# **BfS** Bundesamt für Strahlenschutz DECKBLATT PSP-Element Obj. Kenn. Projekt Aufgabe Lid. Nr. HAAH инииниини инииии XXAAX A A инии N N EU 437 9K 35215,35 R8 0020 00 Tital der Unterlage: Endløger Konrad, Schachtverfüllung/Alte Bohrungen, Seite: Bericht Teil E, Nachweis der Dichtigkeit alter Ι. Bohrungen Stand: 28.06.91 Ersteller: Textnummer: Stempelfold:

Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Dritten zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zustimmung des BfS.

# **Revisionsblatt**

**BfS** 

|        | Projekt | PSP-Element | Obj. Kenn. | Aufgabe | ·UA | Lfd. Nr.    | Rev. |
|--------|---------|-------------|------------|---------|-----|-------------|------|
|        | NAAN    | инининиии   | ининии     | XAAXX   | A A | <b>NNNN</b> | ии   |
|        |         |             |            |         |     |             |      |
| EU 437 | 9K      | 35215.35    |            | GH      | RB  | 0020        | 00   |

Titel der Unterlage:

Endlager Konrad, Schachtverfüllung/Alte Bohrungen, Bericht Teil E, Nachweis der Dichtigkeit alter

Bohrungen

Seite:

II.

Stand: 28.06.91

| Rev. | Revisionsst.<br>Datum | verant.<br>Stelle | Gegenzeichn.<br>Name | rev.<br>Seite | Kat.<br>*) | Erläuterung der Rev | ision |
|------|-----------------------|-------------------|----------------------|---------------|------------|---------------------|-------|
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   | ,                    |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |
|      |                       |                   |                      |               |            |                     |       |

<sup>\*)</sup> Kategorie R = redaktionelle Korrektur Kategorie V = verdeutlichende Verbesserung Kategorie S = substantielle Änderung Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden.



## Endlager Konrad Schachtverfüllung / Alte Bohrungen

Bericht Teil E Nachweis der Dichtigkeit alter Bohrungen

Text, Abbildungen und Tabellen

Aachen, den 28.06.1991

Der Bericht wurde im Auftrag des Bundesamtes für Strahlenschutz (BfS) erstellt. Das BfS behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit Zustimmung des BfS zitiert, ganz oder teilweise vervielfältigt bzw. Dritten zugänglich gemacht werden.

| Projekt | PSP-Element | Obj. Kenn. | Funktion | Komp.  | Saugr. | Autgabe | UA | Lid, Nr. | Rev. |
|---------|-------------|------------|----------|--------|--------|---------|----|----------|------|
|         | иииииииии   | ининии     | NNAAANN  | AANNNA | AANN   | XAAXX   | АА | NNNN     | NN   |
| 91      | 35215       |            | YZZ      | RB     |        | GH      | BZ | 2000 ₹   |      |

#### Zusammenfassung

Im Modellgebiet Konrad existieren aus früherer Explorationstätigkeit eine Reihe alter Tiefbohrungen, die die Barriere Unterkreide
durchstoßen und daher als mögliche Ausbreitungspfade für den beschleunigten Transport radionuklidbelasteter Tiefenwässer aus dem
Endlagerbereich in das oberflächennahe Grundwasser angesehen werden. Die alten Bohrungen wurden entsprechend den bergbehördlichen
Verordnungen nach Beendigung der Bohrarbeiten verfüllt. Im Rahmen
des Genehmigungsverfahrens für das Endlager Konrad sind für die
verfüllten alten Bohrungen quantitative Nachweise der Dichtigkeit
zu führen.

Anhand der geologischen und hydrogeologischen Verhältnisse sowie auf der Grundlage von Modellrechnungen zur Grundwasserbewegung und zur Radionuklidausbreitung läßt sich die Anzahl der zu untersuchenden Bohrungen auf die 25 sog. relevanten alten Bohrungen begrenzen. Unter Verwendung der vorhandenen Akten wird der Zustand der relevanten Bohrungen am Ende der Bohr- und Verfüllarbeiten dargestellt. Die bereits während der Bohrarbeiten eingetretenen Veränderungen der Bohrlochquerschnitte, i.a. Auskesselungen, werden anhand einiger vorhandener Kalibermessungen allgemein abgeschätzt. Die Verfüllung der alten Bohrungen besteht aus stehengelassener Dickspülung, aus Zementationen sowie aus sonstigen Feststoffverfüllungen (Bohrklein, Gesteinsschotter, Kies und Sand). In einem Teil der Bohrungen ist abschnittsweise Verrohrung verblieben.

Für die Nachweisführung ist der Zustand der Bohrungen in der Nachbetriebsphase des Endlagers maßgeblich. Aus hydraulischen Betrachtungen läßt sich ableiten, daß erst der Zeitraum ab tausend Jahren nach Beendigung der Einlagerung von Bedeutung ist. Es wird daher untersucht, wie sich die Verfüllmaterialien im Verlaufe langer Zeiträume verhalten und welche Durchlässigkeiten sie auf Dauer besitzen. Weiterhin wird die Beständigkeit der verbliebenen Verrohrungen betrachtet.

Im Bereich der Unterkreide sind Bohrlöcher, die nicht durch eine Füllung oder Verrohrung gestützt werden, nicht über längere

Zeiträume standsicher. Nachbrechendes, zerfallendes und sedimentierendes Gestein führt zu einer Selbstverfüllung der Bohrlöcher im Bereich der Unterkreideschichten.

Weiterhin können sich entspannungsbedingt im an das Bohrloch angrenzenden Gebirge Zonen mit gegenüber dem ungestörten Gebirge erhöhter Wasserdurchlässigkeit ausbilden. Die Durchlässigkeit und die Größe dieser sog. Auflockerungszonen werden für den Bereich der Unterkreide mit Hilfe eines empirischen Ansatzes rechnerisch abgeschätzt.

Auf der Grundlage der Ergebnisse der vorstehend aufgeführten Untersuchungen wird der Zustand der relevanten alten Bohrungen in der Nachbetriebsphase des Endlagers ermittelt. Dabei werden jeweils drei Fälle berücksichtigt, die sich aus unterschiedlichen Annahmen zum Langzeitverhalten der Zementationen ergeben. Anschließend werden für diese Fälle die Transmissivitäten der Bohrungen im Bereich der Unterkreide sowie in den Bohrlochabschnitten darunter und darüber ermittelt. Die Transmissivitäten stellen die Eingangswerte für Berechnungen zur Grundwasserbewegung und zu Radionuklidausbreitung unter Berücksichtigung der alten Tiefbohrungen dar. In diesen Berechnungen, die von der durchgeführt werden, ist nachzuweisen, daß die Radionuklidkonzentrationen im oberflächennahen Grundwasser vorgegebene Grenzwerte nicht überschreiten.

Der Vergleich der im vorliegenden Bericht ermittelten Transmissivitäten mit den Annahmen bereits von durchgeführter Berechnungen läßt den Schluß zu, daß die hinsichtlich der Dichtigkeit gestellten Anforderungen von den Bohrungen erfüllt werden. Die Überprüfung dieser Bewertung ist Teil der Arbeiten von

.

| <u>Inhalt</u>                                                                                                   |                            | <u>Seite</u>                 |
|-----------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|
| Zusammenfassung                                                                                                 |                            |                              |
| 1. Einleitung                                                                                                   |                            | 1 - 1                        |
| 2. Nachweiskonzept                                                                                              |                            | 2 - 1                        |
| 3. Relevante alte Bohrungen                                                                                     |                            | 3 - 1                        |
| 4. Planmäßiger Zustand der Bohru<br>Verfüllarbeiten                                                             | ngen am Ende der Bohr- und | 4 - 1                        |
| 5. Veränderungen der Bohrlochque<br>Bohrarbeiten                                                                | erschnitte während der     | 5 - 1                        |
| 6. Beständigkeit der verbliebene                                                                                | n Bohrlochverrohrungen     | 6 - 1                        |
| 7. Beständigkeit und Durchlässig füllungen                                                                      | keit der Zementver-        | 7 - 1                        |
| 8. Sedimentation der Dickspülung der Spülungssedimente                                                          | en und Durchlässigkeit     | 8 - 1                        |
| 9. Sonstige eingebrachte Bohrloo                                                                                | hverfüllungen              | 9 - 1                        |
| 10. Selbstverfüllung der Bohrlöc<br>Unterkreideschichten                                                        | her im Bereich der         | 10-1                         |
| 11. Auflockerungszone im bohrloch 11.1 Vorgehensweise 11.2 Mechanische Berechnunge 11.3 Ableitung hydraulischer | n nach der FE-Methode      | 11-1<br>11-1<br>11-2<br>11-6 |
| 12. Zustand der Bohrungen in der Endlagers Konrad                                                               | Nachbetriebsphase des      | 12-1                         |

| 13. | Transmissivitäten der Bohrungen einschließlich der |      |
|-----|----------------------------------------------------|------|
|     | Auflockerungszonen in der Nachbetriebsphase des    |      |
|     | Endlagers Konrad                                   | 13-1 |
|     |                                                    |      |
| 14. | Vergleich der ermittelten Transmissivitäten mit    |      |
|     | den Annahmen durchgeführter Grundwasserbewegungs-  |      |
|     | und Radionuklidausbreitungsrechnungen              | 14-1 |
|     |                                                    |      |
| 15. | Schlußfolgerungen im Hinblick auf den Nachweis der |      |
|     | Dichtigkeit der alten Bohrungen                    | 15-1 |
|     |                                                    |      |
|     |                                                    |      |

Literatur

## Abbildungen und Tabellen

|      | E-3.1  | Lageplan                                       |
|------|--------|------------------------------------------------|
| Abb. | E-3.2  | Geologisches Profil 2 (ESE-WNW)                |
| Abb. | E-3.3  | Geologisches Profil 6 (NNE-SSW)                |
|      |        |                                                |
| Abb. | E-4.1  | Legende zu den Bohrlochbildern                 |
|      |        | Zustand am Ende der Bohr- und Verfüllarbeiten  |
| Abb. | E-4.2  | Bohrung ALVESSE 1                              |
| Abb. | E-4.3  | Bohrung BLECKENSTEDT 1                         |
| Abb. | E-4.4  | Bohrung BLECKENSTEDT 2                         |
| Abb. | E-4.5  | Bohrung BLECKENSTEDT 3                         |
| Abb. | E-4.6  | Bohrung BLECKENSTEDT 4                         |
| Abb. | E-4.7  | Bohrung BROISTEDT 33                           |
| Abb. | E-4.8  | Bohrung BROISTEDT 34                           |
| Abb. | E-4.9  | Bohrung DENSTORF 1                             |
| Abb. | E-4.10 | Bohrung GLEIDINGEN 1                           |
| Abb. | E-4.11 | Bohrung HALLENDORF 1                           |
| Abb. | E-4.12 | Bohrung HÜTTENBERG 1                           |
| Abb. | E-4.13 | Bohrung KONRAD 101                             |
| Abb. | E-4.14 | Bohrung SAUINGEN 1                             |
| Abb. | E-4.15 | Bohrung SAUINGEN 2                             |
| Abb. | E-4.16 | Bohrung SONNENBERG 1                           |
| Abb. | E-4.17 | Bohrung SONNENBERG 2                           |
| Abb. | E-4.18 | Bohrung SONNENBERG 3                           |
| Abb. | E-4.19 | Bohrung SONNENBERG 4                           |
| Abb. | E-4.20 | Bohrung ÜFINGEN 1                              |
| Abb. | E-4.21 | Bohrung ÜFINGEN 2                              |
| Abb. | E-4.22 | Bohrung VECHELDE 2                             |
| Abb. | E-4.23 | Bohrung VECHELDE 2a                            |
| Abb. | E-4.24 | Bohrung VECHELDE 3                             |
| Abb. | E-4.25 | Bohrung VECHELDE 4                             |
| Abb. | E-4.26 | Bohrung WEDTLENSTEDT 1                         |
| Abb. | E-4.27 | Bohrung WIERTHE 1                              |
|      |        | -                                              |
| Abb. | E-5.1  | Auswertung der Kalibermessungen in den Bohrun- |
|      |        | gen Konrad 101, Bleckenstedt 4 und Vechelde 3  |
| Abb. | E-5.2  | Annahmen für die mittleren Bohrlocherweiterun- |
|      |        | gen während der Bohrarbeiten                   |
|      |        | -                                              |

| Abb. E-8.1  | Sedimentation und Durchlässigkeit von Dickspü-          |
|-------------|---------------------------------------------------------|
|             | lungen; Versuchsergebnisse (Einzelwerte)                |
| Abb. E-8.2  | Sedimentation und Durchlässigkeit von Dickspü-          |
|             | lungen; Versuchsergebnisse (statistische Aus-           |
|             | wertung)                                                |
| Abb. E-8.3  | Sedimentationsanteil, Spülungs- und Sediment-           |
|             | dichte (Zusammenhänge)                                  |
| Abb. E-8.4  | Dickspülungen und Sedimentationsanteile bei             |
|             | den alten Bohrungen                                     |
|             |                                                         |
| Abb. E-10.1 | Wasserdurchlässigkeit und Trockendichte der             |
|             | Laborproben aus dem Nachfallmaterial der Boh-           |
|             | rung V2                                                 |
| Abb. E-10.2 | Zusammenhang zwischen Trockendichte des Nach-           |
|             | falles im Bohrloch, Bohrloch- und Nachbruch-            |
|             | durchmesser                                             |
| Abb. E-10.3 | Übertragbarkeit der Labor-k <sub>f</sub> -Werte auf die |
|             | Nachfallfüllung in Bohrlöchern                          |
|             |                                                         |
| Abb. E-11.1 | Berechnungen zur Auflockerungszone                      |
|             | Berechnungsgrundlagen                                   |
| Abb. E-11.2 | Berechnungen zur Auflockerungszone                      |
|             | Kennwerte und Berechnungsfälle                          |
| Abb. E-11.3 | Berechnungen zur Auflockerungszone                      |
|             | FE-Netz und Rechenablauf                                |
| Abb. E-11.4 | Berechnungen zur Auflockerungszone                      |
|             | Spannungen und Dehnungen, Fälle A1 und A2               |
| Abb. E-11.5 | Berechnungen zur Auflockerungszone                      |
|             | Spannungen und Dehnungen, Fälle B1 und B2               |
| Abb. E-11.6 | Berechnungen zur Auflockerungszone                      |
|             | Bestimmung der Wasserdurchlässigkeit aus den            |
|             | Dehnungen (Prinzipdarstellung)                          |
| Abb. E-11.7 | Berechnungen zur Auflockerungszone                      |
|             | Transmissivität im Fall A1                              |
| Abb. E-11.8 | Berechnungen zur Auflockerungszone                      |
|             | Transmissivität im Fall A2                              |
| Abb. E-11.9 | Berechnungen zur Auflockerungszone                      |
|             | Transmissivität im Fall B1                              |
|             |                                                         |

| Abb. E-11.10 | Berechnungen zur Auflockerungszone             |
|--------------|------------------------------------------------|
|              | Transmissivität im Fall B2                     |
|              |                                                |
| Abb. E-12.1  | Legende zur Bohrlochfüllung in der Nachbe-     |
|              | triebsphase des Endlagers                      |
| Abb. E-12.2  | Bohrung ALVESSE 1                              |
| Abb. E-12.3  | Bohrung BLECKENSTEDT 1                         |
| Abb. E-12.4  | Bohrung BLECKENSTEDT 2                         |
| Abb. E-12.5  | Bohrung BLECKENSTEDT 3                         |
| Abb. E-12.6  | Bohrung BLECKENSTEDT 4                         |
| Abb. E-12.7  | Bohrung BROISTEDT 33                           |
| Abb. E-12.8  | Bohrung BROISTEDT 34                           |
| Abb. E-12.9  | Bohrung DENSTORF 1                             |
| Abb. E-12.10 | Bohrung GLEIDINGEN 1                           |
| Abb. E-12.11 | Bohrung HALLENDORF 1                           |
| Abb. E-12.12 | Bohrung HÜTTENBERG 1                           |
| Abb. E-12.13 | Bohrung KONRAD 101                             |
| Abb. E-12.14 | Bohrung SAUINGEN 1                             |
| Abb. E-12.15 | Bohrung SAUINGEN 2                             |
| Abb. E-12.16 | Bohrung SONNENBERG 1                           |
| Abb. E-12.17 | Bohrung SONNENBERG 2                           |
| Abb. E-12.18 | Bohrung SONNENBERG 3                           |
| Abb. E-12.19 | Bohrung SONNENBERG 4                           |
| Abb. E-12.20 | Bohrung ÜFINGEN 1                              |
| Abb. E-12.21 | Bohrung ÜFINGEN 2                              |
| Abb. E-12.22 | Bohrung VECHELDE 2                             |
| Abb. E-12.23 | Bohrung VECHELDE 2a                            |
| Abb. E-12.24 | Bohrung VECHELDE 3                             |
| Abb. E-12.25 | Bohrung VECHELDE 4                             |
| Abb. E-12.26 | Bohrung WEDTLENSTEDT 1                         |
| Abb. E-12.27 | Bohrung WIERTHE 1                              |
|              |                                                |
| Abb. E-13.1  | Bestimmung der mittleren (axialen) Transmissi- |
|              | vität einer Bohrung                            |
| Abb. E-13.2  | Legende zur tabellarischen Bestimmung der      |
|              | mittleren Bohrlochtransmissivitäten            |
| Abb. E-13.3  | Deckblatt zu den Tabellen "Bestimmung der      |
|              | mittleren Bohrlochtransmissivitäten"           |

| Tab. E-13.3/1B |                                                |
|----------------|------------------------------------------------|
| bis E-13.3/25B | Bestimmung der mittleren Bohrlochtransmissivi- |
|                | täten der 25 relevanten alten Bohrungen,       |
|                | Fall B                                         |
| Tab. E-13.3/1C |                                                |
| bis E-13.3/25C | Bestimmung der mittleren Bohrlochtransmissivi- |
|                | täten der 25 relevanten alten Bohrungen,       |
|                | Fall C                                         |
| Tab. E-13.3/1D |                                                |
| bis E-13.3/25D | Bestimmung der mittleren Bohrlochtransmissivi- |
|                | täten der 25 relevanten alten Bohrungen,       |
|                | Fall D                                         |
| Abb. E-14.1    | Deckblatt zu den Tabellen "Vergleich der er-   |
|                | mittelten Transmissivitäten mit den Annahmen   |
|                | des Radum - Referenzfalles R34"                |
| Tab. E-14.1/1  |                                                |
| bis E-14.1/9   | Vergleich der ermittelten Transmissivitäten    |
|                | mit den Annahmen des Referenzfalles            |
|                | R34 für die 25 relevanten alten Bohrungen      |
| Abb. E-14.2    | Vergleich der maßgeblichen Transmissivitäten   |
|                | mit den Annahmen des Referenzfalles            |
|                | R34; Schematische Übersicht                    |

## 1. Einleitung

Die im Hangenden des projektierten Endlagers Konrad anstehenden Tonsteine der Unterkreide mit einer Gesamtmächtigkeit von mehreren hundert Metern stellen hinsichtlich des Transports radionuklid belasteter Wässer aus dem Endlager eine natürliche Barriere dar. Diese Barriere ist im Rahmen der Exploration auf Erdöl- und Eisenerzlagerstätten im Verlauf der vergangenen Jahrzehnte mit einer Reihe von Tiefbohrungen durchteuft worden. Die alten Bohrungen werden unter bestimmten Voraussetzungen als potentielle Wegsamkeiten für den beschleunigten Transport radionuklid belasteter Wässer in die Biosphäre angesehen (vgl. [1] und [2]).

Im Rahmen des Genehmigungsverfahrens für das Endlager Konrad sollen quantitative Nachweise der Dichtigkeit für die alten Tiefbohrungen im Modellgebiet Konrad geführt werden. Hierzu werden Modellberechnungen zur Grundwasserbewegung und zur Radionuklidausbreitung durchgeführt, in denen ein Teil der alten Bohrungen diskret nachgebildet wird. Als Eingangswerte für diese Berechnungen sind u.a. Durchlässigkeitsbeiwerte der Bohrlochfüllungen sowie Angaben zur Bohrlochgeometrie erforderlich, die die hydraulischen Eigenschaften der Bohrungen beschreiben. Die Bestimmung und Angabe dieser hydraulischen Kennwerte für ausgewählte Bohrungen erfolgt im vorliegenden Bericht Teil E. Die Durchführung und Bewertung der Berechnungen zur Grundwasserbewegung und zur Radionuklidausbreitung erfolgt durch die und ist nicht Gegenstand des vorliegenden Berichtes. Auf diese Berechnungen, die z.T. mit vorab getroffenen Annahmen für die Bohrungen bereits durchgeführt worden sind ([3] und [4]), wird hier nur im Rahmen eines Vergleichs der Ergebnisse der vorliegenden Untersuchungen mit den von getroffenen Annahmen Bezug genommen. Weiterhin werden die Berechnungen von bei der Auswahl bzw. Eingrenzung der näher zu untersuchenden alten Bohrungen herangezogen.

#### 2. Nachweiskonzept

Wie bereits einleitend erwähnt, ist durch Modellrechnungen zur Grundwasserbewegung und zur Radionuklidausbreitung unter Berücksichtigung der alten Bohrungen nachzuweisen, daß die Radionuklidkonzentrationen im oberflächennahen Grundwasser auch auf Dauer vorgegebene Grenzwerte nicht überschreiten. Neben den die allgemeinen geologischen und hydrogeologischen Verhältnisse im Modellgebiet Konrad repräsentierenden Parametern sind hierzu Angaben erforderlich, die die hydraulischen Eigenschaften der alten Bohrungen zutreffend beschreiben.

Im Rahmen des vorliegenden Berichts Teil E werden als hydraulische Kennwerte der Bohrungen axiale, mittlere Transmissivitäten ermittelt, die sich aus dem Produkt der Durchlässigkeitsbeiwerte der Bohrlochfüllungen bzw. der die Bohrungen umgebenden Auflockerungszonen mit den zugehörigen Querschnittflächen für einzelne Abschnitte der Bohrungen ergeben. In erster Linie sind die Transmissivitäten der Bohrlochabschnitte im Bereich der Unterkreide-Barriere von Interesse. Die Bohrlochtransmissivitäten in den Gebirgsbereichen ober- und unterhalb der Unterkreideschichten sind demgegenüber von untergeordneter Bedeutung.

Die ermittelten Transmissivitäten sind bei der Nachweisführung als Eingangswerte für die Berechnungen zur Grundwasserbewegung und zur Radionuklidausbreitung zu verwenden. Ebenso ist es hinreichend für die Nachweisführung, wenn die in den bereits von durchgeführten Berechnungen ([3] und [4]) angenommenen Transmissiviäten der Bohrungen in den maßgeblichen Unterkreideabschnitten durch die Untersuchungen bestätigt werden können, sofern diese Berechnungen zu keiner Überschreitung der zulässigen Radionuklidkonzentration im oberflächennahen Grundwasser geführt haben.

Anhand der vorliegenden geologischen und hydrogeologischen Verhältnisse sowie auf der Grundlage der bereits durchgeführten Modellrechnungen zur Grundwasserbewegung läßt sich zeigen, daß nur ein Teil der im gesamten Modellgebiet vorhandenen Tiefbohrungen für die o.g. Fragestellungen von Bedeutung ist. Nur für diese sog. relevanten Bohrungen ist eine Nachbildung im Berechnungsmodell und eine quantitative Ermittlung der Transmissivitäten erforderlich.

Zur Bestimmung der abschnittsweisen mittleren Transmissivitäten der relevanten Bohrungen wird im einzelnen wie folgt vorgegangen. Zunächst wird anhand der vorhandenen Unterlagen der Zustand der Bohrungen am Ende der Bohr- und Verfüllarbeiten dargestellt. Sämtliche Bohrungen wurden nach Beendigung der Bohrarbeiten entsprechend den geltenden bergbehördlichen Verordnungen verfüllt, wobei die Verfüllungen aus Dickspülungen, Zementationen und anderen eingebrachten Feststoffen, wie z.B. Bohrklein, Kies und Sand bestehen. In einigen der Bohrungen sind außerdem Teile der Verrohrungen verblieben.

Für die Betrachtungen im Hinblick auf die Grundwasserbewegung und die Radionuklidausbreitung ist jedoch nicht der Zustand der Bohrungen am Ende der Bohr- und Verfüllarbeiten, sondern der Zustand in der Nachbetriebsphase des Endlagers Konrad maßgeblich. Die ständige Wasserhaltung während der Betriebszeit des Bergwerkes Konrad hat zu einer Druckabsenkung in der Umgebung des Grubengebäudes geführt. Nach dem Wiederauffüllen der Resthohlräume in der Nachbetriebsphase bewirkt der weitere Zufluß von Formationswässern in die Umgebung der Grube einen fortschreitenden Wiederanstieg des Druckes. Mit Modellrechnungen läßt sich der Wiederanstieg des Druckes im Bereich der Grube berechnen. Die Druckabsenkung wird nach ca. tausend Jahren ausgeglichen sein [1]. Die Ausbreitung von radionuklidbelasteten Wässern durch die Bohrungen kann demzufolge auch erst nach ca. tausend Jahren beginnen. Es ist daher der Zustand der relevanten Bohrungen etwa von diesem Zeitpunkt an zu betrachten.

Es wird hierzu untersucht, wie sich die eingebrachten Verfüllungen im Laufe langer Zeiträume verändern und welche Durchlässigkeiten sie besitzen. Insbesondere sind die Sedimentation der Dickspülungen und die Durchlässigkeit der dabei entstehenden Spülungssedimente sowie die Beständigkeit und Durchlässigkeit der Zementverfüllungen zu betrachten. Weiterhin sind die Eigenschaften der sonstigen eingebrachten Verfüllungen (Bohrklein etc.) zu untersuchen.

Durch die Sedimentation der Dickspülung und durch mögliche Lageänderungen auch der anderen eingebrachten Verfüllungen können weitgehend füllungslose, höher durchlässige Bohrlochabschnitte entstehen. Wesentlich für die Beurteilung des Verfüllungszustandes der alten Bohrungen ist jedoch die Erkenntnis aus den in situ-Versuchen in den Barriere-Schichten Alb und Barrême, daß sich die Bohrlöcher in diesen Schichten über den Nachfall selbst verfüllen [2]. Dabei kommt der Wechselwirkung zwischen der mineralogisch-sedimentalogischen Zusammensetzung der Gesteine und der tektonischen Beanspruchung des Gebirges eine besondere Bedeutung zu. Im Rahmen des Untersuchungsprogrammes konnten diese Selbstverfüllungsvorgänge im Bereich der hier vorrangig interessierenden tonigen Unterkreideschichten nachgewiesen werden [2].

Im Zusammenhang mit der nachfall- und zerfallsbedingten Selbstverfüllung der Bohrlöcher wird die Korrosionsbeständigkeit der im Bohrloch verbliebenen Verrohrung betrachtet, da sie auch in prinzipiell nicht standsicheren Bohrlochabschnitten den Nachfall über lange Zeiträume verhindern kann.

Unter Berücksichtigung der vorstehend aufgeführten Einzelpunkte (Spülungssedimentation, Zementverfüllungen, sonstige Verfüllungen, Selbstverfüllungsmechanismen, Bohrlochverrohrung) werden für die relevanten Bohrungen mögliche und wahrscheinliche Füllungszustände in der Nachbetriebsphase des Endlagers ermittelt. Zur Bestimmung der Füllhöhen der Bohrungen sind insbesondere bei der Verfüllung mit Spülungssediment die über die Tiefe gestaffelten Bohrlochdurchmesser zu berücksichtigen. Die bereits im Verlauf der Bohrarbeiten eingetretenen Bohrlochauskesselungen werden dabei anhand der für einige der Bohrungen vorliegenden Kalibermessungen abgeschätzt und bei allen Bohrungen entsprechend in Ansatz gebracht.

Im Zuge der Selbstverfüllung von Bohrlochabschnitten durch Nachfall in der Unterkreide ergeben sich weitere Vergrößerungen der Bohrlochquerschnitte, die ebenfalls bei der Bestimmung der Transmissivitäten der Bohrungen berücksichtigt werden.

Um die Bohrlöcher herum entsteht infolge der Entspannung des Gebirges eine Zone mit einer gegenüber dem ungestörten Gebirge erhöhten Wasserdurchlässigkeit. Die Ausdehnung dieser sog. Auflockerungszone sowie die Erhöhung der Wasserdurchlässigkeit in dieser Zone sind u.a. von der Änderung des Spannungszustandes und von den Gebirgskennwerten abhängig. Für den Bereich der Unterkreide werden mit Hilfe eines Berechnungsmodells die die Auflockerungszone beschreibenden Parameter ermittelt und anschließend bei der Ermittlung der Transmissivitäten der Bohrungen berücksichtigt.

Die maßgeblichen Transmissivitäten der Bohrungen, die unter Verwendung konservativer Annahmen abschnittsweise für die relevanten Bohrungen ermittelt werden, setzen sich demzufolge aus den Transmissivitäten der Bohrlochfüllungen und den Transmissivitäten der Auflockerungszonen zusammen. Sie werden abschließend den Annahmen des von durchgeführten Berechnungsfalles "Referenzfall Tiefbohrungen" ([3] und [4]) gegenübergestellt und im Hinblick auf den Nachweis der Dichtigkeit der alten Bohrungen diskutiert.

#### 3. Relevante alte Bohrungen

Aufgrund der geologischen und hydrogeologischen Verhältnisse ist es nicht erforderlich alle Bohrungen im gesamten Modellgebiet Konrad im Hinblick auf ihre Dichtigkeit zu untersuchen. Die Anzahl der zu betrachtenden Bohrungen läßt sich außerdem anhand durchgeführter Modellrechnungen zur Grundwasserbewegung weiter eingrenzen.

In der Abb. E-3.1 ist die geologische Situation im an die Grube angrenzenden Bereich des Modellgebietes im Grundriß dargestellt. Weiterhin ist in dem Lageplan die Schachtanlage Konrad mit den vorhandenen Abbaufeldern und den geplanten Einlagerungsfeldern für die radioaktiven Abfälle eingezeichnet. Die Lage der alten Bohrungen im dargestellten Teil des Modellgebietes kann ebenfalls der Abb. E-3.1 entnommen werden. Die als relevant eingestuften Bohrungen sind durch eine Umrahmung des Bohrungsnamens gekennzeichnet.

Zur Verdeutlichung der geologischen Situation sind in den Abbildungen E-3.2 und E-3.3 das Profil 2 (ESE-WNW) und das Profil 6 (NNE-SSW) wiedergegeben. Die Lage der beiden geologischen Profile kann aus der Abb. E-3.1 ersehen werden. Die in den Abbildungen E-3.1 bis E-3.3 dargestellten Angaben zur Geologie wurden den Unterlagen [5], [6] und [7] der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) entnommen.

Bei dem dargestellten Bereich des Modellgebietes handelt es sich um die östliche Randsenke im Südabschnitt des Salzstockes Vechelde bzw. weiter im Süden um die Randsenke des Salzstockes Broistedt. Die geologischen Verhältnisse sind durch die östlich, westlich und südlich begrenzte Verbreitung der Malm-Schichten im Senkenbereich gekennzeichnet (Abb. E-3.1 bis E-3.3). Auf der Westseite werden die Schichten des Malm (Oxford, Kimmeridge und Portland) durch die Salzstöcke Vechelde und Broistedt begrenzt, während die Schichten im Süden und im Osten im Niveau der Transgressionsfläche der tieferen Unterkreide (i.a. Hauterive, vereinzelt auch Valangin) ausbeißen. Die maßgebliche Begrenzungslinie ist der Ausbiß des an der Basis des Malm anstehenden Oxford, in dem die Einlagerung der radioaktiven Abfälle vorgesehen ist. Östlich und südlich der Ausbiß-

linie des Oxford werden die Schichten der mit Ausnahme der Salzstockdächer flächenhaft verbreiteten Unterkreide von den Schichten
des Dogger und/oder des Lias unterlagert (Abb. E-3.2 und E-3.3).
Diese Schichten weisen wie die Schichten der Unterkreide aufgrund
der überwiegend anstehenden tonigen Gesteine deutlich geringere
Wasserdurchlässigkeiten auf als die eingeschlossenen Schichten des
Malm.

Aus den Ergebnissen von Modellberechnungen zur Grundwasserbewegung ergibt sich, daß die Grundwasserbewegung nach dem Ausgleich der Druckabsenkung im Bereich des Grubengebäudes dem natürlichen hydraulischen Gefälle folgend nach Norden gerichtet ist. Die Fließrichtung entspricht im dargestellten Bereich des Modellgebietes (Abb. E-3.1) etwa dem Verlauf der Längsachse der Oxfordverbreitung in der östlichen Randsenke der Salzstöcke. Die Kontaminierung des Grundwassers mit Radionukliden aus dem Endlager erfolgt im Bereich des Oxford. Das kontaminierte Tiefengrundwasser wird im wesentlichen in den Schichten des Malm in nördlicher Richtung abgeführt.

Aus den vorstehenden Ausführungen zu den geologischen und hydrogeologischen Verhältnissen lassen sich im Hinblick auf die Eingrenzung der zu untersuchenden alten Bohrungen die im folgenden genannten Schlußfolgerungen ableiten. Zunächst brauchen nur Bohrungen untersucht zu werden, die im Bereich des Grubengebäudes oder nördlich davon stehen. Weiterhin brauchen nur Bohrungen betrachtet zu werden, deren Ansatzpunkte im Verbreitungsgebiet des Oxford liegen und deren Endteufe zumindest das Niveau des Malm erreicht, damit ein ausreichender hydraulischer Anschluß an die radionuklidbelastetes Wasser führenden Schichten vorhanden ist. Die außerhalb der Oxfordverbreitung stehenden Tiefbohrungen stellen grundsätzlich keine sicherheitsrelevanten Ausbreitungspfade für den beschleunigten Transport von radionuklidbelasteten Tiefenwässern ins oberflächennahe Grundwasser dar.

Die Modellrechnungen zur Grundwasserbewegung haben weiterhin gezeigt, daß die Fließgeschwindigkeiten der Tiefenwässer sehr gering sind und somit die Fließzeiten zu weiter vom Grubengebäude entfernten Bohrungen sehr lang sind. Die Berechnungsergebnisse lassen den Schluß zu, daß Bohrungen im Abstrombereich des Endlagers von einer gewissen Entfernung an nicht mehr als sicherheitsrelevante Freisetzungspfade in Frage kommen. In den von bereits durchgeführten hydraulischen Berechnungen zur Untersuchung der Auswirkung der Tiefbohrungen ([3] und [4]) wurden als nördlichste Bohrungen die Bohrungen Vechelde 2/2a, 3 und 4 im Modell nachgebildet. Aufgrund der Fließzeiten von mehr als 1 Mio. Jahre vom Grubengebäude bis in den Bereich der Vechelde-Bohrungen kann der Standort dieser Bohrungen als äußerste nördliche Begrenzung des Bereiches angesehen werden, in dem quantitative Nachweise für die alten Bohrungen zu führen sind.

Wie bereits erwähnt werden diejenigen Bohrungen, die die o.g. Kriterien erfüllen, als relevante alte Bohrungen bezeichnet. Zusätzlich werden die beiden Bohrungen Broistedt 33 und Bleckenstedt 3 wegen ihrer relativen Nähe zum Grubengebäude mit in den Kreis der zu untersuchenden Bohrungen aufgenommen, obwohl dies nach den o.g. Kriterien nicht erforderlich wäre. Die Bohrung Broistedt 33 steht in der Randzone des Salzstockes Broistedt und bindet nach Durchteufen der Unterkreideschichten in den Mantelanhydrit und das Zechsteinsalz ein. Die Bohrung Bleckenstedt 3 steht östlich der Verbreitung des Oxford und bindet nach Durchteufen der Unterkreideschichten in die Tonsteine des Dogger ein. Beide Bohrungen haben keinen unmittelbaren hydraulischen Anschluß an die Schichten des Malm.

Abschließend sei noch kurz auf die in der Abb. E-3.1 dargestellte Verbreitung des Hilssandsteins [6] eingegangen. Es handelt sich um einen an der Basis des Alb anstehenden Sandstein mit deutlich höherer Wasserdurchlässigkeit als die tonigen Gesteine der übrigen Unterkreide. Im dargestellten Bereich des Modellgebietes ist der Hilssandstein nur südlich der in der Abb. E-3.1 eingetragenen Begrenzung verbreitet und wurde nur in den relevanten Bohrungen Hallendorf 1, Bleckenstedt 2 und 3 sowie Konrad 101 angetroffen. Der Hilssandstein zeichnet sich in hydraulischer Hinsicht durch sein erhöhtes Potential gegenüber den Wässern im Malm aus, so daß in Bohrungen, die den Hilssandstein durchqueren, eine abwärtsgerichtete Strömung möglich ist ([3] und [4]). Dies kann bei den Berechnungen zur Grundwasserbewegung und zur Radionuklidausbreitung

von wesentlicher Bedeutung sein. Da diese Berechnungen nicht Gegenstand des vorliegenden Berichtes sind, wird dieser Umstand bei den hier dokumentierten Untersuchungen nicht weiter berücksichtigt. Die Bohrungen Hallendorf 1, Bleckenstedt 2 und 3 sowie Konrad 101 werden daher im folgenden in der gleichen Weise untersucht wie die anderen relevanten alten Bohrungen.

In den von bereits durchgeführten Berechnungen zur Grundwasserbewegung und zur Radionuklidausbreitung ([3] und [4]) wurden die Bohrungen im Bereich zwischen den Bohrungen Alvesse 1 und den Vechelde-Bohrungen nicht modelliert. Es sind dies im einzelnen die Bohrungen Sonnenberg 1, 2, 3 und 4, Wierthe 1, Denstorf 1, Gleidingen 1 und Wedtlenstedt 1 (s. Abb. E-3.1). Aus den Ergebnissen der Berechnungen lassen sich jedoch durch vergleichende Betrachtungen auch für diese Bohrungen Schlußfolgerungen im Hinblick auf ihre hydraulischen Auswirkungen anstellen, wenn ihre hydraulischen Parameter bekannt sind. In die im vorliegenden Bericht dokumentierten Untersuchungen werden diese 8 Bohrungen daher mit einbezogen.

## 4. Planmäßiger Zustand der Bohrungen am Ende der Bohr- und Verfüllarbeiten

Der planmäßige Zustand der relevanten alten Bohrungen unmittelbar nach Beendigung der Bohr- und Verfüllarbeiten ist in den Abbildungen E-4.2 bis E-4.27 dargestellt. In der Abb. E-4.1 findet sich eine Legende zur Erläuterung der einzelnen Bohrlochbilder.

Die für jede Bohrung mit dargestellte stratigraphische Gliederung wurde dem Bericht der BGR über die Revision von Tiefbohrungen [7] entnommen. Bei den älteren Schichten unterhalb des Malm wurde dabei grundsätzlich auf die Angabe der einzelnen Stufen verzichtet und nur die Bezeichnungen der Serien (Dogger, Lias etc.) angegeben. Bei den jüngeren Schichtgliedern sind jeweils die einzelnen stratigraphischen Stufen (ohne Unterstufen) angegeben. Die zur Unterkreide gehörenden Schichten sind jeweils durch eine dickere Umrahmung besonders kenntlich gemacht.

Die Angaben zu den Bohrdurchmessern, zur Verfüllung, zur Verrohrung und zur verwendeten Spülung wurden dem BGR-Bericht [8] entnommen. Die Ausarbeitung basiert auf den nach bergbehördlicher Verordnung für jede Tiefbohrung zu erstellenden Bohrakten, die im Archiv des Niedersächsischen Landesamtes für Bodenforschung (NLfB) vorliegen. Einzelne Angaben wurden durch Recherchen bei Bergämtern und der Bohrindustrie vervollständigt.

Gemäß den Richtlinien des Oberbergamtes Clausthal-Zellerfeld vom 9. September 1953 und vom 6. November 1962 wurden alle nicht fündigen Erdölbohrungen und die Explorationsbohrungen auf Eisenerz nach bergbehördlicher Genehmigung eines Verfüllungsplanes verfüllt [8]. Diese Regelungen wurden auch bei den im Modellgebiet befindlichen Tiefbohrungen angewandt. Zweck der vorgeschriebenen Verfüllungen waren u.a. die Verhinderung von Grundwasserübertritten von einem Horizont in einen anderen sowie der Schutz von erbohrten Lagerstätten. Hierzu wurden im allgemeinen Zementationen bestimmter Horizonte im Bohrloch durchgeführt. Weiterhin wurde die beim Bohren verwendete Dickspülung als Verfüllung im Bohrloch stehengelassen. Die Zementationen wurden über Gestänge in das noch spülungsgefüllte Bohrloch eingebracht. Falls es sich nicht um Bodenzemen-

tationen handelt, wurden hierzu zuvor Holzstopfen als Zementationswiderlager im Bohrloch gesetzt.

Als weitere Verfüllmaterialien wurden Bohrklein (Kernstrecken oder abgesetzter Bohrschlamm) sowie in wenigen Fällen zusätzlich Sand, Kies oder Schotter verwendet. Auch diese Verfüllmaterialien wurden i.a. in die mit Dickspülung gefüllten Bohrlöcher eingebracht.

Die Köpfe der stehengebliebenen Verrohrung mußten in mindestens 1 m Teufe unter Gelände geschnitten und mit einer Stahlplatte verschweißt werden. Darüber wurde eine Betonplatte von 2-3 dm Dicke eingebracht und mit Füllboden bzw. Mutterboden überdeckt.

Grundsätzlich wurde angestrebt, die Tiefbohrungen zur Exploration tiefliegender Lagerstätten in relativ kurzer Zeit mit möglichst geringem Einsatz von Verrohrungen niederzubringen. Eine Standverrohrung der oberflächennahen, i.a. wasserführenden Lockergesteinsschichten war dabei in jedem Falle erforderlich. Die Standrohre konnten nach Beendigung der Bohrarbeiten im Zuge der Bohrlochverfüllung häufig wiedergewonnen werden. Beim Durchbohren von Gebirgsbereichen mit geringer Standfestigkeit waren z.T. auch in größeren Tiefen Verrohrungen zum Schutz des Bohrloches erforderlich. Auch diese Verrohrungen sollten nach Möglichkeit am Ende der Bohrarbeiten wiedergewonnen werden. Da die Rohre jedoch i.a. bereichsweise oder vollständig zementiert wurden bzw. die Rohre infolge der Gebirgskonvergenz festsaßen, mußten Verrohrungen in einigen Fällen im Bohrloch verbleiben. Falls nicht die gesamte Rohrtour im Bohrloch festsaß, konnten die Rohre in einer bestimmten Tiefe geschnitten und der obere Teil gezogen werden.

Die vorstehend beschriebenen Verfüllungen kamen auch bei den relevanten alten Tiefbohrungen zur Anwendung und sind in den Abbildungen E-4.2 bis E-4.27 im einzelnen mit den dazugehörigen Teufenangaben dargestellt. Zur Vereinfachung der Darstellung wurden grundsätzlich nur 3 Verfüllungstypen unterschieden (s. Abb. E-4.1). Zunächst handelt es sich um die Zementverfüllungen (ZEM), zu denen i.a. keine näheren Spezifikationen vorliegen. Die als Zementationswiderlager gesetzten Holzstopfen (Länge ca. 1 - 2 m) werden in der Darstellung nicht gesondert ausgewiesen.

Als zweiter Verfüllungstyp wird die Dickspülung (SPLG) dargestellt. Es handelt sich bei den verwendeten Spülungen um Wasser-Ton-Spülungen, denen in einigen Fällen Zusätze zur Verbesserung ihrer bohrtechnischen Eigenschaften zugegeben wurden. Diese Zusätze sind i.a. verantwortlich für die Bezeichnung der Spülungen (s. Abb. E-4.2 bis E-4.27). Der wesentliche Feststoffanteil der angemischten Spülungen besteht jedoch aus tonigem Material, für das bei den alten Bohrungen im Modellgebiet i.a. die quellfähigen "Altwarmbüchener Unterkreidetone" und Bentonit verwendet wurden. Die in den Abbildungen E-4.2 bis E-4.27 angegebenen Spülungsdichten wurden im Rahmen der Durchführung geophysikalischer Bohrlochmessungen (i.a. nach Erreichen der Endteufe) ermittelt. Die angegebenen Spülungsdichten können als unterer Grenzwert der letztendlich im Bohrloch verbliebenen Dickspülung angesehen werden, da die Spülung i.a. im Zuge der Verfüllarbeiten durch Auspumpen der Spülungsabsetzbecken etc. weiter verdickt wurde. Eine nachträgliche Verdünnung der Spülung durch Zugabe von Wasser kann dagegen ausgeschlossen werden.

Als dritter Verfüllungstyp wird in den Abbildungen die Bohrkleinverfüllung (BK) dargestellt. Aus Vereinfachungsgründen werden auch
Verfüllungen, die als "festes Material", "Steinschotter", "Sand"
und "Kies" angegeben sind, in den Bohrlochbildern unter dem Begriff Bohrklein geführt. Im Einzelfall findet sich in den Abbildungen eine ergänzende Erläuterung der eingebrachten Verfüllung.

Die am Bohrlochkopf vorhandenen Bodenverfüllungen sowie die darunter liegenden Betonabschlußplatten werden in den Bohrlochbildern nicht gesondert erfaßt, sondern grundsätzlich der darunter folgenden Verfüllung zugerechnet. Für die im Rahmen des Nachweises zu beantwortenden Fragestellungen ist dies ohne Bedeutung.

Die im Bohrloch verbliebenen Verrohrungen sowie die vorübergehend eingebauten und wieder gezogenen Verrohrungen sind ebenfalls für jede Bohrung in den Abbildungen E-4.2 bis E-4.27 mit Angabe des Außendurchmessers (in Zoll) aufgeführt. Für die Teile der verbliebenen Verrohrungen sind außerdem in den Bohrlochbildern die Innendurchmesser der Rohre angegeben. Zur Ermittlung der Innen-

durchmesser wurden die üblichen Verrohrungen der Güte J-55 bzw. K-55 gemäß API-Standard angenommen.

Die in den Bohrlochbildern angegebenen Bohrdurchmesser entsprechen in den Abschnitten, in denen keine Verrohrung temporär vorhanden war oder verblieben ist, den aus den Unterlagen [8] zu entnehmenden Durchmessern der jeweils verwendeten Bohrwerkzeuge. In den Abschnitten mit verbliebener oder mit wieder gezogener Verrohrung ist der Bohrdurchmesser i.a. nicht in den Unterlagen dokumentiert. Für diese Abschnitte ist in den Bohrlochbildern ersatzweise der Außendurchmesser der Verrohrung angegeben. Der tatsächliche Bohrdurchmesser ist in diesen Abschnitten größer. Falls in Ausnahmefällen auch für verrohrte Abschnitte Angaben zum verwendeten Bohrdurchmesser vorliegen, sind diese in den Abbildungen angegeben.

Grundsätzlich handelt es sich bei den in den Abbildungen E-4.2 bis E-4.27 angegebenen Bohrlochdurchmessern um Soll-Maße. Wegen der bereits während des Bohrens eingetretenen Auskesselungen sind die tatsächlichen Durchmesser der Bohrlöcher häufig größer, u.U. auch kleiner (Bohrlochkonvergenz). Hierauf wird im Kapitel 5 dieses Berichtes noch ausführlich eingegangen. Der in den Abbildungen E-4.2 bis E-4.27 dargestellte Zustand der Bohrungen ist demnach als "planmäßiger" Zustand aufzufassen.

Im folgenden wird der planmäßige Zustand der einzelnen relevanten alten Bohrungen kurz erläutert. Da die Detailangaben in den Abbildungen E-4.2 bis E-4.27 vollständig enthalten sind, wird dabei nur auf Besonderheiten bei einzelnen Bohrungen ausführlicher eingegangen.

## Bohrung Alvesse 1 (Abb. E-4.2)

Die Bohrung ist zum größten Teil mit Dickspülung verfüllt. Außer einer Bodenzementation wurden drei weitere kleinere Zementbrücken eingebaut. Die obersten 30 m wurden mit Bohrklein verfüllt.

In der Bohrung ist keine Verrohrung verblieben. Die im Quartär eingebauten Standrohre wurden wieder gezogen.

## Bohrung Bleckenstedt 1 (Abb. E-4.3)

Im Bereich des Oxford wurde die Bohrung mit einer ca. 110 m langen Zementbrücke abgedichtet. Eine weitere, 20 m lange Zementbrücke befindet sich im Bereich des Alb. Die Bohrlochabschnitte zwischen den beiden Zementbrücken und unterhalb der Oxford-Zementation sind mit Dickspülung gefüllt. Der Bohrlochbereich von der Geländeoberfläche bis zur oberen Zementbrücke (420 m) ist mit Kernkleinschlag und festgestampftem Sand verfüllt. Da in der Bohrung Bleckenstedt 1 relativ große Abschnitte in nahezu allen durchteuften stratigraphischen Schichtgliedern gekernt wurden, ist davon auszugehen, daß diese Verfüllung zum größten Teil aus zerkleinerten, in die Dickspülung eingebrachten Bohrkernen besteht und nur der oberste Teil mit eingestampftem Sand aufgefüllt wurde.

In der Bohrung ist in zwei längeren Abschnitten Verrohrung verblieben. Die verbliebenen Rohre befinden sich zu einem großen Teil in den Schichten der Unterkreide. Die im Bereich von 333 m bis 398 m verbliebenen 8 5/8"-Rohre sind weitgehend einzementiert, während die im Bereich von 458 m bis 848 m verbliebenen 6 5/8"-Rohre nicht zementiert sind. Diese Rohre dürften jedoch zumindest im Bereich der Unterkreide keinen nennenswerten Ringspalt zwischen Gebirge und Verrohrung aufweisen, sondern relativ dicht anliegen.

## Bohrung Bleckenstedt 2 (Abb. E-4.4)

Die Bohrung ist nahezu vollständig mit Dickspülung gefüllt. Zementationen und Bohrkleinverfüllung befinden sich nur oberhalb von 20 m.

Im Bereich der Oberkreide ist von 40 m bis 80 m Verrohrung verblieben. Da über das Ziehen der bis 12 m Tiefe eingebauten Standrohre keine Angaben vorliegen, wird davon ausgegangen, daß auch diese Rohre verblieben sind.

#### Bohrung Bleckenstedt 3 (Abb. E-4.5)

Die Verhältnisse hinsichtlich der Verfüllung und der verbliebenen Verrohrung sind weitgehend mit denen bei der Bohrung Bleckenstedt 2 vergleichbar.

## Bohrung Bleckenstedt 4 (Abb. E-4.6)

Die Bohrung weist außer einer Bodenzementation mehrere kürzere Zementbrücken auf. Der überwiegende Teil ist mit Dickspülung gefüllt.

Im Bohrloch ist keine Verrohrung verblieben.

#### Bohrung Broistedt 33 (Abb. E-4.7)

In die Bohrung wurde eine ca. 95 m lange Zementbrücke im Bereich des Mantelanhydrit eingebaut. Weiterhin wurden die obersten 20 m des Bohrlochs zementiert. Der übrige Bereich des Bohrlochs ist mit Dickspülung gefüllt.

Im Bereich des Alb ist ein ca. 40 m langer Verrohrungsabschnitt verblieben.

## Bohrung Broistedt 34 (Abb. E-4.8)

Die Bohrung ist im unteren Teil mit zwei längeren Zementbrücken und am Bohrlochkopf mit einer weiteren Zementbrücke abgedichtet. Dazwischen befindet sich Dickspülung.

Im obersten Teil des Alb ist auf einer Länge von 80 m Verrohrung verblieben.

#### Bohrung Denstorf 1 (Abb. E-4.9)

Außer einer Bodenzementation weist die Bohrung nur kleinere Zementbrücken mit Längen bis zu 5 m auf. Größtenteils ist das Bohrloch mit Dickspülung gefüllt. Verrohrungen sind nicht im Bohrloch verblieben.

## Bohrung Gleidingen 1 (Abb. E-4.10)

Die Bohrung enthält neben einer Bodenzementation drei weitere kurze Zementbrücken. Im wesentlichen ist das Bohrloch mit Dickspülung gefüllt.

Da keine Angaben zum Ziehen der im Quartär eingebauten Rohre vorliegen, wird davon ausgegangen, daß diese Rohre verblieben sind.

#### Bohrung Hallendorf 1 (Abb. E-4.11)

Die Bohrung enthält neben einer Bodenzementation eine Zementbrücke an der Geländeoberfläche. Darunter folgt bis ca. 37 m eine Verfüllung mit Bohrklein. Der weitaus größte Teil des Bohrlochs ist mit Dickspülung gefüllt. Verrohrung ist nur im obersten Teil der Bohrung bis ca. 34 m Tiefe verblieben.

#### Bohrung Hüttenberg 1 (Abb. E-4.12)

Die Bohrung enthält eine Bodenzementation und zwei kürzere Zementbrücken im oberen Bohrungsabschnitt. Größtenteils ist die Bohrung mit Dickspülung verfüllt. Im Bohrloch ist keine Verrohrung verblieben.

## Bohrung Konrad 101 (Abb. E-4.13)

Die Bohrung weist gegenüber den anderen, wesentlich älteren Bohrungen einige Besonderheiten auf. Als einzige Bohrung wurde die Konrad 101 über die gesamte Teufe als Kernbohrung ausgeführt, jedoch anschließend vor dem Einbau der Verrohrung abschnittsweise aufgeweitet. Die beim Bohren verwendete CMC-Spülung wurde nach Abschluß der Bohrarbeiten vollständig durch eine Zementation mit Tiefbohrzement ersetzt.

Große Teile der eingebrachten Verrohrung sind im Bohrloch verblieben; bereichsweise liegt sogar eine doppelte verbliebene Verrohrung vor. Der Ringraum zwischen den Rohren und dem Gebirge kann nach den vorliegenden Unterlagen als vollständig zementiert angenommen werden.

#### Bohrung Sauingen 1 (Abb. E-4.14)

Die Bohrung enthält außer der Bodenzementation eine kürzere Zementbrücke im Bereich der Oberkreide. Der übrige Teil der Bohrung ist mit Dickspülung gefüllt. Da für die Bohrung Sauingen 1 keine Unterlagen über geophysikalische Messungen vorliegen, existieren keine Angaben zur verwendeten Dickspülung. Es kann jedoch davon ausgegangen werden, daß es sich wie üblich um eine Ton-Wasser-Dickspülung gehandelt hat und daß die Dichte der Spülung mindestens 1,20 t/m³ betrug. Dieser Wert stellt die geringste bei den relevanten alten Bohrungen dokumentierte Spülungsdichte dar und kann daher ohne weiteres angenommen werden.

Im Teufenbereich von 81 m bis 111 m ist eine 9 5/8"-Verrohrung verblieben, deren Innendurchmesser ca. 227 mm beträgt. Über die Bohrdurchmesser liegen bei der Bohrung Sauingen 1 keine Informationen vor. Im Hinblick auf den Innendurchmesser der Verrohrung kann der Bohrdurchmesser ab 111 m Teufe jedoch nicht mehr als 219 mm betragen haben. Hierbei handelt es sich um einen üblichen Bohrmeißeldurchmesser. Geringere Bohrdurchmesser bzw. eine Staffelung der Bohrdurchmesser mit der Tiefe können nicht ausgeschlossen werden.

## Bohrung Sauingen 2 (Abb. E-4.15)

Die Bohrung enthält außer einer Bodenzementation einige weitere kurze Zementbrücken im Bereich der Oberkreide. Überwiegend ist die Bohrung mit Dickspülung gefüllt. Verrohrungen sind nicht im Bohrloch verblieben.

#### Bohrung Sonnenberg 1 (Abb. E-4.16)

Die Bohrung enthält außer einer Bodenzementation noch 2 weitere kurze Zementbrücken im oberen Bohrlochabschnitt. Größtenteils ist die Bohrung mit Dickspülung verfüllt. Verrohrungen sind nicht im Bohrloch verblieben.

## Bohrung Sonnenberg 2 (Abb. E-4.17)

Die Bohrung enthält außer einer Bodenzementation eine kürzere Zementbrücke im obersten Teil der Oberkreide. Darüber ist die Bohrung mit Kies verfüllt und die Verrohrung im Bohrloch verblieben.

Zwischen den Zementbrücken ist eine Verfüllung mit abgesetztem Bohrschlamm angegeben. Für den Nachweis der Dichtigkeit wird die Verfüllung in diesem Abschnitt als normale Dickspülung mit der am Ende der Bohrarbeiten gemessenen Spülungsdichte angenommen. Es ist jedoch davon auszugehen, daß die Dichte aufgrund des aus dem Absetzbecken ins Bohrloch gepumpten Bohrschlamms wesentlich größer ist als der angegebene Wert. Wie bereits erwähnt, dürfte diese Vorgehensweise bei allen Tiefbohrungen üblich gewesen sein, auch wenn es nicht im einzelnen angegeben ist.

## Bohrung Sonnenberg 3 (Abb. E-4.18)

Die Bohrung enthält außer einer Bodenzementation einige kürzere Zementbrücken in der Oberkreide. Überwiegend ist das Bohrloch mit Dickspülung gefüllt.

Da keine Angaben zum Ziehen der Standrohre vorliegen, ist davon auszugehen, daß die Verrohrung verblieben ist.

## Bohrung Sonnenberg 4 (Abb. E-4.19)

Die Bohrung enthält außer einer Bodenzementation eine 10 m lange Zementbrücke am Top der Unterkreide. Darüber ist die Bohrung bis zur Geländeoberfläche (30 m) mit Bohrklein verfüllt. Zwischen den Zementationen ist das Bohrloch mit Dickspülung gefüllt. Verrohrungen sind nicht im Bohrloch verblieben.

## Bohrung Üfingen 1 (Abb. E-4.20)

Die Bohrung enthält eine Bodenzementation und eine Zementbrücke an der Geländeoberfläche. Dazwischen ist die Bohrung mit Kalkstein-

und Mergelschotter verfüllt, der nach den Unterlagen von einer südlich von Üfingen gelegenen Halde stammt, die im Zuge eines Stollenausbruchs angelegt wurde. Es ist davon auszugehen, daß die steinige Verfüllung in die mit Dickspülung gefüllte Bohrung eingebracht wurde.

Da keine Angaben zum Ziehen der Standrohre vorliegen, wird davon ausgegangen, daß die Verrohrung verblieben ist.

## Bohrung Üfingen 2 (Abb. E-4.21)

Die Bohrung enthält außer einer Bodenzementation einige kurze Zementbrücken in der Oberkreide und im Quartär. Der überwiegende Teil der Bohrung ist mit Dickspülung verfüllt.

Da über das Ziehen der Standrohre keine Angaben vorliegen, wird davon ausgegangen, daß die Verrohrung verblieben ist.

## Bohrungen Vechelde 2 und 2a (Abb. E-4.22 und E-4.23)

Bei der Bohrung Vechelde 2a handelt es sich um eine aus der Bohrung Vechelde 2 abgelenkte Bohrung. Nachdem die Bohrung Vechelde 2 nicht fündig geworden war, wurde zunächst im Teufenbereich von 1130 m bis 1230 m eine Zementbrücke eingebaut und versucht, die Bohrung Vechelde 2a an dieser Zementbrücke abzulenken. Bei den erfolglosen Ablenkversuchen wurde diese Zementbrücke vollständig verbraucht. Es wurde daraufhin eine neue Zementbrücke zwischen 821 m und 900 m gesetzt, an der die Bohrung Vechelde 2a erfolgreich abgelenkt werden konnte. Der Bereich unterhalb dieser Zementbrücke ist vollständig mit Dickspülung gefüllt. Verrohrungen sind in diesem Teil der Bohrung nicht vorhanden.

Auch der Bereich oberhalb der Zementbrücke wird nach der Ablenkung der Bohrung als Vechelde 2a bezeichnet. Nachdem die Bohrung Vechelde 2a fündig geworden war, wurde sie als Erdölproduktionsbohrung ausgebaut und bis zum Jahre 1960 für die Ölförderung genutzt. Danach wurde die Bohrung in der in der Abb. E-4.23 dargestellten Weise verfüllt. Ein großer Teil der eingebauten Verrohrungen ist dabei im Bohrloch verblieben. Die Verfüllung besteht

aus drei langen Zementbrücken im Bohrlochtiefsten, in der Mitte und im obersten Teil der Bohrung. Die Abschnitte zwischen den Zementbrücken wurden mit einer Dickspülung verfüllt, zu der keine näheren Angaben vorliegen. Es kann jedoch auch hier davon ausgegangen werden, daß es sich um eine Ton-Wasser-Spülung handelt, deren Dichte mindestens 1,20 t/m³ beträgt (vgl. Bohrung Sauingen 1).

#### Bohrung Vechelde 3 (Abb. E-4.24)

Die Bohrung enthält außer einer Bodenzementation eine lange Zementbrücke im mittleren Bohrlochabschnitt und eine kürzere an der Geländeoberfläche. Dazwischen ist das Bohrloch mit Dickspülung gefüllt.

Die Verrohrung ist bis zu einer Teufe von 143 m im Bohrloch verblieben.

## Bohrung Vechelde 4 (Abb. E-4.25)

Die Verhältnisse hinsichtlich der Verfüllung und der verbliebenen Verrohrung entsprechen weitgehend denen bei der Bohrung Vechelde 3.

## Bohrung Wedtlenstedt 1 (Abb. E-4.26)

Die Bohrung enthält außer einer Bodenzementation zwei kleinere Zementbrücken im oberen Teil der Bohrung. Oberhalb von ca. 152 m wurde die Bohrung i.w. mit Bohrklein verfüllt. Im überwiegenden Bereich besteht die Verfüllung des Bohrlochs aus Dickspülung.

Im oberen Teil des Alb ist die Verrohrung auf einer Länge von ca. 104 m im Bohrloch verblieben.

## Bohrung Wierthe 1 (Abb. E-4.27)

Die Bohrung enthält außer einer Bodenzementation mehrere kürzere Zementbrücken. Zwischen den Zementbrücken besteht die Verfüllung aus Dickspülung. Verrohrungen sind nicht im Bohrloch verblieben.

## 5. Veränderungen der Bohrlochquerschnitte während der Bohrarbeiten

Wie im vorangegangenen Kapitel erwähnt handelt es sich bei den dort angegebenen Durchmessern um die planmäßigen Bohrdurchmesser, die aufgrund der während des Bohrvorgangs bereichsweise aufgetretenen Auskesselungen häufig nicht den am Ende der Bohrarbeiten vorliegenden tatsächlichen Bohrlochdurchmessern entsprechen. Bei den weiteren Untersuchungen (Sedimentation der Spülung, Bestimmung der Transmissivitäten etc.) sind jedoch die tatsächlichen Bohrlochdurchmesser zu berücksichtigen, da die vergrößerten Querschnitte zu ungünstigeren Ergebnissen führen.

Anhand der für drei der relevanten alten Bohrungen vorliegenden Kalibermessungen werden daher die während des Bohrens eingetretenen Veränderungen der Bohrlochquerschnitte untersucht und auch für die nicht vermessenen Bohrungen abgeschätzt. Kalibermessungen wurden in den Bohrungen Konrad 101, Bleckenstedt 4 und Vechelde 3 durchgeführt. Eine zusammenfassende Auswertung dieser Messungen ist in der Abb. E-5.1 dargestellt. Es wurden hierbei die Unterlagen [9] bis [11] verwendet. Die stratigraphische Zuordnung erfolgte anhand der von der BGR revidierten Schichtenverzeichnisse [7].

Grundlage der Auswertungen sind die in den o.g. Unterlagen wiedergegebenen, über die Teufe graphisch dargestellten mittleren Bohrlochdurchmesser, die sich bei den durchgeführten 4-Arm-Kalibermessungen aus der Mittelwertbildung der beiden orthogonalen Meßrichtungen ergeben.

Hieraus lassen sich abschnittsweise die Bohrlochvolumina bestimmen. Als Abschnitte wurden die stratigraphischen Stufen bzw. Unterstufen gewählt (s. Abb. E-5.1), da diese Untergliederung i.a. weitgehend mit der Untergliederung in petrographisch zu unterscheidende Gebirgsbereiche übereinstimmt.

Zur Bestimmung der in der Abb. E-5.1 angegebenen Bohrlocherweiterungsfaktoren wurden für diese Abschnitte außerdem die aus den jeweiligen Bohrdurchmessern resultierenden Sollwerte der Bohrlochvolumina ermittelt. Der Bohrlocherweiterungsfaktor gibt an, mit wel-

chem Vergrößerungsfaktor der Soll-Bohrdurchmesser in den einzelnen Abschnitten zu multiplizieren ist, um das tatsächliche Bohrlochvolumen zu erhalten. Da die Werte innerhalb größerer Bereiche in derselben Größenordnung liegen, wurden die Faktoren im Hinblick auf die Vereinfachung der späteren Untersuchungen über größere stratigraphische Abschnitte durch Mittelwertbildung weiter zusammengefaßt.

Im Bereich der Oberkreide, des Malm und des Dogger ergeben sich bei allen drei Bohrungen weitgehend übereinstimmende Erweiterungsfaktoren. Größere Unterschiede treten dagegen im Bereich der Unterkreide auf (Abb. E-5.1). Während in der Bohrung Konrad 101 die Erweiterungen im Barrême und im Hauterive sowie auch im (Ober-) Apt deutlich größer sind als im Alb, ist die Tendenz in der Bohrung Bleckenstedt 4 eher umgekehrt bzw. einheitlich. In der Bohrung Vechelde 3 wurden im Alb, im Apt und im Barrême sogar Verkleinerungen des Querschnitts (Bohrlochkonvergenzen) festgestellt.

Bei der Bewertung dieser Ergebnisse ist zu berücksichtigen, daß in der Bohrung Konrad 101 wegen der durchgehenden Kerngewinnung und der damit verbundenen längeren Bohrzeiten und der stärkeren Beanspruchung des Bohrlochs (häufiger Ein- und Ausbau der Kerngarnitur) andere Verhältnisse vorliegen, als bei den alten Tiefbohrungen allgemein. Als weitere Besonderheit bei der Bohrung Konrad 101 ist zu bemerken, daß im Bereich vom Oberapt bis zum Oberhauterive jeweils zwei Meßkurven vorliegen. Das Bohrloch wurde in diesem Bereich nach einer zwischenzeitlich durchgeführten Aufweitung zum zweiten Mal mit der Kalibersonde befahren. Da diese Aufweitung mit einer Vollbohrkrone durchgeführt wurde und der zeitliche Abstand zwischen dem Bohren und der Kalibermessung kürzer war als bei der ersten Messung, ergeben sich hierbei generell kleinere Bohrlocherweiterungsfaktoren (Abb. E-5.1).

In der Abb. E-5.2 sind zusammengefaßt die idealisierten Annahmen für die mittleren Bohrlocherweiterungen beim Abteufen derjenigen Bohrungen dargestellt, für die keine Kalibermeßergebnisse vorliegen. Dabei werden die gesamte Oberkreide, Malm, Dogger, Lias und oberer Keuper (Rhät) jeweils zusammengefaßt. Die angenommenen

Bohrlocherweiterungsfaktoren betragen für diese Einheiten 1.15, 1.10, 1.40, 1.40 und 1.00.

Die gesamte Unterkreide wird in zwei Abschnitte untergliedert. Der Bereich der Barrême- und Hauterive-Schichten wird im folgenden als tiefere Unterkreide und der Bereich der Alb- und Apt-Schichten als höhere Unterkreide bezeichnet. Diese Untergliederung wird auch in den nachfolgenden Kapiteln des Berichtes Teil E beibehalten und orientiert sich u.a. auch an der im Rahmen des Untersuchungsprogrammes als zweckmäßig nachgewiesenen Einteilung (vgl. [2]). Die Bohrlocherweiterungsfaktoren werden in der tieferen Unterkreide mit 1,60 und in der höheren Unterkreide mit 1,40 angenommen (s. Abb. E-5.2). Diese Annahme stützt sich i.w. auf die Auswertung der Meßergebnisse aus den Bohrungen Konrad 101 und Bleckenstedt 4, jedoch auch auf die im Rahmen des Untersuchungsprogramms gewonnene Einschätzung der Gebirgsverhältnisse in den entsprechenden Schichten. Im Rahmen dieses Berichtes werden in den Abbildungen für die tiefere Unterkreide aus Platzgründen die Abkürzung UKR1 und für die höhere Unterkreide die Abkürzung UKR2 verwendet. Die für die übrigen zusammengefaßten stratigraphischen Abschnitte verwendeten Abkürzungen können der Abbildung E-5.2 entnommen werden. Dort sind zum Vergleich außerdem die gängigen stratigraphischen Abkürzungen angegeben [5].

Die geringen Bohrlochkonvergenzen in der Bohrung Vechelde 3 wurden für andere Bohrungen nicht in Ansatz gebracht, da im Hinblick auf die Ermittlung der Bohrlochtransmissivitäten die Annahme größerer Bohrlochquerschnitte stets die konservative Betrachtungsweise darstellt.

#### 6. Beständigkeit der verbliebenen Bohrlochverrohrungen

Die in einigen Bohrungen abschnittsweise verbliebene Verrohrung (vgl. Kapitel 4 und Abb. E-4.2 bis E-4.27) verhindert für einen gewissen Zeitraum den möglichen Nachbruch des Gebirges in den entsprechenden Abschnitten. Dies ist vor allem für den Bereich der Unterkreideschichten von Bedeutung, in denen aufgrund der Nachbrucherscheinungen eine Selbstverfüllung der Bohrlöcher angenommen werden kann (vgl. Kapitel 2 und 10).

Die verbliebene Verrohrung verliert ihre gebirgsstützende Wirkung, wenn sie entweder vollständig oder zumindest soweit korrodiert ist, daß eine Zerstörung der geschwächten Rohre durch den Gebirgsdruck eintritt. Um den Zeitraum abzuschätzen, in dem eine derartige Korrosion abläuft, wurden vom Institut für Metallkunde und Metallphysik der TU Clausthal theoretische Untersuchungen zur Korrosion der Verrohrung durchgeführt [12]. Nach einer rechnerischen Abschätzung ist mit einem wahrscheinlichsten Wert für die Außenkorrosion der Rohre, die aus unlegiertem Stahl der Güte J-55 oder K-55 bestehen, von ca. 0,5 mm in 1000 Jahren zu rechnen. Der Chemismus der im Bereich der Schachtanlage Konrad anstehenden Tiefenwässer wurde in dieser Abschätzung berücksichtigt. Bei den vorhandenen Rohrwandstärken von ca. 7 bis 9 mm bedeutet dies einen Zeitraum von ca. 14000 bis 18000 Jahren für die vollständige Korrosion. Vergleiche mit Abschätzungen von Korrosionsgeschwindigkeiten archäologischer Eisenfunde führen auf ähnliche Größenordnungen, jedoch mit erheblich vergrößerter Streubreite [12].

Zur Überprüfung, nach welchem Zeitraum eine Zerstörung der durch Korrosion geschwächten Rohre mit größerer Wahrscheinlichkeit eintreten kann, wurde vom Unterzeichnenden eine überschlägige Abschätzung für ein Rohr mit einem Außendurchmesser von 8 5/8" durchgeführt. In dieser Abschätzung wurde ermittelt, bei welcher Wandstärke im Stahl die Fließgrenze bzw. die Festigkeit erreicht wird, wenn von außen eine rotationssymmetrische Belastung von ca. 5 MN/m² wirkt. Es ergibt sich unter diesen Annahmen, daß die o.g. kritischen Spannungszustände im Stahl erst bei einer Verringerung der Wandstärke auf ca. 1-1,5 mm erreicht werden. Im Hinblick auf die anzunehmende ursprüngliche Wandstärke von ca. 7-9 mm bedeutet

dies, daß die Rohre zu ca. 80-90 % korrodieren müssen, bevor eine größere Versagenswahrscheinlichkeit unterstellt werden kann. Auch bei einer ungleichförmigen Korrosion (z.B. punkt- oder linienförmig) kann kaum von einem wesentlich früheren Verlust der bohrlochstabilisierenden Wirkung der Verrohrung ausgegangenen werden.

Für die Untersuchung der einzelnen Bohrungen und dabei vor allem bei der Betrachtung der Selbstverfüllungsmechanismen in der Unterkreide ist daher davon auszugehen, daß die Verrohrung auch in der Nachbetriebsphase des Endlagers zumindest bis zu Zeiträumen von ca. 15.000-20.000 Jahren als bohrlochstabilisierendes Element weitgehend erhalten bleibt.

## 7. Beständigkeit und Durchlässigkeit der Zementverfüllungen

In allen Bohrungen wurden abschnittsweise Zementationen - auch als Zementbrücken oder Zementverfüllungen bezeichnet - angeordnet (s. Kapitel 4, Abb. E-4.2 bis E-4.27). Die Länge dieser Zementationen reicht dabei von wenigen Metern (i.a. mindestens 5 m) bis zu mehreren hundert Metern. Im Falle der Bohrung Konrad 101 liegt ausnahmsweise die vollständige Verfüllung einer Bohrung mit Zement vor.

Wie bereits erwähnt haben die Zementationen die Aufgabe, die Bohrungen in bestimmten Horizonten langfristig abzudichten. Üblicherweise werden hierbei jedoch nicht sogenannte geologische Zeiträume als Bestandsdauer angestrebt, sondern höchstens einige hundert Jahre. Das bedeutet jedoch nicht, daß die Zementationen nicht durchaus über wesentlich längere Zeiträume ohne nennenswerte Funktionseinbuße beständig sein können.

Da die Beständigkeit der Zementbrücken bei einigen der relevanten alten Bohrungen im Hinblick auf die Bestimmung der Bohrlochtransmissivitäten eine besondere Rolle spielen kann, wurde von

an der Ruhr-Universität Bochum ( eine gutachterliche Stellungnahme und baustoffliche Bewertung zur Dauer der Funktionsfähigkeit von Zementbrücken im Bereich der Schachtanlage Konrad [13] angefertigt. Es handelt sich dabei um eine Abschätzung der Dauer der Funktionsfähigkeit anhand theoretischer Betrachtungen auf der Grundlage der einschlägigen baustofflichen Literatur. Die Zerstörungsmechanismen durch tiefenwasserverursachte korrosive Einflüsse werden beschrieben und Angaben zum zeitlichen Verlauf der korrosiven Prozesse benannt. Daraus wird hergeleitet, ob und in welchen Zeiträumen Wasserdurchlässigkeiten der Bohrungen im Bereich der ggf. eluierten Zementbrücken zu erwarten sind. Experimente im Labor und im Feld wurden nicht durchgeführt, da die Extrapolation von Meßergebnissen aus Versuchen ein besonderes Problem darstellt. Eine Extrapolation von Meßergebnissen über 2 Zehnerpotenzen gilt in der baustofflichen Forschung gemeinhin als das erlaubte Maximum [13]. Mit Kurzzeitversuchen sind daher für die vorliegenden Fragestellungen keine verwertbaren Ergebnisse zu erzielen.

Im folgenden werden kurz die wesentlichen Inhalte sowie die Schlußfolgerungen der Ausarbeitungen von [13] sinngemäß wiedergegeben.

Die Zementation von Tiefbohrungen wurde und wird i.a. mit sogenannten Tiefbohrzementen durchgeführt. Dabei handelt es sich um Portland- oder Puzzolanzemente, die aufgrund ihrer Zusammensetzung auch bei höheren Temperaturen normal erstarren. Für die relevanten Bohrungen liegen genauere Angaben nur zur Zementation der Bohrung Konrad 101 vor ([10] und [13]). Es wurde hierfür ein Tiefbohrzement PZ 45F-HS/NA (Sulvex) verwendet; der Wasser/Zement-Wert betrug ca. 0,5 - 0,6. Es ist davon auszugehen, daß die Zementation der anderen Tiefbohrungen grundsätzlich mit gleichartigem Material erfolgte. Abweichungen hinsichtlich der Festigkeitsklasse oder anderer Spezifikationen sind jedoch für die vorliegenden Fragestellungen von untergeordneter Bedeutung. Bei Betrachtung des Materialverhaltens über geologische Zeiträume (mehr als ca. 10000 Jahre) treten die Spezifikationen gegenüber den grundsätzlichen Gegebenheiten der Stoffart in den Hintergrund. Die Stoffart ist bei allen Zementarten gekennzeichnet durch bestimmte Hydratphasen, die sich im Verlauf des Hydratationsprozesses prinzipiell ausbilden - gleich ob es sich um reinen Portlandzement oder um Portlandzement mit Zumahlstoffen puzzolaner oder latent hydraulischer Art wie Hüttensand oder Traß handelt [13].

Die aus der Hydratation des Zements hervorgehenden Festkörper (Zementstein) können über einen extrem langen Zeitraum ihre Eigenschaften so weitgehend behalten, daß sie der ihnen zugewiesenen technischen Funktion uneingeschränkt genügen. Dies hängt jedoch entscheidend davon ab, ob und ggf. mit welchem Angriffsgrad die den Zementstein berührenden Wässer, Böden oder Gase zu chemischen Veränderungen führen, in deren Verlauf Volumenveränderungen des Festkörpers eintreten. Solche chemischen Wirkungen, die den Stoff unmittelbar oder mittelbar durch chemisch verursachte physikalische Wirkungen verändern, werden in der Baustofftechnologie generell mit dem Begriff Korrosion bezeichnet.

Bei den Angriffsarten ist grundsätzlich zu unterscheiden, ob sie lösende oder treibende Korrosion verursachen. Sowohl lösende als auch treibende Angriffe sind neben der Konzentration der aggressiven Agenzien davon abhängig, daß ständig neue Agenzien herangeführt und lösliche Umsetzungsprodukte fortgetragen werden können. Die Fließgeschwindigkeit aggressiver Wässer und deren mehr oder weniger durch Böden behinderter Zutritt zur Zementsteinoberfläche sind somit maßgeblich bestimmend für den Angriffsgrad.

Lösende Korrosion kann infolge anorganischer und organischer Säuren, austauschfähiger Salze oder durch weiches Wasser entstehen. Treibende Korrosion entsteht durch in Wasser gelöste Sulfate, die in den Zementsteinkörper eindringen. Die treibende Korrosion bewirkt eine Volumenvergrößerung, in deren Verlauf Mikrorisse im Stoffgefüge entstehen.

Bei den Zementationen in den Tiefbohrungen im Bereich der Schachtanlage Konrad sind aufgrund des Chemismus der Tiefenwässer grundsätzlich sowohl lösende als auch treibende Korrosionsvorgänge zu erwarten. Eine Dauerhaftigkeit des Zementsteins über geologische Zeiträume kann daher generell nicht unterstellt werden.

Andererseits sind die Umgebungsbedingungen der Zementbrücken aufgrund von Art und Geschwindigkeit des Tiefenwasserzutritts nur schwach korrosionsfördernd. Die Wandungen der Zementbrücken stehen in Kontakt mit dem Gebirge bzw. der verbliebenen Verrohrung und an der Zementbrückenoberseite behindern Sedimente den Vorgang des korrosiven Angriffs und des Abtransports gelöster Stoffe. Allenfalls im Bereich von freien Zementbrückenunterseiten können nennenswerte Zerstörungen der Zementationen ansetzen. Die von den Mantelflächen der Zementbrücken ausgehenden treibenden korrosiven Angriffe sind in ihrer Wirkung wesentlich geringer. Ein Materialabtrag ist in Richtungen normal zur Bohrlochachse nicht möglich. Die Treiberscheinungen infolge Bildung von Ettringit und die ggf. dadurch bewirkten Mikrorisse führen zu einer Volumenvergrößerung. Das den Zementsteinkörper umgebende Gebirge setzt jedoch dieser Volumenvergrößerung einen Widerstand entgegen, so daß ein mehrachsiger Druckspannungszustand in der Zementbrücke entsteht. Selbst wenn also im gesamten Querschnitt der Zementbrücke treibende Korrosion vorhanden wäre, so würde doch der mehrachsige Druckspannungszustand verhindern, daß das Gefüge zerfällt. Eine Ausnahme

bildet hier lediglich die bereits erwähnte Zementbrückenunterseite.

Die Wasserdurchlässigkeit der Zementbrücken hängt vor dem Einsetzen von korrosiven Prozessen im wesentlichen vom Gehalt an Kapillarporen ab. Größenordnungsmäßig wird der Wasserdurchlässigkeitsbeiwert etwa mit 10<sup>-13</sup>m/s eingeschätzt. Auch durch lösende korrosive Vorgänge, die zu einer Vergrößerung des durchströmbaren Porenraums führen, wird die Wasserdurchlässigkeit nicht um mehr als größenordnungsmäßig 1-2 Zehnerpotenzen angehoben [13].

