	1098.83	0.0	1.05
205	204	WERKST.		21.42	0.0482	21.5	32.0	32.0	1.254	26.86	0.5	1098.83	0.0	1.07
206 206	221 204	RA-280 REAM_S		22.89	0.0041	2.1 A 9	32.0 32.0	31.5 32.0	1.251	28.71 39.67	0.0	1098.62	51.0 0.0	2.91
206	208	COUM- S		30.35	0.2481	222.0	32.0	32.1	1.253	38 86	6.7	1098.62	-6.0	2.34
207	222	EUE 1 1 00 T	TEMB/VI	61.49	0.0105	38.4		31.9	1.251	76.99	2.4	1096.99	17.0 0.0	1.63 2.19
208	209	FUELLURI	1 E M P (X)	81.87	0.0001	0.2	658.0 411.0	411.0	0.404	76.99 45.73 45.73	0.0	1097.14	0.0	2.19
209	222	KONRAD2		81.87 111.59 -28.80 25.77 173.29 25.80 25.80 25.80	0.0001	1.1	157.1	156.8	0.887	99.03	0.1	1097.14	30.0	1.8H
221	107 A223	RA-280 EK-282		-28.59	0.0021	-1.7	31.5 31.5	31.3 31.5	1.248	-35,70 32 23	Ø, Ø	1092.34 1092.34	19.0 -3.0	5.34
221 221	A224	EK-283		25.77	0.0009	0.6	31.5	31.5	1.249	32.23 32.19	0.0	1092.34	-3.0	1.00
222	109	KONRAD2		173.29	0.0001	2.0	102.2	101.7	1.014	176.82	0,3 0.0	1094.52	45,0 -13,0	1.76
A223 223	223 225 224	EL 5/1 7-Vent	V1-STROM	25.84 25.80	-0.0015	-32.7	32.0 32.0	32.0 32.0	1.248	32.23 32.23 32.19	-0.8	1094.28	62.0	0.00
A224	224	ĒL 5/1	VI 0111011	25.81	0.0016	1.0	32.0	32.0	1.247	32.19	0.0	1092.71	-2.0	1.00
224 225	226 226	Z-Vent	V1-STROM	25.80 25.97	-0.0486	-31.3 a 5	32.0 32.0	32.0	1.244	32.19 32.23	~0.8 0.0	1092.94 1087.04	53.0 2.0	0.00
226	107			51.92	0.0110	28.6	32.0	32.0	1.242	64.41	1.5	1086.79	-29,0	1.00
232	201			29.00	0.0036	3.0		24.0 28.0	1.292 1.275	37.47	0.1	1102.54	1.0	1,00
233 241	232 106	WD-270		96.15	0.04419 0.00401 0.00401 0.00001 0.00001 0.000229 0.000156 -0.005166 -0.001001 0.00229 0.000100000000000000000000000000000000	18.1	28.0 32.0	32.0	1.245	37.47 119.70	1.7	1090.70	4.0	Ø 9 t
300	310	RA-OST		85.83	0.0140	107.3	21.0	24.0	1.310	113.86	9.3	1090.70 1120.25 1122.27	125.0	1 . 1 1
301 301	308 306			64.70	0.0021	9.2 8.8	21.0 24.0	24.0 24.0	1.322	85.98 39.68	ρз	1122 27	7.0 1.0	1.11
. 301	401	KONRAD1		149.06	0.0003	7.9	20.0	21.0	1.339	198.77	1 2	1122.27	102.0	1 0 0
302	305	PAR-STR		35.76	0.0058 0.0037	7.5	26.0	32.0	1.287 1.300	46.50 32.52	0.3	1116.83	3.0	1.10
304 305	302 371	10008-5		25.01 -5.34	0.0037	-0.1	26.0 32.0	26.0 32.0	1.273	-6.80	0.0	1116.38	19.0	-0.65
305	309	1000M-S		411.76	0.1709	7.5 2.3 -0.1 294.9 9.1	31.5	31.5	1.275	53,30	12.3	1116.38	1.0	1.68
306 306	312 308			51.92 29.039 96.153 864.77 30.17 149.76 	0.0149 0.0021		21.0 21.0	21.0 21.0	1.329	32,43	0.0	1122.06	Ø €	1.11
307	300			13.30	0.0013	0.2	21.0	21.0	1,328	7.25	0.0	1121.95	1,3.10	1.11
307	304	1000M-S		8.89	5.7810	470.6	21.0	21.0	1 326	11.81	4.2	1121.95	`3. 0	• 1 . 3 0
													•	

UHRZEIT: 9.22

ENDLAGERBERGWERK KONRAD
PROGRAMM WETTER
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Brand im Zweig 208 nach 209
datei: DBF-b3.2

KNOTEN ANFANG	KNOTEN ENDE	NAME		RN		TEMPERATUR ANFANG ENDE		MASSEN -STROM	LSTG.	ANFANG	TEUFEN- DIFFER.	M/MG BZW. P/PG
			CBM/S	KG/M**7	PASCAL	GRAD C	KG/CBM	KG/S	ΚW	MBAR	M	<u> </u>
308 309 311 3112 312 320 337 3361 371 401 401 403	309 209 201 3707 3005 205 207 2037 3617 5017 400	KONRAD2 WD-SUED RA-SUED BERG 6 KONRAD1 RA-410N	CBM/S 70.22 41.88 88.05 19.22 22.18 22.22 104.62 5.20 13.84 13.88 13.95 86.27 48.39 110.01 1.02 94.39 110.92 110.98 194.39 15.72 19.02 14.60 108.52 4.90 108.53 10.666 10.75 110.666 10.76 110.70 110	0.0012 0.0012 0.0014 0.0025 0.0030 0.3429 0.0031 5.7941 0.0027 0.0081 0.0015 0.0012	10.8 2.1 11.0 0.9 1.5 1.7 34.2 153.0 0.5 2.8 0.3 125.9 9.3 6.7	21.0 21.0 31.5 30.2 24.0 24.0 32.0 32.0 21.0 21.0 21.0 21.0 33.0 33.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 22.0 32.0	1.327	93.24 53.36 13.86 24.50 29.47 2.96 13.31 6.53 17.70 82.96 17.70 82.96 14.50 14.5	0.8 0.1 1.0 0.0 0.0 0.0 0.0	1121.27 1113.30 1103.12 11103.52 11121.96 11121.96 11121.96 1114.09 11135.55 1103.58 11114.09 11135.59 11133.99 11333.66 11332.46	7.0 130.0 20.0 0.0 13.0 41.0 34.0	1 . 1 1 1 . 1 0 1 . 1 1 1 . 1 0 1 . 1 1 1 . 1 0 1 . 3 0 0 . 5 8 0 . 6 8 0 . 5 8 1 . 1 0 1 . 0 8 1 . 1 0
404 404 405 407 408 409 418	408 503 418 551 405 409 304 311	AUFH. 1100M-S WERKST. WD-SUED	110.01 1.02 94.39 0.02 110.98 94.39 15.71 15.72	0.0052 266.5750 0.0125 999999.0000 0.0025 0.0015 0.4321 0.7152 0.0108	64.4 282.6 1113.9 310.7 31.2 13.9 181.5	26.0 26.0 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 32.0 32.0	1.319 1.324 1.318 1.306 1.320 1.319 1.318 1.309 1.281	0.02	7.1 0.3 10.8 0.0 31.3 1.7 2.9 0.1	1133.62 1133.62 1132.46 1132.46 1133.72 1132.72 1131.63 1128.71	2.0 -99.0 -3.0 -28.0 1.0 0.0 101.0 95.0	1.09 1.109 1.008 1.008 1.14 1.099 1.10
418 419 421 421 460 462 501 501	415 419 421 4220 A 421 3622 505 563	RA-SUED RA-SUED RA-390 SCHLEUSE RA-410N	1 - 1 0 9 4 - 6 0 108 - 5 4 104 - 2 5 4 - 9 4 10 - 6 0 18 - 8 0 9 - 4 1 57 - 37	0.0050 0.0129 0.0029 0.0029 0.0000 3.3816 0.2216 4.8760	192.8 151.6 21.9 0.0 390.8 454.8 10.3	30.0 30.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 26.0 26.0 26.0 26.0 22.0 23.0	1.3197 1.282 1.274 1.269 1.308 1.303 1.350 1.350	144.55 124.49 20.71 20.71 24.50 1.45 123.01 139.57 133.37 6.27 13.98 25.476 77.76	16.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1132.467 11334.472 11334.772 11331.69 11231.755 11220.88 1121.560 11121.600 11148.600 11148.600 11143.955 11143.955 11143.955	37.0 38.0 30.0 67.0 0.0 39.0 1.0 0.0	1.09 1.09 1.09 1.06 2.74 2.74 1.10 1.06
5500455 5500455 550077 55009 55009 55102 55102 55102	512 504 5010 5010 5010 5010 5010 5010 5010	1200M-S 1200M-S AUFH. RA-NORD RA-570	6.50 2.01 10.07 5.55	0.0004 0.0053 0.05597 0.05907 0.0218 0.0218 0.0218 0.0113 0.0012 3.9209 100.9425 0.0019	0.1	22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	1.308 1.3500 1.3553 1.3545 1.3345 1.3345 1.3346 1.3321 1.3325 1.3022 1.3022 1.3022 1.3022	20.42 5.05 8.77 7.42 10.40 5.85 1.48 1.47 2.62 13.12 7.34 1.43 20.82 21.59	0.0 0.0 0.0 0.0 0.0	1143.92 1143.65 1143.65 1143.92 1141.73 1141.73 1141.60 1143.23 1144.71 1140.07	-6.0 0.0 -21.0	1 . 00 c 1 . 0 c 1 . 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c



UHRZEIT: 9.22

ENDLAGERBFRGWERK K O N R A D
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1. AUFFAHRUNG FELD 5/2
Brand im Zweig 208 nach 209
datei: DBE-b3.2

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPERATUR ANFANG ENDE		MASSEN -STROM	ESTG.		TEUFEN. DIFFER.	M/M(. BZW, P/PG
			CBM/S	KG/M**7	PASCAL	GRAD C	KG/CBM	KG/S	ĸW	MEAR	M	-
521 652339 55339 5541 555555 6511 6611	5411 552349 555349 55551 55551 55555 44011 6666 46660	AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660	3.77 2.67 2.67 2.67 13.96 3.62 0.15 3.64 17.83 57.57 123.34 10.79	0.0187 0.0000 0.00033 0.0033 0.0016 0.0164 0.0166 0.0021 0.0021 0.0020 0.0250 0.0383 0.0036 0.0089	0.3 0.0 0.0 0.3 0.1 0.4 0.3 1.5 1.5 2.0 0.1	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	1.298 1.300 1.299 1.298 1.297 1.294 1.293 1.293 1.293 1.293 1.295 1.321	4.90 3.47 3.47 3.47 18.12 4.69 0.21 18.34 4.71 23.05 77.76 16.56 30.82	9 . 0 9 . 0	1138.666 1138.666 1136.89 1137.39 1134.97 1134.97 1135.48 1132.94 1132.68 1148.59 1156.89 1156.89	29.00 -14.00 15.00 16.00 -22.00 20.00 332.00 1021.00 85.00 -4.00	1.10 1.09 1.09 1.10 1.10 1.12 1.10 1.10 1.10 1.10 1.09 1.09 1.09
643 A644 644 660 1 5	644 644 509 570 2	WD-680 ATM ATM	1.13 10.90 12.05 12.54 -2.32 260.98	0.0016 1.2302 0.0022 0.0083 0.0000 0.0000	0.0 148.0 0.3 1.3 0.0 0.0	32.0 32.0 32.0 32.0 32.0 32.0 10.0 10.0 10.0 10.0	1.307 1.305 1.312 1.231	1.48 14.25 15.74 16.56 -2.85 321.58	0.0 1.6 0.0 0.0 0.0	1144.42 1145.90 1144.42 1157.38 1000.00 1001,69	0.0 0.0 22.0 120.0 -9.0 14.0	1.16 1.09 1.10 1.05 -1.31 1.08

DATUM: 30. 3.1990

UHR7E1T: 9.25

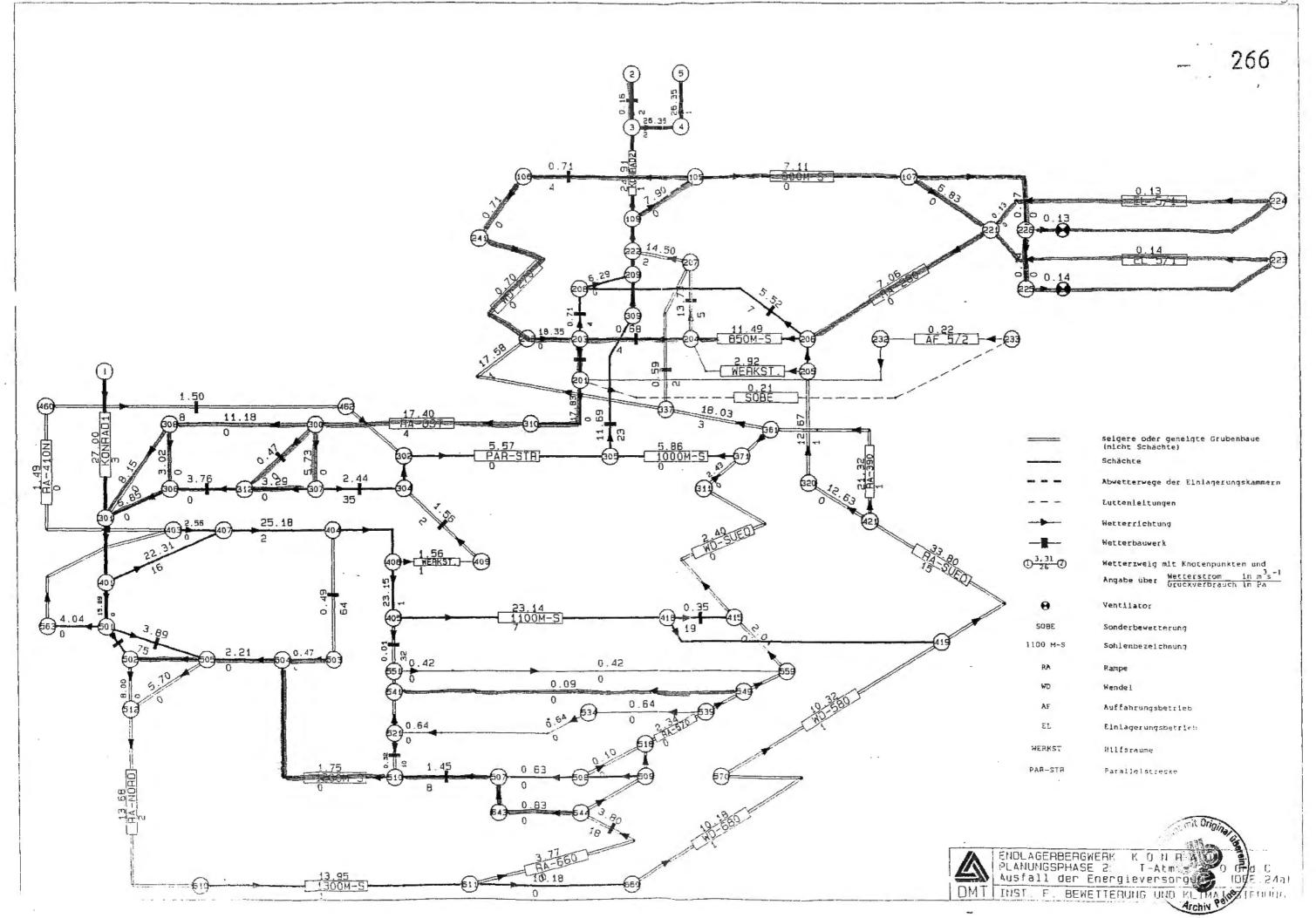
ENDLAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Brand im Zweig 206 nach 221 datei: DBF-b4.2

* PROGRAMM WETTER & PRUEFSTELLE FUER GRUBENBLWLTIERUNG

K NOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWE 1GTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPER ANFANG		MITTL. DICHTE	MASSEN -STROM	LSTG.		TEUFEN- DIFFER.	M/MC BZW: P/PG
				CBM/S	KG/M**7	PASCAL	GRA	D C	KG/CBM	KG/S	KU	MBAR	M	-
4	5	HGL	Ax-Vent	267.08	-0.0043	-266.4 RHO-SAUG	33.0 SETT: =	33.0	1.138 7 KG/CBM	303.58	-71.1	999.03	0.0	1.0.
1	301	KONRAD1		245.75	0.0054	297.5	10.0	20.0	1.282	302.30	70.2	1000.00		1 0
2	3	WKZ W-KANAL		1.04	100.0000 0.0026	102.6 163.7	10.0 33.0	10.0 33.0	1.231 1.138	1.28 3 0 3.58	0.1 43.7	1001.09	-5,0 0.0	0 5
105	109	W-KHMHL		231.19	0.0009	45.7	41.5	41.6	1.208	279.26	10.6	1091.36	-1.0	1.45
106	105			83.23	0.0014	9.5	32.0	32.0	1.246	103.68	0.8	1091.33	-1,0	د 8 . 0
107 109	105 3	800M-S Konrad2		147.89 249.62	0.0024 0.0022	49.0 131.4	47.2 40.6	47.2 33.1	1.187 1.175	175.58 302.30	7.2 33.8	1091.85	0.0 773.0	2.47
201	203	KUNKMUZ		80.95	0.0384	252.0	24.0	24.0	1.292	104.67	20.4	1103.07	0.0	1.0.
201	233	SOBE	V1-STROM	29.00	-0.0053	-4.5	24.0	24.0	1,293	37.50	-0.1	1103.07	-1.0	1.00
202	241	WD-270		82.54	0.0050	33.1	32.0	32.0	1.251	103.68	2.7	1100.51	67.0	0.83
203 203	202 204			74.17 3.62	0.0007 8.2397	3.9 105.0	24.0 32.0	24.0 32.0	1.290 1.256	95.68 4.55	0,3 0.4	1100.55	0.0	1.0.
203	208			3.54	8.2397	100.2	32.0	32.0	1.256	4.44	0.4	1100.55	-6.0	0.96
204	207			-8.35	0.0251	-1.7	32.0	31.9	1.255	-10.47	0.0	1099.50	7.0	-0.25
205	206	HEDRET		98.96 23.95	0.0029 0.0482	28. 0 26.9	32.0 32.0	32.0 32.0	1.255 1.255	124.23 30.06	2.8 0.6	1099.76	0.0	1,23
205 206	204	WERKST. RA-280	TEMP(X)	294.87	0.0005	19.5	370.0	304.0	0.629	175.58	5.4	1099.48	6.4	2.47
11 11 11 11	0000	RA-280	0 0 0 0 0 0 0	264.76	0.0005	17.6	304.0	252.0	0.696	175.58	4.4	1098.90	6.4	2.47
11 11 11 11	11 11 11 11	RA-280		241.04	0.0005	16.1	252.0	209.0	0.761	175.58 175.58	3.7	1098.29	6 . 4 6 . 4	2.4/
11 11 11 11	** ** ** **	RA-280 RA-280	1. 11 0 11 11 11 11	221.43	0.0005 0.0005	14.9 13.9		175,0 147.0	0.823 0.881	175.58	3.2 2.8	1097.65	6.4	2.47
44 65 65 88	0.0.0.0	RA-280		193.19	0.0005	13.1		125.0	0.934	175.58	2,5	1096.30	6.4	2.47
41 31 11 41	11 11 11 11	RA-280	**********	183.20	0.0005	12.5		107.0	0.981	175.58	2,2	1095.58	6.4	2 47
11 11 11	221	RA-280	** ** ** ** ** **	175.03 -35.92	0.0005 0.0009	12.0 -1.1	107.0 32.0	92.0 32.0	1.023	175.58 -45.08	2.1 0.0	1094.84 1099.48	6.4 0.0	2.4/
206 206	204 208	850M-S		-5.00	0.2481	-6.0	32.0	32.1	1.255	-6.28	0.0	1099.48	- 6.0	-0,39
207	222			-4.12	0.0105	-0 , Ž	33.0	32.8	1.249	-5.15	0.0	1098.65	17.0	-0,11
208	209	FUELLORT		-1.46	0.0001 0.0001	0.0	32.0	32.0	1.256 1.262	-1.83 28.19	0.0 0.0	1100,28	0.0 30.0	-0.09 0.54
2 09 2 21	222	KONRAD2 RA-280	TEMP(X)	22.31 106.43	0.0014	0.1 12.3	30.2 92.0	29.9 65.0	1.085	111.07	1.3	1094.08	12.7	16.60
	107	RA-280	121117337	98.69	0.0007	5.9	65.0	56.0	1.140	111.07	0.6	1092.61	6.3	16.60
221	A223	EK-282		30.92	0.0022	1.6	92.0	60.0	1.094	32.27	0.0	1094.08	-3,0	1 06
221 222	- A224 109	EK-283 Konrad2		30.89 18.28	0.0009 0.0001	0.6 0.0	92. 0 29.9	60.0 29.5	1, 094 1,258	32,24 23.04	0.0	1094.08	⊹3.0 45.0	1 00
A223	223	EL 5/1		28.21	0.0015	1.0	60.0	32.0	1.198	32,27	0.0	1094.39	-13.0	1 00
223	225	7-Vent	V1-STROM	25.80	-0.0800	-51.7	32,0	32.0	1.247	32.27	-1.3	1095.91	62.0	0.00
A224	224	EL 5/1	UI CIBOR	28.17	0.0016	1.1	60.0	32.0	1.197	32.24 32.24	0.0 -1.2	1094.40	-2.0 53.0	1.00
· 224 · 225	226 226	SOBE	V1-STROM	25.80 25.97	-0.0691 0.0008	-44.6 0.5	32.0 32.0	32.0 32.0	1.243	32.27	0.0	1088.84	2.0	1 00
226	107			51.92	0.0110	28.6	32.0	32.0	1.244	64°.51	1.5	1088.59	29.0	1.00
232	201			29.00	0.0036	3.0	24.0	24.0	1,293	37.50	0.1	1103.22	1.0	1.00
233 241	232 106	AF 5/2 WD-270		29.39 83.18	0.0018 0.0020	1.5 13.6	28.0 32.0	28. 0 32. 0	1.276	37.50 103.68	0.0 1.1	1103.24	4 0	0.8
300	310	RA-OST		78.87	0.0140	90.7	21.0	24.0	1.310	104.67	7.?	1120.76	125.0	1.0.
301	308			59.58	0.0021	7.8	21.0	24.0	1.322	79.21	0.5	1122,75	7.0	10
301 301	306 401	KONRAD1		27.69 139.91	0.0095 0.0003	7.5 7.0	24.0	24.0	1.316	36.44 186.65	0 . ?	1122.75	103 0	1 to .
302	305	PAR-STR		33,27	0.0058	6.5	26.0	32.0	1.289	43.31	0.2	1117.98	3 6	1 0
														•

UHRZEIT: 9,25

ENDLAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Brand im Zweig 206 nach 221 datei: DBE-b4.2 * PROGRAMM WETTER
* PRUEFSTELLE FUER GRUBENBLWLTTERUNG


KNOTEN ANFANG	KNOTEN ENDE		ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPERATUR ANFANG ENDE	MITTL. DICHTE	MASSEN -STROM	ıstg.	DRUCK ANFANG	TEUFEN DIFFER.	М/МС В Z W . Р/РG
			CBM/S	KG/M**7	PASCAL	GRAD C	KG/CBM	KG/S	KW	MBAR	M	,,,,
304 305 305 306 306	302 371 309 312 308	1000M-S 1000M-S	23.25 10.42 23.50 22.45 4.96 12.15 8.26 64.60 23.52 60.90 17.88 20.41 20.97	0.0037 0.0024 0.1709 0.0149 0.0013 5.7810 0.0021 0.0014 0.0014	2.0 0,3 93.4 7.7 0.1	26.0 26.0 32.0 32.0 31.5 31.5 21.0 21.0 21.0 21.0	129868034985396201116059710998778485344763447 1333322279722265567452122210222111133332322211111111111111	30.27 13.29 30.02 29.85 16.59 16.19 85.81 30.67 22.81 27.13 2.72 154.29	0.0 2.2	1118.00 1117.54 1117.54 1122.55 1122.55	0.0 19.0 1.0 0.0 6.0	1 . 0 ± 1 . 2 7 0 . 9 1 1 . 0 . 1
307 307 308	300 304 300	1000M-S	12.15 8.26 64.60	0.0013 5.7810 0.0021	0.2 406.7 9.2	21.0 21.0 21.0 21.0 21.0 21.0	1,328 1,326 1,328	16.15 10.98 85.81	0.0 3.4 0.6	1122.55 1122.46 1122.46 1121.77	13,0 3,0 7,0	1.07 1.03 1.02 0.95
309 310 311	209 201 371	KONRAD2 WD-SUED	23.52 80.90 17.88	0.0012 0.0014 0.0025	0.7 9.3 0.8	31.5 30.2 24.0 24.0 32.0 32.0	1.27 0 1.293 1.274	30.02 104.67 22.81	0.0 0.8 0.0	1121.77 1116.48 1103.79 1117.67	130.0 5.0 20.0	0.95 1.02 1.02
312 312 320	307 300 205	RA-SUED	20.41 2.04 120.97	0.0030 0.3429 0.0031	1.3	21.0 21.0 21.0 21.0 32.0 32.0 33.0 33.0	1.329 1.328 1.265	27.13 2.72 154.29	0.0 0.0 5.6	1117.67 1122.47 1122.47 1117.35	0.0 13.0 138.0	1.02 1.02 1.02 1.02
337 337 361 371	207 202 337 361	BEKG 6	4.23 6.34 10.48 28.36	5.7941 0.0027 0.0081 0.0015	45.8 101.4 0.1 0.9	32.0 32.0 32.0 32.0 32.0 32.0	1.253 1.259 1.266 1.272	5.32 8.00 13.32 36.10 77.30 109.35	0.4 0.0 0.0	1104.70 1104.70 1113.03 1115.16	41.0 34.0 67.0 17.0	1 06 0,27 0,38 1,16
401 401 403	407 501 407	KONRAD1	57.65 81.28 45.48	0.0318 0.0012 0.0021	109.8 8.3 4.5	22.0 22.0 21.0 22.0 26.0 26.0	1.340 1.351 1.321	77.30 109.35 60.08 13.04 136.10	6.3 0.7 0.2	1136.08 1136.08 1134.64	2.0 -99.0 -1.0	1 . 0 . 1 . 0 . 1 . 0 .
403 404 404	460 408 503 418	RA-410N AUFH.	9.87 103.05 0.97	0.0061 0.0052 266.5750	56.6	26.0 26.0 26.0 26.0 27.0 26.0 26.0 26.0	1.316 1.320 1.325	13.04 136.10 1.28 116.79	0.0 5.8 0.2	1134,64 1134.32 1134.32	64.0 2.0 -99.0 -3.0	1,04 1,05 1,0,
405 405 407 408	551 404 405	11664-2	0.51 0.029 103.98 88.51	99999.0000 0.0025 0.0015	254.8 100.3 273.3 27.4	26.0 26.0 26.0 26.0 26.0 26.0	1.307 1.321 1.320	137.38	0.0 2.9 1.1	1133.25 1134.72 1133.49	- 28 . 0 1 . 0 1 . 0	1 07 1 07 1 03
408 409 415	409 304 311	WERKST. WD-SUED	14.62 14.63 17.69	0.4321 0.7152 0.0108	94.3 157.2 3.4	26.0 26.0 26.0 26.0 32.0 32.0	1.319 1.310 1.283	19.29 19.29 22.81 1.36	1.4 2.3 0.1	1133.49 1132.55 1129.65	0.0 101.0 95.0	1 0 1
418 418 419 421 421	415 419 421 320 A421	RA-SUED RA-SUED RA-390	17.88 20.041 120.97 4.234 10.348 257.628 45.865 81.365 84.99.097 103.998 108.562 117.663 117.663 117.663 117.693 117.8	155.6905 0.0050 0.0129 0.0020 0.0029	168.9 39.4 134.5 29.3 -0.9	26.0 26.0 30.0 30.0 32.0 32.0 32.0 32.0 32.0 32.0	1.317 1.298 1.284 1.278 1.275	131.51 154.29	0.2 3.5 13.8 3.5 0.0	11127.4.475 111277.70368844.70331.1110033.6.664.642.25529.6663.344.3325.529.6663.344.3333.4.566653334.1113334.3333.4.566333111233334.11133334.11133334.11133334.11133334.1113334.1113334.1113334.1113334.1113334.1113334.1113334.1113334.1113334.1113334.1113334.111334.111334.111134.11114.11114.11114.11114.11114.11114.11114.11114.11114.11114.11114.11114.11114.11114.11114.11114.11114.114.11	10.0 37.0 38.0 30.0 67.0	1.07 1.05 1.0. 1.27 9.96
A 4 2 1 4 6 0 4 6 2 5 0 1 5 0 1	361 462 302 502 505	SCHLEUSE RA-410N	-17.93 9.94 9.97 17.80	0.0000 3.3816 0.0011 1.2216	0.0 339.8 0.1 407.8	32.0 32.0 26.0 26.0 26.0 26.0 22.0 23.0 22.0 23.0	1.270 1.309 1.305 1.351	-22,78 -13.04 13.04 24.14 12.08	0.0 3.4 0.0 7.3	1113.03 1126.37 1122.97 1149.11	0 0 0 0 39 0 1 0 1 0	-9 (9) 1 (0) 1 (0) 1 (0)
501 502 502 503	563 512 505 504	RA-NORD	53,91 14,41 3,52 0,95	0,0030 0.0004 0.0032 0.0053	9,1 0.1 0.0 0.0	22.0 23.0 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	1.354 1.347 1.347 1.346	73.12 19.40 4.74 1.28	и и	1149.11 1149.11 1149.11 1144.90 1144.90	0,0 6,0 0,0 0.0	1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1
504 505 505 507 507	510 504 512 508 643	1200M-S	6.02 5.05 7.44 4.11 1.02	0.0059 0.0129 0.0029 0.0029 0.0009 0.0011 1.2216 4.8760 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	2.3 0.8 0.0 0.4 0.1	24.0 28.0 23.0 24.0 23.0 23.0 28.0 28.0 32.0 32.0	1.333 1.344 1.347 1.322 1.306	6,08 6.80 10.02 5,43 1,33	0.0 0.0 0.0 0.0	1144.63 1144.90 1144.90 1142.91 1142.91	3 0 2 0 6 0 0 0	1 0 3 1 0 3 1 0 3 1 0 3

UHRZEIT: 9.25

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	TEMPERATUR ANFANG ENDE	MITTL. DICHTE	MASSEN -STROM	LSTG.	DRUCK T ANFANG D	EUFEN. IFFER,	M/M(BZW; P/PG
			CBM/S	KG/M**7	PASCAL	GRAD C	KG/CBM	KG/S	ΚW	MBAR	m	1,7,0
8999511028111223333444911955557706111134491444444444444444444444444444444	108871091111491199195555555555555555555555555	1200M-S AUFH. RA-NORD RA-570 AUFH. AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660	6.04 1.88 9.38 5.11 1.00 21.84 3.50 2.49 2.49 2.49 3.36 0.15 3.39 16.58 54.11 22.26 10.16 1.020	0.0019 0.0113 0.00112 3.92209 100.9420 0.0119 0.0187 0.00187 0.00187 0.0016 0.0166 0.0166 0.0166 0.0166 0.0166 0.0166 0.0050 0.0050 0.0050 0.0080 0.0080 0.0080 0.0080	0.1 0.1 104.9 103.92 0.2 0.0 0.2 0.0 0.3 0.1 0.4 0.2 1.3 1.3 1.3 1.3 0.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	1.304 1.304 1.3023 1.3123 1.3301 1.3291 1.2299 1.22996 1.22996 1.22996 1.22996 1.22996 1.22996 1.22996 1.22996 1.22996 1.22996 1.22996 1.2308	KG/S 7.88 2.423 6.76 1.32 29.11 4.524 3.224 16.83 0.87 4.38 21.45 73.12 16.07 29.42 13.35 14.58	NU	MBAR 1142.90 1142.78 1144.22 1144.22 1144.22 1145.70 1139.83 1138.56 1138.56 1138.56 1138.10 1134.10 1134.10 1134.10 1134.10 1134.10 1135.85	13.0 -1.0 -1.0 -2.0 -2.0 -93.0 -21.0 -9.0 -14.0 -15.0 -4.0 -22.0 -33.0 -121.0 -20.0 -33.0 -121.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -	1 . 0
644 660 1 5	509 570 2 1	WD-680 ATM ATM	11.22 12.16 1.04 246.37	0.0022 0.0083 0.0000 0.0000	0.3 1.3 0.0 0.0	32.0 32.0 32.0 32.0 10.0 10.0 10.0 10.0	1.306 1.313 1.231 1.231	16.07 1.28 303.58	0.0 0.0 0.0	1158.38 1000.00 1001.69	120.0 -9.0 14.0	1.02

DATUM: 3, 4,1990

UHRZEIT: 10. 3

ENDLAGERBERGWERK KONRAD
PROGRAMM WETTER
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 32.0 Grd.C (Stabilisierung) datei: DBE.24a