Zusammenfassend wird in [13] die Beständigkeit der Zementationen folgendermaßen eingeschätzt:

Es ist zu erwarten, daß ein tragfähiges Zementsteingefüge und damit eine trotz korrosiver Einflüsse sichergestellte sehr geringe Durchlässigkeit in einem Zeitraum von weit mehr als 1000 Jahren existiert. Es ist nicht zu erwarten, daß die Zementbrücken sich von den Wandungen lösen und eine Fuge zwischen Zementstein und Gebirge (bzw. Verrohrung) entsteht. Kristallneubildungen und Mikrorißbildungen als Folge treibender Korrosion führen zur Vergrößerung der äußeren Abmessungen des korrodierenden Festkörpers. Die Zementbrücken sind jedoch vom Gebirge (bzw. der Verrohrung) umschlossen, so daß der Volumenvergrößerung Widerstand entgegengesetzt wird, der einen Druckspannungszustand in den Zementbrücken zur Folge hat. Dieser Druckspannungszustand wirkt einem Zerfall des Gefüges infolge treibender Korrosion entgegen.

In geologischen Zeiträumen ist jedoch der Zusammenbruch des Zementsteingefüges unvermeidlich, wenn Lösungsvorgänge und treibende Korrosion den gesamten Zementsteinkörper weitestgehend durchdrungen haben. Die Folge davon ist eine sich über einen längeren Zeitraum erstreckende Zerstörung der Zementbrücke in demjenigen Bereich, der von korrosiv wirkenden Tiefenwässern erfaßt wird. Da ein kontinuierlicher Zutritt prinzipiell korrosionsfördernder Bestandteil zu den Oberflächen der Zementbrücken langfristig stattfinden wird, kann ein Bestand der Zementbrücken über geologische Zeiträume (mehr als 10000 Jahre) grundsätzlich nicht in Ansatz gebracht werden.

# 8. Sedimentation der Dickspülung und Durchlässigkeit der Spülungssedimente

Wie im Kapitel 4 im einzelnen beschrieben ist mit Ausnahme der Bohrung Konrad 101 in allen Bohrungen in großen Abschnitten die beim Bohren verwendete Dickspülung als Verfüllung verblieben. Es handelt sich bei diesen Spülungen um Ton-Wasser-Spülungen, deren Feststoffanteil überwiegend aus Ton und Schluff und in geringen Anteilen aus Sand besteht. Derartige Spülungen sedimentieren im Laufe der Zeit und bilden im unteren Teil entsprechend der Feinkörnigkeit der Sedimente relativ gering durchlässige Feststoffablagerungen. Im oberen Teil sondert sich nach vollständigem Abschluß der Sedimentation klares Wasser ab.

Das Volumen des Spülungssedimentes bezogen auf das Gesamtvolumen der Spülung vor Beginn der Sedimentation wird als Sedimentationsanteil der Spülung  $(S_S)$  bezeichnet. Bei Betrachtung der Sedimentation in einem Behältnis mit einem über die Höhe unveränderlichen Querschnitt (z.B. Standzylinder) ergibt sich der Sedimentationsanteil als Quotient aus der Höhe des Sedimentes und der Ausgangshöhe der Spülung.

Da die Kenntnis der Sedimentationsanteile der Spülungen und der Wasserdurchlässigkeit der Spülungssedimente zur Bestimmung der Transmissivitäten der gefüllten Bohrlöcher erforderlich ist, wurden vom Leichtweiß-Institut der TU Braunschweig (LWI) Untersuchungen zu diesen Fragestellungen durchgeführt ([14] und [15]). Zunächst wurden vom LWI im Jahre 1987 zwei gestörte oberflächennahe Proben aus der Spülungsdeponie Rühler Moor (Emsland) der

entnommen. Nach den Kornverteilungen handelt es sich bei diesen Spülungssedimenten um sandig, tonige Schluffböden. Zur Bestimmung der Wasserdurchlässigkeitsbeiwerte der Proben wurden Standrohrversuche mit fallender Druckhöhe durchgeführt. Nach ca. 4 Tagen Versuchsdauer ergaben sich K-Werte von 2,0 · 10<sup>-8</sup> bzw. 1,6 · 10<sup>-8</sup>m/s [15].

Um auch das Sedimentationsverhalten von Bohrspülungen zu untersuchen, wurden im Jahre 1990 Modellversuche an verschiedenen angemischten Spülungen durchgeführt [14]. Das eingesetzte Versuchsge-

rät, das aus einem 1 m hohen Zylinder mit 10 cm Durchmesser besteht, ermöglicht sowohl die Bestimmung des Sedimentationsverhaltens als auch die Bestimmung der Durchlässigkeit. Einzelheiten zum Versuchsgerät sowie die ausführliche Dokumentation der einzelnen Versuche können dem Bericht des LWI [14] entnommen werden. Im folgenden sollen die wichtigsten Ergebnisse der Versuche zusammengefaßt dargestellt werden.

In der Abb. E-8.1 sind die wesentlichen Versuchsergebnisse in einer tabellarischen Übersicht dargestellt. Für den Feststoffanteil der jeweils mit einer Spülungsdichte von 1,25 g/cm³ angemischten Versuchsspülungen wurden 5 verschiedene Bodenmaterialien verwendet. Die Materialien 1 und 2 entstammen der Tongrube bei der Ortschaft Arpke. Es handelt sich um stark schluffigen, schwach feinsandigen Ton (Arpke-braun) und um stark tonigen Schluff (Arpke-grau). Weiterhin wurde das Material 3 aus der bereits erwähnten Bohrspülungsdeponie Rühler Moor im Emsland untersucht. Hierbei handelt es sich um tonigen, schwach feinsandigen Schluff. Das Bodenmaterial 4 entstammt der Streckenvorbohrung B10 auf der 541 m-Sohle im Schacht Konrad 2. Es handelt sich um im Mörser zerkleinerten Tonstein aus den Schichten des Barrême. Nach der Kornverteilung liegt ein tonig, sandiger Schluff vor.

Bei dem fünften untersuchten Bodenmaterial handelt es sich um einen stark schluffigen, schwach tonigen Sand, der dem LWI vom Institut für Erdölgeologie der TU Clausthal zur Verfügung gestellt wurde. Das Material entstammt einer nicht näher spezifizierten Deponie. Zum Material ist anzumerken, daß es aufgrund des überwiegenden Sandanteils als nicht repräsentativ für die bei den alten Bohrungen im Modellgebiet Konrad verwendeten Spülungen angesehen wird. Die Versuchsergebnisse für dieses Material sind zwar in der Zusammenstellung (Abb. E-8.1) mit aufgeführt, finden jedoch bei der weiteren Bewertung keinen Eingang. Bei den alten Bohrungen wurde i.a. der smektitreiche Unterkreide-Ton aus dem Raum Altwarmbüchen verwendet. Aus bohrtechnischen Gründen wird bei derartigen Ton-Süßwasser-Spülungen versucht, den Sandgehalt der Spülung gering und damit die charakteristischen Eigenschaften der Spülung im günstigen Bereich zu halten [16]. Weiterhin lassen die im Modellgebiet Konrad vorliegenden Untergrundverhältnisse keine übermäßige Sandanreicherung in der Bohrspülung erwarten.

Die Bodenmaterialien wurden jeweils mit 3 verschiedenen Prüfflüssigkeiten zur Spülung aufbereitet. Bei den Prüfflüssigkeiten handelt es sich um entionisiertes Wasser (A), Salzwasser aus dem Hilssandstein im Schacht 2 (B) und Salzwasser aus dem Ort 300 auf der Schachtanlage Konrad (C). Durch die Verwendung der salzhaltigen Wässer sollte der Einfluß einer erhöhten Ionenkonzentration auf das Sedimentationsverhalten bzw. die Wasserdurchlässigkeit der Spülungen untersucht werden. Eine solche Versalzung der Spülung bzw. der Spülungssedimente tritt auch in den Bohrungen wegen des hohen Salzgehaltes der im Modellgebiet Konrad anstehenden Tiefengrundwässer auf.

Als Standardversuch wurden mit allen 5 Bodenmaterialien und jeweils allen 3 Prüfflüssigkeiten Versuche mit einer Ausgangshöhe von 1 m durchgeführt. Nach i.M. ca. 750 Stunden wurden die Sedimentationsanteile bestimmt. Sie liegen zwischen 49 und 68 % (ohne Bodenmaterial Eine Abhängigkeit von der verwendeten Prüfflüssigkeit ist nicht erkennbar (Abb. E-8.1).

Im Anschluß erfolgte die Durchlässigkeitsmessung durch Aufbringen eines hydraulischen Gradienten, der i.M. etwa 2 betrug. Die an den Sedimenten der Bodenmaterialien 1 bis 4 bestimmten Durchlässigkeitsbeiwerte betragen zwischen 2 · 10<sup>-9</sup>m/s und 5 · 10<sup>-8</sup>m/s. Auch hier ist keine deutliche Abhängigkeit von der verwendeten Prüfflüssigkeit zu erkennen. Tendenziell sind die Durchlässigkeitsbeiwerte bei Verwendung der salzigen Wässer (B und C) etwas geringer (Abb. E-8.1).

An dem Bodenmaterial 1 (Arpke-braun) wurde zusätzlich ein Sonderversuch (SV) mit einer 6 m hohen Spülungssäule durchgeführt. Als Prüfflüssigkeit wurde nur entionisiertes Wasser (A) verwendet. Der Sedimentationsanteil betrug nach 1000 Stunden ca. 54 % und liegt damit in der gleichen Größenordnung wie bei den Versuchen mit den 1 m-Säulen. Die Wasserdurchlässigkeit konnte bei dieser Versuchsanordnung nicht bestimmt werden (Abb. E-8.1). Zu Kontrollzwecken wurde gleichzeitig ein ergänzender Versuch mit einer 1 m-Säule mit exakt der gleichen Spülung durchgeführt. Der Sedimentationsanteil ergab sich in diesem Versuch zu 52 % und zeigt damit eine gute Übereinstimmung mit dem an der 6 m-Säule ermittelten Wert (Abb. E-8.1).

Ein weiterer Sonderversuch an dem Bodenmaterial 1 (Arpke-braun) wurde durchgeführt, um näherungsweise den Einfluß von Konsolidationsprozessen in der Bohrspülung zu erfassen. Hierzu wurde der hydraulische Gradient bei der Durchströmung der Probe bis zum Versuchsende kontinuierlich gesteigert. Der hydraulische Gradient erzeugt in der Probe eine Volumenkraft, die an der Unterkante der Probe eine Spannung von ca. 123,5 kN/m2 hervorruft. Bis zu einer Dauer von ca. 1000 Stunden wurde der Versuch ohne hydraulischen Gradienten durchgeführt. Der Sedimentationsanteil betrug zu diesem Zeitpunkt ca. 63 %. Anschließend wurde der hydraulische Gradient im Verlauf von ca. 670 Stunden auf ca. 26 gesteigert. Der Sedimentationsanteil am Versuchsende betrug 47,5 % (Abb. E-8.1). Es kann demnach eine Verdichtung des Sedimentes infolge der durch die Durchströmung simulierten Konsolidation festgestellt werden. Der Sedimentationsanteil liegt jedoch noch an der unteren Grenze des ohne erhöhten Gradienten ermittelten Streubereichs.

In der Abb. E-8.2 sind die o.g. Versuchsergebnisse noch einmal in einer statistischen Auswertung zusammengefaßt. Sowohl für die Sedimentationsanteile als auch für die Wasserdurchlässigkeitsbeiwerte sind die Häufigkeitsverteilungen dargestellt und die arithmetischen Mittelwerte mit den Standardabweichungen angegeben. Die verwendete Bodenart und die Prüfflüssigkeit können den Einzelergebnissen anhand der Kennzeichnung jeweils zugeordnet werden. Die Ergebnisse der Versuche an dem Bodenmaterial 5 ( Sand) sind informativ mit dargestellt. Bei der Mittelwertbildung werden sie nicht berücksichtigt. Für den Sedimentationsanteil ergibt sich ein arithmetischer Mittelwert von ca. 57 %. Der arithmetische Mittelwert der Durchlässigkeitsbeiwerte beträgt ca. 2 · 10<sup>-8</sup>m/s (Abb. E-8.2).

Die Größe des Sedimentationsanteils läßt sich mit ausreichender Genauigkeit auch anhand einer theoretischen Betrachtung abschät-

zen. Maßgebliche Parameter sind dabei die Ausgangsdichte der Spülung vor Beginn der Sedimentation ( $\rho_{S,A}$ ), die Dichte des Spülungssedimentes nach Abschluß der Sedimentation ( $\rho_{S,E}$ ) und die Dichte des Wassers in der Spülung, die mit  $\rho_W=1.0$  g/cm³ angenommen werden kann. Aus einer Volumen- und Massenbilanz ergibt sich aus diesen Größen für den Sedimentationsanteil  $S_S$  der Dickspülung die in der Abb. E-8.3 wiedergegebene Beziehung.

Während die Dichten der Spülungen im Ausgangszustand gemäß den Angaben im Kapitel 4 (Abbildungen E-4.2 bis E-4.27) bekannt sind, liegen für die Dichten der Spülungssedimente in den alten Bohrungen keine Werte vor. An den aus der Spülungsdeponie Rühler Moor im Jahre 1987 entnommenen Proben wurde vom Leichtweiß-Institut im Mittel eine Sedimentdichte von 1,45 g/cm³ ermittelt [15]. Im Hinblick auf die Bestimmung des Sedimentationsanteils stellt die Annahme größerer Sedimentdichten eine konservative Annahme dar. Den Untersuchungen an den relevanten alten Bohrungen wird im folgenden grundsätzlich eine Sedimentdichte von 1,50 g/cm³ zugrundegelegt.

Die Beziehung zwischen dem Sedimentationsanteil und den Dichteparametern ist in der Abb. E-8.3 für eine Sedimentdichte von 1,50 g/cm³ (= t/m³) zur Veranschaulichung graphisch dargestellt. Für die bei den relevanten alten Bohrungen vorliegenden Spülungsdichten von 1,20 bis 1,38 g/cm³ ergeben sich Sedimentationsanteile von 40 bis 76 %. Der Sedimentationsanteil der in den Laborversuchen verwendeten Spülungen, deren Ausgangsdichte einheitlich 1,25 g/cm³ betrug (vgl. Abb. E-8.1 und E-8.2), ergibt sich nach der theoretischen Abschätzung zu 50 %. Der in den Versuchen bestimmte Mittelwert betrug wie erwähnt 57 % (Abb. E-8.2).

Die bei den relevanten alten Bohrungen verwendeten Spülungen sowie deren Dichten sind in der Abb. E-8.4 noch einmal im einzelnen aufgeführt. Weiterhin sind dort die zugehörigen, unter der Annahme einer Sedimentdichte von 1,50 g/cm³ nach der in der Abb. E-8.3 wiedergegebenen Beziehung ermittelten Sedimentationsanteile für jede einzelne Bohrung angegeben. Für die weiteren Auswertungen zur Bestimmung der Transmissivitäten der relevanten Bohrungen werden diese Sedimentationsanteile verwendet.

Für die Durchlässigkeit des Spülungssedimentes wird dabei einheitlich ein K-Wert von  $1 \cdot 10^{-8} \text{m/s}$  angenommen. Dieser Wert ist geringfügig kleiner als der in den Versuchen bestimmte Mittelwert von  $2 \cdot 10^{-8} \text{m/s}$ . Er wird dennoch für vertretbar gehalten, da es sich im Vergleich mit den Verhältnissen bei den alten Bohrungen bei den Laborversuchen um absolute Kurzzeitversuche handelt. Bei den sedimentierten Bohrlochfüllungen ist jedoch grundsätzlich im Laufe langer Zeiträume von einer weiteren Abnahme der Durchlässigkeit auszugehen (vgl. hierzu auch Kapitel 10).

#### 9. Sonstige eingebrachte Bohrlochverfüllungen

Neben den Zementationen und den verbliebenen Dickspülungen wurde i.w. Bohrklein als Verfüllmaterial eingebracht. Bei dem Bohrklein handelt es sich um das während des Bohrens aus der Spülung abgesiebte bzw. in Absetzbecken oder Tanks abgesetzte Bohrgut. Nach der Korngröße dürfte es von der Ton- bis zur Kiesfraktion reichen und i.a. mit Bestandteilen aus der Dickspülung vermischt sein. Im Falle von gekernten Bohrstrecken handelt es sich bei dem Bohrklein auch um Bohrkerne, die i.a. vor dem Einbringen ins Bohrloch zerkleinert wurden (sog. Kernkleinschlag).

Bei der Bohrung Bleckenstedt 1 ist zusätzlich zur Bohrkleinverfüllung festgestampfter Sand als Verfüllmaterial angegeben. Wie bereits im Kapitel 4 erläutert ist davon auszugehen, daß hiervon nur der oberflächennahe Bohrlochabschnitt betroffen ist.

Bei der Bohrung Sonnenberg 2 wurde der Bohrlochabschnitt im Quartär bis 44 m Tiefe mit Kies verfüllt, da die Bohrung im Bereich einer geplanten Kiesgrube abgeteuft wurde. Sowohl die Kiesverfüllung als auch die im gleichen Teufenbereich verbliebene Verrohrung sollten im Zuge der späteren Kiesgewinnung wieder entfernt werden. Die in dieser Bohrung zwischen den Zementbrücken (54 - 1022 m) eingebrachte Verfüllung aus "abgesetztem Bohrschlamm" wird wie im Kapitel 4 erläutert konservativ als normale Dickspülungsverfüllung behandelt.

Die Bohrung Üfingen 1 wurde zwischen den Zementbrücken (10-1150 m) mit Kalkstein- und Mergelschotter aus einem Stollenausbruch südlich von Üfingen verfüllt (vgl. Kapitel 4). Die Schotterverfüllung wurde in die tonige Dickspülung eingebracht. Nach mündlicher Mitteilung der BGR ist davon auszugehen, daß der eingebrachte Gesteinsschotter vermutlich nicht dauerhaft zerfallsbeständig ist.

Zusammenfassend ist festzustellen, daß die in den Abbildungen E-4.2 bis E-4.27 unter dem Begriff Bohrkleinverfüllung (BK) aufgeführten sonstigen Bohrlochverfüllungen sich im allgemeinen auf kurze, oberflächennahe Abschnitte beschränken. Größere Verfüllungsabschnitte mit den o.g. Materialien liegen bei den Bohrungen

Bleckenstedt 1, Üfingen 1 und Wedtlenstedt 1 vor. Aufgrund der Art der Füllmaterialien und da in allen Fällen davon auszugehen ist, daß die Materialien in die mit Dickspülung gefüllten Bohrlöcher eingebracht wurden, kann eine sehr geringe Wasserdurchlässigkeit dieser Verfüllungen angenommen werden. Die Annahme eines mittleren Wasserdurchlässigkeitsbeiwertes in der Größenordnung von  $1 \cdot 10^{-8} \, \mathrm{m/s}$  erscheint gerechtfertigt. Nennenswerte Sedimentationsvorgänge brauchen innerhalb dieser Verfüllungen nicht angenommen zu werden. Im Rahmen der Untersuchungen der relevanten alten Bohrungen wird von einer Volumenkonstanz der sonstigen eingebrachten Verfüllungen ausgegangen.

## 10. Selbstverfüllung der Bohrlöcher im Bereich der Unterkreide

Nicht durch Verrohrungen oder eingebrachte Verfüllungen gestützte Bohrlochabschnitte weisen in tektonisch und mineralogisch bedingt wenig standfesten und zum Gesteinszerfall neigenden Gebirgsbereichen ausgeprägte Nachbrucherscheinungen auf. Dies führt zu einer Selbstverfüllung der Bohrlöcher mit dem nachbrechenden Gestein. Diese Vorgänge betreffen vor allem die tonigen Schichten der Unterkreide und konnten im Rahmen des Untersuchungsprogrammes eindeutig nachgewiesen werden. Die Ergebnisse dieser Untersuchungen sind für die höhere Unterkreide im Bericht Teil AI [2] dokumentiert und interpretiert und sollen an dieser Stelle nicht mehr näher erläutert werden.

Im Bereich der tieferen Unterkreide wurden die gleichen Vorgänge beobachtet. Aufgrund des höheren Spannungsniveaus und der z.T. stärkeren tektonischen Beanspruchung des Gebirges sind die Nachbruch- und Selbstverfüllungsmechanismen in der tieferen Unterkreide bereichsweise noch stärker ausgeprägt als in den höheren Schichten. Die entsprechenden Untersuchungsergebnisse werden im Bericht Teil AII dokumentiert (z.Z. in Bearbeitung).

Auch in anderen Gebirgsbereichen (z.B. Dogger und Lias) treten derartige Erscheinungen auf. Da im vorliegenden Fall jedoch die Frage der Bohrlochverfüllung im Bereich der Unterkreideschichten vorrangig zu betrachten ist, werden die Selbstverfüllungsvorgänge in anderen Gebirgsbereichen beim Nachweis der Dichtigkeit der Bohrungen nicht in Ansatz gebracht. Diese Vorgehensweise ist als konservativ anzusehen.

Neben der Beobachtung und Dokumentation der Selbstverfüllung in situ wurden Laborversuche zur Bestimmung der Durchlässigkeit des weitgehend zerfallenen, nachgebrochenen Gesteins durchgeführt. Die Versuche haben gezeigt, daß die Nachfallprodukte erwartungsgemäß sehr geringe Wasserdurchlässigkeiten besitzen. Die äußerst geringe Zerfallsstabilität der Gesteine wurde ebenfalls in Laborversuchen nachgewiesen und wird durch mineralogische Untersuchungen gestützt [2].

Die Beobachtungen in situ und die Ergebnisse der Laborversuche haben die beim Abteufen von Bohrungen in der Unterkreide immer wieder auftretenden Schwierigkeiten beim Offenhalten der Bohrlöcher bestätigt.

Die Selbstverfüllung bzw. Selbstabdichtung von Bohrlöchern im Bereich der Unterkreide kann somit als nachgewiesen angesehen werden. Im folgenden wird erläutert, in welcher Weise die Beobachtungen in quantitativer Form in den Nachweis der Dichtigkeit der alten Bohrungen eingebracht werden können. Eine besondere Bedeutung kommt dabei der Übertragung der in Laborversuchen bestimmten Wasserdurchlässigkeit des Nachfalls auf die Füllung in Bohrlöchern zu.

In der Abb. E-10.1 sind die wesentlichen Ergebnisse der Durchlässigkeitsversuche an dem in situ zerfallenen Gestein aus der Bohrung V2 (Alb) wiedergegeben. In dem dargestellten Diagramm sind die Wasserdurchlässigkeitsbeiwerte der 12 untersuchten Proben aus verschiedenen Bohrlochtiefen am Versuchsende (nach 65-100 Tagen) über der Trockendichte der Proben aufgetragen. Die zeitliche Entwicklung der Durchlässigkeitsbeiwerte sowie die Detailangaben zum Versuchsablauf können dem Bericht Teil AI [2] entnommen werden.

Die Versuchsergebnisse zeigen tendenziell eine Korrelation zwischen der Trockendichte und dem Durchlässigkeitsbeiwert. Erwartungsgemäß nimmt die Wasserdurchlässigkeit mit zunehmender Trockendichte ab. Die Durchlässigkeit lag bei allen untersuchten Proben zwischen 10<sup>-9</sup>m/s und 10<sup>-8</sup>m/s. Die Trockendichten betrugen 1,13 g/cm³ bis 1,57 g/cm³. Die Durchlässigkeitsversuche an zwei weiteren Proben werden als Langzeitversuche fortgeführt. Die zugehörigen Trockendichten konnten daher noch nicht bestimmt werden. Die Durchlässigkeitsbeiwerte betrugen für diese Proben nach 110 Tagen 3,5 · 10<sup>-9</sup>m/s bzw. 1,6 · 10<sup>-9</sup>m/s. Durchlässigkeitsversuche an Proben aus dem Nachfall in der Bohrung V102 (Barrême) zeigen im Ergebnis ähnliche Werte.

Aus der Abb. E-10.1 läßt sich zuverlässig ableiten, daß der Durchlässigkeitsbeiwert des tonig-schluffigen Nachfallproduktes der Unterkreide-Gesteine kleiner als  $1 \cdot 10^{-8} \text{m/s}$  ist, wenn die Trockendichte des Nachfalls einen bestimmten Grenzwert überschreitet. Auf der sicheren Seite liegend wird diese Grenz-Trockendichte für den Nachweis der Dichtigkeit der alten Bohrungen mit 1,3 g/cm<sup>3</sup> angenommen, obwohl die Laborversuche bereits ab Trockendichten von ca. 1,10 g/cm<sup>3</sup> Durchlässigkeitsbeiwerte von weniger als  $1 \cdot 10^{-8} \text{m/s}$  geliefert haben.

Zum Zwecke der Übertragung der Laborversuchsergebnisse auf die Nachfallfüllung im Bohrloch werden in der Abb. E-10.2 die Zusammenhänge zwischen der Trockendichte des Nachfalls im Bohrloch und den Bohrlochdurchmessern vor und nach dem Nachbruch erläutert. Hierbei wird mit d<sub>2</sub> der Durchmesser des Bohrlochs einschließlich der während des Bohrvorgangs eingetretenen Auskesselungen bezeichnet. Der Durchmesser d<sub>3</sub> beschreibt das Bohrloch nach dem Abschluß des Nachbruchs, der zur Verfüllung des Bohrlochs führt. Die Verfüllung des Bohrlochs ergibt sich aus dem nachfallenden aufgelockerten Fels, der im kompakten Zustand in der ringförmigen Zone um das ursprüngliche Bohrloch herum ansteht.

Die die Dichte, den Wassergehalt und den Porenanteil des Felses im anstehenden Zustand beschreibenden mittleren Kennwerte wurden in einer größeren Anzahl von Laborversuchen ermittelt [2] und sind in der Abb. E-10.2 wiedergegeben. Aus den geometrischen Verhältnissen und einer Massenbilanz läßt sich der ebenfalls in der Abb. E-10.2 wiedergegebene Zusammenhang zwischen den Trockendichten der Nachfallfüllung und des anstehenden Felses und den Bohrlochdurchmessern vor und nach dem Nachbruch herleiten.

Beispielsweise muß sich das Bohrloch im Verlauf des Nachbruchs auf den 1,35-fachen Durchmesser erweitern, damit die Trockendichte der Nachfallfüllung im Mittel ca. 1,0 g/cm³ beträgt. Wenn die Trockendichte geringer ist, ist auch das Verhältnis  $d_3/d_2$  entsprechend kleiner. Für die weiteren Untersuchungen wird das o.g. Zahlenbeispiel verwendet, da es größenordnungsmäßig etwa den in den Untersuchungsbohrungen beobachteten Verhältnissen entspricht.

Die Nachfallfüllung im Bohrloch mit einer mittleren Trockendichte von etwa 1,0 g/cm<sup>3</sup> wird im folgenden als locker gelagerter Nachfall im Anfangszustand bezeichnet. Der Nachfall setzt sich be-

reichsweise noch aus einzelnen gröberen Gesteinsstücken und eingeschlossenen Hohlräumen zusammen. Eine Wasserdurchlässigkeit von weniger als  $10^{-8} \, \text{m/s}$  kann in diesem Zustand noch nicht angenommen werden. Im Verlaufe längerer Zeiträume treten infolge des weiter fortschreitenden Zerfalls von Gesteinsstücken Sackungen und eine Verdichtung des Nachfalls ein. Die Trockendichte der Nachfallfüllung nimmt zu, während die Durchlässigkeit wie beschrieben abnimmt. Dieser Vorgang ist in der Abb. E-10.3 schematisch dargestellt. Bei Vernachlässigung des im oberen, frei werdenden Bohrlochabschnitt erneut einsetzenden Nachbruchs reduziert sich die Höhe der Füllsäule von der Ausgangshöhe  $H_0$  auf die Höhe  $H_1$  der verdichteten Füllung. In Analogie zur Sedimentation der Spülung (Kapitel 8) wird das Verhältnis  $H_1/H_0$  als Sedimentationsanteil des Nachfalls bezeichnet (bei konstantem Querschnitt).

Um die gesicherte Wasserdurchlässigkeit von höchstens 1  $\cdot$   $10^{-8} \text{m/s}$  annehmen zu können, muß die Trockendichte gemäß den o.g. Annahmen (vgl. Abb. E-10.1) mindestens 1,3 g/cm³ betragen. Um eine Verdichtung des locker gelagerten Nachfalls (Trockendichte 1,0 g/cm³) auf eine Trockendichte von 1,3 g/cm³ zu erzielen, darf der Sedimentationsanteil des Nachfalls (SN) höchstens 75 % betragen (s. Abb. E-10.3).

Durch die vorstehenden Ausführungen ist bereits beschrieben, in welcher Weise die Selbstverfüllung der Bohrlöcher im Bereich der Unterkreideschichten durch nachbrechendes Gestein in den Nachweisen für die alten Bohrungen quantitativ berücksichtigt wird. In Bereichen, in denen die Unterkreide nicht verrohrt oder durch eine Verfüllung (Zementation, Spülungssediment oder Bohrklein) gestützt ist, wird eine Erweiterung des Bohrlochs infolge Nachbruch auf das 1,35-fache des am Ende der Bohr- und Verfüllarbeiten vorliegenden Durchmessers angenommen. Daraus resultiert eine Trockendichte des anfänglich locker gelagerten Nachfalls von ca. 1,0 g/cm<sup>3</sup>. Durch den Ansatz eines Sedimentationsanteils des Nachfalls von 75 % wird eine Verdichtung des Nachfalls auf eine Trockendichte von ca. 1,3 g/cm<sup>3</sup> berücksichtigt. Für diesen Verdichtungsvorgang, der durch den fortschreitenden Gesteinszerfall, durch Sackungen und durch Konsolidationsvorgänge hervorgerufen wird, stehen in den alten Bohrungen mindestens ca. tausend Jahre zur Verfügung (vgl.

Kapitel 2). Die Wasserdurchlässigkeit des dicht gelagerten Nachfalls kann nachgewiesenermaßen mit höchstens  $1 \cdot 10^{-8} \text{m/s}$  angesetzt werden. Die im oberhalb der dicht gelagerten Nachfallfüllung weiterhin stattfindenden Nachbrüche und Selbstverfüllungsvorgänge werden für die Nachweisführung nicht in Ansatz gebracht. Dieser Abschnitt wird als hochdurchlässig (Durchlässigkeitsbeiwert ca.  $10^{-3} \text{m/s}$ ) angenommen. Diese Annahme liegt auf der sicheren Seite.

# 11. Auflockerungszone im bohrlochnahen Gebirgsbereich 11.1 Vorgehensweise

Erfahrungsgemäß entsteht bei der Herstellung eines Hohlraumes in gering durchlässigen Gebirgsformationen um den Hohlraum herum eine Zone mit gegenüber dem Primärzustand erhöhter Wasserdurchlässigkeit. Dies gilt grundsätzlich auch für das Abteufen von Bohrungen. Vereinfachend wird diese Zone im folgenden als Auflockerungszone bezeichnet. Ihre Ausdehnung sowie das Ausmaß der Erhöhung der Wasserdurchlässigkeit hängt u.a. vom Spannungszustand, von den mechanischen Eigenschaften des Gebirges, von der Geometrie und von der im Primärzustand vorliegenden Wasserdurchlässigkeit ab. Weiterhin spielen bohrtechnische Einflüsse (Bohrverfahren, Bohrzeit, Spülung etc.) eine Rolle.

Versuchstechnisch lassen sich die die Auflockerungszone bei Bohrungen kennzeichnenden Parameter kaum oder gar nicht erfassen. Bei der Auswertung einiger hydraulischer Tests lassen sich zwar sogenannte negative Skinfaktoren zur Berücksichtigung eines verbesserten hydraulischen Anschlusses an das Gebirge bestimmen, jedoch läßt sich hiermit die in Bohrlochlängsrichtung vorliegende Transmissivität der Auflockerungszone nicht angeben.

Die Erhöhung der Wasserdurchlässigkeit in der Auflockerungszone ist i.w. auf die Vergrößerung vorhandener bzw. die Entstehung neuer Wasserwegigkeiten infolge von Entspannungen oder Festigkeitsüberschreitungen (Brüche) im Gebirge zurückzuführen. Es liegt daher nahe, zur Abschätzung der Wasserdurchlässigkeit einen Zusammenhang zwischen den mechanischen und den hydraulischen Gegebenheiten zu suchen. Hierzu wird der sich nach dem Abteufen der Bohrung einstellende Dehnungszustand im bohrlochnahen Gebirgsbereich herangezogen, wobei zu unterscheiden ist, ob die Gebirgsfestigkeit überschritten wird oder nicht.

Eine solche Vorgehensweise kann selbstverständlich nur eine Näherungslösung sein. Grundlage der im vorliegenden Fall abgeleiteten empirischen Beziehung zwischen den Dehnungen und der Wasserdurchlässigkeit ist die Annahme einer Analogie zwischen einem Bohrloch und einem Schacht, der prinzipiell als ein Großbohrloch aufgefaßt

werden kann. Im Rahmen des Untersuchungsprogrammes wurden umfangreiche hydraulische Testarbeiten vom Schacht Konrad 2 aus durchgeführt. Die Ergebnisse lassen die Angabe von Wasserdurchlässigkeiten in den einzelnen, den Schacht umgebenden Zonen des Gebirges zu [2]. Auf der Grundlage mechanischer Berechnungen für den Schacht Konrad 2 wurden diese Wasserdurchlässigkeiten anhand des Spannungs- und Dehnungszustandes interpretiert und ein Zusammenhang zwischen Dehnungszustand und Wasserdurchlässigkeit formuliert. Die ersten Ausarbeitungen hierzu finden sich im Bericht Teil AI [2]. Zwischenzeitlich wurde die Methodik überarbeitet und verbessert. Eine ausführliche Dokumentation dieser Ausarbeitungen findet sich im Bericht Teil D zur Schachtverfüllung (z.Z. in Bearbeitung).

Zur Abschätzung der Wasserdurchlässigkeit der Auflockerungszone bei den alten Bohrungen wird auf die für den Schachtbereich abgeleiteten Beziehungen zurückgegriffen. In mechanischen Berechnungen nach der Methode der Finiten Elemente (FE) werden dazu zunächst die Spannungs- und Dehnungszustände im Nahbereich der Bohrlöcher ermittelt. Anschließend werden daraus Wasserdurchlässigkeitsbeiwerte in Abhängigkeit von der Entfernung zum Bohrlochrand abgeleitet. Durch Integration läßt sich dann die gegenüber dem Primärzustand erhöhte Transmissivität in der Auflockerungszone bestimmen.

## 11.2 Mechanische Berechnungen nach der FE-Methode

Die Berechnungen werden nur für den Bereich der Unterkreideschichten durchgeführt. Stellvertretend für die höhere Unterkreide werden dabei die mittleren Verhältnisse im Bereich der Schichten des Alb nachgebildet. Entsprechend werden für die tiefere Unterkreide die mittleren Verhältnisse im Bereich Barrême/Hauterive (zusammengefaßt) herangezogen.

In der Abb. E-11.1 sind die jeweiligen Angaben in Zahlen zusammengestellt. Die mittlere Teufe der Schichten des Alb beträgt bei den 25 relevanten alten Bohrungen ca. 287 m. Der zugehörige mittlere Bohrdurchmesser beträgt ca. 265 mm. Berücksichtigt man die während des Bohrens eingetretenen Auskesselungen mit dem im Kapitel 5 abgeleiteten Bohrlocherweiterungsfaktor von 1,40, so ergibt sich der anzunehmende mittlere Bohrlochdurchmesser am Ende der Bohrarbeiten

zu 371 mm. Für die Bohrlochfüllung wird in diesem Fall ungünstig davon ausgegangen, daß sie nach fortgeschrittener Sedimentation der Dickspülung aus Wasser besteht. Im zweiten Fall wird davon ausgegangen, daß sich das Bohrloch anschließend infolge des Nachbruchs auf den 1,35-fachen Durchmesser (vgl. Kapitel 10), d.h. 501 mm, erweitert. Die Füllung des Bohrlochs soll entsprechend den Ausführungen im Kapitel 10 aus zunächst locker gelagertem Nachfallmaterial bestehen.

Für die Durchführung der Berechnungen werden die o.g. Zahlenwerte gerundet. Als repräsentativ für die höhere Unterkreide wird zunächst ein mit Wasser gefülltes Bohrloch mit einem Durchmesser von 400 mm in 300 m Tiefe untersucht. Weiterhin wird in der gleichen Tiefe ein mit lockerem Nachfall gefülltes Bohrloch mit einem Durchmesser von 500 mm nachgebildet (Abb. E-11.1).

Für die Schichten des Barrême und Hauterive werden entsprechende Fälle untersucht. Die Zahlenwerte können im einzelnen der Zusammenstellung in der Abb. E-11.1 entnommen werden. Für die Auskesselungen während der Bohrarbeiten wurde gemäß den Ausführungen im Kapitel 5 ein Bohrlocherweiterungsfaktor von 1,60 in Ansatz gebracht. Bei Rundung der Zahlenwerte ergeben für die tiefere Unterkreide die gleichen Bohrlochdurchmesser wie im Bereich der höheren Unterkreide (400 mm und 500 mm). Als Tiefenstufe wird in den Berechnungen für den Bereich Barrême/Hauterive 600 m gewählt (Abb. E-11.1).

In der Abb. E-11.2 sind die Kennwerte des Gebirges angegeben, die in Anlehnung an die Ergebnisse der im Bericht Teil AI [2] dokumentierten Untersuchungen gewählt wurden. Im Hinblick auf Maßstabseffekte können die Kennwerte bei der Untersuchung der Bohrungen etwas größer angenommen werden, als sie in [2] aus der Interpretation der gemessenen Verformungen in der Strecke abgeleitet wurden. Für den Bereich Barrême/Hauterive werden die gleichen Kennwerte wie für den Bereich des Alb angenommen.

Da davon auszugehen ist, daß das Gebirge im Ausgangszustand wassergesättigt ist und unter Auftrieb steht, kann in den Berechnungen die Wichte des Gebirges unter Auftrieb angenommen werden. Im Gegensatz zum Gebirge in Schachtnähe ist bei den stets flüssigkeitsgefüllten Bohrlöchern (Spülung bzw. Wasser) nicht von einer Dränage, d.h. einem Verlust des Auftriebs auszugehen.

In der Abb. E-11.2 sind außerdem die aus den Bohrlochfüllungen resultierenden Stützdrücke angegeben. Da das Gebirge wassererfüllt ist und in der Berechnung als unter Auftrieb stehend angenommen wird, sind die Wasserdrücke im Gebirge und im Bohrloch ausgeglichen. Ein Stützdruck ergibt sich somit aus der Wasserfüllung nicht.

Für den locker gelagerten Nachfall ergibt sich trotz des geringen Reibungswinkels wegen des kleinen Bohrlochdurchmessers eine erhebliche Silowirkung. Der Stützdruck der lockeren Nachfallfüllung läßt sich unabhängig von der Tiefe größenordnungsmäßig mit ca.  $15 \text{ kN/m}^2$  abschätzen (Abb. E-11.2).

Insgesamt ergeben sich vier Berechnungsfälle, die für den Bereich des Alb mit A1 und A2 und für den Bereich des Barrême/Hauterive mit B1 und B2 bezeichnet werden. Die A-Fälle unterscheiden sich von den B-Fällen wegen der einheitlichen Annahmen zur Geometrie, zu den Kennwerten des Gebirges und zum Stützdruck nur hinsichtlich des von der Teufe abhängigen Primärspannungszustandes. Die Einzelheiten zu den gewählten Berechnungsfällen sind ebenfalls der Abb. E-11.2 zu entnehmen.

Die numerischen Berechnungen werden mit dem bereits im Bericht Teil AI [2] verwendeten und erläuterten Rechenprogramm FEST03 [17] durchgeführt. Der gewählte Berechnungsausschnitt ist in der Abb. E-11.3 dargestellt. Es handelt sich um eine horizontal liegende Gebirgsscheibe, deren Abmessungen in x- und z-Richtung jeweils 3 m und in y-Richtung 1 m betragen. Die Knoten der Ebenen x=0 und x=3 m sind in x-Richtung unverschieblich und in z-Richtung verschieblich gelagert, während die Knoten der Ebenen z=0 und z=3 m in z-Richtung festgehalten und in x-Richtung verschieblich sind. Durch diese Annahmen ergeben sich die x- und die z-Achse als Symmetrieachsen, so daß man die Berechnungen auf einen Viertelkreis beschränken kann. Die Knoten der Ebene y=0 sind mit den o.g. Ausnahmen in allen Richtungen frei verschieblich. Im Unter-

schied dazu werden die Knoten der Ebene y = 1 m in y-Richtung festgehalten und können sich nur in x- und z-Richtung verschieben.

Die Simulation der Überlagerung von 300 m in den Fällen A1 und A2 bzw. von 600 m in den Fällen B1 und B2 erfolgt durch Berücksichtigung entsprechender Knotenkräfte in y-Richtung. Die Simulation des Stützdrucks auf die Bohrlochwandung in den Fällen A2 und B2 erfolgt durch in den y-Ebenen radial wirkende Knotenkräfte. Das Elementetz ist in 123 Elemente mit 148 Knoten je Ebene unterteilt. Es ermöglicht eine vereinfachende Simulation der Herstellung der Bohrlöcher mit einem Durchmesser von 400 und 500 mm.

Die zur Nachbildung des Abteufens der Bohrungen durchgeführten Rechenschritte sind ebenfalls in der Abb. E-11.3 dargestellt. Im 1. Rechenschritt werden die Spannungen und Verformungen für den ungestörten Zustand vor Beginn der Bohrarbeiten ermittelt (Primärzustand). Im 2. Rechenschritt wird die Herstellung des Bohrlochs ggf. einschließlich der nachträglich eintretenden Ausbrüche simuliert, indem die Elemente im Bereich des Bohrlochs entfernt werden. Der ggf. wirkende Stützdruck wird im selben Rechenschritt simuliert. Für das Gebirge wird im 1. Rechenschritt elastisches Spannungs-Verformungsverhalten angenommen. Im 2. Rechenschritt schließt sich an die elastische Berechnung eine Iterationsrechnung zur Ermittlung viskoplastischer Verformungen an, sofern die Festigkeit des Gebirges an einer Stelle überschritten wird.

Die jeweils im 2. Rechenschritt in den Fällen A1 und A2 für den Bereich der höheren Unterkreide ermittelten Spannungen sind als Verläufe der Radialspannungen  $\sigma_{\mathbf{r}}$  und der Tangentialspannungen  $\sigma_{\mathbf{t}}$  in einem Schnitt dargestellt (Abb. E-11.4). Die Radialspannungen gehen am Bohrlochrand bis auf Null bzw. bis auf die Größe des Stützdruckes zurück, während die Tangentialspannungen dort ihren Größtwert annehmen. Da sie jedoch noch unterhalb der Festigkeit des Gebirges bleiben, bildet sich am Bohrlochrand keine plastische Zone aus. In ausreichend großer Entfernung vom Bohrloch (ca. 1 m) sind die Radial- und die Tangentialspannungen etwa gleich groß und entsprechen den primären Horizontalspannungen. In der Abb. E-11.4 ist in der gleichen Weise der Verlauf der Radialdehnungen  $\epsilon_{\mathbf{r}}$  dargestellt. Die Radialdehnungen nehmen in Bohrlochnähe überpropor-

tional zu und wachsen am Rand bis auf ca. 0,8 % an. Die Unterschiede zwischen den Fällen A1 und A2 sind sowohl hinsichtlich der Spannungen als auch der Dehnungen gering.

In der Abb. E-11.5 sind die entsprechenden Ergebnisse für die Fälle B1 und B2 (Bereich Barrême/Hauterive) dargestellt. Qualitativ sind sie denen für die Fälle A1 und A2 vergleichbar. Obwohl das Spannungsniveau aufgrund der doppelten Teufe das zweifache der Spannungen im Alb beträgt, treten auch in den Fällen B1 und B2 keine Festigkeitsüberschreitungen auf. Auch bei den Radialdehnungen stellt sich in den Fällen B1 und B2 eine Verdoppelung der Werte der Fälle A1 und A2 ein.

## 11.3 Ableitung hydraulischer Kennwerte

In der Abb. E-11.6 sind in einer Prinzipdarstellung die hergeleiteten Beziehungen zwischen dem Durchlässigkeitsbeiwert  $\mathbf{k_f}$  und den Radialdehnungen  $\epsilon_r$  dargestellt. Es wird dabei zwischen dem Bereich mit Festigkeitsüberschreitungen im Gebirge (plastische Zone) und dem elastischen Bereich unterschieden. Wie erwähnt wird die Herleitung der Beziehungen im Bericht Teil D zur Schachtverfüllung ausführlich dargestellt und soll daher hier nicht näher erläutert werden.

Da sich in den durchgeführten mechanischen Berechnungen (Fälle A1-B2) keine Festigkeitsüberschreitungen ergeben haben, wird im folgenden nur die für den elastischen Bereich gültige Beziehung verwendet. Darin ist  $k_{fo}$  der Durchlässigkeitsbeiwert, der sich in ausreichend großer Entfernung vom Bohrloch für  $\epsilon_{\rm r}\approx 0$ , d.h. im ungestörten Bereich einstellt. Für die Bestimmung der resultierenden Transmissivität werden nur Durchlässigkeiten berücksichtigt, die größer als der frei wählbare Grenzwert  $k_{\rm f}^*$  sind. Die Entfernung, von der ab diese Durchlässigkeit unterschritten wird, wird bezogen auf die Bohrlochachse mit  $r^*$  bzw. bezogen auf den Bohrlochrand mit  $\Delta r^*$  bezeichnet (Abb. E-11.6).

In den Abb. E-11.7 bis E-11.10 ist die Auswertung der Berechnungsfälle A1, A2, B1 und B2 wiedergegeben. Als Auswertegrenze für den Durchlässigkeitsbeiwert wurde dabei jeweils  $k_f^*=1\cdot 10^{-11} m/s$  ge-

wählt. Durch Integration ergibt sich die Transmissivität der Auflockerungszone, die das Bohrloch ringförmig umgibt. Im Fall A1 beträgt die Transmissivität  $T = 7, 2 \cdot 10^{-10} \text{m}^3/\text{s}$  (Abb. E-11.7). Um die Berücksichtigung der Transmissivität der Auflockerungszone für die Nachweisführung zu vereinfachen, ist es zweckmäßig, die aus dem tatsächlichen  $k_f$ -Wert-Verlauf und der zugehörigen Querschnittsfläche resultierende Transmissivität durch das Produkt aus einem Ersatz- $k_f$ -Wert und einer Ersatzquerschnittsfläche auszudrücken. Der Ersatz- $k_f$ -Wert wird mit  $1 \cdot 10^{-8} \text{m/s}$  gewählt; die zugehörige Ersatzquerschnittsfläche bzw. der entsprechende Ersatzradius lassen sich nach den in der Abb. E-11.7 angegebenen Beziehungen bestimmen. Im Fall A1 ergibt sich der Ersatzradius zu 0,25 m. Bezieht man diesen Radius auf den Radius des Bohrlochs, so ergibt sich der Quotient zu 1,25 (Abb. E-11.7).

Für den Fall A2 ergibt sich ein ähnliches Ergebnis (Abb. E-11.8). Der Ersatzradius ergibt sich bei Wahl des Ersatz- $k_f$ -Wertes von  $1\cdot 10^{-8} \text{m/s}$  zu 0,31 m. Da der Bohrlochradius in diesem Fall 0,25 m beträgt, ergibt sich der Quotient mit 1,24 etwa in der gleichen Größe wie im Fall A1.

Für den Bereich Barrême/Hauterive (Fälle B1 und B2) ergeben sich aufgrund der größeren Dehnungen entsprechend größere Quotienten. Sie betragen im Fall B1 1,77 (Abb. E-11.9) und im Fall B2 1,76 (Abb. E-11.10). Der Ersatz- $k_f$ -Wert wurde in beiden Fällen wiederum mit 1  $\cdot$  10<sup>-8</sup>m/s vorgegeben.

In Anlehnung an die vorstehend beschriebenen Berechnungsergebnisse werden im Rahmen des quantitativen Nachweises der Dichtigkeit der alten Bohrungen die Auflockerungszonen um die Bohrungen in der folgenden Weise berücksichtigt:

Für den Bereich der höheren Unterkreide, zu der im Rahmen der Nachweisführung auch die Schichten des Apt gerechnet werden, wird der Ersatzdurchmesser der Auflockerungszone mit dem Faktor 1,25 aus dem Bohrlochdurchmesser berechnet. Der Bohrlochdurchmesser beinhaltet dabei Auskesselungen während der Bohrarbeiten und ggf. später eingetretene Nachbrüche. Im Falle einer verbliebenen Verrohrung wird der Außendurchmesser der Verrohrung als Bohrloch-

durchmesser angenommen. Der Durchlässigkeitsbeiwert der Auflockerungszone wird einheitlich mit 1  $\cdot$  10<sup>-8</sup>m/s angesetzt. Die Transmissivität der Auflockerungszone ergibt sich aus dem Produkt dieses  $k_f$ -Wertes und der Querschnittsfläche der Auflockerungszone.

Für den Bereich der tieferen Unterkreide (Barrême und Hauterive) wird analog vorgegangen. Der Faktor zur Bestimmung des Durchmessers der Auflockerungszone aus dem Bohrlochdurchmesser wird jedoch mit 1,80 angenommen. Der Ersatzdurchlässigkeitsbeiwert in der Auflockerungszone beträgt auch hier 1 · 10<sup>-8</sup>m/s.

In Gebirgsbereichen oberhalb und unterhalb der Unterkreide werden die Auflockerungszonen nicht berücksichtigt, da die Transmissivitäten der Bohrungen in diesen Abschnitten nur von untergeordneter Bedeutung sind. Weiterhin lassen sich die in diesem Kapitel genannten Beziehungen nicht unmittelbar auf die Gebirgsbereiche außerhalb der Unterkreide übertragen. Für diese Bereiche fehlen u.a. die für eine Eichung erforderlichen Versuchsergebnisse.

# 12. Zustand der Bohrungen in der Nachbetriebsphase des Endlagers Konrad

Wie bereits im Kapitel 2 im Rahmen der Erläuterung des Nachweiskonzeptes begründet, ist der Zustand der relevanten alten Bohrungen in der Nachbetriebsphase des Endlagers für die Nachweisführung maßgeblich. Es ist hierbei der Zeitraum zu betrachten, der etwa tausend Jahre nach Beendigung der Einlagerung beginnt [1]. In den Untersuchungen ist daher zu berücksichtigen, ob und ggf. wie sich der Zustand der Bohrlochverfüllungen bis dahin verändert.

In den Kapiteln 6 bis 10 wurden die in die Bohrungen eingebrachten Verfüllmaterialien bzw. die verbliebenen Rohre sowie die nachfallbedingten Selbstverfüllungsvorgänge im einzelnen behandelt und hinsichtlich des Langzeitverhaltens und der Wasserdurchlässigkeit bewertet. Im folgenden werden diese Einzelaspekte gemeinsam betrachtet und bei der Ermittlung von möglichen Zuständen der relevanten alten Bohrungen in der Nachbetriebsphase des Endlagers herangezogen.

Für jede einzelne Bohrung werden drei idealisierte Fälle untersucht, die in der Abb. E-12.1 allgemein erläutert sind. Die drei Fälle werden als Fall B, C und D bezeichnet. Als Fall A wurde eine frühere Untersuchungsvariante bezeichnet, die heute nicht mehr von Interesse ist und daher hier nicht behandelt wird.

In allen drei Fällen wird grundsätzlich von einem Erhalt der Funktionsfähigkeit der bereichsweise im Bohrloch verbliebenen Verrohrung ausgegangen. Die drei Fälle unterscheiden sich jedoch hinsichtlich der Annahmen zur Beständigkeit der Bohrlochzementationen. Im Fall B wird davon ausgegangen, daß die Zementbrücken weitgehend intakt bleiben und sich ihre Lage innerhalb des Bohrlochs nicht ändert. Die Sedimentation der Dickspülung erfolgt stockwerksweise oberhalb der einzelnen Zementbrücken. Im Hinblick auf die Ausführungen im Kapitel 7 kann der Fall B als der mit der größten Wahrscheinlichkeit zutreffende Fall angesehen werden.

Im Fall C wird von einer vollständigen Zerstörung der Zementbrücken ausgegangen. Die dabei entstehenden Zementsteinpartikel sedimentieren so wie auch alle anderen Feststoffe im unteren Teil der Bohrung. Alle Feststoffe lagern sich als durchgehende, im Bohrlochtiefsten beginnende Füllsäule ab. Das Feststoffvolumen der zersetzten Zementbrücken bleibt vollständig erhalten.

Der Fall D entspricht hinsichtlich der Zerstörung der Zementbrücken und der durchgehenden Bildung einer Füllsäule dem Fall C. Abweichend hiervon wird jedoch unterstellt, daß der Zementstein vollständig in Lösung geht und abtransportiert wird. In der Feststoffverfüllung des Bohrlochs finden sich dann keine Zementsteinpartikel mehr. Im Hinblick auf die Ausführungen im Kapitel 7 muß diese Annahme als unrealistisch angesehen werden. Der Abtransport gelöster Zementsteinpartikel kann nahezu vollständig ausgeschlossen werden. Es handelt sich beim Fall D um einen absoluten Grenzfall, mit dem gezeigt werden soll, daß es bei einem Großteil der Bohrungen unerheblich ist, ob der Zement verschwindet oder nicht. Bei Bohrungen, bei denen wesentliche Teile der Verfüllung aus Zementstein bestehen (z.B. Konrad 101), darf der Fall D selbstverständlich nicht als maßgeblich herangezogen werden. Der Vollständigkeit halber findet sich die Auswertung auch für den Fall D in den Abbildungen für jede Bohrung.

Gemeinsam ist allen drei Fällen, daß die effektiven Durchmesser der Bohrlöcher und der verbliebenen Verrohrung gemäß Kapitel 4 und 5 bei der Bestimmung der Höhen der Sedimentsäulen berücksichtigt werden (volumetrische Betrachtungsweise). Weiterhin ist den Fällen B, C und D gemeinsam, daß der Nachfall in der Unterkreide idealisiert erst nach Abschluß der anderen Vorgänge stattfindet. Nachdem die in die Bohrungen eingebrachten Verfüllungen gemäß den in den einzelnen Fällen getroffenen Annahmen ihre endgültige Position eingenommen haben, setzt in den zu diesem Zeitpunkt nicht bzw. nur mit Wasser gefüllten und nicht verrohrten Abschnitten der Unterkreide die Selbstverfüllung gemäß Kapitel 10 ein. Der Sedimentationsanteil des Nachfalls wird dabei stets mit 75 % angenommen. Der Sedimentationsanteil der Dickspülungen richtet sich dagegen nach den in den einzelnen Bohrungen verwendeten Spülungen (vgl. Kapitel 8).

Die Ergebnisse der Auswertungen, die mit Hilfe eines Programms durchgeführt wurden, sind für die relevanten alten Bohrungen in den Abbildungen E-12.2 bis E-12.27 graphisch dargestellt. Ergänzend ist dort jeweils noch einmal die stratigraphische Gliederung und das Bohrlochbild für den Zustand der Bohrung am Ende der Bohrund Verfüllarbeiten mit angegeben (vgl. Kapitel 4). Für den Zustand der Bohrungen in der Nachbetriebsphase wurde zur Vereinfachung der Darstellung auf die graphische Wiedergabe der Bohrlochdurchmesser verzichtet und nur die Höhe der Füllsäulen dargestellt. Die Säulendarstellung ist jeweils mit Teufenangaben und einer Kennzeichnung des Füllungstyps versehen (vgl. hierzu Legende in Abb. E-12.1).

Im folgenden werden die Ergebnisse der Auswertungen zum Zustand der relevanten alten Bohrungen in der Nachbetriebsphase kurz erläutert. Da sämtliche Angaben in den Abbildungen E-12.2 bis E-12.27 vollständig enthalten sind, wird dabei nur auf Besonderheiten bei einzelnen Bohrungen näher eingegangen.

## Bohrung Alvesse 1 (Abb. E-12.2)

Die Unterschiede zwischen den Ergebnissen der Fälle B, C und D sind relativ gering. Die Füllsäule reicht in allen Fällen bereits vor Beginn der Selbstverfüllung in der Unterkreide bis in die Schichten der Unterkreide hinein.

## Bohrung Bleckenstedt 1 (Abb. E-12.3)

Im Fall B verbleibt im Bereich der Unterkreideschichten ein langer Abschnitt, der als hochdurchlässig (HD) angenommen wird. Selbstverfüllungsvorgänge können in diesem Abschnitt wegen der verbliebenen Verrohrung praktisch nicht stattfinden. Die Füllsäule aus Spülungssediment reicht jedoch bis in die Unterkreideschichten hinein. Im oberen Teil der Unterkreideschichten ist das Bohrloch mit Bohrklein verfüllt.

In den Fällen C und D ist das Bohrloch jeweils im gesamten Bereich der Unterkreide mit Bohrklein gefüllt.

#### Bleckenstedt 2 (Abb. E-12.4)

In allen drei untersuchten Fällen ist das Bohrloch im Bereich der Unterkreide überwiegend mit Spülungssediment gefüllt.

## Bleckenstedt 3 (Abb. E-12.5)

Auch bei dieser Bohrung ist das Bohrloch in allen drei untersuchten Fällen im Bereich der Unterkreide überwiegend mit Spülungssediment gefüllt.

#### Bleckenstedt 4 (Abb. E-12.6)

Das Bohrloch ist in allen drei Fällen zu großen Teilen im Bereich der Unterkreideschichten mit Spülungssediment gefüllt. Verbleibende Bereiche in diesen Schichten werden weitgehend durch Selbstverfüllung abgedichtet.

#### Broistedt 33 (Abb. E-12.7)

Im Fall B ist die Bohrung im Bereich der Unterkreide größtenteils mit Spülungssediment gefüllt. Der Anteil der Selbstverfüllung mit Nachfall im Bereich der Unterkreide nimmt in den Fällen C und D gegenüber dem Fall B zu.

## Broistedt 34 (Abb. E-12.8)

In allen drei Fällen sind große Teile des Bohrlochs in der Unterkreide mit Spülungssediment verfüllt. Darüber besteht die Füllung im wesentlichen aus Nachfall.

## Denstorf 1 (Abb. E-12.9)

Auch bei dieser Bohrung reicht die aus Spülungssediment bestehende Füllung bis weit in die Unterkreideschichten. Darüber füllt sich das Bohrloch überwiegend mit Nachfall auf.

#### Gleidingen 1 (Abb. E-12.10)

Die Verhältnisse sind mit denen bei der Bohrung Denstorf 1 vergleichbar.

#### Hallendorf 1 (Abb. E-12.11)

Die Verhältnisse sind mit denen bei der Bohrung Denstorf 1 vergleichbar.

#### Hüttenberg 1 (Abb. E-12.12)

Die Verhältnisse sind mit denen bei der Bohrung Denstorf 1 vergleichbar.

#### Konrad 101 (Abb. E-12.13)

In den Fällen B und C ist das Bohrloch durchgehend mit Zementstein bzw. Zementsteinpartikeln verfüllt. Im Fall D ist die Bohrung durchgehend als hochdurchlässig anzusehen. Wie bereits erwähnt ist der Fall D nur der Vollständigkeit halber mit dargestellt worden. Eine nennenswerte Lösung bzw. ein Abtransport der gelösten Produkte kann bei der Bohrung Konrad 101 insbesondere auch im Hinblick auf die den Zementstein dauerhaft schützende Verrohrung ausgeschlossen werden.

## Sauingen 1 (Abb. E-12.14)

Die Bohrung ist in allen drei Fällen (B, C und D) bis in die Unterkreide hinein mit Spülungssediment verfüllt. Darüber ist das Bohrloch im Bereich der Unterkreideschichten weitgehend mit Nachfall gefüllt.

## Sauingen 2 (Abb. E-12.15)

Die Verhältnisse sind mit denen bei der Bohrung Sauingen 1 vergleichbar.

## Sonnenberg 1 (Abb. E-12.16)

In allen 3 Fällen ist das Bohrloch in der unteren Hälfte der Unterkreide mit Spülungssediment und darüber weitgehend mit Nachfall gefüllt.

## Sonnenberg 2 (Abb. E-12.17)

Die Verhältnisse sind mit denen bei der Bohrung Sonnenberg 1 vergleichbar.

## Sonnenberg 3 (Abb. E-12.18)

Die Verhältnisse sind ähnlich wie bei den Bohrungen Sonnenberg 1 und 2. Die Verfüllung aus Spülungssediment reicht nicht ganz so hoch wie bei diesen beiden Bohrungen.

#### Sonnenberg 4 (Abb. E-12.19)

Die Verhältnisse sind ähnlich wie bei den Bohrungen Sonnenberg 1 und 2. Die Verfüllung mit Spülungssediment reicht etwas höher als bei diesen beiden Bohrungen.

## Üfingen 1 (Abb. E-12.20)

Die Bohrung ist in allen drei Fällen nahezu vollständig mit dem in die Spülung eingebrachten Gesteinsmaterial verfüllt.

## Üfingen 2 (Abb. E-12.21)

In allen drei Fällen ist das Bohrloch bis weit in die Unterkreide hinein mit Spülungssediment gefüllt. Darüber ist die Bohrung im Bereich der Unterkreideschichten weitgehend mit Nachfall gefüllt.

#### Vechelde 2 (Abb. E-12.22)

Wegen der Ablenkung der Bohrung Vechelde 2a ist nur die Verfüllung unterhalb von 821 m zu betrachten. Das Sediment der stehengelassenen Spülung füllt diesen Abschnitt in allen drei Fällen etwa zur

Hälfte auf. Es wird davon ausgegangen, daß die Zementbrücke von 821 m bis 900 m weitgehend erhalten bleibt (vgl. Kapitel 7) und demzufolge bei den weiteren Untersuchungen nur die Bohrung Vechelde 2a zu betrachten ist.

## Vechelde 2a (Abb. E-12.23)

Die Bohrung besitzt drei sehr lange Zementbrücken, von deren Erhalt mit größter Wahrscheinlichkeit ausgegangen werden kann (Fall B). Das Bohrloch ist dann bis in den Bereich der Unterkreide hinein mit Spülungssediment gefüllt. Selbstverfüllungsvorgänge können wegen der im Bereich der Unterkreide verbliebenen Verrohrung nicht stattfinden.

Bei Annahme des Falles C ist das Bohrloch im Bereich der Unterkreide etwa zur Hälfte mit sedimentierten Zementsteinpartikeln gefüllt. Im Fall D endet die Bohrlochfüllung unterhalb der Basis der Unterkreide. Wie erwähnt ist dieser Fall nur der Vollständigkeit halber mit dargestellt worden. Er muß als unrealistisch angesehen werden.

#### Bohrung Vechelde 3 (Abb. E-12.24)

Die Verhältnisse sind grundsätzlich ähnlich wie bei der Bohrung Vechelde 2a. Wegen des geringeren Anteils an verbliebener Verrohrung ist jedoch eine Selbstverfüllung im Bereich der Unterkreide möglich. Hinsichtlich der Beurteilung des Falles D gelten die Ausführungen bei der Bohrung Vechelde 2a.

#### Bohrung Vechelde 4 (Abb. E-12.25)

Die Verhältnisse sind prinzipiell mit denen bei der Bohrung Vechelde 3 vergleichbar. Die Verfüllung reicht jedoch in allen drei Fällen höher.

## Bohrung Wedtlenstedt 1 (Abb. E-12.26)

In den drei Fällen B, C und D reicht die Füllung aus Spülungssediment bis weit in die Unterkreide hinein. Darüber besteht die Füllung aus Nachfall und Bohrklein.

## Bohrklein Wierthe 1 (Abb. E-12.27)

In allen drei Fällen ist das Bohrloch im Bereich der Unterkreide größtenteils mit Spülungssediment und Nachfall gefüllt.

# 13. Transmissivitäten der Bohrungen einschließlich der Auflockerungszonen in der Nachbetriebsphase des Endlagers Konrad

Auf der Grundlage des im Kapitel 12 beschriebenen und in den Abbildungen E-12.2 bis E12.27 dargestellten Zustandes der relevanten alten Bohrungen werden im folgenden die Transmissivitäten der Bohrungen ermittelt. Die Querschnittstransmissivität einer Bohrung in einem bestimmten Bohrungsabschnitt ergibt sich als Produkt der Querschnittsfläche des Bohrlochs mit dem Durchlässigkeitsbeiwert der im Bohrloch vorhandenen Füllung. Wenn die Auflockerungszone, die das Bohrloch umgibt, berücksichtigt werden soll, so ist das Produkt aus der (Ersatz-)Fläche der Auflockerungszone und ihrem (Ersatz-)Durchlässigkeitsbeiwert zu addieren (s. Abb. E-13.1).

Da innerhalb der Bohrungen die Füllungen sowie die Bohrlochdurchmesser unterschiedlich sind, ist für interessierende Abschnitte der Bohrungen eine mittlere (axiale) Transmissivität zu bestimmen. Die hierfür gültige Beziehung ist ebenfalls in der Abb. E-13.1 wiedergegeben. Sie ergibt sich analog zur Bestimmung des mittleren Durchlässigkeitsbeiwertes K für ein Schichtenpaket aus einzelnen homogenen Schichten mit unterschiedlicher Durchlässigkeit [18]. Hierbei bestimmt praktisch die Schicht mit dem kleinsten K-Wert den Durchfluß.

Die Ergebnisse der Transmissivitätsbestimmungen werden getrennt für jede Bohrung und für den jeweils zugrundegelegten Fall (B, C oder D gemäß Kapitel 12) in tabellarischer Form wiedergegeben. Die einzelnen Tabellennummern können der Übersicht im Deckblatt (Abb. E-13.3) zu den Tabellen entnommen werden.

In der Abb. E-13.2 ist eine Legende zur tabellarischen Bestimmung der mittleren Bohrlochtransmissivitäten dargestellt, in der die einzelnen in den Tabellen verwendeten Größen und Bezeichnungen erläutert werden. In den Tabellen werden zunächst für Bohrlochabschnitte, die hinsichtlich der Stratigraphie, der Bohrlochquerschnitte und der Bohrlochfüllungen zusammengefaßt werden können, die Querschnittstransmissivitäten angegeben. Der Teufenbereich, für den jeweils einheitliche Verhältnisse gelten, ist in der Tabelle wiedergegeben.

Für die Bestimmung des Bohrlochquerschnitts wird zunächst vom Durchmesser  $d_1$  ausgegangen, der dem planmäßigen Bohrdurchmesser bzw. dem Innendurchmesser verbliebener Verrohrung entspricht (aus Abb. E-4.2 bis E-4.27). Zur Berücksichtigung der während des Bohrens eingetretenen Veränderungen des Bohrlochquerschnitts wird der Durchmesser  $d_1$  mit dem Faktor  $E_1$  gemäß Kapitel 5 (Abb. E-5.1 und E-5.2) multipliziert. In verrohrten Abschnitten wird der Innendurchmesser der Verrohrung beibehalten. Der Faktor  $E_1$  beträgt hier 1,0; in den Tabellen ist dies durch die Bemerkung "Rohr" gekennzeichnet.

Im Bereich der Unterkreide wird für nicht verrohrte und nicht bereits zuvor verfüllte Abschnitte im Zuge der Selbstverfüllung eine Bohrlocherweiterung auf das  $E_2$ -fache des Bohrlochdurchmessers angenommen. Gemäß den Ausführungen im Kapitel 10 wird für  $E_2$  der Wert 1,35 angenommen. In verrohrten bzw. bereits zuvor verfüllten Abschnitten der Unterkreide beträgt der Faktor  $E_2$  1,0. In den Tabellen ist dies durch die Bemerkung "Rohr" bzw. "Fllg." gekennzeichnet. Da der Nachfall nur im Bereich der Unterkreide angesetzt wird, ist der Faktor  $E_2$  in allen Schichten außerhalb der Unterkreide ebenfalls mit 1,0 anzunehmen.

Als maßgeblicher Durchmesser des Bohrlochs ergibt sich somit unter Berücksichtigung der o.g. Faktoren der Durchmesser  $d_3$ . Mit diesem Wert wird die Querschnittsfläche des Bohrlochs bestimmt. Unter Verwendung der in den Tabellen angegebenen Durchlässigkeitsbeiwerte der verschiedenen Füllungen läßt sich die Transmissivität des gefüllten Bohrlochs  $(T_F)$  angeben.

Die Durchlässigkeitsbeiwerte der verschiedenen Füllungen werden entsprechend den Angaben in den betreffenden Kapiteln angenommen, d.h.  $1 \cdot 10^{-8} \text{m/s}$  für das Sediment der Dickspülungen, für den sedimentierten, dicht gelagerten Nachfall aus der Unterkreide und für die unter dem Begriff Bohrklein zusammengefaßten Verfüllungen. Konservativ wird auch für die Zementationen lediglich ein Durchlässigkeitsbeiwert von  $1 \cdot 10^{-8} \text{m/s}$  angenommen. Es ist davon auszugehen, daß die Durchlässigkeit der Zementverfüllungen im Mittel deutlich geringer ist. In den als hochdurchlässig gekennzeichneten

Bohrlochabschnitten (HD) wird ein Durchlässigkeitsbeiwert von  $1 \cdot 10^{-3}$ m/s angenommen. Hierzu ist anzumerken, daß sich dieser Wert auf die Ermittlung der mittleren Bohrlochtransmissivitäten kaum auswirkt, da diese i.w. durch die Durchlässigkeitsbeiwerte der gering durchlässigen Abschnitte bestimmt werden (vgl. [18]).

Im Bereich der Unterkreideschichten wird die Ausbildung der Auflockerungszone um das Bohrloch herum berücksichtigt. Gemäß den Ausführungen im Kapitel 11 wird der Ersatzdurchmesser der Auflockerungszone im Bereich der tieferen Unterkreide (UKR1) unter Verwendung des Faktors EA= 1,80 aus dem effektiven Bohrlochdurchmesser d3 ermittelt. Im Bereich der höheren Unterkreide (UKR2) beträgt dieser Faktor 1,25. In Unterkreidebereichen mit verbliebener Verrohrung ist der Außendurchmesser der Rohre als Bezugsdurchmesser zu verwenden. Da der Durchmesser d3 in diesen Abschnitten dem Innendurchmesser der Rohre entspricht, wird der Faktor EA in diesen Abschnitten entsprechend größer angenommen. Mit Hilfe des Durchmessers d<sub>A</sub> läßt sich die Ersatzquerschnittsfläche der das Bohrloch umgebenden Auflockerungszone bestimmen. Die Transmissivität der Auflockerungszone ( $T_A$ ) ergibt sich durch Multiplikation mit dem Ersatzdurchlässigkeitsbeiwert von 1  $\cdot$  10<sup>-8</sup>m/s (vgl. Kapitel 11). In den Bereichen ober- und unterhalb der Unterkreideschichten wird die Auflockerungszone aus den bereits im Kapitel 11 erläuterten Gründen nicht berücksichtigt. In der tabellarischen Auswertung wird in diesen Abschnitten  $T_A = 0$  angenommen.

Die gesamte Transmissivität eines einzelnen Bohrungsabschnitts ergibt sich aus der Addition der Transmissivität der Bohrlochfüllung  $T_{\rm F}$  und der Transmissivität der Auflockerungszone  $T_{\rm A}$ .

Für die Verwendung in hydraulischen Berechnungen bzw. zum Vergleich mit den Annahmen bereits durchgeführter Berechnungen werden jeweils die mittleren Transmissivitäten in bestimmten Abschnitten der Bohrungen ermittelt (vgl. Abb. E-13.1). Für die Abschnittsunterteilung ist dabei die Orientierung an der Stratigraphie zweckmäßig. Es werden die mittleren Transmissivitäten für die Abschnitte oberhalb und unterhalb der Unterkreide und für die Unterkreide selbst angegeben. Die Transmissivität im Bereich der Unterkreide wird dabei sowohl getrennt nach tieferer Unterkreide (UKR1)

und höherer Unterkreide (UKR2) als auch für den Gesamtabschnitt aufgeführt. Die mittleren (axialen) Transmissivitäten der Abschnitte sind jeweils unterhalb der eigentlichen Tabellen angegeben.

Die Zahlenwerte der Auswertungen sollen hier nicht näher erläutert werden. Sie können vollständig und nachvollziehbar den Tabellen E-13.3/1 bis E-13.3/25 (jeweils B, C und D) entnommen werden.

## 14. Vergleich der ermittelten Transmissivitäten mit den Annahmen durchgeführter Grundwasserbewegungs- und Radionuklidaus- breitungsrechnungen

In den Tabellen E-14.1/1 bis E-14.1/9 sind die im Kapitel 13 ermittelten mittleren Transmissivitäten für die 25 relevanten alten Bohrungen jeweils für die drei Fälle B, C und D noch einmal zusammengestellt und den Annahmen des Referenzfalles R34 ([3] und [4]) gegenübergestellt. Eine Übersicht der Tabellen kann dem Deckblatt hierzu (Abb. E-14.1) entnommen werden.

In den Tabellen sind jeweils die mittleren Transmissivitäten für die Bohrlochabschnitte oberhalb und unterhalb der Unterkreide sowie für den Bereich der Unterkreide selbst angegeben. Die Bohrungstransmissivitäten im Bereich der Unterkreide sind zusätzlich nach den beiden Bereichen tiefere Unterkreide (UKR1) und höhere Unterkreide (UKR2) aufgeschlüsselt. Da in den Berechnungen nicht alle Bohrungen modelliert wurden (vgl. Kapitel 3), können den ermittelten Transmissivitäten auch nicht für alle Bohrungen Berechnungsannahmen gegenübergestellt werden. Von nicht modelliert wurden die Bohrungen Denstorf 1, Gleidingen 1, Sonnenberg 1-4, Wedtlenstedt 1 und Wierthe 1. Die Bohrungen Vechelde 2a, 3 und 4 wurden in den Berechnungen vereinfachend zusammengefaßt und am Ort der Bohrung Vechelde 2a im Modell nachgebildet. Zu Vergleichszwecken werden daher die für diese drei Bohrungen ermittelten mittleren Transmissivitäten ebenfalls abschnittsweise zusammengefaßt wiedergegeben (Tab. E-14.1/7). Die Einzelwerte für die drei Bohrungen finden sich in der Tab. E-14.1/8.

In den Tabellen sind analog zu den Auswertungen in den Kapiteln 12 und 13 grundsätzlich für jede Bohrung die drei Fälle B, C und D angegeben. Wie erwähnt dient der Fall D jedoch nur der Veranschaulichung der geringen Bedeutung des Zementsteinanteils in den meisten Bohrungen und wird als nicht realistisch und als nicht maßgeblich bewertet. Wie gering im Bereich der Unterkreide die Unterschiede zu den Fällen B und C bei den meisten der Bohrungen sind, läßt sich anhand der Zusammenstellung in den Tabellen noch einmal deutlich zeigen. Bedeutend sind die Unterschiede nur bei den Bohrungen Konrad 101 und Vechelde (2a + 3 + 4), da diese Bohrungen

sehr lange Zementationen besitzen. In den Bohrlochabschnitten oberhalb und unterhalb der Unterkreide sind die Unterschiede im Fall D gegenüber den Fällen B und C z.T. größer. Für die Nachweisführung ist dies jedoch ohne Bedeutung.

In der Abb. E-14.2 ist der Vergleich der maßgeblichen ermittelten Transmissivitäten mit den Annahmen des ——Referenzfalles R34 in einer schematischen Übersicht noch einmal graphisch dargestellt. Als maßgeblich wurde dabei i.a. derjenige Fall (B, C oder D) ausgewählt, der die ungünstigste, d.h. größte Transmissivität im Bereich der zusammengefaßten Unterkreideschichten liefert. Bei den Bohrungen Konrad 101 und Vechelde (2a + 3 + 4) wurde die Auswahl von vorneherein auf die Fälle B und C beschränkt (s.o.).

Auf die in der Abb. E-14.2 dargestellten Ergebnisse soll an dieser Stelle nicht weiter eingegangen werden, da eine Bewertung der Ergebnisse im Kapitel 15 erfolgt.

## 15. Schlußfolgerungen im Hinblick auf den Nachweis der Dichtigkeit der alten Bohrungen

Durch Vergleich der im vorliegenden Bericht (Teil E) dokumentierten Ergebnisse mit den Annahmen von lassen sich Schlußfolgerungen im Hinblick auf die Dichtigkeit der alten Bohrungen ableiten. Es wird hierbei der Referenzfall Tiefbohrungen R34 ([3], [4]) zugrundegelegt. Es ist vorwegzunehmen, daß die im Referenzfall R34 getroffenen Annahmen nicht unbedingt die Anforderungen darstellen, die von den Bohrungen zu erfüllen sind. Wenn die ermittelten Transmissivitäten in einigen Bohrungen im als maßgeblich für den Nachweis anzusehenden Bereich der Unterkreide größer sind, als die für diese Bohrungen von angenommenen Transmissivitäten, so kann durch Vergleich mit anderen Bohrungen die Erfüllung der Anforderungen dennoch plausibel dargelegt werden.

Aus den für eine größere Anzahl von Bohrungen von getroffenen Annahmen (z.B. Bleckenstedt 1, Hüttenberg 1, Sauingen 1 und 2, Üfingen 1) läßt sich ableiten, daß die Anforderung an die mittlere Transmissivität einer Bohrung im Bereich der Unterkreide nicht höher ist als etwa 10<sup>-6</sup> - 10<sup>-7</sup>m³/s (Abb. E-14.2). Die in einigen Bohrungen im unteren und in Ausnahmefällen im gesamten Bereich der Unterkreide (Konrad 101, Bleckenstedt 2) angenommene Transmissivität von ca. 10<sup>-9</sup> - 10<sup>-10</sup>m³/s stellt nach Einschätzung des Unterzeichnenden keine echte Anforderung dar. In den im vorliegenden Bericht dokumentierten Untersuchungen konnte nachgewiesen werden, daß die maßgeblichen mittleren Transmissivitäten der Bohrungen im Bereich der Unterkreide bei den relevanten alten Bohrungen stets im Bereich von 10<sup>-8</sup> - 10<sup>-9</sup> m³/s liegen (Abb. E-14.2 und Tab. E-14.1/1 bis E-14.1/9). Dies gilt auch für die in den -Berechnungen nicht modellierten 8 Bohrungen.

Einen Sonderfall stellen die 3 Vechelde-Bohrungen dar. Für diese Bohrungen wurde von in der Summe eine Transmissivität von  $1\cdot 10^{-6} \text{m}^3/\text{s}$  im Bereich der Unterkreide angenommen. Demgegenüber steht eine nachgewiesene, wesentlich geringere Transmissivität von  $2\cdot 10^{-8} \text{m}^3/\text{s}$  (Abb. E-14.2).

Die Transmissivitäten der Bohrungen in den Schichten ober- und unterhalb der Barriere Unterkreide sind für den Nachweis der Dichtigkeit zweitrangig. Die Abweichungen zwischen den ermittelten Transmissivitäten und den von angenommenen sind i.a. gering. Sie betragen mit Ausnahme der Bohrungen Bleckenstedt 1 und Üfingen 1 stets weniger als eine Zehnerpotenz. In den beiden genannten Ausnahmefällen sind die Abweichungen im Bereich der Schichten oberhalb der Unterkreide größer. Die vom Unterzeichnenden ermittelten Transmissivitäten sind hier deutlich kleiner als die von angenommenen (Abb. E-14.2).

Zusammenfassend läßt sich feststellen, daß die Dichtigkeit der relevanten alten Bohrungen auf der Grundlage konservativer Annahmen
quantitativ nachgewiesen worden ist. Diese Aussage beruht auf
einer Bewertung der Annahmen der von bereits durchgeführten Berechnungen zur Grundwasserbewegung und zur Radionuklidausbreitung (Referenzfall Tiefbohrungen R34 [3], [4]) und darauf, daß
in diesen Berechnungen die Radionuklidkonzentrationen im oberflächennahen Grundwasser unterhalb der zulässigen Konzentrationen
bleiben.