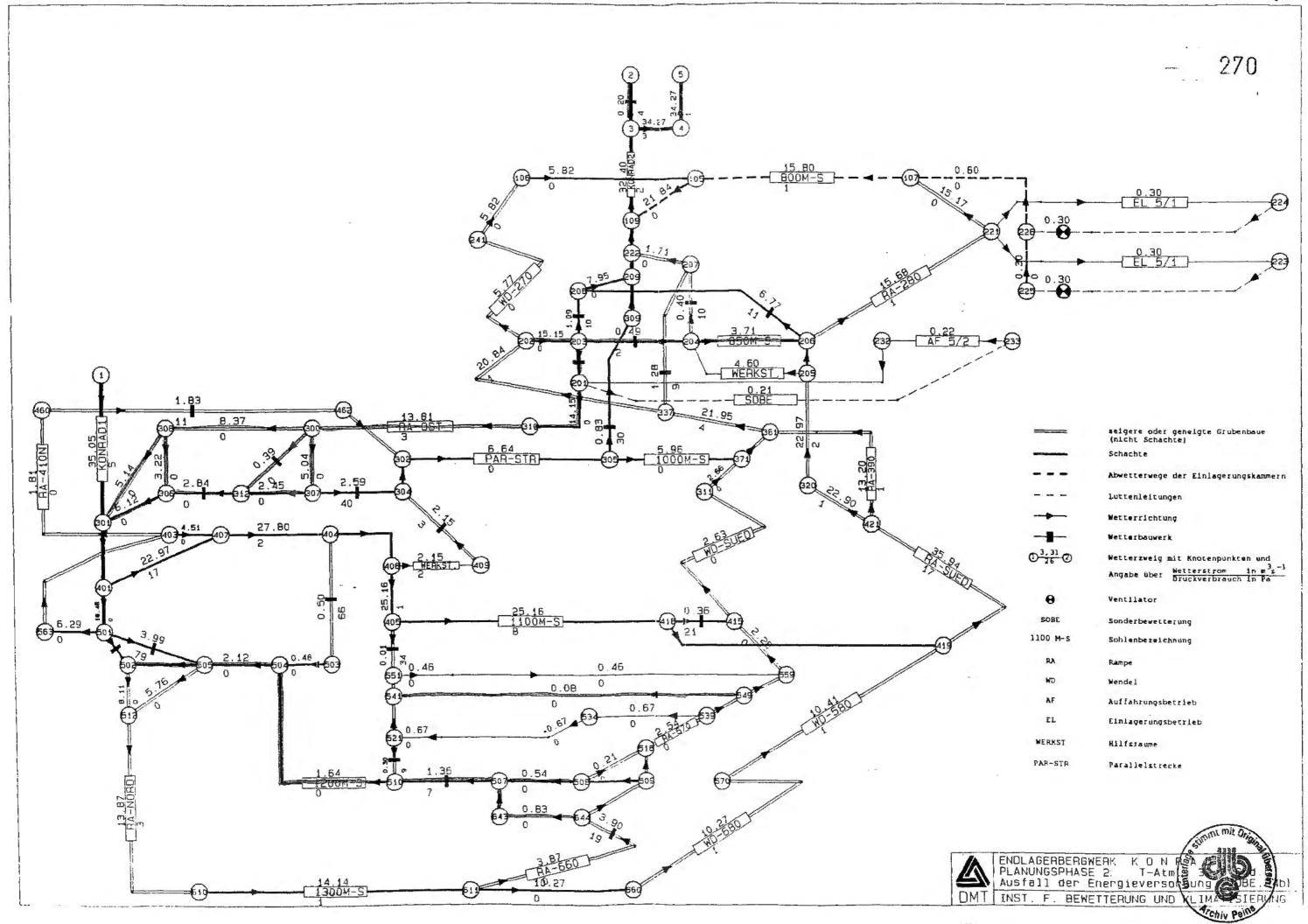
2 3 JMKZ	KNOTEN ANFANG	NOTEN ZWEIG- ENDE NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	U ANFG.	MITTL. TEMP.	CH4 KONZ.	LSTG.	DRUCK ANFANG	Α	t	TEUFE	M/MG BZU P/PG
1 301 KONRADI 27.00 0.0054 3.3 0.7 30.3 0.0 0.1 1000.00 38.5 1000 1 2 3 4 W-KANAL 26.35 0.0026 11.6 1.0 26.9 0.0 0.0 1001.01 0.0 0 105 109 -7.90 0.0009 -0.1 1.6 1.0 26.9 0.0 0.0 1001.01 0.0 0 106 107 108 800M-S -7.90 0.0009 -0.1 -0.3 35.2 0.0 0.0 0.0 1001.01 0.0 0 107 108 800M-S -7.11 8.24044 -4.0 0.0 32.0 0.0 0.0 1002.44 28.0 90 107 108 800M-S -7.11 8.24044 -4.10 0.0 32.0 0.0 0.0 1002.45 28.0 140 107 108 800M-S -7.91 0.0026 -0.1 -0.3 32.0 0.0 0.0 1002.45 28.0 140 107 108 800M-S -7.11 8.24044 -4.10 0.0 32.0 0.0 0.0 1002.46 30.5 70 109 1 233 SOBE -0.21 1.6 1.0 0.0 32.0 0.0 0.0 0.0 1002.46 30.5 70 100 201 233 SOBE -0.21 1.6 0.0026 -1.2 2 0.0 0.0 0.0 0.0 1100.87 70 101 203 SOBE -0.21 6.5000 -1.2 2 0.0 0.0 0.0 0.0 0.0 1100.87 70 102 203 204 -0.70 0.0060 0.0 0.0 0.0 0.0 0.0 0.0 1100.87 70 103 204 -0.66 8.2397 -3.7 0.0 32.0 0.0 0.0 0.0 1100.99 28.0 490 108 209 209 0.71 8.2397 4.0 0.0 32.0 0.0 0.0 0.0 1100.99 28.0 70 108 204 207 13.73 0.0221 4.6 1.4 32.0 0.0 0.0 1100.99 28.0 70 108 205 206 9.95 0.0029 0.3 0.4 0.0 0.0 0.1 1100.99 28.0 70 108 205 206 9.95 0.0029 0.3 0.4 0.0 0.0 0.1 1100.99 28.0 70 109 201 202 RA-280 -7.80 0.001 -0.2 0.3 0.0 0.0 0.0 1100.99 28.0 70 109 201 202 KONRAD2 -1.8 1.0 0.001 0.0 0.0 0.0 0.0 1100.99 28.0 70 11.50 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			CBM/S	KG/M**7	PASCAL	M/S	GRD C	%	ΚW	MBAR	M**2	M	М	
301 308 -8.15 0.0021 -0.1 -0.3 22.5 0.0 0.0 1119.29 28.0 210 301 306 -6.85 0.0095 -0.5 -0.6 24.0 0.0 0.0 1119.29 12.0 90 301 401 KONRADI 39.17 0.0003 0.5 1.0 28.5 0.0 0.0 1119.29 36.5 101 302 305 PAR-STR 5.57 0.0058 0.2 0.2 29.0 0.0 0.0 1118.42 28.0 570 304 302 4.06 0.0037 0.1 0.1 26.0 0.0 0.0 1118.42 28.0 360	100911233345566667891111233344562310111124556667911122222222222222222222222222222222	301 WCNRAD1 W-KANAL 1095 105 800M-S 203 KONRAD2 2333 SOBE 2012 204 WD-270 2064 WERKST. 221 RA-280 204 WERKST. 221 RA-280 202 EVENTA EK-282 208 EX-283 209 FUEILORT 222 EK-283 222 EK-283 222 EX-283 222 EX-283 223 EX-283 224 EX-283 225 EX-283 227 EX-283 228 EX-283 229 FUEILORT 220 FUEILORT 221 RA-280 222 EX-283 222 EX-283 223 EX-283 224 EX-283 225 EX-283 227 Vent 226 Z-Vent 227 Vent 227 Vent 231 RA-0ST 308 306 KONRAD1 231 RA-OST 309 3108 309 311	26.30 -0.165 -0.711 24.821 -0.735 -1.821 -0.735 -1.821 -0.735 -1.821 -0.735 -1.821 -0.735 -1.821 -0.735 -1.821 -0.735 -1.821 -0.749 -1.821 -0.749 -1.821 -0.749 -1.821 -0.749 -1.821 -0.749 -1.821 -0.749 -1.821 -0.749 -1.821 -0.749 -0.113 -0.1147 -0.122 -0.77.405 -1.822 -1.749 -1.749 -1.822 -1.749 -1.823 -1.843 -1.	8 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.5316 -0.10-10-10-10-10-10-10-10-10-10-10-10-10-1	07003036600770044134251524 560000000636360212021	9309200700000000000000000000000000000000		01000000000000000000000000000000000000	1000.01 10001.059 10001.059 10001.059 10092.244 100920.887 11000.999 11000.999 11000.999 11001.003 1101.00	05000000500000000000000000000000000000	100 0000000000000000000000000000000000	- 1000 - 50 - 11 - 10 7 7 30 - 16 7 - 00 - 6 7 - 00 - 51 - 6 7 - 00 - 10 - 10	P / P - 110805121

UHRZEIT: 10. 3

ENDLAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Natuerliche Bewetterung T-Atm.= 32.0 Grd.C (Stabilisierung) datei: DBI .24a

PROGRAMM WETTER
PRUEFSTELLE FUER GRUBENBEWLITERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG,	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	ı	TEUFE	M/MG BZW. P/PG
 				CBM/S	KG/M**7	PASCAL	M/S	GRD C	2	K₩	MBAR	M**2	M	, in	
 NN - 01122077111133440557889588911110221112234557789	E 111705727171708838145459411591022226632233404440838144221112222660253255555555555555555555555555555			ANFANG CBM / S = 833 -30.297 12.6598 18.3966 27.899 18.3966 24.479 24.4679 24.4679 24.4679 25.4679 24.4679 23.3856 24.479 25.1566 233.8632 21.348 221.348 221.348 221.350 77.894 8.03577 8.047 21.55633 0.7751	RN KG/M ^ 7 0.0014 0.0025 0.00429 0.00427 0.00815 0.00121 0.006512 0.00652 0.00652 0.00653	VERBRAUCH	AN M / 6.0.1.10.5.16.7.1.9.4.1.1.0.1.9.0.0.9.0.1.1.0.0.0.0.0.0.0.0.0	TEMPC	N Z	ΚW 0.0 0.0	ANFANG	2 000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M 50001381138414772914291811015078078091110150000032600032600032600032600032600032600032600032600032600032600032600032600032600032600000000	IVA 24633546335463354657114574332211991554477010588655232211133231991114477010588655200000000000000000000000000000000
509 510 510 512 518 521 A521	518 507 521 610 539 541 521	1200M-S AUFH. RA-NORD RA-570 AUFH.		2.24 1.45 0.32 13.68 2.34 0.32 0.64	0.0012 3.9209 100.9420 0.0125 0.0019 0.0187 0.0000	0.0 -8.5 -10,3 2.4 0.0 0.0	0.1 -0.1 0.0 0.5 0.1 0.0	32.0 28.0 30.0 25.5 32.0 32.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0	1143.23 1143.53 1144.97 1144.99 1140.29	25.0 14.0 8.0 28.0 25.0 8.0 0.0	100 310 70 1230 150 90	26 26 29 29 29	0.24 -0.29 0.37 0.64 0.16 0.09 0.26



UHRZEIT: 10, 3

ENDLAGIRBERGWERK K O N R A D
PLANUNGSPHASE 2: EINLAGERUNG FFLD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 32.0 Grd.C (Stabilisierung) datei: DBE.24a

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	Ĺ	TEUFL	M/MC BZW: P/PC
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	&	KW	MBAR	M**2	M	ĮN	-
539 539 539 531 541 551 6559 670 611 643 A644 6640	A 5555953911440449964499665070	AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660	3.77 10.18 -0.83 3.80 2.97 10.18	0.0033 0.0032 0.0016 0.0104 0.0166 0.0020 0.0216 0.0050 0.0329 0.0083 0.0083 0.0080 0.0090	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.1 0.1 0.1 0.9	0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1138.50 1139.01 1136.59 1136.59 1137.10 1134.56 1134.56 1134.30 1145.25 1145.25 1157.19 1157.19 1157.19 1157.19 1157.19	28.0 28.0 28.0 28.0 0.0 28.0	270 260 130 50 720 170 940 4310 1000 350 790 160 220	16 16 16 -4 22 0 33 102 121 85 -4 0 22 120	0.210 0.110 0.110 0.100 0.110 0.110 0.100 0.000
1 5	2 1	ATM ATM	-0.16 26.80	0.0000 0.0000	0.0 0.0	0.0	32.0 32.0	0.0 0.0	0.0 0.0	1000.00 1001.57	0.0 0.0	0	-9 14	-0.08 0.10

UHRZEIT: 11.27

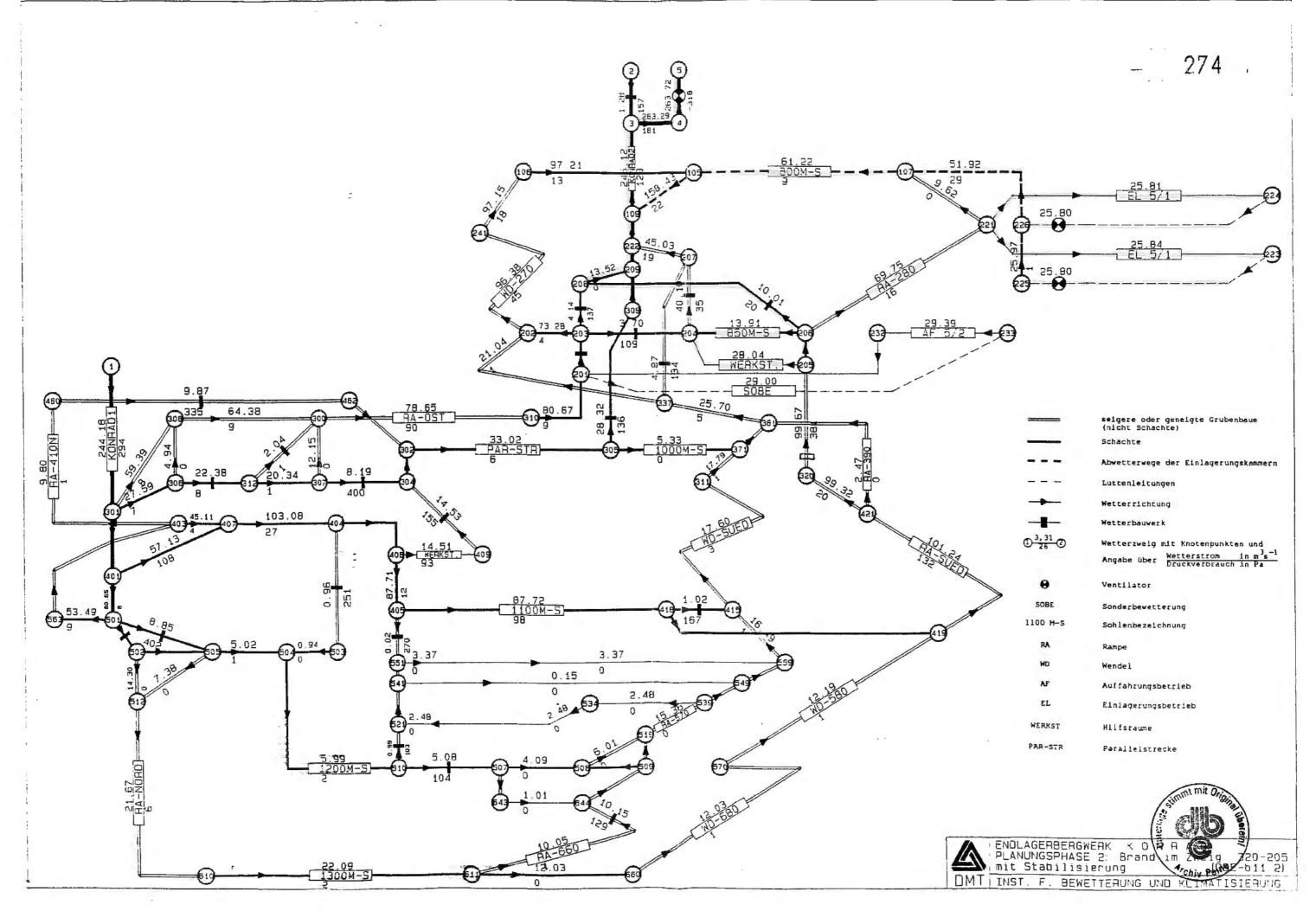
ENDLAGERBERGWERK K O N R A D
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 32.0 Grd.C (Stabilisierung) datei: DBE.24b
** PRUEFSTELLE FUER GRUBENBEWETTERUNG
** PRUEFSTELLE FUER GRUBENBEWETTERUNG
** PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	HITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	L	TEUFE	H/MG BZW, P/PG
	. 		CBM/S	KG/H**7	PASCAL	M/S	GRD C	.	KW	MBAR	M**2	М	М	F/FG
4 1 2 3 105 106	301 304 109 105	HGL KONRAD1 WKZ W-KANAL	34.27 35.05 -0.20 34.27 21.84	0.0008 0.0054 100.0000 0.0026 0.0009 0.0014	0.8 5.5 -3.6 2.8 0.4	0.0 0.9 0.0 1.3 0.8	27.4 30.3 32.0 27.4 35.2 32.0	0.0 0.0 0.0 0.0	0.0 0.2 0.0 0.1 0.0	1001.58 1000.00 1001.01 1001.60 1092.31 1092.19	0.0 38.5 0.0 26.0 28.0 28.0	1000 1000 50 90 140	-1000 -5 0 -1	0.13 0.14 -0.11 0.13 0.14
107 109	105	800M-S KONRAD2	15.82 15.80 32.40	0.0024 0.0022	0.6 2.3	0.6 0.8	32.0 31.2	Ø.0 Ø.0	0.0 0.1	1092.31	28.0 38.5	240 778	0 773	0.28 0.14
201 201 202 203 203	203 233 241 202 204	SOBE WD-270	-14.16 0.21 5.77 -15.15 -0.49	0.0384 5.5000 0.0050 0.0007 8.2397	-7.7 0.3 0.2 -0.2 -1.9	-0.5 0.0 0.2 -0.5	24.0 24.0 32.0 32.0 32.0	0.0 0.0 0.0 0.0	0.1 0.0 0.0 0.0 0.0	1100.83 1100.83 1100.90 1100.90	28.0 0.0 28.0 28.0 28.0	210 0 490 70 30	0 -1 67 0 0	-0.18 0.01 0.06 -0.20 -0.17
203 204 205 205 206 206	208 207 206 204 221 204 208	WERKST. RA-280 850M-S	1.09 0.40 18.73 4.60 15.68 -3.71 6.77	8.2397 64.5973 0.0029 0.0482 0.0041 0.0009	9.6 9.9 1.0 1.0 0.0 11.0	0.0 0.7 0.1 0.6 -0.1	30.0 32.0 32.0 32.0 32.0 32.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	1100.90 1100.92 1100.93 1100.93 1100.92 1100.92	28.0 10.0 28.0 40.0 28.0 28.0 28.0	70 30 290 250 400 90	-6 7 0 51 6	0.30 0.01 0.23 0.23 0.28 -0.34
207 208 209 221 221	222 209 222 107 A223	FUELLORT KONRAD2 RA-280 EK-282	7.95 8.79 15.17 0.30	0.0105 0.0001 0.0001 0.0021 0.0022 0.0009	0.0 0.0 0.5 0.5	0.2 0.1 0.2 0.5	35.6 35.2 35.0 32.0 32.0	Ø. Ø Ø. Ø Ø. Ø Ø. Ø	0.0 0.0 0.0 0.0 0.0	1099.96 1101.55 1101.55 1094.65 1094.65	10.0 60.0 38.5 28.0 25.0	90 70 46 210 180	17 0 30 19 -3 -3	0.04 0.47 0.21 2.83 0.01 0.01
221 222 A223 223 A224 224	A224 109 223 225 224 226 226	EK-283 KONRAD2 EL 5/1 Z-Vent EL 5/1 Z-Vent	0.30 10.52 0.30 0.30 0.30 0.30	0.0001 0.0015 5.5000 0.0016 5.5000	9.9 9.9 9.5 9.5 9.9	0.0 0.3 0.0 0.0 0.0	32.0 34.7 32.0 32.0 32.0 32.0	9.0 9.0 9.0 9.0 9.0	0.0 0.0 0.0 0.0	1097.89 1097.89 1095.01 1096.61 1095.01 1095.26 1089.02	38.5 40.0 40.0 20.0	30 370 400 35	45 -13 -2 -2 53	0.13 0.01 0.00 0.01 0.00 0.01
225 226 232 233 241 300 301	107 201 232 106 310 308	AF 5/2 WD-270 RA-OST	0.60 0.22 0.22 5.82 -13.81	0.0110 0.0036 0.0018 0.0020 0.0140 0.0021	0.0 0.0 0.0 0.1 -2.8 -0.1	0.0 0.0 0.2 -0.5	32.0 30.0 28.0 32.5 22.5	9.99 9.99 9.99	0.0 0.0 0.0 0.0	1088.77 1088.77 1100.95 1092.68 1117.45 1119.26	20.0 28.0 40.0 28.0	480 350 450 200 1380 210	-29 1 0 4 125	0.01 0.01 0.01 0.06 -0.18
301 301 302 - 304 305	306 401 305 302 371	KONRAD1 PAR-STR 1000M-S	-5.14 -6.12 42.45 6.64 4.81	0.0095 0.0093 0.0058 0.0037 0.0024	-0.1 -0.4 0.6 0.3 0.1	-0.2 -0.5 1.1 0.2 0.2	24.0 28.5 29.0 26.0 32.0	0.0 0.0 0.0 0.0	0.0	1119.26 1119.26 1118.35 1118.35 1117.97 1117.97	12.0 38.5 28.0 28.0	90 101 570 360	-102 3	-0.23 0.30 0.20 0.21 0.72
305 306 306 307 307	309 312 308 300 304	1000M-S	5.963 02.834 -3.262 -5.059	44.8934 0.0149 0.0021 0.0013 5.7810	30.5 -0.1 0.0 0.0 39.7	0.1 -0.1 -0.1 -0.2	35.6 21.0 21.0 21.0 21.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1	1117.97 1119.14 1119.14 1119.14 1119.14	28.0 12.0 20.0 28.0 28.0	240 410 150 210 130 310	6	0,03 -0.13 -0.66 -0.42 0.32
308 309	300 209	KONRAD2	-8.37 0.83	0.0021 0.0012	-0.2 0.0	-0.3 0.0	21.0 35.0	Ø. Ø Ø. Ø	0.0	1118.36 1117.54	28.0 38.5	210 130	7 130	-0.13