Aachen, den 28.06.1991



## Literatur

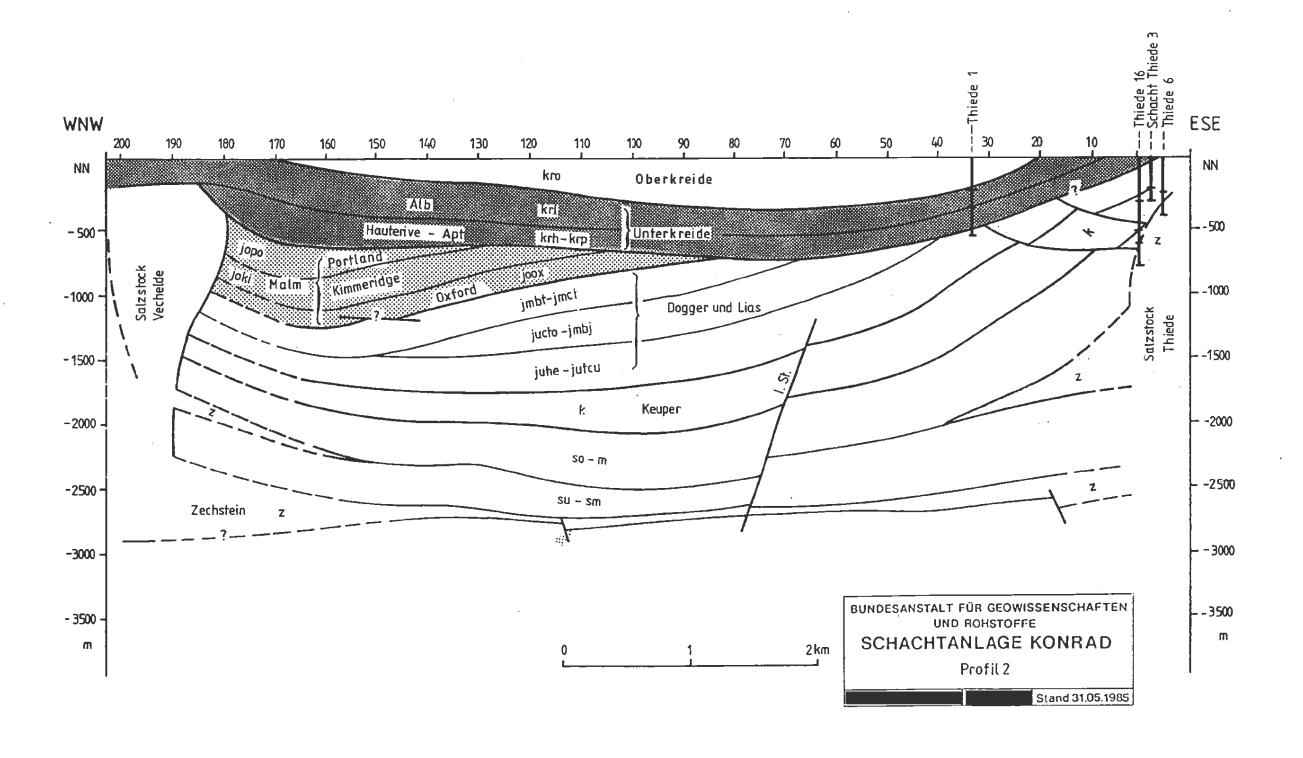
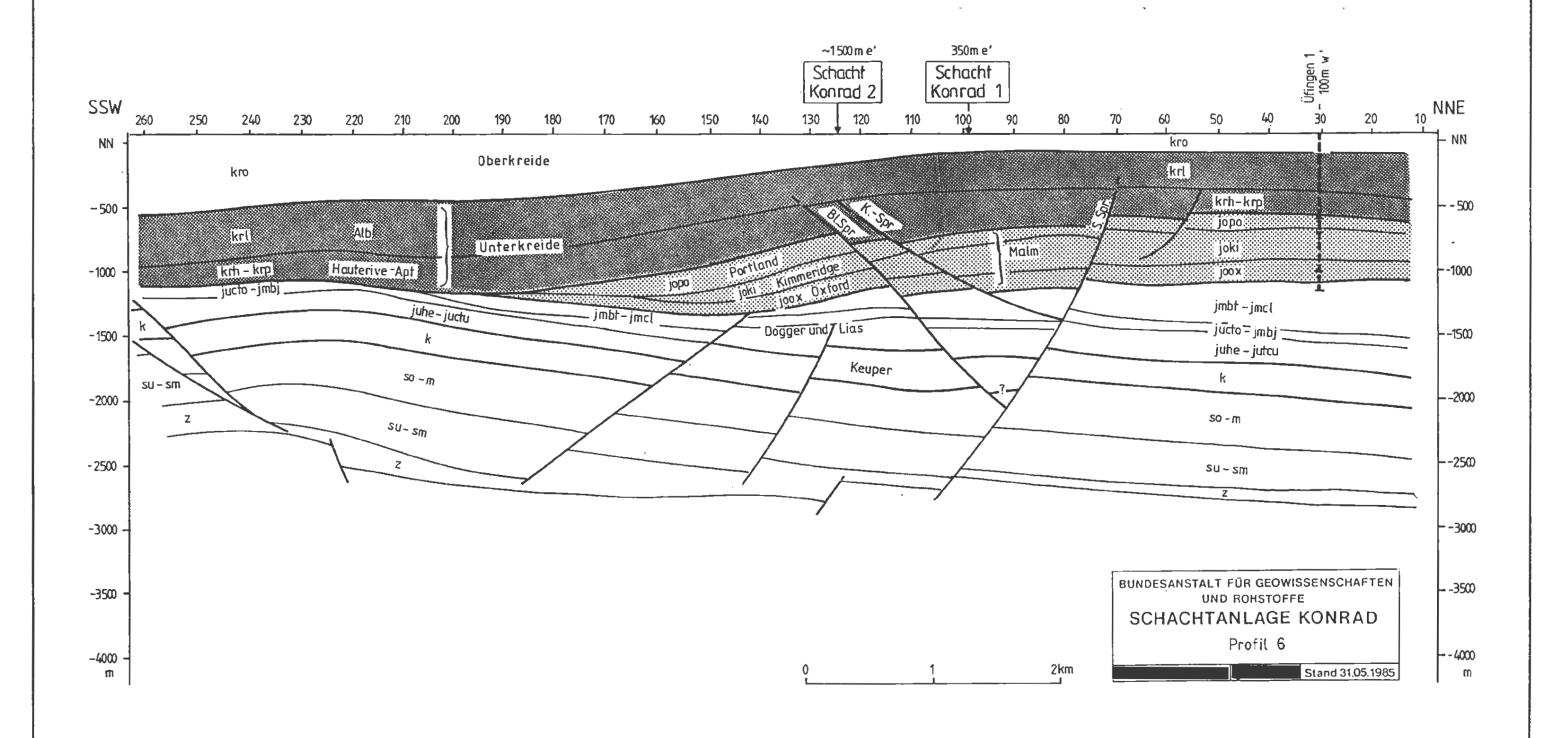
- [1] Plan Endlager für radioaktive Abfälle Schachtanlage Konrad Salzgitter, Kapitel 3.1.10 (Geowissenschaftliche Bewertung), Bundesamt für Strahlenschutz, Salzgitter, Fassung April 1990.
- [2] Wittke, W.: Endlager Konrad, Schachtverfüllung/Alte Bohrungen, Bericht Teil AI: Ergebnisse des Untersuchungsprogramms im Bereich der Unterkreide (343 m Sohle), Aachen, März 1991.
- [3] Gilby, D. et al.: Schachtanlage Konrad, Modellrechnungen mit dem Programm FEM 301 für ein alternatives geologisches/ hydrogeologisches Modell, Auswirkungen der bestehenden Tiefbohrungen, Band I (Textteil) und Band II (Abbildungen), Colenco, Baden/Schweiz, Entwurf August 1989.
- [4] Gilby, D. et al.: Schachtanlage Konrad, Einfluß der bestehenden Tiefbohrungen und des Schachtverschlusses, Modellierung der Radionuklidausbreitung, Band I (Textteil) und Band II (Abbildungen), Colenco, Baden/Schweiz, Entwurf August 1989.

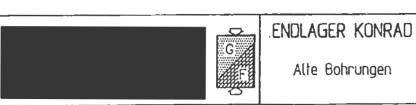


- [9] Gerardi, J.: Bohrung Konrad 101, Teil I Geologischer Bericht, Teil II - Schichtenverzeichnis, BGR, unveröff. Bericht, Hannover 1986.
- [10] Reppert, D. und Behrens, J.: Bericht über das Abteufen der Untersuchungsbohrung Konrad 101, DBE, Peine, September 1985.

- [11] Ergebnisse der Kalibermessungen in den Bohrungen Konrad 101 (07.01.85, 02.02.85, 26.03.85, 29.03.85, 09.05.85, durchgeführt von Fa. Dresser Atlas, Stuhr), Bleckenstedt 4 (09.09.59, durchgeführt von Fa. Atlas, Kiel) und Vechelde 3 (09.01.55, durchgeführt von Fa. Atlas, Kiel), Archiv BGR/NLfB, Hannover.
- [12] Heusler, E.: Korrosion von im Bohrloch verbliebener Verrohrung, Bericht der Abteilung Korrosion und Korrosionsschutz des Instituts für Metallkunde und Metallphysik der TU Clausthal, November 1988.
- [13] Schorn, H.: Korrosion von Zementbrücken, Gutachterliche Stellungsnahme und baustoffliche Bewertung zur Dauer der Funktionsfähigkeit von Zementbrücken im Bereich der Schachtanlage Konrad, Arbeitsgruppe für Materialtechnologie der Ruhr-Universität Bochum, November 1990.
- [14] Buß, J. und Schmidt, J.: Schachtanlage Konrad, Sedimentationsverhalten und Durchlässigkeit von Bohrspülungen, Bericht des Leichtweiß-Instituts der TU Braunschweig, Januar 1991.
- [15] Buß, J. und Schmidt, J.: Projekt Konrad, Ermittlung von Wasserdurchlässigkeiten und Abschätzung von Sedimentationsraten, Bericht des Leichtweiß-Instituts der TU Braunschweig, April 1987.
- [16] Grodde, K.-H.: Bohrspülungen und Zementschlämme in der Tiefbohrtechnik, Im Verlag der Erdöl-Zeitschrift Otto Vieth, Hamburg, 1963.
- [17] Wittke, W.: Felsmechanik Grundlagen für wirtschaftliches Bauen im Fels, Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1984.
- [18] Lang, H.-J. und Huder, J.: Bodenmechanik und Grundbau, 4. Auflage, Springer-Verlag, 1990.





Abb. E - 3.2
Geologisches Profil 2 (ESE-WNW)



.ENDLAGER KONRAD



<u>Abb. E - 3.3</u> Geologisches Profil 6 (NNE - SSW)



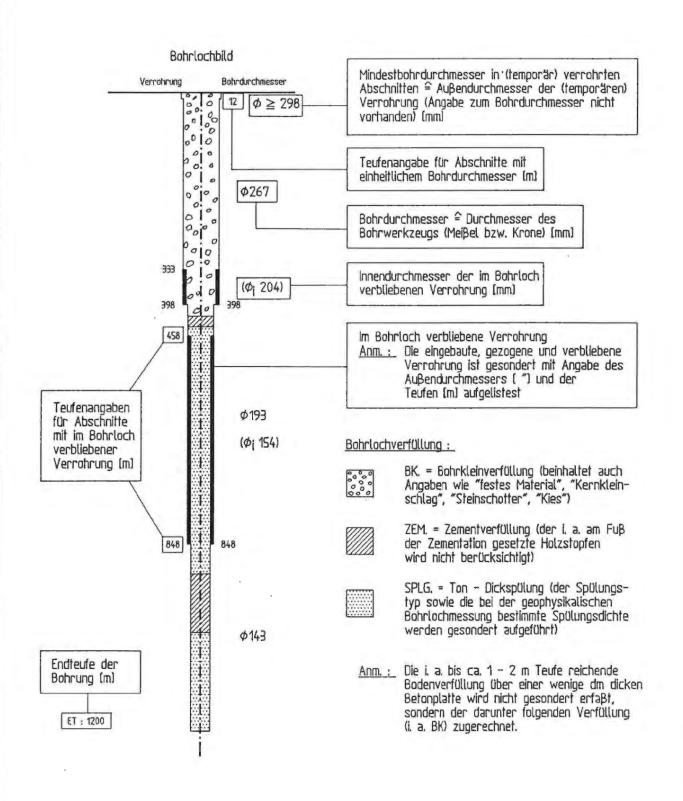



Abb. E - 4.1

Legende zu den Bohrlochbildern Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

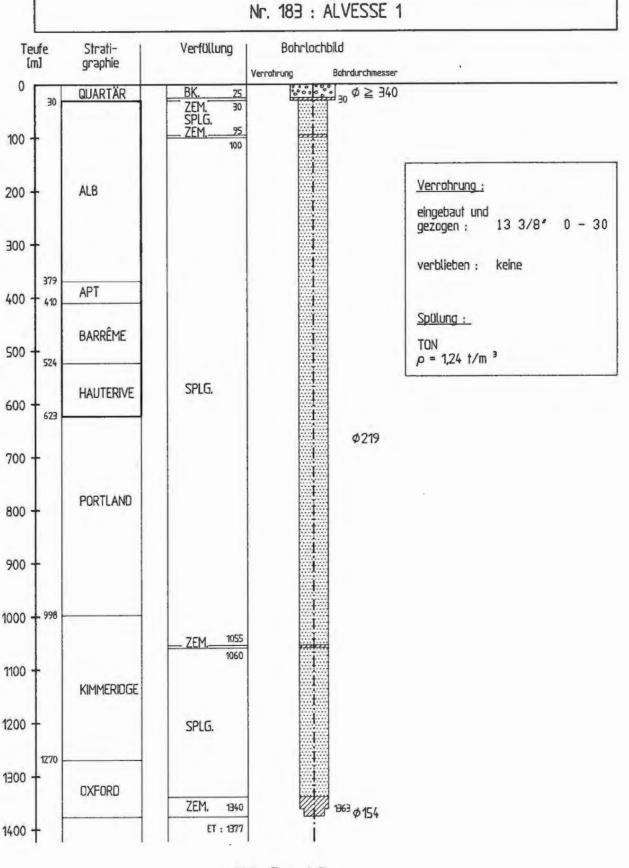



Abb. E - 4.2 Bohrung Nr. 183 : ALVESSE 1 Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

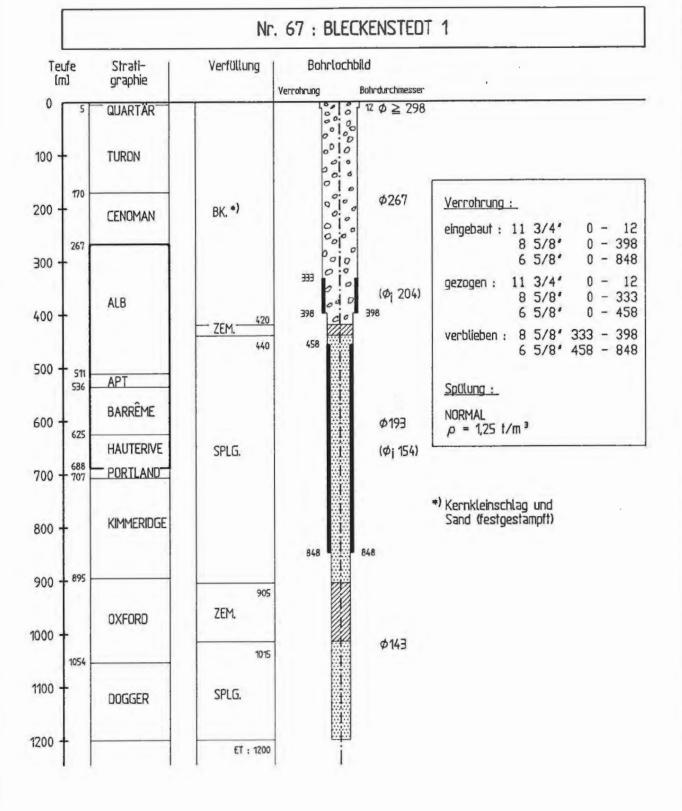
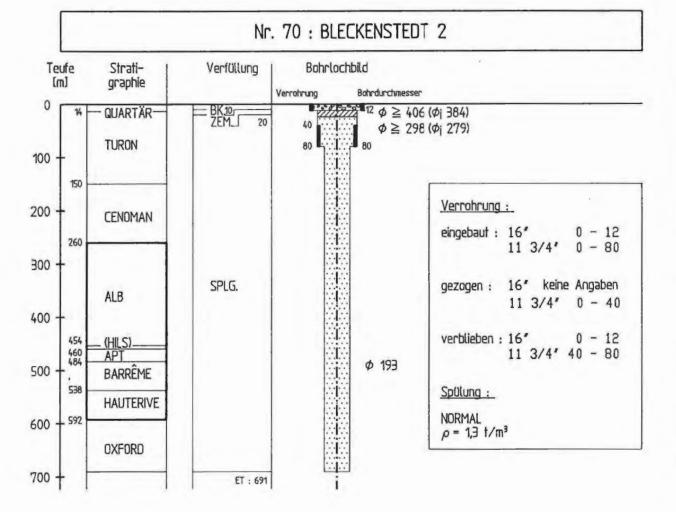




Abb. E - 4.3 Bohrung Nr. 67 : BLECKENSTEDT 1 Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

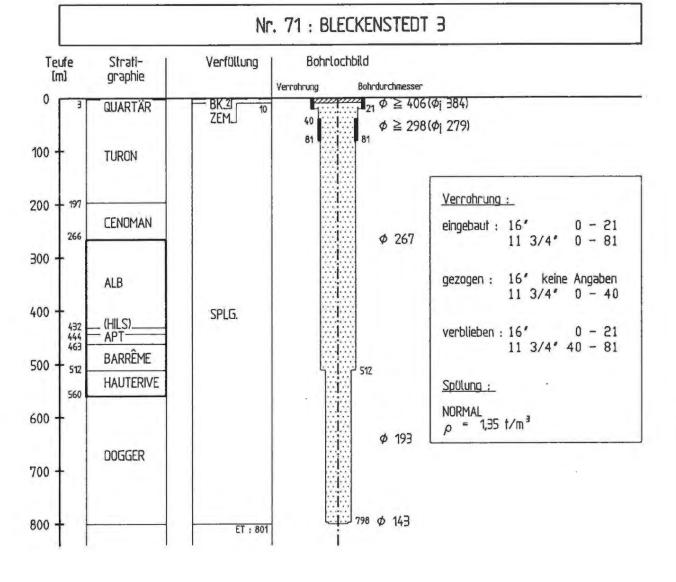


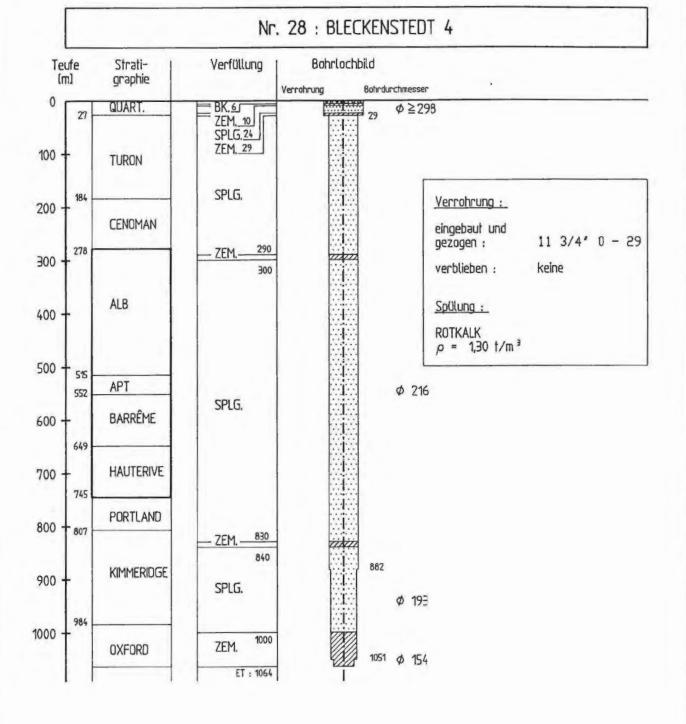
Bohrung Nr. 70 : BLECKENSTEDT 2

Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

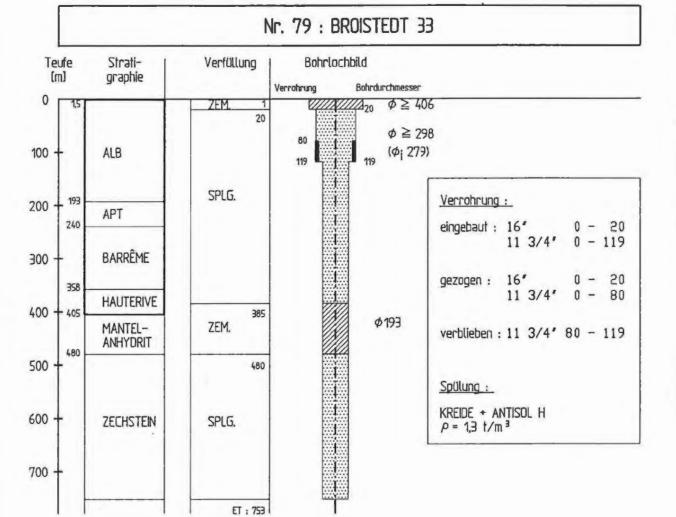




Abb. E - 4.5

Bohrung Nr. 71 : BLECKENSTEDT 3

Zustand am Ende der Bohr- und Verfüllarbeiten



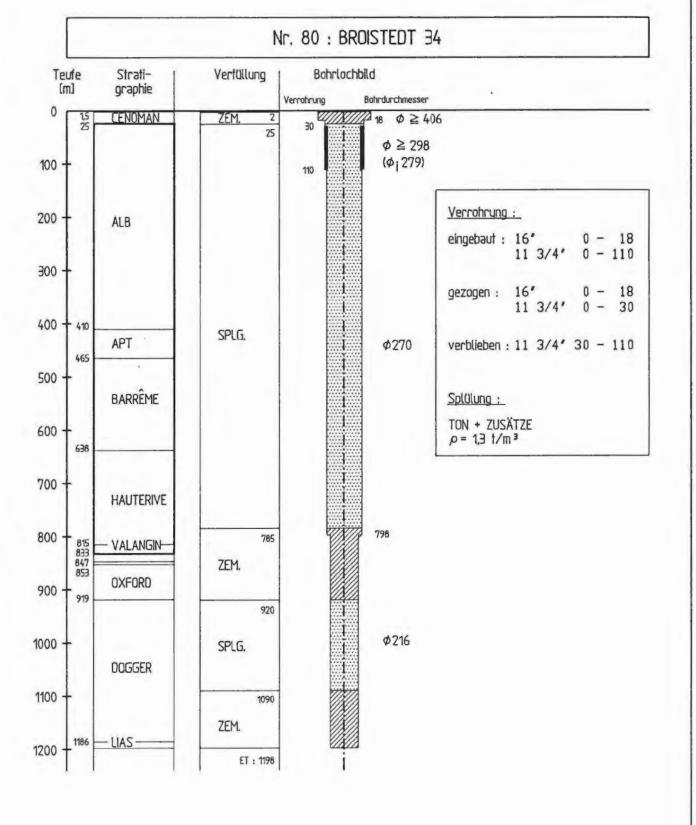

ENDLAGER KONRAD



<u>Abb. E - 4.6</u>
Bohrung Nr. 28 : BLECKENSTEDT 4
Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

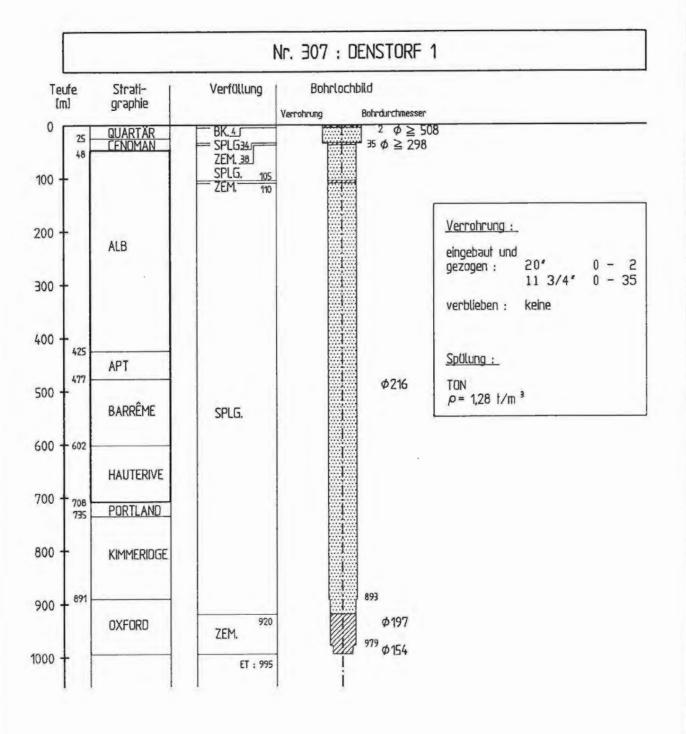



Bohrung Nr. 79: BROISTEDT 33

Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

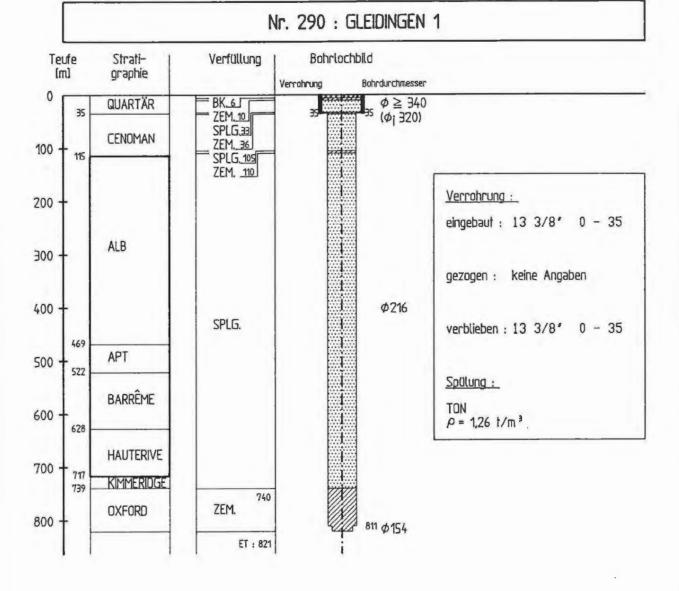



Bohrung Nr. 80 : BROISTEDT 34

Zustand am Ende der Bohr- und Verfüllarbeiten

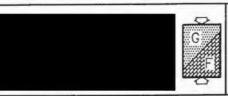


ENDLAGER KONRAD

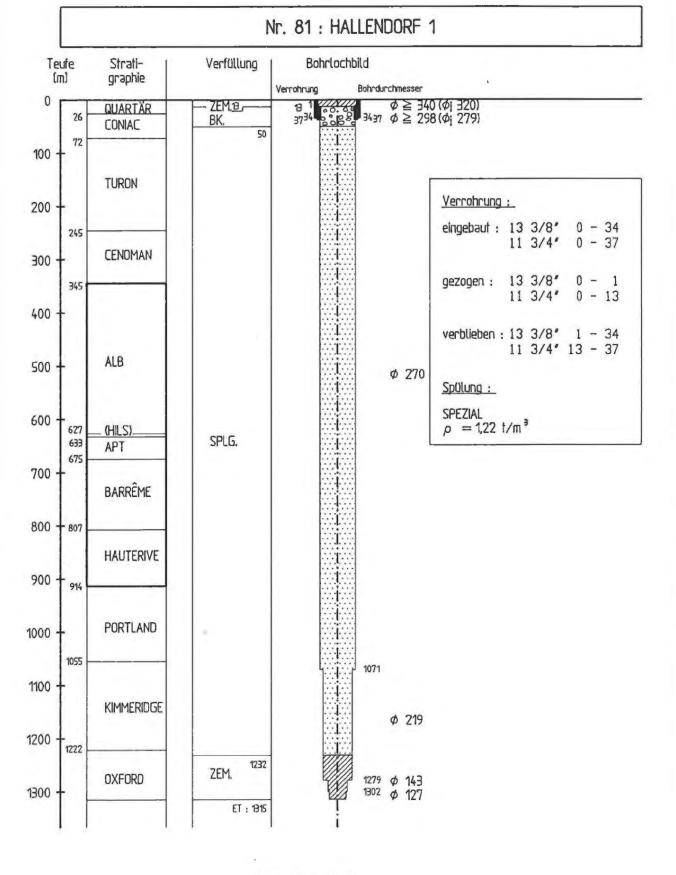



Bohrung Nr. 307 : DENSTORF 1

Zustand am Ende der Bohr- und Verfüllarbeiten



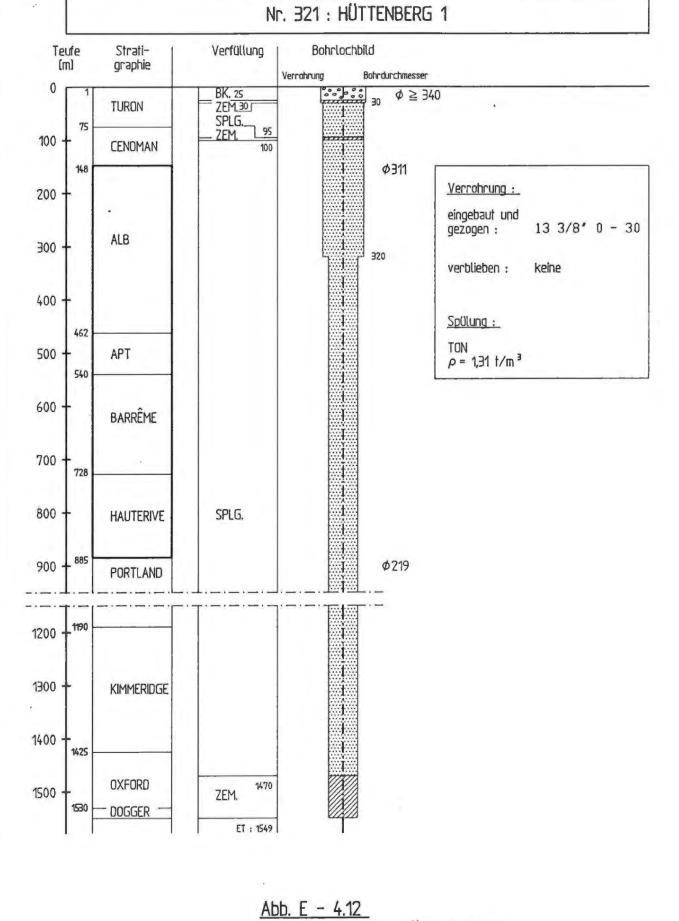

ENDLAGER KONRAD




Bohrung Nr. 290 : GLEIDINGEN 1

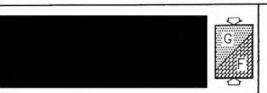
Zustand am Ende der Bohr- und Verfüllarbeiten




ENDLAGER KONRAD



<u>Abb. E - 4.11</u>
Bohrung Nr. 81 : HALLENDORF 1
Zustand am Ende der Bohr- und Verfüllarbeiten




ENDLAGER KONRAD



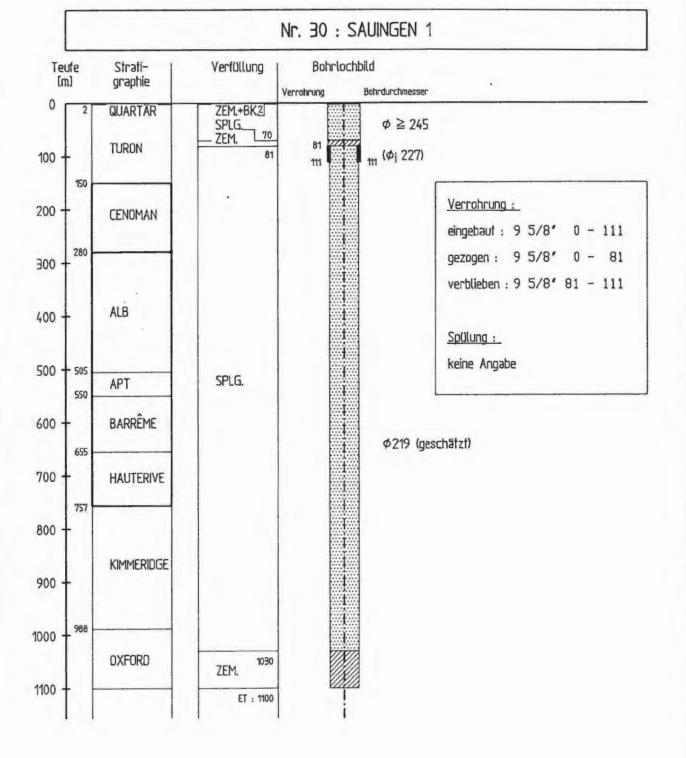
Bohrung Nr. 321 : HÜTTENBERG 1

Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

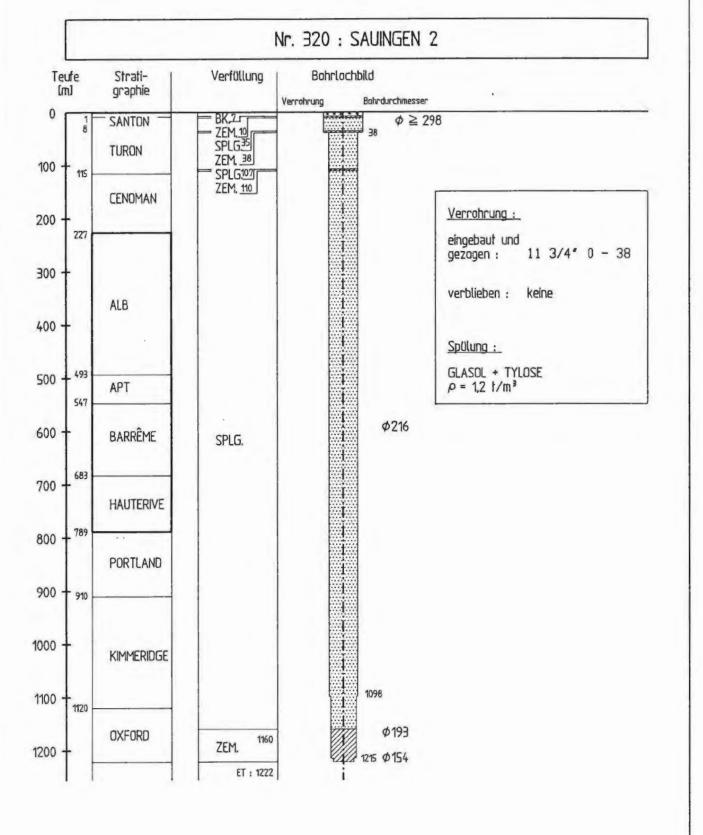
## KONRAD 101 Teufe Strati-Verfüllung Bohrlochbild (m) graphie $\phi_{a}$ der Verrohrung Bohrdurchmesser 0 \$711 (gerammt) QUARTÀRφ711 · TURON 100 $\phi 473$ \$610 (Ø; 451) 164 <u>Verrohrung</u>: 200 CENOMAN eingebaut: 28° 11 250 18 5/8" 0 - 289289 289 L 13 3/8" 0 - 473300 300 9 5/8" 0 - 740ALB φ340 $\phi 4444$ 3 gezogen ; 58, 400 $(\phi_1 320)$ 3 18 5/8" 0 -0 -(HILS) 13 3/8" 3 456 460 477 473 APT-0 - 300<sup>⊥</sup> 478 9 5/8" ZEM. 500 BARRÊME verblieben: 28" 3 - 11558 18 5/8" 3 - 289HAUTERIVE 3 - 47313 3/8\* Φ245 Ø311 600 9 5/8" 300 - 740 $(\phi_1 227)$ KIMMERIDGE Spülung : 700 OXFORD vollständig durch 750 Zement ersetzt 776 800 Ø216 DOGGER 900 1000 ET: 1002


Abb. E - 4.13

Bohrung: KONRAD 101

Zustande am Ende der Bohr- und Verfüllarbeiten



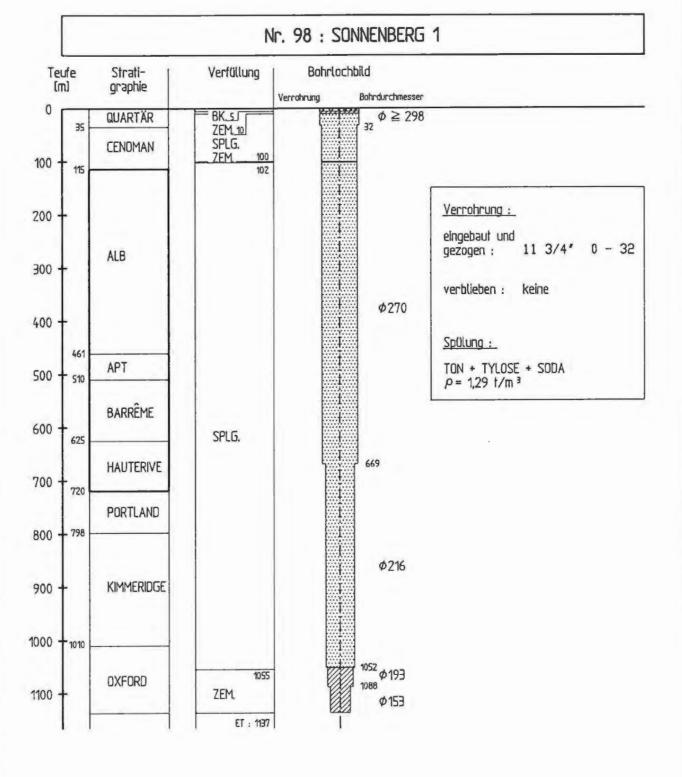

ENDLAGER KONRAD



<u>Abb. E - 4.14</u>
Bohrung Nr. 30 : SAUINGEN 1
Zustand am Ende der Bohr- und Verfüllarbeiten



ENOLAGER KONRAD

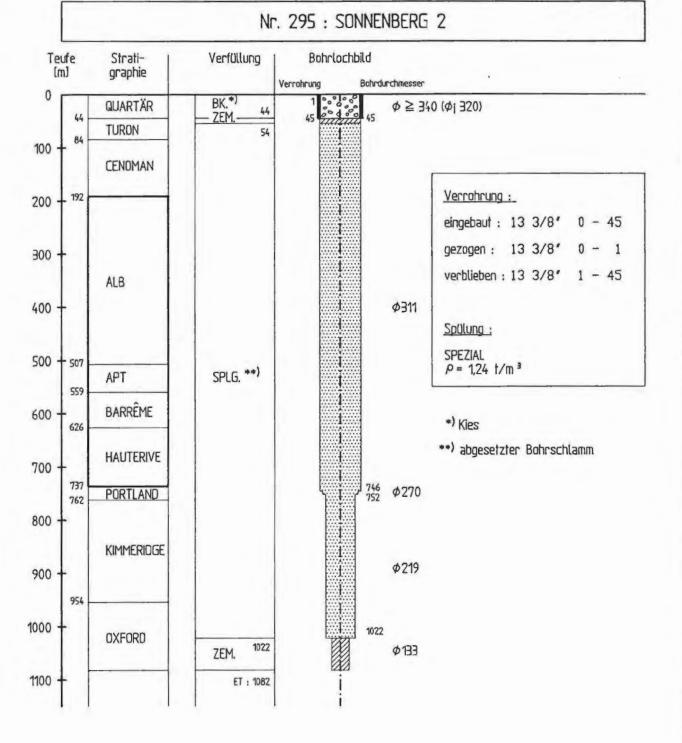



Bohrung Nr. 320 : SAUINGEN 2

Zustand am Ende der Bohr- und Verfüllarbeiten



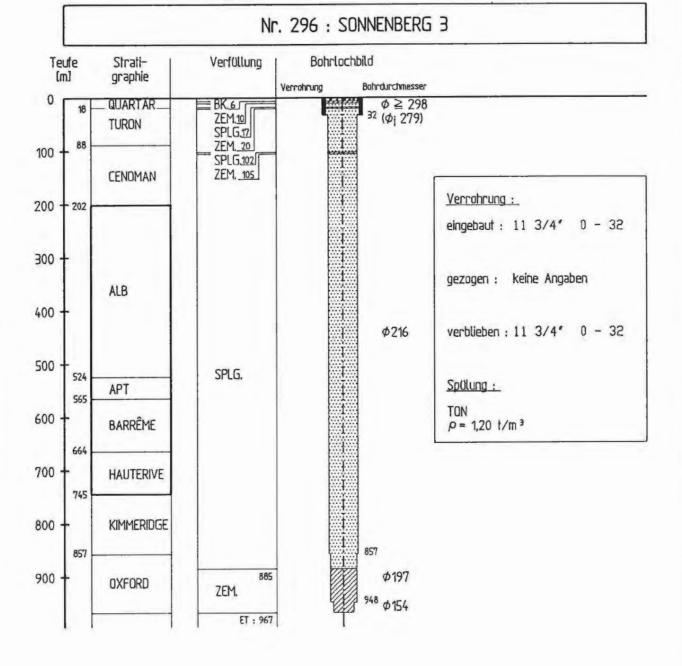
ENDLAGER KONRAD




Bohrung Nr. 98 : SONNENBERG 1

Zustand am Ende der Bohr- und Verfüllarbeiten



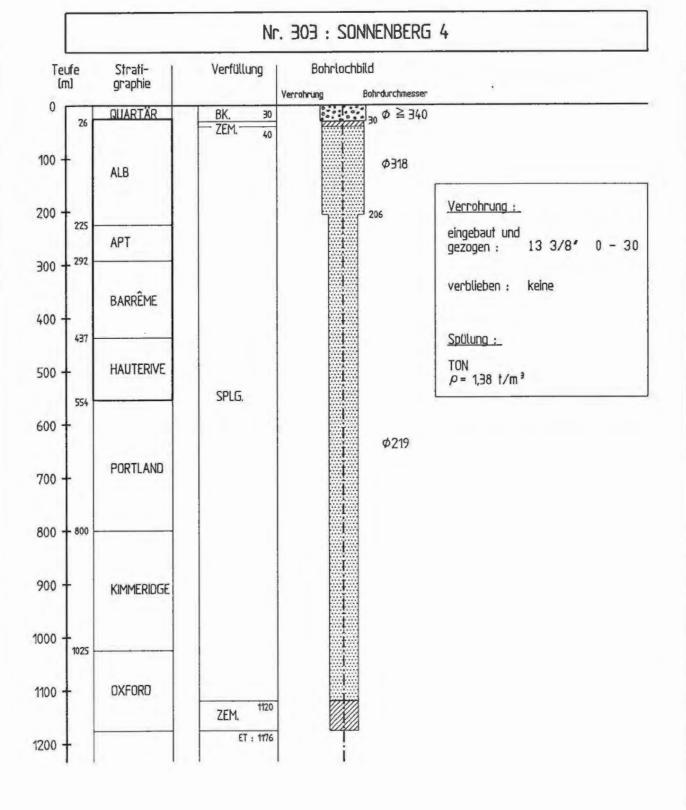

ENDLAGER KONRAD



<u>Abb. E - 4.17</u>
Bohrung Nr. 295 : SONNENBERG 2
Zustand am Ende der Bohr- und Verfüllarbeiten



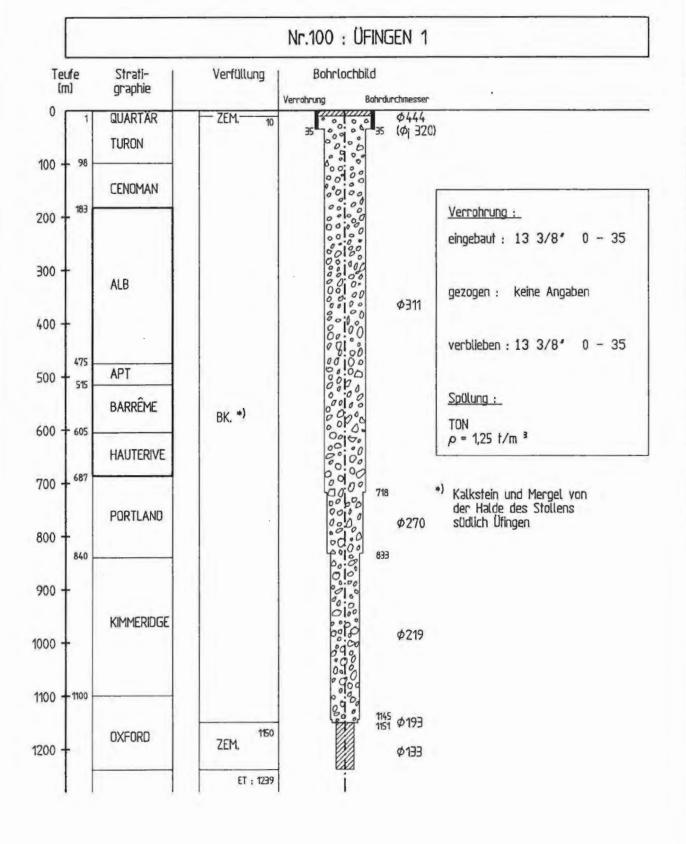
ENDLAGER KONRAD




Bohrung Nr. 296 : SONNENBERG 3


Zustand am Ende der Bohr- und Verfüllarbeiten




ENDLAGER KONRAD



<u>Abb. E - 4.19</u> Bohrung Nr. 303 : SONNENBERG 4 Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD



<u>Abb. E - 4.20</u> Bohrung Nr. 100 : ÜFINGEN 1 Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

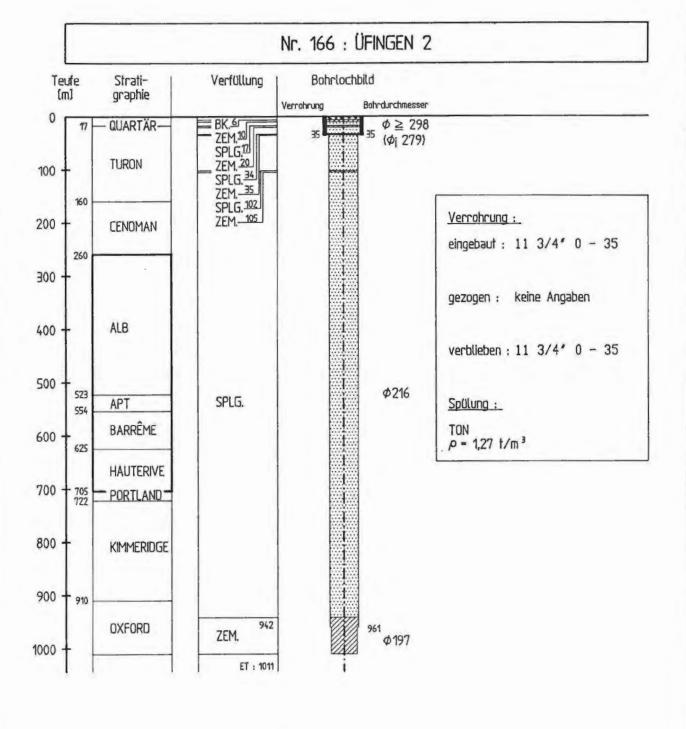
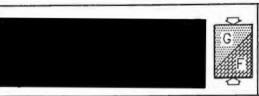
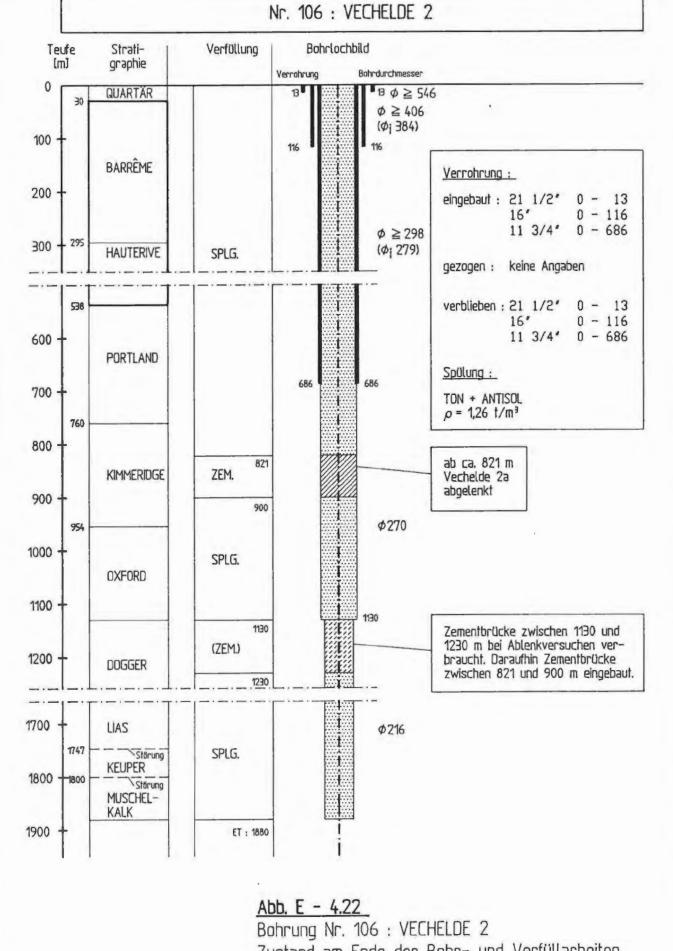
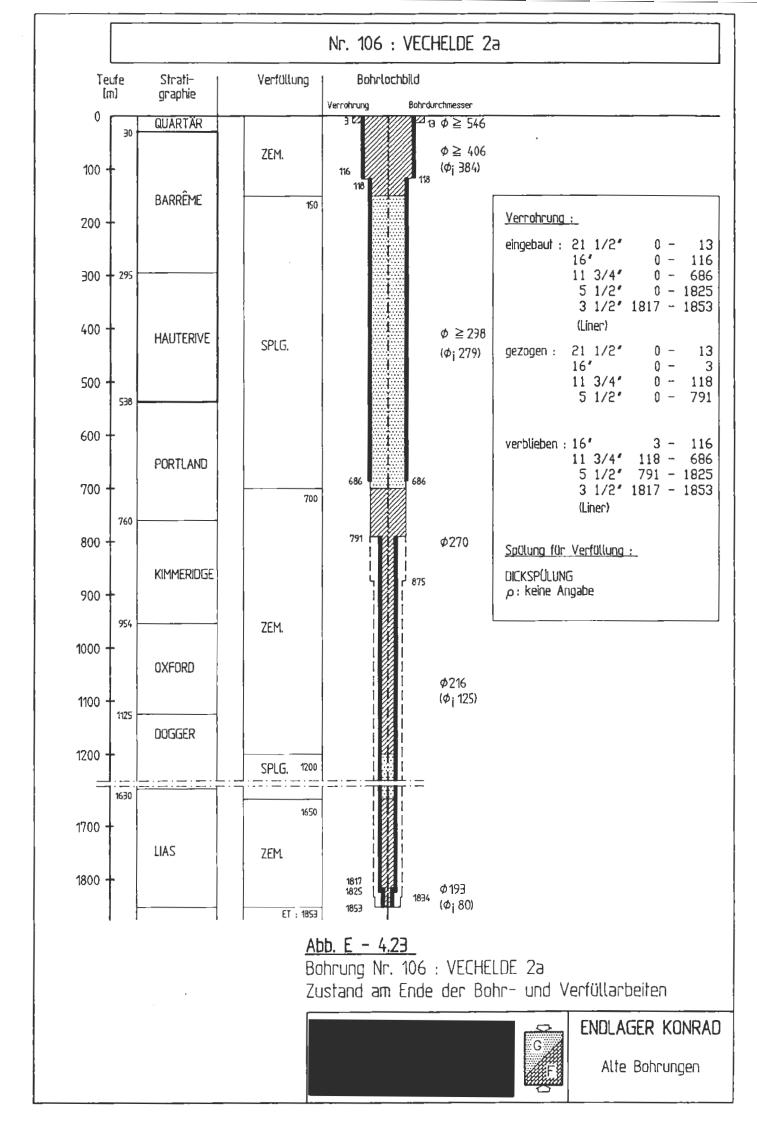
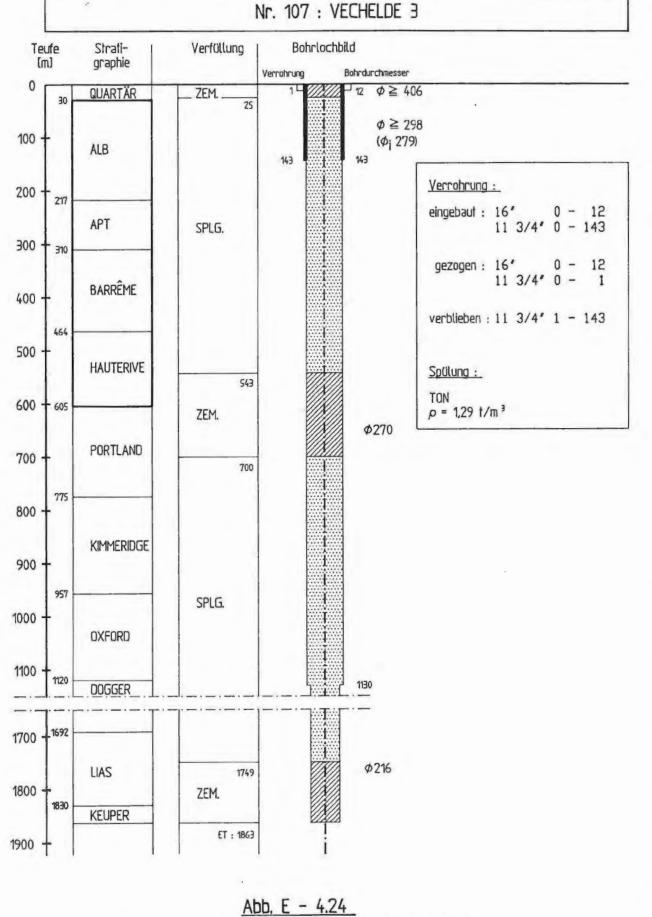





Abb. E - 4.21
Bohrung Nr. 166 : ÜFINGEN 2
Zustand am Ende der Bohr- und Verfüllarbeiten




ENDLAGER KONRAD




Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD





Bohrung Nr. 107 : VECHELDE 3

Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

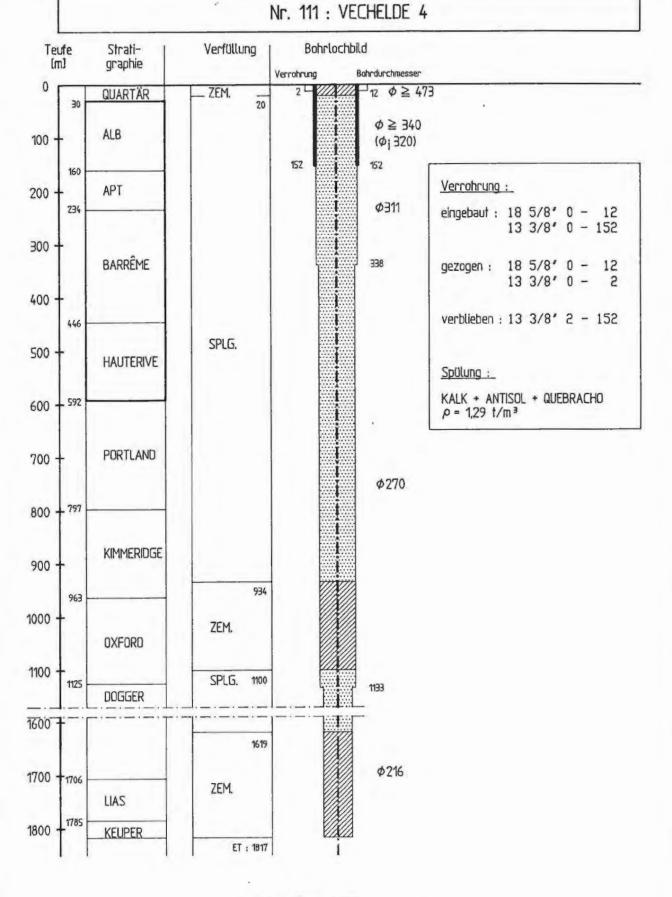
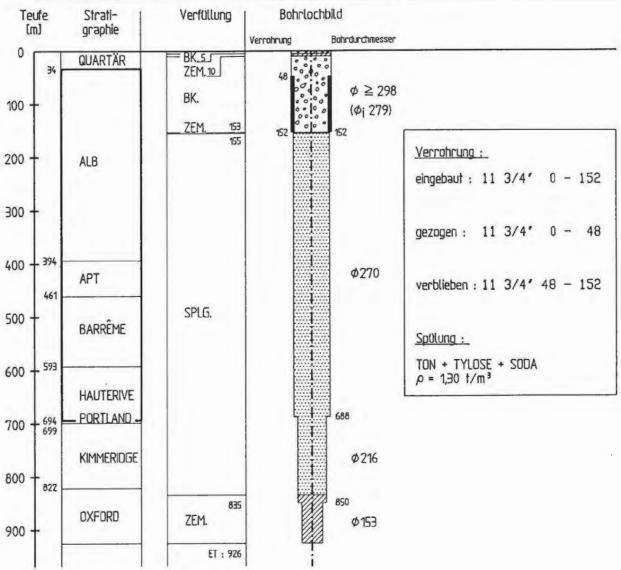



Abb. E - 4.25


Bohrung Nr. 111 : VECHELDE 4

Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD





Bohrung Nr. 99 : WEDTLENSTEDT 1 Zustand am Ende der Bohr- und Verfüllarbeiten



ENDLAGER KONRAD

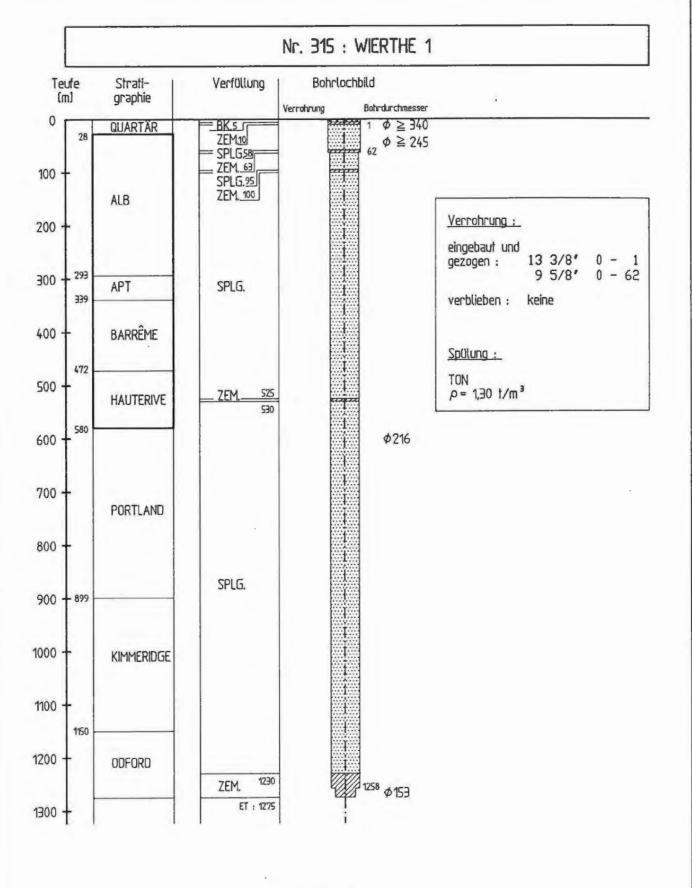
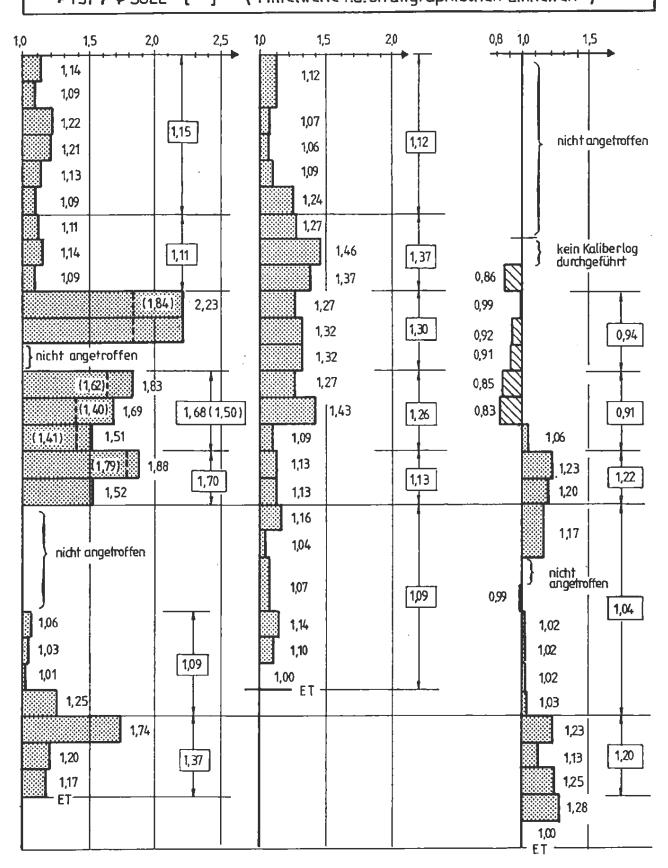



Abb. E - 4.27

Bohrung Nr. 315: WIERTHE 1

Zustand am Ende der Bohr- und Verfüllarbeiten




ENDLAGER KONRAD

## Stratigraphische Gliederung

|        |                       |                         | <u> </u>                         |  |  |
|--------|-----------------------|-------------------------|----------------------------------|--|--|
|        |                       | 7                       | Oberturon                        |  |  |
|        | 138 C                 | ไบเวา                   | Mittelturon                      |  |  |
|        | OBERKREIDE            |                         | Unterturon                       |  |  |
|        | 3013                  | Ce                      | Obercenoman                      |  |  |
|        |                       | Cenoman                 | Mittelcenoman                    |  |  |
|        |                       | 5                       | Untercenoman                     |  |  |
| ~      |                       |                         | Oberalb                          |  |  |
| KREIDE |                       | Alb                     | Mittelalb                        |  |  |
| 30     | _                     |                         | Unteralb                         |  |  |
|        | NTE                   | ,                       | Oberapt                          |  |  |
|        | RKR                   | Apt                     | Mittelapt                        |  |  |
|        | UNTERKREIDE           |                         | Unterapt                         |  |  |
|        |                       | В                       | Oberbarrême                      |  |  |
|        |                       | Barrême Haute-          | Mittelbarrême                    |  |  |
|        |                       |                         | Unterbarrême                     |  |  |
|        |                       |                         | Oberhauterive                    |  |  |
|        |                       |                         | Unterhauterive                   |  |  |
|        | MALM                  | Port- Kimmeridge Oxford | Serpulit und<br>Münder Mergel *) |  |  |
|        |                       |                         | Gigas Schichten                  |  |  |
|        |                       |                         | Oberkimmeridge                   |  |  |
|        |                       |                         | Mittelkimmeridge                 |  |  |
|        |                       |                         | Unterkimmendge                   |  |  |
| JRA    |                       |                         | Oberer Korallenoolith            |  |  |
|        |                       |                         | Mittlerer Korallenoolith         |  |  |
|        |                       |                         | Unterer Korallenoolith           |  |  |
|        | ō                     |                         | Calloyium                        |  |  |
|        | DOGGER                |                         | Bathonium                        |  |  |
|        | E                     |                         | Bajocium                         |  |  |
|        |                       | LIAS (&2 ÷ 6)           |                                  |  |  |
| Ħ      | KEUPER ( O.u. M Rhät) |                         |                                  |  |  |
| TRIAS  |                       |                         |                                  |  |  |

\*) Serpulit nur in der Bohrung Vechelde 3

# KONRAD 101 BLECKENSTEDT 4 VECHELDE 3 ØIST / ØSOLL [-] (Mittelwerte i.d. stratigraphischen Einheiten )



Teufenabschnitte der Soll-Bohrlochdurchmesser (ØSOLL)

## Konrad 101:

| <u> </u> | ( Quartär)<br>( OTuron) | verrohrt<br>445 mm        |
|----------|-------------------------|---------------------------|
| <u> </u> | (MTuron)<br>(UAlb)      | 311 mm<br>216 mm          |
| _        | (0Apt)<br>(UHauterive)  | kein Kaliberlog<br>216 mm |

(311 mm, erweitert)

750 m (U. Korallenoolith) 311 mm
 1002 m (Bajocium) 216 mm

## Bleckenstedt 4:

| - | 29 m   | ( | Quartär)          | verrohr  |
|---|--------|---|-------------------|----------|
| _ | 882 m  | ( | O/MKimmeridge     | ) 216 mm |
| _ | 1050 m | { | M.Korallenoolith) | 193 mm   |
| _ | 1064 m | ( | M.Korallenoolith) | 154 mm   |

## Vechelde 3:

| – 143m   | ( UAlb)      | verrohrl |
|----------|--------------|----------|
| - 1130 m | ( Callovium) | 270 mm   |
| — 1863m  | (MRhät)      | 216 mm   |

#### Abb. E - 5.1\_

Auswertung der Kalibermessungen in den Bohrungen Konrad 101, Bleckenstedt 4 und Vechelde 3



ENDLAGER KONRAD

## Stratigraphische Gliederung 1)

| <u> </u> |                   |                  |                               |  |
|----------|-------------------|------------------|-------------------------------|--|
|          | OBERKREIDE        | Turon            | Oberturon                     |  |
|          |                   |                  | Mittelturon                   |  |
|          |                   |                  | Unterturon                    |  |
|          | 3013              | Cenoman          | Obercenoman                   |  |
|          |                   |                  | Mittelcenoman                 |  |
|          |                   |                  | Untercenoman                  |  |
| ~        |                   | Αlb              | Oberalb                       |  |
| KREIDE   |                   |                  | Mittelalb                     |  |
| 30       | _                 |                  | Unteralb                      |  |
|          | UNTERKREIDE       |                  | Oberopt                       |  |
|          | RKR               | Apt              | Mittelapt                     |  |
|          | 013               |                  | Unterapt                      |  |
|          | ``'               | Ва               | Oberbarrême                   |  |
|          |                   | Barrême          | Mittelbarrême                 |  |
|          |                   | me               | Unterbarrême                  |  |
|          |                   | Haute -          | Oberhauterive                 |  |
|          |                   |                  | Unterhauterive                |  |
|          | MALM              | Part- Kimmeridge | Serpulit und<br>Münder Mergel |  |
|          |                   |                  | Gigas Schichten               |  |
|          |                   |                  | Oberkimmeridge                |  |
|          |                   |                  | Mittelkimmeridge              |  |
| J C      |                   |                  | Unterkimmeridge               |  |
| RA       |                   | Oxford           | Oberer Korallenoolith         |  |
|          |                   |                  | Mittlerer Korallenoolith      |  |
|          |                   |                  | Unterer Korallenoolith        |  |
|          | DC                | Callovium        |                               |  |
|          | DOGGER            |                  | Bathonium                     |  |
|          |                   | Bajocium         |                               |  |
|          | l                 | .IAS             | (ungegliedert)                |  |
| TRIAS    | KEUPER (nur Rhät) |                  |                               |  |
| AS       |                   |                  |                               |  |
|          | -                 |                  |                               |  |

- 1) Detailgliederung s. [7]
- 2) Im Rahmen des Berichtes verwendete Abkürzungen für zusammengefaßte stratigraphische Abschnitte
- 3) Abkürzungen in [5]

## zusammengefaßte Abschnitte (Abk.)

Oberkreide (OBKR)<sup>2)</sup> [kro]31 höhere Unterkreide (UKR2) [kru(p-l)] tiefere Unterkreide (UKR1) [kru(h-b)] Malm (MALM) [ jo ] Dogger (DOGG) [ jm ] Lias (LIAS) [ ju ] Keuper (KEUP) [k]

## Bohrlocherweiterungsfaktoren

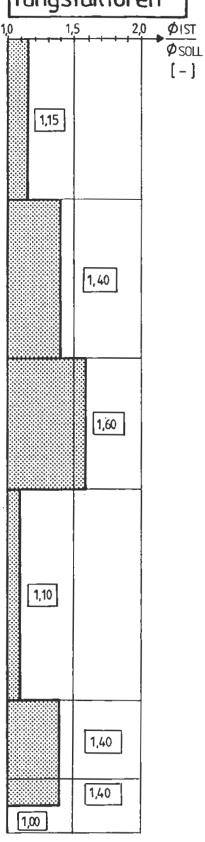



Abb. E - 5.2

Annahmen für die mittleren Bohrlocher – weiterungen während der Bohrarbeiten



ENDLAGER KONRAD

## Ergebnisse der Versuche des Leichtweiß – Instituts der TU - Braunschweig (aus Bericht vom 31.01.1991)

|                   |                |          |          | · <del>-</del> · |                            |                        |
|-------------------|----------------|----------|----------|------------------|----------------------------|------------------------|
| Bodenmaterial     | H <sub>0</sub> | Prüf-    | Meßzeit- | Sedimentati -    | Durchlässigkeitsbestimmung |                        |
| ( Ansprache nach  | [ 1            | flüssig- | punkt    | onsanteil 2)     | hydr. Grad.                | k <sub>f</sub> - Wert  |
| DIN 4022 )        | [m]            | keit 1)  | [h]      | Ss [%] (i=0)     | 'i[-]                      | [m/s]                  |
| (1a) ARPKE-braun  |                | Α        | 694      | 50,7             |                            | 4.0 · 10-8             |
| ( T,ū , fs')      | 1,0            | В        | 919      | 53,7             | ~ 2                        | 1.2 10-8               |
| Standardversuch   |                | С        | 974      | 48,8             |                            | 1,0 · 10 <sup>-8</sup> |
| (1b) SV"6m-Säule" | 6,0            | Α        | 1000     | 54,5             | 0                          | _                      |
| Kontrollversuch   | 1.0            | Α        | 1000     | 52,0             | 0                          |                        |
| (1c) SV "erhöhter | 10             | Α        | 1000     | ~63 (i=0)        | 0                          | _                      |
| hydr. Gradient"   | 1,0            | A        | +670     | 47.5 ( i = 26)   | 26                         | nicht bestimmt         |
| 2 ARPKE-grau      |                | . A      | 695      | 53,1             |                            | 3,8 · 10 <sup>-8</sup> |
| (U,F)             | 1,0            | В        | 839      | 62,9             | ~ 2                        | 1,1 10 8               |
| Standardversuch   |                | С        | 988      | 56,8             |                            | 1,6 · 10 <sup>-8</sup> |
| 3 RÜHLER MOOR     |                | Α        | 671      | 57,3             |                            | 5.2 · 10 <sup>-8</sup> |
| (U,t,fs')         | 1.0            | В        | 809      | 59,9             | ~2                         | 28 10-8                |
| Standard versuch  |                | С        | 1152     | 62,6             |                            | 3,4 · 10.8             |
| (4) KONRAD B10    |                | Α        | 620      | 67,9             | -                          | 1,1 · 10-8             |
| (U,t,s)           | 1,0            | В        | 739      | 63,3             | ~2                         | 2.5 · 10 <sup>-9</sup> |
| Standard versuch  |                | C        | 876      | 59,9             |                            | 2.1 · 10 <sup>-9</sup> |
| (5) 3)            |                | Α        | 332      | 56,8             |                            | 5,2 · 10 <sup>-6</sup> |
| ( S, ū, t')       | 1,0            | В        | 209      | 40.0             | ~2                         | 3,4 · 10 <sup>-6</sup> |
| Standardversuch   |                | С        | 285      | 455              |                            | 3,8 · 10 <sup>-6</sup> |

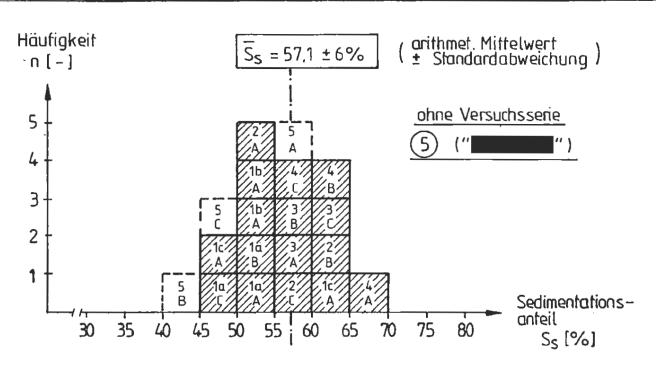
<sup>1)</sup> Prüfflüssigkeiten :

A = entionisiertes Wasser

B = Wasser aus dem Hilssandstein (Schacht 2)

C = Wasservom Ort 300

Abb. E - 8.1


Sedimentation und Durchlässigkeit von Dickspülungen; Versuchsergebnisse (Einzelwerte)



ENDLAGER KONRAD

<sup>&</sup>lt;sup>2)</sup>Ausgangsdichte der Spülungen :  $\rho_{S,A}$ = 1,25 g/cm<sup>3</sup>

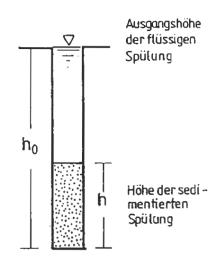
<sup>3)</sup> Das Bodenmaterial "I " (Sand) sowie diedaran bestimmten Versuchsergebnisse sind nicht repräsentativ für die bei den alten Bohrungen verwendeten Dickspülungen.



Häufigkeitsverteilung und Mittelwert für die Sedimentationsanteile



Häufigkeitsverteilung und Mittelwert für die Durchlässigkeitsbeiwerte

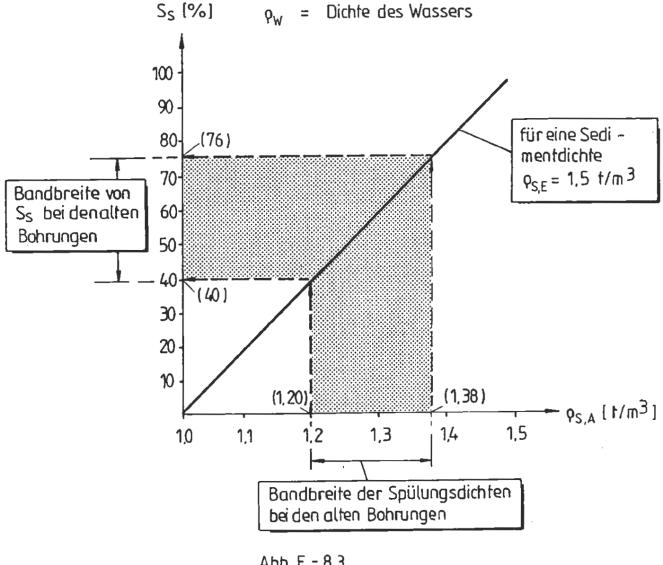



Versuchsserie Prüfflüssigkeit (vgl. Abb. E - 8.1) Abb. E -8.2

Sedimentation und Durchlässigkeit von Dickspülungen; Versuchsergebnisse (statistische Auswertung)



ENDLAGER KONRAD




Sedimentationsanteil der Dickspülung

$$S_S = \frac{h}{h_0} = \frac{\rho_{S,A} - \rho_W}{\rho_{S,E} - \rho_W}$$

Ausgangsdichte der Spülung

Dichte des Spülungssedimentes



Аьь. Е - 8.3

Sedimentationsánteil, Spülungsund Sedimentdichte (Zusammenhänge)



ENDLAGER KONRAD

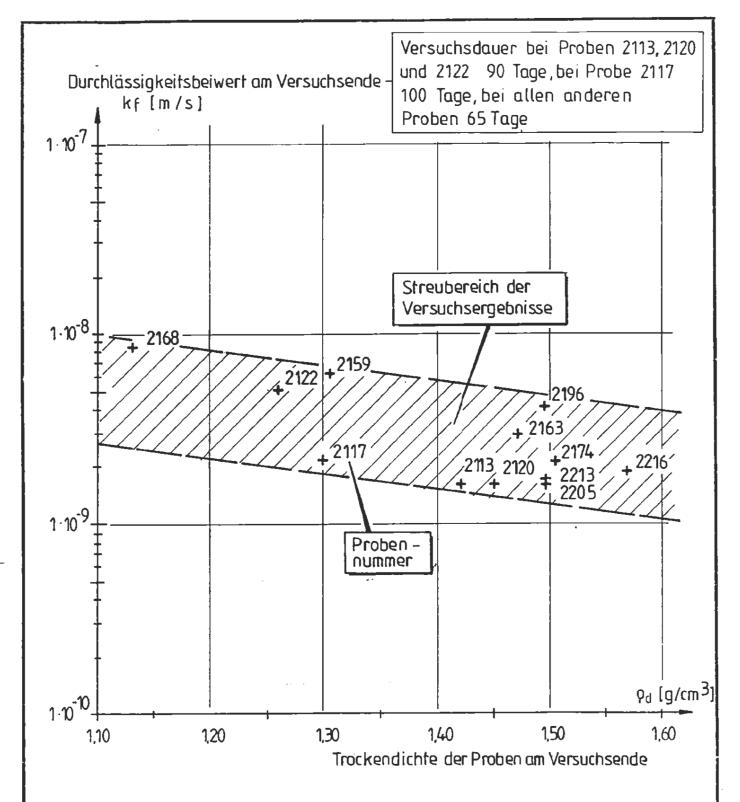
| Bohrung Bezeichnung der<br>Dickspülung |                                          | Ausgangs-<br>dichte der<br>Spülung<br>PS,A[t/m³] | sedimenta-<br>tionsanteil*)<br>s <sub>S</sub> [%] für<br>$\rho$ <sub>S,E</sub> = 1,50 t/m <sup>3</sup> |  |  |
|----------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Alvesse 1                              | Ton                                      | 1,24                                             | 48                                                                                                     |  |  |
| Bleckenstedt 1                         | Normal                                   | 1,25                                             | 50                                                                                                     |  |  |
| Bleckenstedt 2                         | Normal                                   | 1,30                                             | 60                                                                                                     |  |  |
| Bleckenstedt 3                         | Normal                                   | 1,35                                             | 70                                                                                                     |  |  |
| Bleckenstedt 4                         | Rotkalk                                  | 1,30                                             | 60                                                                                                     |  |  |
| Broistedt 33                           | Kreide + Antisol H                       | 1,30                                             | 60                                                                                                     |  |  |
| Broistedt 34                           | Ton + Zusätze                            | 1,30                                             | 60                                                                                                     |  |  |
| Denstorf 1                             | Ton                                      | 1,28                                             | 56                                                                                                     |  |  |
| Gleidingen 1                           | Ton                                      | 1,26                                             | 52                                                                                                     |  |  |
| Hallendorf 1                           | Spezial                                  | 1,22                                             | 44                                                                                                     |  |  |
| Hüttenberg 1                           | Ton                                      | 1,31                                             | 62                                                                                                     |  |  |
| Konrad 101                             | Spülung vollständig durch Zement ersetzt |                                                  |                                                                                                        |  |  |
| Sauingen 1                             | Keine Angabe +)                          | 1,20 +)                                          | 40                                                                                                     |  |  |
| Sauingen 2                             | Glasol + Tylose                          | 1,20                                             | 40                                                                                                     |  |  |
| Sonnenberg 1                           | Ton + Tylose + Soda                      | 1,29                                             | 58                                                                                                     |  |  |
| Sonnenberg 2                           | Spezial                                  | 1,24                                             | 48                                                                                                     |  |  |
| Sonnenberg 3                           | Ton                                      | 1,20                                             | 40                                                                                                     |  |  |
| Sonnenberg 4                           | Ton                                      | 1,38                                             | 76                                                                                                     |  |  |
| Üfingen 1                              | Ton                                      | 1,25                                             | 50                                                                                                     |  |  |
| Üfingen 2                              | Ton                                      | 1,27                                             | 54                                                                                                     |  |  |
| Vechelde 2                             | Ton + Antisol                            | 1,26                                             | 52                                                                                                     |  |  |
| Vechelde 2a                            | Keine Angabe *)                          | 1,20 *)                                          | 40                                                                                                     |  |  |
| Vechelde 3                             | Ton                                      | 1,29                                             | 58                                                                                                     |  |  |
| Vechelde 4                             | Kalk + Antisol +                         |                                                  |                                                                                                        |  |  |
|                                        | Quebracho                                | 1,29                                             | 58                                                                                                     |  |  |
| Wedtlenstedt 1                         | Ton + Tylose + Soda                      | 1,30                                             | 60                                                                                                     |  |  |
| Wierthe 1                              | Ton                                      | 1,30                                             | 60                                                                                                     |  |  |

•) 
$$S_S = \frac{\rho_{S,A} - \rho_W}{\rho_{S,E} - \rho_W}$$
 · 100 [%]

- +) Mindestdichte 1,20 t/m³ angenommen
- \*) Spülung zur Verfüllung zwischen Zementbrücken: Mindestdichte  $1,20~{\rm t/m^3}$  angenommen

 $\rho_{\,{\rm S}\,,\,{\rm A}}$  = Ausgangsdichte d. Spülung

 $\rho_{S,E}$  = Dichte d. Spülungssediments


 $\rho_{W}$  = Dichte d. Wassers

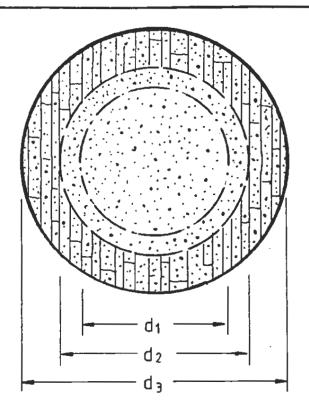
## Abb. E-8.4

Dickspülungen und Sedimentationsanteile bei den alten Bohrungen




ENDLAGER KONRAD




Anm: Die Proben Nr. 2177 und 2192 sind noch nicht ausgebaut. Der Durchlässigkeitsbeiwert betrug nach 110 Tagen 3,5 · 10 <sup>-9</sup> m/s bzw.

Абь. Е - 10.1

Wasserdurchlässigkeit und Trockendichte der Labor – proben aus dem Nachfallmaterial der Bohrung V2



ENDLAGER KONRAD



**d**₁: Bohrdurchmesser

d2: mittlerer Bohrlochdurchmessereinschl. der Auskesselungen beim Bohren

Nachbruchdurchmesser = mittlerer **d**3: Bohrlochdurchmesser des nach Beendigung der Bohrarbeiten nachgebrochenen Loches

anstehender Fels vor dem Nachbruch

mit Nachfall gefülltes Bohrloch

## Mittlere Kennwerte des anstehenden Felses

Feucht - / Trockendichte

 $\rho/\rho_d = 2.40/2.24 \text{ g/cm}^3$ 

Korndichte

 $p_s = 2.68 \text{ g/cm}^3$ 

Wassergehalt

w = 7.5%

Porenanteil

n = 16.5%

## Verteilung des Nachfalls auf den Querschnitt mit d3

Trockendichte des Nachfalls :

$$\rho_{d, \text{Füllung}} = \frac{d_3^2 - d_2^2}{d_3^2} \cdot \rho_{d, \text{Fels}}$$

bzw : 
$$d_3 = d_2 / \sqrt{1 - \frac{Q_d \cdot F \ddot{u} \dot{u} u_{ng}}{Q_d \cdot F \dot{u}}}$$

zB. 
$$\rho_{d,Füllg.}=1,00g/cm^3$$

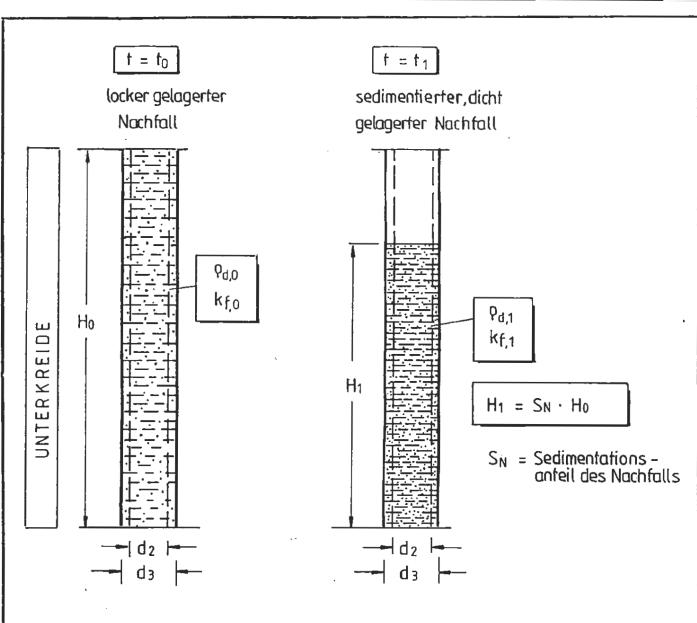

$$d_3 \approx 1.35 \cdot d_2$$

Abb. E- 10.2

Zusammenhang zwischen Trockendichte des Nachfalls im Bohrloch, Bohrloch - und Nachbruch durchmesser



ENDLAGER KONRAD



H<sub>0</sub> = freier Bohrlochabschnitt in der Unterkreide (unverrohrt und nicht verfüllt)

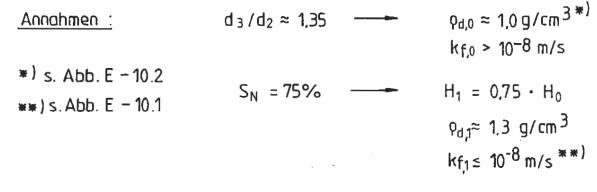



Abb. E - 10.3

Übertragbarkeit der Labor – kf – Werte auf die Nachfallfüllung in Bohrlöchern



ENDLAGER KONRAD

## Mittlere Teufen und Durchmesser der 25 relevanten alten Bohrungen im Bereich der Unterkreide

Аlb

```
\overline{d}_1 = 287 \, \text{m} (Mitte Alb)

\overline{d}_1 = 265 \, \text{mm} (Soll - Bohrdurchmesser)

\overline{d}_2 = 1.4 \cdot 265 (mit Auskesselungen während

= 371 \, \text{mm} der Bohrarbeiten)

\overline{d}_3 = 1.35 \cdot 371 (mit Nachbruch nach der Sedi -

= 501 \, \text{mm} mentation der Spülung)
```

#### gewählt für Berechnungen :

 $t_A = 300 \, \text{m}$   $d_{2A} = 400 \, \text{mm}$  ( mit Wasserfüllung )  $d_{3A} = 500 \, \text{mm}$  ( mit locker gelagerter Nach – fallfüllung )

Barrême / Hauterive

$$\overline{t}$$
 = 566m ( Mitte Barrême + Hauterive )  
 $\overline{d}_1$  = 243mm  
 $\overline{d}_2$  = 1.6 · 243 = 389mm

#### gewählt für Berechnungen :

 $\bar{d}_3 = 1.35 \cdot 389 = 525 \text{mm}$ 

 $f_B = 600 \text{ m}$   $d_{2B} = 400 \text{ mm}$  ( mit Wasserfüllung )  $d_{3B} = 500 \text{ mm}$  ( mit lockergelagerter Nach – fallfüllung )

#### Abb. E - 11.1

Berechnungen zur Auflockerungszone Berechnungsgrundlagen



ENOLAGER KONRAD

## Kennwerte des Gebirges

| Bereich                 | Alb                                                                     | Barrême/ Hauterive                 |  |
|-------------------------|-------------------------------------------------------------------------|------------------------------------|--|
| Wichte (unter Auftrieb) | γ'= 14 kN/m <sup>3</sup>                                                |                                    |  |
| Verformbarkeit          |                                                                         | = 3000 MN/m <sup>2</sup><br>= 0,33 |  |
| Festigkeit              | $\phi = \psi = 15^{\circ}$ $c = 3MN/m^{2}$ $(\sigma_{u} = 7.8MN/m^{2})$ |                                    |  |

## Stützdruck der Wasserfüllung im Bohrloch

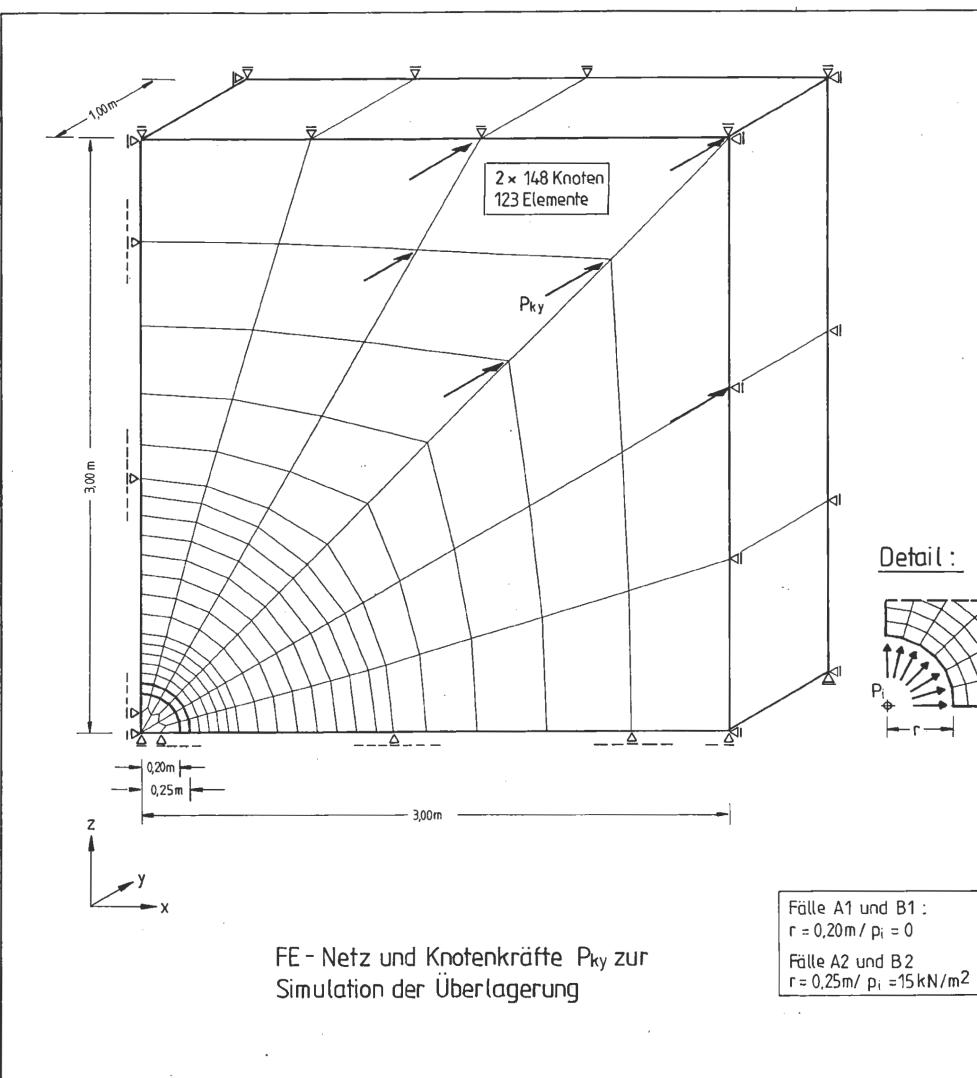
 $p_{i,w} = 0$ , da Gebirge unter Auftrieb (wassergesättigt)

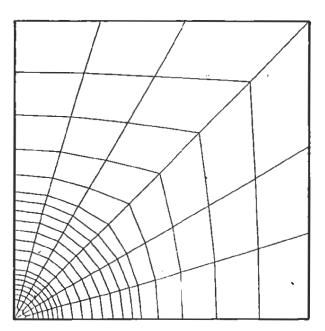
## Stützdruck der locker gelagerten Nachfallfüllung

 $\chi' \approx 5 \, \text{kN/m}^3$ 

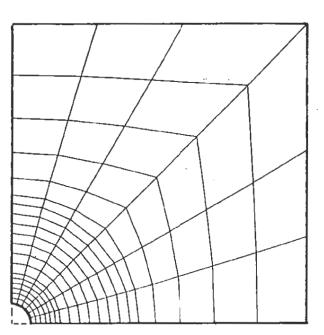
 $p_{i,N} \approx 15 \text{ kN/m}^2 \text{ (Silodruck, teufenunabhängig)}$ 

## Berechnungsfälle


| Fallbezeichnung                                             | A1   | A2    | B1                | B2    |
|-------------------------------------------------------------|------|-------|-------------------|-------|
| Gebirgsbereich                                              | Alb  |       | Barrême/Hauterive |       |
| $\sigma_{v}^{(0)} = \gamma \cdot t \left[ MN/m^{2} \right]$ | 4,20 | 4,20  | 8,40              | 8,40  |
| Ø Bohrloch [mm]                                             | 400  | 500   | 400               | 500   |
| Stützdruck p <sub>i</sub> [MN/m <sup>2</sup> ]              | 0    | 0,015 | 0                 | 0,015 |


<u>Abb. E - 11.2</u>

Berechnungen zur Auflockerungszone Kennwerte und Berechnungsfälle



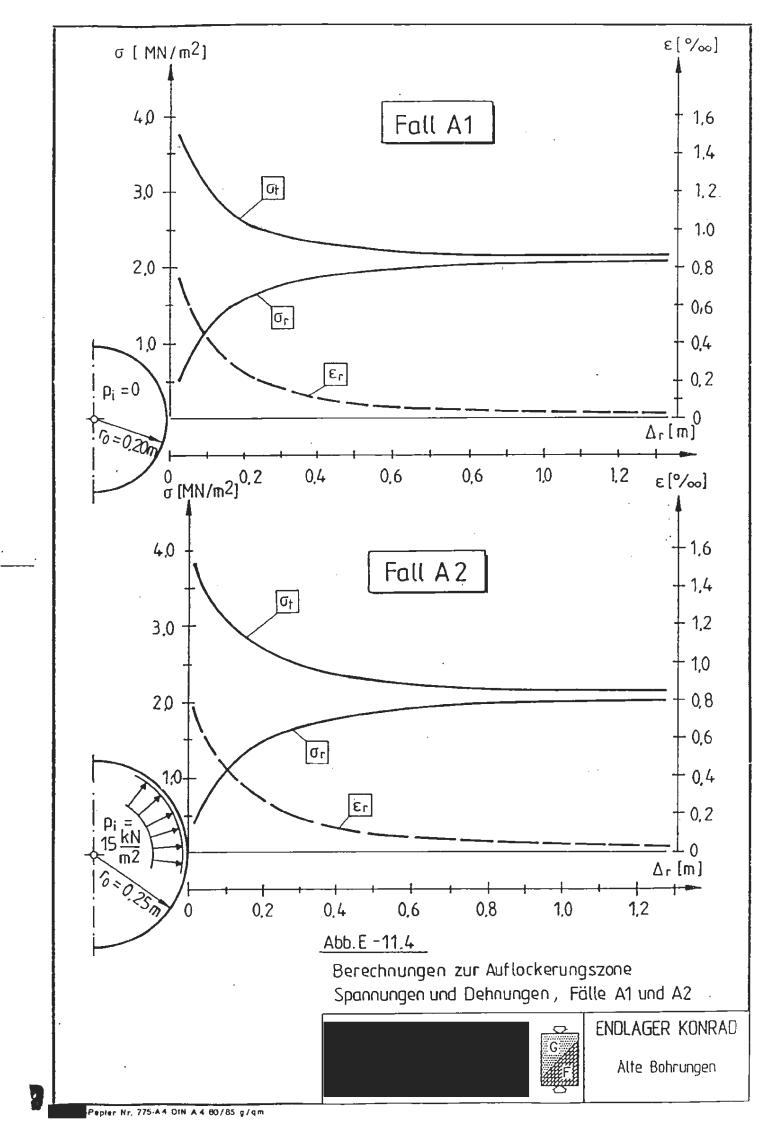

**ENDLAGER KONRAD** 

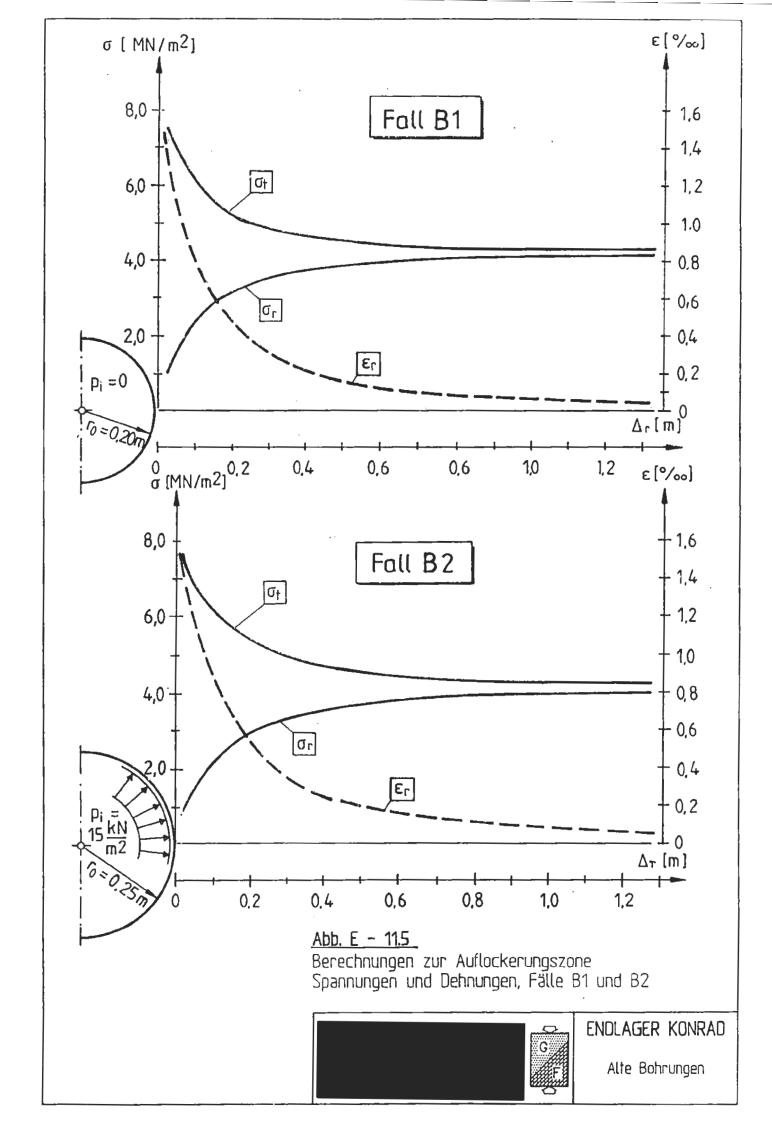


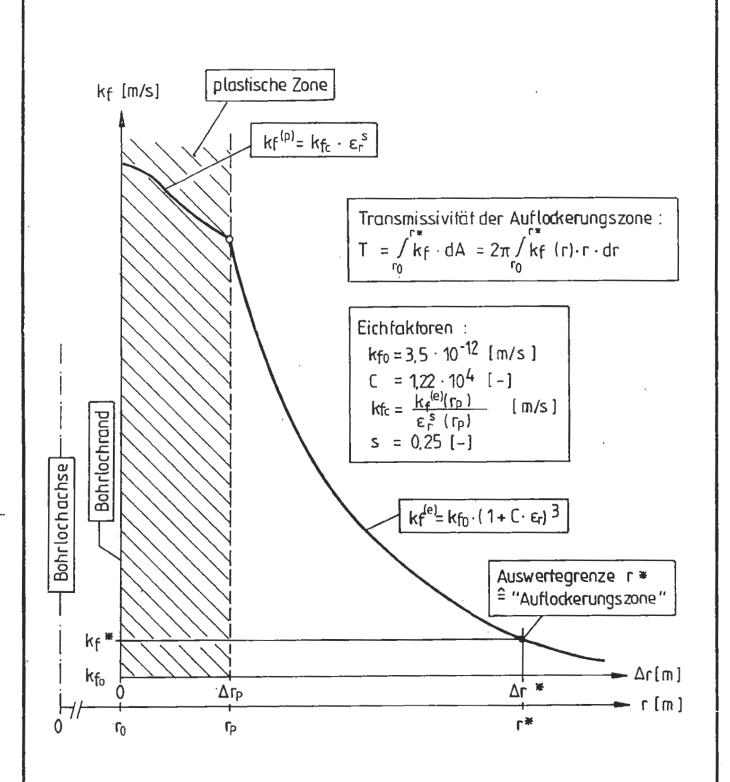


1. Rechenschritt: Primärfall, Simulation der Überlagerung durch Knotenkräfte (elast.)




2. Rechenschritt: Herstellung des Bohrlochs, Simulation des Stützdrucks p<sub>i</sub> durch Knotenkräfte (elastisch-viskoplastisch)


Abb. E - 11.3


Berechnungen zur Auflockerungszone FE – Netz und Rechenablauf



ENDLAGER KONRAD







#### Abb. E - 11.6

Berechnungen zur Auflockerungszone Bestimmung der Wasserdurchlässigkeit aus den Dehnungen (Prinzipdarstellung)



ENDLAGER KONRAD

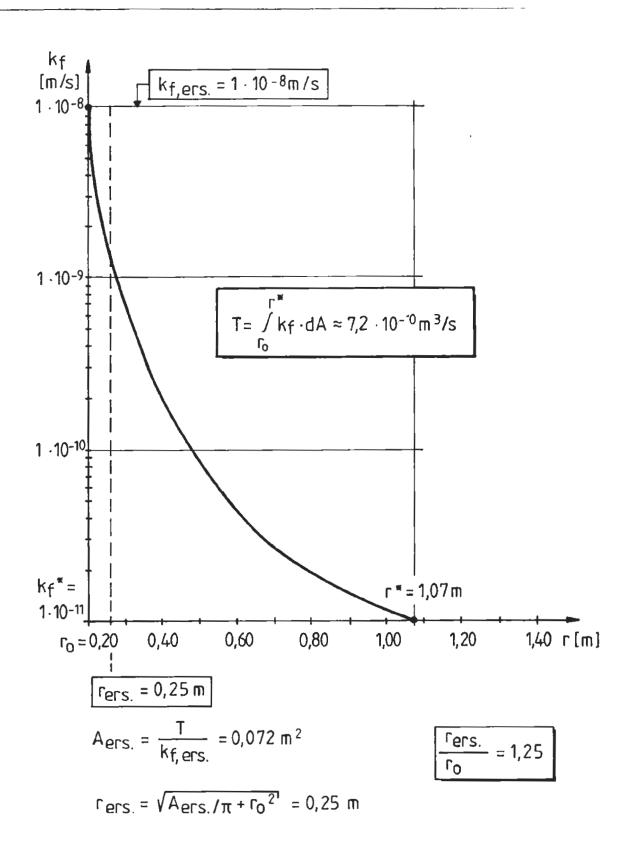
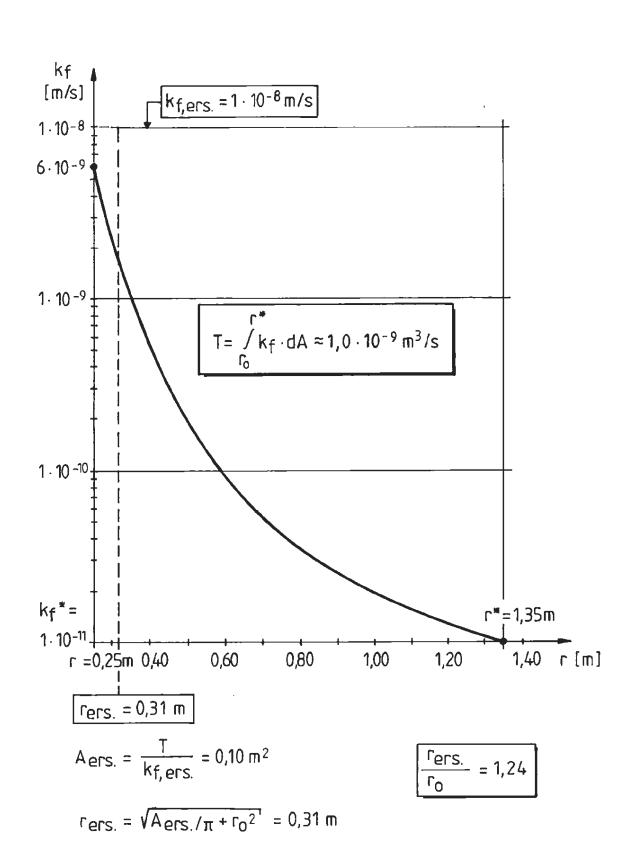
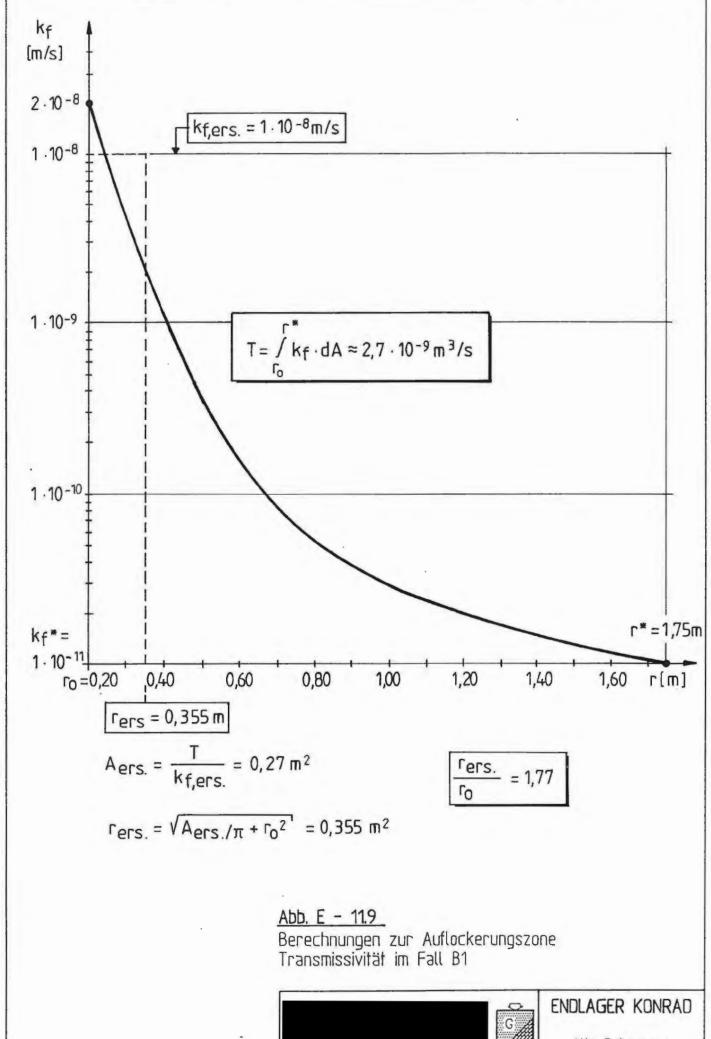


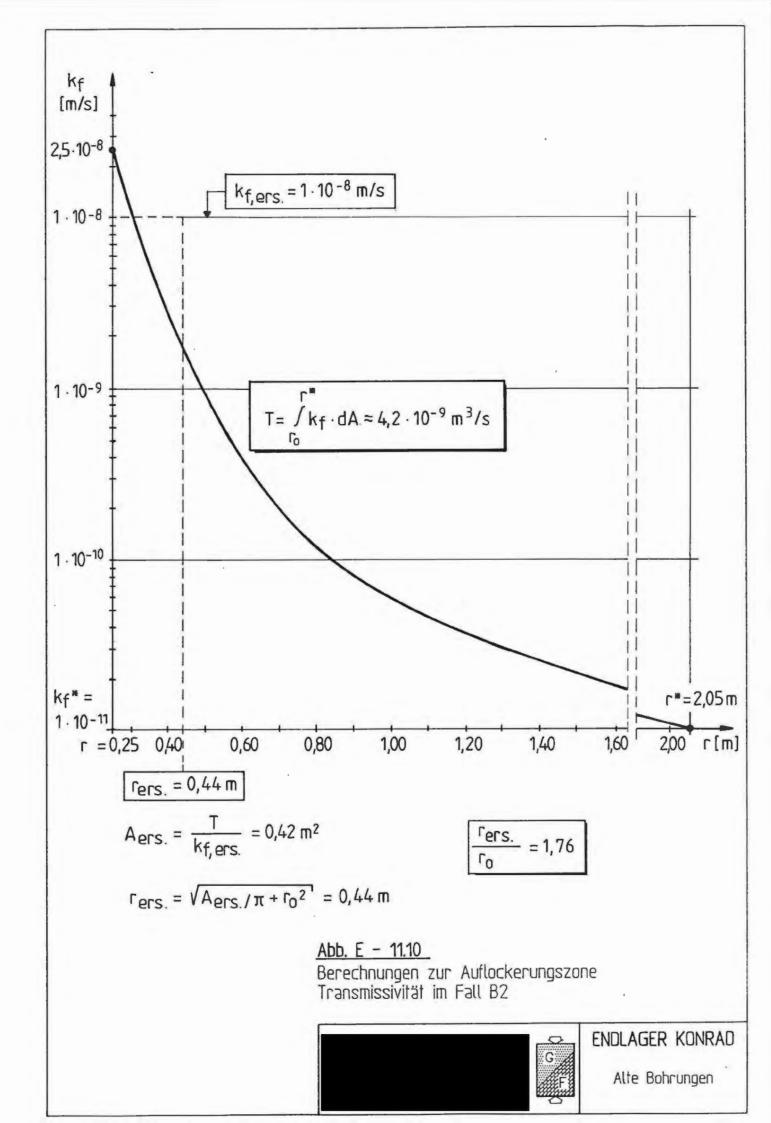

Abb. E - 11.7

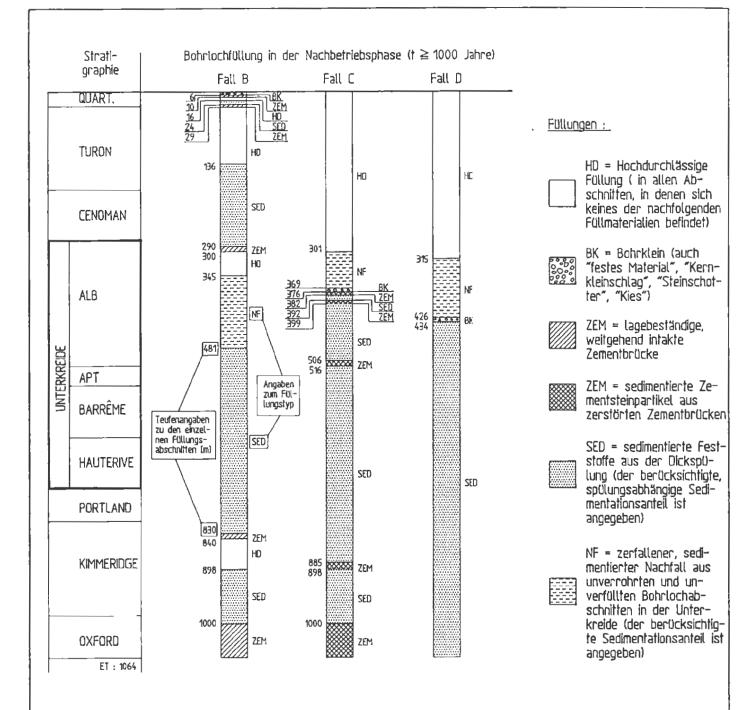
Berechnungen zur Auflockerungszone
Transmissivität im Fall A1



ENOLAGER KONRAD



Abb. E - 11.8


Berechnungen zur Auflockerungszone
Transmissivität im Fall A2



ENDLAGER KONRAD







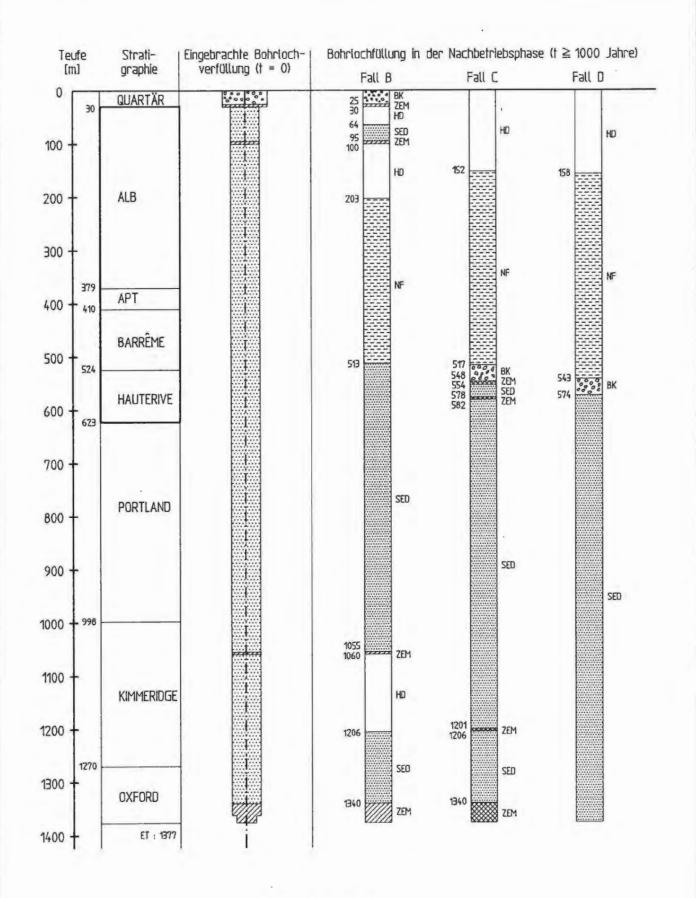
#### Charakterisierung der ausgewerteten Fälle B, C und D :

<u>Fall 8 :</u> Weitgehend intakte, lagebeständige Zementbrücken. Sedimentationsvorgänge erfolgen stockwerksweise oberhalb der einzelnen Zementbrücken.

Fall C : Zerstörung der Zementbrücken und volumentreue Sedimentation der Zementsteinpartikel. Alle Feststoffe lagern sich als durchgehende, im Bohrlochtiefsten beginnende Füllsäule ab.

Fall D: Wie Fall C, jedoch Annahme der vollständigen Lösung und des Abtransports sämtlicher Zementsteinpartikel.

#### in allen Fällen :


- Berücksichtigung der effektiven Bohrloch- und Verrohrungsdurchmesser.
- Der Nachfall in der Unterkreide findet erst nach Abschluß der anderen Vorgänge statt.

#### Abb. E - 12.1

Legende zur Bohrlochfüllung in der Nachbetriebsphase des Endlagers († ≧ 1000 Jahre)



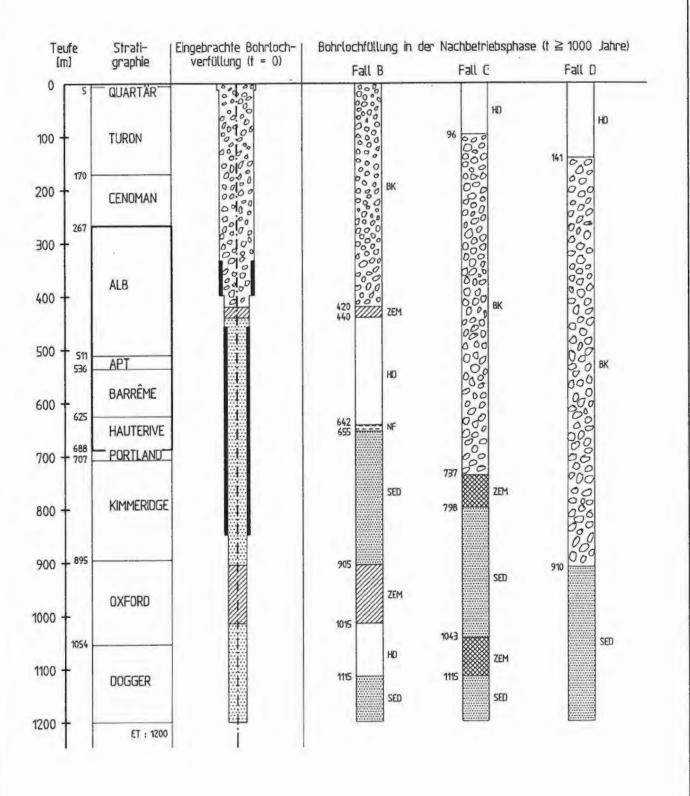
#### ENDLAGER KONRAD



Sedimentationsanteil der Spolung: 48 %

Sedimentationsanteil des

Nachfalls : 75 % Berücksichtigung der Bohrlochauskesselungen beim Bohren


## Abb. E - 12.2

Bohrung Nr. 183 : ALVESSE 1

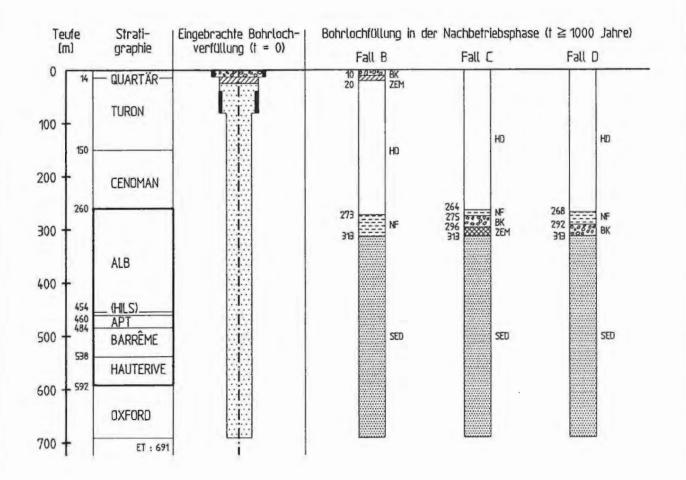
Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD



Sedimentationsanteil der Spülung : 50 % Sedimentationsanteil des


Nachfalls : 75 % Berücksichtigung der Bohrlochauskesselungen beim Bohren

#### Abb. E - 12.3

Bohrung Nr. 67 : BLECKENSTEDT 1 Zustand in der Nachbetriebsphase des Endlagers

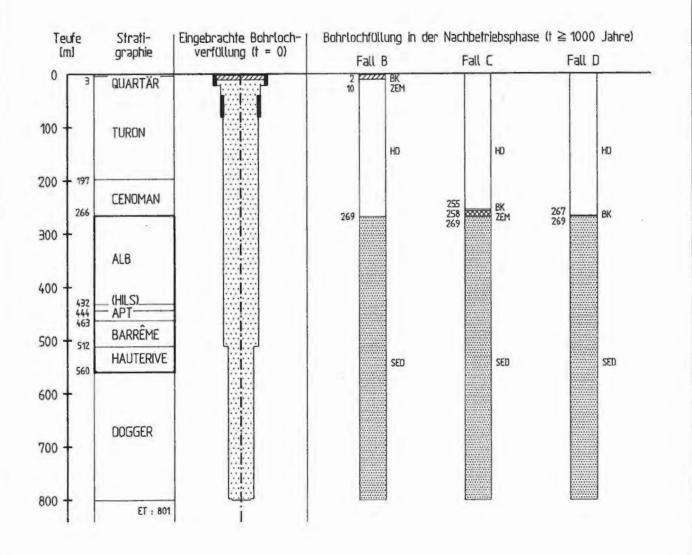


ENDLAGER KONRAD



Sedimentationsanteil der Spülung: 60 %

Sedimentationsanteil des


Nachfalls : 75 % Berücksichtigung der Bohrlochauskesselungen beim Bohren

## Abb. E - 12.4

Bohrung Nr. 70 : BLECKENSTEDT 2 Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD



- Sedimentationsanteil der Softung : 70 %

Spülung : 70 % - Sedimentationsanteil des Nachfalls : 75 %

Nachfalls : 75 %

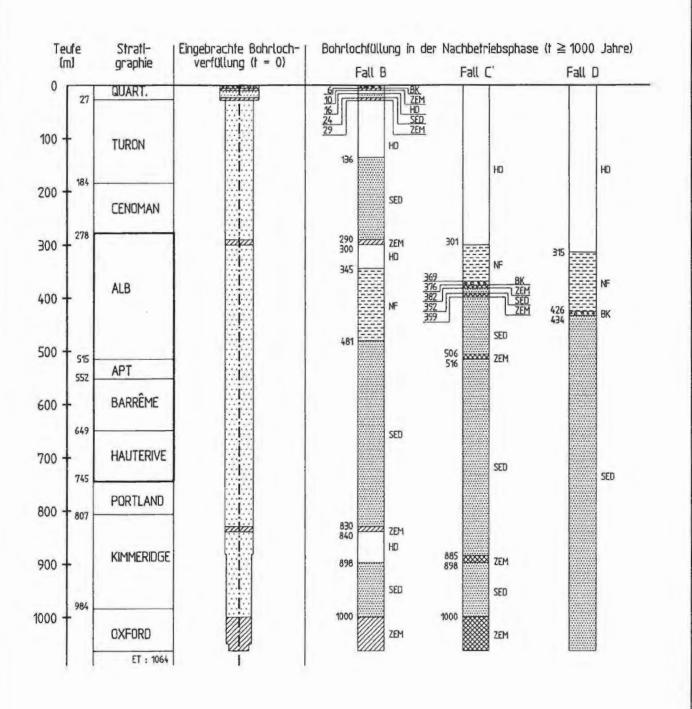

- Berücksichtigung der
Bohrlochauskesselungen
beim Bohren

Abb. E - 12.5

Bohrung Nr. 71 : BLECKENSTEDT 3 Zustand in der Nachbetriebsphase des Endlagers

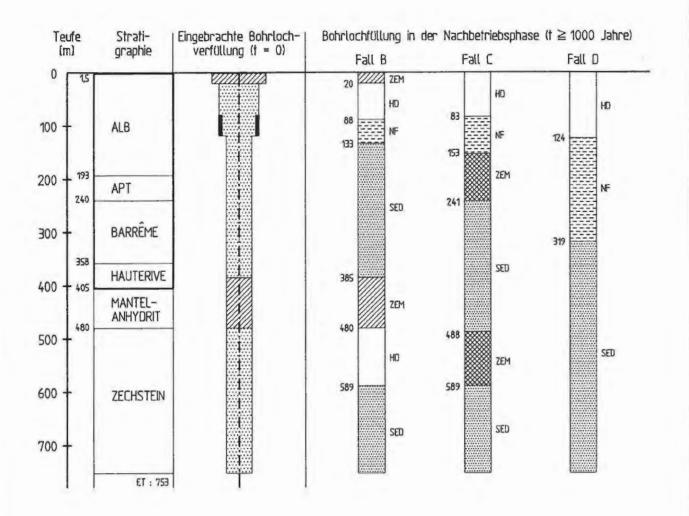


ENDLAGER KONRAD



Sedimentationsanteil der Spolung: 60 %

Sedimentationsanteil des


Nachfalls : 75 % Berücksichtigung der Bohrlochauskesselungen beim Bohren

## Abb. E - 12.6

Bohrung Nr. 28 : BLECKENSTEDT 4 Zustand in der Nachbetriebsphase des Endlagers



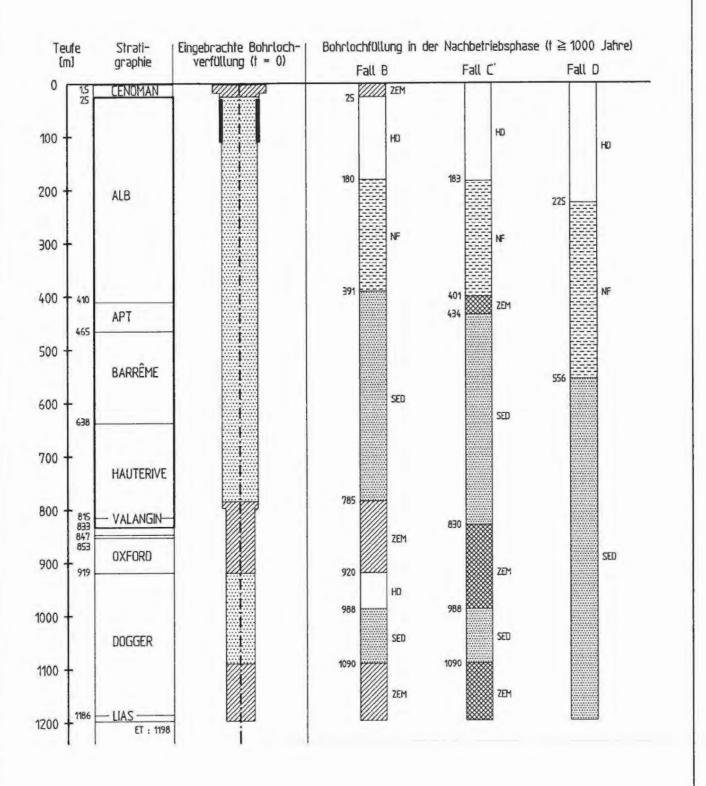
ENDLAGER KONRAD



Sedimentationsanteil der Spülung: 60 %

Sedimentationsanteil des

Nachfalls : 75 % Berücksichtigung der Bohrlochauskesselungen beim Bahren


Abb. E - 12.7

Bohrung Nr. 79 : BROISTEDT 33

Zustand in der Nachbetriebsphase des Endlagers



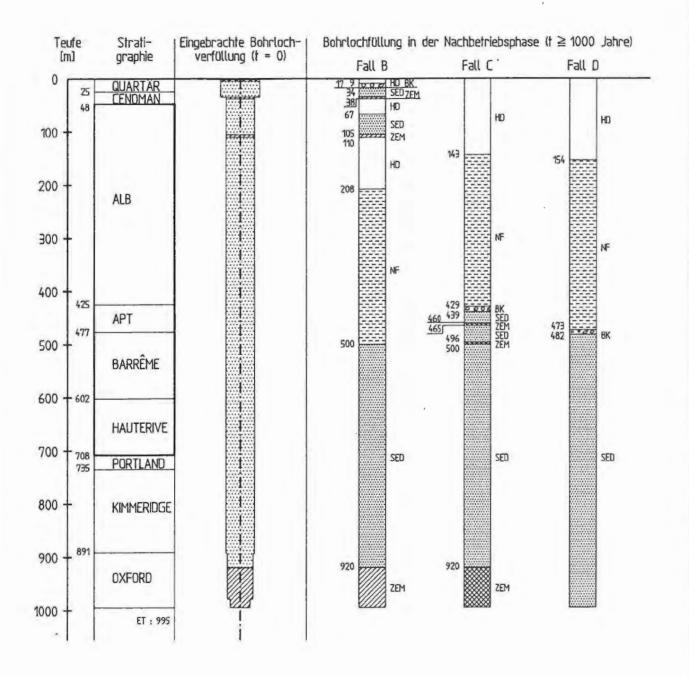
ENDLAGER KONRAD



- Sedimentationsanteil der

· Spülung : 60 % - Sedimentationsanteil des

Nachfalls : 75 % - Berücksichtigung der Bohrlochauskesselungen beim Bohren


## Abb. E - 12.8

Bohrung Nr. 80 : BROISTEDT 34

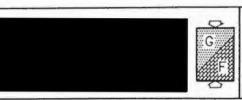
Zustand in der Nachbetriebsphase des Endlagers



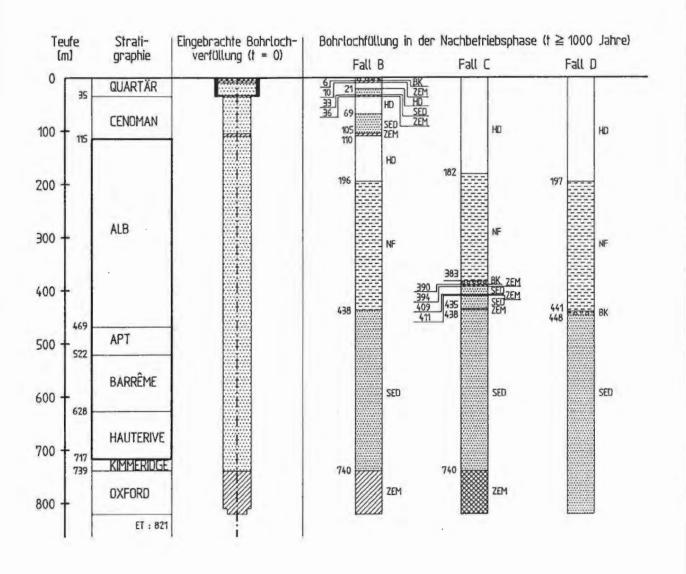
ENDLAGER KONRAD



Sedimentationsanteil der


Spülung : 56 %
Sedimentationsanteil des
Nachfalls : 75 %
Berücksichtigung der

Bohrlochauskesselungen beim Bohren


Abb. E - 12.9

Bohrung Nr. 307 : DENSTORF 1

Zustand in der Nachbetriebsphase des Endlagers

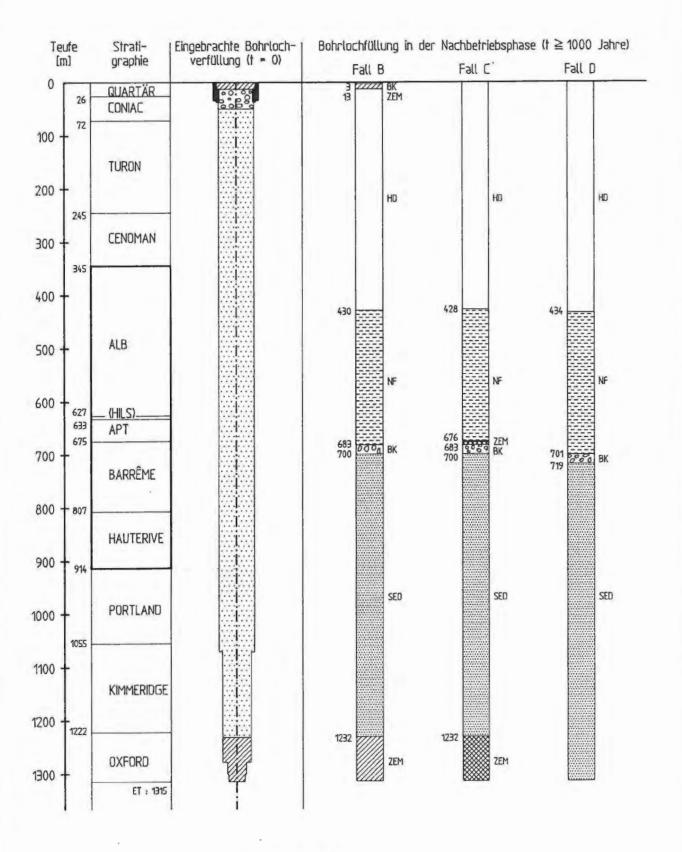


ENDLAGER KONRAD



- Sedimentationsanteil der Sollung : 52 %

Spülung : 52 % - Sedimentationsanteil des Nachfalls : 75 %


 Berücksichtigung der Bohrlochauskesselungen beim Bohren

## Abb. E - 12.10

Bohrung Nr. 290 : GLEIDINGEN 1 Zustand in der Nachbetriebsphase des Endlagers

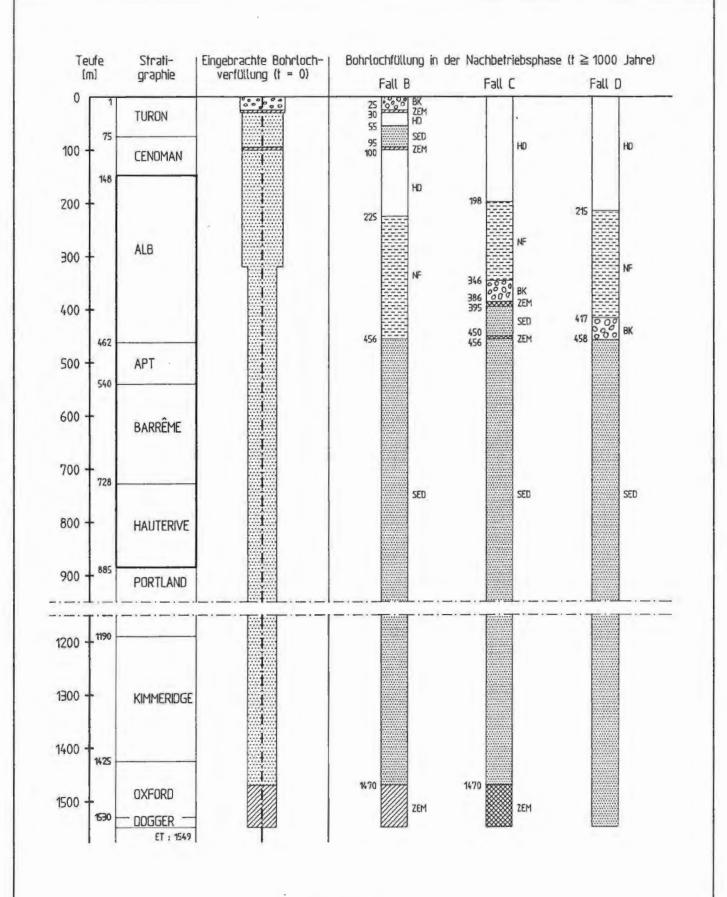


**ENDLAGER KONRAD** 



- Sedimentationsanteil der Spülung : 44 %

 Sedimentationsanteil des Nachfalls : 75 %


 Berücksichtigung der Bohrlochauskesselungen beim Bohren Abb. E - 12.11

Bohrung Nr. 81: HALLENDORF 1

Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD



- Sedimentationsanteil der Sottlung : 62 %

Spülung : 62 % - Sedimentationsanteil des Nachfalls : 75 %

Nachfalls : 75 %

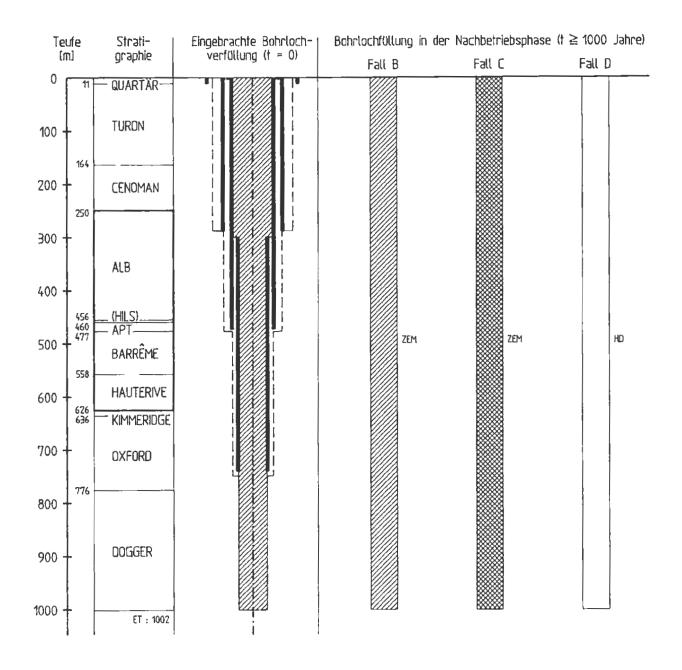
- Berücksichtigung der
Bohrlochauskesselungen
beim Bohren

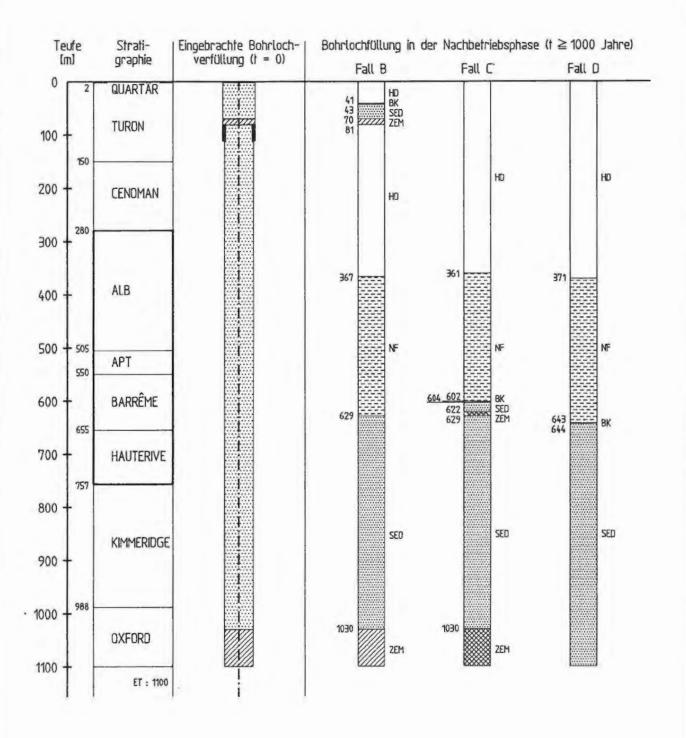
#### Abb. E - 12.12

Bohrung Nr. 321 : HÜTTENBERG 1 Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD





Abb. E - 12.13

Bohrung : KONRAD 101

Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD



- Sedimentationsanteil der

Spülung : 40 % Sedimentationsanteil des

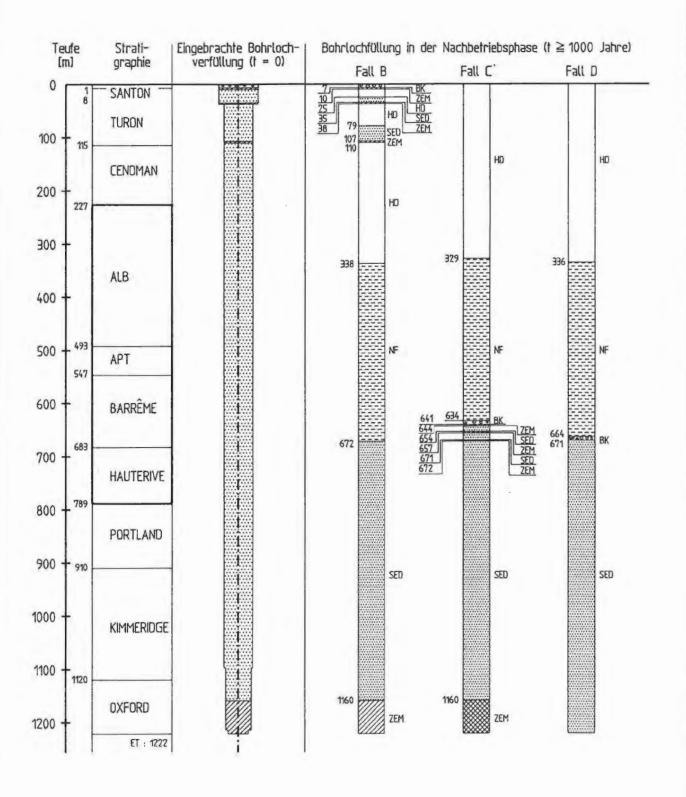

Nachfalls : 75 % Berücksichtigung der Bohrlochauskesselungen beim Bohren

Abb. E - 12.14 Bohrung Nr. 30 : SAUINGEN 1

Zustand in der Nachbetriebsphase des Endlagers



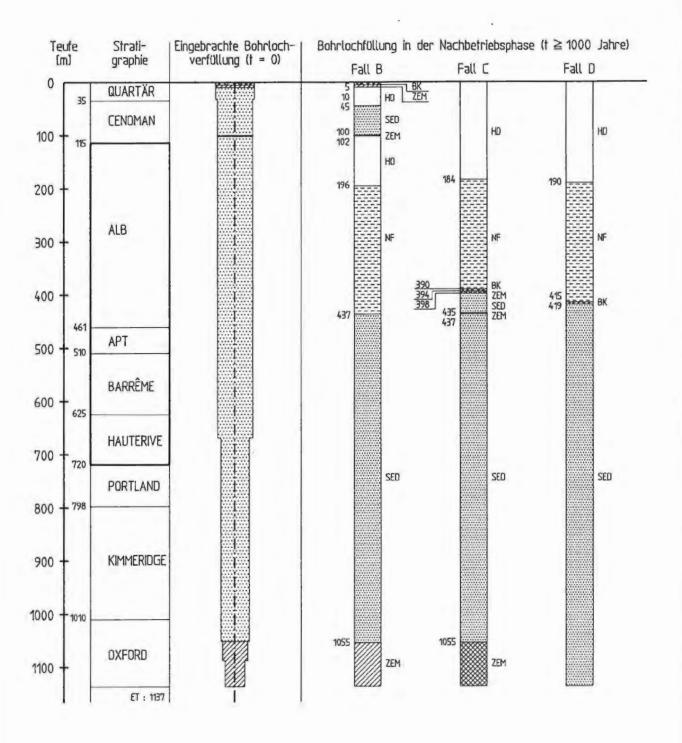
ENDLAGER KONRAD



Sedlmentationsanteil der

Spülung: 40 %
Sedimentationsanteil des
Nachfalls: 75 %
Berücksichtigung der

Bohrlochauskesselungen beim Bohren


## Abb. E - 12.15

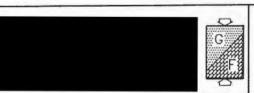
Bohrung Nr. 320 : SAUINGEN 2

Zustand in der Nachbetriebsphase des Endlagers

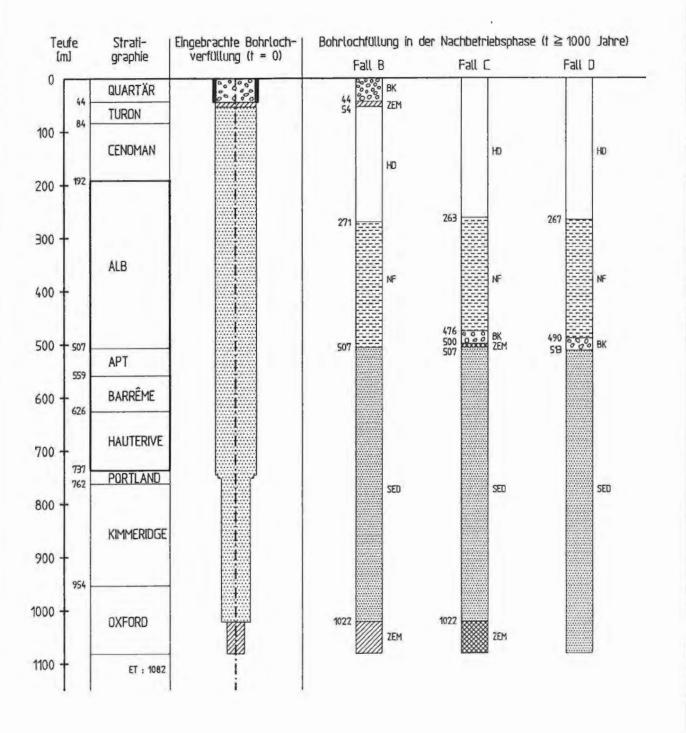


ENDLAGER KONRAD




- Sedimentationsanteil der Spülung : 58 %

 Sedimentationsanteil des Nachfalls : 75 %


 Berücksichtigung der Bohrlochauskesselungen beim Bohren

#### Abb. E - 12.16

Bohrung Nr. 98 : SONNENBERG 1 Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD



- Sedimentationsanteil der

Spülung : 48 % Sedimentationsanteil des Nachfalls : 75 % Berücksichtigung der

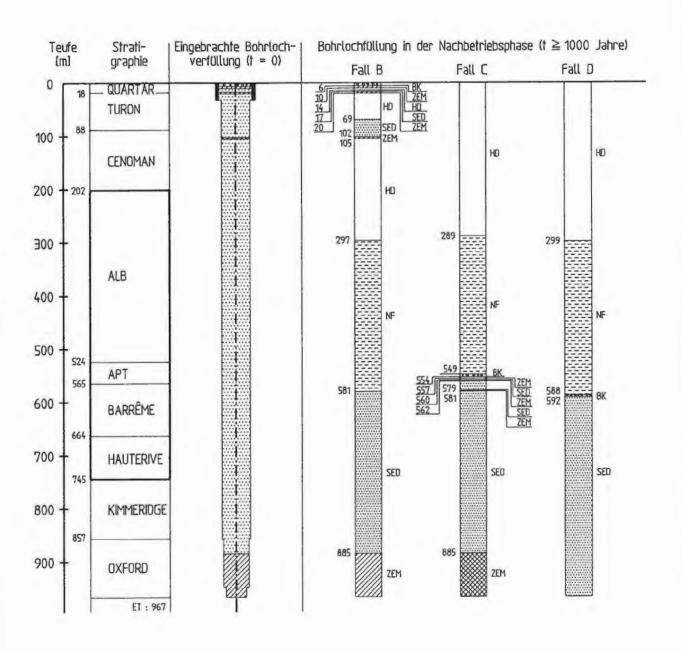

Bohrlochauskesselungen beim Bohren

Abb. E - 12.17

Bohrung Nr. 295: SONNENBERG 2 Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD

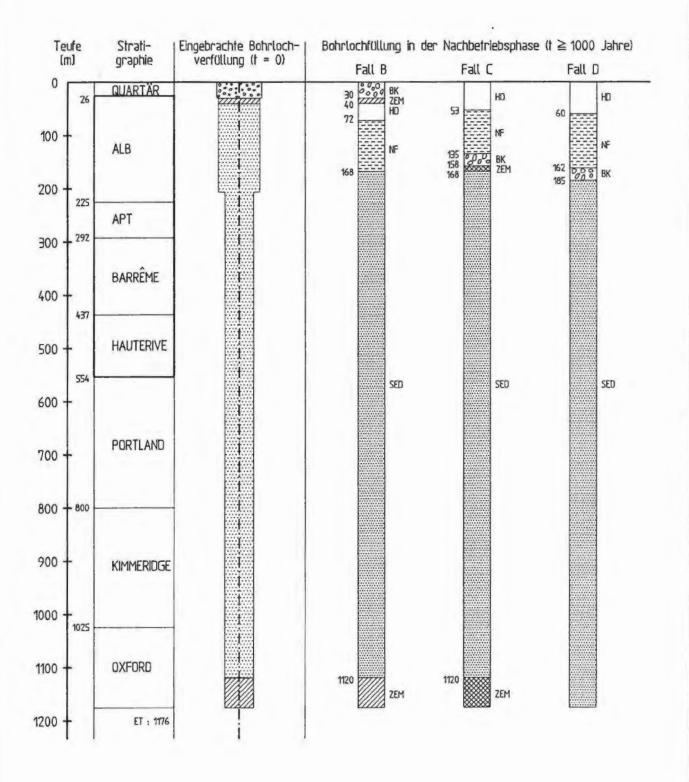


 Sedimentationsanteil der Spülung : 40 %

- Sedimentationsanteil des

Nachfalls : 75 %

- Berücksichtigung der
Bohrlochauskesselungen
beim Bohren


Abb. E - 12.18

Bohrung Nr. 296 : SONNENBERG 3

Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD



Sedimentationsanteil der

Spülung : 76 % Sedimentationsanteil des Nachfalls: 75 %

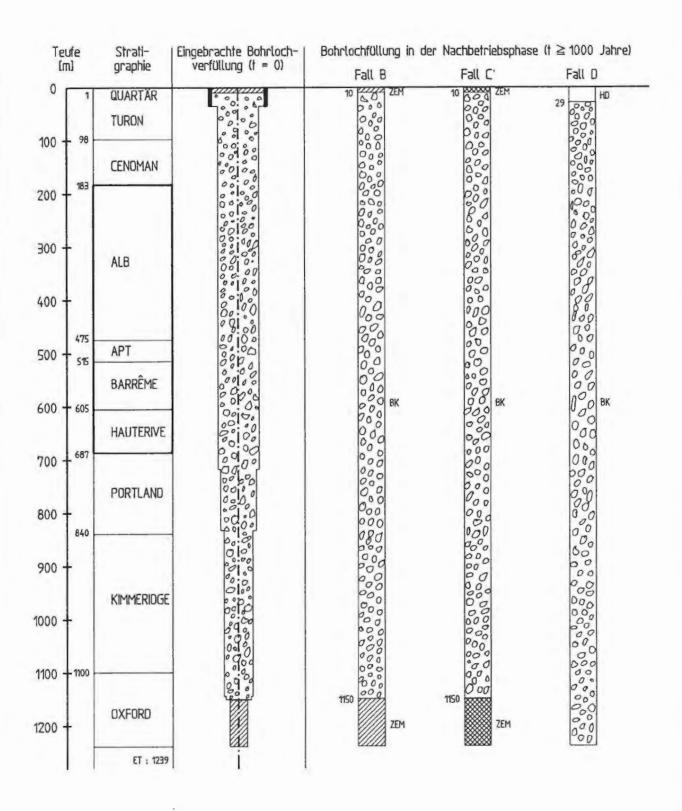
Berücksichtigung der Bohrlochauskesselungen beim Bohren

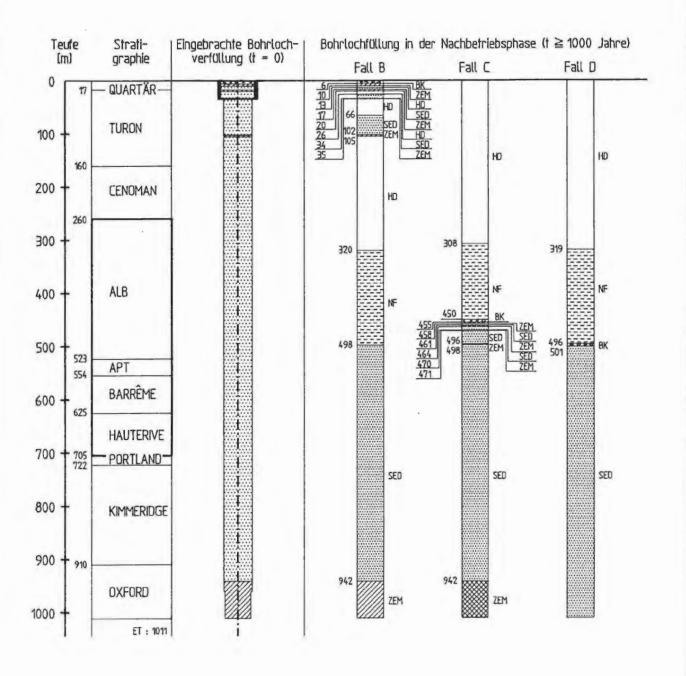
Abb. E - 12.19

Bohrung Nr. 303 : SONNENBERG 4 Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD





Abb. E - 12.20

Bohrung Nr. 100 : ÜFINGEN 1

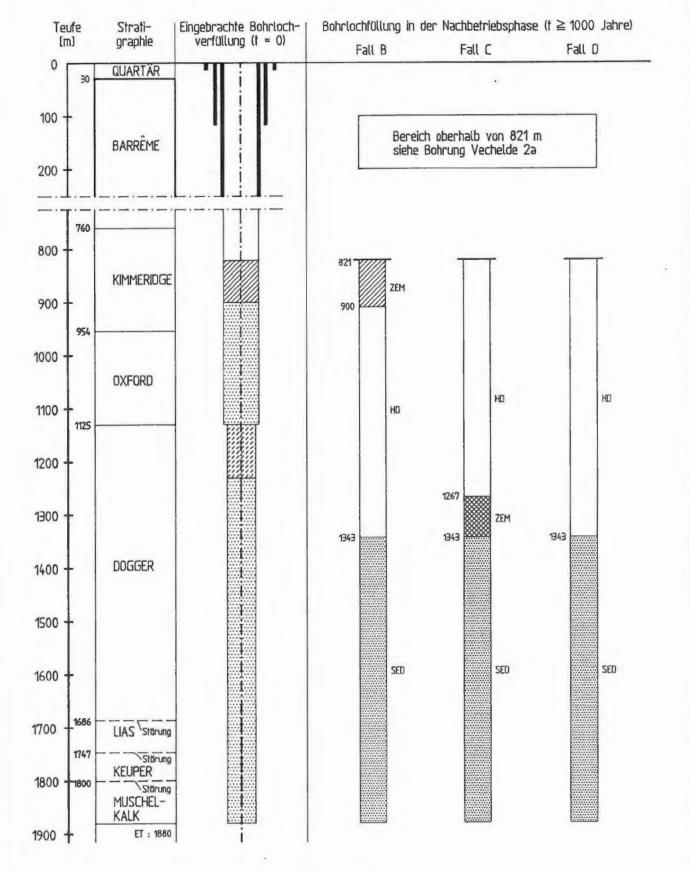
Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD



- Sedimentationsanteil der
- Spülung : 54 % Sedimentationsanteil des Nachfalls: 75 %
- Berücksichtigung der Bohrlochauskesselungen beim Bohren


Abb. E - 12.21

Bohrung Nr. 166 : ÜFINGEN 2

Zustand in der Nachbetriebsphase des Endlagers

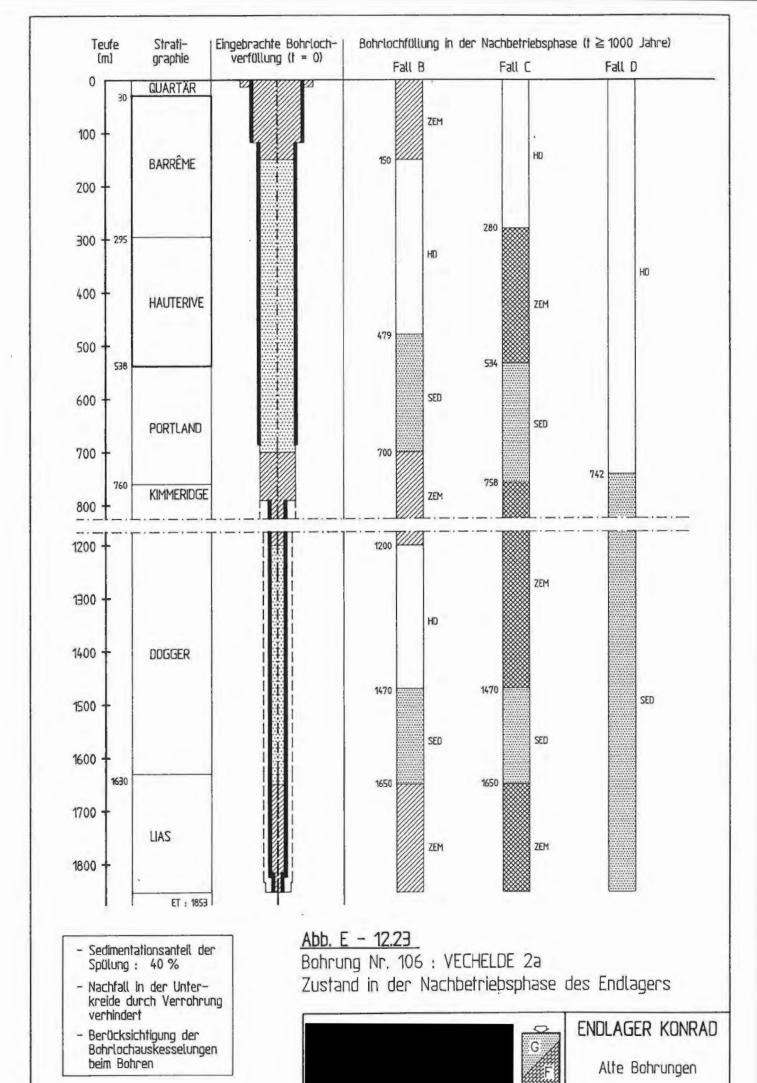


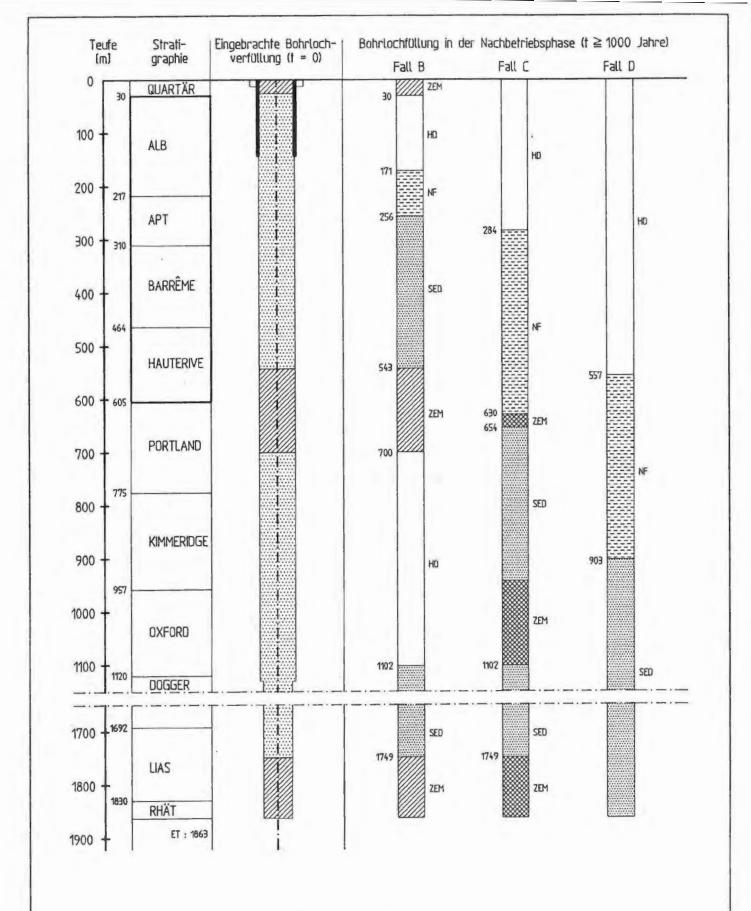
ENDLAGER KONRAD



- Sedimentationsanteil der Spülung : 52 %

 Berücksichtigung der Bohrlochauskesselungen beim Bohren


Abb. E - 12.22


Bohrung Nr. 106: VECHELDE 2

Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD

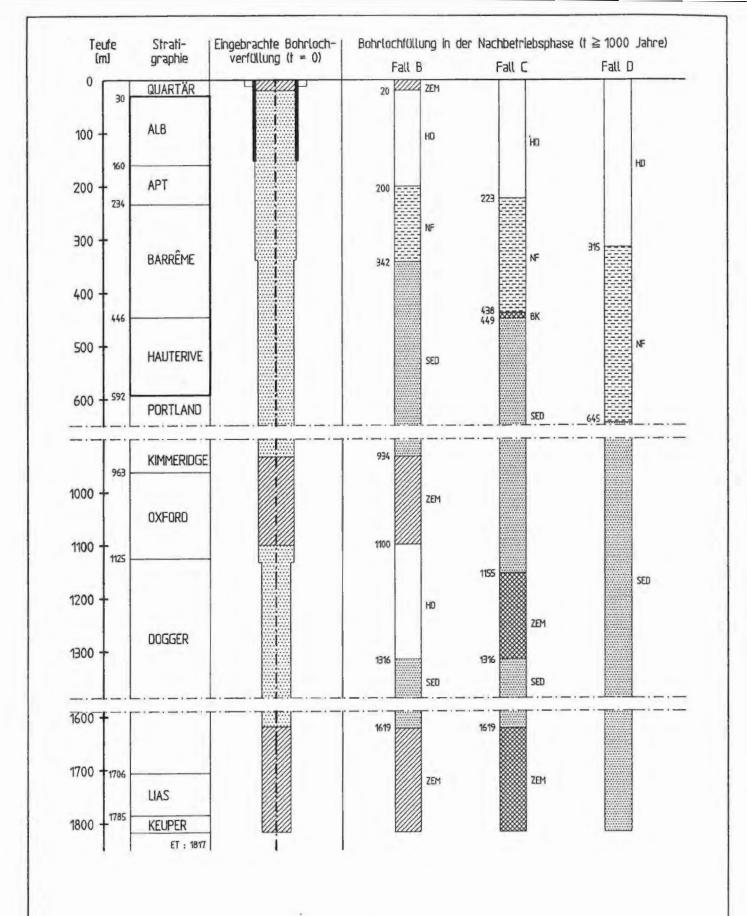




Sedimentationsanteil der

Spülung : 58 % Sedimentationsanteil des Nachfalls : 75 % Berücksichtigung der

Bohrlochauskesselungen beim Bohren


### Abb. E - 12.24

Bohrung Nr. 107: VECHELDE 3

Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD

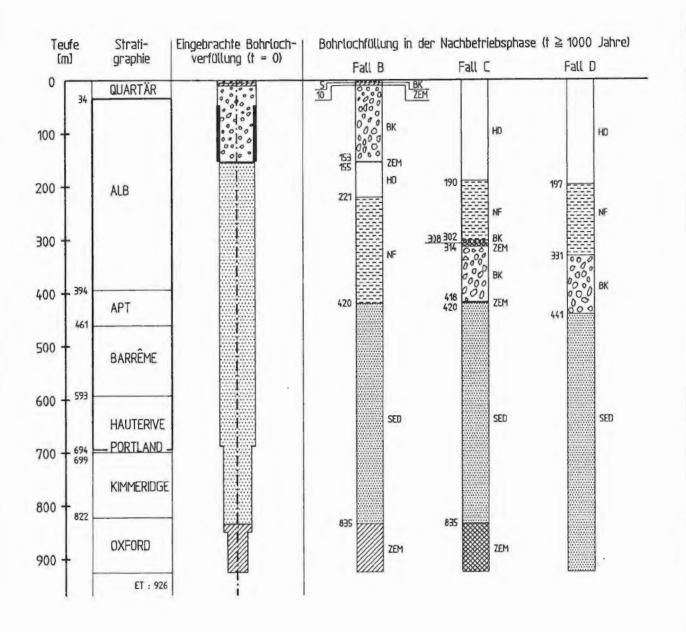


- Sedimentationsanteil der Spülung : 58 %

Spülung : 58 %

- Sedimentationsanteil des
Nachfalls : 75 %

Nachfalls : 75 %


- Berücksichtigung der
Bohrlochauskesselungen
beim Bohren

#### Abb. E - 12.25

Bohrung Nr. 111 : VECHELDE 4 Zustand in der Nachbetriebsphase des Endlagers



ENDLAGER KONRAD



Sedimentationsanteil der

Spülung : · 60 % Sedimentationsanteil des

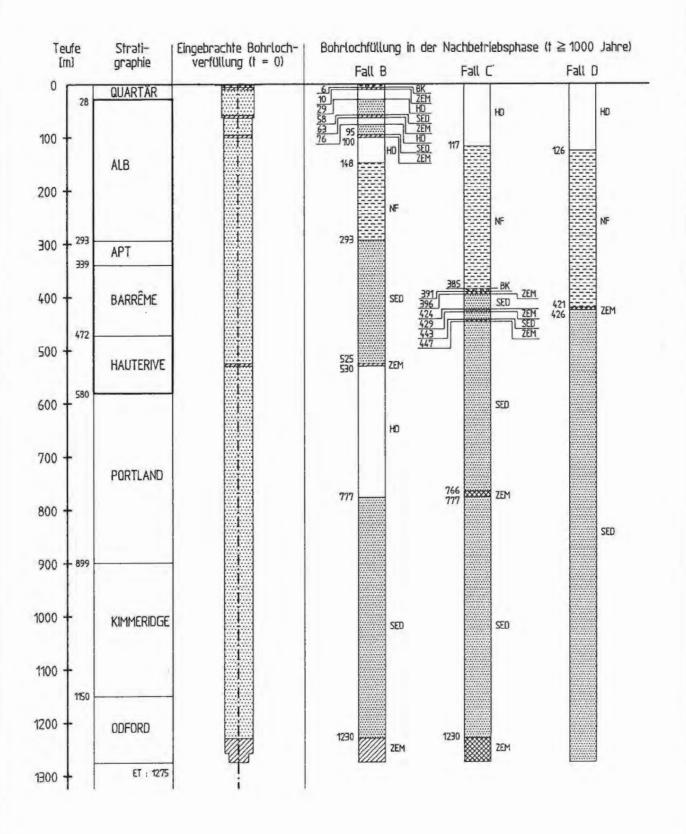

Nachfalls : 75 % Berücksichtigung der Bohrlochauskesselungen beim Bohren

Abb. E - 12.26

Bohrung Nr. 99 : WEDTLENSTEDT 1 Zustand in der Nachbetriebsphase des Endlagers



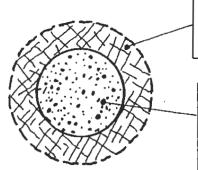
ENDLAGER KONRAD



Sedimentationsanteil der Spülung : 60 % Sedimentationsanteil des

Nachfalls: 75 %

Berücksichtigung der Bohrlochauskesselungen beim Bohren


## Abb. E - 12.27

Bohrung Nr. 315 : WIERTHE 1 Zustand in der Nachbetriebsphase des Endlagers

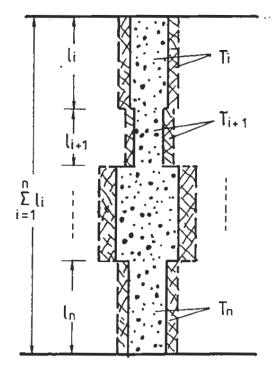


ENDLAGER KONRAD

## Querschnittstransmissivität Ti im Bohrlochabschnitt i :



Auflockerungszone


Fläche AA, / Durchlässigkeit kfA,i

Bohrlochfüllung , z.B. Spülungssediment , Nachfall oder Zementstein

Fläche A<sub>F,i</sub> / Durchlässigkeit k<sub>fF,i</sub>

$$T_i = T_{F+A,i} = k_{F,i} \cdot A_{F,i} + k_{FA,i} \cdot A_{A,i}$$
 [m<sup>3</sup>/s]