UHRZEIT: 11.27

ENDLAGERBERGWERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Natuerliche Bewetterung T-Atm.= 32.0 Grd.C (Stabilisierung) datei: DBE.24b

PROGRAMM WETTER
PRUEFSTELLE FUER GRUBENBEWETTERUNG


KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	L	TEUFE	M/MG BZW. P/PG
			CBH/S	KG/M**7	PASCAL	M/S	GRD C	\$	KW	MBAR	H**2	Н	М	
KNOTEN ANFANG 3101 3112 3207 3377 33611 4003 4003 4004 4005 4007 4008 4007 4008 4007 4008 4009 4118 4121 4221 4662 5001	ENDE	NAME WD-SUED RA-SUED BERG 6 KONRADI RA-410N AUFH. 1100M-S WERKST. WD-SUED RA-SUED RA-SUED RA-390 SCHLEUSE RA-410N	ANFANG CBM/S -14.156 -2.459 -2.978 221.9459 22.9718.461 27.318 27.318 27.818 27.818 27.818 27.818 27.818 27.818 27.818 27.818 27.818 27.818 27.818 27.818	RN KG/M**7		ANFG.	TEMP.	KONZ.	KW	ANFANG	2 000000000000000000000000000000000000	140000900090000000000000000000000000000	M	
5000455778999005550005550005550000555000055555555	55540428388871001342 555555555555555555555555555555555555		0.29 8.11 -0.48 -1.64 -2.76 -0.83 -0.83 0.73 -1.30 -1.	0.00034 0.00053 0.0594 0.0307 0.03008 0.0485 0.0485 0.0019	0.0021000000535000 000000000000	0.30012202011105100 -00000 -00000 -000	0000500000005000 3.3336.5.000000005000 22222233332805222	0.000000000000000000000000000000000000		1144.12 1144.12 1143.86 1144.12 1144.12 1144.12 1143.28 1143.28 1143.47 1143.47 1144.91 1144.91	14.0	290 80 310 40 70 160 100 310 70 1230	0032601311226319 - 2111226319	0.57 -0.08 0.52 -0.28 -0.79 -0.14 -0.04 -0.25 -0.27 -0.65 0.17 0.28

UHRZEIT: 11.27

ENDLA PLANU Natue	GERBERGW NGSPHASE rliche B	ERK K O 2: EINLA ewetterun	N R A D GERUNG FELD 5/1, AU g T-Atm.= 32.0 Gr	FFAHRUNG FEL d.C (Stabili	D 5/2 sierung) da	tei: DE	BE. 24b	*****		PROGRAMM PSTELLE F	W E T UER GRU	T E	R EWETTER	UNG
KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR.	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK Anfang	A	L	TEUFE	M/MG BZW. P/PG
			CBH/S	KG/H**7	PASCAL	M/S	GRD C	1	KW	MBAR	M**2	М	М	-
534 539 539 5541 5541 5551 A5553 5610 6111 6443 A6444 6601	A 555555555555555555555555555555555555	AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660 WD-680 ATM	0.67 0.67 1.45 0.089 0.466 0.425 6.181 14.144 30.87 -0.83 31.987 -0.20	0.0033 0.0032 0.00164 0.0104 0.01061 0.0000 0.0216 0.00329 0.00350 0.0083 0.0089 0.00016 1.23022 0.0080	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 1 0.7 1 0.0 0.0	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	33322.00 33322.00 33322.00 33322.00 3222.00 32		000000000000000000000000000000000000000	1138.43 1138.94 1136.523 1136.523 1134.48 1134.23 1145.04 1157.13 1157.12 1145.97 1145.97 1145.97	222 22 22132222 23 22132222 22132222 23	270 260 130 150 170 940 310 10350 160 200 100 200 100 200 200 200 200 200 20	-14 15 16 -42 0 2 33 102 12 18 -40 0 220 22 129	0.285 0.154 0.154 0.154 0.114 0.114 0.114 0.185 0.385 0.385 0.81

JHRZEIT: 8, 3

ENDLAGERBERGWERK KONRAD
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
PRUE
Brand im Zeig 320 nach 205 mit Stabilisierung datei: DBE-bll.2

PROGRAMM WETTER
PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	ANFG.	MITTL. TEMP.	CH4- KONZ.	ESTG.	DRUC1 ANFANG	A	i	TEUIL	M/MG BZW. P/PG
				CBM/S	KG/M**7	PASCAL	M/S	GRD C	*	KW	MBAR	M**2	. <u> </u>	M 	- -
4	5	HGL	Ax-Vent	263.72	-0.0052	-318.1	0.0	30.6	0.0	-83.8	998.51	0.0	0	0	1.01
1 1 2 3 1 0 6 6 1 0 0 7 1 1 0 0 1 2 2 0 0 1 2 2 0 0 3 2 2 0 0 4 5 2 0 0 6 6 2 2 0 0 7 8 2 2 2 2 2 2 2 2 2 2 3 4 1 3 3 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 1 1	3 495533312240487 6 4 1448292733493546671260887	KOKZ ANAL 800 M - S 2 800 M -	Ax-Vent -4.4 SKT V1-STROM TEMP(X) """"" """"" """""" """""""" """""" """"	- 			0.0	30.6						- ::	1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
301 302	401 305	KONRAD1 PAR-STR		138.75 33.02	0.0003 0.0058	6.9	3.6 1.2	20.5 29.0	0.0 0.0	0.9 0.2	1122.79 1118.09	38.5 28.0	101 570	-102	1 . 0 .

UHRZEIT: 8.3

ENDLAGERBURGUERK KONRAD PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1. AUFFAHRUNG FELD 5/2 Brand im Zeig 320 nach 205 mit Stabilielerung dotei: DBF-b11.2 PROGRAMM WETTER
PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	L	11011	M/MG BZW. P/PG
				CBM/S	KG/M**7	PASCAL	M/S	GRD C	%	KW	MBAR	M^*2	M	M	
304 305 305 306 306	302 371 309 312 308	1000M-S 1000M-S		23.08 5.33 28.32 22.38 4.94	0.0037 0.0024 0.1709 0.0149 0.0021	2.0 0.1 135.7 7.7 0.1	0.8 0.2 2.4 1.1 0.2	26.0 32.0 31.5 21.0 21.0	0.0 0.0 0.0 0.0	0.0 0.0 3.8 0.2 0.0	1118.11 1117.65 1117.65 1122.59 1122.59	28.0 28.0 12.0 20.0 28.0	360 240 410 150 210	6	1 0 2 0 6 4 1 1 4 1 0 2
307 307 308 309	300 304 300 209	1000M-S KONRAD2		12.15 8.19 64.38 28.36	0.0013 5.7810 0.0021 0.0012	0.2 399.9 9.1 1.0	0.4 0.6 2.3 0.7	21.0 21.0 21.0 30.9	0.0 0.0 0.0 0.0	0.0 3.3 0.6 0.0	1122.50 1122.50 1121.81	28.0 14.0 28.0 38.5	130 310 210 130	3 7	1 . 0 ? 1 . 0 ? 1 . 0 ? 1 . 1 4
310 311 312	201 371 307	WD-SUED		80.67 17.79 20.34	0.0014 0.0025 0.0030	9.3 0.8 1.3	2.9 0.7 0.8	24.0 32.0 21.0	0.0 0.0 0.0	0.7 0.0	1116.17 1103.84 1117.78 1122.51 1122.51	28.0 25.0 25.0	140 200 240	5 2 0 0	1.02 1.02 1.07
312 320	300	RA-SUED RA-SUED RA-SUED	TEMP(X)	2.04 99.67 100.54 172.37	0.3429 0.0144 0.0001 0.0048	1.5 142.0 1.2 79.4	0.1 3.6 3.6 6.2	21.0 32.0 141.0 232.5	0.0 0.0 0.0 0.0	14.2	1122.51 1117.57 1107.89 1107.83	25.0 28.0 28.0 28.0	310 149 1 50	6 6 Ø	1 . 0 1 1 . 0 1 1 . 0 1
# # # # # # # #	205	RA-SUED RA-SUED	*********	161.20 151.97	0.0048 0.0058	74.5 84.1	5.8	200.5	0.0	11.7 12.4	1105.37 1102.85	28.0 28.0	50 60	22 26	1.01
337 337 361	207 202 337 361	BERG 6		4.87 21.04 25.70	5.7941 0.0027 0.0081 0.0015	134.2 1.2 5.3 0.8	0.5 0.8 1.0 0.9	33.0 32.0 32.0 32.0	Ø . Ø Ø . Ø Ø . Ø Ø . Ø	0.7	1104.78 1104.78 1113.15 1115.27	10.0 28.0 25.0 25.0	150 270 650 120	34	1.22 0.68 0.93 0.90
371 401 401 403	407 501 407	KONRAD1		23.17 57.13 80.65 45.11	0.0318 0.0012 0.0021	107.8 8.2 4.4	4.8 2.1 1.8	22.0 21.5 26.0	0.0 0.0 0.0	6.2	1136.13 1136.13 1134.70 1134.70	12.0 38.5 25.0	300 99 170	9 9 1	1.02 1.01 1.01
403 404 404 405	460 408 503 418	RA-410N AUFH. 1100M-S		9.80 102.15 0.96 87.72	0.0061 0.0052 266.5750 0.0125	0.6 55.6 251.2 98.5	0.3 4.1 0.1 3.5	26.0 26.0 26.5 26.0	0,0 0.0 0.0 0.0	0.0 5.7 0.2 8.6	1134.39 1134.39 1133.32	28.0 25.0 8.0 25.0	600 420 110 1010	64 2 -99 -3	1 . 0 2 1 . 0 2 1 . 0 7 1 . 0 2
405 407 408 408	551 404 405 409	WERKST.		0.029 103.08 87.71 14.51	99999.0000 0.0025 0.0015 0.4321	269.8 27.0 11.7 93.0	0.0 4.1 3.5 0.0	29.0 26.0 26.0 26.0	0.0 0.0 0.0 0.0	0.0 2.8 1.0 1.4	1133.32 1134.78 1133.57 1133.57	8.0 25.0 25.0 0.0	200 120 0	-28 1 1	1 07 1 02 1 07 1 07
409 415 418	304 311 415	WD-SUED		14.53 17.60 1.02	0.7152 0.0108 155.6905	155.0 3.4 167.1	1.2 0.7 0.0	26.0 32.0 26.0	0.0 0.0 0.0	2.3 0.1 0.2	1132,64 1129.76 1132.73	12.0 25.0 28.0	310 870 0	95 10	1 0. 1 0. 1 0.
418 419 421 421	419 421 320 A421	RA-SUED RA-SUED RA-390		87.90 101.24 99.32 2.47	0.0050 0.0129 0.0020 0.0029	38.7 132.0 19.9 0.0	3.5 3.6 3.5 0.1	30,0 32.0 32,0 32.0	0.0 0.0 0.0 0.0	3.4 13.4 2.0 0.0	1132.73 1127.63 1121.53 1121.53	25.0 28.0 28.0 28.0	400 1270 200 290	37 38 30 67	1 . 0 . 1 . 0 1 1 . 0 1 1 . 3 8
A 4 2 1 4 6 0 4 6 2 5 0 1 5 0 1	361 462 302 502 505	SCHLEUSE RA-410N		2.49 9.87 9.90 17.67 8.85	0.0000 3.3816 0.0011 1.2216 4.8760 0.0030	0.0 334.8 0.1 401.9 401.9	0.0 0.4 0.4 1.5 1.1	32.0 26.0 26.0 22.5 22.5	0.0 0.0 0.0 0.0 0.0	0.0 3.3 0.0 7.1 3.6 0.5	1113.15 1126.43 1123.08 1149.16 1149.16	0.0 28.0 28.0 12.0 8.0 20.0	320 110 140 100 130		1,38 1,02 1,02 1,01 1,01
501 502 502 503	563 512 505 504	'RA-NORD		£3.49 14.30 3.49 0.94	0.0004 0.0032 0,0053	9.0 0.1 0.0 0.0	2.7 0.5 6.3 0.1	22.5 23.0 23.0 23.0	0.0 0.0 0.0	0.0 0.0 0.0	1145.01 1145.01 1144.73	28.0 12.0 12.0	40 30 50	- 6 Ø Ø	1 0 1 1 0 . 1 0 . 1 0 . 1
504	510	1200M-S		5.99	0.0594	2.2	.0.5	26.0	0.0	0.0	1144.73	12.0	560	9	1.0.