# Mittlere (axiale) Transmissivität T im Bereich mehrerer Bohrlochabschnitte:



li = Abschnittslänge

$$\frac{\overline{T}}{T} = \frac{\sum_{i=1}^{n} l_i}{\sum_{i=1}^{n} (l_i / T_i)} \qquad [m^3/s]$$

Абб. Е - 13.1

Bestimmung der mittleren (axialen) Transmissivität einer Bohrung



**ENDLAGER KONRAD** 

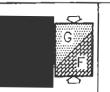
| Stra | atigraphie                           | Schematische Darstellung der                  | Anmerkungen                                                                                                                                       |
|------|--------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Abk. | Formationen                          | Durchmesser $d_1$ , $d_2$ , $d_3$ , and $d_A$ |                                                                                                                                                   |
| QUAR | Quartär                              | d1                                            | Nachfall u Auflackeeumee                                                                                                                          |
| OBKR | Santon<br>Coniac<br>Turon<br>Cenoman | d <sub>2</sub>                                | Nachfall u. Auflockerungs-<br>zone nicht berücksichtigt<br>$(d_A = d_3 = d_2, d_2 \ge d_1)$                                                       |
| UKR2 | Alb                                  | Auflocke-<br>rungszone                        | Verrohrung in der Unterkreide<br>(d <sub>3</sub> = d <sub>2</sub> = d <sub>1</sub> , d <sub>A</sub> > d <sub>3</sub> )                            |
| _    | Apt                                  | füllung                                       | Nachfallbereich in der<br>Unterkreide                                                                                                             |
|      | Barrême                              | -ji-d <sub>2</sub> ji                         | $(d_A > d_3 > d_2 > d_1)$                                                                                                                         |
| UKR1 | Hauterive                            | **************************************        |                                                                                                                                                   |
|      | (Valangin)                           |                                               | z.B. Sedimentfüllung i.d. Unterkreide $(d_3 = d_2 , d_2 > d_1 , d_A > d_3)$                                                                       |
| MALM | Portland<br>Kimmeridge<br>Oxford     | z. B. Sediment-<br>füllung                    |                                                                                                                                                   |
| DOGG | Dogger<br>(ungegliedert)             |                                               | Nachfall und Auflockerungs-<br>zone nicht berücksichtigt<br>(d <sub>A</sub> = d <sub>3</sub> = d <sub>2</sub> , d <sub>2</sub> ≥ d <sub>1</sub> ) |
| LIAS | Lias<br>(ungegliedert)               |                                               | $(d_A = d_3 = d_2, d_2 \ge d_1)$                                                                                                                  |
| KEUP | Keuper<br>(ungegliedert)             |                                               |                                                                                                                                                   |
| ZECH | Zechstein<br>(ungegliedert)          |                                               |                                                                                                                                                   |

d<sub>1</sub> Bohrdurchmesser bzw. Innendurchmesser verbliebener Verrohrung

E1 Erweiterungsfaktor zur Berücksichtigung der Auskesselungen beim Bohren

 $d_2 = E_1 \cdot d_1$  (in verrohrten Abschnitten :  $d_2 = d_1$ )

Ez Erweiterungsfaktor zur Berücksichtigung des Nachbruchs (nach erfolgter Spülungssedimentation etc.) in den freien Unterkreidebereichen


 $d_3 = E_2 \cdot d_2$  (in verrohrten und in gefüllten Unterkreideabschnitten sowie in allen anderen Formationen :  $d_3 = d_2$ )

E<sub>A</sub> Faktor zur Berücksichtigung der Auflockerungszone in der Unterkreide

 $d_A = E_A \cdot d_3$  (in den Formationen oberhalb und unterhalb der Unterkreide  $d_A = d_3 = d_2$ )

#### Abb. E - 13.2

Legende zur tabellarischen Bestimmung der mittleren Bohrlochtransmissivitäten



ENDLAGER KONRAD

#### Bestimmung der mittleren Bohrlochtransmissivitäten für die Fälle B, C und D:

| Tabellen E-13.3/1 B, C und D:  | Bohrung ALVESSE 1      |
|--------------------------------|------------------------|
| Tabellen E-13.3/2 B, C und D:  | Bohrung BLECKENSTEDT 1 |
| Tabellen E-13.3/3 B, C und D:  | Bohrung BLECKENSTEDT 2 |
| Tabellen E-13.3/4 B, C und D:  | Bohrung BLECKENSTEDT 3 |
| Tabellen E-13.3/5 B, C und D:  | Bohrung BLECKENSTEDT 4 |
| Tabellen E-13.3/6 B, C und D:  | Bohrung BROISTEDT 33   |
| Tabellen E-13.3/7 B, C und D:  | Bohrung BROISTEDT 34   |
| Tabellen E-13.3/8 B, C und D:  | Bohrung DENSTORF 1     |
| Tabellen E-13.3/9 B, C und D:  | Bohrung GLEIDINGEN 1   |
| Tabellen E-13.3/10 B, C und D: | Bohrung HALLENDORF 1   |
| Tabellen E-13.3/11 B, C und D: | Bohrung HÜTTENBERG 1   |
| Tabellen E-13.3/12 B, C und D: | Bohrung KONRAD 101     |
| Tabellen E-13.3/13 B, C und D: | Bohrung SAUINGEN 1     |
| Tabellen E-13.3/14 B, C und D: | Bohrung SAUINGEN 2     |
| Tabellen E-13.3/15 B, C und D: | Bohrung SONNENBERG 1   |
| Tabellen E-13.3/16 B, C und D: | Bohrung SONNENBERG 2   |
| Tabellen E-13.3/17 B, C und D: | Bohrung SONNENBERG 3   |
| Tabellen E-13.3/18 B, C und D: | Bohrung SONNENBERG 4   |
| Tabellen E-13.3/19 B, C und D: | Bohrung ÜFINGEN 1      |
| Tabellen E-13.3/20 B, C und D: | Bohrung ÜFINGEN 2      |
| Tabellen E-13.3/21 B, C und D: | Bohrung VECHELDE 2a    |
| Tabellen E-13.3/22 B, C und D: | Bohrung VECHELDE 3     |
| Tabellen E-13.3/23 B, C und D: | Bohrung VECHELDE 4     |
| Tabellen E-13.3/24 B, C und D: | Bohrung WEDTLENSTEDT 1 |
| Tabellen E-13.3/25 B, C und D: | Bohrung WIERTHE 1      |
|                                |                        |

<u>Abb. E – 13.3</u> Deckblatt zu den Tabellen "Bestimmung der mittleren Bohrlochtransmissivitäten"



ENDLAGER KONRAD

## Bohrung Nr. 183: ALVESSE 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 48 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-          | Teufenl    | bereich    |                     |                    |             |            | B          | ohrlochfüllung |                       |              |         |         |     | Auflockerun                         | gszone                   | _                                     | _                                       |
|------------------|------------|------------|---------------------|--------------------|-------------|------------|------------|----------------|-----------------------|--------------|---------|---------|-----|-------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(-) | von<br>(m) | bis<br>[m] | d <sub>1</sub> [mm] | E <sub>1</sub> [-] | d 2<br>(mm) | E 2<br>[-] | d3<br>[mm] | Fällung<br>(–) | A F [m <sup>2</sup> ] | kfF<br>(m/s) | [m3/s]  | E A [-] | d A | Α <sub>Α</sub><br>(m <sup>2</sup> ) | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 30         | 340                 | 1.15               | 391         | 1.00       | 391        | НО             | 0.1201                | 1.0E -3      | 1.2E -4 | 1.00    | 391 | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 1.2E -4                                 |
| UKA2             | 30         | 152        | 219                 | 1.40               | 307         | 1.35       | 414        | HD             | 0.1346                | 1.0E -3      | 1.3E -4 | 1.25    | 517 | 0.0757                              | 1.0E -8                  | 7.6E-10                               | 1.3E -4                                 |
| UKB2             | 152        | 410        | 219                 | 1.40               | 307         | 1.35       | 414        | NF             | 0.1346                | 1.0E -B      | 1.3E -9 | 1.25    | 517 | 0.0757                              | 1.0E -8                  | 7.6E-10                               | 2.1E -9                                 |
| UKR1             | 410        | 517        | 219                 | 1.60               | 350         | 1.35       | 473        | NF             | 0.1757                | 1.0E -B      | 1.8E -9 | 1.80    | 851 | 0.3937                              | 1.0E -8                  | 3.9E -9                               | 5.7E -9                                 |
| UKA1             | 517        | 554        | 219                 | 1.60               | 350         | FLLG       | 350        | BK/ZEM         | 0.0964                | 1.0E -8      | 9.6E-10 | 1.80    | 631 | 0.2160                              | 1.0E -B                  | 2.2E -9                               | 3.1E -9                                 |
| UKR1             | 554        | 623        | 219                 | 1,60               | 350         | FLL6       | 350        | SED            | 0.0964                | 1.0E -8      | 9.6E-10 | 1.80    | 631 | 0.2160                              | 1.0E -8                  | 2.2E -9                               | 3.1E -9                                 |
| MALM             | 623        | 1340       | 219                 | 1.10               | 241         | 1.00       | 241        | SED            | 0.0456                | 1.0E -8      | 4.6E-10 | 1.00    | 241 | 0.0000                              | 1.0€ -8                  | 0.0€ 1                                | 4.6E-10                                 |
| MALM             | 1340       | 1363       | 219                 | 1.10               | 241         | 1.00       | 241        | ZEM            | 0.0456                | 1.0E -8      | 4.6E-10 | 1.00    | 241 | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 4.6E-10                                 |
| MALM             | 1363       | 1377       | 154                 | 1.10               | 169         | 1.00       | 169        | ZEM            | 0.0225                | 1.0E -8      | 2.3E-10 | 1.00    | 169 | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 2.3E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T= 1.20E -4 m<sup>3</sup>/s Teufenbereich: 30 - 410 m T= 3.10E -9 m<sup>3</sup>/s Teufenbereich: 410 - 623 m T= 4.04E -9 m<sup>3</sup>/s Teufenbereich: 30 - 623 m T= 3.38E -9 m<sup>3</sup>/s Teufenbereich: 623 - 1377 m T= 4.47E-10 m<sup>3</sup>/s

Tab. E - 13.3 / 1 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung ALVESSE 1

## Bohrung Nr. 183: ALVESSE 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 48 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-          | Teufen     | bereich    |                        |                       |     |            | B-          | ohrlochfüllung |                   |                       |                     |         |                      | Auflockerun           | gszone                   |                                       | ] _                                     |
|------------------|------------|------------|------------------------|-----------------------|-----|------------|-------------|----------------|-------------------|-----------------------|---------------------|---------|----------------------|-----------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>[mm] | E <sub>1</sub><br>(−) | d 2 | € 2<br>[~] | d 3<br>[mm] | füllung<br>[]  | [m <sup>2</sup> ] | k <sub>fF</sub> [m/s] | [m <sup>3</sup> /s] | É A (-) | di <sub>A</sub> (mm) | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 30         | 340                    | 1.15                  | 391 | 1.00       | 391         | HD             | 0.1201            | 1.0E -3               | 1.2E -4             | 1.00    | 391                  | 0.0000                | 1.0E -B                  | 0.0E 1                                | 1.2E -4                                 |
| LUKR2            | 30         | 158        | 219                    | 1.40                  | 307 | 1.35       | 414         | HD             | 0.1346            | 1.0E -3               | 1.3E -4             | 1.25    | 517                  | 0.0757                | 1.0E -B                  | 7.6E-10                               | 1.3E -4                                 |
| UKR2             | 158        | 410        | 219                    | 1.40                  | 307 | 1.35       | 414         | NF             | 0.1346            | 1.0E -8               | 1.3E -9             | 1.25    | 517                  | 0,0757                | 1.0E -8                  | 7.6E-10                               | 2.1E -9                                 |
| UKR1             | 410        | 543        | 219                    | 1.60                  | 350 | 1,35       | 473         | NF             | 0.1757            | 1.0E -8               | 1.8£ -9             | 1.80    | 851                  | 0.3937                | 1.0E -8                  | 3.9E -9                               | 5.7E -9                                 |
| UKR1             | 543        | 574        | 219                    | 1.60                  | 350 | FLLG       | 350         | вк             | 0.0964            | 1.0E -B               | 9.6E-10             | 1.80    | 631                  | 0.2160                | 1.0€ -8                  | 2.2E -9                               | 3.18 -9                                 |
| UKR1             | 574        | 623        | 219                    | 1.60                  | 350 | FLLG       | 350         | SED            | 0,0964            | 1.0E -8               | 9.6E-10             | 1.80    | 631                  | 0.2160                | 1.0E -B                  | 2.2E -9                               | 3.1E -9                                 |
| MALM             | 623        | 1363       | 219                    | 1.10                  | 241 | 1.00       | 241         | SED            | 0.0456            | 1.0E -8               | 4.6E-10             | 1.00    | 241                  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 4.6E-10                                 |
| MALM             | 1363       | 1377       | 154                    | 1.10                  | 169 | 1.00       | 169         | SED            | 0.0225            | 1.0E -8               | 2.3E-10             | 1.00    | 169                  | 0.0000                | 1.0 € -8                 | 0.0E 1                                | 2.3E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T= 1.20E -4 m<sup>3</sup>/s
Teufenbereich: 30 - 410 m T= 3.17E -9 m<sup>3</sup>/s
Teufenbereich: 410 - 623 m T= 4.35E -9 m<sup>3</sup>/s
Teufenbereich: 30 - 623 m T= 3.51E -9 m<sup>3</sup>/s
Teufenbereich: 623 - 1377 m T= 4.47E-10 m<sup>3</sup>/s

Tab. E - 13.3 / 1 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung ALVESSE 1

## Bohrung Nr. 183: ALVESSE 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 48 %

Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                     |                       |                     |           | B            | ohrlochfüllung |                          |                           |                     |                       |                | Auflockerur              | ngszone                  |                                       | -                                       |
|------------------|------------|------------|---------------------|-----------------------|---------------------|-----------|--------------|----------------|--------------------------|---------------------------|---------------------|-----------------------|----------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[–] | von<br>[m] | bis<br>[m] | d <sub>1</sub> [mm] | E <sub>1</sub><br>[−] | d <sub>2</sub> [mm] | €2<br>[~] | d 3.<br>[mm] | Füllung<br>(–) | A F<br>[m <sup>2</sup> ] | k <sub>f</sub> F<br>[m/s] | [m <sup>3</sup> /s] | E <sub>A</sub><br>[–] | d <sub>A</sub> | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 30         | 340                 | 1.15                  | 391                 | 1.00      | 391          | BK/ZEM         | 0.1201                   | 1.0E -8                   | 1.2E -9             | 1.00                  | 391            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 1.2E -9                                 |
| UKR2             | 30         | 64         | 219                 | 1.40                  | 307                 | FLLG      | 307          | HD             | 0.0738                   | 1.0E -3                   | 7.4E -5             | 1.25                  | 383            | 0.0415                   | 1.0E -8                  | 4.2E-10                               | 7.4E -5                                 |
| UKR2             | 64         | 100        | 219                 | 1.40                  | 307                 | FLLG      | 307          | SED/ŻĒ         | 0.0738                   | 1.0E →B                   | 7.4E-10             | 1.25                  | 383            | 0.0415                   | 1.0E ~B                  | 4.2E-10                               | 1.2E ~9                                 |
| UKR2             | 100        | 203        | 219                 | 1.40                  | 307                 | 1.35      | 414          | HD             | 0.1346                   | 1.0E -3                   | 1.3E -4             | 1.25                  | 517            | 0.0757                   | 1.0E -B                  | 7.6E-10                               | 1.3E -4                                 |
| UKR2             | 203        | 410        | 219                 | 1.40                  | 307                 | 1.35      | 414          | NF             | 0.1346                   | 1.0E -8                   | 1.3E -9             | 1.25                  | 517            | 0.0757                   | 1.0E ~B                  | 7.6E-10                               | 2.1E -9                                 |
| UKR1             | 410        | 513        | 219                 | 1,60                  | 350                 | 1.35      | 473          | NF             | 0.1757                   | 1.0E -8                   | 1.8E -9             | 1.80                  | 851            | 0.3937                   | 1.0E -8                  | 3.98 -9                               | 5.7E -9                                 |
| UKA1             | 513        | 623        | 219                 | 1.60                  | 350                 | FLL6      | 350          | SED/ZE         | 0.0964                   | 1.0E -8                   | 9.6E-10             | 1.80                  | 631            | 0.2160                   | 1.0E -8                  | 2.2E -9                               | 3.1E -9                                 |
| MALM             | 623        | 1050       | 219                 | 1.10                  | 241                 | 1.00      | 241          | SED/ZE         | 0.0456                   | 1.0E -B                   | 4.6E-10             | 1.00                  | 241            | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 4.6E-10                                 |
| MALM             | 1060       | 1206       | 219                 | 1.10                  | 241                 | 1.00      | 241          | но             | 0.0456                   | 1.0E -3                   | 4.6E ∽5             | 1.00                  | 241            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.6E -5                                 |
| MALM             | 1206       | 1340       | 219                 | 1.10                  | 241                 | 1.00      | 241          | SED            | 0.0456                   | 1.0E -8                   | 4.6E-10             | 1.00                  | 241            | 0.0000                   | 1.0E ~8                  | 0.0E 1                                | 4.6E-10                                 |
| MALM             | 1340       | 1363       | 219                 | 1.10                  | 241                 | 1.00      | 241          | ZEM            | 0.0456                   | 1.0E -B                   | 4.6E-10             | 1.00                  | 241            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.6E-10                                 |
| MALM             | 1363       | 1377       | 154                 | 1.10                  | 169                 | 1.00      | 169          | ZEM            | 0.0225                   | 1.0E -B                   | 2.3E-10             | 1.00                  | 169            | 0.0000                   | 1.0 € -8                 | 0.0E 1                                | 2.3E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T= 1.20E +9 m<sup>3</sup>/s
Teufenbereich: 30 - 410 m T= 2.93E -9 m<sup>3</sup>/s
Teufenbereich: 410 - 623 m T= 4.00E -9 m<sup>3</sup>/s
Teufenbereich: 30 - 623 m T= 3.24E -9 m<sup>3</sup>/s
Teufenbereich: 623 - 1377 m T= 5.52E-10 m<sup>3</sup>/s

Tab. E - 13.3 / 1 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung ALVESSE 1

## Bohrung Nr. 67: BLECKENSTEDT 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 50 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufeni    | bereich |                        |           |             |            | 8           | ohrlochfüllung |                                     |              |                                       |                |                        | Auflockerun                         | gszone                   |                                       |                                         |
|------------------|------------|---------|------------------------|-----------|-------------|------------|-------------|----------------|-------------------------------------|--------------|---------------------------------------|----------------|------------------------|-------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis (m) | d <sub>1</sub><br>(mm) | E₁<br>(−) | d 2<br>[mm] | E 2<br>[-] | d 3<br>[mm] | Füllung<br>[→] | A <sub>F</sub><br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub> | d <sub>A</sub><br>(mm) | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| овка             | 0          | 12      | 298                    | 1.15      | 343         | 1.00       | 343         | 8K/ZEM         | 0.0922                              | 1.0E -8      | 9.2E-10                               | 1.00           | 343                    | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 9.2E-10                                 |
| ОВКВ             | 12         | 267     | 267                    | 1.15      | 307         | 1.00       | 307         | BK/ZEM         | 0.0740                              | 1.0E -8      | 7.4E-10                               | 1.00           | 307                    | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 7.4E-10                                 |
| UKR2             | 267        | 333     | 267                    | 1.40      | 374         | FLLG       | 374         | BK/ZEM         | 0.1097                              | 1.0E -8      | 1.1E -9                               | 1.25           | 467                    | 0.0617                              | 1.0E -8                  | 6.2E-10                               | 1.7E -9                                 |
| UKR2             | 333        | 398     | 204                    | ROHA      | 204         | ROHA       | 204         | BK/ZEM         | 0.0327                              | 1.0E -8      | 3.3E-10                               | 1.65           | 337                    | 0.0563                              | 1.0E -8                  | 5.6E-10                               | B.9E-10                                 |
| UKB2             | 398        | 440     | 193                    | 1.40      | 270         | FLLG       | 270         | BK/ZEM         | 0.0573                              | 1.0E -8      | 5.7E-10                               | 1.25           | 338                    | 0.0323                              | 1.0E -B                  | 3.2E-10                               | 9.0E-10                                 |
| UKR2             | 440        | 458     | 193                    | 1.40      | 270         | 1.35       | 365         | но             | 0.1045                              | 1.0E -3      | 1.0E -4                               | 1.25           | 456                    | 0.0588                              | 1.0E -B                  | 5.9E-10                               | 1.0E -4                                 |
| UKR2             | 458        | 536     | 154                    | ROHR      | 154         | ROHA       | 154         | HD             | 0.0186                              | 1.0E -3      | 1.98 -5                               | 1.60           | 246                    | 0.0291                              | 1.0E -8                  | 2.9E-10                               | 1.9E -5                                 |
| UKR1             | 536        | 642     | 154                    | ROHR      | 154         | ROHR       | 154         | HD             | 0.0186                              | 1.0E -3      | 1.9E -5                               | 2.25           | 347                    | 0.0757                              | 1.0E -8                  | 7.5E-10                               | 1.9E -5                                 |
| UKA1             | 642        | 655     | 154                    | AOHA      | 154         | ROHR       | 154         | NF             | 0.0186                              | 1.0E -8      | 1.9E-10                               | 2.25           | 347                    | 0.0757                              | 1.0E -8                  | 7.6E-10                               | 9.4E-10                                 |
| UKR1             | 655        | 688     | 154                    | ROHR      | 154         | HOHA       | 154         | SED            | 0.0186                              | 1.0E -8      | 1.9E-10                               | 2.25           | 347                    | 0.0757                              | 1.0E -B                  | 7.6E-10                               | 9.4E-10                                 |
| MALM             | 688        | 848     | 154                    | ROHR      | 154         | 1.00       | 154         | SED            | 0.0186                              | 1.0E -B      | 1.9E-10                               | 1.00           | 154                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 1.9E-10                                 |
| MALM             | 848        | 905     | 143                    | 1.10      | 157         | 1.00       | 157         | SED            | 0.0194                              | 1.0E -8      | 1.9E-10                               | 1.00           | 157                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 1.9E-10                                 |
| MALM             | 905        | 1015    | 143                    | 1.10      | 157         | 1.00       | 157         | ZEM            | 0.0194                              | 1.0E -8      | 1.9E-10                               | 1.00           | 157                    | 0.0000                              | 1.0E -B                  | 0.0€ 1                                | 1.9E-10                                 |
| MALM             | 1015       | 1054    | 143                    | 1.10      | 157         | 1.00       | 157         | HD             | 0.0194                              | 1.0E -3      | 1.9E -5                               | 1.00           | 157                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 1.9E -5                                 |
| DOGG             | 1054       | 1115    | 143                    | 1.40      | 200         | 1.00       | 500         | ( HD           | 0.0315                              | 1.0E -3      | 3.1E -5                               | 1.00           | 200                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 3.1E -5                                 |
| DOGG             | 1115       | 1200    | 143                    | 1.40      | 200         | 1.00       | 200         | SED            | 0.0315                              | 1.0E -8      | 3.1E-10                               | 1.00           | 200                    | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 3.1E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 267 m  $T = 7.47E-10 \text{ m}^3/\text{s}$ Teufenbereich: 267 - 536 m  $T = 1.70E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 536 - 688 m  $T = 3.12E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 267 - 688 m  $T = 2.03E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 688 - 1200 m  $T = 2.57E-10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 2 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 1

## Bohrung Nr. 67: BLECKENSTEDT 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 50 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                          |                |     |            | В-         | ohrlochfüllung |                       |              |                          |                       |             | Auflockerun              | gszone                   |                                       |                                         |
|------------------|------------|------------|--------------------------|----------------|-----|------------|------------|----------------|-----------------------|--------------|--------------------------|-----------------------|-------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(-) | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>[កាភា) | E <sub>1</sub> | d 2 | E 2<br>[-] | dg<br>[mm] | Füllung<br>(–) | A F [m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub><br>[m3/s] | E <sub>A</sub><br>[–] | d A<br>[mm] | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR             | 0          | 12         | 298                      | 1.15           | 343 | 1.00       | 343        | HD             | 0.0922                | 1.0E -3      | 9.28 -5                  | 1.00                  | 343         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 9.2E -5                                 |
| OBKA             | 12         | 96         | 267                      | 1.15           | 307 | 1.00       | 307        | HD             | 0.0740                | 1.0E -3      | 7.4E -5                  | 1.00                  | 307         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 7.4E ~5                                 |
| OBKA             | 96         | 267        | 267                      | 1.15           | 307 | 1.00       | 307        | вк             | 0.0740                | 1.0E -B      | 7.4E-10                  | 1.00                  | 307         | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 7.4E-10                                 |
| UKR2             | 267        | 333        | 267                      | 1.40           | 374 | FLLG       | 374        | BK             | 0.1097                | 1.0E -8      | 1.16 -9                  | 1.25                  | 467         | 0.0617                   | 1.0E ~8                  | 6.2E-10                               | 1.7E -9                                 |
| UKR2             | 333        | 398        | 204                      | ROHR           | 204 | FLLG       | 204        | вк             | 0.0327                | 1.0E -8      | 3.3E-10                  | 1,65                  | 337         | 0.0563                   | 1.0E -8                  | 5.6E-10                               | 8.9E-10                                 |
| UKR2             | 398        | 458        | 193                      | 1.40           | 270 | FLLG       | 270        | вк             | 0.0573                | 1.0E -B      | 5.7E-10                  | 1.25                  | 338         | 0.0323                   | 1.08 -8                  | 3.2E-10                               | 9.0E-10                                 |
| UKR2             | 458        | 536        | 154                      | ROHR           | 154 | FLLG       | 154        | BK             | 0.0186                | 1.0E -8      | 1.9E-10                  | 1.60                  | 246         | 0.0291                   | 1.0E -B                  | 2.9E-10                               | 4.8E-10                                 |
| UKR1             | 536        | 688        | 154                      | AOHR           | 154 | FLL6       | 154        | ВK             | 0.0186                | 1.0E -8      | 1.9E-10                  | 2.25                  | 347         | 0.0757                   | 1.0E -8                  | 7.6E-10                               | 9.4E-10                                 |
| MALM             | 688        | 737        | 154                      | ROHA           | 154 | 1.00       | 154        | вк             | 0.0186                | 1.0€ -8      | 1.98-10                  | 1.00                  | 154         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 1.9E-10                                 |
| MALM             | 737        | 798        | 154                      | ROHR           | 154 | 1.00       | 154        | ZEM            | 0.0186                | 1.0E -B      | 1.9E-10                  | 1.00                  | 154         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 1.9E-10                                 |
| MALM             | 798        | 848        | 154                      | ROHR           | 154 | 1.00       | 154        | SED            | 0.0186                | 1.0E -8      | 1.9E-10                  | 1.00                  | 154         | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 1.9E-10                                 |
| MALM             | 848        | 1043       | 143                      | 1.10           | 157 | 1.00       | 157        | SED            | 0.0194                | 1.0E -8      | 1.9E-10                  | 1.00                  | 157         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 1.9E-10                                 |
| MALM             | 1043       | 1054       | 143                      | 1.10           | 157 | 1.00       | 157        | ZEM            | 0.0194                | 1.0E -8      | 1.96-10                  | 1.00                  | 157         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 1.9E-10                                 |
| DOGG             | 1054       | 1115       | 143                      | 1.40           | 200 | 1.00       | 200        | ZEM            | 0.0315                | 1.0E -B      | 3.1E-10                  | 1.00                  | 200         | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 3.1E-10                                 |
| DOGG             | 1115       | 1200       | 143                      | 1.40           | 200 | 1.00       | 200        | SED            | 0.0315                | 1.0E -8      | 3.1E-10                  | 1.00                  | 200         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 3.1E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 267 m T= 1.16E -9 m $^3$ /s Teufenbereich: 267 - 536 m T= 7.86E-10 m $^3$ /s Teufenbereich: 536 - 688 m T= 9.43E-10 m $^3$ /s Teufenbereich: 267 - 688 m T= 8.37E-10 m $^3$ /s Teufenbereich: 688 - 1200 m T= 2.15E-10 m $^3$ /s

Tab. E - 13.3 / 2 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 1

## Bohrung Nr. 67: BLECKENSTEDT 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 50 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                        |           |             |            | В   | ohrlochfüllung |                          |              |                                       |                       |                | Auflockerun                         | igszone      |                                       |                                         |
|------------------|------------|------------|------------------------|-----------|-------------|------------|-----|----------------|--------------------------|--------------|---------------------------------------|-----------------------|----------------|-------------------------------------|--------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>(m) | d <sub>1</sub><br>[mm] | E₁<br>(-) | d 2<br>[mm] | E 2<br>[-] | d 3 | Füllung<br>[-] | A F<br>(m <sup>2</sup> ) | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | É <sub>A</sub><br>[-] | d <sub>A</sub> | A <sub>A</sub><br>[m <sup>2</sup> ] | kfA<br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR             | 0          | 12         | 298                    | 1.15      | 343         | 1.00       | 343 | HD             | 0.0922                   | 1.0E -3      | 9.2E -5                               | 1.00                  | 343            | 0.0000                              | 1.0E -B      | 0.0E 1                                | 9.2E -5                                 |
| OBKR             | 12         | 141        | 267                    | 1.15      | 307         | 1.00       | 307 | HD             | 0.0740                   | 1.0E -3      | 7.4E -5                               | 1.00                  | 307            | 0.0000                              | 1.0E -8      | 0.0E 1                                | 7.4E -5                                 |
| OBKR             | 141        | 267        | 267                    | 1.15      | 307         | 1.00       | 307 | вк             | 0.0740                   | 1.0€ -8      | 7.4E-10                               | 1.00                  | 307            | 0.0000                              | 1.0E -8      | 0.0E 1                                | 7.4E-10                                 |
| UKR2             | 267        | 333        | 267                    | 1.40      | 374         | FLLG       | 374 | вк             | 0.1097                   | 1.0 € -8     | 1.1E -9                               | 1.25                  | 467            | 0.0617                              | 1.0E -8      | 6.2E-10                               | 1.7E -9                                 |
| UKR2             | 333        | 398        | 204                    | ROHR      | 204         | FLLG       | 204 | вк             | 0.0327                   | 1.0E -8      | 3.3E-10                               | 1.65                  | 337            | 0.0563                              | 1.0E -8      | 5.6E-10                               | 8.9E-10                                 |
| UKR2             | 398        | 458        | 193                    | 1.40      | 270         | FLLG       | 270 | вк             | 0.0573                   | 1.0E -B      | 5.7E-10                               | 1.25                  | 338            | 0.0323                              | 1.0E -8      | 3.2E-10                               | 9.0E-10                                 |
| UKR2             | 458        | 536        | 154                    | ROHR      | 154         | FLLG       | 154 | вк             | 0.0186                   | 1.0E -8      | 1.9E-10                               | 1.60                  | 246            | 0.0291                              | 1.0E -8      | 2.9E-10                               | 4.8E-10                                 |
| UKR1             | 536        | 688        | 154                    | ROHR      | 154         | FLLG       | 154 | ВК             | 0.0186                   | 1.0E -8      | 1.9E-10                               | 2.25                  | 347            | 0.0757                              | 1.0E -B      | 7.6E-10                               | 9.4E-10                                 |
| MALM             | 688        | 848        | 154                    | AOHR      | 154         | 1.00       | 154 | вк             | 0.0186                   | 1.0E -8      | 1.9E-10                               | 1.00                  | 154            | 0.0000                              | 1.0E -B      | 0.0E 1                                | 1.9E-10                                 |
| MALM             | 848        | 910        | 143                    | 1.10      | 157         | 1.00       | 157 | вк             | 0.0194                   | 1.0E -8      | 1.9E-10                               | 1.00                  | 157            | 0.0000                              | 1.0E -8      | 0.0€ 1                                | 1.9E-10                                 |
| MALM             | 910        | 1054       | 143                    | 1.10      | 157         | 1.00       | 157 | SED            | 0.0194                   | 1.0E -8      | 1.9E-10                               | 1.00                  | 157            | 0.0000                              | 1.0E -8      | 0.0E 1                                | 1.9E-10                                 |
| DOGG             | 1054       | 1200       | 143                    | 1.40      | 200         | 1.00       | 200 | SEO            | 0.0315                   | 1.0E -8      | 3.1E-10                               | 1.00                  | 500            | 0.0000                              | 1.0E -8      | 0.0E 1                                | 3.1E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 267 m  $T = 1.57E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 267 - 536 m  $T = 7.86E - 10 \text{ m}^3/\text{s}$ Teufenbereich: 536 - 688 m  $T = 9.43E - 10 \text{ m}^3/\text{s}$ Teufenbereich: 267 - 688 m  $T = 8.37E + 10 \text{ m}^3/\text{s}$ Teufenbereich: 688 - 1200 m  $T = 2.15E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 2 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 1

## Bohrung Nr. 70: BLECKENSTEDT 2

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich     |                          |                       |             |              | B           | ohrlochfüllung   |                          |                    |                          |                       |                     | Auflockerur                         | ngszone                  | •                                     |                                         |
|------------------|------------|-------------|--------------------------|-----------------------|-------------|--------------|-------------|------------------|--------------------------|--------------------|--------------------------|-----------------------|---------------------|-------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(-) | von<br>[m] | bis<br>[m]  | d <sub>1</sub><br>[ភភភា] | E <sub>1</sub><br>(-) | d 2<br>[mm] | E 2<br>[-]   | ₫3<br>[m:m] | Füllung<br>(-)   | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s]       | T <sub>F</sub><br>[m3/s] | E <sub>A</sub><br>(–) | d <sub>A</sub> [mm] | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKA<br>OBKA     | 0<br>12    | 12<br>20    | 384<br>298               | AOHA<br>1.15          | 384<br>343  | 1.00         | 384<br>343  | BK/ZEM<br>BK/ZEM | 0.1158<br>0.0922         | 1.0E -8<br>1.0E -8 | 1.2E -9<br>9.2E-10       | 1.00                  | 384<br>343          | 0.0000                              | 1.0E -8<br>1.0E -8       | 0.0E 1<br>0.0E 1                      | 1.2E -9<br>9.2E-10                      |
| OBKR             | 20         | 40          | 298                      | 1.15                  | 343         | 1.00         | 343         | HD               | 0.0922                   | 1.0E -3            | 9.2E -5                  | 1.00                  | 343                 | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 9.2E -5                                 |
| OBKR<br>OBKR     | 40<br>80   | 80 ·<br>260 | 279<br>193               | ROHA<br>1.15          | 279<br>222  | 1.00         | 279<br>222  | H0<br>H0         | 0.0611                   | 1.0E -3<br>1.0E -3 | 6.1E -5<br>3.9E -5       | 1.00                  | 279<br>222          | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 6.1E -5<br>3.9E -5                      |
| NK45             | 560        | 273         | 193                      | 1.40                  | 270         | 1.35         | 365         | НД               | 0.1045                   | 1.0E -3            | 1.0E -4                  | 1.25                  | 456                 | 0.0588                              | 1.0E -8                  | 5.9E-10                               | 1.0E -4                                 |
| UKR2<br>UKR2     | 273<br>313 | 313<br>484  | 193<br>193               | 1.40                  | 270<br>270  | 1.35<br>FLLG | 365<br>270  | NF<br>SED        | 0.1045<br>0.0573         | 1.0E -8            | 1.0E -9<br>5.7E-10       | 1.25                  | 456<br>338          | 0.0588<br>0.0323                    | 1.0E -8                  | 5.9E-10<br>3.2E-10                    | 1.6E -9<br>9.0E-10                      |
| UKR1             | 484        | 592         | 193                      | 1.60                  | 309         | FLLG         | 309         | SED              | 0.0749                   | 1.0E -8            | 7.5E-10                  | 1.80                  | 556                 | 0.1678                              | 1.0E -8                  | 1.7E -9                               | 2.4E -9                                 |
| MALM             | 592        | 691         | 193                      | 1.10                  | 212         | 1.00         | 212         | SED              | 0.0354                   | 1.0E -8            | 3.5E-10                  | 1.00                  | 212                 | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 3.5E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 260 m T= 1.37E -8 m $^3$ /s Teufenbereich: 260 - 484 m T= 1.04E -9 m $^3$ /s Teufenbereich: 484 - 592 m T= 2.43E -9 m $^3$ /s Teufenbereich: 260 - 592 m T= 1.28E -9 m $^3$ /s Teufenbereich: 592 - 691 m T= 3.54E-10 m $^3$ /s

Tab. E - 13.3 / 3 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 2

## Bohrung Nr. 70: BLECKENSTEDT 2

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 60 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-          | Teufen     | bereich    |                        |                |            |                | 8           | ohrlochfüllung |                                     |                           |                    |                       |                        | Auflockerun              | gszone                   |                                       |                                         |
|------------------|------------|------------|------------------------|----------------|------------|----------------|-------------|----------------|-------------------------------------|---------------------------|--------------------|-----------------------|------------------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>(m) | d <sub>1</sub><br>[mm] | E <sub>1</sub> | (mm)       | E 2<br>[-]     | d 3<br>[mm] | Füllung<br>(–) | Α <sub>Ε</sub><br>(m <sup>2</sup> ) | k <sub>f</sub> F<br>(m/s) | [m3/s]             | € <sub>A</sub><br>[-] | d <sub>A</sub><br>[mm] | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR<br>OBKR     | 0<br>12    | 12<br>40   | 384<br>298             | ROHR<br>1.15   | 384<br>343 | 1.00           | 384<br>343  | HD<br>HO       | 0.1158<br>0.0922                    | 1.0E -3<br>1.0E -3        | 1.2E -4<br>9.2E -5 | 1.00                  | 384<br>343             | 0.0000                   | 1.0E -B<br>1.0E -B       | 0.0E 1<br>0.0E 1                      | 1.2E -4<br>9.2E -5                      |
| OBKR<br>OBKR     | 40<br>80   | 80<br>260  | 279<br>193             | ROHR<br>1.15   | 279<br>222 | 1.00           | 279<br>222  | HD<br>HD       | 0.0611                              | 1.0E -3<br>1.0E -3        | 6.1E -5<br>3.9E -5 | 1.00                  | 279<br>222             | 0.0000                   | 1.0E -8<br>1.0E -B       | 0.0E 1                                | 6.1E -5<br>3.9E -5                      |
| UKR2             | 260        | 264        | 193                    | 1.40           | 270        | 1.35           | 365         | HD             | 0.1045                              | 1.0E -3                   | 1.0E -4            | 1.25                  | 456                    | 0.0588                   | 1.0E -8                  | 5.9E-10                               | 1.0E -4                                 |
| UKR2<br>UKR2     | 264<br>275 | 275<br>313 | 193<br>193             | 1.40           | 270<br>270 | 1.35<br>  FLLG | 365<br>270  | NF<br>BK/ZEM   | 0.1045                              | 1.0E -B                   | 1.0E -9<br>5.7E-10 | 1.25                  | 456<br>338             | 0.0588<br>0.0323         | 1.0E -8                  | 5.9E-10<br>3.2E-10                    | 1.6E -9<br>9.0E-10                      |
| UKR2             | 313        | 484        | 193                    | 1.40           | 270        | FLLG           | 270         | SED            | 0.0573                              | 1.0E -8                   | 5.7E-10            | 1,25                  | 338                    | 0.0323                   | 1.0E -8                  | 3.2E-10                               | 9.0E-10                                 |
| UKR1  <br>MALM   | 484<br>592 | 592<br>691 | 193<br>193             | 1.60           | 309<br>212 | FLLG<br>1.00   | 309<br>212  | SED<br>SED     | 0.0749                              | 1.0E -8<br>1.0E -8        | 7.5E-10<br>3.5E-10 | 1.80                  | 556<br>212             | 0.1678<br>0.0000         | 1.0E -8<br>1.0E -8       | 1.7E -9<br>0.0E 1                     | 2.4E -9<br>3.5E-10                      |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 260 m T=  $4.55E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 260 - 484 m T=  $9.33E - 10 \text{ m}^3/\text{s}$ Teufenbereich: 484 - 592 m T=  $2.43E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 260 - 592 m T=  $1.17E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 592 - 691 m T=  $3.54E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 3 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 2

## Bohrung Nr. 70: BLECKENSTEDT 2

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                        |                |      |                | В          | ohrlochfüllung |                          |              |                                    |                                    |      | Auflockerun           | ngszone                  |                                       |                                         |
|------------------|------------|------------|------------------------|----------------|------|----------------|------------|----------------|--------------------------|--------------|------------------------------------|------------------------------------|------|-----------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>(m) | d <sub>1</sub><br>[mm] | E <sub>1</sub> | [mm] | E <sub>2</sub> | d3<br>[mm] | Füllung<br>()  | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | € <sub>A</sub><br>( <del>-</del> ) | (mm) | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| овка             | 0          | 12         | 384                    | ROHA           | 384  | 1.00           | 384        | CH             | 0.1158                   | 1.0E -3      | 1.2E -4                            | 1.00                               | 384  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 1.2E -4                                 |
| OBKR             | 12         | 40         | 298                    | 1.15           | 343  | 1.00           | 343        | HD             | 0.0922                   | 1.0E -3      | 9.2E -5                            | 1.00                               | 343  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 9.2E -5                                 |
| OBKA             | 40         | 80         | 279                    | ROHR           | 279  | 1.00           | 279        | HD             | 0.0611                   | 1.0E -3      | 6.1E -5                            | 1.00                               | 279  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 6.1E -5                                 |
| OBKR             | 80         | 260        | 193                    | 1.15           | 222  | 1.00           | 555        | HD             | 0.03B7                   | 1.0E -3      | 3.9€ -5                            | 1.00                               | 555  | 0.0000                | 1.0E -B                  | 0.0E 1                                | 3.9E -5                                 |
| UKR2             | 260        | 268        | 193                    | 1.40           | 270  | 1.35           | 365        | HD             | 0.1045                   | 1.0E -3      | 1.0E -4                            | 1.25                               | 456  | 0.0588                | 1.0E -B                  | 5,9E-10                               | 1.0E -4                                 |
| UKR2             | 268        | 292        | 193                    | 1.40           | 270  | 1.35           | 365        | NF             | 0.1045                   | 1.0E -B      | 1.0E -9                            | 1.25                               | 456  | 0.0588                | 1.0E -8                  | 5.9E-10                               | 1.68 -9                                 |
| UKA2             | 292        | 313        | 193                    | 1.40           | 270  | FLLG           | 270        | 8K             | 0.0573                   | 1.0E -8      | 5.7E-10                            | 1.25                               | 338  | 0.0323                | 1.0E -B                  | 3.2E-10                               | 9.0E-10                                 |
| UKR2             | 313        | 484        | 193                    | 1.40           | 270  | FLLG           | 270        | SED            | 0.0573                   | 1.0 € -8     | 5.7E-10                            | 1.25                               | 338  | 0.0323                | 1.0E -8                  | 3.2E-10                               | 9.0E-10                                 |
| UKR1             | 484        | 592        | 193                    | 1.60           | 309  | FLLG           | 309        | SED            | 0.0749                   | 1.0E -B      | 7.5E-10                            | 1.80                               | 556  | 0.1678                | 1.0E -8                  | 1.7E -9                               | 2.4E -9                                 |
| MALM             | 592        | 691        | 193                    | 1.10           | 212  | 1.00           | 212        | SED            | 0.0354                   | 1.0E -8      | 3.5E-10                            | 1.00                               | 212  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 3.5E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 260 m T=  $4.55E + 5 \text{ m}^3/\text{s}$ Teufenbereich: 260 - 484 m T=  $9.78E - 10 \text{ m}^3/\text{s}$ Teufenbereich: 484 - 592 m T=  $2.43E + 9 \text{ m}^3/\text{s}$ Teufenbereich: 260 - 592 m T=  $1.21E + 9 \text{ m}^3/\text{s}$ Teufenbereich: 592 - 691 m T=  $3.54E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 3 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 2

## Bohrung Nr. 71: BLECKENSTEDT 3

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 70 %

Sedimentationsanteil des Nachfalls :\*\*\* %

| Strati-          | Teufen     | bereich    |                     |                                    |            |              | В           | ohrlochfüllung |                          |                    |                          |              |                | Auflockerun              | igszone                  |                                       |                                         |
|------------------|------------|------------|---------------------|------------------------------------|------------|--------------|-------------|----------------|--------------------------|--------------------|--------------------------|--------------|----------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[→] | von<br>[m] | bis<br>[m] | d <sub>1</sub> [mm] | E <sub>1</sub><br>[ <del>-</del> ] | (mm)       | E 2<br>[-]   | d 3<br>[mm] | Füllung<br>[–] | A F<br>[m <sup>2</sup> ] | kfF<br>(m/s)       | T <sub>F</sub><br>[m3/s] | € A<br>[-]   | d <sub>A</sub> | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR<br>OBKR     | 0<br>10    | 10<br>21   | 384<br>384          | ROHA<br>ROHA                       | 384<br>384 | 1.00         | 384<br>384  | BK/ZEM<br>HD   | 0.1158<br>0.1158         | 1.0E -8<br>1.0E -3 | 1.2E -9<br>1.2E -4       | 1.00         | 384<br>384     | 0.0000                   | 1.0E -B<br>1.0E -B       | 0.0E 1<br>0.0E 1                      | 1.2E -9<br>1.2E -4                      |
| 08KA<br>08KA     | 21<br>40   | 40<br>B1   | 298<br>279          | 1.15<br>AOHR                       | 343<br>279 | 1.00         | 343<br>279  | HD<br>HD       | 0.0922<br>0.0611         | 1.0E -3<br>1.0E -3 | 9.2E -5<br>6.1E -5       | 1.00         | 343<br>279     | 0.0000                   | 1.0E -8<br>1.0E -8       | 0.0E 1<br>0.0E 1                      | 9.2E -5<br>6.1E -5                      |
| OBKR<br>UKR2     | 81<br>266  | 266<br>269 | 267<br>267          | 1.15                               | 307<br>374 | 1.00<br>1.35 | 307<br>505  | HD<br>HD       | 0.0740<br>0.2000         | 1.0E -3<br>1.0E -3 | 7.4E -5<br>2.0E -4       | 1.00<br>1.25 | 307<br>631     | 0.0000                   | 1.0 € -8<br>1.0 € -8     | 0.0E 1<br>1.1E -9                     | 7.4E -5<br>2.0E -4                      |
| UKR2<br>UKR1     | 269<br>463 | 463<br>512 | 267<br>267          | 1.40<br>1.60                       | 374<br>427 | FLLG<br>FLLG | 374<br>427  | SED<br>SED     | 0.1097<br>0.1433         | 1.0E -8<br>1.0E -8 | 1.1E -9<br>1.4E -9       | 1.25<br>1.80 | 467<br>769     | 0.0617<br>0.3211         | 1.0E -8<br>1.0E -8       | 6.2E-10<br>3.2E -9                    | 1.7E -9<br>4.6E -9                      |
| UKR1<br>DOGG     | 512<br>560 | 560<br>799 | 193<br>193          | 1.60                               | 309<br>270 | FLLG<br>1.00 | 309<br>270  | SED<br>SED     | 0.0749<br>0.0573         | 1.0E -8<br>1.0E -8 | 7.5E-10<br>5.7E-10       | 1.00         | 556<br>270     | 0.1678<br>0.0000         | 1.0E -8<br>1.0E -8       | 1.7E -9<br>0.0E 1                     | 2.4E -9<br>5.7E-10                      |
| DOGG             | 799        | 801        | 143                 | 1.40                               | 200        | 1.00         | 500         | SED            | 0.0315                   | 1.0E ~8            | 3.1E-10                  | 1.00         | 200            | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 3.1E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 266 m T=  $3.08E - 8 \text{ m}^3/\text{s}$ Teufenbereich: 266 - 463 m T=  $1.74E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 463 - 560 m T=  $3.20E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 266 - 560 m T=  $2.05E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 560 - 801 m T=  $2.05E - 9 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 4 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 3

## Bohrung Nr. 71: BLECKENSTEDT 3

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 70 %
Sedimentationsanteil des Nachfalls: \*\*\* %

| Strati-          | Teufent    | pereich    |              |                       |             |            | В   | ohrlochfüllung |                                     |              |                                    |         |                | Auflockerun              | igszone                  |                                       | <b>!</b> .                              |
|------------------|------------|------------|--------------|-----------------------|-------------|------------|-----|----------------|-------------------------------------|--------------|------------------------------------|---------|----------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | di 1<br>(mm) | E <sub>1</sub><br>[−] | [mm]<br>d 5 | € 2<br>[-] | d 3 | Füllung<br>(-) | A <sub>F</sub><br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E A [-] | d <sub>A</sub> | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR             | 0          | 21         | 384          | AOHR                  | 384         | 1.00       | 384 | HD             | 0.1158                              | 1.0E -3      | 1.2E -4                            | 1.00    | 384            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 1.2E -4<br>9.2E -5                      |
| OBKR             | 21         | 40         | 298          | 1.15                  | 343         | 1.00       | 343 | HD             | 0.0922                              | 1.0E -3      | 9.2E -5                            | 1.00    | 343            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 6.1E -5                                 |
| OBKR             | 40         | 81         | 279          | ROHR                  | 279         | 1.00       | 279 | HD<br>L        | 0.0611                              | 1.0E -3      | 6.1E -5                            | 1.00    | 279            |                          | 1.0E -8                  | 0.0E 1                                | 7.4E -5                                 |
| OBKR             | 81         | 255        | 267          | 1.15                  | 307         | 1.00       | 307 | HD             | 0.0740                              | 1.0E -3      | 7,4E -5                            | 1.00    | 307            | 0.0000                   |                          |                                       | I ' I                                   |
| OBKA             | 255        | 266        | 267          | 1.15                  | 307         | 1.00       | 307 | BK/ZEM         | 0.0740                              | 1.0E -8      | 7.4E-10                            | 1.00    | 307            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 7.4E-10                                 |
| UKR2             | 266        | 269        | 267          | 1.40                  | 374         | FLLG       | 374 | BK/ZEM         | 0.1097                              | 1.0E -B      | 1.1E -9                            | 1.25    | 467            | 0.0617                   | 1.0€ -8                  | 6.2E-10                               | 1.7E -9                                 |
| UKA2             | 269        | 463        | 267          | 1.40                  | 374         | FLLG       | 374 | SED            | 0.1097                              | 1.0E -8      | 1.1E -9                            | 1.25    | 467            | 0.0617                   | 1.0E -B                  | 6.2E-10                               | 1.7E -9                                 |
| UKR1             | 463        | 512        | 267          | 1.60                  | 427         | FLLG       | 427 | SED            | 0.1433                              | 1.0E -8      | 1.4E -9                            | 1.80    | 769            | 0.3211                   | 1.0E -8                  | 3.2E -9                               | 4.6E -9                                 |
| UKR1             | 512        | 560        | 193          | 1.60                  | 309         | FLLG       | 309 | SED            | 0.0749                              | 1.0€ -8      | 7.5E-10                            | 1.80    | 556            | 0.1678                   | 1.0E -8                  | 1.7E -9                               | 2.4E -9                                 |
| DOGG             | 560        | 799        | 193          | 1.40                  | 270         | 1.00       | 270 | SED            | 0.0573                              | 1.0E -B      | 5.7E-10                            | 1.00    | 270            | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 5.7E-10                                 |
| DOGG             | 799        | 801        | 143          | 1.40                  | 200         | 1.00       | 200 | SED            | 0.0315                              | 1.0E -B      | 3.1E-10                            | 1.00    | S00            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 3.1E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 266 m T=  $1.79E - 8 m^3/s$ Teufenbereich: 266 - 463 m T=  $1.71E - 9 m^3/s$ Teufenbereich: 463 - 560 m T=  $3.20E - 9 m^3/s$ Teufenbereich: 266 - 560 m T=  $2.02E - 9 m^3/s$ Teufenbereich: 560 - 801 m T=  $5.70E - 10 m^3/s$ 

Tab. E - 13.3 / 4 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 3

## Bohrung Nr. 71: BLECKENSTEDT 3

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 70 %
Sedimentationsanteil des Nachfalls: \*\*\* %

| Strati-          | Teufeni    | bereich    |                        |              |             |                | В           | ohrlochfüllung |                                     |                           |                                       |                                    |                        | Auflockerun                         | gszone                   | · · · · · ·                           |                                         |
|------------------|------------|------------|------------------------|--------------|-------------|----------------|-------------|----------------|-------------------------------------|---------------------------|---------------------------------------|------------------------------------|------------------------|-------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>(m) | bis<br>[m] | d <sub>1</sub><br>[mm] | €1<br>[-]    | d 2<br>(mm) | E <sub>2</sub> | d 3<br>[mm] | Füllung<br>[-] | A <sub>F</sub><br>[m <sup>2</sup> ] | k <sub>f</sub> F<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub><br>[ <del>-</del> ] | d <sub>A</sub><br>[mm] | A <sub>A</sub><br>(m <sup>2</sup> ) | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKA<br>OBKA     | 0<br>21    | 21<br>40   | 384<br>298             | ROHR<br>1.15 | 384<br>343  | 1.00           | 384<br>343  | HD<br>HD       | 0.115B<br>0.0922                    | 1.0E -3<br>1.0E -3        | 1.2E -4<br>9.2E -5                    | 1.00                               | 384<br>343             | 0.0000                              | 1.0E -8<br>1.0E -8       | 0.0E 1<br>0.0E 1                      | 1.2E -4<br>9.2E -5                      |
| OBKR<br>OBKR     | 40<br>81   | 81<br>266  | 279<br>267             | R0HR<br>1.15 | 279<br>307  | 1.00           | 279<br>307  | HD<br>HO       | 0.0611                              | 1.0E -3<br>1.0E -3        | 6.1E -5<br>7.4E -5                    | 1.00                               | 279<br>307             | 0.0000                              | 1.0E -8                  | 0.0E 1<br>0.0E 1                      | 6.1E -5<br>7.4E -5                      |
| UKA2<br>UKA2     | 266<br>267 | 267<br>269 | 267                    | 1.40         | 374<br>374  | FLLG           | 374         | HD             | 0.1097                              | 1.0E -3                   | 1.18 -4                               | 1.25                               | 467                    | 0.0617                              | 1.0E -8                  | 6.2E-10                               | 1.1E -4                                 |
| UKR2             | 269        | 463        | 267<br>267             | 1.40         | 374         | FLLG<br>FLLG   | 374<br>374  | BK<br>SED      | 0.1097<br>0.1097                    | 1.0E -8<br>1.0E -8        | 1.1E -9<br>1.1E -9                    | 1.25                               | 467<br>467             | 0.0617<br>0.0617                    | 1.0E -8<br>1.0E -8       | 6.2E-10<br>6.2E-10                    | 1.7E -9<br>1.7E ~9                      |
| UKR1<br>UKR1     | 463<br>512 | 512<br>560 | 267<br>193             | 1.60         | 427<br>309  | FLLG<br>FLLG   | 427<br>309  | SED<br>SED     | 0.1433                              | 1.0E -8<br>1.0E -8        | 1.4E ∽9<br>7.5E-10                    | 1.80                               | 769<br>556             | 0.3211                              | 1.0 € -8<br>1.0 € -B     | 3.2E -9<br>1.7E -9                    | 4.6E -9<br>2.4E -9                      |
| D0GG<br>D0GG     | 560<br>799 | 799<br>801 | 193<br>143             | 1.40         | 270<br>200  | 1.00           | 270<br>200  | SED<br>SED     | 0.0573<br>0.0315                    | 1.0E -B<br>1.0E -B        | 5.7E-10<br>3.1E-10                    | 1.00                               | 270<br>200             | 0.0000                              | 1.0E -B                  | 0.0E 1<br>0.0E 1                      | 5.7E-10<br>3.1E-10                      |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 266 m T=  $7.48E - 5 m^3/s$ Teufenbereich: 266 - 463 m T=  $1.72E - 9 m^3/s$ Teufenbereich: 463 - 560 m T=  $3.20E - 9 m^3/s$ Teufenbereich: 266 - 560 m T=  $2.03E - 9 m^3/s$ Teufenbereich: 560 - 801 m T=  $5.70E - 10 m^3/s$ 

Tab. E - 13.3 / 4 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 3

## Bohrung Nr. 28: BLECKENSTEDT 4

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufeni    | bereich    |                        |          |                        |      | В           | ohrlochfüllung |                       |          |                       |      |                | Auflockerun           | igszone      |                                       |                                         |
|------------------|------------|------------|------------------------|----------|------------------------|------|-------------|----------------|-----------------------|----------|-----------------------|------|----------------|-----------------------|--------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(~) | von<br>[m] | bis<br>(m) | d <sub>1</sub><br>(mm) | 터<br>(-) | d <sub>2</sub><br>[mm] | E 2  | d 3<br>[mm] | Füllung<br>[-] | A F [m <sup>2</sup> ] | [m/s]    | T <sub>F</sub> [m3/s] | E A  | d <sub>A</sub> | A A (m <sup>2</sup> ) | kfA<br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| GUAR             | 0          | 29         | 298                    | 1.15     | 343                    | 1.00 | 343         | BK/ZEM         | 0.0922                | 1.0E -8  | 9.2E-10               | 1.00 | 343            | 0.0000                | 1.0E -8      | 0.0E 1                                | 9.2E-10                                 |
| OBKR             | 29         | 136        | 216                    | 1.15     | 248                    | 1.00 | 248         | HD             | 0.0485                | 1.0 € -3 | 4.8E -5               | 1.00 | 248            | 0.0000                | 1.0E -8      | 0.0E 1                                | 4.8E -5                                 |
| OBKR             | 136        | 278        | 216                    | 1.15     | 248                    | 1.00 | 248         | SED/ZE         | 0.0485                | 1.0E -8  | 4.8E-10               | 1.00 | 248            | 0.0000                | 1.0E -8      | 0.0E 1                                | 4.8E-10                                 |
| UKR2             | 278        | 300        | 216                    | 1.40     | 302                    | FLLG | 305         | SED/ZE         | 0.0718                | 1.0E -8  | 7.2E-10               | 1.25 | 378            | 0.0404                | 1.0€ -8      | 4.0E-10                               | 1.1E -9                                 |
| UKA2             | 300        | 345        | 216                    | 1.40     | 302                    | 1.35 | 408         | HD             | 0.1309                | 1.0E -3  | 1.3E -4               | 1.25 | 510            | 0.0736                | 1.0E -B      | 7.4E-10                               | 1.3E -4                                 |
| UKR2             | 345        | 481        | 216                    | 1.40     | 305                    | 1.35 | 408         | NF             | 0.1309                | 1.0E -8  | 1.3E -9               | 1.25 | 510            | 0.0736                | 1.0E -B      | 7.4E-10                               | 2.0E -9                                 |
| UKR2             | 481        | 552        | 216                    | 1.40     | 302                    | FLLG | 305         | SED/ZE         | 0.0718                | 1.0E -8  | 7.2E-10               | 1.25 | 378            | 0.0404                | 1.0E -8      | 4.0 E-10                              | 1.1E -9                                 |
| UKA1             | 552        | 745        | 216                    | 1.60     | 346                    | FLLG | 346         | SED/ZE         | 0.093B                | 1.0E -B  | 9.4E-10               | 1.80 | 622            | 0.2101                | 1.0E -8      | 2.1E -9                               | 3.0E -9                                 |
| MALM             | 745        | 840        | 216                    | 1.10     | 238                    | 1.00 | 238         | SED/ZE         | 0.0443                | 1.0E -8  | 4.4E-10               | 1.00 | 238            | 0.0000                | 1.0E -8      | 0.0E 1                                | 4.4E-10                                 |
| MALM             | 840        | 882        | 216                    | 1.10     | 238                    | 1.00 | 238         | HD             | 0.0443                | 1.0E -3  | 4.4E -5               | 1.00 | 238            | 0.0000                | 1.0E -8      | 0.0E 1                                | 4.4E -5                                 |
| MALM             | 882        | 898        | 193                    | 1.10     | 212                    | 1.00 | 212         | HD             | 0.0354                | 1.0E -3  | 3.5E -5               | 1.00 | 212            | 0.0000                | 1.0E -8      | 0.0E 1                                | 3.5E -5                                 |
| MALM             | 898        | 1000       | 193                    | 1.10     | 212                    | 1.00 | 212         | SED            | 0.0354                | 1.0E -8  | 3.5E-10               | 1.00 | 212            | 0.0000                | 1.0E -B      | 0.0E 1                                | 3.5E-10                                 |
| MALM             | 1000       | 1051       | 193                    | 1.10     | 212                    | 1.00 | 212         | ZEM            | 0.0354                | 1.0E -8  | 3.5E-10               | 1.00 | 212            | 0.0000                | 1.0E -8      | 0.0E 1                                | 3.5E-10                                 |
| MALM             | 1051       | 1054       | 154                    | 1.10     | 169                    | 1.00 | 169         | ZEM            | 0.0225                | 1.0E -B  | 2.3E-10               | 1.00 | 169            | 0.0000                | 1.0E ~8      | 0.0E 1                                | 2.3E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 278 m T=  $8.57E-10 \text{ m}^3/\text{s}$ Teufenbereich: 278 - 552 m T=  $1.83E -9 \text{ m}^3/\text{s}$ Teufenbereich: 552 - 745 m T=  $3.04E -9 \text{ m}^3/\text{s}$ Teufenbereich: 278 - 745 m T=  $2.19E -9 \text{ m}^3/\text{s}$ Teufenbereich: 745 - 1064 m T=  $4.53E-10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 5 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 4

## Bohrung Nr. 28: BLECKENSTEDT 4

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                        |           |             |            | B          | ohrlochfüllung |                          |              |                                    |                |      | Auflockerun           | gszone                   |                                       |                                         |
|------------------|------------|------------|------------------------|-----------|-------------|------------|------------|----------------|--------------------------|--------------|------------------------------------|----------------|------|-----------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>(mm) | E1<br>(−) | d 2<br>[mm] | E 2<br>(~) | dg<br>[mm] | Füllung<br>[-] | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E <sub>A</sub> | (mm) | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 29         | 298                    | 1.15      | 343         | 1.00       | 343        | НО             | 0.0922                   | 1.0E -3      | 9.2E -5                            | 1.00           | 343  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 9.2E -5                                 |
| OBKR             | 29         | 278        | 216                    | 1.15      | 248         | 1.00       | 248        | HD             | 0.0485                   | 1.0E -3      | 4.8E -5                            | 1.00           | 248  | 0.0000                | 1.0E -B                  | 0.0E 1                                | 4.8E -5                                 |
| UKA2             | 278        | 301        | 215                    | 1.40      | 302         | 1.35       | 408        | HD             | 0.1309                   | 1.0E -3      | 1.3E -4                            | 1.25           | 510  | 0.0736                | 1.0E -B                  | 7.4E-10                               | 1.3E -4                                 |
| UKR2             | 301        | 369        | 216                    | 1.40      | 302         | 1.35       | 408        | NF             | 0.1309                   | 1.0E -8      | 1.3E -9                            | 1.25           | 510  | 0.0736                | 1.0E -8                  | 7.4E-10                               | 2.0E -9                                 |
| UKR2             | 369        | 399        | 216                    | 1.40      | 302         | FLLG       | 302        | BK/ZEM         | 0.0718                   | 1.0E -8      | 7.2E-10                            | 1.25           | 378  | 0.0404                | 1.08 -8                  | 4.0E-10                               | 1.1E -9                                 |
| UKA2             | 399        | 506        | 216                    | 1.40      | 302         | FLLG       | 302        | SED            | 0.0718                   | 1.0E -8      | 7.2E-10                            | 1.25           | 378  | 0.0404                | 1.0E -B                  | 4.0E-10                               | 1.1E -9                                 |
| UKR2             | 506        | 516        | 216                    | 1.40      | 302         | FLLG       | 302        | ZEM            | 0.0718                   | 1.0E -8      | 7.2E-10                            | 1.25           | 378  | 0.0404                | 1.0E -8                  | 4.0E-10                               | 1.1E -9                                 |
| UKR2             | 516        | 552        | 216                    | 1.40      | 302         | FLLG       | 302        | SED            | 0.0718                   | 1.0E -8      | 7.2E-10                            | 1.25           | 378  | 0.0404                | 1.08 -8                  | 4.0 E-10                              | 1.1E -9                                 |
| UKR1             | 552        | 745        | 216                    | 1.60      | 346         | FLL6       | 346        | SED            | 0.0938                   | 1.0E -8      | 9.4E-10                            | 1.80           | 622  | 0.2101                | 1.0E -B                  | 2.1E -9                               | 3.0E -9                                 |
| MALM             | 745        | 882        | 216                    | 1.10      | 238         | 1.00       | 238        | SED            | 0.0443                   | 1.0E -8      | 4.4E-10                            | 1.00           | 238  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 4.4E-10                                 |
| MALM             | 882        | 885        | 193                    | 1.10      | 212         | 1.00       | 212        | SED            | 0.0354                   | 1.0E -B      | 3.5E-10                            | 1.00           | 212  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 3.5€-10                                 |
| MALM             | 885        | 898        | 193                    | 1.10      | 212         | 1.00       | 212        | ZEM            | 0.0354                   | 1.0E -8      | 3.5E-10                            | 1.00           | 212  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 3.5E-10                                 |
| MALM             | 898        | 1000       | 193                    | 1.10      | 212         | 1.00       | 212        | SED            | 0.0354                   | 1.0E -B      | 3.5E-10                            | 1.00           | 212  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 3.5E-10                                 |
| MALM             | 1000       | 1051       | 193                    | 1.10      | 212         | 1.00       | 212        | ZEM            | 0.0354                   | 1.0E -8      | 3.5E-10                            | 1.00           | 212  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 3.5E-10                                 |
| MALM             | 1051       | 1064       | 154                    | 1.10      | 169         | 1.00       | 169        | ZEM            | 0.0225                   | 1.0E -8      | 2.3E-10                            | 1.00           | 169  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 2.3E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 278 m T=  $5.10E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 278 - 552 m T=  $1.40E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 552 - 745 m T=  $3.04E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 278 - 745 m T=  $1.80E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 745 - 1064 m T=  $3.78E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 5 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 4

## Bohrung Nr. 28: BLECKENSTEDT 4

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen      | bereich    |            |          |            |              | B           | ohrlochfüllung | _                                   |                    | •                  |                       |                        | Auflockerun              | gszone                   |                                       | Ĭ                                       |
|------------------|-------------|------------|------------|----------|------------|--------------|-------------|----------------|-------------------------------------|--------------------|--------------------|-----------------------|------------------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(+) | von<br>[m]  | bis<br>[m] | d1<br>(mm) | 터<br>[-] | [mm]<br>q5 | E 2<br>(−)   | dg<br>[mfn] | Füllung<br>(–) | A <sub>F</sub><br>[m <sup>2</sup> ] | kfF<br>[m/s]       | [m3/s]             | E <sub>A</sub><br>[-] | d <sub>A</sub><br>[mm] | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR<br>OBKR     | 0 29        | 29<br>278  | 298<br>216 | 1.15     | 343<br>248 | 1.00         | 343<br>24B  | HD<br>HD       | 0.0922<br>0.0485                    | 1.0E -3<br>1.0E -3 | 9.2E -5<br>4.8E -5 | 1.00                  | 343<br>248             | 0.0000                   | 1.0E -8<br>1.0E -8       | 0.0E 1<br>0.0E 1                      | 9.2E -5<br>4.8E -5                      |
| UKR2<br>UKR2     | 278<br>315  | 315<br>426 | 216        | 1.40     | 302        | 1.35         | 408<br>408  | HD<br>NF       | 0.1309<br>0.1309                    | 1.0E -3<br>1.0E -8 | 1.3E -4<br>1.3E -9 | 1.25                  | 510<br>510             | 0.0736<br>0.0736         | 1.0E -B                  | 7.4E-10<br>7.4E-10                    | 1.3E -4<br>2.0E -9                      |
| UKR2<br>UKR2     | 426<br>434  | 434        | 216        | 1.40     | 302        | FLLG<br>FLLG | 302<br>302  | BK<br>SED      | 0.0718                              | 1.0E -8            | 7.2E-10<br>7.2E-10 | 1.25                  | 378<br>378             | 0.0404                   | 1.0E -8                  | 4.0E-10<br>4.0E-10                    | 1.1E -9<br>1.1E -9                      |
| UKA1<br>MALM     | 552<br>745  | 745<br>882 | 216        | 1.60     | 346<br>238 | FLLG<br>1.00 | 346<br>238  | SED<br>SED     | 0.0938                              | 1.0E -8<br>1.0E -8 | 9.4E-10<br>4.4E-10 | 1.80                  | 622<br>238             | 0.2101                   | 1.0E -8<br>1.0E -8       | 2.1E -9<br>0.0E 1                     | 3.0E -9                                 |
| MALM             | 882<br>1051 | 1051       | 193        | 1.10     | 212        | 1.00         | 212<br>169  | SED<br>SED     | 0.0354                              | 1.0E -8<br>1.0E -8 | 3.5E-10<br>2.3E-10 | 1.00                  | 212                    | 0.0000                   | 1.0E -8<br>1.0E -8       | 0.0E 1<br>0.0E 1                      | 3.5E-10<br>2.3E-10                      |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 278 m T=  $5.10E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 278 - 552 m T=  $1.65E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 552 - 745 m T=  $3.04E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 278 - 745 m T=  $2.03E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 745 - 1064 m T=  $3.78E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 5 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BLECKENSTEDT 4

Bohrung Nr. 79: BROISTEDT 33

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-   | Teufenl | bereich    |                     |                       |             |            | В          | ahrlochfüllung  | -                 |              |                                    |                       |                | Auflockerun              | ngszone                  |                                       | _                           |
|-----------|---------|------------|---------------------|-----------------------|-------------|------------|------------|-----------------|-------------------|--------------|------------------------------------|-----------------------|----------------|--------------------------|--------------------------|---------------------------------------|-----------------------------|
| tigraphie | von (m) | bis<br>[m] | d <sub>1</sub> [mm] | € <sub>1</sub><br>(-) | d 2<br>[mm] | € 2<br>(–) | d3<br>(mm) | Filliung<br>[-] | (m <sup>2</sup> ) | kfF<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | € <sub>A</sub><br>(~) | d <sub>A</sub> | A A<br>(m <sup>2</sup> ) | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | TF+A<br>[m <sup>3</sup> /s] |
| UKR2      | . 0     | 20         | 406                 | 1.40                  | 568         | FLLG       | 568        | ZEM             | 0.2537            | 1.0E -8      | 2.5E -9                            | 1.25                  | 710            | 0.1427                   | 1.0E -8                  | 1.4E -9                               | 4.0E -9                     |
| UKR2      | 20      | 80         | 298                 | 1.40                  | 417         | 1.35       | 563        | HD              | 0.2491            | 1.0E -3      | 2.5E -4                            | 1.25                  | 704            | 0.1401                   | 1.0E -8                  | 1.4E -9                               | 2.5E -4                     |
| UKR2      | 60      | 88         | 279                 | ROHR                  | 279         | ROHR       | 279        | מא              | 0.0611            | 1.0E -3      | 6.1E -5                            | 1.34                  | 374            | 0.0486                   | 1.0E -8                  | 4.9E-10                               | 6.1E -5                     |
| UKR2      | 88      | 119        | 279                 | ROHR                  | 279         | AOHA       | 279        | NF              | 0.0611            | 1.0E -B      | 6.1E-10                            | 1.34                  | 374            | 0.0486                   | 1.0E -8                  | 4.9E-10                               | 1.1E -9                     |
| UKR2      | 119     | 133        | 193                 | 1.40                  | 270         | 1.35       | 365        | NF              | 0.1045            | 1.0E -8      | 1.0E -9                            | 1.25                  | 456            | 0.0588                   | 1.0E -8                  | 5.9E-10                               | 1.6E -9                     |
| UKA2      | 133     | 240        | 193                 | 1.40                  | 270         | FLLG       | 270        | SED             | 0.0573            | 1.0E -8      | 5.7E-10                            | 1.25                  | 338            | 0.0323                   | 1.0E -B                  | 3.2E-10                               | 9.0E-10                     |
| UKR1      | 240     | 385        | 193                 | 1.60                  | 309         | FLLG       | 309        | SED             | 0.0749            | 1.0E -B      | 7.5E-10                            | 1.80                  | 556            | 0.1678                   | 1.0E -8                  | 1.7€ -9                               | 2.4E -9                     |
| UKR1      | 385     | 405        | 193                 | 1.60                  | 309         | FLLG       | 309        | ZEM             | 0.0749            | 1.0E -8      | 7.5E-10                            | 1.80                  | 556            | 0.1678                   | 1.0€ -8                  | 1.7E -9                               | 2.4E -9                     |
| ZECH      | 405     | 480        | 193                 | 1.40                  | 270         | 1.00       | 270        | ZEM             | 0.0573            | 1.0E -8      | 5.7E-10                            | 1.00                  | 270            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 5.7E-10                     |
| ZECH      | 480     | 589        | 193                 | 1.40                  | 270         | 1.00       | 270        | HD              | 0.0573            | 1.0E -3      | 5.7E -5                            | 1.00                  | 270            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 5.7€ <b>-5</b>              |
| ZECH      | 569     | 753        | 193                 | 1.40                  | 270         | 1.00       | 270        | SED             | 0.0573            | 1.0E -8      | 5.7E-10                            | 1.00                  | 270            | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 5.7E-10                     |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 240 m T= 1.49E -9 m $^3$ /s Teufenbereich: 240 - 405 m T= 2.43E -9 m $^3$ /s Teufenbereich: 0 - 405 m T= 1.77E -9 m $^3$ /s Teufenbereich: 405 - 753 m T= 8.35E-10 m $^3$ /s

Tab. E - 13.3 / 6 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BROISTEDT 33

## Bohrung Nr. 79: BROISTEDT 33

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati           | Teufeni         | bereich          |                     |                       |                   |                      | В                 | ohrlochfüllung |                            |                               |                                    |                      |                        | Auflockerun                | gszone                   | •                                     |                                         |
|------------------|-----------------|------------------|---------------------|-----------------------|-------------------|----------------------|-------------------|----------------|----------------------------|-------------------------------|------------------------------------|----------------------|------------------------|----------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m]      | bis<br>[m]       | d <sub>1</sub> (mm) | E <sub>1</sub><br>[~] | [mm]              | € 2<br>[]            | d3<br>[mm]        | Füllung<br>[-] | A F<br>[m <sup>2</sup> ]   | kfF<br>[m/s]                  | T <sub>F</sub> [m <sup>3</sup> /s] | E A<br>[−]           | d <sub>A</sub><br>(mm) | A A<br>[m <sup>2</sup> ]   | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| UKA2<br>UKA2     | 0<br>20         | 20<br>80         | 406<br>298          | 1.40<br>1.40          | 568<br>417        | 1.35<br>1.35         | 767<br>563        | HD<br>HD       | 0.4625<br>0.2491           | 1.0E -3<br>1.0E -3            | 4.6E -4<br>2.5E -4                 | 1.25<br>1.25         | 959<br>704             | 0.2601<br>0.1401           | 1.0E -8<br>1.0E -8       | 2.6E -9<br>1.4E -9                    | 4.6E ~4<br>2.5E -4                      |
| UKR2<br>UKR2     | 80<br>83<br>119 | 83<br>119<br>153 | 279<br>279<br>193   | ROHA<br>ROHR<br>1.40  | 279<br>279<br>270 | ROHR<br>ROHR<br>1.35 | 279<br>279<br>365 | NF<br>NF       | 0.0611<br>0.0611<br>0.1045 | 1.0E -3<br>1.0E -8<br>1.0E -8 | 6.1E -5<br>6.1E-10<br>1.0E -9      | 1.34<br>1.34<br>1.25 | 374<br>374<br>456      | 0.0486<br>0.0486<br>0.0588 | 1.0E +8<br>1.0E -8       | 4.9E-10<br>4.9E-10<br>5.9E-10         | 6.1E +5<br>1.1E -9<br>1.6E -9           |
| UKR2<br>UKR1     | 153<br>240      | 240<br>241       | 193<br>193          | 1.40                  | 270<br>309        | FLLG<br>FLLG         | 270<br>309        | ZEM<br>ZEM     | 0.0573                     | 1.0E -8                       | 5.7E-10<br>7.5E-10                 | 1.25                 | 338<br>556             | 0.0323<br>0.1678           | 1.0E -8                  | 3.2E-10<br>1.7E -9                    | 9.0E-10<br>2.4E -9                      |
| UKA1<br>ZECH     | 241<br>405      | 405<br>488       | 193<br>193          | 1.60                  | 309<br>270        | FLLG<br>1.00         | 309<br>270        | SED<br>SED     | 0.0749<br>0.0573           | 1.0E -8<br>1.0E -8            | 7.5E-10<br>5.7E-10                 | 1.80                 | 556<br>270             | 0.1678<br>0.0000           | 1.0E -8<br>1.0E -8       | 1.7E -9<br>0.0E 1                     | 2.4E -9<br>5.7E-10                      |
| ZECH<br>ZECH     | 488<br>589      | 589<br>753       | 193<br>193          | 1.40                  | 270<br>270        | 1.00                 | 270<br>270        | ZEM<br>SED     | 0.0573<br>0.0573           | 1.0E -8<br>1.0E -8            | 5.7E-10<br>5.7E-10                 | 1.00                 | 270<br>270             | 0.0000                     | 1.0E -8<br>1.0E -8       | 0.0E 1                                | 5.7E-10<br>5.7E-10                      |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 240 m T= 1.59E -9 m $^3$ /s Teufenbereich: 240 - 405 m T= 2.43E -9 m $^3$ /s Teufenbereich: 0 - 405 m T= 1.85E -9 m $^3$ /s Teufenbereich: 405 - 753 m T= 5.73E-10 m $^3$ /s

Tab. E - 13.3 / 6 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BROISTEDT 33

## Bohrung Nr. 79: BROISTEDT 33

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                        |                       |             | <u>-</u>   | В           | ohrlochfüllung |        |              |                                       |            |      | Auflockerun           | gszone       |                                       |                            |
|------------------|------------|------------|------------------------|-----------------------|-------------|------------|-------------|----------------|--------|--------------|---------------------------------------|------------|------|-----------------------|--------------|---------------------------------------|----------------------------|
| tigraphie<br>(-) | von<br>(m) | bis<br>(m) | d <sub>1</sub><br>(mm) | E <sub>1</sub><br>[∽] | d 2<br>(mm) | E 2<br>(-) | dig<br>(mm) | Füllung<br>[-] | [m2]   | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E A<br>[-] | di A | A A [m <sup>2</sup> ] | kfA<br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | † <sub>F+A</sub><br>[m³/s] |
| UKA2             | 0          | 20         | 406                    | 1.40                  | 568         | 1.35       | 767         | НД             | 0.4625 | 1.0E -3      | 4.6E -4                               | 1.25       | 959  | 0.2601                | 1.0E -8      | 2.6E -9                               | 4.6E -4                    |
| UKR2             | 20         | 80         | 298                    | 1.40                  | 417         | 1.35       | 563         | HD             | 0.2491 | 1.0E -3      | 2.5E -4                               | 1.25       | 704  | 0.1401                | 1.0E -8      | 1.4E -9                               | 2.5E -4                    |
| UKR2             | 80         | 119        | 279                    | ROHR                  | 279         | AOHR       | 279         | HD             | 0.0611 | 1.0E -3      | 6.1E -5                               | 1.34       | 374  | 0.0486                | 1.0E -8      | 4.9E-10                               | 6.1E -5                    |
| UKR2             | 119        | 124        | 193                    | 1.40                  | 270         | 1.35       | 365         | HD             | 0.1045 | 1.0E -3      | 1.0E -4                               | 1.25       | 456  | 0.0588                | 1.0€ -8      | 5.9E-10                               | 1.0E -4                    |
| UKR2             | 124        | 240        | 193                    | 1.40                  | 270         | 1.35       | 365         | NF             | 0.1045 | 1.0E -B      | 1.0E -9                               | 1.25       | 456  | 0.0588                | 1.0€ -8      | 5.9E-10                               | 1.6E -9                    |
| UKR1             | 240        | 319        | 193                    | 1.60                  | 309         | 1.35       | 417         | NF             | 0.1365 | 1.0E -B      | 1.4E -9                               | 1.80       | 750  | 0.3057                | 1.0€ -8      | 3.1E -9                               | 4.4E -9                    |
| UKR1             | 319        | 405        | 193                    | 1.60                  | 309         | FLLG       | 309         | SED            | 0.0749 | 1.0E -8      | 7.5E-10                               | 1.80       | 556  | 0.1678                | 1.0E -B      | 1.7E -9                               | 2.4E -9                    |
| ZECH             | 405        | 753        | 193                    | 1.40                  | 270         | 1.00       | 270         | SED            | 0.0573 | 1.0€ -8      | 5.7E-10                               | 1.00       | 270  | 0.0000                | 1.0E -B      | 0.0E 1                                | 5.7E-10                    |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 240 m T=  $3.38E - 9 m^3/s$ Teufenbereich: 240 - 405 m T=  $3.10E - 9 m^3/s$ Teufenbereich: 0 - 405 m T=  $3.26E - 9 m^3/s$ Teufenbereich: 405 - 753 m T=  $5.73E - 10 m^3/s$ 

Tab. E - 13.3 / 6 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BROISTEDT 33

## Bohrung Nr. 80: BROISTEDT 34

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-   | Teufent | pereich    |                        |           | •           |            | В        | ohrlochfüllung |                          |              |                                       |                                      |                        | Auflockerun | gszonę                   |                                       |                                      |
|-----------|---------|------------|------------------------|-----------|-------------|------------|----------|----------------|--------------------------|--------------|---------------------------------------|--------------------------------------|------------------------|-------------|--------------------------|---------------------------------------|--------------------------------------|
| tigraphie | von (m) | bis<br>[m] | d <sub>1</sub><br>[mm] | ≝1<br>[−] | d 2<br>(mm) | E 2<br>[-] | (13 (mm) | Füllung<br>[⊶] | A #<br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3/s</sup> ] | E <sub>A</sub> .<br>[ <del>-</del> ] | d <sub>A</sub><br>[mm] | [m2]<br>A Y | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub> [m <sup>3</sup> /s] |
| OBKR      | 0       | 18         | 406                    | 1.15      | 467         | 1.00       | 467      | ZEM            | 0.1712                   | 1.0E -B      | 1.7E -9                               | 1.00                                 | 467                    | 0.0000      | 1.0E -8                  | 0.0E 1                                | 1.7E -9                              |
| OBKR      | 18      | 25         | 298                    | 1.40      | 417         | 1.00       | 417      | ZEM            | 0.1367                   | 1.0E -8      | 1.4E -9                               | 1.00                                 | 417                    | 0.0000      | 1.0E -8                  | 0.0E 1                                | 1.4E -9                              |
| UKR2      | 25      | 30         | 298                    | 1.40      | 417         | 1.35       | 563      | HD             | 0.2491                   | 1.0E -3      | 2.5E -4                               | 1.25                                 | 704                    | 0.1401      | 1.0E -8                  | 1.4E -9                               | 2.56 -4                              |
| UKR2      | 30      | 110        | 279                    | ROHA      | 279         | ROHR       | 279      | HD             | 0.0511                   | 1.0E -3      | 6.1E -5                               | 1.34                                 | 374                    | 0.0486      | 1.0€ -8                  | 4.9E-10                               | 6.1E -5                              |
| UKR2      | 110     | 180        | 270                    | 1.40      | 378         | 1.35       | 510      | HD             | 0.2045                   | 1.0E ~3      | 2.0E -4                               | 1.25                                 | 638                    | 0.1150      | 1.0E -8                  | 1.2E -9                               | 2.0E -4                              |
| UKR2      | 180     | 391        | 270                    | 1.40      | 378         | 1.35       | 510      | NF             | 0.2045                   | 1.0€ -8      | 2.0E -9                               | 1,25                                 | 638                    | 0.1150      | 1.0E -B                  | 1.2E ~9                               | 3.2E -9                              |
| UKA2      | 391     | 465        | 270                    | 1.40      | 378         | FLLG       | 378      | SED            | 0.1122                   | 1.0 € -B     | 1.1E -9                               | 1.25                                 | 473                    | 0.0631      | 1.0E -B                  | 6.3E-10                               | 1.8E -9                              |
| UKA1      | 465     | 785        | 270                    | 1.60      | 432         | FLLG       | 432      | SED            | 0.1466                   | 1.0E -B      | 1.5E -9                               | 1.80                                 | 778                    | 0.3283      | 1.0E -8                  | 3.3E -9                               | 4.7E -9                              |
| UKR1      | 785     | 798        | 270                    | 1.60      | 432         | FLLG       | 432      | ZEM            | 0.1466                   | 1.0E -8      | 1.5E -9                               | 1.80                                 | 778                    | 0.3283      | 1.0 € -8                 | 3.3E ~9                               | 4.7E -9                              |
| UKA1      | 798     | 833        | 216                    | 1.60      | 346         | FLLG       | 346      | ZEM            | 0.0938                   | 1.0E -8      | 9.4E-10                               | 1.80                                 | 955                    | 0.2101      | 1.0E -B                  | 2.1E -9                               | 3.0E -9                              |
| MALM      | 833     | 919        | 215                    | 1.10      | 238         | 1.00       | 238      | ZEM            | 0.0443                   | 1.0E -8      | 4.4E-10                               | 1.00                                 | 238                    | 0.0000      | 1.0E -B                  | 0.0E 1                                | 4.4E-10                              |
| D066      | 919     | 920        | 216                    | 1.40      | 302         | 1.00       | 302      | ZEM            | 0.0718                   | 1.0E -B      | 7.2E-10                               | 1,00                                 | 302                    | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10                              |
| DOGG      | 920     | 988        | 216                    | 1.40      | 302         | 1.00       | 302      | HD             | 0.0718                   | 1.0E -3      | 7.2E -5                               | 1.00                                 | 305                    | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.28 -5                              |
| DOGG      | 988     | 1090       | 216                    | 1.40      | 302         | 1.00       | 302      | SED            | 0.0718                   | 1.0E -8      | 7.2E-10                               | 1.00                                 | 302                    | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2 E-10                             |
| DOGG      | 1090    | 1186       | 216                    | 1.40      | 302         | 1.00       | 302      | ZEM            | 0.0718                   | 1.0E -8      | 7.2E-10                               | 1.00                                 | 302                    | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10                              |
| LIAS      | 1186    | 1198       | 216                    | 1.40      | 302         | 1.00       | 302      | ZEM            | 0.0718                   | 1.0E -B      | 7.2E-10                               | 1.00                                 | 302                    | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10                              |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 25 m T= 1.60E -9 m<sup>3</sup>/s Teufenbereich: 25 - 465 m T= 4.07E -9 m<sup>3</sup>/s Teufenbereich: 465 - 833 m T= 4.51E -9 m<sup>3</sup>/s Teufenbereich: 25 - 833 m T= 4.26E -9 m<sup>3</sup>/s Teufenbereich: 833 - 1198 m T= 7.48E-10 m<sup>3</sup>/s

Tab. E - 13.3 / 7 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BROISTEDT 34

## Bohrung Nr. 80: BROISTEDT 34

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 60 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-          | Teufen     | bereich    |                        |                    |             |            | В          | ohrlochfüllung |                          |         |                                       |                  |             | Auflockerur              | ngszone                  |                          | ]                       |
|------------------|------------|------------|------------------------|--------------------|-------------|------------|------------|----------------|--------------------------|---------|---------------------------------------|------------------|-------------|--------------------------|--------------------------|--------------------------|-------------------------|
| tigraphie<br>[-] | von<br>(m) | bis<br>(m) | d <sub>1</sub><br>[mm] | E <sub>1</sub> (-) | d 2<br>[mm] | E 2<br>[-] | dg<br>[mm] | Füllung<br>[–] | A F<br>[m <sup>2</sup> ] | [m/s]   | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub> . | d A<br>[mm] | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub> [m3/s] |
| овка             | 0          | 18         | 406                    | 1.15               | 467         | 1.00       | 467        | HD             | 0.1712                   | 1.0E -3 | 1.7E -4                               | 1.00             | 467         | 0.0000                   | 1.0E -8                  | 0.0E 1                   | 1.7E -4                 |
| овка             | 18         | 25         | 298                    | 1.40               | 417         | 1.00       | 417        | HD             | 0.1367                   | 1.0E -3 | 1.4E -4                               | 1.00             | 417         | 0.0000                   | 1.0E -8                  | 0.0E 1                   | 1.4E -4                 |
| UKR2             | 25         | 30         | 298                    | 1.40               | 417         | 1.35       | 563        | HD HD          | 0.2491                   | 1.0E -3 | 2.5E -4                               | 1.25             | 704         | 0.1401                   | 1.0E -8                  | 1.4E -9                  | 2.5E -4                 |
| UKR2             | 30         | 110        | 279                    | ROHR               | 279         | ROHA       | 279        | HO             | 0.0611                   | 1.0E -3 | 6.1E -5                               | 1.34             | 374         | 0.0486                   | 1.0E -8                  | 4.9E-10                  | 6.1E -5                 |
| UKR2             | 110        | 183        | 270                    | 1.40               | 378         | 1.35       | 510        | НΩ             | 0.2045                   | 1.0E -3 | 2.0E -4                               | 1.25             | 638         | 0.1150                   | 1.0E -B                  | 1.2E -9                  | 2.0E ~4                 |
| UKA2             | 183        | 401        | 270                    | 1.40               | 378         | 1.35       | 510        | NF             | 0.2045                   | 1.0E -8 | 2.0E -9                               | 1.25             | 638         | 0.1150                   | 1.0E -8                  | 1.2E -9                  | 3.2E -9                 |
| UKA2             | 401        | 434        | 270                    | 1.40               | 378         | FLL6       | 378        | ZEM            | 0.1122                   | 1.0€ -8 | 1.1E -9                               | 1.25             | 473         | 0.0631                   | 1.0E -8                  | 6.3E-10                  | 1.8E -9                 |
| UKA2             | 434        | 465        | 270                    | 1.40               | 378         | FLLG       | 378        | SED            | 0.1122                   | 1.0€ -8 | 1.1E -9                               | 1.25             | 473         | 0.0631                   | 1.0E -8                  | 6.3E-10                  | 1.8E -9                 |
| UKR1             | 465        | 798        | 270                    | 1.60               | 432         | FLLG       | 432        | SEO            | 0.1466                   | 1.0E -B | 1.5E ~9                               | 1.80             | 778         | 0.3283                   | 1.0E -8                  | 3.3E -9                  | 4.7E -9                 |
| UKR1             | 798        | 830        | 216                    | 1.60               | 346         | FLLG       | 346        | SED            | 0.0938                   | 1.0E -B | 9.4E-10                               | 1.80             | 622         | 0.2101                   | 1.0E -8                  | 2.1E -9                  | 3.0€ -9                 |
| UKR1             | 830        | 833        | 216                    | 1.60               | 346         | FLLG       | 346        | ZEM            | 0.0938                   | 1.0E -8 | 9.4E-10                               | 1.80             | 622         | 0.2101                   | 1.0E -8                  | 2.1E -9                  | 3.0E -9                 |
| MALM             | 833        | 919        | 216                    | 1.10               | 238         | 1.00       | 238        | ZEM            | 0.0443                   | 1.0E -8 | 4.4E-10                               | 1.00             | 238         | 0.0000                   | 1.0E -8                  | 0.0E 1                   | 4.4E-10                 |
| DOGG             | 919        | 988        | 216                    | 1.40               | 302         | 1.00       | 302        | ZEM            | 0.0718                   | 1.0E -8 | 7.2E-10                               | 1.00             | 302         | 0.0000                   | 1.0E -8                  | 0.0E 1                   | 7.2E-10                 |
| 0006             | 988        | 1090       | 216                    | 1.40               | 302         | 1.00       | 305        | SED            | 0.0718                   | 1.0E -8 | 7.2E-10                               | 1.00             | 302         | 0.0000                   | 1.0€ -8                  | 0.0E 1                   | 7.2E-10                 |
| DOGG             | 1090       | 1186       | 216                    | 1.40               | 302         | 1.00       | 302        | ZEM            | 0.0718                   | 1.0E -8 | 7.2E-10                               | 1.00             | 302         | 0.0000                   | 1.0E -8                  | 0.0E 1                   | 7.2E-10                 |
| LIAS             | 1186       | 1198       | 216                    | 1.40               | 305         | 1.00       | 302        | ZEM            | 0.0718                   | 1.0E -8 | 7.2E-10                               | 1.00             | 302         | 0.0000                   | 1.0E -B                  | 0.0E 1                   | 7.2E-10                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 25 m T=  $1.60E - 4 m^3/s$ Teufenbereich: 25 - 465 m T=  $4.20E - 9 m^3/s$ Teufenbereich: 465 - 833 m T=  $4.51E - 9 m^3/s$ Teufenbereich: 25 - 833 m T=  $4.34E - 9 m^3/s$ Teufenbereich: 833 - 1198 m T=  $6.27E - 10 m^3/s$ 

Tab. E - 13.3 / 7 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BROISTEDT 34

## Bohrung Nr. 80: BROISTEDT 34

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 %
Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich     |                  |              | •          |              | В           | ohrlochfüllung |                                  | -                         |                          |                    |             | Auflockerur              | gszone                   |                          |                                         |
|------------------|------------|-------------|------------------|--------------|------------|--------------|-------------|----------------|----------------------------------|---------------------------|--------------------------|--------------------|-------------|--------------------------|--------------------------|--------------------------|-----------------------------------------|
| tigraphie<br>(-) | von<br>(m) | bis<br>[m]  | d <sub>1</sub> ' | E₁<br>[-]    | (ww)       | E 2<br>(-)   | d 3<br>[mm] | Füllung<br>(–) | A <sub>F</sub> [m <sup>2</sup> ] | k <sub>f</sub> ;<br>[m/s] | T <sub>F</sub><br>[m3/s] | E <sub>A</sub> [-] | d A<br>[mm] | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKA<br>OBKA     | 0<br>18    | 18<br>25    | 406<br>298       | 1.15         | 467<br>417 | 1.00         | 467<br>417  | HD<br>HD       | 0.1712                           | 1.0E -3                   | 1.7E -4<br>1.4E -4       | 1.00               | 467<br>417  | 0.0000                   | 1.0E -8                  | 0.0E 1<br>0.0E 1         | 1.7E -4<br>1.4E -4                      |
| UKR2<br>UKR2     | 25<br>30   | 30          | 29B<br>279       | 1.40<br>ROHA | 417<br>279 | 1.35<br>ROHR | 563<br>279  | HD<br>HD       | 0.2491                           | 1.0E -3<br>1.0E -3        | 2.5E -4<br>6.1E -5       | 1.25               | 704<br>374  | 0.1401                   | 1.0E -8                  | 1.4E -9<br>4.9E-10       | 2.5E -4<br>6.1E -5                      |
| UKR2             | 110        | 225         | 270              | 1.40         | 378<br>378 | 1.35         | 510<br>510  | HD<br>NF       | 0.2045                           | 1.0E -3<br>1.0E -8        | 2.0E -4<br>2.0E -9       | 1.25               | 638<br>638  | 0.1150                   | 1.0E -8                  | 1.2E -9<br>1.2E -9       | 2.0E -4<br>3.2E -9                      |
| UKR2<br>UKR1     | 225<br>465 | 465<br>556  | 270<br>270       | 1.40         | 432        | 1.35         | 583         | NF             | 0.2671                           | 1.0E -8                   | 2.7E -9                  | 1.80               | 1049<br>778 | 0.5984                   | 1.0E -8                  | 6.0E -9<br>3.3E -9       | 8.7E -9<br>4.7E -9                      |
| UKA1<br>UKA1     | 556<br>798 | 798<br>833  | 270<br>216       | 1.60<br>1.60 | 432<br>346 | FLLG<br>FLLG | 432<br>346  | SED<br>SED     | 0.1466<br>0.0938                 | 1.0E -8                   | 9.4E-10                  | 1.80               | 622         | 0.2101                   | 1.0E -B                  | 2.1E -9                  | 3.0E -9                                 |
| MALM<br>DOGG     | 833<br>919 | 919<br>1186 | 216<br>216       | 1.10         | 238<br>302 | 1.00         | 238<br>302  | SED<br>SED     | 0,0443<br>0.0718                 | 1.0E -8                   | 4.4E-10<br>7.2E-10       | 1.00               | 305         | 0.0000                   | 1.0E -8                  | 0.0E 1                   | 4.4E-10<br>7.2E-10                      |
| LIAS             | 1186       | 1198        | 216              | 1.40         | 305        | 1.00         | 302         | SED            | 0.0718                           | 1.0E -8                   | 7.2E-10                  | 1.00               | 302         | 0.0000                   | 1.0E -8                  | 0.0E 1                   | 7.2E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 25 m T=  $1.60E - 4 m^3/s$ Teufenbereich: 25 - 465 m T=  $5.86E - 9 m^3/s$ Teufenbereich: 465 - 833 m T=  $5.04E - 9 m^3/s$ Teufenbereich: 25 - 833 m T=  $5.46E - 9 m^3/s$ Teufenbereich: 833 - 1198 m T=  $6.27E - 10 m^3/s$ 

Tab. E - 13.3 / 7 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung BROISTEDT 34

## Bohrung Nr. 307: DENSTORF 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 56 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-       | Teufent    | nereich    |                     |           |            |            | В          | hrlochfüllung  |                   |                          |                          |         |      | Auflockerun           | g\$2one                  |                          | i i                        |
|---------------|------------|------------|---------------------|-----------|------------|------------|------------|----------------|-------------------|--------------------------|--------------------------|---------|------|-----------------------|--------------------------|--------------------------|----------------------------|
| tigraphie (-) | von<br>[m] | bis<br>(m) | d <sub>1</sub> (mm) | E₁<br>[–] | d2<br>(mm) | E 2<br>[-] | dg<br>(mm) | Füllung<br>[-] | (m <sup>2</sup> ) | k <sub>fF</sub><br>[m/s] | T <sub>F</sub><br>[m3/s] | E A (~) | (mm) | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>(m³/s) |
| GUAR          | 0          | 5          | 508                 | 1.15      | 584        | 1.00       | 584        | SED/ZE         | 0.2680            | 1.0E -8                  | 2.7E -9                  | 1.00    | 584  | 0.0000                | 1.0E -8                  | 0.0E 1                   | 2.7E -9                    |
| QUAR          | 2          | 25         | 298                 | 1,15      | 343        | 1.00       | 343        | SED/ZE         | 0.0922            | 1.0E -B                  | 9.2E-10                  | 1.00    | 343  | 0.0000                | 1.0E -8                  | 0.0E 1                   | 9.2E-10                    |
| 0BKR          | 25         | 35         | 298                 | 1.15      | 343        | 1.00       | 343        | SED/ZE         | 0.0922            | 1.0E -8                  | 9.2E-10                  | 1.00    | 343  | 0.0000                | 1.0E -B                  | 0.0E 1                   | 9.2E-10                    |
| овка          | 35         | 38         | 216                 | 1.15      | 24B        | 1.00       | 248        | SED/ZE         | 0.0485            | 1.0E -8                  | 4.8E-10                  | 1.00    | 248  | 0.0000                | 1.0E -8                  | 0.0E 1                   | 4.8E-10                    |
| овкя          | 38         | 48         | 216                 | 1.15      | 248        | 1.00       | 248        | но             | 0.0485            | 1.0E -3                  | 4.BE -5                  | 1.00    | 248  | 0.0000                | 1.0E -8                  | 0.0E 1                   | 4.8E ~5                    |
| UKR2          | 48         | 67         | 216                 | 1.40      | 302        | FLLG       | 302        | HD             | 0.071B            | 1.0E -3                  | 7.2E -5                  | 1.25    | 378  | 0.0404                | 1.0E -8                  | 4.0E-10                  | 7.2E -5                    |
| UKR2          | 67         | 110        | 216                 | 1.40      | 302        | FLLG       | 302        | SED/ZE         | 0.0718            | 1.0E -8                  | 7.2E-10                  | 1.25    | 378  | 0.0404                | 1.0E -B                  | 4.0E-10                  | 1.1E -9                    |
| UKR2          | 110        | 208        | 216                 | 1.40      | 302        | 1.35       | 408        | HD             | 0.1309            | 1.0E -3                  | 1.3E -4                  | 1.25    | 510  | 0.0736                | 1.0E -8                  | 7.4E-10                  | 1.3E -4                    |
| UKA2          | 20B        | 477        | 216                 | 1.40      | 302        | 1.35       | 408        | NF             | 0.1309            | 1.0E -B                  | 1.3E -9                  | 1.25    | 510  | 0.0736                | 1.0E -8                  | 7.4E-10                  | 2.0E -9                    |
| UKR1          | 477        | 500        | 216                 | 1,60      | 346        | 1.35       | 467        | NF             | 0.1710            | 1.0E -B                  | 1.7E -9                  | 1.80    | 840  | 0.3830                | 1.0E -8                  | 3.BE -9                  | 5.5E -9                    |
| UKR1          | 500        | 708        | 216                 | 1.60      | 345        | FLLG       | 346        | SED            | 0.0938            | 1.0E -8                  | 9.4E-10                  | 1.80    | 655  | 0.2101                | 1.0E -8                  | 2.1E -9                  | 3.0E -9                    |
| MALM          | 70B        | 893        | 216                 | 1.10      | 238        | 1.00       | 238        | SED            | 0.0443            | 1.0E -8                  | 4.4E-10                  | 1.00    | 238  | 0.0000                | 1.0E -8                  | 0.0E 1                   | 4.4E-10                    |
| MALM          | 893        | 920        | 197                 | 1.10      | 217        | 1.00       | 217        | SED            | 0.0369            | 1.0 € -B                 | 3.7E-10                  | 1.00    | 217  | 0.0000                | 1.0E -B                  | 0.0E 1                   | 3.7E-10                    |
| MALM          | 920        | 979        | 197                 | 1.10      | 217        | 1.00       | 217        | ZEM            | 0.0369            | 1.0E -8                  | 3.7 E-10                 | 1.00    | 217  | 0.0000                | 1.0E -B                  | 0.0E 1                   | 3.7E-10                    |
| MALM          | 979        | 995        | 154                 | 1.10      | 169        | 1.00       | 169        | ZEM            | 0.0225            | 1.0E -8                  | 2.3E-10                  | 1.00    | 169  | 0.0000                | 1.0E -8                  | 0.0E 1                   | 2.3E-10                    |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 48 m T=  $1.12E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 48 - 477 m T=  $2.53E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 477 - 708 m T=  $3.18E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 48 - 708 m T=  $2.72E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 708 - 995 m T=  $3.98E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 8 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung DENSTORF 1

## Bohrung Nr. 307: DENSTORF 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 56 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-       | Teufen     | bereich    | ,              |              |            |              | В          | ohrlochfüllung |                                     | · · ·                    |                                       |                       | •                      | Auflockerun           | gszone                   |                                       |                                         |
|---------------|------------|------------|----------------|--------------|------------|--------------|------------|----------------|-------------------------------------|--------------------------|---------------------------------------|-----------------------|------------------------|-----------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie [-] | von<br>[m] | bis<br>[m] | d <sub>1</sub> | E₁<br>[–]    | d2<br>[mm] | E 2          | dg<br>[mm] | Füllung<br>(-) | Α <sub>Ε</sub><br>[m <sup>2</sup> ] | k <sub>fF</sub><br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub><br>[-] | d <sub>A</sub><br>[mm] | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR          | 0          | 2          | 508            | 1.15         | 584        | 1.00         | 584        | HD             | 0.2680                              | 1.0E -3<br>1.0E -3       | 2.7E -4<br>9.2E -5                    | 1.00                  | 584<br>343             | 0.0000                | 1.0E -8<br>1.0E -8       | 0.0E 1                                | 2.7E -4<br>9.2E -5                      |
| QUAR<br>QBKR  | 2<br>25    | 25<br>35   | 298<br>298     | 1.15<br>1.15 | 343<br>343 | 1.00         | 343<br>343 | HD<br>HD       | 0.0922<br>0.0922                    | 1.0E -3                  | 9.2E -5                               | 1.00                  | 343                    | 0.0000                | 1.0E -B                  | 0.0E 1                                | 9.2E -5                                 |
| 08KR          | 35         | 48         | 216            | 1.15         | 248        | 1.00         | 248        | HD<br>HD       | 0.0485<br>0.1309                    | 1.0E -3                  | 4.8E ~5                               | 1.00                  | 248<br>510             | 0.0000<br>0.0736      | 1.0E -8                  | 0.0E 1<br>7.4E~10                     | 4.8E -5<br>1.3E -4                      |
| UKR2<br>UKR2  | 48<br>143  | 143<br>429 | 216<br>216     | 1.40<br>1.40 | 302        | 1.35<br>1.35 | 408<br>408 | NF             | 0.1309                              | 1.0E -8                  | 1.3E -4                               | 1.25                  | 510                    | 0.0736                | 1.0E -8                  | 7.4E-10                               | 2.0E -9                                 |
| UKR2          | 429        | 439        | 216            | 1.40         | 302        | FLLG         | 302        | BK             | 0.0718                              | 1.0E -8                  | 7.2E-10                               | 1.25                  | 378                    | 0.0404                | 1.0E -8                  | 4.0E-10                               | 1.1E -9                                 |
| UKR2<br>UKR1  | 439<br>477 | 477<br>70B | 216<br>216     | 1.40         | 302<br>346 | FLLG<br>FLLG | 302<br>346 | SED<br>SED     | 0.0718<br>0.0938                    | 1.0E -8<br>1.0E -9       | 7.2E-10<br>9.4E-10                    | 1.25                  | 378<br>622             | 0.0404                | 1.0E -8                  | 4.0E-10<br>2.1E -9                    | 1.1E -9<br>3.0E -9                      |
| MALM          | 708        | 893        | 216            | 1.10         | 238        | 1.00         | 238        | SED            | 0.0443                              | 1.0E -8                  | 4.4E-10                               | 1.00                  | 238                    | 0.0000                | 1.0E -8                  | 0.0E 1                                | 4.4E-10                                 |
| MALM<br>MALM  | 893<br>920 | 920<br>979 | 197<br>197     | 1.10         | 217        | 1.00         | 217<br>217 | SED<br>ZEM     | 0.0369                              | 1.0E -8                  | 3.7E-10<br>3.7E-10                    | 1.00                  | 217<br>217             | 0.0000                | 1.0E -8.                 | 0.0E 1                                | 3.7E-10<br>3.7E-10                      |
| MALM          | 979        | 995        | 154            | 1.10         | 169        | 1.00         | 169        | ZEM            | 0.0225                              | 1.0E -8                  | 2.3E-10                               | 1.00                  | 169                    | 0.0000                | 1.0E -B                  | 0.0E 1                                | 2.3E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 48 m T=  $7.58E - 5 m^3/s$ Teufenbereich: 48 - 477 m T=  $2.35E - 9 m^3/s$ Teufenbereich: 477 - 708 m T=  $3.04E - 9 m^3/s$ Teufenbereich: 48 - 708 m T=  $2.55E - 9 m^3/s$ Teufenbereich: 708 - 995 m T=  $3.98E - 10 m^3/s$ 

Tab. E – 13.3 / 8 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung DENSTORF 1

## Bohrung Nr. 307: DENSTORF 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 56 %
Sedimentationsanteil des Nachfalls: 75 %

| Strati-         | Teufen     | bereich    |                        |          |     |      | В          | ohrlochfüllung |                                     |              |                                    |                       |                | Auflockerun              | gszone                   |                                       |                                      |
|-----------------|------------|------------|------------------------|----------|-----|------|------------|----------------|-------------------------------------|--------------|------------------------------------|-----------------------|----------------|--------------------------|--------------------------|---------------------------------------|--------------------------------------|
| tigraphie<br>() | von<br>(m) | bis<br>(m) | d <sub>1</sub><br>(mm) | 터<br>[-) | d 2 | E 2  | ძვ<br>[mm] | Füllung<br>[]  | Α <sub>Ε</sub><br>(m <sup>2</sup> ) | kfF<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E <sub>A</sub><br>[–] | d <sub>A</sub> | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub> [m <sup>3</sup> /s] |
| QUAR            | 0          | 2          | 508                    | 1.15     | 584 | 1.00 | 584        | HD             | 0.2680                              | 1.0E -3      | 2.7E -4                            | 1.00                  | 584            | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 2.7€ -4                              |
| QUAR            | 2          | 25         | 598                    | 1.15     | 343 | 1.00 | 343        | HD             | 0.0922                              | 1.0E -3      | 9.2E -5                            | 1.00                  | 343            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 9.2E -5                              |
| OBKA            | 25         | 35         | 298                    | 1.15     | 343 | 1.00 | 343        | HD             | 0.0922                              | 1.0E -3      | 9.2E -5                            | 1.00                  | 343            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 9.2E -5                              |
| овка            | 35         | 48         | 216                    | 1.15     | 24B | 1.00 | 248        | HD             | 0.0485                              | 1.0E -3      | 4.8E -5                            | 1.00                  | 248            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.8E -5                              |
| UKR2            | 48         | 154        | 216                    | 1.40     | 302 | 1.35 | 408        | HD             | 0.1309                              | 1.0E -3      | 1.3E -4                            | 1.25                  | 510            | 0.0736                   | 1.0E -8                  | 7.4E-10                               | 1.3E -4                              |
| UKR2            | 154        | 473        | 216                    | 1.40     | 302 | 1.35 | 408        | NF             | 0.1309                              | 1.0E -8      | 1.3E ~9                            | 1.25                  | 510            | 0.0736                   | 1.0E -8                  | 7.4E-10                               | 2.0E -9                              |
| UKA2            | 473        | 477        | 216                    | 1.40     | 302 | FLLG | 302        | ₿K             | 0.0718                              | 1.0E -8      | 7.2E-10                            | 1.25                  | 378            | 0.0404                   | 1.0€ -8                  | 4.0 E-10                              | 1.1E -9                              |
| UKR1            | 477        | 482        | 216                    | 1.60     | 346 | FLLG | 346        | вк             | 0.0938                              | 1.0 € -8     | 9.4E-10                            | 1.80                  | 655            | 0.2101                   | 1.0E -B                  | 2.1E -9                               | 3.08 -9                              |
| UKB1            | 482        | 708        | 216                    | 1.60     | 346 | FLLG | 346        | SED            | 0.0938                              | 1.0E -B      | 9.4E-10                            | 1.80                  | 622            | 0.2101                   | 1.0E -8                  | 2.1E -9                               | 3.0E -9                              |
| MALM            | 70B        | 893        | 216                    | 1.10     | 238 | 1.00 | 238        | SED            | 0.0443                              | 1.0E -8      | 4.4E-10                            | 1.00                  | 238            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.4E-10                              |
| MALM            | 893        | 979        | 197                    | 1.10     | 217 | 1.00 | 217        | SED            | 0.0369                              | 1.0E -8      | 3.7E-10                            | 1.00                  | 217            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 3.7E-10                              |
| MALM            | 979        | 995        | 154                    | 1.10     | 169 | 1.00 | 169        | S€D            | 0.0225                              | 1.0E -8      | 2.3E-10                            | 1.00                  | 169            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 2.35-10                              |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 48 m T=  $7.58E - 5 \text{ m}^3/\text{s}$ Yeufenbereich: 48 - 477 m T=  $2.69E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 477 - 708 m T=  $3.04E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 48 - 708 m T=  $2.80E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 708 - 995 m T=  $3.98E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 8 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung DENSTORF 1

# Bohrung Nr. 290: GLEIDINGEN 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 52 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-          |            | bereich    |                        |                |             |      | В           | ohrlochfüllung |                       | - ··         |                                    |                |                | Auflockerun                         | gszone       |                          |                            |
|------------------|------------|------------|------------------------|----------------|-------------|------|-------------|----------------|-----------------------|--------------|------------------------------------|----------------|----------------|-------------------------------------|--------------|--------------------------|----------------------------|
| tigraphie<br>(-) | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>[mm] | E <sub>1</sub> | [mm]<br>g S | [-]  | d 3<br>(mm) | Füllung<br>(+) | A F [m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E <sub>A</sub> | d <sub>A</sub> | A <sub>A</sub><br>[m <sup>2</sup> ] | kfA<br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>(m3/s) |
| QUAR             | 0          | 35         | 320                    | AOHA           | 320         | 1.00 | 320         | SED/ZE         | 0.0804                | 1.0E -8      | 8.0E-10                            | 1.00           | 320            | 0.0000                              | 1.0E -8      | 0.0E 1                   | B.0 E-10                   |
| OBKA             | 35         | 36         | 216                    | 1.15           | 248         | 1.00 | 248         | SED/ZE         | 0.0485                | 1.0E -8      | 4.8E-10                            | 1.00           | 248            | 0.0000                              | 1.0E -B      | 0.0E 1                   | 4.8E-10                    |
| OBKA             | 36         | 69         | 216                    | 1.15           | 248         | 1.00 | 248         | HD             | 0.0485                | 1.0E -3      | 4.8E -5                            | 1.00           | 248            | 0.0000                              | 1.0E -B      | 0.0E 1                   | 4.8E -5                    |
| овкя             | 69         | 110        | 216                    | 1.15           | 248         | 1.00 | 248         | SED/ZE         | 0.0485                | 1.0E -8      | 4.8E-10                            | 1.00           | 248            | 0.0000                              | 1.0E -8      | 0.0E 1                   | 4.8E-10                    |
| ОВКА             | 110        | 115        | 216                    | 1.15           | 248         | 1.00 | 248         | HD             | 0.0485                | 1.0E -3      | 4.8E -5                            | 1.00           | 248            | 0.0000                              | 1.0E -B      | 0.0E 1                   | 4.8E -5                    |
| UKR2             | 115        | 196        | 216                    | 1.40           | 302         | 1.35 | 408         | HD             | 0.1309                | 1.0E -3      | 1.3E ~4                            | 1.25           | 510            | 0.0736                              | 1.0E -8      | 7.4E-10                  | 1.3E -4                    |
| UKR2             | 196        | 438        | 216                    | 1.40           | 302         | 1,35 | 408         | NF             | 0.1309                | 1.0E -8      | 1.3E -9                            | 1.25           | 510            | 0.0736                              | 1.0E -B      | 7.4E-10                  | 2.0E -9                    |
| UKR2             | 438        | 522        | 216                    | 1.40           | 302         | FLLG | 302         | SED            | 0.0718                | 1.0E -8      | 7.2E~10                            | 1.25           | 378            | 0.0404                              | 1.0E -8      | 4.0E-10                  | 1.1E -9                    |
| UKR1             | 522        | 717        | 216                    | 1.60           | 346         | FLLG | 346         | SED            | 0.0938                | 1.0E -8      | 9.4E-10                            | 1.80           | 622            | 0.2101                              | 1.0E -8      | 2.1E -9                  | 3.0E -9                    |
| MALM             | 717        | 740        | 216                    | 1.10           | 238         | 1.00 | 238         | SED            | 0.0443                | 1.0E -8      | 4.4E-10                            | 1.00           | 238            | 0.0000                              | 1.0E -8      | 0.0E 1                   | 4.4E-10                    |
| MALM             | 740        | 811        | 216                    | 1.10           | 238         | 1.00 | 238         | ZEM            | 0.0443                | 1.0E -8      | 4.4E-10                            | 1.00           | 238            | 0.0000                              | 1.0E -8      | 0.0E 1                   | 4.4E-10                    |
| MALM             | 811        | 821        | 154                    | 1.10           | 169         | 1.00 | 169         | ZEM            | 0.0225                | 1.0E -8      | 2.3E-10                            | 1.00           | 169            | 0.0000                              | 1.0E -8      | 0.0E 1                   | 2.3E-10                    |

#### mittlere (axiale) Transmissivitäten

Teutenbereich: 0 - 115 m T= 8.83E-10 m $^3$ /s Teutenbereich: 115 - 522 m T= 2.11E -9 m $^3$ /s Teutenbereich: 522 - 717 m T= 3.04E -9 m $^3$ /s Teutenbereich: 115 - 717 m T= 2.34E -9 m $^3$ /s Teutenbereich: 717 - 821 m T= 4.06E-10 m $^3$ /s

Tab. E - 13.3 / 9 B : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung GLEIDINGEN 1

# Bohrung Nr. 290: GLEIDINGEN 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 52 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufeni    | bereich    |            |                       |            |                | В           | ohrlochfüllung |                          |                    |                       |           |             | Auflockerun           | gszone                   |                                       |                            |
|------------------|------------|------------|------------|-----------------------|------------|----------------|-------------|----------------|--------------------------|--------------------|-----------------------|-----------|-------------|-----------------------|--------------------------|---------------------------------------|----------------------------|
| tigraphie<br>[-] | von<br>(m) | bîs<br>(m) | dı<br>(mm) | E <sub>1</sub><br>(-) | [ww]<br>q5 | E <sub>2</sub> | d 3<br>[mm] | Füllung<br>(-) | A F<br>(m <sup>2</sup> ) | kfF<br>[m/s]       | T <sub>F</sub> [m3/s] | EA<br>[~] | d A<br>(mm) | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m3/s] |
| GUAR<br>08KR     | 0<br>35    | 35<br>115  | 320<br>216 | AOHR<br>1.15          | 320<br>248 | 1.00           | 320<br>24B  | HD<br>HD       | 0.0804<br>0.0485         | 1.0E -3            | B.0E -5<br>4.8E -5    | 1.00      | 320<br>248  | 0.0000                | 1.0E -8<br>1.0E -8       | 0.0E 1                                | 8.0E -5<br>4.8E -5         |
| UKR2<br>UKR2     | 115<br>182 | 182<br>383 | 216<br>216 | 1.40                  | 302<br>302 | 1.35           | 408<br>408  | HD<br>NF       | 0.1309                   | 1.0E -3            | 1.3E -4<br>1.3E -9    | 1.25      | 510<br>510  | 0.0736<br>0.0736      | 1.0E -8                  | 7.4E-10<br>7.4E-10                    | 1.3E -4                    |
| UKA2<br>UKA2     | 383<br>394 | 394<br>522 | 216<br>216 | 1.40                  | 302        | FLLG<br>FLLG   | 302<br>302  | BK/ZEM<br>SED  | 0.0718                   | 1.0E -8            | 7.2E-10<br>7.2E-10    | 1.25      | 378<br>378  | 0.0404                | 1.0E -8<br>1.0E -8       | 4.0E-10<br>4.0E-10                    | 1.1E -9<br>1.1E -9         |
| UKR1<br>MALM     | 522<br>717 | 717        | 216        | 1.60                  | 346<br>238 | FLLG<br>1.00   | 346<br>238  | SED<br>SED     | 0.0938                   | 1.0E -8<br>1.0E -8 | 9.4E-10<br>4.4E-10    | 1.80      | 622<br>238  | 0.2101                | 1.0E -8<br>1.0E -8       | 2.1E -9<br>0_0E 1                     | 3.0E ~9<br>4.4E-10         |
| MALM<br>MALM     | 740<br>B11 | 811<br>821 | 216<br>154 | 1.10                  | 238        | 1.00           | 238<br>169  | ZEM<br>ZEM     | 0.0443                   | 1.0E -8<br>1.0E -8 | 4.4E-10<br>2.3E-10    | 1.00      | 238<br>169  | 0.0000                | 1.0 € -8<br>1.0 € -8     | 0.0E 1<br>0.0E 1                      | 4.4E-10<br>2.3E-10         |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 115 m T=  $5.51E - 5 m^3/s$ Teufenbereich: 115 - 522 m T=  $1.83E - 9 m^3/s$ Teufenbereich: 522 - 717 m T=  $3.04E - 9 m^3/s$ Teufenbereich: 115 - 717 m T=  $2.10E - 9 m^3/s$ Teufenbereich: 717 - 821 m T=  $4.06E - 10 m^3/s$ 

Tab. E - 13.3 / 9 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung GLEIDINGEN 1

## Bohrung Nr. 290: GLEIDINGEN 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 52 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                        |           |      |            | В          | ohrlochfüllung |                          |              |                                       |                       |             | Auflockerun              | gszone       |                          |                                         |
|------------------|------------|------------|------------------------|-----------|------|------------|------------|----------------|--------------------------|--------------|---------------------------------------|-----------------------|-------------|--------------------------|--------------|--------------------------|-----------------------------------------|
| tigraphie<br>(-) | von<br>(m) | bis<br>[m] | d <sub>1</sub><br>[mm] | E₁<br>(-) | (mm) | E 2<br>[→] | d3<br>(mm) | Füllung<br>(–) | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub><br>[-] | d A<br>[mm] | A A<br>[m <sup>2</sup> ] | kfA<br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 35         | 320                    | ROHR      | 320  | 1.00       | 320        | HD             | 0.0804                   | 1.0E -3      | 8.0E -5                               | 1.00                  | 320         | 0.0000                   | 1.0E -8      | 0.0E 1                   | 8.0E -5                                 |
| OBKA             | 35         | 115        | 216                    | 1.15      | 248  | 1.00       | 248        | HO             | 0.0485                   | 1.0E -3      | 4.BE -5                               | 1.00                  | 248         | 0.0000                   | 1.0E -8      | 0.0E 1                   | 4.8€ -5                                 |
| UKR2             | 115        | 197        | 216                    | 1.40      | 302  | 1.35       | 408        | HD             | 0.1309                   | 1.0E -3      | 1.3E -4                               | 1.25                  | 510         | 0.0736                   | 1.0E -8      | 7.4E-10                  | 1.3E -4                                 |
| UKR2             | 197        | 441        | 216                    | 1.40      | 302  | 1.35       | 408        | NF             | 0.1309                   | 1.0E →8      | 1.3E -9                               | 1.25                  | 510         | 0.0736                   | 1.0E ~8      | 7.4E-10                  | 2.0E -9                                 |
| UKA2             | 441        | 448        | 216                    | 1.40      | 302  | FLLG       | 302        | BK             | 0.0718                   | 1.0€ -8      | 7.2E-10                               | 1.25                  | 378         | 0.0404                   | 1.0E -B      | 4.0E-10                  | 1.1E -9                                 |
| UKA2             | 448        | 522        | 216                    | 1.40      | 302  | FLLG       | 302        | SED            | 0.0718                   | 1.0€ -8      | 7.2E-10                               | 1.25                  | 378         | 0.0404                   | 1.0E -8      | 4.0E-10                  | 1.1E -9                                 |
| UKR1             | 522        | 717        | 216                    | 1.60      | 346  | FLLG       | 346        | SED            | 0.0938                   | 1.0E -B      | 9.4E-10                               | 1.80                  | 622         | 0.2101                   | 1.0E -B      | 2.1E -9                  | 3.0E -9                                 |
| MALM             | 717        | 811        | 216                    | 1.10      | 238  | 1.00       | 238        | SED            | 0.0443                   | 1.0E -B      | 4.4E-10                               | 1.00                  | 238         | 0.0000                   | 1.0E -8      | 0.0E 1                   | 4.4E-10                                 |
| MALM             | 811        | 821        | 154                    | 1.10      | 169  | 1.00       | 169        | SED            | 0.0225                   | 1.0E -B      | 2.3E-10                               | 1.00                  | 169         | 0.0000                   | 1.0E -8      | 0.0E 1                   | 2.3E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 115 m  $T=5.51E-5 m^3/s$ Teufenbereich: 115 - 522 m  $T=2.13E-9 m^3/s$ Teufenbereich: 522 - 717 m  $T=3.04E-9 m^3/s$ Teufenbereich: 115 - 717 m  $T=2.35E-9 m^3/s$ Teufenbereich: 717 - 821 m  $T=4.06E-10 m^3/s$ 

Tab. E - 13.3 / 9 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung GLEIDINGEN 1

# Bohrung Nr. 81: HALLENDORF 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 44 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen       | bereich      |                        |              |             | •            | В          | ohrlochfüllung   |                   |                    | •                        |                       |             | Auflockerun                         | gszone             |                                       |                    |
|------------------|--------------|--------------|------------------------|--------------|-------------|--------------|------------|------------------|-------------------|--------------------|--------------------------|-----------------------|-------------|-------------------------------------|--------------------|---------------------------------------|--------------------|
| tigraphie<br>[-] | von<br>[m]   | bis<br>(m)   | d <sub>1</sub><br>(mm) | E₁<br>(+)    | d 2<br>[mm] | E 2<br>[-]   | dg<br>[mm] | Füllung<br>[-]   | [m <sup>2</sup> ] | kfF<br>[m/s]       | T <sub>F</sub><br>[m3/s] | E <sub>A</sub><br>[-] | (mm)        | A <sub>A</sub><br>[m <sup>2</sup> ] | kfA<br>[m/s]       | T <sub>A</sub><br>[m <sup>3</sup> /s] | TF+A<br>[m³/s]     |
| QUAR             | 0            | 11           | 320<br>279             | ROHR<br>ROHA | 320<br>279  | 1.00         | 320<br>279 | ZEM<br>I ZEM     | 0.0804<br>0.0611  | 1.0E -8<br>1.0E -8 | 8.0E-10<br>5.1E-10       | 1.00                  | 320<br>279  | 0.0000                              | 1.0E -8<br>1.0E -8 | 0.0E 1                                | 8.0E-10<br>6.1E-10 |
| QUAR<br>QUAR     | 11<br>13     | 13<br>26     | 279                    | ROHR         | 279         | 1.00<br>1.00 | 279        | HD               | 0.0611            | 1.0E -3            | 6.1E-10                  | 1.00                  | 279         | 0.0000                              | 1.0E -8            | 0.0E 1                                | 6.1E -5            |
| OBKR<br>OBKR     | 26<br>37     | 37<br>345    | 279<br>270             | ROHA<br>1.15 | 279<br>311  | 1.00         | 279<br>311 | HD<br>OH         | 0.0611<br>0.0757  | 1.0E -3            | 6.1E ~5                  | 1.00                  | 279<br>311  | 0.0000                              | 1.0E -8            | 0.0E 1                                | 6.1E -5<br>7.6E -5 |
| UKR2             | 345          | 430          | 270                    | 1.40         | 378         | 1.35         | 510        | НД               | 0.2045            | 1.0E -3            | 2.0E -4                  | 1.25                  | 638         | 0.1150                              | 1.0E -8            | 1.2E -9                               | 2.0E -4            |
| UKR2<br>UKR1     | 430<br>675   | 675<br>683   | 270<br>270             | 1.40         | 378<br>432  | 1.35         | 510<br>583 | NF<br>NF         | 0.2045            | 1.0E -8            | 2.0E -9<br>2.7E -9       | 1.25                  | 638<br>1049 | 0.1150<br>0.5984                    | 1.0E -B            | 1.2E -9<br>6.0E -9                    | 3.2E -9<br>8.7E -9 |
| UKR1<br>MALM     | 683<br>914   | 914<br>1071  | 270<br>270             | 1.60         | 432<br>297  | FLLG<br>1.00 | 432<br>297 | SED/BK<br>SED/BK | 0.1466<br>0.0693  | 1.0E -8<br>1.0E -8 | 1.5E -9<br>6.9E-10       | 1.80                  | 778<br>297  | 0.3283                              | 1.0E -8            | 3.3E -9                               | 4.7E -9<br>6.9E-10 |
| MALM             | 1071         | 1232         | 219                    | 1.10         | 241         | 1.00         | 241        | SED/BK           | 0.0456            | 1.0E -B            | 4.6E-10                  | 1.00                  | 241         | 0.0000                              | 1.0E -8            | 0.0E 1                                | 4.6E-10            |
| MALM<br>MALM     | 1232<br>1279 | 1279<br>1302 | 219                    | 1.10         | 241<br>157  | 1.00         | 241<br>157 | ZEM<br>ZEM       | 0.0456            | 1.0E -B            | 4.6E-10<br>1.9E-10       | 1.00                  | 241<br>157  | 0.0000                              | 1.0E -8            | 0.0E 1                                | 4.5E-10<br>1.9E-10 |
| MALM             | 1302         | 1315         | 127                    | 1.10         | 140         | 1.00         | 140        | ZEM              | 0.0153            | 1.0E -8            | 1.5E-10                  | 1.00                  | 140         | 0.0000                              | 1.0E -8            | 0.0E 1                                | 1.5E-10            |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 = 345 m T=  $2.04E - 8 m^3/s$ Teufenbereich: 345 = 675 m T=  $4.30E - 9 m^3/s$ Teufenbereich: 675 = 914 m T=  $4.82E - 9 m^3/s$ Teufenbereich: 345 = 914 m T=  $4.51E - 9 m^3/s$ Teufenbereich: 914 = 1315 m T=  $4.53E - 10 m^3/s$ 

Tab. E - 13.3 / 10 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung HALLENDORF 1

# Bohrung Nr. 81: HALLENDORF 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 44 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-   | Teufen | bereich |                    |                |      |      | В    | ohrlochfüllung |                   |                 |                | ]    |      | Auflockerun       | gszone  | •                   |                     |
|-----------|--------|---------|--------------------|----------------|------|------|------|----------------|-------------------|-----------------|----------------|------|------|-------------------|---------|---------------------|---------------------|
| tigraphie | von    | bis     | [ d <sub>1</sub> ] | E <sub>1</sub> | 42   | E2 ' | dз   | Füllung        | A F               | k <sub>fF</sub> | T <sub>E</sub> | EA   | ďΑ   | AA                | kfA     | TA                  | T <sub>F+A</sub>    |
| [-]       | (m)    | [m]     | (mm)               | [-]            | (mm) | []   | (mm) | [-]            | [m <sup>2</sup> ] | [m/s]           | [m3/s]         | [-]  | [mm] | [m <sup>2</sup> ] | [m/s]   | [m <sup>3</sup> /s] | [m <sup>3</sup> /s] |
| QUAR      | 0      | 11      | 320                | ROHR           | 320  | 1.00 | 320  | НО             | 0.0804            | 1.0E -3         | 8.0E -5        | 1.00 | 320  | 0.0000            | 1.0E -8 | 0.0E 1              | 8.0E -5             |
| QUAR      | 11     | 26      | 279                | ROHR           | 279  | 1.00 | 279  | HD             | 0.0611            | 1.0E -3         | 6.1E -5        | 1.00 | 279  | 0.0000            | 1.0E -8 | 0.0€ 1              | 6.1E -5             |
| OBKR      | 26     | 37      | 279                | ROHR           | 279  | 1.00 | 279  | HD             | 0.0611            | 1.0E -3         | 6.1E -5        | 1.00 | 279  | 0.0000            | 1.0E -B | 0.0E 1              | 6.1E -5             |
| 08KB      | 37     | 345     | 270                | 1.15           | 311  | 1.00 | 311  | HD             | 0.0757            | 1.0E -3         | 7.6E -5        | 1.00 | 311  | 0.0000            | 1.0E -8 | 0.0E 1              | 7.6E -5             |
| UKR2      | 345    | 428     | 270                | 1.40           | 378  | 1.35 | 510  | HD             | 0.2045            | 1.0E -3         | 2.0E -4        | 1.25 | 638  | 0.1150            | 1.0E -8 | 1.2E -9             | 2.0E -4             |
| UKA2      | 428    | 675     | 270                | 1.40           | 378  | 1.35 | 510  | NF             | 0.2045            | 1.0E -8         | 2.0E -9        | 1.25 | 638  | 0.1150            | 1.0E ~8 | 1.2E -9             | 3.2E -9             |
| UK91      | 675    | 676     | 270                | 1.60           | 432  | 1.35 | 583  | NF             | 0.2671            | 1.0E -8         | 2.7E ~9        | 1.80 | 1049 | 0.5984            | 1.0E -8 | 6.0E -9             | 8.7E -9             |
| UKR1      | 676    | 700     | 270                | 1.60           | 432  | FLLG | 432  | ZEM/BK         | 0.1466            | 1.0E -8         | 1.5E -9        | 1.80 | 778  | 0.3283            | 1.0E -8 | 3.3€ −9             | 4.7E -9             |
| UKR1      | 700    | 914     | 270                | 1.60           | 432  | FLLG | 432  | SED            | 0.1466            | 1.0E -8         | 1.5€ -9        | 1.80 | 778  | 0.3283            | 1.0E -8 | 3.3E -9             | 4.7E -9             |
| MALM      | 914    | 1071    | 270                | 1.10           | 297  | 1.00 | 297  | SED            | 0.0693            | 1.0E -B         | 6.9E-10        | 1.00 | 297  | 0.0000            | 1.0E -B | 0.0E 1              | 6.9E-10             |
| MALM      | 1071   | 1232    | 219                | 1.10           | 241  | 1.00 | 241  | SED            | 0.0456            | 1.0E -B         | 4.6E-10        | 1.00 | 241  | 0.0000            | 1.0E -B | 0.0E 1              | 4.6E-10             |
| MALM      | 1232   | 1279    | 219                | 1.10           | 241  | 1.00 | 241  | ZEM            | 0.0456            | 1.0E -8         | 4.6E-10        | 1.00 | 241  | 0.0000            | 1.0E -8 | 0.0E 1              | 4.6E-10             |
| MALM      | 1279   | 1302    | 143                | 1.10           | 157  | 1.00 | 157  | ZEM            | 0.0194            | 1.0E -8         | 1.9E-10        | 1.00 | 157  | 0.0000            | 1.0E -8 | 0.0E 1              | 1.9E-10             |
| MALM      | 1302   | 1315    | 127                | 1.10           | 140  | 1.00 | 140  | ZEM            | 0.0153            | 1.0E -8         | 1.5E-10        | 1.00 | 140  | 0.0000            | 1.0E -8 | 0.0E 1              | 1.5E-10             |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 345 m T= 7.45E -5 m $^3$ /s Teufenbereich: 345 - 675 m T= 4.27E -9 m $^3$ /s Teufenbereich: 675 - 914 m T= 4.76E -9 m $^3$ /s Teufenbereich: 345 - 914 m T= 4.46E -9 m $^3$ /s Teufenbereich: 914 - 1315 m T= 4.53E-10 m $^3$ /s

Tab. E - 13.3 / 10 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung HALLENDORF 1

## Bohrung Nr. 81: HALLENDORF 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 44 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-   | Teufen | bereich |                |      |      |      | В    | ohrlochfüllung |                   |         |                     |      |      | Auflockerun       | gszone  |                     |                     |
|-----------|--------|---------|----------------|------|------|------|------|----------------|-------------------|---------|---------------------|------|------|-------------------|---------|---------------------|---------------------|
| tigraphie | von    | bis     | d <sub>1</sub> | 티    | de   | E 2  | d3   | Filling        | A F               | kfF.    | Te                  | ΕA   | ďΑ   | A <sub>A</sub>    | kfA     | TA                  | T <sub>F+A</sub>    |
| [-]       | (m)    | (m)     | (mm)           | [-]  | (mm) | [-]  | [mm] | [-]            | [m <sup>2</sup> ] | [m/s]   | (m <sup>3</sup> /s) | [-]  | [mm] | [m <sup>2</sup> ] | [m/s]   | [m <sup>3</sup> /s] | [m <sup>3</sup> /s] |
| QUAR      | 0      | 11      | 320            | ROHR | 320  | 1.00 | 320  | HD             | 0.0804            | 1.0E -3 | 8.0E -5             | 1.00 | 320  | 0.0000            | 1.0E -8 | 0.0E 1              | 8.0E -5             |
| GUAR      | 11     | 56      | 279            | AOHR | 279  | 1.00 | 279  | HD             | 0.0611            | 1.0E -3 | 6.1E -5             | 1.00 | 279  | 0.0000            | 1.0E -8 | 0.0E 1              | 6.1E -5             |
| OBKA      | 26     | 37      | 279            | ROHA | 279  | 1.00 | 279  | HD             | 0.0611            | 1.0E -3 | 6.1E -5             | 1.00 | 279  | 0.0000            | 1.0E -B | 0.0E 1              | 6.1E -5             |
| 08KA      | 37     | 345     | 270            | 1.15 | 311  | 1.00 | 311  | HD             | 0.0757            | 1.0E -3 | 7.6E -5             | 1.00 | 311  | 0.0000            | 1.0E ~B | 0.0E 1              | 7.6E -5             |
| UKR2      | 345    | 434     | 270            | 1.40 | 378  | 1.35 | 510  | HD             | 0.2045            | 1.0E -3 | 2.0E -4             | 1.25 | 638  | 0.1150            | 1.0E -8 | 1.2E -9             | 2.0E -4             |
| UKR2      | 434    | 675     | 270            | 1.40 | 378  | 1.35 | 510  | NF             | 0.2045            | 1.0E -8 | 2.0E -9             | 1.25 | 638  | 0.1150            | 1.0E -8 | 1.2E -9             | 3.2E -9             |
| UKR1      | 675    | 701     | 270            | 1.60 | 432  | 1.35 | 583  | NF             | 0.2671            | 1.0E -8 | 2.7E -9             | 1.B0 | 1049 | 0.5984            | 1.0E -8 | 6.0E -9             | 8.7E -9             |
| UKR1      | 701    | 719     | 270            | 1.60 | 432  | FLLG | 432  | ак             | 0.1466            | 1.0E -8 | 1.5E -9             | 1.80 | 778  | 0.3283            | 1.0€ -8 | 3.3E -9             | 4.7€ -9             |
| UKR1      | 719    | 914     | 270            | 1.60 | 432  | FLLG | 432  | SED            | 0.1466            | 1.0E -8 | 1.5E -9             | 1.80 | 778  | 0.3283            | 1.0E -8 | 3.3E -9             | 4.7E -9             |
| MALM      | 914    | 945     | 270            | 1.10 | 297  | FLLG | 297  | SED            | 0.0693            | 1.0E -B | 6.9E-10             | 1.00 | 297  | 0.0000            | 1.0E -B | 0.0E 1              | 6.9E-10             |
| MALM      | 945    | 1071    | 270            | 1.10 | 297  | 1.00 | 297  | SED            | 0.0693            | 1.0E -B | 6.9E-10             | 1.00 | 297  | 0.0000            | 1.0E -B | 0.0E 1              | 6.9E-10             |
| MALM      | 1071   | 1279    | 219            | 1.10 | 241  | 1.00 | 241  | SED            | 0.0456            | 1.0E -8 | 4.6E-10             | 1.00 | 241  | 0.0000            | 1.0E -B | 0.0E 1              | 4.6E-10             |
| MALM      | 1279   | 1302    | 143            | 1.10 | 157  | 1.00 | 157  | SED            | 0.0194            | 1.0E -B | 1.9E-10             | 1.00 | 157  | 0.0000            | 1.0E -8 | 0.0E 1              | 1.9E-10             |
| MALM      | 1302   | 1315    | 127            | 1.10 | 140  | 1.00 | 140  | SED            | 0.0153            | 1.0€ -8 | 1.5E-10             | 1.00 | 140  | 0.0000            | 1.0E -8 | 0.0E 1              | 1.5E-10             |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 345 m T= 7.45E -5 m<sup>3</sup>/s Teufenbereich: 345 - 675 m T= 4.38E -9 m<sup>3</sup>/s Teufenbereich: 675 - 914 m T= 4.99E -9 m<sup>3</sup>/s Teufenbereich: 345 - 914 m T= 4.62E -9 m<sup>3</sup>/s Teufenbereich: 914 - 1315 m T= 4.53E-10 m<sup>3</sup>/s

Tab. E - 13.3 / 10 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung HALLENDORF 1

# Bohrung Nr. 321: HUETTENBERG 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 62 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-       | Teufen       | bereich      |                        |          |             |              | В          | ohrlochfüllung |                          |                           |                                       |                       |            | Auflockerun              | ngszone              |                                       |                                         |
|---------------|--------------|--------------|------------------------|----------|-------------|--------------|------------|----------------|--------------------------|---------------------------|---------------------------------------|-----------------------|------------|--------------------------|----------------------|---------------------------------------|-----------------------------------------|
| tigraphie [-] | von<br>[m]   | bis<br>(m)   | d <sub>1</sub><br>[mm] | 터<br>(-) | d 2<br>[mm] | E 2<br>[→]   | d3         | Füllung<br>[-] | A F<br>[m <sup>2</sup> ] | k <sub>f</sub> r<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub><br>(-) | d A        | A A<br>[m <sup>2</sup> ] | kfA<br>[m/s]         | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR<br>OBKR  | 0<br>30      | 30<br>55     | 340<br>311             | 1.15     | 391<br>358  | 1.00         | 391<br>358 | BK/ZEM<br>HD   | 0.1201<br>0.1005         | 1.0E -8<br>1.0E -3        | 1.2E -9<br>1.0E -4                    | 1.00                  | 391<br>358 | 0.0000                   | 1.0 € -8<br>1.0 € -8 | 0.0E 1                                | 1.2E -9<br>1.0E -4                      |
| OBKR          | 55           | 100          | 311                    | 1.15     | 358         | 1.00         | 358        | SED/ZE         | 0.1005                   | 1.0E -8                   | 1.0E -9                               | 1.00                  | 358        | 0.0000                   | 1.0E -8              | 0.0E 1                                | 1.0E -9                                 |
| OBKA<br>UKA2  | 100<br>14B   | 148<br>225   | 311<br>311             | 1.15     | 358<br>435  | 1.00         | 358<br>588 | HD<br>HD       | 0.1005<br>0.2714         | 1.0E -3<br>1.0E -3        | 1.0E -4<br>2.7E -4                    | 1.00                  | 358<br>735 | 0.0000<br>0.1526         | 1.0E -8<br>1.0E -8   | 0.0E 1<br>1.5E -9                     | 2.7E -4                                 |
| UKA2<br>UKA2  | 225<br>320   | 320<br>456   | 311<br>219             | 1.40     | 435<br>307  | 1.35         | 588<br>414 | NF<br>NF       | 0.2714<br>0.1346         | 1.0E -8<br>1.0E -8        | 2.7E -9<br>1.3E -9                    | 1.25                  | 735<br>517 | 0.1526<br>0.0757         | 1.0E -B              | 1.5E -9<br>7.6E-10                    | 4.2E -9<br>2.1E -9                      |
| UKR2          | 456          | 540          | 219                    | 1.40     | 307         | FLLG         | 307        | SED<br>SED     | 0.0738<br>0.0964         | 1.0E -8<br>1.0E -B        | 7.4E-10<br>9.6E-10                    | 1.25                  | 383<br>631 | 0.0415<br>0.2160         | 1.0E -8<br>1.0E -8   | 4.2E-10<br>2.2E -9                    | 1.2E -9                                 |
| UKR1<br>MALM  | 540<br>885   | 885<br>1470  | 219<br>219             | 1.60     | 350<br>241  | FLLG<br>1.00 | 350<br>241 | SED            | 0.0456                   | 1.0E -8                   | 4.6E-10                               | 1.00                  | 241        | 0.0000                   | 1.0E -8              | 0.0E 1                                | 4.6E-10                                 |
| MALM<br>DOGG  | 1470<br>1530 | 1530<br>1549 | 219<br>219             | 1.10     | 241<br>307  | 1.00         | 307        | ZEM<br>ZEM     | 0.0456<br>0.0738         | 1.0E -8<br>1.0E -B        | 4.6E-10<br>7.4E-10                    | 1.00                  | 241<br>307 | 0.0000                   | 1.0E -8<br>1.0E -8   | 0.0E 1<br>0.0E 1                      | 4.6E-10<br>7.4E-10                      |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 148 m T= 2.12E -9 m $^3$ /s Teufenbereich: 148 - 540 m T= 2.45E -9 m $^3$ /s Teufenbereich: 540 - 885 m T= 3.12E -9 m $^3$ /s Teufenbereich: 148 - 885 m T= 2.73E -9 m $^3$ /s Teufenbereich: 885 - 1549 m T= 4.61E-10 m $^3$ /s

Tab. E - 13.3 / 11 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung HUETTENBERG 1

## Bohrung Nr. 321: HUETTENBERG 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 62 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-          | Teufen     | bereich     |                        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |            |              |            |               |                  |                    |                    |      |            |                  |                    |                    |                                         |
|------------------|------------|-------------|------------------------|--------------------------------------------------------|------------|--------------|------------|---------------|------------------|--------------------|--------------------|------|------------|------------------|--------------------|--------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m]  | d <sub>1</sub><br>(mm) |                                                        |            | L -          |            |               |                  |                    | 1 1                |      |            |                  |                    |                    | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKA<br>OBKA     | 0<br>30    | 30<br>148   | 340<br>311             |                                                        |            |              |            | , ·           |                  |                    |                    |      |            |                  |                    |                    | 1.2E -4<br>1.0E -4                      |
| UKR2<br>UKR2     | 148<br>198 | 198<br>320  | 311<br>311             | 1.40                                                   | 435<br>435 | 1.35<br>1.35 | 588<br>588 | HD<br>NF      | 0.2714<br>0.2714 | 1.0E -3<br>1.0E -8 | 2.7E -4<br>2.7E -9 | 1.25 | 735<br>735 | 0.1526<br>0.1526 | 1.0E -8<br>1.0E -8 | 1.5E -9<br>1.5E -9 | 2.7E -4<br>4.2E -9                      |
| UKR2             | 320        | 346         | 219                    | 1.40                                                   | 307        | 1.35         | 414        | NF            | 0.1346           | 1.0E -8            | 1.3E -9            | 1.25 | 517        | 0.0757           | 1.0E -8            | 7.6E-10            | 2.1E -9                                 |
| UKR2<br>UKR2     | 346<br>395 | 395<br>540  | 219<br>219             | 1.40                                                   | 307<br>307 | FLLG<br>FLLG | 307<br>307 | BK/ZEM<br>SED | 0.0738<br>0.0738 | 1.0E -8            | 7.4E-10<br>7.4E-10 | 1.25 | 383<br>383 | 0.0415<br>0.0415 | 1.0E -8            | 4.2E-10<br>4.2E-10 | 1.2E -9<br>1.2E -9                      |
| UKR1<br>MALM     | 540<br>885 | 885<br>1470 | 219<br>219             | 1.60                                                   | 350<br>241 | FLLG<br>1.00 | 350<br>241 | SED<br>SED    | 0.0964           | 1.0E ~8<br>1.0E -8 | 9.6E-10<br>4.6E-10 | 1.80 | 631<br>241 | 0.2160           | 1.0E -8<br>1.0E -8 | 2.2E -9<br>0.0E 1  | 3.1E -9<br>4.6E-10                      |
| MALM             | 1470       | 1530        | 219                    | 1.10                                                   | 241        | 1.00         | 241        | ZEM           | 0.0456           | 1.0E -B            | 4.6E-10            | 1.00 | 241        | 0.0000           | 1.0E -B.           | 0.0E 1             | 4.6E-10                                 |
| DOGG             | 1530       | 1549        | 219                    | 1.40                                                   | 307        | 1.00         | 307        | ZEM           | 0.0738           | 1.0E -8            | 7.4E-10            | 1.00 | 307        | 0.0000           | 1.0E -B            | 0.0E 1             | 7.4E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 148 m T= 1.04E -4 m $^3$ /s Teufenbereich: 148 - 540 m T= 1.87E -9 m $^3$ /s Teufenbereich: 540 - 885 m T= 3.12E -9 m $^3$ /s Teufenbereich: 148 - 885 m T= 2.31E -9 m $^3$ /s Teufenbereich: 885 - 1549 m T= 4.61E-10 m $^3$ /s

Tab. E - 13.3 / 11 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung HUETTENBERG 1

## Bohrung Nr. 321: HUETTENBERG 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 62 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich     | [                   |              |            |              | В          | ohrlochfüllung |                          |                          |                          |       |                | Auflockerun      | gszone                   |                                       |                                |
|------------------|------------|-------------|---------------------|--------------|------------|--------------|------------|----------------|--------------------------|--------------------------|--------------------------|-------|----------------|------------------|--------------------------|---------------------------------------|--------------------------------|
| tigraphie<br>[-] | von<br>(m) | bis<br>(m)  | d <sub>1</sub> (mm) | 터<br>[-]     | (mm)       | E 2<br>(-)   | dg<br>(mm) | Füllung<br>(-) | A F<br>[m <sup>2</sup> ] | k <sub>fF</sub><br>(m/s) | T <sub>F</sub><br>[m3/s] | É A ! | d <sub>A</sub> | [m2]<br>A A      | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>(m3/s)     |
| OBKR<br>OBKR     | 0<br>30    | 30<br>148   | 340<br>311          | 1.15<br>1.15 | 391<br>358 | 1.00         | 391<br>358 | HD<br>HD       | 0.1201<br>0.1005         | 1.0E -3<br>1.0E -3       | 1.2E -4<br>1.0E -4       | 1.00  | 391<br>358     | 0.0000           | 1.0 € -8<br>1.0 € -8     | 0.0E 1<br>0.0E 1                      | 1.2E -4<br>1.0E -4             |
| UKA2             | 148<br>215 | 215<br>320  | 311<br>311          | 1.40         | 435<br>435 | 1.35         | 588<br>588 | HD<br>NF       | 0.2714                   | 1.0E -3<br>1.0E -8       | 2.7E -4<br>2.7E -9       | 1.25  | 735<br>735     | 0.1526<br>0.1526 | 1.0E -8                  | 1.5E -9                               | 2.7E -4<br>4.2E -9             |
| UKR2             | 320        | 417         | 219                 | 1.40         | 307        | 1.35         | 414        | NF             | 0.1346                   | 1.0E -8                  | 1.3€ -9                  | 1.25  | 517            | 0.0757           | 1.0E -8                  | 7.6E-10<br>4.2E-10                    | 2.1E -9<br>1.2E -9             |
| UKR2<br>UKR2     | 417<br>458 | 450<br>540  | 219<br>219          | 1.40         | 307<br>307 | FLLG<br>FLLG | 307<br>307 | BK<br>SED      | 0.0738                   | 1.0E -8<br>1.0E -8       | 7.4E-10<br>7.4E-10       | 1.25  | 383<br>383     | 0.0415<br>0.0415 | 1.0 € -8<br>1.0 € -8     | 4.2E-10                               | 1.2E -9                        |
| UKR1<br>MALM     | 540<br>885 | 885<br>1530 | 219<br>219          | 1.60         | 350<br>241 | FLLG<br>1.00 | 350<br>241 | SED<br>SED     | 0.0964<br>0.0456         | 1.0E -B                  | 9.6E-10<br>4.6E-10       | 1.80  | 631<br>241     | 0.2160           | 1.0E -8                  | 2.2E -9<br>0.0E 1                     | 3.1E <del>-</del> 9<br>4.6E-10 |
| DOGG             | 1530       | 1549        | 219                 | 1.40         | 307        | 1.00         | 307        | SED            | 0.0738                   | 1.0E -8                  | 7.4E-10                  | 1.00  | 307            | 0.0000           | 1.0E -8                  | 0.0E 1                                | 7.4E-10                        |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 148 m T= 1.04E -4 m $^3$ /s Teufenbereich: 148 - 540 m T= 2.21E -9 m $^3$ /s Teufenbereich: 540 - 885 m T= 3.12E -9 m $^3$ /s Teufenbereich: 148 - 885 m T= 2.56E -9 m $^3$ /s Teufenbereich: 885 - 1549 m T= 4.61E $^1$ 0 m $^3$ /s

Tab. E - 13.3 / 11 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung HUETTENBERG 1

## Bohrung Nr. — : KONRAD 101

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung:\*\*\* %

Sedimentationsanteil des Nachfalls :\*\*\* %

| Strati-          | Teufen     | bereich    |                          |          |             |      | В          | ohrlochfüllung |                          |                          |                                       |                       |     | Auflockerun | gszone                   |                                       |                |
|------------------|------------|------------|--------------------------|----------|-------------|------|------------|----------------|--------------------------|--------------------------|---------------------------------------|-----------------------|-----|-------------|--------------------------|---------------------------------------|----------------|
| tigraphie<br>[-] | von<br>(m) | bis<br>[m] | d <sub>1</sub><br>(ភាព:) | 터<br>[-] | d 2<br>(mm) | E 2  | dg<br>[mm] | Füllung<br>[–] | A F<br>(m <sup>2</sup> ) | k <sub>fF</sub><br>(m/s) | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub><br>(~) | d A | A A [m2]    | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | TF+A<br>[m3/s] |
| QUAR             | 0          | 11         | 451                      | ROHR     | 451         | ROHR | 451        | ZEM            | 0.1598                   | 1.0E -B                  | 1.6E -9                               | 1.00                  | 451 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 1.6E -9        |
| OBKA             | 11         | 250        | 451                      | ROHR     | 451         | ROHR | 451        | ZEM            | 0.1598                   | 1.0E -B                  | 1.6E -9                               | 1.00                  | 451 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 1.6E -9        |
| UKR2             | 250        | 289        | 451                      | ROHR     | 451         | ROHR | 451        | ZEM            | 0.1598                   | 1.0E -B                  | 1.6E ~9                               | 1.31                  | 591 | 0.1144      | 1.0E -8                  | 1.1E -9                               | 2.7E -9        |
| UKR2             | 289        | 473        | 320                      | ROHR     | 320         | ROHA | 320        | ZEM            | 0.0804                   | 1.0E -8                  | 8.0E-10                               | 1.33                  | 426 | 0.0618      | 1.0E -8                  | 6.2E-10                               | 1.4E -9        |
| UKR2             | 473        | 477        | 227                      | ROHR     | 227         | AOHA | 227        | ZEM            | 0.0405                   | 1.0E -B                  | 4.0E-10                               | 1.33                  | 302 | 0.0311      | 1.0E -8                  | 3.1E-10                               | 7.2E-10        |
| UKR1             | 477        | 626        | 227                      | ROHR     | 227         | ROHR | 227        | ZEM            | 0.0405                   | 1.0E -8                  | 4.0E-10                               | 1.94                  | 440 | 0.1118      | 1.0E -B                  | 1.1E -9                               | 1.5E -9        |
| MALM             | 626        | 740        | 227                      | AOHR     | 227         | яоня | 227        | ZEM            | 0.0405                   | 1.0E -8                  | 4.0E-10                               | 1.00                  | 227 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 4.0E-10        |
| MALM             | 740        | 776        | 216                      | 1.10     | 238         | FLLG | 238        | ZEM            | 0.0443                   | 1.0E -8                  | 4.4E-10                               | 1.00                  | 238 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 4.4E-10        |
| DOGG             | 776        | 1002       | 216                      | 1.40     | 302         | FLLG | 302        | ZEM            | 0.0718                   | 1.0E -8                  | 7.2E-10                               | 1.00                  | 302 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10        |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 250 m T=  $1.60E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 250 - 477 m T=  $1.52E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 477 - 626 m T=  $1.52E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 250 - 626 m T=  $1.52E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 626 + 1002 m T=  $5.55E - 10 \text{ m}^3/\text{s}$ 

Tab. E – 13.3 / 12 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung KONRAD 101