UHRZEIT: 8.3

ENDLAGERBERGWERK K O N R A U PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Brand im Zelq 320 nach 205 mit Stabilisierung datei: DBE-b11.2 * PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWLTTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ,	ISTG.	DRUCK ANFANG	Α	ı	TEUFE	M/MG BZW. P/PG
			CBM/S	KG/M**7	PASCAL	M/S	GRD C	Ł	KW	MBAR	M**2	M	М	
50077899905500995501028112249991195555567101113555555555555555555555555555555555	42838887109111149119919539114044490 5556555555555555555555555555555555555	1200M-S AUFH. RA-NORD RA-570 AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660	CBM/S 5.028 7.389 1.011 6.017 9.338 5.099 21.676 13.498 22.488 12.935 13.37 16.467 12.031 10.157 11.103	KG/M**7	PASCAL	M / 00000000000000000000000000000000000	GR	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1145.01 1143.02 1143.02 1143.02 1143.02 1144.32 1144.32 1144.32 1144.32 1144.32 1144.32 1144.36 1138.67 1138.67 1138.67 1138.67 1138.67 1138.99 1144.22 1157.97 1157.97 1147.90 1145.49	121454548858055580500000000000000000000000		260 2131-122631-12263122 00 - 1456422 0232112 0554 00 220	1.01.33 1.03.11.03 1.03.22 1.0
A 6 4 4	644	WD-680 ATM ATM	10.15 11.17	1.2302	128.5 0.3	0.0 0.4	32.0 32.0	0.0 0.0	1.3	1147.00	0.0 28.0	.22	0	0 0 0 22

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komp.	Baugr.	Aulgabe	UA	Lid Nr.	Rev
NAAN	инининини	ииииии	NNAAANN	AANNNA	AANN	XAAXX	۱ A A	NNNN	NN
9K	5321		TS			GV	IET	0002	00

омт

N A C H T R A G Nr. 11031890

zu dem Gutachten Nr. 11031490 über die Stabilität der Bewetterung für den Störfall in der Einlagerungsphase Feld 5/1 auf dem Endlagerbergwerk Konrad in Salzgitter

bearbeitet von:

Anlage Nr. 23	Blatt _ 1 _ von _ 20 _
zu:	DBE:
9K/5321/-/TS/-/-	-/GV/LA/0005

Essen, den 01.06.1990

DMT-Gesellschaft für Forschung und Prüfung mbH Institut für Bewetterung und Klimatisierung Prüfstelle <u>für Grubenbewet</u>terung

Blatt 2

01.06.90

Nachtrag Nr. 11031890 zum Gutachten Nr. 11031490 Endlagerbergwerk Konrad

Die Prüfstelle für Grubenbewetterung (PFG) der DMT-Gesellschaft für Forschung und Prüfung mbH hat im Auftrag der Deutschen Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe mbH (DBE) die Stabilität der Bewetterung im Störfall für das Endlagerbergwerk Konrad in Salzgitter beurteilt (Gutachten Nr. 11031490 vom 09.04.1990). Anhand der Vorgaben der DBE wurden hier u.a. Aussagen zu möglichen Auswirkungen von Energieversorgungsausfällen bei lange andauernden hochsommerlichen Tagestemperaturen getroffen. Durch entsprechende Wetternetzberechnungen für den Planungsfall "Einlagerung im Feld 5/1" konnte festgestellt werden, daß die Einlagerungskammern 5/1 bei Ausfall der Energieversorgung und

bei 25 °C Tagestemperatur mit einem Wetterstrom von $0.32~{\rm m}^3{\rm s}^{-1}$ bei 28 °C " " " " " " 0.22 ${\rm m}^3{\rm s}^{-1}$ bei 30 °C " " " " " 0.13 ${\rm m}^3{\rm s}^{-1}$ bei 32 °C " " " " " 0.05 ${\rm m}^3{\rm s}^{-1}$

bewettert werden, wobei bei 32 °C die Wetter in den Einlagerungskammern in der umgekehrten Richtung strömen.

Mit Hilfe eines ursprünglich für den Störfall geplanten Bereitschaftswetterbauwerks im Wetterzweig 106-105 konnte für die Bewetterung der Einlagerungskammern bei 32 °C Tagestemperatur eine zufriedenstellende Lösung gefunden werden (vgl. Anlagen 19 und 20 des o.g. Gutachtens): zusätzlich durchgeführte Wetternetzberechnungen für die Tagestemperatur von 32 °C, in denen zwei andere Bereitschaftswetterbauwerke (in den Wetterzweigen 305-309 und 204-207) zum Einsatz kamen, zeigten, daß auf diese Weise die Situation im Kontrollbereich einigermaßen stabilisiert werden kann; die Bewetterung der Einlagerungskammern konnte insoweit erhalten bleiben, als hier je 0,3 m³s-1 Wetter

Blatt 3

01.06.90

Nachtrag Nr. 11031890 zum Gutachten Nr. 11031490 Endlagerbergwerk Konrad

in der ursprünglichen Richtung – ohne daß zwischenzeitlich eine Wetterumkehr erfolgte – strömen, auch wenn der Austritt der Wetter aus dem Kontrollbereich über den Wetterzweig 203-204 nicht verhindert werden kann, so daß es zu einer Abströmung der Wetter aus den Hilfsräumen (Wetterzweig 205-204) über den Wetterzweig 203-204 in den betrieblichen Bereich kommt (vgl. Anlagen 21 und 22 des o.g. Gutachtens).

Die DBE akzeptierte diese Lösung und beauftragte die PFG, die Bewetterung der Einlagerungskammern im Störfall auf den Mindestwetterstrom von $0.3~{\rm m}^3{\rm s}^{-1}$ zu überprüfen.

Da bei einer Tagestemperatur von 25 °C die Einlagerungskammern noch mit einem Wetterstrom von 0,32 m³s-¹ bewettert werden (vgl. Anlagen 3 und 4 des o.g. Gutachtens), wurden zu diesem Zwecke Wetternetzberechnungen bei Ausfall der Energieversorgung bei 28 °C Tagestemperatur ohne Maßnahmen (Anlage 1) und bei 30 °C " " " (Anlage 2) wiederholt. In diese Berechnungen wurden dann einmal das ursprünglich geplante Bereitschaftswetterbauwerk im Wetterzweig 106-105 (Anlagen 3 und 4), zum anderen die beiden Bereitschaftswetterbauwerke in den Wetterzweigen 305-306 und 204-207 (Anlagen 5 bis 8) eingesetzt.

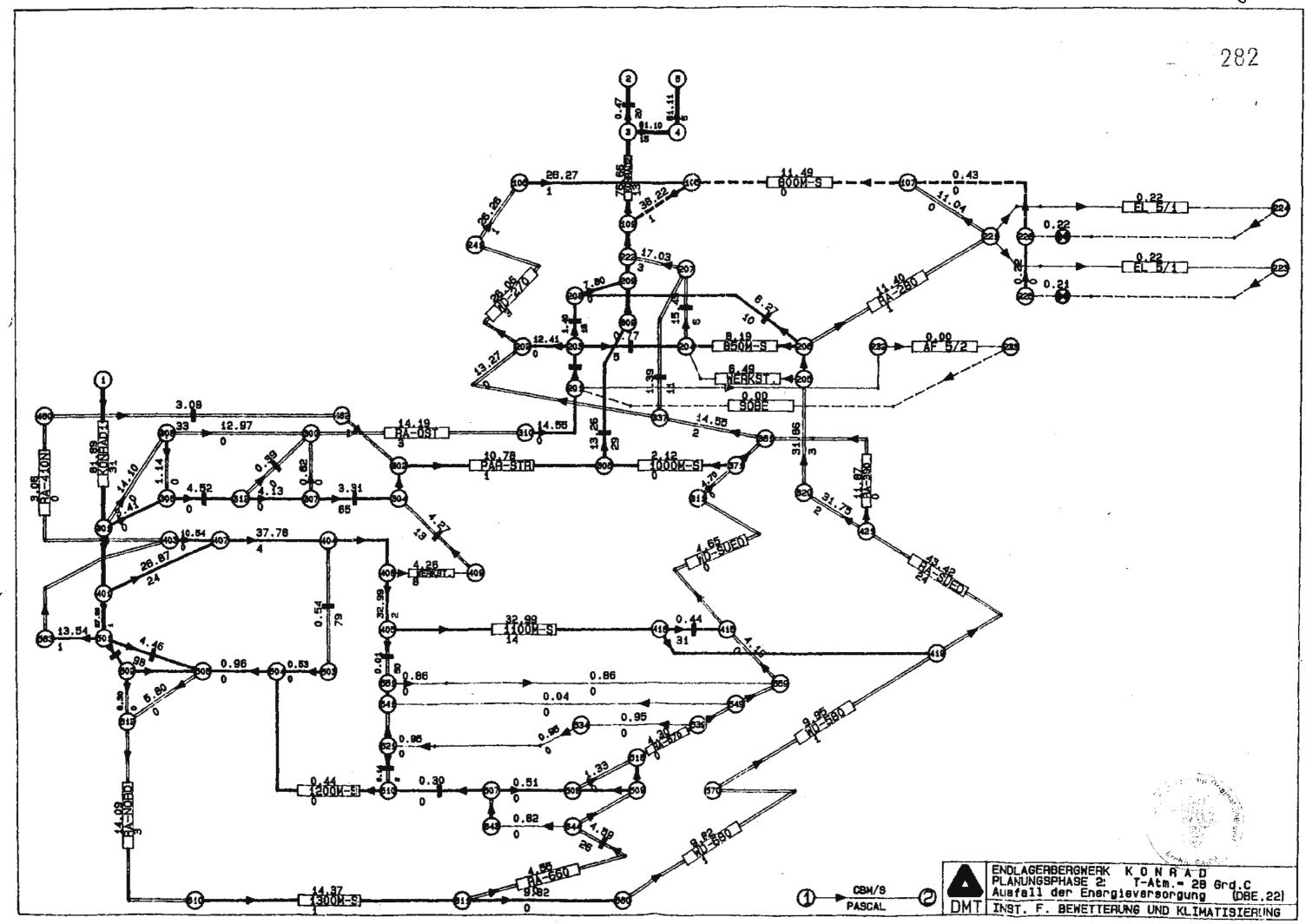
Als Ergebnis kann festgehalten werden, daß das ursprünglich geplante Bereitschaftswetterbauwerk im Zweig 106-105 keine zufriedenstellende Lösung bringt: die Einlagerungskammern werden zwar bei 28 °C Tagestemperatur noch mit je 0,43 m 3 s $^{-1}$ bewettert, bei 30 °C gehen die Wetterströme jedoch auf 0,21 m 3 s $^{-1}$ zurück. Der Einsatz der beiden anderen Bereitschaftswetterbau-

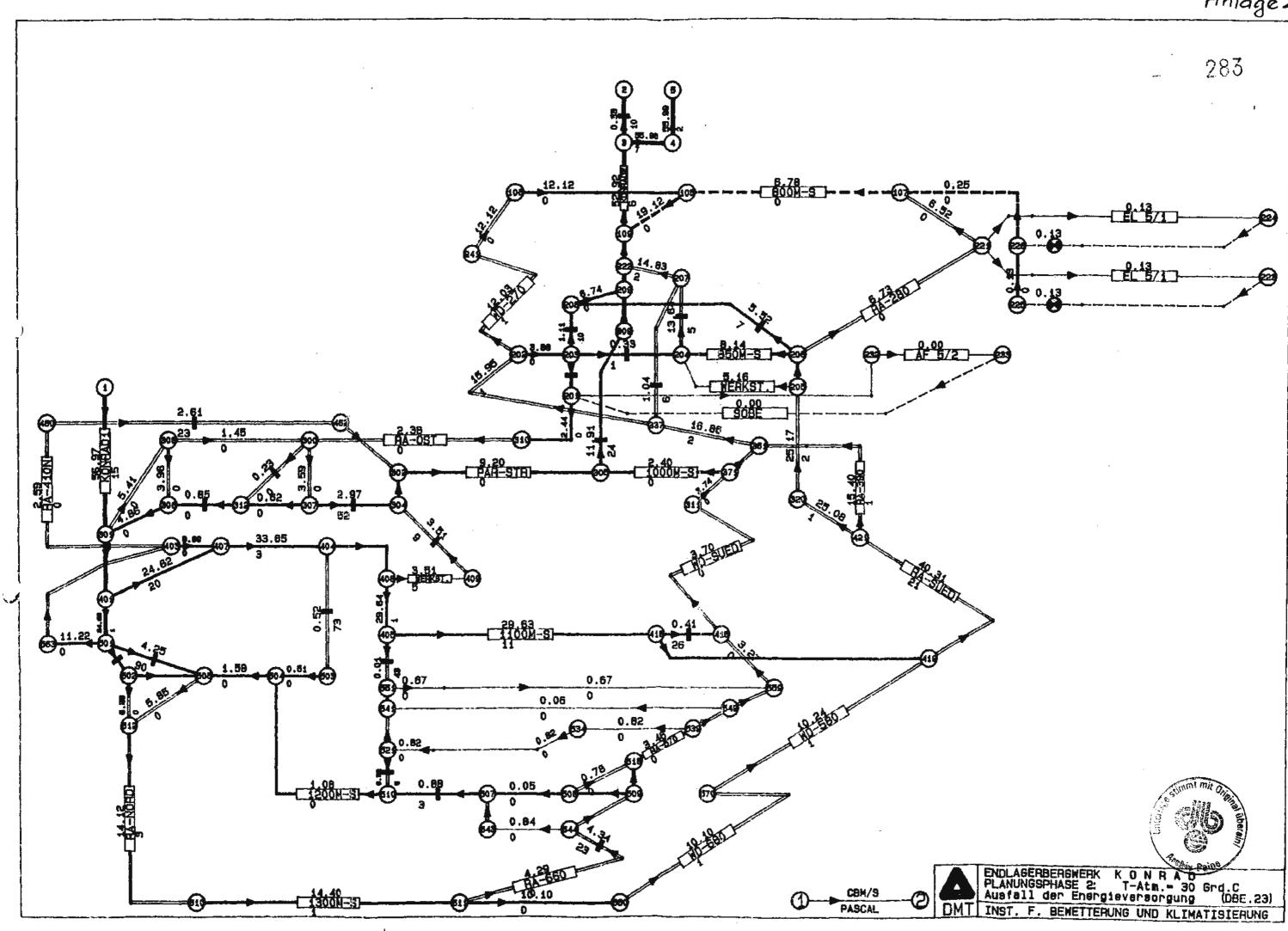
Blatt 4

01.06.90

Nachtrag Nr. 11031890 zum Gutachten Nr. 11031490 Endlagerbergwerk Konrad

werke in den Wetterzweigen 305-309 und 204-207 (Wetternetzschaltpläne in den Anlagen 5 und 7) zeigt, daß die Einlagerungskammern noch mit 0,54 bzw. 0,44 m³s⁻¹ Wetter versorgt werden. Darüber hinaus konnte festgestellt werden, daß es zu dem Übertritt der Wetter aus dem Konrollbereich in den betrieblichen Bereich bei den Tagestemperaturen von 28 bzw. 30 °C noch nicht kommt.


Wie in dem o.g. Gutachten sei auch hier bemerkt, daß die Wetternetzberechnungen, aufbauend auf dem Tagestemperaturverlauf vom 14.08.85 in Verbindung mit dem noch nicht vorhandenen, geplanten Wetternetz für die Einlagerung im Feld 5/1, nur als richtungsweisend gelten können. Für die Einstellung der Wetterbauwerke auf die geplante Wetterdurchlässigkeit sowie für die Überwachung und Steuerung der Bereitschaftswetterbauwerke gilt das im o.g. Gutachten Gesagte.


Essen, den 01.06.1990

8 Anlagen

109

Peine

iniatedu len

KONRAD?

15. 18

0.0012

ENDLAGERBERGWERK KONRAD

0.3

34.5

0 . 4

0.0

0.0

1117.97

PROGRAMM WETTER

1 :0

1 . 0

9 00

18.5

OTEN NFANG	K noten Ende	ZWEIG- NAME		ANFANG		VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	l	TEUFE	M / M B Z U P / F
					KG/M**7	PASCAL	M/3	GRO C	·	KW	MBAR	M**2	M	. M	
310	201 371	MD SILLD		9.47	0.0014	0.1 0.0	0.3	24.0	0.0		1102.09	28.0	140		0.6
312	307			ટું . કું કું	9,3939	9 0	9 . L	* L . i)	(i) , (i)	K 15	11111.33		2.10	0	9
312 320	300 205	RA-SUED		45.28	0.3420 0.0031	1.0 6.4	0.0	1.3	0.0		1118.52	28.0	310		0.
337	207	BERG 6		1.96	5.7941	21.9	0.2	32.0	0.0	0.0	1105.62	10.0	150	4.1	0.
337 361	202 337			-5.00 -3.02	0.0027 0.0081	-0.1 -0.1	-0.2 -0.1	32.0 32.0	0.0 0.0		1105.62 1113.94	28.0 25.0	279 650		Ø.
371	361		:	-0.58	0.0015	0.0	0.0	32.0	0.0		1116.06	25.0	120		ø.
401	407			26.28	0.0318	22.8	2.2	22.0	0.0	0.6	1132.97	12.0	300		9.
401 403	501 407	KONRAD1		25.99	0.0012 0.0021	0.8 0.2	0.7 0.4	28.2 26.0	0.0 0.0		1132.97 1132.36	38.5 25.0	99 170		0.0
403	460	RA-410N		9.73 9.89 35.85 0.53 31.87 9.019	0.0061	0.1	0.1	26.0	0.0	0.0	1132.36	28.0	600	64	0.0
404	408 503	AUFH.		35.85	0.0052	6.8	1.4	26.0	0.0	0.2 0.0	1132.32 1132.32	25.0 8.0	420	- 9 9	0.6
405	418	1100M-S		31.87	266.5750 0.0125	76.4 13.0	0.1 1.3	26.5 26.0	0.0 0.0		1131.85	25.0	1010	-3	0.
405	551			0.019	99999.0000	47.1	0.0	29.0	0.0	0.0	1131.85	8.0	0	-28	0.
107 108	404 405			36.37 31.87	0.0025 0.0015	3.3 1.5	1.5	26. 0 26. 0	0.0 0.0		1132.48 1131.99	25.0 25.0	200		0,
408	409	WERKST.		3.99	0.4321	7.0	0.0	26.0	ŏ.ŏ	0.0	1131.99	0.0	0	0	0.0
409	304 311			3.99	0.7152	11.7	0.3	26.0	0.0	0.0	1131.92	12.0	310	101	9.9
415 418	415	WD-SUED		4.17 0.43	0.0108 155.6905	0.2 28.8	0.2 0.0	32.0 26.0	0.0 0.0	0.0	1130.53 1132.11	25. 0 28. 0	870		0.0
118	419			31.86	0.0050	5.1	1.3	30.0	0.0	0.2	1132.11	25.0	400	37	0.0
419 421	421 320	RA-SUED RA-SUED		42.52	0.0129 0.0020	23.3 4.1	1.5 1.6	32.0 32.0	0.0 0.0	1.0	1127.35 1122.33	28. 0 28. 0	1270	38 30	0.1
421	A421	RA-390		42.52 45.12 -2.41 -2.43 2.91 2.91 8.75	0.0029	0.0	-0.1	32.0	0.0	0.0	1122.33	28.0	290	6 7	ø.
121	361	SCHLEUSE		-2.43	0.0000	0.0	0.0	32.0	0.0		1113.94	0.0	0		9 .
460 462	462 3 0 2	RA-410N		2.91	3.3816 0.0011	29.1 0.0	0.1 0.1	26.0 26.0	0.0 0.0		1124.11 1123.52	28.0 28.0			0.
501	502					95.1	0.7	25.6	0.0	0.8	1145.75	12.0	140	1	0.
501 501	505 563			4.38 12.57	4.8760 0.0030	95.1 0.5	0.5 0.6	25.6 2 5.6	0.0 0.0	0.4 0.0	1145.75 1145.75	8.0 2 0.0	100 130		0. 0.
502	512	RA-NORD		8.34	0.0004	0.0	0.3	23.0	ø. ø		1144.66	28.0	40		ø.
502	505			0.27	0.0032	0.0	0.0	23.0	0.0		1144.66	12.0	30		ø.
503 504	504 510	1200M-S		0.52 -0.78	0.0053 0.0594	0.0 0.0	0.0 -0.1	23.0 26.0	0.0 0.0	0.0 0.0	1144.40	12.0 12.0	5 0 56 0		0.0
505	504	220311 3		-1.30	0.0307	-0.1	0.1	23.5	0.0	0.0	1144.66	12.0	290	2	0.
505 507	512 508			5.88 0.22	0.0008 0.0218	0.0 0.0	0.2 0.0	23.0 28.0	0.0 0.0		1144.66 1143.77	28.0 11.0	80 310		Ø.
507	643		,	-0.85	0.0485	0.0	-0.2	32.0	0.0		1143.77	4.0			9.
508	518			1.05	0.0019	0.0	0.0	32.0	0.0	0.0	1143.77	25.0	70	1.3	Θ,
509 509	508 518			0.83	0.0113	0.0 0.0	0.1	32.0 32.0	9.9		1143.64	14.0	100	1 1 2	Ø.
510	507	1200M-3		-0.62	3.3209	1.5	9.0	28.0	0.0	0.0	1114.01		310		ø.
510	521	AUFH.		-0.18	100.9420	-3.4	0.0	30.0	9.0	0.0	1111.91	3.0	70		0.
512 518	610 539	RA-NORD		14.21	0.0125 0.0019	2.6 0.0	0.5 0.2	25.5 32.0	0.0 0.0		1145.46 1142.10	28. 0 75. 0			Ø,
521	Unfel/so	. AUFH.		9.79	0.0137	9.9		32.0	0.0		1110.70		30		ø

ENDLAGERBERGWERK K O N R A D PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Natuerliche Bewetterung T-Atm.= 28.0 Grd.C (Stabilisierung) datei: DBE.22a

* PROGRAMM WETTER R
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG CBM/S	WIDERSTAND RN KG/M**7	DRUCK- VERBRAUCH PASCAL	W ANFG. M/S	MITTL. TEMP. GRD C	CH4- KONZ.	LSTG. KW	DRUCK Anfang Mbar	A M**2	L	TEUFE M	M/MG BZW. P/PG
534	A521		0.88	0.0033	0.0	0.0	32.0	0.0	9.0	1138.91	25.0	270	-14	0.00
539	534		0.88	0.0032	0.0	0.0	32.0	0.0	0.0	1139.47	75.0	260	4	0.00
539	549		3.90	0.0016	0.9	Ø. 1	3 7 . 0	Ø . Ø	3.0	1139,43	25.0	: ()	i '	9.99
5.4.1	551	AUFH.	0.75	0.0104	3.6	0.1	12.3	0.0	3.3	11 7, 10	: 3)	1.0	1 -	う 、♂♂
541	549	FELD 1	-0.05	0.0166	0.0	0.0	32.0	0.0	0.0	1137.00	20.0	120	- 4	0.00
549	559		2.95	0.0021	0.0	0.1	32.0	0.0	0.0	1137,51	25.0	170	2.2	0.00
551	A551		0.76	0.0000	0.0	0.0	32.0	0.0	0.0	1134.97	9.9	0	9	0.00
A551	559		0.76	0.0216	0.0	0.0	32.0	0.0	0.0	1134.97	20.0	940	2	0.00
559	415	A 11 57 11	3.72	0.0050	0.1	0.1	32.0	0.0	0.0	1134.71	25.0	100	33	0.00
563	403	AUFH.	12.35	0.0329	5.3	1.0	24.5	0.0	0.1	1145.74	12.0	310	102	0.00
57 0 61 0	419	WD-580	10.18	0.0083	0.9	0.3	32.0	0.0	0.0	1142.73	30.0	1000	121	0.00
611	611 A644	1300M-S RA-660	14.48 4.44	0.0036 0.0080	0.8 0.2	0.5 0.2	32.0	0.0 0.0	0.0 0.0	1157.68 1157.67	28.0 28.0	35 0 79 0	85	0.00
611	660	W-000	10.05	0.0009	0.1	0.4	32.0 32.0	0.0	9.0	1157.67	28.0	90	- 4	0.00
643	644		-0.85	0.0016	0.0	0.0	32.0	0.0	0.0	1146.46	28.0	160	a	0.00
, A644	644		4.48	1.2302	2 5.0	0.0	32.0	0.0	0.1	1146.71	0.0	LOB	ă	0.00
644	509		3.63	0.0022	0.0	0.1	32.0	ŏ.ŏ	0.0	1146.46	28.0	220	' 22	0.00
660	570	WD-680	10.04	0.0083	0.9	0.3	32.0	0.0	0.0	1158.19	30.0	1000	120	0.00
i	2	ATM	-0.43	0.0000	0.0	0.0	28.0	0.0	0.0	1000.00	0.0	Ö	- 9	0.00
5	1	ATM	73.50	0.0000	0.0	0.0	28.0	0.0	0.0	1001.59	0.0	Ø	14	0.00

OTEN NFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	ANEG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	A	L	TEUFE	M/M6 BZW.
		inserent ve	CBM/S	KG/MAA7	PASCAL	M/S	GRD C	*	KW	MBAR	M**2	М	М	P/PG
4	5	HGL	50.27 51.18 -0.37 12.15 0.83 11.51 -7.22 0.83 47.51 -7.22	0.0008	1.6	0.0	26.8	0.0	0.1	1001.60	0.0	9	Q	0.00
1	301	KONRADI	51,18	0.0054	11.8	1.3	79,1	0.0	0.6	1000.00		1000	- 1000	0.00
- 4	1	ME Z	-0.30	110 9340	7 . 3	0.0	3. 1	9.9	0	1001 01	9.0	0		9 1. 9
105	140	M YUMUI	30.27	9.3026	5, 1	1.1		0.0	1.3	1301. 6	30.3	,)		3 53
105	109		12.15	0.0009	0.1 5.5	0.4	35.4	0.0	0.0	1092.58	28.0	30	· L	0.00
107	105	GAAN C	11 10	0.0024		0.0	32.0	0.0	0.0	1092.51	28.0	140	- 1	9.00
109	3	RUNDADS	47 51	0.0022	9.3 4.9	0.4	32.0	0.0	0.0	1092.58	29.0 38.5	240 778	773	0.00
201	203	KOHKHUZ	-7 22	0.0384	-2.0	-0.3	24.0	0.0	0.0	1101.21	28.0	210	1 0	0.00
201	233	SOBE	9 21	5.5000	0.3	0.0	24.0	0.0	0.0	1101.21	0.0	410	-1	0.00
202	241	WD-270	0 82	0.0050	0.0	0.0	32.0	0.0	0.0	1101.21	28.0	490	67	0.00
203	202		-9.43	0.0007	-0.1	-0.3	32.0	0.0	0.0	1101.23	28.0	70	ě	0.00
203	204		0.75	8.2397	4.5	8.9	32.0	0.0	0.0	1101.23	28.0	30	ě	0.00
203	208		1.25	8.2397	12.7	0.0	30.0	3.0	0.0	1101.23	28.0	70	-6	0.00
204	207		14.02	0.0251	4.8	1.4	32.0	0.0	0.1	1101.18	10.0	30	ž	0.00
205	206		24.03	0.0029	1.7	0.9	32.0	0.0	0.0	1101.20	28.0	290	9	0.00
205	204	WERKST.	6.02	0.0482	1.7	0.2	32.0	0.0	0.0	1101.20	40.0	250	Ø	0.00
206	221	RA-280	11.10	0.0041	0.5	0.4	32.0	0.0	0.0	1101.18	28.0	400	51	0.00
206	204	850M-S	7.25	0.0009	0.0	0.3	32.0	0.0	0.0	1101.18	28.0	90	9	0.00
206	208		5.69	0.2481	7.8	0.2	32.0	0.0	0.0	1101.18	28.0	90	-6	0.00
207	222		15.49	0.0105	2.4	0.2	35.0	0.0	0.0	1100.27	10.0	90	17	0.00
208	209	FUELLORT	7.02	0.0001	0.0	0.1	35.4	0.0	0.0	1101.85	60.0	70	8	0.00
209	222	KONRAD2	19.68	0.0001	0.0	0.5	34.2	0.0	0.0	1101.85	38.5	46	3.6	0.00
221	107	RA-280	10.75	0.0021	0.2	0.4	32.0	0.0	0.0	1094.91	28.0	210	19	0.00
221	A223	EK-282	0.21	0.0022	0.0	0.0	32.0	0.0	0.0	1094.91	25.0	180	-3	0.00
221	A224	EK-283	0.21	0.0009	0.0	0.0	32.0	0.0	0.0	1094.91	25.0	70	- 3	0.00
222	109	KONRADZ	35.24	0.0001	0.1	0.9	34.2	0.0	0.0	1098.18	38.5	30	45	0.00
223	223	EL 5/1	0.21	0.0015	0.0	0.0	32.0	0.0	0.0	1095.28	40.8	370	-13	0.00
223	225	Z-Vent	0.21	5.5000	0.2	0.0	32.0	0.0	0.0	1096.87	0.0	0	62	0.00
224	224	EL 5/1	0.21 0.24 0.21 0.21 0.21	0.0016	0.0	0.0	32.0	0.0	0.0	1095.28	40.0	400	2	0.00
224	226	Z-Vent	0.21	5.5000	0.2	0.0	32.0	9.0	0.0	1095.52	0.0	9	53	0.00
225	556		0,11	0.0008	0.0	0.0	32.0	0.0	0.0	1089.28	20.0	35	2	0.00
226	107		0.42	0.0110	0.0	9.0	32.0	9.0	0.0	1089.04	20.0	480	-29	0.00
232	201		0.22	0.0036	0.0	0.0	30.0	0.0	0.0	1101.33	28.0	350	1	0.00
233	232 106	AF 5/2 W0-270	0.22 0.83 -7.04	0.0018	0.0	0.0	28.0	0.0	0.0	1101.33	40.0	450	Ø	0.00
300	310	RA-OST	0.83	0.0020	0.0	0.0	32.0	0.0	0.0	1093.00	28.0	200		0.00
301	308	MH-031	1.31	0.0140	0.7	-0.3	22.5	0.0	0.0	1117.86	28.0	210	125	0.00
301	306		-5.45	0.0095	9.3	-0.5	24.0	0.0	0.0	1119.68	12.0	210	- (0.00
301	401	KONRAD1	49.62	0.0003	0.8	1.3	28.1	9.9	0.0	1119.68		101	102	0.00
302	305	PAR-STR	9.05	0.0058	0.5	9.3	29.0	0.0	0.0	1118.64	28.0		3	0.00
304	302	The Sin	9.05	0.0037	0.2	0.2	26.0	0.0	0.0	1118.65	28.0	369	ā	0.00
305	371	1000M-S	-3.16	0.0024	0.0	-0.1	32.0	0.0	0.0	1118.26	28.0	248	19	0.00
305	309	1000M-3	12.52	0.1709	. 6.2	1.6	35.0	9.0	0.3	1118.26	12.0	410	í	0.00
306	312	22.550.5	6.47 -3.16 12.52 -1.34	0.0149	0.8	-0.1	21.0	0.0	9.9	1118.26	20.0	150	ø	0.00
306	308		-4.06	0.0021	0.0	0. i	21.0	0.0	0.0	1119.55	28.0	710	6	0.00
307	300		-4.02	0.0013	0.0	-0.1	21.0	0.0	9.9	1119.55	23.0	130	13	0.00
307	304	1000M-S	2.95	5.7810	51.6	0.2	21.0	0.0	0.2	1119.55		310	3	0.00
308	Untertage of		-2.75	0.0021	0.0	.0.1	21.0	0.9		1118.77	28.9	210	7	9.99
309/	Unter 190	KONRAD2	12.52	0.0012	0.7	0.3	34.4	0.0		1117.87	33.5	130	1.30	0.00

509

510

510

512

518

521

Archiv Peine

N521

518

507

521

610

539

541

8/4

(nie) Tedu lenging)

Samt mit

Unit 5,2,1

1200M-S

RA-NORD

RA-570

AUFH.

AUFH.

ENDLAGERBERGWERK KONRAD

2.64

-0.93

-0.23

14.15

3.37

0.58

0.80

0.0012

3.9209

0.0125

0.0019

0.0187

0.0000

100.9420

0.0

-3.5

--5.3

2.6

0.0

0.0

0.0

0.1

-0.1

0.0

0.5

0.1

28.0

30.0

25.5

32.0

32.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

9.0

1143.45

1143.80

1143.30

1145.25

1141.92

1140.51

1140.51

25.0

14.0

25.0

8.0

0.0

3.0

28.0 1230

100

310

150

30

7 G

12

26

21

29

0.00

0.00

0.00

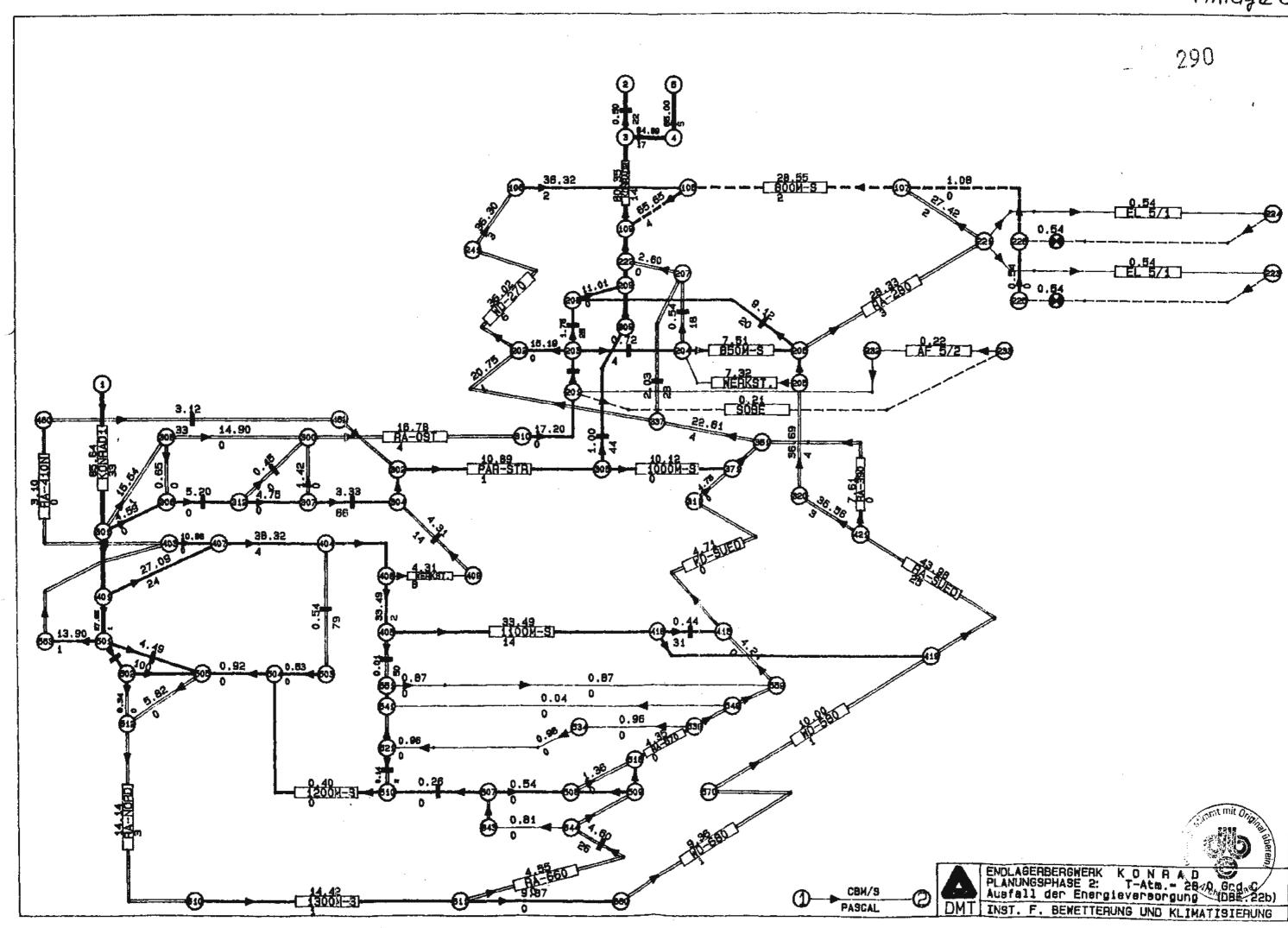
0.00

0.00

0.00

9,99

PROGRAMM WETTER


UHRZEIT: 14. 1

ENDLAGERBERGWERK KONRAD
PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T.Atm. = 30.0 Grd.C (Stabilisierung) datei: DBE.23a