## Bohrung Nr. — : KONRAD 101

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung:\*\*\* %

Sedimentationsanteil des Nachfalls: \*\*\* %

| Strati-          | Teufen     | bereich    |                        |                    |             |            | В    | ohrlochfüllung |                          |              |                                    |            |     | Auflockerun | igszone                  |                                       |                                         |
|------------------|------------|------------|------------------------|--------------------|-------------|------------|------|----------------|--------------------------|--------------|------------------------------------|------------|-----|-------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(-) | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>(mm) | E <sub>1</sub> (→) | d 2<br>(mm) | E 2<br>[-] | [mm] | Füllung<br>[]  | A F<br>[m <sup>2</sup> ] | kff<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | Ë A<br>[-] | d A | A A [m2]    | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 11         | 451                    | ROHA               | 451         | ROHR       | 451  | ZEM            | 0.1598                   | 1.0E -8      | 1.6E -9                            | 1.00       | 451 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 1.6E -9                                 |
| OBKR             | 11         | 250        | 451                    | ROHA               | 451         | ROHR       | 451  | ZEM            | 0.1598                   | 1.0E -B      | 1.6E -9                            | 1.00       | 451 | 0.0000      | 1.0E -B                  | 0.0E 1                                | 1.6E -9                                 |
| UKR2             | 250        | 289        | 451                    | ROHR               | 451         | AOHR       | 451  | ZEM            | 0.1598                   | 1.0E -B      | 1.6E -9                            | 1.31       | 591 | 0.1144      | 1.0E -B                  | 1.1E -9                               | 2.7E -9                                 |
| UKR2             | 289        | 473        | 320                    | ROHR               | 320         | ROHA       | 320  | ZEM            | 0.0804                   | 1.0E -8      | 8.0E-10                            | 1.33       | 426 | 0,0618      | 1.0E -8                  | 6.2E-10                               | 1.4E -9                                 |
| UKR2             | 473        | 477        | 227                    | ROHR               | 227         | ROHR       | 227  | ZEM            | 0.0405                   | 1.0E -8      | 4.0 E-10                           | 1.33       | 302 | 0.0311      | 1.0E -8                  | 3.18-10                               | 7.2E-10                                 |
| UKR1             | 477        | 626        | 227                    | ROHR               | 227         | ROHR       | 227  | ZEM            | 0.0405                   | 1.0E -B      | 4.0E-10                            | 1.94       | 440 | 0.1118      | 1.0E -8                  | 1.1E -9                               | 1.5E -9                                 |
| MALM             | 626        | 740        | 227                    | ROHR               | 227         | ROHR       | 227  | ZEM            | 0.0405                   | 1.0E -8      | 4.0E-10                            | 1.00       | 227 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 4.0E-10                                 |
| MALM             | 740        | 776        | 216                    | 1.10               | 238         | FLLG       | 238  | ZEM            | 0.0443                   | 1.0E -8      | 4.4E-10                            | 1.00       | 238 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 4.4E-10                                 |
| DOGG             | 776        | 1002       | 216                    | 1.40               | 302         | FLLG       | 302  | ZEM            | 0.0718                   | 1.0E -8      | 7.2E-10                            | 1.00       | 302 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 250 m T= 1.60E -9 m $^3$ /s Teufenbereich: 250 - 477 m T= 1.52E -9 m $^3$ /s Teufenbereich: 477 - 626 m T= 1.52E -9 m $^3$ /s Teufenbereich: 250 - 626 m T= 1.52E -9 m $^3$ /s Teufenbereich: 626 - 1002 m T= 5.55E-10 m $^3$ /s

Tab. E - 13.3 / 12 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung KONRAD 101

## Bohrung Nr. — : KONRAD 101

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: \*\*\* %

Sedimentationsanteil des Nachfalls: \*\*\* %

| Ştrati-   | Teufen     | bereich |                |                    |             |            | В          | ohrlochfüllung |                          |                           |                          | 1              |                | Auflockerun              | gszone                     |                                       |                            |
|-----------|------------|---------|----------------|--------------------|-------------|------------|------------|----------------|--------------------------|---------------------------|--------------------------|----------------|----------------|--------------------------|----------------------------|---------------------------------------|----------------------------|
| tigraphie | von<br>(-) | bis     | d <sub>1</sub> | E <sub>1</sub> (−) | d 2<br>[mm] | E 2<br>[−] | dg<br>[mm] | Füllung        | A F<br>[m <sup>2</sup> ] | k <sub>f</sub> F<br>[m/s] | T <sub>F</sub><br>[m3/s] | E <sub>A</sub> | d <sub>A</sub> | A A<br>[m <sup>2</sup> ] | ] k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m3/s] |
| [-]       | (m)        | (m)     | (mm)           | <u></u>            | man         | [-]        | [mm]       | (-)            | fii-1                    | (GAID                     | رة/فاال                  | 1-1            | Direct         | hu-1                     | [[11/5]                    | (III-75)                              | [[][-/5]                   |
| BAUB      | 0          | 11      | 451            | ROHR               | 451         | ROHR       | 451        | HD             | 0.1598                   | 1.0E -3                   | 1.6E -4                  | 1.00           | 451            | 0.0000                   | 1.0E -8                    | 0.0E 1                                | 1.6E -4                    |
| OBKR      | 11         | 250     | 451            | ROHR               | 451         | AOHR       | 451        | HD             | 0.1598                   | 1.0E -3                   | 1.6E -4                  | 1.00           | 451            | 0.0000                   | 1.0E -8                    | 0.0E 1                                | 1.6E -4                    |
| UKR2      | 250        | 289     | 451            | ROHR               | 451         | AOHA       | 451        | HD             | 0.1598                   | 1.0E -3                   | 1.6E -4                  | 1.31           | 591            | 0.1144                   | 1.0E -8                    | 1.1E -9                               | 1.6E -4                    |
| UKR2      | 583        | 473     | 320            | ROHR               | 320         | ROHR       | 320        | HD             | 0.0B04                   | 1.0E -3                   | 8.0E -5                  | 1.33           | 426            | 0.0618                   | 1.0€ -8                    | 6.2E-10                               | 8.0E -5                    |
| UKR2      | 473        | 477     | 227            | ROHR               | 227         | ROHR       | 227        | HD             | 0.0405                   | 1.0E -3                   | 4.0E -5                  | 1.33           | 302            | 0.0311                   | 1.0E -8                    | 3.1E-10                               | 4.0E -5                    |
| UKR1      | 477        | 626     | 227            | ROHA               | 227         | ROHR       | 227        | HD             | 0.0405                   | 1.0E -3                   | 4.0E -5                  | 1.94           | 440            | 0.1118                   | 1.0E -B                    | 1.1E -9                               | 4.0E -5                    |
| MALM      | 626        | 740     | 227            | ROHR               | 227         | AOHR       | 227        | HD             | 0.0405                   | 1.0E -3                   | 4.0E -5                  | 1.00           | 227            | 0.0000                   | 1.0E -8                    | 0.0E 1                                | 4.0E →5                    |
| MALM      | 740        | 776     | 216            | 1.10               | 238         | 1.00       | 238        | ∺D             | 0.0443                   | 1.0E -3                   | 4.4E -5                  | 1.00           | 238            | 0.0000                   | 1.0E -B                    | 0.0€ 1                                | 4.4E -5                    |
| pogg      | 776        | 1002    | 216            | 1.40               | 302         | 1.00       | 302        | HO             | 0.0718                   | 1.0E -3                   | 7.2E -5                  | 1.00           | 302            | 0.0000                   | 1.0E -B                    | 0.0E 1                                | 7.2E -5                    |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 250 m T= 1.60E -4  $m^3/s$ Teufenbereich: 250 - 477 m T= 8.63E -5  $m^3/s$ Teufenbereich: 477 - 626 m T= 4.05E -5  $m^3/s$ Teufenbereich: 250 - 626 m T= 5.96E -5  $m^3/s$ Teufenbereich: 626 - 1002 m T= 5.55E -5  $m^3/s$ 

Tab. E - 13.3 / 12 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung KONRAD 101

## Bohrung Nr. 30: SAUINGEN 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen      | bereich    |                        |              |            |              | В          | ohrlochfüllung    | -                        | •                        |                                       |              |            | Auflockerun              | gszone                   | •                                     |                                         |
|------------------|-------------|------------|------------------------|--------------|------------|--------------|------------|-------------------|--------------------------|--------------------------|---------------------------------------|--------------|------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>(m)  | bis<br>[m] | d <sub>1</sub><br>(mm) | 터<br>(-)     | d 2 (mm)   | E 2          | dg<br>[mm] | Füllung<br>[−]    | A F<br>[m <sup>2</sup> ] | k <sub>fF</sub><br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E A<br>[-]   | (mm)       | A A<br>(m <sup>2</sup> ) | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKA .           | 0<br>41     | 41<br>81   | 245<br>245             | 1.15         | 282<br>282 | 1.00         | 282        | HD<br>SED/ZE      | 0.0623<br>0.0623         | 1.0E -3<br>1.0E -8       | 6.2E -5<br>6.2E-10                    | 1.00         | 282<br>282 | 0.0000                   | 1.0E -8<br>1.0E -8       | 0.0E 1<br>0.0E 1                      | 6.2E -5<br>6.2E-10                      |
| OBKA<br>OBKA     | 81<br>111   | 111<br>280 | 227                    | AOHA<br>1.15 | 227<br>252 | 1.00         | 227<br>252 | HD<br>HD          | 0.0405<br>0.0498         | 1.0E -3<br>1.0E -3       | 4.0E -5<br>5.0E -5                    | 1.00         | 227<br>252 | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 4.0E -5<br>5.0E -5                      |
| UKA2<br>UKR2     | 280<br>367  | 367<br>550 | 219                    | 1.40         | 307        | 1.35         | 414        | HD<br>NF          | 0.1346                   | 1.0E -3<br>1.0E -8       | 1.3E -4<br>1.3E -9                    | 1.25         | 517<br>517 | 0.0757                   | 1.0E -8                  | 7.6E-10<br>7.6E-10                    | 1.3E -4<br>2.1E -9                      |
| UKR1             | 550<br>629  | 629        | 219                    | 1.60         | 350<br>350 | 1.35<br>FLLG | 473<br>350 | NF<br>SED         | 0.1757                   | 1.0E -8                  | 1.8E -9<br>9.6E-10                    | 1.B0<br>1.B0 | 851<br>631 | 0.3937                   | 1.0E -8                  | 3.9E -9<br>2.2E -9                    | 5.7E -9<br>3.1E -9                      |
| MALM<br>MALM     | 757<br>1030 | 1030       | 219                    | 1.10         | 241<br>241 | 1.00         | 241        | SED<br>SED<br>ZEM | 0.0456                   | 1.0E -8<br>1.0E -8       | 4.6E-10<br>4.6E-10                    | 1.00         | 241<br>241 | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.6E-10<br>4.6E-10                      |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 280 m T=  $4.36E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 280 - 550 m T=  $3.10E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 550 - 757 m T=  $3.77E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 280 - 757 m T=  $3.36E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 757 - 1100 m T=  $4.56E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 13 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SAUINGEN 1

## Bohrung Nr. 30: SAUINGEN 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                        |          |     |           | В          | ohrlochfüllung     |                          |              |                                       |                      |                        | Auflockerun                         | igszonę                  |                                       |                            |
|------------------|------------|------------|------------------------|----------|-----|-----------|------------|--------------------|--------------------------|--------------|---------------------------------------|----------------------|------------------------|-------------------------------------|--------------------------|---------------------------------------|----------------------------|
| tigraphie<br>[~] | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>(mm) | 터<br>(-) | d 2 | €2<br>[-] | dg<br>[mm] | Füllung (<br>  (-) | A F<br>[m <sup>2</sup> ] | kfF<br>(m/s) | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub><br>[] | d <sub>A</sub><br>(mm) | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>(m <sup>3</sup> /s) | T <sub>F+A</sub><br>[m3/s] |
| овка             | 0          | 81         | 245                    | 1.15     | 282 | 1.00      | 282        | нр                 | 0.0623                   | 1.0E -3      | 6:2E -5                               | 1.00                 | 282                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 6.2E -5                    |
| OBKR             | 81         | 111        | 227                    | ROHR     | 227 | 1.00      | 227        | HD                 | 0.0405                   | 1.0E -3      | 4.0E -5                               | 1.00                 | 227                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 4.0E <del>-</del> 5        |
| 08KR             | 111        | 280        | 219                    | 1.15     | 252 | 1.00      | 252        | HD                 | 0.0498                   | 1.0E -3      | 5.0E -5                               | 1.00                 | 252                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 5.0E -5                    |
| UKA2             | 280        | 361        | 219                    | 1.40     | 307 | 1.35      | 414        | HD                 | 0.1346                   | 1.0E -3      | 1.3E -4                               | 1.25                 | 517                    | 0.0757                              | 1.0E -8                  | 7.6E-10                               | 1.3E -4                    |
| UKR2             | 361        | 550        | 219                    | 1.40     | 307 | 1.35      | 414        | , NF               | 0.1346                   | 1.0E -8      | 1.3E -9                               | 1.25                 | 517                    | 0.0757                              | 1.0E -8                  | 7.6E-10                               | 2.1E -9                    |
| UKR1             | 550        | 602        | 219                    | 1.60     | 350 | 1.35      | 473        | NF                 | 0.1757                   | 1.0E -8      | 1.8E -9                               | 1.80                 | 851                    | 0.3937                              | 1.0E -8                  | 3.9E -9                               | 5.7E -9                    |
| UKR1             | 602        | 757        | 219                    | 1.60     | 350 | FLLG      | 350        | SED                | 0.0964                   | 1.0E -8      | 9.6E-10                               | 1.80                 | 631                    | 0.2160                              | 1.0E -8                  | 2.2E ~9                               | 3.1E -9                    |
| MALM             | 757        | 1030       | 219                    | 1.10     | 241 | 1.00      | 241        | SED                | 0.0456                   | 1.0E -8      | 4.6E-10                               | 1.00                 | 241                    | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 4.6E-10                    |
| MALM             | 1030       | 1100       | 219                    | 1.10     | 241 | 1.00      | 241        | ZEM                | 0.0456                   | 1.0E -8      | 4.6E-10                               | 1.00                 | 241                    | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 4.6E-10                    |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 280 m  $T=5.15E-5 \text{ m}^3/\text{s}$ Teufenbereich: 280 - 550 m  $T=3.00E-9 \text{ m}^3/\text{s}$ Teufenbereich: 550 - 757 m  $T=3.52E-9 \text{ m}^3/\text{s}$ Teufenbereich: 280 - 757 m  $T=3.21E-9 \text{ m}^3/\text{s}$ Teufenbereich: 757 - 1100 m  $T=4.56E-10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 13 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SAUINGEN 1

## Bohrung Nr. 30: SAUINGEN 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen      | bereich |             |          |          |                         | В          | ohrlochfüllung |                                     |              |         |            |                | Auflockerun              | igszone                  |                                       |                                         |
|------------------|-------------|---------|-------------|----------|----------|-------------------------|------------|----------------|-------------------------------------|--------------|---------|------------|----------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | vor.<br>[m] | bis [m] | din<br>(mm) | 터<br>(-) | d 2 (mm) | € 2<br>[ <del>-</del> ] | dg<br>[mm] | Füllung<br>[–] | Α <sub>F</sub><br>(m <sup>2</sup> ] | kfF<br>[m/s] | (m3/s)  | E A<br>[-] | d <sub>A</sub> | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>(m <sup>3</sup> /s) | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| овка             | 0           | 81      | 245         | 1.15     | 282      | 1.00                    | 282        | HD             | 0.0623                              | 1.0E -3      | 6.2E -5 | 1.00       | 282            | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 6.2E -5                                 |
| OBKR             | 81          | 111     | 227         | ROHA     | 227      | 1.00                    | 227        | HD             | 0.0405                              | 1.0E -3      | 4.0E -5 | 1.00       | 227            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.0E -5                                 |
| 0BKR             | 111         | 280     | 219         | 1.15     | 252      | 1.00                    | 252        | HD .           | 0.0498                              | 1.0E -3      | 5.0E -5 | 1.00       | 252            | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 5.0E -5                                 |
| UKR2             | 280         | 371     | 219         | 1.40     | 307      | 1.35                    | 414        | HD             | 0.1346                              | 1.0E -3      | 1.3E -4 | 1.25       | 517            | 0.0757                   | 1.0€ -8                  | 7.6E-10                               | 1.3E -4                                 |
| UKR2             | 371         | 550     | 219         | 1.40     | 307      | 1.35                    | 414        | NF '           | 0.1346                              | 1.0E -B      | 1.3E -9 | 1.25       | 517            | 0.0757                   | 1.0E -B                  | 7.6E-10                               | 2.1E -9                                 |
| UKA1             | 550         | 643     | 219         | 1.60     | 350      | 1.35                    | 473        | NF             | 0.1757                              | 1.0E -8      | 1.8E -9 | 1.80       | 851            | 0.3937                   | 1.0E -8                  | 3.9E -9                               | 5.7E -9                                 |
| UKR1             | 643         | 757     | 219         | 1.60     | 350      | FLLG                    | 350        | SED            | 0.0964                              | 1.0E -8      | 9.6E-10 | 1.80       | 631            | 0.2160                   | 1.0E -8                  | 2.2E -9                               | 3.1E -9                                 |
| MALM             | 757         | 1100    | 219         | 1.10     | 241      | 1.00                    | 241        | SED            | 0.0456                              | 1.0 € -8     | 4.6E-10 | 1.00       | 241            | 0.0000                   | 1.0 € -8                 | 0.0E 1                                | 4.6E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 280 m T=  $5.15E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 280 - 550 m T=  $3.17E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 550 - 757 m T=  $3.92E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 280 - 757 m T=  $3.46E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 757 - 1100 m T=  $4.56E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 13 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SAUINGEN 1

## Bohrung Nr. 320 : SAUINGEN 2

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                     |          |             |      | В             | ohrlochfüllung |                          |         |                                    |                       |     | Auflockerun                         | gszone                   |                          |                                         |
|------------------|------------|------------|---------------------|----------|-------------|------|---------------|----------------|--------------------------|---------|------------------------------------|-----------------------|-----|-------------------------------------|--------------------------|--------------------------|-----------------------------------------|
| tigraphie<br>[–] | von<br>[m] | bis<br>[m] | d <sub>1</sub> [mm] | 터<br>(-) | d 2<br>(mm) | E 2  | (d) 3<br>(mm) | Füllung<br>[–] | A F<br>(m <sup>2</sup> ) | (m/s)   | T <sub>F</sub> [m <sup>3</sup> /s] | € <sub>A</sub><br>[–] | d A | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR             | 0          | 10         | 298                 | 1.15     | 343         | 1.00 | 343           | BK/ZEM         | 0.0922                   | 1.0E -8 | 9.2E-10                            | 1.00                  | 343 | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 9.2E-10                                 |
| OBKR             | 10         | 25         | 298                 | 1.15     | 343         | 1.00 | 343           | HD             | 0.0922                   | 1.0E -3 | 9.2E -5                            | 1.00                  | 343 | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 9,26 ~5                                 |
| OBKA             | 25         | 38         | 298                 | 1.15     | 343         | 1.00 | 343           | SED/ZE         | 0.0922                   | 1.0E -8 | 9.2E-10                            | 1.00                  | 343 | 0.0000                              | 1.0E -B                  | 0.0E 1                   | 9.2E-10                                 |
| QBKR             | 38         | 79         | 216                 | 1.15     | 248         | 1.00 | 248           | HD             | 0.0485                   | 1.0E -3 | 4.BE -5                            | 1.00                  | 248 | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 4.8E -5                                 |
| ОВКЯ             | 79         | 110        | 216                 | 1.15     | 248         | 1.00 | 248           | SED/ZE         | 0.0485                   | 1.0E -B | 4.8E-10                            | 1.00                  | 248 | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 4.8E-10                                 |
| OBKR             | 110        | 227        | 216                 | 1.15     | 248         | 1.00 | 248           | HD             | 0.0485                   | 1.0E →3 | 4.8E -5                            | 1.00                  | 248 | 0.0000                              | 1.0€ -8                  | 0.0E 1                   | 4.8E -5                                 |
| UKA2             | 227        | 338        | 216                 | 1.40     | 302         | 1.35 | 408           | HD             | 0.1309                   | 1.0E -3 | 1.3E -4                            | 1.25                  | 510 | 0.0736                              | 1.0E -B                  | 7.4E-10                  | 1.3E -4                                 |
| UKA2             | 338        | 547        | 216                 | 1.40     | 302         | 1.35 | 408           | NF             | 0.1309                   | 1.0E -8 | 1,3E -9                            | 1.25                  | 510 | 0.0736                              | 1.0E -8                  | 7.4E-10                  | 2.0 € -9                                |
| UKR1             | 547        | 672        | 216                 | 1.60     | 346         | 1.35 | 467           | NF             | 0.1710                   | 1.0E -8 | 1.7E -9                            | 1.80                  | 840 | 0.3830                              | 1.0E -8                  | 3.86 -9                  | 5.5E -9                                 |
| UKR1             | 672        | 789        | 216                 | 1.60     | 346         | FLLG | 346           | SED            | 0.0938                   | 1.0E -8 | 9.4E-10                            | 1.80                  | 622 | 0.2101                              | 1.0E -8                  | 2.1E -9                  | 3.0E -9                                 |
| MALM             | 789        | 1098       | 216                 | 1.10     | 238         | 1.00 | 238           | SED            | 0.0443                   | 1.0E -B | 4.4E-10                            | 1.00                  | 238 | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 4.4E-10                                 |
| MALM             | 1098       | 1160       | 193                 | 1.10     | 212         | 1.00 | 212           | SED            | 0.0354                   | 1.0E -8 | 3.5E-10                            | 1.00                  | 212 | 0.0000                              | 1.0E -B                  | 0.0E 1                   | 3.5E-10                                 |
| MALM             | 1160       | 1215       | 193                 | 1.10     | 212         | 1.00 | 212           | ZEM            | 0.0354                   | 1.0E -8 | 3.5E-10                            | 1.00                  | 212 | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 3.5E-10                                 |
| MALM             | 1215       | 1222       | 154                 | 1.10     | 169         | 1.00 | 169           | ZĘM            | 0.0225                   | 1.0E -8 | 2.3E-10                            | 1.00                  | 169 | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 2.3E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 227 m  $T= 2.55E -9 m^3/s$ Teufenbereich: 227 - 547 m  $T= 3.13E -9 m^3/s$ Teufenbereich: 547 - 789 m  $T= 3.96E -9 m^3/s$ Teufenbereich: 227 - 789 m  $T= 3.44E -9 m^3/s$ Teufenbereich: 789 - 1222 m  $T= 4.09E+10 m^3/s$ 

Tab. E - 13.3 / 14 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SAUINGEN 2

## Bohrung Nr. 320 : SAUINGEN 2

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-                                      | Teufen                                            | bereich                                                      |                                                             |                                                      |                                                             |                                                              | 8:                                                          | ohrlochfüllung             | •                                                                                      |                                                                                      |                                                                                                 |                                                      |                                                                    | Auflockerun                                                                            | gszone                                                                               |                                                                                  |                                                                                      |
|----------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| tigraphie<br>[-]                             | von<br>(m)                                        | bis<br>[m]                                                   | dı '<br>(mm)                                                | 터<br>(-)                                             | d 2<br>[mm]                                                 | E 2                                                          | dg<br>[mm]                                                  | Füllung<br>(-)             | A <sub>F</sub> [m <sup>2</sup> ]                                                       | kfF<br>[m/s]                                                                         | T <sub>F</sub>                                                                                  | E A  <br>[-]                                         | d <sub>A</sub><br>[mm]                                             | A A<br>[m <sup>2</sup> ]                                                               | kfA<br>[m/s]                                                                         | T <sub>A</sub><br>[m3/s]                                                         | T <sub>F+A</sub><br>[m <sup>3</sup> /s]                                              |
| OBKR OBKR UKR2 UKR2 UKR1 UKR1 UKR1 MALM MALM | 0<br>38<br>227<br>329<br>547<br>634<br>644<br>789 | 38<br>227<br>329<br>547<br>634<br>644<br>789<br>1098<br>1160 | 298<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216 | 1.15<br>1.15<br>1.40<br>1.40<br>1.60<br>1.60<br>1.10 | 343<br>248<br>302<br>302<br>346<br>346<br>346<br>238<br>212 | 1.00<br>1.00<br>1.35<br>1.35<br>1.35<br>FLL6<br>FLL6<br>1.00 | 343<br>248<br>408<br>408<br>467<br>346<br>346<br>238<br>212 | HD HD NF NF BK/ZEM SED SED | 0.0922<br>0.0485<br>0.1309<br>0.1309<br>0.1710<br>0.0938<br>0.0938<br>0.0443<br>0.0354 | 1.0E -3<br>1.0E -3<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8 | 9.2E -5<br>4.8E -5<br>1.3E -4<br>1.3E -9<br>1.7E -9<br>9.4E-10<br>9.4E-10<br>4.4E-10<br>3.5E-10 | 1.00<br>1.00<br>1.25<br>1.25<br>1.80<br>1.80<br>1.00 | 343<br>248<br>510<br>510<br>840<br>622<br>622<br>238<br>212<br>212 | 0.0000<br>0.0000<br>0.0736<br>0.0736<br>0.3830<br>0.2101<br>0.2101<br>0.0000<br>0.0000 | 1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8 | 0.0E 1<br>0.0E 1<br>7.4E-10<br>7.4E-10<br>3.8E -9<br>2.1E -9<br>0.0E 1<br>0.0E 1 | 9.2E -5<br>4.8E -5<br>1.3E -4<br>2.0E -9<br>5.5E -9<br>3.0E -9<br>4.4E-10<br>3.5E-10 |
| MALM<br>MALM                                 | 1160<br>1215                                      | 1215                                                         | 193<br>154                                                  | 1.10                                                 | 169                                                         | 1.00                                                         | 212<br>169                                                  | ZEM<br>ZEM                 | 0.0225                                                                                 | 1.0E ~B                                                                              | 2.3E-10                                                                                         | 1.00                                                 | 169                                                                | 0.0000                                                                                 | 1.0 E −B                                                                             | 0.0E 1                                                                           | 2.3E-10                                                                              |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 227 m T=  $5.26E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 227 - 547 m T=  $3.00E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 547 - 789 m T=  $3.63E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 227 - 789 m T=  $3.24E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 789 - 1222 m T=  $4.09E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 14 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SAUINGEN 2

# Bohrung Nr. 320 : SAUINGEN 2

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-   | Teufen     | bereich    |               |          | [mm]         [-]         [mm]         [-]         [mm]         [m]         [m]< |      |     |     |        |         |         |      | <u> </u> |        |         |         |                                         |
|-----------|------------|------------|---------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|--------|---------|---------|------|----------|--------|---------|---------|-----------------------------------------|
| tigraphie | von<br>[m] | bis<br>[m] | ថា<br>[ការកា] | 년<br>(-) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |     | 1      | 1       | 1 1     |      | 1 ''     |        |         | 1 1     | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| овка      | 0          | 38         | 298           | 1.15     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 343 | -   | 0.0922 | 1.0E -3 | 9.2E -5 | 1.00 | 343      | 0.0000 | 1.0E -8 | 0.0E 1  | 9.2E -5                                 |
| ОВКЯ      | 38         | 227        | 216           | 1.15     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |     | 0.0485 | 1       | 4.8E -5 | 1.00 | 248      | 0.0000 | 1.0E -8 | 0.0E 1  | 4.8E ~5                                 |
| UKA2      | 227        | 336        | 216           | 1.40     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 408 | HD  | 0.1309 | 1.0E -3 | 1.3E -4 | 1.25 | 510      | 0.0736 | 1.0€ -8 | 7.4E-10 | 1.3E -4                                 |
| UKR2      | 336        | 547        | 216           | 1.40     | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.35 | 408 | NF  | 0.1309 | 1.0E -8 | 1.3E -9 | 1.25 | 510      | 0.0736 | 1.0E -8 | 1       | 2.0E -9                                 |
| UKR1      | 547        | 664        | 216           | 1.60     | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.35 | 467 | NF  | 0.1710 | 1.0E -B | 1.7E -9 | 1.80 |          | -      | 1       |         | 5.5E -9                                 |
| UKR1      | 664        | 671        | 216           | 1.60     | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FLLG | 346 | вк  | 0.0938 | 1.0E -B | 9.4E-10 | 1.80 | 622      |        |         |         | 3.0E -9                                 |
| UKR1      | 671        | 789        | 216           | 1.60     | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FLLG | 346 | SED | 0.0938 | 1.0E -8 | 9.4E-10 | 1.80 | 1        |        | 1 -     | 1       | 3.0E -9                                 |
| MALM      | 789        | 1098       | 216           | 1.10     | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00 | 238 | SED | 0.0443 | 1.0E -8 | 4.4E-10 | 1.00 | 238      | ' '    | 1       | 1       | 4.4E-10                                 |
| MALM      | 1098       | 1215       | 193           | 1.10     | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00 | 212 | SED | 0.0354 | 1.0E -8 | 3.5E-10 | 1.00 | 212      | 0.0000 | 1.0E -B | 0.0E 1  | 3.5E-10                                 |
| MALM      | 1215       | 1222       | 154           | 1.10     | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00 | 169 | SED | 0.0225 | 1.0E →8 | 2.3E-10 | 1.00 | 169      | 0.0000 | 1.0E -8 | 0.0E 1  | 2.3E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 227 m T=  $5.26E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 227 - 547 m T=  $3.10E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 547 - 789 m T=  $3.89E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 227 - 789 m T=  $3.40E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 789 - 1222 m T=  $4.09E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 14 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SAUINGEN 2

# Bohrung Nr. 98: SONNENBERG 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 58 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-       | Teufen     | bereich    |                        |                       |            |           | В           | ohrlochfüllung |                         |                          |                                       |             |                        | Auflockerun                      | ngszone                  |                          |                            |
|---------------|------------|------------|------------------------|-----------------------|------------|-----------|-------------|----------------|-------------------------|--------------------------|---------------------------------------|-------------|------------------------|----------------------------------|--------------------------|--------------------------|----------------------------|
| tigraphie (-) | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>[mm] | E <sub>1</sub><br>[∸] | d2<br>[mm] | €2<br>[-] | d 3<br>(mm) | Füllung<br>[]  | AF<br>[m <sup>2</sup> ] | k <sub>fF</sub><br>(m/s) | T <sub>F</sub><br>(m <sup>3</sup> /s) | E A<br>(~-) | d <sub>A</sub><br>(mm) | A <sub>A</sub> [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m³/s] | T <sub>F+A</sub><br>[m3/s] |
| QUAR          | 0          | 10         | 298                    | 1.15                  | 343        | 1.00      | 343         | BK/ZEM         | 0.0922                  | 1.0E -8                  | 9.2E-10                               | 1.00        | 343                    | 0.0000                           | 1.0E -8                  | 0.0E 1                   | 9.2E-10                    |
| QUAR          | 10         | 32         | 298                    | 1.15                  | 343        | 1.00      | 343         | HD             | 0.0922                  | 1.0E -3                  | 9.2E -5                               | 1.00        | 343                    | 0,0000                           | 1.0E -8                  | 0.0E 1                   | 9.2E -5                    |
| QUAR          | 32         | 35         | 270                    | 1.15                  | 311        | 1.00      | 311         | HD             | 0.0757                  | 1.0E ~3                  | 7.6E →5                               | 1.00        | 311                    | 0.0000                           | 1.0E -B                  | 0.0E 1                   | 7.6E -5                    |
| OBKR          | 35         | 45         | 270                    | 1.15                  | 311        | 1.00      | 311         | HD             | 0.0757                  | 1.0E -3                  | 7.6E -5                               | 1.00        | 311                    | 0.0000                           | 1.0E -8                  | 0.0E 1                   | 7.6E -5                    |
| OBKR          | 45         | 102        | 270                    | 1.15                  | 311        | 1.00      | 311         | SED/ZE         | 0.0757                  | 1.0E -8                  | 7.6E-10                               | 1.00        | 311                    | 0.0000                           | 1.0E -B                  | 0.0E 1                   | 7.6E-10                    |
| OBKR          | 102        | 115        | 270                    | 1.15                  | 311        | 1.00      | 311         | HD             | 0.0757                  | 1.0E -3                  | 7.6E -5                               | 1.00        | 311                    | 0.0000                           | 1.0E -8                  | 0.0E 1                   | 7.6E -5                    |
| UKR2          | 115        | 196        | 270                    | 1.40                  | 378        | 1.35      | 510         | HD             | 0.2045                  | 1.0E -3                  | 2.0E -4                               | 1.25        | 638                    | 0.1150                           | 1.0E -8                  | 1.2E -9                  | 2.0E -4                    |
| UKR2          | 196        | 437        | 270                    | 1.40                  | 378        | 1.35      | 510         | NF             | 0.2045                  | 1.0 E →B                 | 2.0E -9                               | 1.25        | 638                    | 0.1150                           | 1.0E -8                  | 1.2E -9                  | 3.2E -9                    |
| UKR2          | 437        | 510        | 270                    | 1.40                  | 378        | FLLG      | 378         | SED            | 0.1122                  | 1.0E -8                  | 1.1E -9                               | 1.25        | 473                    | 0.0631                           | 1.0E -8                  | 6.3E-10                  | 1.8E ~9                    |
| UKR1          | 510        | 669        | 270                    | 1.50                  | 432        | fLLG      | 432         | SED            | 0.1466                  | 1.0E -8                  | 1.5E -9                               | 1.80        | 778                    | 0.3283                           | 1.0E -8                  | 3.3E -9                  | 4.7E -9                    |
| UKR1          | 669        | 720        | 216                    | 1.60                  | 346        | FLLG      | 346         | SED            | 0.0938                  | 1.0E -B                  | 9.4E-10                               | 1.80        | 622                    | 0.2101                           | 1.0E -8                  | 2.1E -9                  | 3.0E -9                    |
| MALM          | 720        | 1052       | 216                    | 1.10                  | 238        | 1.00      | 238         | SED            | 0.0443                  | 1.0E -8                  | 4.4E-10                               | 1.00        | 238                    | 0.0000                           | 1.0E →B                  | 0.0E 1                   | 4,4E-10                    |
| MALM          | 1052       | 1055       | 193                    | 1.10                  | 212        | 1.00      | 212         | SED            | 0.0354                  | 1.0E -8                  | 3.5E-10                               | 1.00        | 212                    | 0.0000                           | 1.0E -8                  | 0.0E 1                   | 3.5E-10                    |
| MALM          | 1055       | 1088       | 193                    | 1.10                  | 212        | 1,00      | 212         | ZEM            | 0.0354                  | 1.0E -8                  | 3.5E-10                               | 1.00        | 212                    | 0.0000                           | 1.0E -8                  | 0.0E 1                   | 3.5E-10                    |
| MALM          | 1088       | 1137       | 153                    | 1.10                  | 168        | 1.00      | 168         | ZEM            | 0.0222                  | 1.0€ -8                  | 2.2E-10                               | 1.00        | 168                    | 0.0000                           | 1.0E -8                  | 0.0E 1                   | 2.2E-10                    |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 115 m T=  $1.34E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 115 - 510 m T=  $3.37E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 510 - 720 m T=  $4.18E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 115 - 720 m T=  $3.62E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 720 - 1137 m T=  $3.89E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 15 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 1

## Bohrung Nr. 98: SONNENBERG 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 58 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen       | bereich      |                        |      |            |              | В           | ohrlochfüllung |                          |                    |                                       |                                    |                | Auflockerun       | ngszone                  |                          |                                         |
|------------------|--------------|--------------|------------------------|------|------------|--------------|-------------|----------------|--------------------------|--------------------|---------------------------------------|------------------------------------|----------------|-------------------|--------------------------|--------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>(m)   | bis<br>[m]   | d <sub>1</sub><br>[mm] | (-)  | d 2        | E 2          | d 3<br>(mm) | Füllung<br>[-] | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s]       | T <sub>F</sub><br>[m <sup>3</sup> /s] | € <sub>A</sub><br>[ <del>-</del> ] | d <sub>A</sub> | (m <sup>2</sup> ) | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| GUAR             | 0<br>32      | 32<br>35     | 298<br>270             | 1.15 | 343<br>311 | 1.00         | 343<br>311  | HD<br>HD       | 0.0922                   | 1.0E -3<br>1.0E -3 | 9.2E -5<br>7.6E -5                    | 1.00                               | 343<br>311     | 0.0000            | 1.0E -8                  | 0.0E 1                   | 9.2E ~5<br>7.6E ~5                      |
| QUAR<br>OBKR     | 35           | 115          | 270                    | 1.15 | 311        | 1.00         | 311         | HD             | 0.0757                   | 1.0E -3            | 7.6E -5                               | 1.00                               | 311            | 0.0000            | 1.0E -B                  | 0.0E 1                   | 7.6E -5                                 |
| UKA2 UKA2        | 115<br>184   | 184<br>390   | 270<br>270             | 1.40 | 378<br>378 | 1.35         | 510<br>510  | HD<br>NF       | 0.2045                   | 1.0E -3<br>1.0E -8 | 2.0E -4<br>2.0E -9                    | 1.25                               | 638<br>638     | 0.1150<br>0.1150  | 1.0E -8<br>1.0E -8       | 1.2E -9<br>1.2E -9       | 2.0E -4<br>3.2E -9                      |
| UKR2             | 390          | 398          | 270                    | 1.40 | 378        | FLLG         | 378<br>378  | BK/ZEM<br>SED  | 0.1122                   | 1.0E -8            | 1.1E -9<br>1.1E -9                    | 1.25                               | 473<br>473     | 0.0631<br>0.0631  | 1.0E -8                  | 6.3E-10<br>6.3E-10       | 1.8E -9<br>1.8E -9                      |
| UKR2<br>UKR1     | 398<br>510   | 510<br>669   | 270<br>270             | 1.40 | 378<br>432 | FLLG<br>FLLG | 432         | SEO            | 0.1466                   | 1.0E -8            | 1.5E -9                               | 1.80                               | 778            | 0.3283            | 1.0E -B                  | 3.3E -9                  | 4.7E -9                                 |
| UKR1<br>MALM     | 669<br>720   | 720<br>1052  | 216                    | 1.60 | 346<br>238 | FLLG<br>1.00 | 346<br>238  | SED<br>SED     | 0.0938                   | 1.0E -8<br>1.0E -8 | 9.4E-10<br>4.4E-10                    | 1.80                               | 622<br>238     | 0.2101            | 1.0E -8                  | 2.1E -9<br>0.0E 1        | 3.0E -9<br>4.4E-10                      |
| MALM             | 1052         | 1055         | 193                    | 1.10 | 212        | 1.00         | 212         | SED<br>ZEM     | 0.0354                   | 1.0E -8<br>1.0E -8 | 3.5E-10<br>3.5E-10                    | 1.00                               | 212<br>212     | 0.0000            | 1.0E -8.<br>1.0E -8      | 0.0E 1                   | 3.5E-10<br>3.5E-10                      |
| MALM<br>MALM     | 1055<br>1088 | 1088<br>1137 | 193<br>153             | 1.10 | 212<br>168 | 1.00         | 168         | ZEM            | 0.0222                   | 1.0E -8            | 2.2E-10                               | 1.00                               | 168            | 0.0000            | 1.0E -B                  | 0.0E 1                   | 2.2E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 115 m  $T = 7.97E - 5 m^3/s$ Teufenbereich: 115 - 510 m  $T = 2.97E - 9 m^3/s$ Teufenbereich: 510 - 720 m  $T = 4.18E - 9 m^3/s$ Teufenbereich: 115 - 720 m  $T = 3.30E - 9 m^3/s$ Teufenbereich: 720 - 1137 m  $T = 3.89E - 10 m^3/s$ 

Tab. E - 13.3 / 15 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 1

# Bohrung Nr. 98: SONNENBERG 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 58 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |             |             |             |            | В-          | ohrlochfüllung |                          |              |                                       |            |             | Auflockerun              | gszone                   |                                       |                                         |
|------------------|------------|------------|-------------|-------------|-------------|------------|-------------|----------------|--------------------------|--------------|---------------------------------------|------------|-------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | din<br>(mm) | [ E₁<br>[~] | d 2<br>[mm] | € 2<br>[-] | d 3<br>(mm) | füllung<br>[–] | A F<br>(m <sup>2</sup> ) | kff<br>[m/s] | T <sub>F</sub><br>(m <sup>3</sup> /s) | E A<br>[-] | d A<br>(mm) | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 32         | 298         | 1.15        | 343         | 1.00       | 343         | НД             | 0.0922                   | 1.0€ -3      | 9.2E -5                               | 1.00       | 343         | 0.0000                   | 1.0 E -8                 | 0.0E 1                                | 9.2E -5                                 |
| GUAR             | 32         | 35         | 270         | 1.15        | 311         | 1.00       | 311         | HD             | 0.0757                   | 1.0E -3      | 7.6E -5                               | 1.00       | 311         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 7.6E -5                                 |
| OBKR             | 35         | 115        | 270         | 1.15        | 311         | 1.00       | 311         | HD             | 0.0757                   | 1.0E -3      | 7.6E -5                               | 1.00       | 311         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 7.6E -5                                 |
| UKR2             | 115        | 190        | 270         | 1.40        | 378         | 1.35       | 510         | HD             | 0.2045                   | 1.0E ~3      | 2.0E -4                               | 1.25       | 638         | 0.1150                   | 1.0E -8                  | 1.2E -9                               | 2.0E -4                                 |
| UKR2             | 190        | 415        | 270         | 1.40        | 378         | 1.35       | 510         | NF             | 0.2045                   | 1.0 € -8     | 2.0E -9                               | 1.25       | 638         | 0.1150                   | 1.0E -B                  | 1.25 -9                               | 3.2E -9                                 |
| UKR2             | 415        | 419        | 270         | 1.40        | 378         | FLLG       | 378         | вк             | 0.1122                   | 1.0E -8      | 1.1E -9                               | 1.25       | 473         | 0.0631                   | 1.0E -B                  | 6.3E-10                               | 1.8E -9                                 |
| UKR2             | 419        | 510        | 270         | 1.40        | 378         | FLLG       | 378         | SED            | 0.1122                   | 1.0E -8      | 1.1E -9                               | 1.25       | 473         | 0.0631                   | 1.0E -8                  | 6.3E-10                               | 1.8E -9                                 |
| UKR1             | 510        | 669        | 270         | 1.60        | 432         | FLLG       | 432         | SED            | 0.1466                   | 1.0E -8      | 1.5E -9                               | 1.80       | 778         | 0.3283                   | 1.0E -8                  | 3.3E -9                               | 4.7E -9                                 |
| UKR1             | 669        | 720        | 216         | 1.60        | 346         | FLLG       | 346         | SED            | 0.0938                   | 1.0€ -8      | 9.4E-10                               | 1.80       | 622         | 0.2101                   | 1.0E -B                  | 2.1E -9                               | 3.0E -9                                 |
| MALM             | 720        | 1052       | 216         | 1.10        | 238         | 1.00       | 238         | SED            | 0.0443                   | 1.0 E →B     | 4.4E-10                               | 1.00       | 838         | 0.0000                   | 1.0E -B.                 | 0.0E 1                                | 4.4E-10                                 |
| MALM             | 1052       | 1088       | 193         | 1.10        | 212         | 1.00       | 212         | SED            | 0.0354                   | 1.0E -8      | 3.5E-10                               | 1.00       | 212         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 3.5E-10                                 |
| MALM             | 1088       | 1137       | 153         | 1.10        | 168         | 1.00       | 168         | SED            | 0.0222                   | 1.0E -8      | 2.2E-10                               | 1.00       | 168         | 0.0000                   | 1.0E -8                  | 0.0E 1_                               | 2.2E-10                                 |

### mittiere (axiale) Transmissivitäten

Teufenbereich: 0 - 115 m T=  $7.97E - 5 m^3/s$ Teufenbereich: 115 - 510 m T=  $3.17E - 9 m^3/s$ Teufenbereich: 510 - 720 m T=  $4.18E - 9 m^3/s$ Teufenbereich: 115 - 720 m T=  $3.46E - 9 m^3/s$ Teufenbereich: 720 - 1137 m T=  $3.89E - 10 m^3/s$ 

Tab. E - 13.3 / 15 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 1

## Bohrung Nr. 295: SONNENBERG 2

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 48 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-                      | Teufent                  | bereich                  |                          |                              |                          |                      | Ð                        | ohrlochfüllung             | -                                    |                                          | -                                        |                              |                          | Auflockerun                         | gszone                        |                                       | _                                        |
|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------|----------------------|--------------------------|----------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------|--------------------------|-------------------------------------|-------------------------------|---------------------------------------|------------------------------------------|
| tigraphie<br>(-)             | von<br>[m]               | bis<br>(m)               | d <sub>1</sub><br>[mm]   | E <sub>1</sub> (→)           | (mm)                     | Ĕ2  <br>  [→)        | dg<br>[mm]               | Füllung<br>[–]             | A F<br>[m <sup>2</sup> ]             | k <sub>f</sub> F<br>[m/s]                | T <sub>F</sub><br>[m3/s]                 | E A<br>[-]                   | [mm]                     | A <sub>A</sub><br>(m <sup>2</sup> ) | kfA<br>[m/s]                  | T <sub>A</sub><br>[m <sup>3</sup> /s] | TF+A<br>[m <sup>3</sup> /s]              |
| QUAR<br>OBKA<br>OBKA         | 0<br>44<br>45            | 44<br>45<br><b>5</b> 4   | 320<br>320<br>311        | ROHA<br>ROHR<br>1.15         | 320<br>320<br>358        | 1.00<br>1.00<br>1.00 | 320<br>320<br>358        | BK/ZEM<br>BK/ZEM<br>BK/ZEM | 0.0804<br>0.0804<br>0.1005           | 1.0E -8<br>1.0E -8<br>1.0E -8            | 8.0E-10<br>8.0E-10<br>1.0E -9            | 1.00                         | 320<br>320<br>358<br>358 | 0.0000<br>0.0000<br>0.0000          | 1.0E -8<br>1.0E -8<br>1.0E -8 | 0.0E 1<br>0.0E 1<br>0.0E 1<br>0.0E 1  | 8.0E-10<br>8.0E-10<br>1.0E -9<br>1.0E -4 |
| OBKR<br>UKR2<br>UKR2         | 54<br>192<br>271         | 192<br>271<br>507        | 311<br>311<br>311        | 1.15<br>1.40<br>1.40         | 358<br>435<br>435        | 1.00<br>1.35<br>1.35 | 358<br>588<br>588        | HD<br>HD<br>NF             | 0.1005<br>0.2714<br>0.2714<br>0.1489 | 1.0E -3<br>1.0E -3<br>1.0E -8<br>1.0E -8 | 1.0E -4<br>2.7E -4<br>2.7E -9<br>1.5E -9 | 1.00<br>1.25<br>1.25<br>1.25 | 735<br>735<br>735        | 0.1526<br>0.1526<br>0.0838          | 1.0E -8<br>1.0E -8<br>1.0E -8 | 1.5E -9<br>1.5E -9<br>B.4E-10         | 2.7E -4<br>4.2E -9<br>2.3E -9            |
| UKR2<br>UKR1<br>MALM<br>MALM | 507<br>559<br>737<br>746 | 559<br>737<br>746<br>752 | 311<br>311<br>311<br>270 | 1.40<br>1.60<br>1.10<br>1.10 | 435<br>498<br>342<br>297 | FLLG<br>FLLG<br>1.00 | 435<br>498<br>342<br>297 | SED<br>SEO<br>SED<br>SED   | 0.1945<br>0.0919<br>0.0693           | 1.0E -8<br>1.0E -8<br>1.0E -8            | 1.9E -9<br>9.2E-10<br>6.9E-10            | 1.80<br>1.00<br>1.00         | 896<br>342<br>297        | 0.4356<br>0.0000<br>0.0000          | 1.0E -8<br>1.0E -8<br>1.0E -8 | 4.4E -9<br>0.0E 1<br>0.0E 1           | 6.3E -9<br>9.2E-10<br>6.9E-10            |
| MALM<br>MALM                 | 752<br>1022              | 1022<br>1082             | 219<br>133               | 1.10                         | 241                      | 1.00                 | 241<br>146               | SED<br>ZEM                 | 0.0456<br>0.0168                     | 1.0E -8<br>1.0E -8                       | 4.6E-10<br>1.7E-10                       | 1.00                         | 241<br>146               | 0.0000                              | 1.0E -8                       | 0.0E 1<br>0.0E 1                      | 4.6E-10<br>1.7E-10                       |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 192 m T=  $2.96E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 192 - 559 m T=  $4.70E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 559 - 737 m T=  $6.30E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 192 - 737 m T=  $5.13E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 737 - 1082 m T=  $3.56E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 16 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 2

## Bohrung Nr. 295: SONNENBERG 2

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 48 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-          | Teufen     | bereich    |                        |              |             |              | В           | ohrlochfüllung |                          |                    |                                    |                       |            | Auflockerun                         | gszone                   |                                       |                            |
|------------------|------------|------------|------------------------|--------------|-------------|--------------|-------------|----------------|--------------------------|--------------------|------------------------------------|-----------------------|------------|-------------------------------------|--------------------------|---------------------------------------|----------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>[mm] | E₁<br>[−]    | d 2<br>[mm] | E 2<br>[-]   | d 3<br>[mm] | Füllung<br>[-] | A F<br>(m <sup>2</sup> ) | kfF<br>(m/s)       | T <sub>F</sub> [m <sup>3</sup> /s] | E <sub>A</sub><br>[-] | d A        | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m3/s] |
| QUAR<br>OBKR     | 0<br>44    | 44<br>45   | 320<br>320             | ROHR<br>ROHR | 320<br>320  | 1,00         | 320<br>320  | HO<br>HD       | 0.0804                   | 1.0E -3<br>1.0E -3 | 8.0E -5<br>8.0E -5                 | 1.00                  | 320<br>320 | 0,0000                              | 1.0E -8<br>1.0E -8       | 0.0E 1                                | 8.0E -5<br>8.0E -5         |
| овкя             | 45         | 192        | 311                    | 1.15         | 358         | 1.00         | 358         | HD             | 0.1005                   | 1.0E -3            | 1.0E -4                            | 1.00                  | 358        | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 1.0E -4                    |
| UKR2<br>UKR2     | 192<br>263 | 263<br>476 | 311<br>311             | 1.40         | 435<br>435  | 1.35         | 588<br>588  | HD<br>NF       | 0.2714<br>0.2714         | 1.0E -3<br>1.0E -8 | 2.7E -4<br>2.7E -9                 | 1.25                  | 735<br>735 | 0.1526<br>0.1526                    | 1.0E -8<br>1.0E -B       | 1.5E -9<br>1.5E -9                    | 2.7E -4<br>4.2E -9         |
| UKR2<br>UKR2     | 476<br>507 | 507<br>559 | 311<br>311             | 1.40         | 435<br>435  | FLLG<br>FLLG | 435<br>435  | 8K/ZEM<br>SED  | 0.1489<br>0.1489         | 1.0E -8            | 1.5E -9<br>1.5E -9                 | 1.25                  | 544<br>544 | 0.0838<br>0.0838                    | 1.0E -8                  | 8.4E-10<br>8.4E-10                    | 2.3E -9                    |
| UKR1             | 559        | 737        | 311                    | 1.60         | 498         | FLLG         | 498         | SED            | 0.1945                   | 1.0E -8            | 1.9E -9                            | 1.80                  | 896        | 0.4356                              | 1.0E -8                  | 4.4E -9                               | 6.3E -9                    |
| MALM<br>MALM     | 737<br>746 | 746<br>752 | 311<br>270             | 1.10         | 342         | 1.00         | 342<br>297  | SED<br>SED     | 0.0919                   | 1.0E -8            | 9.2E-10<br>6.9E-10                 | 1.00                  | 342<br>297 | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 9.2E-10<br>6.9E-10         |
| MALM             | 752        | 1022       | 219                    | 1.10         | 241         | 1.00         | 241         | SED            | 0.0456                   | 1.0E -B            | 4.6E-10                            | 1.00                  | 241        | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 4.6E~10                    |
| MALM             | 1022       | 1082       | 133                    | 1.10         | 146         | 1.00         | 146         | ZEM            | 0.0168                   | 1.0E -8            | 1.7E-10                            | 1.00                  | 146        | 0.0000                              | 1.0E -8                  | 0.06 1                                | 1.7E-10                    |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 192 m T= 9.49E -5 m $^3$ /s Teufenbereich: 192 - 559 m T= 4.27E -9 m $^3$ /s Teufenbereich: 559 - 737 m T= 6.30E -9 m $^3$ /s Teufenbereich: 192 - 737 m T= 4.77E -9 m $^3$ /s Teufenbereich: 737 - 1082 m T= 3.56E-10 m $^3$ /s

Tab. E - 13.3 / 16 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 2

## Bohrung Nr. 295: SONNENBERG 2

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 48 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-          | Teufen     | bereich    |            |          |             |              | В          | ohriochfüllung |             |              |                     |                | -              | Auflockerun                         | gszone                   |                                       |                                         |
|------------------|------------|------------|------------|----------|-------------|--------------|------------|----------------|-------------|--------------|---------------------|----------------|----------------|-------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | di<br>[mm] | 터<br>(-) | d 2<br>[mm] | E 2<br>  [-] | dg<br>[mm] | Füllung<br>[-] | A F<br>[տ2] | kfF<br>[m/s] | [m <sup>3</sup> /s] | € <sub>A</sub> | d <sub>A</sub> | A <sub>A</sub><br>(m <sup>2</sup> ) | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 44         | 320        | AOHR     | 320         | 1.00         | 320        | НО             | 0.0804      | 1.0E -3      | 8.0€ -5             | 1.00           | 320            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 8,0E -5                                 |
| овка             | 44         | 45         | 320        | ROHR     | 320         | 1.00         | 320        | HD             | 0.0804      | 1.0 E -3     | 8.0E -5             | 1.00           | 320            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 8.0€ -5                                 |
| OBKR             | 45         | 192        | 311        | 1.15     | 358         | 1.00         | 35B        | HD             | 0.1005      | 1.0E -3      | 1.0E -4             | 1.00           | 358            | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 1.0E -4                                 |
| UKA2             | 192        | 267        | 311        | 1.40     | 435         | 1.35         | 588        | HD             | 0.2714      | 1.0E -3      | 2.7E -4             | 1.25           | 735            | 0.1526                              | 1.0E -B                  | 1.5E -9                               | 2.7E -4                                 |
| UKR2             | 267        | 490        | 311        | 1.40     | 435         | 1.35         | 588        | NF             | 0.2714      | 1.0E -8      | 2.7E -9             | 1.25           | 735            | 0.1526                              | 1.0E -8                  | 1.5E -9                               | 4.2E -9                                 |
| UKR2             | 490        | 513        | 311        | 1.40     | 435         | FLLG         | 435        | вк             | 0.1489      | 1.0E -8      | 1.5€ -9             | 1.25           | 544            | 0.0838                              | 1.0E -8                  | 8.4E-10                               | 2.3E -9                                 |
| UKR2             | 513        | 559        | 311        | 1.40     | 435         | FLLG         | 435        | SED            | 0.1489      | 1.0E -8      | 1.5E -9             | 1.25           | 544            | 0.0838                              | 1.0E -B                  | 8,4E-10                               | 2.3E ~9                                 |
| UKR1             | 559        | 737        | 311        | 1.60     | 49B         | FLLG         | 49B        | ŞED            | 0.1945      | 1.0E -B      | 1.9E -9             | 1.80           | 896            | 0.4356                              | 1.0E -B                  | 4.4E -9                               | 6.3E -9                                 |
| MALM             | 737        | 746        | 311        | 1.10     | 342         | 1.00         | 342        | SED            | 0.0919      | 1.0E -B      | 9.2E-10             | 1.00           | 342            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 9.2E-10                                 |
| MALM             | 746        | 752        | 270        | 1.10     | 297         | 1.00         | 297        | SED            | 0.0693      | 1.0E -8      | 6.9E-10             | 1.00           | 297            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 6.9E-10                                 |
| MALM             | 752        | 1022       | 219        | 1.10     | 241         | 1.00         | 241        | SED            | 0.0456      | 1.0E -8      | 4.6E-10             | 1.00           | 241            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 4.6E-10                                 |
| MALM             | 1022       | 1082       | 133        | 1.10     | 146         | 1.00         | 146        | SED            | 0.0168      | 1.0E -8      | 1.7E-10             | 1.00           | 146            | 0.0000                              | 1.0 € -8                 | 0.0E 1                                | 1.7E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 192 m T= 9.49E -5 m $^3$ /s Teufenbereich: 192 - 559 m T= 4.46E -9 m $^3$ /s Teufenbereich: 559 - 737 m T= 6.30E -9 m $^3$ /s Teufenbereich: 192 - 737 m T= 4.93E -9 m $^3$ /s Teufenbereich: 737 - 1082 m T= 3.56E-10 m $^3$ /s

Tab. E - 13.3 / 16 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 2

## Bohrung Nr. 296: SONNENBERG 3

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-            | Teufenl | bereich    |                        |          | •    |            | В           | ohriochfüllung |                |                           |                                    |      |             | Auflockerun              | gszone                   |                                       |                            |
|--------------------|---------|------------|------------------------|----------|------|------------|-------------|----------------|----------------|---------------------------|------------------------------------|------|-------------|--------------------------|--------------------------|---------------------------------------|----------------------------|
| tigraphie (<br>[-] | von.    | bis<br>(m) | d <sub>1</sub><br>[mm] | 터<br>(-) | (mm) | £ 2<br>[-] | d 3<br>(mm) | Füllung<br>[~] | A <sub>F</sub> | k <sub>f</sub> F<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E A  | d A<br>(mm) | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>(m³/s] |
| QUAR               | Q.      | 18         | 279                    | AOHR     | 279  | 1.00       | 279         | BK/ZEM         | 0.0611         | 1.0E -8                   | 6.1E-10                            | 1.00 | 279         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 6.1E-10                    |
| ОВКЯ               | 18      | 20         | 279                    | ROHR     | 279  | 1.00       | 279         | BK/ZEM         | 0.0611         | 1.0E -B                   | 6.1E-10                            | 1.00 | 279         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 6.1E-10                    |
| овкя               | 20      | 32         | 279                    | ROHR     | 279  | 1.00       | 279         | HD             | 0.0611         | 1.0E -3                   | 6.1E -5                            | 1.00 | 279         | 0.0000                   | 1.0E -8                  | 0.0€ 1                                | 6.1E -5                    |
| OBKR               | 32      | 69         | 216                    | 1,15     | 248  | 1.00       | 248         | HD             | 0.0485         | 1.0E -3                   | 4.8E ~5                            | 1.00 | 248         | 0.0000                   | 1.0E →B                  | 0.0E 1                                | 4.8E -5                    |
| OBKR               | 69      | 105        | 216                    | 1.15     | 248  | 1.00       | 248         | SED/ZE         | 0.0485         | 1.0E -8                   | 4.8E-10                            | 1.00 | 248         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.8E-10                    |
| OBKA               | 105     | 202        | 216                    | 1.15     | 248  | 1.00       | 248         | HD             | 0.0485         | 1.0E -3                   | 4.8E ~5                            | 1.00 | 248         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.8E →5                    |
| UKR2               | 202     | 297        | 216                    | 1.40     | 302  | 1.35       | 40B         | HD             | 0.1309         | 1.0E -3                   | 1.3E -4                            | 1.25 | 510         | 0.0736                   | 1.0E -8                  | 7.4E-10                               | 1.3E -4                    |
| UKR2               | 297     | 565        | 216                    | 1.40     | 302  | 1.35       | 408         | NF             | 0.1309         | 1.0E -B                   | 1.3E -9                            | 1.25 | 510         | 0.0736                   | 1.0E -8                  | 7.4E-10                               | 2.0E -9                    |
| UKRi               | 565     | 581        | 216                    | 1.60     | 346  | 1.35       | 467         | NF             | 0.1710         | 1.0E -8                   | 1.7E -9                            | 1.80 | 840         | 0.3830                   | 1.0E -8                  | 3.8E -9                               | 5.5E -9                    |
| UK81               | 581     | 745        | 216                    | 1.60     | 346  | FLLG       | 346         | SED            | 0.0938         | 1.0E -8                   | 9.4E-10                            | 1.80 | 622         | 0.2101                   | 1.0E -B                  | 2.1E -9                               | 3.0€ -9                    |
| MALM               | 745     | 857        | 216                    | 1.10     | 238  | 1.00       | 238         | SED            | 0.0443         | 1.0E -8                   | 4.4E-10                            | 1.00 | 238         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.4E-10                    |
| MALM               | 857     | 885        | 197                    | 1.10     | 217  | 1.00       | 217         | SED            | 0.0369         | 1.0E -B                   | 3.7E-10                            | 1.00 | 217         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 3.7E-10                    |
| MALM               | 885     | 948        | 197                    | 1.10     | 217  | 1.00       | 217         | ZEM            | 0.0369         | 1.0E -B                   | 3.7E-10                            | 1.00 | 217         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 3.7E-10                    |
| MALM               | 948     | 967        | 154                    | 1.10     | 169  | 1.00       | 169         | ZEM            | 0.0225         | 1.0E -8                   | 2.3E-10                            | 1.00 | 169         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 2.3E-10                    |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 202 m T=  $1.89E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 202 - 565 m T=  $2.77E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 565 - 745 m T=  $3.17E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 202 - 745 m T=  $2.89E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 745 - 967 m T=  $3.80E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 17 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 3

# Bohrung Nr. 296: SONNENBERG 3

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 40 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-   | Teufent    | bereich    |                     |           | _   |      | В           | ohrlochfüllung | -                        |              |                                       |                       |      | Auflockerun              | igszone      |                                       | _                                       |
|-----------|------------|------------|---------------------|-----------|-----|------|-------------|----------------|--------------------------|--------------|---------------------------------------|-----------------------|------|--------------------------|--------------|---------------------------------------|-----------------------------------------|
| tigraphie | von<br>[m] | bis<br>[m] | d <sub>1</sub> [mm] | E₁<br>[-] | d 2 | E 2  | d 3<br>[mm] | Füllung<br>(–) | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub><br>[-] | (mm) | A A<br>[m <sup>2</sup> ] | kfA<br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| GUAR      | 0          | 18         | 279                 | ROHR      | 279 | 1.00 | 279         | HD             | 0.0611                   | 1.0E -3      | 6.1E -5                               | 1.00                  | 279  | 0.0000                   | 1.0E -8      | 0.0E 1                                | 6.1E -5                                 |
| овка      | 18         | 32         | 279                 | ROHR      | 279 | 1,00 | 279         | HD             | 0.0611                   | 1.0E -3      | 6.1E -5                               | 1.00                  | 279  | 0.0000                   | 1.0E -8      | 0.0E 1                                | 6.1E -5                                 |
| OBKR      | 32         | 202        | 216                 | 1.15      | 248 | 1.00 | 248         | HD             | 0.0485                   | 1.0E -3      | 4.8E -5                               | 1.00                  | 248  | 0.0000                   | 1.0€ -8      | 0.0E 1                                | 4.8E -5                                 |
| UKA2      | 202        | 289        | 216                 | 1.40      | 302 | 1,35 | 408         | нр             | 0.1309                   | 1.0E -3      | 1.3E -4                               | 1.25                  | 510  | 0.0736                   | 1.0E -B      | 7.4E-10                               | 1.3E -4                                 |
| UKR2      | 289        | 549        | 216                 | 1.40      | 302 | 1.35 | 408         | NF             | 0.1309                   | 1.0E -B      | 1.3E -9                               | 1.25                  | 510  | 0.0736                   | 1.0E -8      | 7.4E-10                               | 2.0E -9                                 |
| UKR2      | 549        | 562        | 216                 | 1.40      | 302 | FLLG | 302         | BK/ZEM         | 0.0718                   | 1.0E -8      | 7.2E-10                               | 1.25                  | 378  | 0.0404                   | 1.0E -8      | 4.0E-10                               | 1.1E -9                                 |
| UKR2      | 562        | 565        | 216                 | 1.40      | 302 | FLLG | 302         | SED            | 0.0718                   | 1.0E -B      | 7.2E-10                               | 1.25                  | 378  | 0.0404                   | 1.0E -B      | 4.0E-10                               | 1.1E -9                                 |
| UKR1      | 565        | 745        | 216                 | 1.60      | 346 | FLLG | 346         | SED            | 0.0938                   | 1.0E -8      | 9.4E-10                               | 1.80                  | 655  | 0.2101                   | 1.0E -8      | 2.1E -9                               | 3.0E -9                                 |
| MALM      | 745        | 857        | 216                 | 1.10      | 238 | 1.00 | 238         | SED            | 0.0443                   | 1.0E →8      | 4.4E-10                               | 1.00                  | 238  | 0.0000                   | 1.0€ -8      | 0.0E 1                                | 4.4E-10                                 |
| MALM      | 857        | 885        | 197                 | 1.10      | 217 | 1.00 | 217         | SED            | 0.0369                   | 1.0E -B      | 3.7E-10                               | 1.00                  | 217  | 0.0000                   | 1.0E -B      | 0.0E 1                                | 3.7E-10                                 |
| MALM      | 885        | 948        | 197                 | 1.10      | 217 | 1.00 | 217         | ZEM            | 0.0369                   | 1.0E -8      | 3.7E-10                               | 1.00                  | 217  | 0.0000                   | 1.0E -8      | 0.0E 1                                | 3.7E-10                                 |
| MALM      | 948        | 967        | 154                 | 1.10      | 169 | 1.00 | 169         | ZEM            | 0.0225                   | 1.0E -8      | 2,3E-10                               | 1.00                  | 169  | 0.0000                   | 1.0E -8      | 0.0E 1                                | 2,3E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 202 m T=  $5.01E - 5 m^3/s$ Teufenbereich: 202 - 565 m T=  $2.57E - 9 m^3/s$ Teufenbereich: 565 - 745 m T=  $3.04E - 9 m^3/s$ Teufenbereich: 202 - 745 m T=  $2.71E - 9 m^3/s$ Teufenbereich: 745 - 967 m T=  $3.80E - 10 m^3/s$ 

Tab. E - 13.3 / 17 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 3

## Bohrung Nr. 296: SONNENBERG 3

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | pereich    |                        |              |            |            | 8          | ohriochfüllung |                          |                    |                                       |            |                        | Auflockerun                         | gszone                   | ,                        |                                         |
|------------------|------------|------------|------------------------|--------------|------------|------------|------------|----------------|--------------------------|--------------------|---------------------------------------|------------|------------------------|-------------------------------------|--------------------------|--------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>(mm) | E₁ (-)       | <b>₫</b> 2 | E 2<br>[-] | dg<br>[mm] | Fültung<br>[-] | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s]       | T <sub>F</sub><br>[m <sup>3</sup> /s] | € A<br>[~] | d <sub>A</sub><br>(mm) | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR<br>OBKR     | 0<br>18    | 18<br>32   | 279<br>279             | ROHR<br>ROHR | 279<br>279 | 1.00       | 279<br>279 | HD<br>HD       | 0.0511<br>0.0611         | 1.0E -3<br>1.0E -3 | 6.1E -5<br>6.1E -5                    | 1.00       | 279<br>279             | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 6.1E -5<br>6.1E -5                      |
| овкя             | 32         | 505        | 216                    | 1.15         | 248        | 1.00       | 248        | HD             | 0.0485                   | 1.0E -3            | 4.8E -5                               | 1.00       | 248                    | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 4.88 -5                                 |
| UKR2             | 202        | 299        | 216                    | 1.40         | 305        | 1.35       | 408        | HD             | 0.1309                   | 1.0E -3            | 1.3E -4                               | 1.25       | 510                    | 0.0736                              | 1.0€ -8                  | 7.4E-10                  | 1.3E -4                                 |
| UKR2             | 299        | 565        | 216                    | 1.40         | 302        | 1.35       | 408        | NF             | 0.1309                   | 1.0E ~8            | 1.3E -9                               | 1.25       | 510                    | 0.0736                              | 1.0E -B                  | 7.4E-10                  | 2.0E -9                                 |
| UKR1             | 565        | 588        | 216                    | 1.60         | 346        | 1.35       | 467        | NF             | 0.1710                   | 1.0E -8            | 1.7E -9                               | 1.80       | 840                    | 0.3830                              | 1.0E -8                  | 3.8E ~9                  | 5.5E -9                                 |
| UKR1             | 588        | 592        | 216                    | 1.60         | 346        | FLLG       | 346        | ₿K             | 0.0938                   | 1.0E -8            | 9.4E-10                               | 1.80       | 622                    | 0.2101                              | 1.0E -8                  | 2.1E -9                  | 3.0E -9                                 |
| UKR1             | 592        | 745        | 216                    | 1.60         | 346        | FLLG       | 346        | SED            | 0.0938                   | 1.0E -8            | 9.4E-10                               | 1.80       | 622                    | 0.2101                              | 1.0E -8                  | 2.1E -9                  | 3.0E -9                                 |
| MALM             | 745        | 857        | 216                    | 1.10         | S3B        | 1.00       | 238        | SED            | 0.0443                   | 1.0E -8            | 4.4E-10                               | 1.00       | 238                    | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 4.4E-10                                 |
| MALM             | 857        | 948        | 197                    | 1.10         | 217        | 1.00       | 217        | SED            | 0.0369                   | 1.0E -B            | 3.7E-10                               | 1.00       | 217                    | 0.0000                              | 1.0E -B                  | 0.0E 1                   | 3.7E-10                                 |
| MALM             | 948        | 967        | 154                    | 1.10         | 169        | 1.00       | 169        | SED            | 0.0225                   | 1.0E -B            | 2.3E-10                               | 1.00       | 169                    | 0.0000                              | 1.0E -B                  | 0.0E 1                   | 2.3E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 202 m T=  $5.01E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 202 - 565 m T=  $2.79E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 565 - 745 m T=  $3.23E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 202 - 745 m T=  $2.92E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 745 - 967 m T=  $3.80E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 17 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 3

## Bohrung Nr. 303: SONNENBERG 4

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 76 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen      | bereich      |                        |                    |             | -            | В          | ohrlochf@llung   |                                     |                    |                      |              |                        | Auflockerur                      | ngszone                  |                                       |                                         |
|------------------|-------------|--------------|------------------------|--------------------|-------------|--------------|------------|------------------|-------------------------------------|--------------------|----------------------|--------------|------------------------|----------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(-) | (m)         | bis<br>[m]   | d <sub>1</sub><br>(mm) | E <sub>1</sub> (→) | d 2<br>(mm) | E 2<br>[-]   | dg<br>(mm) | Filliung<br>(-)  | A <sub>F</sub><br>[m <sup>2</sup> ] | kfF<br>[m/s]       | T p<br>[m3/s]        | E A          | d <sub>A</sub><br>[mm] | A <sub>A</sub> [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR<br>UKR2     | 0<br>26     | 25<br>30     | 340<br>340             | 1.15               | 391<br>476  | 1.00<br>FLLG | 391<br>476 | BK/ZEM<br>BK/ZEM | 0.1201<br>0.1780                    | 1.0E -8<br>1.0E -8 | 1.2E -9<br>1.8E -9   | 1.00<br>1.25 | 391<br>595             | 0.0000                           | 1.0E -8<br>1.0E -8       | 0.0E 1<br>1.0E -9                     | 1.2E -9<br>2.8E -9                      |
| UKR2<br>UKR2     | 30          | 40<br>72     | 318                    | 1.40               | 445         | FLLG<br>1.35 | 445        | BK/ZEM<br>HD     | 0.1557<br>0.2837                    | 1.0E -8<br>1.0E -3 | 1.6E -9<br>2.8E -4   | 1.25         | 557<br>751             | 0.0876<br>0.1596                 | 1.0E -8                  | 8.8E-10<br>1.6E -9                    | 2.4E -9<br>2.8E -4                      |
| UKR2             | 40<br>72    | 168          | 318<br>318             | 1.40               | 445<br>445  | 1.35         | 601<br>601 | NF NF            | 0.2837                              | 1.0E -3            | 2.8E -9              | 1.25         | 751                    | 0.1596                           | 1.0E -8                  | 1.6E ~9                               | 4.4E -9                                 |
| UKR2<br>UKR2     | 168<br>206  | 206<br>292   | 318<br>219             | 1.40               | 445<br>307  | FLLG<br>FLLG | 445<br>307 | SED<br>I SED     | 0.1557<br>0.0738                    | 1.0E -8            | 1.6E →9<br>  7.4E-10 | 1.25         | 557<br>383             | 0.0876                           | 1.0E -8                  | 8.8E-10<br>4.2E-10                    | .2.4E -9<br>1.2E -9                     |
| UKA1             | 292         | 554          | 219                    | 1.60               | 350         | FLL6         | 350        | SED              | 0.0964                              | 1.0E -8            | 9.6E-10              | 1.80         | 631                    | 0.2160                           | 1.0E -8                  | 2.2E -9                               | 3.1E -9                                 |
| MALM<br>MALM     | 554<br>1120 | 1120<br>1176 | 219<br>219             | 1.10               | 241         | 1.00         | 241<br>241 | SED<br>ZEM       | 0.0456<br>0.0456                    | 1.0E -8<br>1.0E -B | 4.6E-10<br>4.6E-10   | 1.00         | 241<br>241             | 0.0000                           | 1.0E -8<br>1.0E -8       | 0.0E 1<br>0.0E 1                      | 4.6E-10<br>4.6E-10                      |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 26 m  $T= 1.20 \text{E} - 9 \text{ m}^3/\text{s}$ Teufenbereich: 26 - 292 m  $T= 2.27 \text{E} - 9 \text{ m}^3/\text{s}$ Teufenbereich: 292 - 554 m  $T= 3.12 \text{E} - 9 \text{ m}^3/\text{s}$ Teufenbereich: 26 - 554 m  $T= 2.62 \text{E} - 9 \text{ m}^3/\text{s}$ Teufenbereich: 554 - 1176 m  $T= 4.56 \text{E} - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 18 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 4

# Bohrung Nr. 303: SONNENBERG 4

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 76 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen      | bereich      |            |                   |            |                | В          | ohrlochfüllung |                  |                    |                    |              |            | Auflockerun           | gszone                   |                          |                            |
|------------------|-------------|--------------|------------|-------------------|------------|----------------|------------|----------------|------------------|--------------------|--------------------|--------------|------------|-----------------------|--------------------------|--------------------------|----------------------------|
| tigraphie<br>[-] | von<br>(m)  | bis<br>(m)   | d;<br>[mm] | E <sub>1</sub> [] | (mm)       | E <sub>2</sub> | 43<br>[mm] | Füllung<br>[-] | Α <sub>Ε</sub>   | kfF<br>[m/s]       | [m3/s]             | E A<br>[-]   | (mm)       | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m3/s] |
| QUAR<br>UKR2     | 0<br>26     | 26<br>30     | 340<br>340 | 1.15              | 391<br>476 | 1.00           | 391<br>643 | HO<br>HD       | 0.1201           | 1.0E -3<br>1.0E -3 | 1.2E -4<br>3.2E -4 | 1.00<br>1.25 | 391<br>803 | 0.0000<br>0.1824      | 1.0E -8                  | 0.0E 1<br>1.8E -9        | 1.2E -4<br>3.2E -4         |
| UKA2<br>UKA2     | 30<br>53    | 53<br>135    | 318<br>318 | 1.40              | 445<br>445 | 1.35           | 601<br>601 | HD<br>NF       | 0.2837<br>0.2837 | 1.0E -3<br>1.0E -8 | 2.8E -4<br>2.8E -9 | 1.25         | 751<br>751 | 0.1596<br>0.1596      | 1.0E -8                  | 1.6E -9<br>1.6E -9       | 2.8E -4                    |
| UKR2             | 135         | 168          | 318        | 1.40              | 445        | FLLG           | 445        | BK/ZEM         | 0.1557           | 1.0E -8            | 1.6E -9            | 1.25         | 557        | 0.0876                | 1.0E -B                  | B.8E-10                  | 2.4E -9                    |
| UKR2<br>UKR2     | 168<br>206  | 206<br>292   | 318        | 1.40              | 445<br>307 | FLLG<br>FLLG   | 445<br>307 | SED<br>SED     | 0.1557<br>0.0738 | 1.0E -8            | 1.6E -9<br>7.4E-10 | 1.25         | 557<br>383 | 0.0876<br>0.0415      | 1.0E -8<br>1.0E -8       | 8.8E-10<br>4.2E-10       | 2.4E -9  <br>  1.2E -9     |
| UKR1             | 292         | 554          | 219        | 1.60              | 350        | FLLG           | 350<br>241 | SED<br>SED     | 0.0964           | 1.0E -8<br>1.0E -8 | 9.6E-10<br>4.6E-10 | 1.80         | 631<br>241 | 0.2160                | 1.0E -8                  | 2.2E -9<br>0.0E 1        | 3.1E -9<br>4.6E-10         |
| MALM<br>MALM     | 554<br>1120 | 1120<br>1176 | 219<br>219 | 1.10              | 241<br>241 | 1.00           | 241        | ZEM            | 0.0456           | 1.0E -8            | 4.6E-10            | 1.00         | 241        | 0.0000                | 1.0E -8                  | 0.0E 1                   | 4.6E-10                    |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 26 m T= 1.20E -4 m $^3$ /s Teufenbereich: 26 - 292 m T= 2.18E -9 m $^3$ /s Teufenbereich: 292 - 554 m T= 3.12E -9 m $^3$ /s Teufenbereich: 26 - 554 m T= 2.56E -9 m $^3$ /s Teufenbereich: 554 - 1176 m T= 4.56E-10 m $^3$ /s

Tab. E - 13.3 / 18 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 4

## Bohrung Nr. 303: SONNENBERG 4

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 76 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-       | Teufen     | bereich    |                         |                |     |           | В          | ohrlochfüllung |                          |              |                                    |                       |                        | Auflockerun              | igszone                  |                                       |                                         |
|---------------|------------|------------|-------------------------|----------------|-----|-----------|------------|----------------|--------------------------|--------------|------------------------------------|-----------------------|------------------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie [-] | von<br>[m] | bis<br>[m] | di <sub>1</sub><br>(mm) | E <sub>1</sub> | d 2 | E 2<br>[} | dg<br>(mm) | Füllung<br>[-] | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub> (m <sup>3</sup> /s) | E <sub>A</sub><br>(-) | d <sub>A</sub><br>(mm) | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR          | 0          | 26         | 340                     | 1.15           | 391 | 1.00      | 391        | HD             | 0.1201                   | 1.0E -3      | 1.2E -4                            | 1.00                  | 391                    | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 1.2E -4                                 |
| UKR2          | 26         | 30         | 340                     | 1.40           | 476 | 1.35      | 643        | HD             | 0.3243                   | 1.0E -3      | 3.2E -4                            | 1.25                  | 803                    | 0.1824                   | 1.0E -8                  | 1.8E -9                               | 3.2E -4                                 |
| UKR2          | 30         | 60         | 318                     | 1.40           | 445 | 1.35      | 601        | HD             | 0.2837                   | 1.0E -3      | 2.8E -4                            | 1.25                  | 751                    | 0.1596                   | 1.0E -8                  | 1.6E -9                               | 2.8E -4                                 |
| UKR2          | 60         | 162        | 318                     | 1.40           | 445 | 1.35      | 601        | NF             | 0.2837                   | 1.0E -8      | 2.8E -9                            | 1.25                  | 751                    | 0.1596                   | 1.0€ -8                  | 1.6E ~9                               | 4.4E -9                                 |
| UKR2          | 162        | 185        | 318                     | 1.40           | 445 | FLLG      | 445        | BK             | 0.1557                   | 1.0E -8      | 1.6E -9                            | 1.25                  | 557                    | 0.0876                   | 1.0E -B                  | B.B €-10                              | 2.4E -9                                 |
| UKR2          | 185        | 206        | 318                     | 1.40           | 445 | FLLG      | 445        | SED            | 0.1557                   | 1.0E -B      | 1.6E -9                            | 1.25                  | 557                    | 0.0876                   | 1.0E -B                  | 8.8E-10                               | 2.4E ~9                                 |
| UKR2          | 206        | 292        | 219                     | 1.40           | 307 | FLLG      | 307        | SED            | 0.0738                   | 1.0E -B      | 7.4E-10                            | 1.25                  | 383                    | 0.0415                   | 1.0E -B                  | 4.2E-10                               | 1.2E -9                                 |
| UKR1          | 292        | 554        | 219                     | 1.60           | 350 | FLLG      | 350        | SED            | 0.0964                   | 1.0E -8      | 9.6E-10                            | 1.80                  | 631                    | 0.2160                   | 1.0E -8                  | 2,2E ~9                               | 3.1E -9                                 |
| MALM          | 554        | 1176       | 219                     | 1.10           | 241 | 1.00      | 241        | SED            | 0.0456                   | 1.0E -8      | 4.6E-10                            | 1.00                  | 241                    | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.6E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 26 m T=  $1.20E - 4 m^3/s$ Teufenbereich: 26 - 292 m T=  $2.30E - 9 m^3/s$ Teufenbereich: 292 - 554 m T=  $2.65E - 9 m^3/s$ Teufenbereich: 26 - 554 m T=  $2.65E - 9 m^3/s$ Teufenbereich: 554 - 1176 m T=  $2.65E - 9 m^3/s$ 

Tab. E - 13.3 / 18 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung SONNENBERG 4