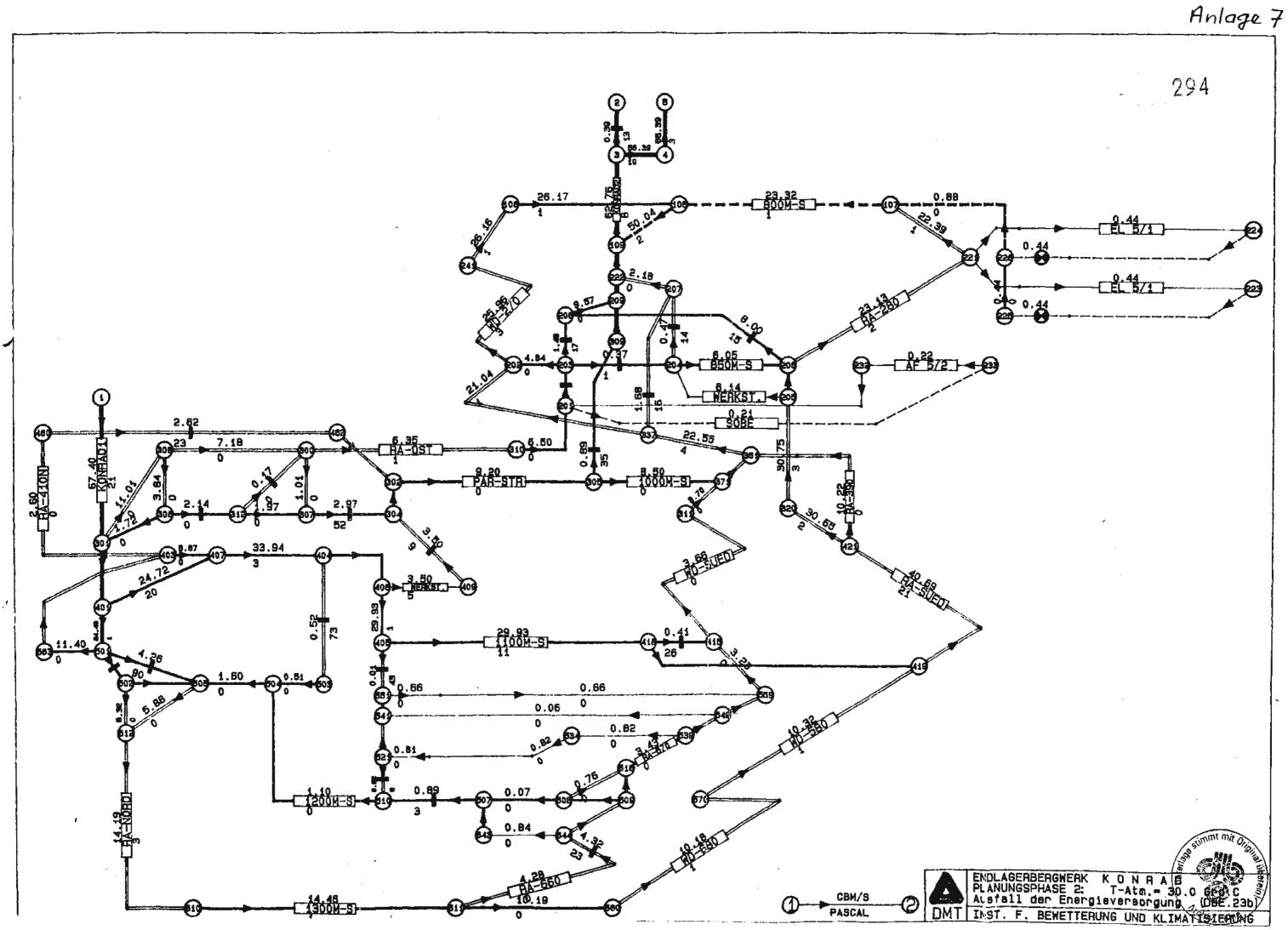
* PROGRAMM WETTER
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG CBM/S	WIDERSTAND RN KG/M**7	DRUCK- VERBRAUCH PASCAL	W ANFG. M/S	MITTL. TEMP. GRD C	CH4- KONZ.	LSTG. KW	DRUCK ANFANG MBAR	A M**2	L M	TEUFE	M/MG BZW. P/PG
534	A521		0.81	0.0033	0.0	0.0	32.0	0.0	0.0	1138.73	25.0	270	- 1 4	0.00
539	534		0.81	0.0032	0.0	0.0	32.0	0.0	0.0	1139.24	25.0	260	. 9	9,99
5 3 9	543		2.57	0.0016	Ø.0	∌.1	32.0	0.0	0.0	1109.24	35.9	() ()	1.5	9 99
5 4 1	551	AUFH.	0.61	0.0104	0.0	0.1	3 . (3)	0.0	9.9	1136.03	11,0	'- 0	1 1	3 33
541	549	FELD 1	0.06	0.0166	0.0	0.0	32.0	0.0	0.0	1136.82	20.0	720	- 4	0.00
549	559		2.51	0.0021	0.0	0.1	32.0	0.0	0.0	1137.32	25.0	170	7.2	0.00
551	A551		0.65	0.0000	0.0	0.0	32.0	0.0	0.0	1134.78	0.0	240	Ŋ	0.00
A551	559		0.65	0.0216	0.0	0.0	32.0	0.0	0.0	1134.78	20.0	940	2	0.00
559	415		3.16	0.0050	0.0	0.1	32.0	0.0	0.0	1134.53	25.0	400	33	0.00
5 63	403	AUFH.	10.85	0.0329	4.1	0.9	24.5	0.0	0.0	1145.48	12.0	310	102	0.00
570	419	WD-580	. 10.30	0.0083	0.9	0.3	32.0	0.0	0.0	1142.52	30.0	1000	121	0.00
610	611	1300M-S		0.0036	0.8	0.5	32.0	0.0	0.0	1157.47	28.0	350	9	0.00
611	A 6 4 4	RA-660	4.25	0.0080	0.1	0.2	32.0	0.0	0.0	1157.46	- 28.0	790	85	0.00
611	660		10.17	0.0009	0.1	0.4	32.0	0.0	0.0	1157.46	28.0	90	4	0.00
643	644		-0.83	0.0016	0.0	0.0	32.0	0.0	0.0	1146.27	28.0	160	Ø	0.00
1 A644	644		4.29	1.2302	23.0	0.0	32.0	0.0	0.1	1146.50	0.0	0	9	0.00
644	509		3.46	0.0022	0.0	0.1	32.0	0.0	0.0	1146.27	28.0	220	22	0.00
66 0	57 0	WD-680	10.16	0.0083	0.9	0.3	32.0	0.0	0.0	1157.98	30.0	1000	120	0.00
1	2	ATM	-0.30	0.0000	0.0	0.0	30.0	0.0	0.0	1000.00	0.0	0	-9	0.00
• 5	1	ATM	50.81	0.0000	0.0	0.0	30.0	0.0	0.0	1001.58	0.0	Ø	14	. 0.00

ENDLAGERBERGWERK K O N R A D PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2 Natuerliche Bewetterung T-Atm.= 28.0 Grd.C (Stabilisierung) datei: DBE.22b

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK Anfang	A	L	TEUFE	M/MG BZW. P/PG
				<u>.</u>	KG/M**7		M/S	GRD C	8	ĸ₩	MBAR	M**2	M	M	
4123567911123334556667899111123334456231011112455667780311112333455666778031111233344562310111124556677803	3 1995533311240876041148229222202020202020202020202020202020202	HGNRAD1 WK ANAL 800M-S KONRAD2 SOBE WD-270 WERKST. RA-280 EK-280 EK-280 EK-283 KONRAD2 ELV5/1 Z-Vent AF-270 RA-05TT KONRAD1 PAR-STR 1000M-S 1000M-S KONRAD2	,	0440952551112992544233120112444444444493395200052525511129925433120112444444444449339520005555555555555555555555555555555	44240077773921191511129150608068001538001053800000000000000000000000000	24 L988994332281652111100600050500006152172254009950 5326311310604652111100060000100000010000000000000	020333016035011120333323000400000100366454341301250	0000700800000000001740000000000000000000		2.9.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	10001.351 10001.351 10001.351 10001.351 100922.453 100922.160 11001.2222 11001.2222 11001.17,7888 11001.17,7888 11001.188 11101.188 11101.188 11101.19944.886 11109.1999 11109 11109 11109 11109 11109 11109 1110	\$10005000000000000000000000000000000000	979409900000000000000000000000000000000	77017700177001770017700177001770017700	-9000000000000000000000000000000000000

* PROGRAMM WETTER
* PRUEFSTELLE FUER GRUBENBEWETTERUNG


* PROGRAMM W E T T E R
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR ANFAN	. WIDERSTAND	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	L	TEUFE	M/MG BZW. P/PG
			CBM/S	KG/M**7	PASCAL	M/S	GRO C	*	κW	MBAR	M**2	M	• м	-
310 311 312 312 320 337 337	201 371 307 100 205 207 202	WD-SUED RA-SUED BERG 6	17.2 4.7 4.7 0.1 36.6 2.0 20.7 22.6	0 0.0014 6 0.0025 0.0030 5 0.3129 9 0.0031	0.4 0.1 3.1 3.1 4.2 23.3 1.2	0.6 0.7 0.2 0.0 1.3 0.2	24.0 32.0 31.0 31.0 32.0 32.0 32.0	0.0 0.0 0.0 0.0 0.0	0.2	1101.97 1118.42 1119.73 1119.73 1118.39 1105.43 1105.43	28.0 75.0 28.0 10.0 28.0	140 200 40 410 310 150 270	1 3 3 4 1 3 4	Ø.00 G.00 O.00 O.00 O.00 O.00 O.00
361 371 401 403 403 404	337 361 407 501 407 460	KONRAD1 RA-410N	22.6 14.9 27.0 27.6 10.8	0.0027 1 0.0081 1 0.0015 9 0.0318 5 0.0012 0.0052 0.0052	4.1 0.3 24.2 0.9 0.3 0.1	0.9 0.6 2.3 0.7 0.4	32.0 32.0 22.0 28.2 26.0 26.0	0.0 0.0 0.0 0.0 0.0	0.1 0.0 0.7 0.0 0.0	1113.79 1115.91 1132.88 1132.88 1132.25 1132.25	25.0 25.0 12.0 38.5 25.0 28.0	650 120 300 99 170 600	67 17 2 99 1 64	0.00 0.00 0.00 0.00 0.00
404 405 405 407 408	408 503 418 551 404 405	AUFH. 1100M-S	27.0 27.6 10.8 3.1 37.7 33.4 0.3 38.3 33.4	9 0.0052 4 266.5750 9 0.0125 19999999.0000 2 0.0025 9 0.0015	7.6 79.4 14.3 50.4 3.7	1.5 0.1 1.3 0.0 1.5	26.0 26.5 26.0 29.0 26.0	0.0 0.0 0.0 0.0 0.0	0.3 0.0 0.5 0.0 0.1	1132.21 1132.21 1131.73 1131.73 1132.38 1131.88	25.0 8.0 25.0 8.0 25.0 25.0	420 110 1010 200 120	-99 -3 -28 1	0.00 0.00 0.00 0.00 0.00
408 409 415 418 418	409 304 311 415 419	WD-SUED	4.3 4.7 0.4	0.7152 1 0.0108 4 155.6905	8.2 13.6 0.2 30.7 5.6	0.0 0.4 0.2 0.0 1.3	26.0 26.0 32.0 26.0 30.0	0.0 0.0 0.0 0.0	0.0 0.1 0.0	1131.88 1131.79 1130.38 1131.97	0.0 12.0 25.0 28.0	310 870 400	101 95 10 37	0.00 0.00 0.00 0.00
419 421 421 6421 460 462	421 320 A421 361 462 302	RA-SUED RA-SUED RA-390 SCHLEUSE RA-410N	36.5 7.6 7.6	8 0.0129 6 0.0020 1 0.0029 7 0.0000 2 3.3816 2 0.0011	24.9 2.7 0.2 0.0 33.4 0.0	1.6 1.3 0.3 0.0 0.1	32.0 32.0 32.0 32.0 26.0 26.0	0.0 0.0 0.0 0.0 0.0	1.1 0.1 0.0 0.0	1127.21 1122.18 1122.18 1113.79 1124.01 1123.67 1145.65	28.0 28.0 28.0 0.0 28.0 28.0	200 290 0 320 110	38 30 67 0 39	0.00 0.00 0.00 0.00 0.00
501 501 501 502 502 503	502 505 563 512 505 504	RA-NORD	8.3 0.4 0.5	4 0.0004 8 0.0032	99.8 99.8 0.6 0.0 0.0	0.7 0.6 0.7 0.3 0.0	25.6 25.6 25.6 23.0 23.0	0.0 0.0 0.0 0.0 0.0	0.9 0.4 0.0 0.0 0.0	1145.65 1145.65 1145.65 1144.53 1144.53	12.0 8.0 20.0 28.0 12.0	140 100 130 40 30 50	1 0 -6 0	0.00 0.00 0.00 0.00 0.00
504 5005 5007 5009 5009 5110 55122 5521	5104 51042 5504183 5504102 5502109 55109 551109 551109	1200M-S 1200M-S AUFH. RA-NORD RA-570 AUFH.	-0.4 -0.9 5.8 0.5 -0.8 1.3 0.8 2.9 -0.2	0 0.0594 0.0307 2 0.0218 1 0.0435 6 0.0019 1 0.0113 8 3.9209 1 0.9420 4 10.9420 4 0.0125 0.00187	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.1 2.6 0.0	0.0 -0.1 0.0 -0.2 0.1 0.1 0.0 0.5 0.5 0.1	23.5023.6032.0032.0032.0032.0032.0032.0032.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00	0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 0 0 0 0	1144.53 1144.53 1143.61 1143.61 1143.61 1143.49 1143.87 1143.87 1143.87 1145.32 1145.32	12.0 12.0 28.0 21.4.0 25.0 14.0 25.0 14.0 28.0 28.0 28.0 0.0	560 290 80 310 40 70 160 100 310 70 1230	-213 -213 -213 -223 -231 -231 -231 -231	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG CBM/S	WIDERSTAND RN KG/M**7	DRUCK- VERBRAUCH PASCAL	W ANFG. M/S	MITTL. TEMP. GRD C	CH4- KONZ.	LSTG.	DRUCK Anfang Mbar	A M**2	L	TEUFE	M/MG BZW. P/PG
555553 65555670 66449 666 666 666 666 666 666 666 666 6	A 523491499153555555555555555555555555555555	AUFH. FELD 1 AUFH. WD-580 1300M-S RA-660 WD-680 ATM	0.96 0.96 3.40 0.46 -0.04 3.36 0.87 4.24 13.00 14.45 9.81 4.78 9.86 -0.50 85.01	0.033 0.0032 0.00164 0.01661 0.00216 0.00216 0.00383 0.00380 0.00380 0.00380 0.00380 0.00380 0.0080 0.0080 0.0080	0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.0 0.1 0.1 0.1 0.1 0.2 0.2 1 0.5 0.2 0.3 0.3 0.3 0.3	00000000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1138.76 1139.27 1139.27 1136.85 1137.36 1134.81 1134.81 1134.56 1145.65 1145.7.53 1146.30 1146.30 1158.05 1000.00	255.00 25	2760 170 170 170 940 310 1350 160 200 100 0	-14 4 15 -4 2 2 3 3 10 12 1 21 85 -4 0 22 120 120 120 120 120 120 120 120 12	9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ENDLAGERBERGWERK KONRAD
PLANUNGSPHAGE 2: EINLAGERUNG FELD 5/1, AUFFAHRUNG FELD 5/2
Natuerliche Bewetterung T-Atm.= 30.0 Grd.C (Stabilisierung) datei: DBE.23b

KNOTEN ANFANG	KNOTEN ENDE	ZWEIG- NAME	ZWEIGTYP '	VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	L	TEUFE	M/MO BZW.
				CBM/S	KG/M**7	PASCAL	M/S	GRD C	ક	ĸ₩	MBAR	M * * 2	M	М	P/P0
4	5 301	HGL KONRADI		66.39 67.40	0.0008	3.2	0.0	27.7	0.0	0.2	1001.61	0.0	1000	1 0 0 0	0.00
2	3	U1 2		0,33	100.0000	13.5	3.0	0.0	0.0	3.3	1001.01	9.0	9	,,	9,00
3	1	M . VHV?		66.39	0.0026	10.3	,' , j	27.7	0.0	3 . ?	1001.71	و د وان	')	ġ.	9.00
105 106	109 105			50.04 26.17	0.0009 0.0014	2.2 0.9	1.8	35.4 32.0	0.0 0.0	0.1 0.0	1092.43	28.0 28.0	90	·-1	0.06
107	105	800M-S		23.32	0.0024	1.3	0.9 0.8	32.0	0.0		1092.32	28.0	240	. 1	0.00
109	3	KONRADZ		62.76	0.0022	8.5	1.6	31.4	0.0	0.5	1092.53	38.5	778	773	0.00
201	203			6.51	0.0384	1.6	0.2	24.0	0.0	0.0	1101.10	28.0	210	0	0.00
201	233	SOBE		0.21	5.5000	0.3	0.0	24.0	0.0		1101.10	0.0	0	- 1	0.00
202 203	241 202	WO-270		25.96	0.0050 0.0007	3.3 0.0	0.9	32.0	0.0 0.0	0.1 0.0	1101.08 1101.08	28.0 28.0	49 0 7 0	67 0	0.00
203	204			4.84 0.37	0.0007 8.2397	1.1	0.2 0.0	32.0 32.0	0.0		1101.08	28.0	30	9	0.00
203	208			1.46	8.2397	17.1	0.1	30.0	0.0	0.0	1101.08	28.0	70	6	0.00
204	207			0.47	64.5973	13.8	0.0	32.0	0.0	0.0	1101.07	10.0	30	7	0.00
205	206			25.09	0.0029	1.8	0.9	32.0	0.0		1101.09	28.0	290	0	0.00
205	204	WERKST.		6.14	0.0482	1.8	0.2	32.0	0.0		1101.09	40.0	250 400	9	0.00
206 206	221 204	RA-280 850M-3		23.13 -6.05	0.0041 0.0009	2.1 0.0	0.8 -0.2	32.0 32.0	0.0 0.0	0.0 0.0	1101.07 1101.07	28.0 28.0	90	5 1	0.00
206	208	33011 3		8.00	0.2481	15.4	0.3	32.0	ø. ø	0.1	1101.07	28.0	90	-6	0.00
207	222			2.18	0.0105	0.0	0.2	35.0	0.0	0.0	1100.07	10.0	90	17	0.00
208	209	FUELLORT		9.57	0.0001	0.0	0.2	35.4	0.0		1101.66	60.0	70	0	0.00
209	222	KONRAD2		10.47	0.0001	0.0	0.3	35.1	0.0		1101.66 1094.78	38.5	46 210	30 19	0.00
221 221	107 A223	RA-280 EK-282		22.39	0.0021 0.0022	1.0	0.8	32.0 32.0	0.0 0.0	0.0 0.0	1094.78	28.0 25.0	180	-3	0.00
221	A224	EK-283		0.44	0.0009	0.0	0.0	32.0	0.0		1094.78	25.0	70	- 3	0.00
222	109	KONRADZ		12.68	0.0001	0.0	0.3	34.7	0.0		1098.00	38.5	30	45	0.00
A 2 2 3	223	EL 5/1		0.44	0.0015	0.0	0.0	32.0	0.0	0.0	1095.15	40.0	370	-13	0.00
223 A224	225 22 4	Z-Vent EL 5/1		0.44 0.44 0.44	5.5000 0.0016	1.0	0.0	32.0	0.0 0.0	0.0 0.0	1096.74 1095.15	0.0 40.0	400	62 -2	0.00
224	226	Z-Vent		0.44	5.5000	1.0	0.0 0.0	32.0 32.0	0.0	0.0	1095.40	0.0	900	53	0.00
225	226	2 70110		0.44	0.0008	0.0	0.0	32.0	ø. ø	0.0	1089.15	20.0	35	2	0.00
226	107			0.88	0.0110	0.0	0.0	32.0	0.0	0.0	1088.91	20.0	480	-29	0.00
232	201			0.22	0.0036	0.0	0.0	30.0	0.0	0.0	1101.22	28.0	350	1	0.00
233 241	232 106	AF 5/2 WD-270		0.22 26.16	0.0018	0.0 1.3	0.0 0.9	28.0 32.0	0.0 0.0	0.0 0.0	1101.22 1092.82	40.0 28.0	450 200	4	0.06
300	310	RA-OST		6.35	0.0140	0.6	0.2	22.5	0.0	0.0	1117.77	28.0		125	0.00
301	308	,,,,		11.01	0.0021	0.3	0.4	22.5	0.0	0.0	1119.58	28.0	210	7	0.00
301	306			-1.72	0.0095	0.0	-0.1	24.0	0.0	0.0	1119.58	12.0	90	. 1	0.00
301	401	KONRAD1		50.31	0.0003	0.9	1.3	28.1	0.0	0.0	1119.58	38.5	101	-102	0.00
302 304	305 302	PAR-STR		9.2 0 6.57	0.0053 0.0037	0.5 0.2	0.3	29.0 26.0	0.0 0.0	0.0	1118.54 1118.54	28.0 28.0	57 0 36 0	3	0.00
305	371	1000M-S		8.50	0.0024	0.2	0.3	32.0	0.0		1118.16	28.0	240	19	0.00
305	309	1000M-S		8.50 0.89	44.8934	35.1	9.1	35.0	0.0	0.0	1118.16	12.0	410	i	0.00
306	312			2.14	0.0149	0.1	0.1	21.0	0.0	0.0	1119.46	20.0	150	Ø	0.00
306	308			-3.84	0.0021	0.0	- 0.1	21.0	0.0		1119.46	28'. 0	210	. 6	0.00
307 307	300 304	1000M-S		-1.01 2.97	0.0013 5.7810	0.0 52.4	0.0 0.2	21.0	0.0 0.0	0.0 0.0	1119.46 1119.46	28.0	130	13	0.00
308	Unite //3/20	100011-3		7.18	0.0021	0.1	0.3	21.0	0.0		1113.68		210	i	0.00
109	110.709	KONRAD2		0.89	0.0012	0.0	0.0	34.4	0.0		1117.63	38.5	1 (0	130	0.00

* PROGRAMM WETTER
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

ENDLAGERBERGWERK	KONRAD		
PLANUNGSPHASE 2:	EINLAGERUNG FELD 5/	1. AUFFAHRUNG FELD 5/2	
Natuerliche Bewe	tterung T-Atm. = 30	.0 Grd.C (Stabilisierung)	datel: DBE.23b

* PROGRAMM WETTER
* PRUEFSTELLE FUER GRUBENBEWETTERUNG

KNOTEN ANFAN		ZWEIG- NAME	ZWEIGTYP VOL-STR. ANFANG	WIDERSTAND RN	DRUCK- VERBRAUCH	W ANFG.	MITTL. TEMP.	CH4- KONZ.	LSTG.	DRUCK ANFANG	Α	L	TEUFE	M/MG BZW. P/PG
			CBM/S	KG/M**7	PASCAL	M/S	GRO C	*	KW	MBAR	M**2	M	М	-
316			6.50	0.0014	0.1	0.2	24.0	0.0	0.0	1101.73	28.0	140	5	0.00
311 312		MD-SUFD	3.70 1.97	0.0025 0.0030	0.0 0.0	Ø.1 ∀.1	32.0 21.0	0.0 0.0	0.0 0.0	1118.28 1119.46	25.0 25.0	799	^ Ø ⊍	0.00
312	300		0.17	0.3429	0.0	0.0	.11.0	0.0	9.3	1119.46	.: S - 3	ر 1 د	13	ர செ
320 337		RASUED BERG 6	30.75 1.68	0.0031 5.7941	3.0 16.1	1.1 0.2	32.0 32.0	0.0 0.0	0.1 0.0	1118.26 1105.29	28.0 10.0	310 150	138 41	0.00 0.00
337	202	DENG 0	21.04	0.0027	1.2	0.2	32.0	0.0	0.0	1105.29	28.0	270	34	0.00
361			22.55	0.0081	4.1	0.9	32.0	0.0	0.1	1113.65	25.0	650		0.00
371 401			12.23 24.72	0.0015 0.0318	0.2 20.1	0.5 2.1	32.0 22.0	0.0 0.0	0.0 0.5	1115.78 1132.60	25.0 12.0	120 300		0.00
401	501	KONRAD1	24.48	0.0012	0.7	0.6	27.9	0.0	0.0	1132.60	38.5	99	9 9	0.00
403 403		RA-410N	8.87 2.60	0.0021 0.0061	0.2 0.0	0.4 0.1	26.0 26.0	0.0 0.0	0.0	1132.01 1132.01	25.0 28.0	170 600		0.00
404	1 408		33.42	0.0052	5.9	1.3	26.0	0.0	0.2	1131.98	.25.0	420	2	0.00
404		AUFH. 1100M-S	0.52 29.93	266.5750 0.0125	73.1 11.4	0.1	26.5	0.0	0.0	1131.98 1131.52	8.0 25.0	110	-99 -3	0.00
4 4 9 5	5 551	110011-3	0.019	99999.0000	43.1	1.2	26.0 29.0	0.0 0.0	0.3 0.0	1131.52	8.0	1010	-28	0.00 0.00
407			33.94	0.0025	2.9	1.4	26.0	0.0	0.1	1132.14	25.0	200	1	0.00
408 408		WERKST.	29.93 3.50	0.0015 0.4321	1.4 5.4	1.2 0.0	26.0 26.0	0.0 0.0	0.0 0.0	1131.66 1131.66	25.0 0.0	120	1 0	0.00 0.00
409	304		3.50	0.7152	9.0	0.3	26.0	0.0	0.0	1131.61	12.0	310		0.00
415 418		WD-SUED	3.66 0.41	0.0108 155.6905	0.1 26.3	0.1	32.0 26.0	0.0 0.0	0.0 0.0	1130.24 1131.79	25.0 28.0	87 0	95 1 0	0.00 0.00
418	3 419		29.91	0.0050	4.5	1.2	30.0	0.0	0.1	1131.79	25.0	400	37	0.00
419 421		RA-SUED RA-SUED		0.0129 0.0020	21.3 1.9	1.5	32.0 32.0	0.0 0.0	0.9	1127.04	28.0 28.0	1270	38 30	0.00 0.00
421	A421	RA-390	10.22	0.0029	0.3	0.4	32.0	0.0	0.0	1122.04	28.0	290	67	0.00
A 4 2 1 4 6 0		SCHLEUSE RA-410N		0.0000 3.3816	0.0 23.4	0.0 0.1	32.0 26.0	0.0 0.0	0.0 0.1	1113.65 1123.77	0.0 28.0	9 320		0.00 0.00
462	302	KA TION	2.62	0.0011	0.0	0.1	26.0	0.0	0.0	1123.53	28.0	110		0.00
501 501			8.52 4.26	1.2216 4.8760	90.3	0.7	25.4	0.0	0.8	1145.39	12.0	140		0.00
501	563		11.40	0.0030	9 0.3 0.4	0.5 0.6	25.4 25.4	0.0	0.4 0.0	1145.39 1145.39	8.0 2 0.0	100 130	1 0	0.00
502		RA-NORD		0.0004	0.0	0.3	23.0	0.0	0.0	1144.35	28. 0	40	-6	0.00
502 503			0.07 0.51	0.0032 0.0053	0.0 0.0	0.0	23.0 23.0	0.0	0.0 0.0	1144.35 1144.09	12.0	3 0 5 0	`0 0	0.00 0.00
504	510	1200M-S	-1.10	0.0594	-0.1	-0.1	26.0	0.0	0.0	1144.09	12.0	560	3	0.00
· 5 0 5			-1.60 5.88	0.0307 0.0008	$-0.1 \\ 0.0$	-0.1 0.2	23.5 23.0	0.0 0.0	0.0	1144.35 1144.35	12.0 28.0	29 0 8 0		0.00 0.00
507	508		0.07	0.0218	0.0	0.0	28.0	0.0	0.0	1143.47	14.0	310	0	0.00
507 508			-0.84 0.76	0.0485 0.0019	0.0 0.0	-0.2 0.0	32.0 32.0	0.0 0.0	0.0 0.0	1143.47 1143.47	4.0 25.0	4 0 7 0		0.00
509			0.33	0.0113	0.0	0.0	32.0	0.0	0.0	1143.47	14.0	160		0.00
509		12008 0	2.66	0.0012	0.0	0.1	32.0	0.0	0.0	1143.34	25.0	100		0.00
516 516		1200M-S AUFH.	-0.89 -0.22	3.9209 100.9420	-3.2 -5.1	$-0.1 \\ 0.0$	28.0 30.0	0.0 0.0	0.0	1143.70	14.0	310 70	26	0.00
512	610	RA-NORD	14.19	0.0125	2.6	0.5	25.5	0.0	0.0	1145.14	28.0	1230	- 9 3	0.00
518 521		RA-570 Aufh.	3.43 0.59	0.0019 0.0187	0.0 0.0	$0.1 \\ 0.1$	32.0 32.0	0.0 0.0	0,0 0,0	1141.81	25.0 8.0	150		0.00
A521			0.81	0.0000	0.9	0.0	32.0	0.0		1140.40	0.0	õ	Ä	0.00

ENDLAGERBERGWERK KONRAD

ATM

PLANUNGSPHASE 2: EINLAGERUNG FELD 5/1. AUFFAHRUNG FELD 5/2

Natuerliche Bewetterung T-Atm.= 30.0 Grd.C (Stabilisierung) datei: DBE.23b

66.91

0.0000

Anlaga 8

KNOTEN KNOTEN ZWEIG- ZWEIGTYP VOL-STR. WIDERSTAND DRUCK-W MITTL. C114-LSTG. DRUCK L TEUFE M/MG ANFANG ENDE NAME ANFANG RN VERBRAUCH ANFG. TEMP. KONZ. ANFANG BZW. P/PG KG/M**7 CBM/S PASCAL M/S GRD C ΚW MBAR 534 A521 0.82 0.0033 0.0 0.0 32.0 0.0 0.0 1138.62 25.0 270 -14 0.00 539 534 0.00 0.82 0.0032 0.0 0.0 32.0 0.0 0.0 1139.13 25.0 260 4 549 1139.13 539 2.62 0.0016 0.0 0.1 32.0 0.0 0.0 25.0 130 15 0.00 541 651 AUFII. 5.0 0.65 9.0101 0.0 0 1 37.0 7 7 0.0 1136.71 3 0 15 0.00 7 . 0 541 549 FELO 1 3.0166 22.9 3.3 1136.71 10 0 -0.05 3.9 9.9 91.9 -1 A 0.0021 549 559 32.0 170 2.56 0.0 0.1 0.0 0.0 113/.22 25.0 0.00 551 A551 0.66 0.0000 0.0 0.0 32.0 0.0 0.0 1134.67 0.0 0.00 559 A551 0.0216 940 0.66 0.0 0.0 32.0 0.0 0.0 1134.67 20.0 0.00 0.1 559 415 0.0050 0.1 32.0 0.0 400 33 3.23 0.0 1134.42 25.0 0.00 AUFH. 563 403 0.0329 24.5 0.0 11.22 4.4 0..9 0.0 1145.38 12.0 310 102 0.00 570 419 WD-580 0.0083 10.32 0.9 0.3 32.0 0.0 1142.42 30.0 1000 121 0.00 610 611 1300M-S 1157.36 0.0036 0.8 32.0 0.0 28.0 14.46 0.5 0.0 350 0.00 611 A644 RA-660 0.0080 4.28 0.2 0.2 32.0 0.0 0.0 1157.36 28.0 790 85 0.00 611 660 10.19 0.0009 0.1 32.0 0.0 1157.36 28.0 90 0.4 0.00 643 644 -0.84 0.0016 32.0 0.0 0.0 1146.16 28.0 160 0.0 0.0 0.00 A644 644 4.32 1.2302 23.3 0.0 32.0 0.0 0.1 1146.40 0.0 0 0 0.00 644 509 3.48 0.0022 0.0 0.1 32.0 0.0 0.0 1146.16 23.0 220 22 0.00 WD-680 660 570 10.18 0.0083 0.9 32.0 0.0 1157.87 30.0 1000 0.3 0.0 120 0.00 0.0000 2 ATM -0.390.0 0.0 30.0 0.0 0.0 1000.00 0.0 0 - 9 0.00

0.0

0.0

30.0

0.0

0.0

1001.58

PROGRAMM WETTER

* PRUEFSTELLE FUER GRUBENBEWETTERUNG

0.0

14

0.00