## Bohrung Nr. 100: UEFINGEN 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 0 % Sedimentationsanteil des Nachfalls: 0 %

| Strati-          | Teufen       | bereich      |                        |                |            |              | В           | ohrlochfüllung |                          |                    | -                                  |      |                        | Auflockerun                         | gszone                   |                                       |                                         |
|------------------|--------------|--------------|------------------------|----------------|------------|--------------|-------------|----------------|--------------------------|--------------------|------------------------------------|------|------------------------|-------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m]   | bis<br>(m)   | d <sub>1</sub><br>[mm] | E <sub>1</sub> | (mm)       | E 2<br>[-]   | d 3<br>[mm] | Füllung<br>[-] | A F<br>(m <sup>2</sup> ) | kfF<br>(m/s)       | T <sub>F</sub> [m <sup>3</sup> /s] | E A  | d <sub>A</sub><br>[mm] | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR             | 0            | 10           | 320                    | ROHA           | 320        | 1.00         | 320         | ZEM            | 0.0804                   | 1.0E -8            | 8.0E-10                            | 1.00 | 350                    | 0.0000                              | 1.08 -8                  | 0.0E 1                                | 8.0E-10                                 |
| 08KA<br>08KA     | 10<br>35     | 35<br>183    | 320<br>311             | ROHR<br>1.15   | 320<br>358 | 1.00         | 320<br>358  | BK<br>BK       | 0.0804                   | 1.0E -8            | 8.0E-10<br>1.0E -9                 | 1.00 | 320<br>350             | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 8.0E-10<br>1.0E -9                      |
| UKR2             | 183          | 515          | 311                    | 1.40           | 435        | FLLG         | 435         | ВК             | 0.1489                   | 1.0E -8            | 1.5E -9                            | 1.25 | 544                    | 0.0838                              | 1.0E -8                  | 8.4E-10                               | 2.3E -9                                 |
| UKA1<br>MALM     | 515<br>687   | 687<br>718   | 311                    | 1.60           | 498<br>342 | FLLG<br>1.00 | 498<br>342  | BK<br>BK       | 0.1945                   | 1.0E -8<br>1.0E -8 | 1.9E -9<br>9.2E-10                 | 1.80 | 896<br>342             | 0.4356                              | 1.0E -B                  | 4.4E -9<br>0.0E 1                     | 6.3E -9<br>9.2E-10                      |
| MALM             | 718          | 833          | 270                    | 1.10           | 297        | 1.00         | 297         | вк             | 0.0693                   | 1.0E -B            | 6.9E-10                            | 1.00 | 297                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 6.9E-10                                 |
| MALM             | 833          | 1145         | 219                    | 1.10           | 241        | 1.00         | 241         | BK<br>BK       | 0.0456                   | 1.0E ~8<br>1.0E ~8 | 4.6E-10<br>3.5E-10                 | 1.00 | 241                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 4.6E-10<br>3.5E-10                      |
| MALM<br>MALM     | 1145<br>1150 | 1150<br>1151 | 193<br>193             | 1.10           | 212        | 1.00         | 212         | ZEM            | 0.0354                   | 1.0E -8            | 3.5E-10                            | 1.00 | 212                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 3.5E-10                                 |
| MALM             | 1151         | 1239         | 133                    | 1.10           | 146        | 1.00         | 146         | ZEM            | 0.0168                   | 1.0E -8            | 1.7E-10                            | 1.00 | 146                    | 0.0000                              | 1.0 E →B                 | 0.0E 1                                | 1.7E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 183 m T=  $9.59E-10 \text{ m}^3/\text{s}$ Teufenbereich: 183 - 515 m T=  $2.33E-9 \text{ m}^3/\text{s}$ Teufenbereich: 515 - 687 m T=  $6.30E-9 \text{ m}^3/\text{s}$ Teufenbereich: 183 - 687 m T=  $2.96E-9 \text{ m}^3/\text{s}$ Teufenbereich: 687 - 1239 m T=  $3.87E-10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 19 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung UEFINGEN 1

## Bohrung Nr. 100: UEFINGEN 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 0 % Sedimentationsanteil des Nachfalls: 0 %

| Strati-      | Teufen       | bereich      |             |              |            |              | В          | ohrlochfüllung |                          |                    |                                    |            |                     | Auflockerun           | gszone                   |                          | _                                       |
|--------------|--------------|--------------|-------------|--------------|------------|--------------|------------|----------------|--------------------------|--------------------|------------------------------------|------------|---------------------|-----------------------|--------------------------|--------------------------|-----------------------------------------|
| tigraphie    | von<br>[m]   | bis<br>[m]   | dia<br>(mm) | E₁<br>[-]    | d2<br>[mm] | [-]          | (mm)       | Füllung<br>[-] | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s]       | T <sub>F</sub> (m <sup>3</sup> /s) | E A<br>[-] | d <sub>A</sub> [mm] | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKA<br>OBKA | 0            | 10<br>35     | 320<br>320  | ROHA<br>ROHA | 320<br>320 | 1.00         | 320<br>320 | ZEM<br>BK      | 0.0804<br>0.0804         | 1.0E -8<br>1.0E -8 | 8.0E-10<br>8.0E-10                 | 1.00       | 320<br>320          | 0.0000                | 1.0E -8<br>1.0E -8       | 0.0E 1                   | 8.0 E-10<br>8.0 E-10                    |
| OBKR<br>UKR2 | 35<br>183    | 183<br>515   | 311<br>311  | 1.15         | 358<br>435 | 1.00<br>FLLG | 358<br>435 | BK<br>BK       | 0.1005                   | 1.0E -8<br>1.0E -8 | 1.0E -9<br>1.5E -9                 | 1.00       | 358<br>544          | 0.0000<br>0.0838      | 1.0€ -8<br>1.0€ -8       | 0.0E 1<br>B.4E-10        | 1.0E -9<br>2.3E -9                      |
| UKR1         | 515          | 687<br>718   | 311         | 1.60         | 498        | FLLG         | 498<br>342 | BK<br>BK       | 0.1945<br>0.0919         | 1.0E -8<br>1.0E -8 | 1.9E -9<br>9.2E-10                 | 1.80       | 896<br>342          | 0.4356<br>0.0000      | 1.0E -8                  | 4.4E -9<br>0.0E 1        | 6.3E -9<br>9.2E-10                      |
| MALM<br>MALM | 687<br>718   | 833          | 311<br>270  | 1.10         | 297        | 1.00         | 297        | вк             | 0.0693                   | 1.0E -8            | 6.9E-10<br>4.6E-10                 | 1.00       | 297<br>241          | 0.0000                | 1.0E -8<br>1.0E -8       | 0.0E 1                   | 6.9E-10<br>4.6E-10                      |
| MALM<br>MALM | 833<br>1145  | 1145<br>1150 | 219<br>193  | 1.10         | 241        | 1.00         | 241        | BK<br>BK       | 0.0354                   | 1.0E -8            | 3.5E-10                            | 1.00       | 212                 | 0.0000                | 1.0E -8                  | 0.0E 1                   | 3.5E-10<br>3.5E-10                      |
| MALM<br>MALM | 1150<br>1151 | 1151<br>1239 | 193<br>133  | 1.10         | 212<br>146 | 1.00         | 212<br>146 | ZEM ZEM        | 0.0354<br>0.0168         | 1.0E -8<br>1.0E -8 | 3.5E-10<br>1.7E-10                 | 1.00       | 212                 | 0.0000                | 1.0E -8                  | 0.0E 1                   | 1.7 E-10                                |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 183 m T= 9.59E-10 m<sup>3</sup>/s Teufenbereich: 183 - 515 m T= 2.33E -9 m<sup>3</sup>/s Teufenbereich: 515 - 687 m T= 6.30E -9 m<sup>3</sup>/s Teufenbereich: 183 - 687 m T= 2.96E -9 m<sup>3</sup>/s Teufenbereich: 687 - 1239 m T= 3.67E-10 m<sup>3</sup>/s

Tab. E - 13.3 / 19 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung UEFINGEN 1

# Bohrung Nr. 100: UEFINGEN 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 0 %

Sedimentationsanteil des Nachfalls: 0 %

| Strati-      | Teufen       | bereich      |            |                    |                        |              | В          | ohrlochfüllun <b>g</b> |                  |                    |                        |            |             | Auflockerun              | gszone                   |                                       |                                         |
|--------------|--------------|--------------|------------|--------------------|------------------------|--------------|------------|------------------------|------------------|--------------------|------------------------|------------|-------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie    | vor<br>[m]   | bis<br>[m]   | đị<br>(mm) | E <sub>1</sub> (-) | d <sub>2</sub><br>[mm] | E 2<br>[-]   | dg<br>[mm] | Füllung<br>{-}         | A բ<br>[m²]      | kfF<br>[m/s]       | T <sub>F</sub> [m:3/s] | E A<br>(−) | d A<br>[mm] | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| OBKR         | 0            | 29           | 320        | ROHR               | 320                    | 1.00         | 320        | НО                     | 0.0804           | 1.0E -3            | 8.0€ -5                | 1.00       | 320         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 8.0E -5                                 |
| OBKR<br>OBKA | 29<br>35     | 35<br>183    | 320<br>311 | 1.15               | 320<br>358             | 1.00         | 320<br>358 | BK<br>BK               | 0.0804           | 1.0E -8            | 8.0E-10<br>1.0E -9     | 1.00       | 320<br>358  | 0.0000                   | 1.0E -8<br>1.0E -B       | 0.0E 1                                | 8.0 €-10<br>1.0 E -9                    |
| UKR2         | 183          | 515          | 311        | 1.40               | 435                    | FLLG         | 435        | вк                     | 0.1489           | 1.0E -8            | 1.5E -9                | 1.25       | 544         | 0.0838                   | 1.0E -8                  | 8.4E-10                               | 2.3E -9                                 |
| UKR1<br>MALM | 515<br>687   | 687<br>718   | 311<br>311 | 1.60               | 498<br>342             | FLLG<br>1.00 | 498<br>342 | BK<br>BK               | 0.1945           | 1.0E -8            | 1.9E -9<br>9.2E-10     | 1.80       | 896<br>342  | 0.4356                   | 1.0E -8                  | 4.4E -9<br>0.0E 1                     | 6.3E -9<br>9.2E-10                      |
| MALM         | 718          | 833          | 270        | 1.10               | 297                    | 1.00         | 297        | ВК                     | 0.0693           | 1.0 € -8           | 6.9E-10                | 1.00       | 297         | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 6.9E-10                                 |
| MALM         | 833          | 1145         | 219        | 1.10               | 241                    | 1.00         | 241        | BK<br>BK               | 0.0456<br>0.0354 | 1.0E -8<br>1.0E -8 | 4.6E-10<br>3.5E-10     | 1.00       | 241<br>212  | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 4.6E-10<br>3.5E-10                      |
| MALM<br>MALM | 1145<br>1151 | 1151<br>1239 | 193        | 1.10               | 146                    | 1.00         | 146        | BK                     | 0.0168           | 1.0E -8            | 1.7E-10                | 1.00       | 146         | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 1.7E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 183 m T=  $1.18E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 183 - 515 m T=  $2.33E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 515 - 687 m T=  $6.30E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 183 - 687 m T=  $2.96E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 687 - 1239 m T=  $3.87E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 19 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung UEFINGEN 1

## Bohrung Nr. 166: UEFINGEN 2

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 54 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufeni     | bereich    |            |                       | _           |              | В           | ohrlochfüllung   |                          |                    |                                       |                       |                        | Auflockerun                         | igszone                  |                                       | 1                                       |
|------------------|-------------|------------|------------|-----------------------|-------------|--------------|-------------|------------------|--------------------------|--------------------|---------------------------------------|-----------------------|------------------------|-------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>(m)  | bis<br>(m) | d1<br>[mm] | E <sub>1</sub><br>(–] | d 2<br>[mm] | E 2          | dig<br>(mm) | füllung<br>[-]   | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s]       | T <sub>F</sub><br>[m <sup>3</sup> /s] | € <sub>A</sub><br>[-] | d <sub>A</sub><br>[mm] | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR<br>08KR     | <br>0<br>17 | 17<br>35   | 279<br>279 | ROHR<br>ROHA          | 279<br>279  | 1.00         | 279<br>279  | SED/ZE<br>SED/ZE | 0.0611<br>0.0611         | 1.0E -8<br>1.0E -8 | 6.1E-10<br>6.1E-10                    | 1.00                  | 279<br>279             | 0.0000                              | 1.0 € -8<br>1.0 E -8     | 0.0E 1<br>0.0E 1                      | 6.1E-10<br>6.1E-10                      |
| OBKR             | 35          | 66         | 216        | 1.15                  | 248         | 1.00         | 248         | HD /75           | 0.0485                   | 1.0E -3            | 4.BE -5                               | 1.00                  | 248<br>248             | 0.0000                              | 1.0E -8                  | 0.0E 1<br>0.0E 1                      | 4.8E -5<br>4.8E-10                      |
| OBKR<br>OBKR     | 66<br>105   | 105<br>260 | 216        | 1.15                  | 248         | 1.00         | 248<br>248  | SED/ZE<br>HD     | 0.0485                   | 1.0E -8<br>1.0E -3 | 4.8E-10<br>4.8E-5                     | 1.00                  | 248                    | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 4.8E -5                                 |
| UKR2             | 260         | 320        | 216        | 1.40                  | 302         | 1.35         | 408         | HD<br>NF         | 0.1309<br>0.1309         | 1.0E -3<br>1.0E -8 | 1.3E -4<br>1.3E -9                    | 1.25                  | 510<br>510             | 0.0736<br>0.0736                    | 1.0E -8                  | 7.4E-10<br>7.4E-10                    | 1.3E -4<br>2.0E -9                      |
| UKR2<br>UKA2     | 320<br>498  | 498<br>554 | 216<br>216 | 1.40                  | 302         | 1.35<br>FLLG | 408<br>302  | SED              | 0.1309                   | 1.0E -8            | 7.2E-10                               | 1.25                  | 378                    | 0.0404                              | 1.0E ~8                  | 4.0E-10                               | 1.1E -9                                 |
| UKR1             | 554         | 705        | 216        | 1.60                  | 346         | FLLG         | 346         | SED              | 0.093B<br>0.0443         | 1.0E -8            | 9.4E-10<br>4.4E-10                    | 1.80                  | 622<br>238             | 0.2101                              | 1.0E -8                  | 2.1E ~9                               | 3.0E -9<br>4.4E-10                      |
| MALM<br>MALM     | 705<br>942  | 942<br>961 | 216        | 1.10                  | 238<br>238  | 1.00         | 238<br>238  | SED<br>ZEM       | 0.0443                   | 1.0E -8            | 4.4E-10                               | 1.00                  | 238                    | 0.0000                              | 1.0E -8.                 | 0.0E 1                                | 4.4E-10                                 |
| MALM             | 961         | 1011       | 197        | 1.10                  | 217         | 1.00         | 217         | ZEM              | 0.0369                   | 1.0E -B            | 3.7E-10                               | 1.00                  | 217                    | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 3.7E-10                                 |

### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 260 m T= 1.89E -9 m $^3$ /s Teufenbereich: 260 - 554 m T= 2.15E -9 m $^3$ /s Teufenbereich: 554 - 705 m T= 3.04E -9 m $^3$ /s Teufenbereich: 260 - 705 m T= 2.38E -9 m $^3$ /s Teufenbereich: 705 - 1011 m T= 4.29E-10 m $^3$ /s

Tab. E - 13.3 / 20 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung UEFINGEN 2

# Bohrung Nr. 166: UEFINGEN 2

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 54 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-       | Teufen     | bereich            |                        |              |             |                | В          | ohrlochfüllung |                   |                    |                       |              |                        | Auflockerun                         | gszone                   |                          |                                         |
|---------------|------------|--------------------|------------------------|--------------|-------------|----------------|------------|----------------|-------------------|--------------------|-----------------------|--------------|------------------------|-------------------------------------|--------------------------|--------------------------|-----------------------------------------|
| tigraphie [-] | von<br>[m] | bis<br>[m]         | d <sub>1</sub><br>(mm) | 터<br>[-]     | d 2<br>[mm] | E <sub>2</sub> | dg<br>[mm] | Füllung<br>(-) | (m <sup>2</sup> ) | kfF<br>[m/s]       | T <sub>F</sub> (m3/s) | E A<br>[-]   | d <sub>A</sub><br>[mm] | A <sub>A</sub><br>(m <sup>2</sup> ) | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR<br>OBKR  | 0<br>17    | 17<br>35           | 279<br>279             | ROHA<br>ROHA | 279<br>279  | 1.00           | 279<br>279 | HD<br>HD       | 0.0611<br>0.0611  | 1.0€ -3<br>1.0€ -3 | 6.1E -5<br>6.1E -5    | 1.00         | 279<br>279             | 0.0000                              | 1.0E -8<br>1.0E -8       | 0.0E 1                   | 6.1E -5<br>6.1E -5                      |
| OBKR<br>UKA2  | 35<br>260  | 260<br>308         | 216<br>216             | 1.15<br>1.40 | 248<br>302  | 1.00<br>  1.35 | 248<br>408 | HD<br>  HD     | 0.0485<br>0.1309  | 1.0E -3<br>1.0E -3 | 4.8E -5<br>1.3E -4    | 1.00<br>1.25 | 248<br>510             | 0.0000<br>0.0736                    | 1.0E -8<br>1.0E -8       | 0.0E 1<br>7.4E-10        | 4.8E -5<br>1.3E -4                      |
| UKR2          | 308<br>450 | 450<br>47 <b>1</b> | 216<br>216             | 1.40         | 302<br>302  | 1.35<br>FLLG   | 408<br>302 | NF<br>BK/ZEM   | 0.1309<br>0.0718  | 1.0E -8<br>1.0E -8 | 1.3E -9<br>7.2E-10    | 1.25<br>1.25 | 510<br>378             | 0.0736<br>0.0404                    | 1.0E -8                  | 7.4E-10<br>4.0E-10       | 2.0E -9<br>1.1E -9                      |
| UKR2<br>UKR1  | 471<br>554 | 554<br>705         | 216<br>216             | 1.40<br>1.60 | 302<br>346  | FLLG<br>FLLG   | 302<br>346 | SED<br>SED     | 0.0718<br>0.0938  | 1.0E -8<br>1.0E -8 | 7.2E-10<br>9.4E-10    | 1.25<br>1.80 | 378<br>622             | 0.0404<br>0.2101                    | 1.0E -B                  | 4.0E-10<br>2.1E -9       | 1.1E -9<br>3.0E -9                      |
| MALM<br>MALM  | 705<br>942 | 942<br>961         | 216<br>216             | 1.10         | 238<br>238  | 1.00           | 238<br>238 | SED<br>ZEM     | 0.0443            | 1.0E -8            | 4.4E-10<br>4.4E-10    | 1.00         | 238<br>238             | 0.0000                              | 1.0E -8                  | 0.0E 1                   | 4.4E-10<br>4.4E-10                      |
| MAL.M         | 961        | 1011               | 197                    | 1.10         | 217         | 1.00           | 217        | ZEM            | 0.0369            | 1.0E -8            | 3.7E-10               | 1.00         | 217                    | 0.0000                              | 1.0E -B                  | 0.0E 1                   | 3.7E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 260 m T= 4.99E -5 m<sup>3</sup>/s Teufenbereich: 260 - 554 m T= 1.81E -9 m<sup>3</sup>/s Teufenbereich: 554 - 705 m T= 3.04E -9 m<sup>3</sup>/s Teufenbereich: 260 - 705 m T= 2.10E -9 m<sup>3</sup>/s Teufenbereich: 705 - 1011 m T= 4.29E-10 m<sup>3</sup>/s

Tab. E – 13.3 / 20 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung UEFINGEN 2

# Bohrung Nr. 166: UEFINGEN 2

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 54 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                     |                         |               |            | В          | ohrlochfüllung |             |              |                     |                         |                         | Auflockerun              | gszone                   |                                       | ł                                       |
|------------------|------------|------------|---------------------|-------------------------|---------------|------------|------------|----------------|-------------|--------------|---------------------|-------------------------|-------------------------|--------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(-) | von<br>[m] | bis<br>(m) | d <sub>1</sub> (mm) | E <sub>1</sub><br>  [-] | ៨ 2<br>(ភាពា) | E 2<br>[-] | dg<br>[mm] | Füllung<br>[–] | A F<br>[m²] | kfF<br>[m/s] | (m <sup>3</sup> /s) | E <sub>A</sub> !<br>[-] | di <sub>A</sub><br>[mm] | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| GUAR             | 0          | 17         | 279                 | ROHR                    | 279           | 1.00       | 279        | HD             | 0.0611      | 1.0E -3      | 6.1E -5             | 1.00                    | 279                     | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 6.1E -5                                 |
| OBKR             | 17         | 35         | 279                 | ROHR                    | 279           | 1.00       | 279        | HO             | 0.0611      | 1.0E -3      | 6.18 -5             | 1.00                    | 279                     | 0.0000                   | 1.0E -8                  | 0.0€ 1                                | 6.1E -5                                 |
| OBKR             | 35         | 260        | 216                 | 1.15                    | 248           | 1.00       | 248        | HD             | 0.0485      | 1.0E -3      | 4.8E -5             | 1.00                    | 248                     | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 4.8E -5                                 |
| UKR2             | 560        | 319        | 216                 | 1.40                    | 302           | 1.35       | 40B        | HD             | 0.1309      | 1.0E -3      | 1.3E -4             | 1.25                    | 510                     | 0.0736                   | 1.0E -8                  | 7.4E-10                               | 1.3E ~4                                 |
| UKR2             | 319        | 496        | 216                 | 1.40                    | 302           | 1.35       | 408        | NF             | 0.1309      | 1.0E -8      | 1.3E -9             | 1.25                    | 510                     | 0.0736                   | 1.0E -8                  | 7.4E-10                               | 2.0E -9                                 |
| UKR2             | 496        | 501        | 216                 | 1.40                    | 302           | FLLG       | 302        | вĸ             | 0.0718      | 1.0E -8      | 7.2E-10             | 1.25                    | 378                     | 0.0404                   | 1.0 € -8                 | 4.0E-10                               | 1.1E -9                                 |
| UKR2             | 501        | 554        | 216                 | 1.40                    | 302           | FLLG       | 302        | SED            | 0.0718      | 1.0E -B      | 7.2E-10             | 1.25                    | 378                     | 0.0404                   | 1.0E -B                  | 4.0 E-10                              | 1.1E -9                                 |
| UKR1             | 554        | 705        | 216                 | 1.60                    | 346           | FLLG       | 346        | SED            | 0.0938      | 1.0E -8      | 9.4E-10             | 1.80                    | 622                     | 0.2101                   | 1.0E -8                  | 2.1E -9                               | 3.0E -9                                 |
| MALM             | 705        | 961        | 216                 | 1.10                    | 238           | 1.00       | 238        | SED            | 0.0443      | 1.0E -8      | 4.4E-10             | 1.00                    | 238                     | 0.0000                   | 1.0E -8                  | 0.0E 1                                | 4.4E-10                                 |
| MALM             | 961        | 1011       | 197                 | 1.10                    | 217           | 1.00       | 217        | SED            | 0.0369      | 1.0E -8      | 3.7E-10             | 1.00                    | 217                     | 0.0000                   | 1.0E -B                  | 0.0E 1                                | 3.7E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 260 m T=  $4.99E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 260 - 554 m T=  $2.13E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 554 - 705 m T=  $3.04E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 260 - 705 m T=  $2.37E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 705 - 1011 m T=  $4.29E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 20 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung UEFINGEN 2

### Bohrung Nr. 106: VECHELDE 2A

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 %

Sedimentationsanteil des Nachfalls :\*\*\* %

| Strati-          | Teufen     | bereich    |                     |                    |             |       | 8          | ohrlochfüllung |                          |                          |                                    | [              |      | Auflockerun           | gszone                   |                                       |                                         |
|------------------|------------|------------|---------------------|--------------------|-------------|-------|------------|----------------|--------------------------|--------------------------|------------------------------------|----------------|------|-----------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>(m) | d <sub>1</sub> (mm) | E <sub>1</sub> (⊷) | d 2<br>(mm) | E 2 [ | dg<br>[mm] | Füllung<br>(-) | A F<br>[m <sup>2</sup> ] | k <sub>fF</sub><br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E <sub>A</sub> | (mm) | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 30         | 384                 | ROHA               | 384         | 1.00  | 384        | ZEM            | 0.1158                   | 1.0E -8                  | 1.2E -9                            | 1.00           | 384  | 0.0000                | 1.0E -B                  | 0.0E 1                                | 1.2E -9                                 |
| UKR1             | 30         | 116        | 384                 | ROHR               | 384         | ROHR  | 384        | ZEM            | 0.1158                   | 1.0E -B                  | 1.2E -9                            | 1.90           | 730  | 0.3023                | 1.0E ~8                  | 3.0E -9                               | 4.2E -9                                 |
| UKR1             | 116        | 150        | 279                 | ROHR               | 279         | ROHR  | 279        | ZEM            | 0.0611                   | 1.0E -B                  | 6.1E-10                            | 1.92           | 536  | 0.1642                | 1.0E -8                  | 1.6E -9                               | 2.3E -9                                 |
| UKR1             | 150        | 479        | 279                 | ROHR               | 279         | ROHR  | 279        | HB             | 0.0611                   | 1.0E -3                  | 5.1E -5                            | 1.92           | 536  | 0.1642                | 1.0E ~8                  | 1.6E -9                               | 6.1E -5                                 |
| UKR1             | 479        | 538        | 279                 | ROHR               | 279         | AQHA  | 279        | SED            | 0.0611                   | 1.0E -8                  | 6.1E-10                            | 1.92           | 536  | 0.1642                | 1.0 E −B                 | 1.6E -9                               | 2.3E -9                                 |
| MALM             | 538        | 686        | 279                 | ROHA               | 279         | 1.00  | 279        | SED            | 0.0611                   | 1.0E -8                  | 6.1E-10                            | 1.00           | 279  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 6.1E-10                                 |
| MALM             | 686        | 700        | 216                 | 1.10               | 238         | 1.00  | 238        | SED            | 0.0443                   | 1.0E -8                  | 4.4E-10                            | 1.00           | 238  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 4.4E-10                                 |
| MALM             | 700        | 791        | 216                 | 1.10               | 238         | 1.00  | 238        | ZEM            | 0.0443                   | 1.0E -8                  | 4.4E-10                            | 1.00           | 238  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 4.4E-10                                 |
| MALM             | 791        | 1125       | 216                 | 1.10               | 238         | 1.00  | 238        | ZEM            | 0.0443                   | 1.0E -B                  | 4.4E-10                            | 1.00           | 238  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 4.4E-10                                 |
| DOGG             | 1125       | 1200       | 216                 | 1.40               | 302         | 1.00  | 302        | ZEM            | 0.0718                   | 1.0E -8                  | 7.2E-10                            | 1.00           | 302  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |
| DOGG             | 1200       | 1470       | 216                 | 1.40               | 302         | 1.00  | 302        | HD             | 0.0718                   | 1.0E -3                  | 7.2E -5                            | 1.00           | 302  | 0.0000                | 1.0E -B.                 | 0.0E 1                                | 7.2E -5                                 |
| DOGG             | 1470       | 1630       | 216                 | 1.40               | 302         | 1.00  | 302        | SED            | 0.0718                   | 1.0E -8                  | 7.2E-10                            | 1.00           | 302  | 0.0000                | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |
| LIAS             | 1630       | 1650       | 216                 | 1.40               | 302         | 1.00  | 302        | SED            | 0.0718                   | 1.0€ -8                  | 7.2E-10                            | 1.00           | 302  | 0.0000                | 1.0£ -8                  | 0.0E 1                                | 7.2E-10                                 |
| LIAS             | 1650       | 1834       | 216                 | 1.40               | 302         | 1.00  | 302        | ZEM            | 0.0718                   | 1.0E -B                  | 7.2E-10                            | 1.00           | 302  | 0.0000                | 1.0E -B                  | 0.0E 1                                | 7.2E-10                                 |
| LIAS             | 1834       | 1853       | 193                 | 1.40               | 270         | 1.00  | 270        | ZEM            | 0.0573                   | 1.0E -8                  | 5.7E-10                            | 1.00           | 270  | 0.0000                | 1.0E ~B                  | 0.0E 1                                | 5.7E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T=  $1.16E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 30 - 538 m T=  $8.21E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 538 - 1853 m T=  $7.01E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 21 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 2A

# Bohrung Nr. 106: VECHELDE 2A

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 % Sedimentationsanteil des Nachfalls: \*\*\* %

| Strati-                                                                      | Teufen                                                   | bereich                                                             | <u> </u>                                                           |                                                              |                                                                    |                                                              | В                                                                  | ohrlochfüllung                |                                                                                        |                                                                                                 |                                                                                                 |                                                              |                                                             | Auflockerun                                                                  | igszone                                                                              |                                                                                  | _                                                                                               |
|------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| tigraphie                                                                    | von<br>(m)                                               | bis<br>[m]                                                          | d <sub>1</sub><br>(ուռ)                                            | 터<br>[-]                                                     | (mm)                                                               | E 2                                                          | d 3<br>[mm]                                                        | Füllung<br>[-]                | A F<br>[m <sup>2</sup> ]                                                               | k <sub>fF</sub> [m/s]                                                                           | T <sub>F</sub><br>[m <sup>3</sup> /s]                                                           | € <sub>A</sub><br>[-]                                        | (mm)                                                        | A <sub>A</sub><br>[m <sup>2</sup> ]                                          | k <sub>fA</sub><br>(m/s)                                                             | T <sub>A</sub><br>[m <sup>3</sup> /\$]                                           | T <sub>F+A</sub><br>[m³/s]                                                                      |
| QUAR<br>UKR1<br>UKR1<br>UKR1<br>UKR1<br>MALM<br>MALM<br>MALM<br>MALM<br>DOGG | 0<br>30<br>116<br>280<br>534<br>538<br>686<br>758<br>791 | 30<br>116<br>280<br>534<br>538<br>686<br>758<br>791<br>1125<br>1470 | 384<br>384<br>279<br>279<br>279<br>279<br>216<br>216<br>216<br>216 | ROHR<br>ROHR<br>ROHR<br>ROHR<br>ROHR<br>1.10<br>1.10<br>1.10 | 384<br>384<br>279<br>279<br>279<br>279<br>238<br>238<br>238<br>302 | 1.00<br>ROHR<br>ROHR<br>ROHR<br>HOHR<br>1.00<br>1.00<br>1.00 | 384<br>384<br>279<br>279<br>279<br>279<br>238<br>238<br>238<br>302 | HD HD ZEM SED SED ZEM ZEM ZEM | 0.1158<br>0.1158<br>0.0611<br>0.0611<br>0.0611<br>0.0611<br>0.0443<br>0.0443<br>0.0443 | 1.0E -3<br>1.0E -3<br>1.0E -3<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8 | 1.2E -4<br>1.2E -4<br>6.1E -5<br>6.1E-10<br>6.1E-10<br>4.4E-10<br>4.4E-10<br>4.4E-10<br>7.2E-10 | 1.00<br>1.90<br>1.92<br>1.92<br>1.92<br>1.00<br>1.00<br>1.00 | 384<br>730<br>536<br>536<br>536<br>279<br>238<br>238<br>238 | 0.0000<br>0.3023<br>0.1642<br>0.1642<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8 | 0.0E 1<br>3.0E -9<br>1.6E -9<br>1.6E -9<br>1.6E -9<br>0.0E 1<br>0.0E 1<br>0.0E 1 | 1.2E -4<br>1.2E -4<br>6.1E -5<br>2.3E -9<br>2.3E -9<br>6.1E-10<br>4.4E-10<br>4.4E-10<br>7.2E-10 |
| DOGG<br>LIAS<br>LIAS<br>LIAS                                                 | 1470<br>1630<br>1650<br>1834                             | 1630<br>1650<br>1834<br>1853                                        | 216<br>216<br>216<br>193                                           | 1.40<br>1.40<br>1.40<br>1.40                                 | 302<br>302<br>302<br>270                                           | 1.00<br>1.00<br>1.00<br>1.00                                 | 302<br>302<br>302<br>270                                           | SED<br>SED<br>ZEM<br>ZEM      | 0.0718<br>0.0718<br>0.0718<br>0.0573                                                   | 1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8                                                        | 7.2E-10<br>7.2E-10<br>7.2E-10<br>5.7E-10                                                        | 1.00<br>1.00<br>1.00<br>1.00                                 | 302<br>302<br>302<br>270                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000                                         | 1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8                                             | 0.0E 1<br>0.0E 1<br>0.0E 1<br>0.0E 1                                             | 7.2E-10<br>7.2E-10<br>7.2E-10<br>5.7E-10                                                        |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T= 1.16E -4 m $^3$ /s Teufenbereich: 30 - 538 m T= 4.44E -9 m $^3$ /s Teufenbereich: 538 - 1853 m T= 5.84E-10 m $^3$ /s

Tab. E - 13.3 / 21 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 2A

# Bohrung Nr. 106: VECHELDE 2A

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 40 %
Sedimentationsanteil des Nachfalls:\*\*\* %

| Strati∽          | Teufen       | bereich      |                        |              | -           |              | В.          | ohrlochfüllung |                       |                          |                                    |            |                        | Auflockerur | ngszone                  | _                                     |                                         |
|------------------|--------------|--------------|------------------------|--------------|-------------|--------------|-------------|----------------|-----------------------|--------------------------|------------------------------------|------------|------------------------|-------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>(-) | von<br>[m]   | bis<br>(m)   | d <sub>1</sub><br>(mm) | €1<br>(-)    | d 2<br>[mm] | E 2<br>[-]   | d 3<br>[mm] | Füllung<br>[-] | A F [m <sup>2</sup> ] | k <sub>fF</sub><br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E A<br>[-] | d <sub>A</sub><br>[mm] | AA<br>[m²]  | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0            | 30           | 384                    | ROHR         | 384<br>384  | 1.00<br>ROHA | 384<br>384  | HD<br>HD       | 0.1158                | 1.0E -3<br>1.0E -3       | 1.2E -4<br>1.2E -4                 | 1.00       | 384<br>730             | 0.0000      | 1.0E -8                  | 0.0E 1<br>3.0E -9                     | 1.2E -4                                 |
| UKR1<br>UKR1     | 30<br>116    | 115<br>538   | 364<br>279             | ROHA<br>ROHR | 279         | ROHR         | 279         | HD             | 0.0611                | 1.0E -3                  | 6.1E -5                            | 1.92       | 536                    | 0.1642      | 1.0E -B                  | 1.6E -9                               | 6.1E -5                                 |
| MALM<br>MALM     | 538<br>686   | 686<br>742   | 279<br>216             | ROHR<br>1.10 | 279<br>238  | 1.00         | 279<br>238  | HD<br>HD       | 0.0611                | 1.0E -3<br>1.0E -3       | 6.1E -5<br>4.4E -5                 | 1.00       | 279<br>238             | 0.0000      | 1.0E -8                  | 0.0E 1                                | 6.1E -5<br>4.4E -5                      |
| MALM             | 742          | 791          | 216                    | 1.10         | 238         | 1.00         | 238<br>238  | SED<br>SED     | 0.0443                | 1.0E -8<br>1.0E -8       | 4.4E-10<br>4.4E-10                 | 1.00       | 238<br>238             | 0.0000      | 1.0E -B<br>1.0E -B       | 0.0E 1                                | 4.4E-10                                 |
| MALM<br>DOGG     | 791<br>1125  | 1125<br>1630 | 216<br>216             | 1.10         | 23B<br>302  | 1.00         | 302         | SED            | 0.0718                | 1.0E -8                  | 7.2E-10                            | 1.00       | 302                    | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |
| LIAS             | 1630<br>1834 | 1834<br>1853 | 216<br>193             | 1.40         | 302<br>270  | 1.00         | i           | SED<br>SED     | 0.0718                | 1.0E -8<br>1.0E -8       | 7.2E-10<br>5.7E-10                 | 1.00       | 302<br>270             | 0.0000      | 1.0E -8<br>1.0E -8       | 0.0E 1                                | 7.2E-10<br>5.7E-10                      |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T= 1.16E -4 m $^3$ /s Teufenbereich: 30 - 538 m T= 6.64E -5 m $^3$ /s Teufenbereich: 538 - 1853 m T= 6.98E-10 m $^3$ /s

Tab. E - 13.3 / 21 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 2A

## Bohrung Nr. 107: VECHELDE 3

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 58 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-   | Teufenl        | pereich    |            |          |             |           | В          | ohrlochfüllung |             |              |                                    |                |     | Auflockerun | gszone                   |                                       |                                         |
|-----------|----------------|------------|------------|----------|-------------|-----------|------------|----------------|-------------|--------------|------------------------------------|----------------|-----|-------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie | von - :<br>[m] | bis<br>[m] | d1<br>[mm] | 터<br>(-) | d 2<br>[mm] | €2<br>[-] | dg<br>[mm] | Füllung<br>[—] | A F<br>[m²] | kfF<br>(m/s) | T <sub>F</sub> [m <sup>3</sup> /s] | E <sub>A</sub> | A p | A A [m2]    | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR      | 0              | 25         | 279        | ROHR     | 279         | 1.00      | 279        | ZEM            | 0.0611      | 1.0E -B      | 6.1E-10                            | 1.00           | 279 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 6.1E-10                                 |
| QUAR      | 25             | 30         | 279        | ROHR     | 279         | 1.00      | 279        | HD             | 0.0611      | 1.0E -3      | 6.1E -5                            | 1.00           | 279 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 6.1E -5                                 |
| UKR2      | 30             | 143        | 279        | ROHR     | 279         | аона      | 279        | HD             | 0.0611      | 1.0E -3      | 6.1E -5                            | 1.34           | 374 | 0.0486      | 1.0E ~B                  | 4.9E-10                               | 6.1E ~5                                 |
| UKR2      | 143            | 171        | 270        | 1.00     | 270         | 1.35      | 365        | HD             | 0.1043      | 1.0E -3      | 1.0E -4                            | 1.25           | 456 | 0.0587      | 1.0E -8                  | 5.9E-10                               | 1.0E -4                                 |
| UKAS      | 171            | 256        | 270        | 1.00     | 270         | 1.35      | 365        | NF             | 0.1043      | 1.0€ -8      | 1.0E -9                            | 1.25           | 456 | 0.0587      | 1.0E -8                  | 5.9E-10                               | 1.6E -9                                 |
| UKA2      | 256            | 310        | 270        | 1.00     | 270         | FLLG      | 270        | SED            | 0.0573      | 1.0E -8      | 5.7E-10                            | 1.25           | 338 | 0.0322      | 1.0€ -8                  | 3.2E-10                               | 8.9E-10                                 |
| UKR1      | 310            | 543        | 270        | 1.10     | 297         | FLLG      | 297        | SED            | 0.0693      | 1.0E ~8      | 6.9E-10                            | 1.80           | 535 | 0.1552      | 1.0E -8                  | 1.6E -9                               | 2.2E -9                                 |
| UKR1      | 543            | 605        | 270        | 1.10     | 297         | FLLG      | 297        | ZEM            | 0.0693      | 1.0E -8      | 6.9E-10                            | 1.80           | 535 | 0.1552      | 1.0E ~8                  | 1.6E -9                               | 2.2E -9                                 |
| MALM      | 605            | 700        | 270        | 1.10     | 297         | 1.00      | 297        | ZEM .          | 0.0693      | 1.0E -B      | 6.9E-10                            | 1.00           | 297 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 6.9E-10                                 |
| MALM      | 700            | 1102       | 270        | 1.10     | 297         | 1.00      | 297        | HD             | 0.0693      | 1.0E -3      | 6.9E -5                            | 1.00           | 297 | 0.0000      | 1.0E -B                  | 0.0E 1                                | 6.9E -5                                 |
| MALM      | 1102           | 1120       | 270        | 1.10     | 297         | 1.00      | 297        | SED            | 0.0693      | 1.0E -8      | 6.9E+10                            | 1.00           | 297 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 6.9E-10                                 |
| D066      | 1120           | 1130       | 270        | 1.40     | 378         | 1.00      | 378        | SED            | 0.1122      | 1.0E -8      | 1.1E -9                            | 1.00           | 378 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 1.1E -9                                 |
| DOGG      | 1130           | 1692       | 216        | 1.40     | 302         | 1.00      | 302        | SED            | 0.0718      | 1.0E -B      | 7.2E-10                            | 1.00           | 302 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |
| LIAS      | 1692           | 1749       | 216        | 1.40     | 302         | 1.00      | 302        | SED            | 0.0718      | 1.0E -8      | 7.2E-10                            | 1.00           | 302 | 0.0000      | 1.0 € -B                 | 0.0E 1                                | 7.2E~10                                 |
| LIAS      | 1749           | 1830       | 216        | 1.40     | 302         | 1.00      | 302        | ZEM            | 0.0718      | 1.0E -8      | 7.2E-10                            | 1.00           | 302 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |
| KEUP      | 1830           | 1863       | 216        | 1.00     | 216         | 1.00      | 216        | ZEM            | 0.0366      | 1.0E -8      | 3.7E-10                            | 1.00           | 216 | 0.0000      | 1.0E -8                  | 0.0E 1                                | 3.7E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T= 7.34E-10 m<sup>3</sup>/s
Teufenbereich: 30 - 310 m T= 2.49E-9 m<sup>3</sup>/s
Teufenbereich: 310 - 605 m T= 2.24E-9 m<sup>3</sup>/s
Teufenbereich: 30 - 605 m T= 2.36E-9 m<sup>3</sup>/s
Teufenbereich: 605 - 1863 m T= 1.02E-9 m<sup>3</sup>/s

Tab. E - 13.3 / 22 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 3

# Bohrung Nr. 107: VECHELDE 3

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 58 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |            |          |      |            | В           | ohrlochfüllung |                          |                          |                                       |                       |                | Auflockerun                         | gszone                   |                                       |                                         |
|------------------|------------|------------|------------|----------|------|------------|-------------|----------------|--------------------------|--------------------------|---------------------------------------|-----------------------|----------------|-------------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[+] | von<br>(m) | bis<br>(m) | d1<br>(mm) | 턴<br>(~) | (mm) | E 2<br>[-] | d 3<br>(mm) | Füllung<br>[-] | A F<br>[m <sup>2</sup> ] | k <sub>fF</sub><br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | € <sub>A</sub><br>(~) | d <sub>A</sub> | A <sub>A</sub><br>[m <sup>2</sup> ] | k <sub>fA</sub><br>(m/s) | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| RAUD             | 0          | 30         | 279        | ROHR     | 279  | 1.00       | 279         | HD             | 0.0611                   | 1.0E -3                  | 6,18 -5                               | 1.00                  | 279            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 6.1E -5                                 |
| UKR2             | 30         | 143        | 279        | AOHR     | 279  | ROHR       | 279         | HD             | 0.0611                   | 1.0E -3                  | 6.1E -5                               | 1.34                  | 374            | 0.0486                              | 1.0E -8                  | 4.9E-10                               | 6.1E -5                                 |
| UKR2             | 143        | 284        | 270        | 1.00     | 270  | 1.35       | 365         | HD             | 0.1043                   | 1.0E -3                  | 1.0E -4                               | 1.25                  | 456            | 0.0587                              | 1.0E -8                  | 5.9E-10                               | 1.0E -4                                 |
| UKR2             | 284        | 310        | 270        | 1.00     | 270  | 1.35       | 365         | NF             | 0.1043                   | 1.0E -8                  | 1.0E -9                               | 1.25                  | 456            | 0.0587                              | 1.0E -8                  | 5.9E-10                               | 1.6E -9                                 |
| UKR1             | 310        | 605        | 270        | 1.10     | 297  | 1.35       | 401         | NF             | 0.1263                   | 1.0E -8                  | 1.3E -9                               | 1.80                  | 722            | 0.2828                              | 1.0E -B                  | 2.8E -9                               | 4.1E -9                                 |
| MALM             | 605        | 630        | 270        | 1.10     | 297  | 1.00       | 297         | NF             | 0.0693                   | 1.0E -8                  | 6.9E-10                               | 1.00                  | 297            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 6.9E-10                                 |
| MALM             | 630        | 654        | 270        | 1.10     | 297  | 1.00       | 297         | ZEM            | 0.0693                   | 1.0E -8                  | 6.9E-10                               | 1.00                  | 297            | 0,0000                              | 1.0E -8                  | 0.0E 1                                | 6.9E-10                                 |
| MALM             | 654        | 943        | 270        | 1.10     | 297  | 1.00       | 297         | SED            | 0.0693                   | 1.0E -8                  | 6.9E-10                               | 1.00                  | 297            | 0.0000                              | 1.0€ -8                  | 0.0E 1                                | 6.9E-10                                 |
| MALM             | 943        | 1102       | 270        | 1.10     | 297  | 1.00       | 297         | ZEM            | 0.0693                   | 1.0E -8                  | 6.9E-10                               | 1.00                  | 297            | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 6.9E-10                                 |
| MALM             | 1102       | 1120       | 270        | 1.10     | 297  | 1.00       | 297         | SED            | 0.0693                   | 1.0E -8                  | 6.9E-10                               | 1.00                  | 297            | 0.0000                              | 1.0E ~B                  | 0.0E 1                                | 6.9E-10                                 |
| D066             | 1120       | 1130       | 270        | 1.40     | 378  | 1.00       | 378         | SED            | 0.1122                   | 1.0E -8                  | 1.1E -9                               | 1.00                  | 378            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 1.1E -9                                 |
| DOGG             | 1130       | 1692       | 216        | 1.40     | 302  | 1.00       | 302         | SED            | 0.0718                   | 1.0E -8                  | 7.2E-10                               | 1.00                  | 302            | 0.0000                              | 1.0€ -8                  | 0.0E 1                                | 7.2E-10                                 |
| LIAS             | 1692       | 1749       | 216        | 1.40     | 302  | 1.00       | 302         | SED            | 0.0718                   | 1.0E -8                  | 7.2E-10                               | 1.00                  | 302            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |
| LIAS             | 1749       | 1830       | 216        | 1.40     | 302  | 1.00       | 302         | ZEM            | 0.0718                   | 1.0E -B                  | 7.2E-10                               | 1.00                  | 302            | 0.0000                              | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |
| KEUP             | 1830       | 1863       | 216        | 1.00     | 216  | 1.00       | 216         | ZEM            | 0.0366                   | 1.0E -B                  | 3.7E-10                               | 1.00                  | 216            | 0.0000                              | 1.0E -B                  | 0.0E 1                                | 3.7E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T= 6.11E -5 m<sup>3</sup>/s Teufenbereich: 30 - 310 m T= 1.76E -8 m<sup>3</sup>/s Teufenbereich: 310 - 605 m T= 4.09E -9 m<sup>3</sup>/s Teufenbereich: 30 - 605 m T= 6.53E -9 m<sup>3</sup>/s Teufenbereich: 605 - 1863 m T= 6.92E-10 m<sup>3</sup>/s

Tab. E - 13.3 / 22 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 3

# Bohrung Nr. 107: VECHELDE 3

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 58 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-                                                              | Teufen                                                     | bereich                                                       |                                                                    |                                                              |                                                             |                                                      | В                                                           | ohrlochfüllung                                  |                                                                                        |                                                                                      |                                                                                                 |                                              |                                                                    | Auflockerun                                                                  | igszone                                                                                      |                                                                                  |                                                                                                            |
|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| tigraphie<br>(-)                                                     | von<br>(m)                                                 | bis<br>[m]                                                    | d <sub>1</sub><br>(mm)                                             | 터<br>[-]                                                     | d2<br>[mm]                                                  | € 2<br>[–}                                           | d3<br>(mm)                                                  | Füllung<br>[-]                                  | A F<br>[m <sup>2</sup> ]                                                               | k <sub>fF</sub><br>[m/s]                                                             | T <sub>F</sub><br>[m <sup>3</sup> /s]                                                           | . € <sub>A</sub><br>[-]                      | d A                                                                | A A<br>[m <sup>2</sup> ]                                                     | kfA<br>[m/s]                                                                                 | T <sub>A</sub><br>[m3/s]                                                         | T <sub>F+A</sub><br>[m <sup>3</sup> /s]                                                                    |
| GUAR<br>UKR2<br>UKR1<br>UKR1<br>UKR1<br>MALM<br>MALM<br>DOGG<br>DOGG | 0<br>30<br>143<br>310<br>557<br>605<br>903<br>1120<br>1130 | 30<br>143<br>310<br>557<br>605<br>903<br>1120<br>1130<br>1692 | 279<br>279<br>270<br>270<br>270<br>270<br>270<br>270<br>270<br>216 | ROHR<br>ROHA<br>1.00<br>1.10<br>1.10<br>1.10<br>1.10<br>1.40 | 279<br>279<br>270<br>297<br>297<br>297<br>297<br>378<br>302 | 1.00<br>ROHR<br>1.35<br>1.35<br>1.35<br>1.00<br>1.00 | 279<br>279<br>365<br>401<br>401<br>297<br>297<br>378<br>302 | HD<br>HD<br>HD<br>NF<br>NF<br>SED<br>SED<br>SED | 0.0611<br>0.0611<br>0.1043<br>0.1263<br>0.1263<br>0.0693<br>0.0693<br>0.1122<br>0.0718 | 1.0E -3<br>1.0E -3<br>1.0E -3<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8 | 6.1E -5<br>6.1E -5<br>1.0E -4<br>1.3E -4<br>1.3E -9<br>6.9E-10<br>6.9E-10<br>1.1E -9<br>7.2E-10 | 1.00<br>1.34<br>1.25<br>1.80<br>1.00<br>1.00 | 279<br>374<br>456<br>722<br>722<br>297<br>297<br>378<br>302<br>302 | 0.0000<br>0.0486<br>0.0587<br>0.2828<br>0.2828<br>0.0000<br>0.0000<br>0.0000 | 1.0 E -8<br>1.0 E -8 | 0.0E 1<br>4.9E-10<br>5.9E-10<br>2.8E -9<br>2.8E -9<br>0.0E 1<br>0.0E 1<br>0.0E 1 | 6.1E -5<br>6.4E -5<br>1.0E -4<br>1.3E -4<br>4.1E -9<br>6.9E-10<br>6.9E-10<br>1.1E -9<br>7.2E-10<br>7.2E-10 |
| LIAS<br>KEUP                                                         | 1692<br>1830                                               | 1830<br>1863                                                  | 216                                                                | 1.40                                                         | 302<br>216                                                  | 1.00                                                 | 302                                                         | SED<br>SED                                      | 0.0718<br>0.0366                                                                       | 1.0E -8                                                                              | 7.2E-10<br>3.7E-10                                                                              | 1.00                                         | 216                                                                | 0.0000                                                                       | 1.0E -8                                                                                      | 0.0E 1                                                                           | 3.7E-10                                                                                                    |

#### mittlere (axiale)\_Transmissivitäten

Teufenbereich: 0 - 30 m T= 6.11E -5 m $^3$ /s Teufenbereich: 30 - 310 m T= 8.12E -5 m $^3$ /s Teufenbereich: 310 - 605 m T= 2.51E -8 m $^3$ /s Teufenbereich: 30 - 605 m T= 4.90E -8 m $^3$ /s Teufenbereich: 605 - 1863 m T $^2$  6.92E-10 m $^3$ /s

Tab. E - 13.3 / 22 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 3

# Bohrung Nr. 111: VECHELDE 4

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung : 58 % Sedimentationsanteil des Nachfalls : 75 %

| Strati-         | Teufen     | bereich    |            |                |            |            | B           | ohrlochfüllung |                          |              |                                       |                       |       | Auflockerun | gszone                   |                                       |                                         |
|-----------------|------------|------------|------------|----------------|------------|------------|-------------|----------------|--------------------------|--------------|---------------------------------------|-----------------------|-------|-------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[] | von<br>(m) | bis<br>[m] | d1<br>(mm) | E <sub>1</sub> | d2<br>[mm] | E 2<br>[-] | d 3<br>[mm] | Füllung<br>[-] | A F<br>(m <sup>2</sup> ) | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub><br>[-] | diA ( | A A<br>[m2] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR            | 0          | 20         | 320        | ROHR           | 320        | 1.00       | 320         | ZEM            | 0.0804                   | 1.0E -8      | 8.0E-10                               | 1.00                  | 320   | 0.0000      | 1.0E -8                  | 0.0E 1                                | 8.0E-10                                 |
| QUAR            | 20         | 30         | 320        | ROHR           | 320        | 1.00       | 320         | HD             | 0.0804                   | 1.0E -3      | 8.0E -5                               | 1.00                  | 320   | 0.0000      | 1.0E -8                  | 0.0E 1                                | 8.0E -5                                 |
| UKR2            | 30         | 152        | 320        | ROHR           | 320        | ROHR       | 320         | HD             | 0.0804                   | 1.0E -3      | B.0E -5                               | 1.33                  | 426   | 0.0618      | 1.0E ~8                  | 6.2E-10                               | B.0 € -5                                |
| UKR2            | 152        | 200        | 311        | 1.40           | 435        | 1.35       | 588         | HD             | 0.2714                   | 1.0E -3      | 2.7E -4                               | 1.25                  | 735   | 0.1526      | 1.0E -B                  | 1.5E -9                               | 2.7E -4                                 |
| UKA2            | 200        | 234        | 311        | 1.40           | 435        | 1.35       | 588         | NF             | 0.2714                   | 1.0E -B      | 2.7E -9                               | 1.25                  | 735   | 0.1526      | 1.0E -8                  | 1.5E -9                               | 4.2E -9                                 |
| UKR1            | 234        | 338        | 311        | 1.60           | 498        | 1.35       | 672         | NF             | 0.3544                   | 1.0E -8      | 3.5E -9                               | 1.80                  | 1209  | 0.7939      | 1.0€ -8                  | 7.9E -9                               | 1.1E ~8                                 |
| UKR1            | 338        | 342        | 270        | 1.60           | 432        | 1.35       | 583         | NF             | 0.2671                   | 1.0E -8      | 2.7E -9                               | 1.80                  | 1049  | 0.5984      | 1.0E -8                  | 6.0E -9                               | 8.7E -9                                 |
| UKA1            | 342        | 592        | 270        | 1.60           | 432        | FLLG       | 432         | SED            | 0.1466                   | 1.0E -B      | 1.5E -9                               | 1.80                  | 778   | 0.3283      | 1.0€ -8                  | 3.3E -9                               | 4.7E ~9                                 |
| MALM            | 592        | 934        | 270        | 1.10           | 297        | 1.00       | 297         | SED            | 0.0693                   | 1.0E -8      | 6.9E-10                               | 1.00                  | 297   | 0.0000      | 1.0E -8                  | 0.0E 1                                | 6.9E-10                                 |
| MALM            | 934        | 1100       | 270        | 1.10           | 297        | 1.00       | 297         | ZEM            | 0.0693                   | 1.0E -8      | 6.9E-10                               | 1.00                  | 297   | 0.0000      | 1.0E ~8                  | 0.0E 1                                | 6.9E-10                                 |
| MALM            | 1100       | 1125       | 270        | 1.10           | 297        | 1.00       | 297         | HD             | 0.0693                   | 1.0E -3      | 6.9E -5                               | 1.00                  | 297   | 0.0000      | 1.0E -8                  | 0.0E 1                                | 6.9E -5                                 |
| DOGG            | 1125       | 1133       | 270        | 1.40           | 378        | 1.00       | 378         | HD             | 0.1122                   | 1.0E -3      | 1.1E -4                               | 1.00                  | 378   | 0.0000      | 1.0E -8                  | 0.0E 1                                | 1.1E -4                                 |
| DOGG            | 1133       | 1315       | 216        | 1.40           | 302        | 1.00       | 302         | HD             | 0.0718                   | 1.0E -3      | 7.2E -5                               | 1.00                  | 302   | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E -5                                 |
| DOGG            | 1316       | 1619       | 216        | 1.40           | 302        | 1.00       | 302         | SEO            | 0.0718                   | 1.0E -8      | 7.2E-10                               | 1.00                  | 302   | 0.0000      | 1.0E -8                  | 0.0E 1                                | 7.2E-10                                 |
| DOGG            | 1619       | 1706       | 216        | 1.40           | 302        | 1.00       | 302         | ZEM            | 0.0718                   | 1.0E -8      | 7.2E-10                               | 1.00                  | 302   | 0.0000      | 1.0 € -8                 | 0.0E 1                                | 7.2E-10                                 |
| LIAS            | 1706       | 1785       | 216        | 1.40           | 302        | 1.00       | 302         | ZEM            | 0.0718                   | 1.0E -B      | 7.2E-10                               | 1.00                  | 302   | 0.0000      | 1.0E -B                  | 0.0E 1                                | 7.2E-10                                 |
| KEUP            | 1785       | 1817       | 216        | 1.00           | 216        | 1.00       | 216         | ZEM            | 0.0366                   | 1.0E -8      | 3.7E-10                               | 1.00                  | 215   | 0.0000      | 1.0E -B                  | 0.0E 1                                | 3.7E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T= 1.21E -9 m $^3$ /s Teufenbereich: 30 - 234 m T= 2.54E -8 m $^3$ /s Teufenbereich: 234 - 592 m T= 5.76E -9 m $^3$ /s Teufenbereich: 30 - 592 m T= 8.01E -9 m $^3$ /s Teufenbereich: 592 - 1817 m T= 8.31E-10 m $^3$ /s

Tab. E - 13.3 / 23 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 4

# Bohrung Nr. 111: VECHELDE 4

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 58 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-   | Teufen | bereich |                |                |                |                | В    | ohrlochfüllung |                   |         | ,                   |                |                | Auflockerun       | gszone          |                     |                     |
|-----------|--------|---------|----------------|----------------|----------------|----------------|------|----------------|-------------------|---------|---------------------|----------------|----------------|-------------------|-----------------|---------------------|---------------------|
| tigraphie | Yon    | bis     | d <sub>1</sub> | E <sub>1</sub> | d <sub>2</sub> | E <sub>2</sub> | d3   | Füllung        | AF                | kfF     | 1 <sub>F</sub>      | E <sub>A</sub> | d <sub>A</sub> | AA                | k <sub>fA</sub> | I T <sub>A</sub>    | TF+A                |
| (-)       | [m]    | [m]     | [mm]           | [-]            | (mm)           | [-]            | [mm] | [-]            | [m <sup>2</sup> ] | [m/s]   | [m <sup>3</sup> /s] | [-]            | [mm]           | [m <sup>2</sup> ] | [m/s]           | [m <sup>3</sup> /s] | [m <sup>3</sup> /s] |
| QUAR      | 0      | 30      | 320            | ROHR           | 320            | 1.00           | 320  | HD             | 0.0804            | 1.0E -3 | 0.0E -5             | 1.00           | 320            | 0.0000            | 1.0E -8         | 0.0E 1              | 8.0E -5             |
| UKR2      | 30     | 152     | 320            | ROHR           | 320            | AOHA           | 320  | HD             | 0.0804            | 1.0E -3 | 8.0E -5             | 1.33           | 426            | 0.0618            | 1.0E -8         | 6.2E-10             | B.0E -5             |
| UKA2      | 152    | 223     | 311            | 1.40           | 435            | 1.35           | 588  | HD             | 0.2714            | 1.0E -3 | 2.7E -4             | 1.25           | 735            | 0.1526            | 1.0E -8         | 1.5E -9             | 2.7E -4             |
| UKR2      | 223    | 234     | 311            | 1.40           | 435            | 1.35           | 588  | NF             | 0.2714            | 1.0E -8 | 2.7E -9             | 1.25           | 735            | 0.1526            | 1.0E -8         | 1.5E -9             | 4.2E -9             |
| UKA1      | 234    | 338     | 311            | 1.60           | 498            | 1.35           | 672  | NF             | 0.3544            | 1.0€ -8 | 3.5E -9             | 1.80           | 1209           | 0.7939            | 1.0E -8         | 7.9E -9             | 1.1E -8             |
| UKR1      | 338    | 438     | 270            | 1.60           | 432            | 1.35           | 583  | NF             | 0.2671            | 1.0E -B | 2.7E -9             | 1.80           | 1049           | 0.5984            | 1.0E -B         | 6.0E -9             | 8.7E -9             |
| UKR1      | 438    | 449     | 270            | 1.60           | 432            | FLLG           | 432  | ZEM            | 0.1466            | 1.0E -8 | 1.5E -9             | 1.80           | 778            | 0.3283            | 1.0E -8         | 3.3E -9             | 4.7E -9             |
| UKR1      | 449    | 592     | 270            | 1.60           | 432            | FLLG           | 432  | SED            | 0.1466            | 1.0E -8 | 1:5E -9             | 1.80           | 778            | 0.3283            | 1.0E -8         | 3.3E -9             | 4.7E -9             |
| MALM      | 592    | 1125    | 270            | 1.10           | 297            | 1.00           | 297  | S€D            | 0.0693            | 1.0E -8 | 6.9E-10             | 1.00           | 297            | 0.0000            | 1:0E -8         | 0.0E 1              | 6.9E-10             |
| DOGG      | 1125   | 1133    | 270            | 1.40           | 378            | 1.00           | 378  | SED            | 0.1122            | 1.0E -8 | 1.1E -9             | 1.00           | 378            | 0.0000            | 1.0E -8         | 0.0E 1              | 1.1E -9             |
| 0066      | 1133   | 1155    | 216            | 1.40           | 302            | 1.00           | 302  | SED            | 0.0718            | 1.0E -8 | 7.2E-10             | 1.00           | 302            | 0.0000            | 1.0E -8         | 0.0E 1              | 7.2E-10             |
| DOGG      | 1155   | 1316    | 216            | 1.40           | 302            | 1.00           | 302  | ZEM            | 0.0718            | 1.0E -B | 7.2E-10             | 1.00           | 302            | 0.0000            | 1.0E -B         | 0.0E 1              | 7.2E-10             |
| Dogg      | 1316   | 1619    | 216            | 1.40           | 302            | 1.00           | 302  | SED            | 0.0718            | 1.0E -8 | 7.2E-10             | 1.00           | 302            | 0.0000            | 1.0E -8         | 0.0E 1              | 7.2E-10             |
| 0000      | 1619   | 1706    | 216            | 1.40           | 302            | 1.00           | 302  | ZEM            | 0.0718            | 1.0E -8 | 7.2E-10             | 1.00           | 302            | 0.0000            | 1.0E -8         | 0.0E 1              | 7.2E-10             |
| LIAS      | 1706   | 1785    | 216            | 1.40           | 302            | 1.00           | 302  | ZEM            | 0.0718            | 1.0E -8 | 7.2E-10             | 1.00           | 302            | 0.0000            | 1.0E -8         | 0.0E 1              | 7.2E-10             |
| KEUP      | 1785   | 1817    | 216            | 1.00           | 216            | 1,00           | 216  | ZEM            | 0.0366            | 1.0E -8 | 3.7E-10             | 1.00           | 216            | 0.0000            | 1.0E -8         | 0.0E 1              | 3.7E-10             |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T=  $8.04E - 5 \text{ m}^3/\text{s}$ Teufenbereich: 30 - 234 m T=  $7.86E - 6 \text{ m}^3/\text{s}$ Teufenbereich: 234 - 592 m T=  $6.75E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 30 - 592 m T=  $1.01E - 8 \text{ m}^3/\text{s}$ Teufenbereich: 592 - 1817 m T=  $6.91E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 23 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 4

# Bohrung Nr. 111: VECHELDE 4

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 58 %
Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufer | nbereich   |                        |          |             |           | 8    | ohrlochfüllung |                       |              | -                                     |                |                        | Auflockerun                      | ngszone                  |                                       | Ţ                                       |
|------------------|--------|------------|------------------------|----------|-------------|-----------|------|----------------|-----------------------|--------------|---------------------------------------|----------------|------------------------|----------------------------------|--------------------------|---------------------------------------|-----------------------------------------|
| tigraphie<br>[-] | (m)    | bis<br>[m] | d <sub>1</sub><br>(mm) | 타<br>[-] | d 2<br>[mm] | [-]<br>€2 | [mm] | Füllung<br>[-] | A F [m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub> | d <sub>A</sub><br>(៣៣) | A <sub>A</sub> [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0      | 30         | 320                    | ROHR     | 320         | 1.00      | 320  | HD             | 0.0B04                | 1.0E -3      | 8,0€ -5                               | 1.00           | 320                    | 0.0000                           | 1.0E -8                  | 0.0E 1                                | 8.0E -5                                 |
| UKA2             | 30     | 152        | 320                    | ROHR     | 320         | ROHR      | 320  | HD             | 0.0804                | 1.0E -3      | 8.0E -5                               | 1.33           | 426                    | 0.0618                           | 1.0E -8                  | 6.2E-10                               | 8.0E -5                                 |
| UKA2             | 152    | 234        | 311                    | 1.40     | 435         | 1.35      | 588  | HD             | 0.2714                | 1.0E -3      | 2.7E -4                               | 1.25           | 735                    | 0.1526                           | 1.0E -B                  | 1.5E -9                               | 2.7E -4                                 |
| UKR1             | 234    | 315        | 311                    | 1.60     | 498         | 1.35      | 672  | HD             | 0.3544                | 1.0E -3      | 3.5E -4                               | 1.80           | 1209                   | 0.7939                           | 1,0E -B                  | 7.9E -9                               | 3.58 -4                                 |
| UKR1             | 315    | 338        | 311                    | 1.60     | 498         | 1.35      | 672  | NF             | 0.3544                | 1.0E -8      | 3.5E -9                               | 1.80           | 1209                   | 0.7939                           | 1.0E -B                  | 7.9E ~9                               | 1.1E -8                                 |
| UKR1             | 338    | 592        | 270                    | 1.60     | 432         | 1.35      | 583  | NF             | 0.2671                | 1.0E -8      | 2.7E -9                               | 1.80           | 1049                   | 0.5984                           | 1,0E -B                  | 6.0E -9                               | 8.7E -9                                 |
| MALM             | 592    | 645        | 270                    | 1.10     | 297         | 1.00      | 297  | NF             | 0.0693                | 1.0E -8      | 6.9E-10                               | 1.00           | 297                    | 0.0000                           | 1.0E -B                  | 0.0E 1                                | 6.9E-10                                 |
| MALM             | 645    | 1125       | 270                    | 1.10     | 297         | 1.00      | 297  | SED            | 0.0693                | 1.0E -8      | 6.9E-10                               | 1.00           | 297                    | 0.0000                           | 1.0E -B                  | 0.0E 1                                | 6.9E-10                                 |
| DOGG             | 1125   | 1133       | 270                    | 1.40     | 378         | 1.00      | 378  | SED            | 0.1122                | 1.0E -B      | 1.1E -9                               | 1.00           | 378                    | 0.0000                           | 1.0E -B                  | 0.0E 1                                | 1.1E -9                                 |
| DOGG             | 1133   | 1706       | 216                    | 1.40     | 302         | 1.00      | 302  | SED            | 0.0718                | 1.0E -8      | 7.2E-10                               | 1.00           | 302                    | 0.0000                           | 1.0€ -8                  | 0.0E 1                                | 7.2E-10                                 |
| LIAS             | 1706   | 1785       | 216                    | 1.40     | 302         | 1.00      | 302  | SED            | 0.0718                | 1.0E -B      | 7.2E-10                               | 1.00           | 302                    | 0.0000                           | 1.0E -B                  | 0.0E 1                                | 7.2E-10                                 |
| KEUP             | 1785   | 1817       | 216                    | 1.00     | 216         | 1.00      | 216  | SED            | 0.0366                | 1.0E -B      | 3.7E-10                               | 1.00           | 216                    | 0.0000                           | 1.0E -B                  | 0.0E 1                                | 3.7E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 30 m T=  $8.04\text{E} - 5 \text{ m}^3/\text{s}$  Teufenbereich: 30 - 234 m T=  $1.12\text{E} - 4 \text{ m}^3/\text{s}$  Teufenbereich: 234 - 592 m T=  $1.14\text{E} - 8 \text{ m}^3/\text{s}$  Teufenbereich: 30 - 592 m T=  $1.79\text{E} - 8 \text{ m}^3/\text{s}$  Teufenbereich: 592 - 1817 m T=  $6.91\text{E} - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 23 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung VECHELDE 4

# Bohrung Nr. 99: WEDTLENSTEDT 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                        |           |                        |            | В           | ohrlochfällung |                          |              |                                    |            |     | Auflockerun              | gszone                   |                                    |                                         |
|------------------|------------|------------|------------------------|-----------|------------------------|------------|-------------|----------------|--------------------------|--------------|------------------------------------|------------|-----|--------------------------|--------------------------|------------------------------------|-----------------------------------------|
| tigraphie<br>[~] | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>(mm) | E₁<br>[-] | d <sub>2</sub><br>[mm] | E 2<br>[→] | d 3<br>(mm) | Füllung<br>[-] | A F<br>[m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E A<br>[→] | d A | A A<br>[m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub> (m <sup>3</sup> /s) | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
| QUAR             | 0          | 34         | 298                    | 1.40      | 417                    | 1.00       | 417         | BK/ZEM         | 0.1367                   | 1.0E -8      | 1.4E -9                            | 1.00       | 417 | 0.0000                   | 1.0 € -8                 | 0.0E 1                             | 1.4E -9                                 |
| UKR2 .           | 34         | 48         | 298                    | 1.40      | 417                    | FLLG       | 417         | BK/ZEM         | 0.1367                   | 1.0E -8      | 1.4E -9                            | 1.25       | 522 | 0.0769                   | 1.0E -8                  | 7.7E-10                            | 2.1E -9                                 |
| UKR2             | 48         | 152        | 279                    | ROHR      | 279                    | FLLG       | 279         | BK/ZEM         | 0.0611                   | 1.0E -8      | 6.1E-10                            | 1.34       | 374 | 0.0486                   | 1.0E -B                  | 4.9E-10                            | 1.1E -9                                 |
| UKR2             | 152        | 155        | 270                    | 1.40      | 378                    | FLL6       | 378         | BK/ZEM         | 0.1122                   | 1.0E ~8      | 1.1E -9                            | 1.25       | 473 | 0.0631                   | 1.0E -B                  | 6.3E-10                            | 1.8E -9                                 |
| UKR2             | 155        | 221        | 270                    | 1.40      | 378                    | 1.35       | 510         | HD             | 0.2045                   | 1.0E -3      | 2.0E -4                            | 1.25       | 638 | 0.1150                   | 1.0E -8                  | 1.2E -9                            | 2.0E -4                                 |
| UKR2             | 221        | 420        | 270                    | 1.40      | 378                    | 1.35       | 510         | NF             | 0.2045                   | 1.0E -8      | 2.0E -9                            | 1.25       | 638 | 0.1150                   | 1.0E -8                  | 1.2E -9                            | 3.2E -9                                 |
| UKR2             | 420        | 461        | 270                    | 1.40      | 378                    | FLL6       | 378         | SED            | 0.1122                   | 1.0E ~8      | 1.1E -9                            | 1.25       | 473 | 0.0631                   | 1.0E -8                  | 6.3E-10                            | 1.BE -9                                 |
| UKR1             | 461        | 688        | 270                    | 1.60      | 432                    | FLLG       | 432         | SED            | 0.1466                   | 1.0E -8      | 1.5E -9                            | 1.80       | 778 | 0.3283                   | 1.0E -8                  | 3.3E -9                            | 4.7E -9                                 |
| UKR1             | 688        | 694        | 216                    | 1.60      | 346                    | FLLG       | 346         | SED            | 0.0938                   | 1.0E -8      | 9.48-10                            | 1.80       | 622 | 0.2101                   | 1.0E →8                  | 2.1E -9                            | 3.0E -9                                 |
| MALM             | 694        | 835        | 216                    | 1.10      | 238                    | 1.00       | 238         | SED            | 0.0443                   | 1.0E -B      | 4.4E-10                            | 1.00       | 238 | 0.0000                   | 1.0E -8                  | 0.0E 1                             | 4.4E-10                                 |
| MALM             | 835        | 850        | 216                    | 1.10      | 238                    | 1.00       | 238         | ZEM            | 0.0443                   | 1.0E -8      | 4.4E-10                            | 1.00       | 238 | 0.0000                   | 1.0E -8                  | 0.0E 1                             | 4.4E-10                                 |
| MALM             | 850        | 926        | 153                    | 1.10      | 168                    | 1.00       | 168         | ZEM            | 0.0222                   | 1.0E -B      | 2.2E-10                            | 1.00       | 168 | 0.0000                   | 1.0E -8                  | 0.0E 1                             | 2.2E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 34 m  $T = 1.37E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 34 - 461 m  $T = 2.26E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 461 - 694 m  $T = 4.68E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 34 - 694 m  $T = 2.77E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 694 - 926 m  $T = 3.35E - 10 \text{ m}^3/\text{s}$ 

Tab. E - 13.3 / 24 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung WEDTLENSTEDT 1

### Bohrung Nr. 99: WEDTLENSTEDT 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-   | Teufen     | bereich    | _          |                |             |            | 8          | ohrlachfüllung |                          |          |                                    |                       |                        | Auflockerun                         | igszone                  |                       |                            |
|-----------|------------|------------|------------|----------------|-------------|------------|------------|----------------|--------------------------|----------|------------------------------------|-----------------------|------------------------|-------------------------------------|--------------------------|-----------------------|----------------------------|
| ligraphie | von<br>[m] | bis<br>[m] | ₫1<br>(mm) | E <sub>1</sub> | d 2<br>[mm] | € 2<br>[-] | dg<br>[mm] | Füllung<br>[→] | A F<br>[m <sup>2</sup> ] | [m/s]    | T <sub>F</sub> [m <sup>3</sup> /s] | E <sub>A</sub><br>[-] | d <sub>A</sub><br>[mm] | A <sub>A</sub><br>(m <sup>2</sup> ) | k <sub>fA</sub><br>[m/s] | T <sub>A</sub> [m3/s] | T <sub>F+A</sub><br>[m³/s] |
| GUAR      | 0          | 34         | 298        | 1.40           | 417         | 1.00       | 417        | HD             | 0.1367                   | 1.0E -3  | 1.4E -4                            | 1.00                  | 417                    | 0.0000                              | 1.0E -8                  | 0.0E i                | 1.4E -4                    |
| UKR2      | 34         | 48         | 298        | 1.40           | 417         | 1.35       | 563        | HD             | 0.2491                   | 1.0E -3  | 2.5E -4                            | 1.25                  | 704                    | 0.1401                              | 1.0E -8                  | 1.4E -9               | 2.5E ~4                    |
| UKR2      | 48         | 152        | 279        | ROHA           | 279         | ROHR       | 279        | HD             | 0.0611                   | 1.0E -3  | 6.1E -5                            | 1.34                  | 374                    | 0.0486                              | 1.0€ -8                  | 4.9E-10               | 6.1E -5                    |
| UKR2      | 152        | 190        | 270        | 1.40           | 378         | 1.35       | 510        | HD             | 0.2045                   | 1.0E -3  | 2.0E -4                            | 1.25                  | 638                    | 0.1150                              | 1.0E -8                  | 1.2E -9               | 2.0E -4                    |
| UKR2      | 190        | 302        | 270        | 1.40           | 378         | 1.35       | 510        | NF             | 0.2045                   | 1.0 € -8 | 2.0E -9                            | 1.25                  | 638                    | 0.1150                              | 1.0E -8                  | 1.2E -9               | 3.2E -9                    |
| UKR2      | 302        | 420        | 270        | 1.40           | 378         | FLL6       | 378        | BK/ZEM         | 0.1122                   | 1.0E -8  | 1.1E -9                            | 1.25                  | 473                    | 0.0631                              | 1.0E -8                  | 6.3E-10               | 1.8E -9                    |
| UKR2      | 420        | 461        | 270        | 1.40           | 378         | FLLG       | 378        | SED            | 0.1122                   | 1.0E -B  | 1.1E -9                            | 1.25                  | 473                    | 0.0631                              | 1.0E -8                  | 6.3E-10               | 1.8€ -9                    |
| UKR1      | 461        | 688        | 270        | 1.60           | 432         | FLLG       | 432        | SED            | 0.1466                   | 1.0E -8  | 1.5E -9                            | 1.80                  | 778                    | 0.3283                              | 1.0E -8                  | 3.3E ~9               | 4.7E ~9                    |
| UKR1      | 688        | 694        | 216        | 1.60           | 346         | FLLG       | 346        | SED            | 0.0938                   | 1.0E -8  | 9.4E-10                            | 1.80                  | 622                    | 0.2101                              | 1.0E -B                  | 2.1E -9               | 3.0E -9                    |
| MALM      | 694        | 835        | 216        | 1.10           | 238         | 1.00       | 238        | SED            | 0.0443                   | 1.0E -8  | 4.4E-10                            | 1.00                  | 238                    | 0.0000                              | 1.0E -B                  | 0.0E 1                | 4.4E-10                    |
| MALM      | 835        | 850        | 216        | 1.10           | 238         | 1.00       | 238        | ZEM            | 0.0443                   | 1.0E -8  | 4.4E-10                            | 1.00                  | 238                    | 0.0000                              | 1.0E -8                  | 0.0E 1                | 4.4E-10                    |
| MALM      | 850        | 926        | 153        | 1.10           | 168         | 1.00       | 168        | ZEM            | 0.0222                   | 1.0E -8  | 2.2E-10                            | 1.00                  | 168                    | 0.0000                              | 1.0E -8                  | 0.0E 1                | 2.2E-10                    |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 34 m T= 1.37E -4 m<sup>3</sup>/s
Teufenbereich: 34 - 461 m T= 3.40E -9 m<sup>3</sup>/s
Teufenbereich: 461 - 694 m T= 4.68E -9 m<sup>3</sup>/s
Teufenbereich: 34 - 694 m T= 3.76E -9 m<sup>3</sup>/s
Teufenbereich: 694 - 926 m T= 3.35E-10 m<sup>3</sup>/s

Tab. E 13.3 / 24 C : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung WEDTLENSTEDT 1

### Bohrung Nr. 99: WEDTLENSTEDT 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-                                      | Teufenl                                | bereich                                |                                               |                                      |                                        |                                      | 8                                      | ohríochfüllung                        |                                                          |                                                     |                                                                |                                      | •                                      | Auflockerun                                              | gszone                                                         | _                                                            |                                                                |
|----------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|
| tigraphie<br>[-]                             | von (m)                                | bis<br>[m]                             | d <sub>1</sub><br>[mm]                        | E1<br>[~]                            | (mm)                                   | E 2<br>[-]                           | d3<br>[mm]                             | Füllung<br>[-]                        | Α <sub>Ε</sub><br>[m <sup>2</sup> ]                      | kfF<br>[m/s]                                        | T <sub>F</sub><br>[m <sup>3</sup> /s]                          | E A<br>(-)                           | d A                                    | A <sub>A</sub><br>[m <sup>2</sup> ]                      | k <sub>fA</sub><br>(m/s)                                       | T <sub>A</sub><br>[m <sup>3</sup> /s]                        | T <sub>F+A</sub><br>[m <sup>3</sup> /s]                        |
| QUAR<br>UKR2<br>UKR2<br>UKR2<br>UKR2         | 0<br>34<br>48<br>152<br>197            | 34<br>48<br>152<br>197<br>331          | 298<br>298<br>279<br>270<br>270               | 1.40<br>1.40<br>ROHA<br>1.40         | 417<br>417<br>279<br>378<br>378        | 1.00<br>1.35<br>AOHA<br>1.35<br>1.35 | 417<br>563<br>279<br>510<br>510        | HD<br>HD<br>HD<br>HD<br>NF            | 0.1367<br>0.2491<br>0.0611<br>0.2045<br>0.2045           | 1.0E -3<br>1.0E -3<br>1.0E -3<br>1.0E -3<br>1.0E -8 | 1.4E -4<br>2.5E -4<br>6.1E -5<br>2.0E -4<br>2.0E -9            | 1.00<br>1.25<br>1.34<br>1.25<br>1.25 | 417<br>704<br>374<br>638<br>638        | 0.0000<br>0.1401<br>0.0486<br>0.1150<br>0.1150           | 1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8            | 0.0E 1<br>1.4E -9<br>4.9E-10<br>1.2E -9<br>1.2E -9           | 1.4E -4<br>2.5E -4<br>6.1E -5<br>2.0E -4<br>3.2E -9            |
| UKR2<br>UKR2<br>UKR1<br>UKR1<br>MALM<br>MALM | 331<br>441<br>461<br>688<br>694<br>850 | 441<br>461<br>688<br>694<br>850<br>926 | 270<br>270<br>270<br>216<br>216<br>216<br>153 | 1.40<br>1.40<br>1.60<br>1.60<br>1.10 | 378<br>378<br>432<br>346<br>238<br>168 | FLLG<br>FLLG<br>FLLG<br>1.00         | 378<br>378<br>432<br>345<br>238<br>168 | BK<br>SEO<br>SED<br>SED<br>SED<br>SED | 0.1122<br>0.1122<br>0.1466<br>0.0938<br>0.0443<br>0.0222 | 1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8 | 1.1E -9<br>1.1E -9<br>1.5E -9<br>9.4E-10<br>4.4E-10<br>2.2E-10 | 1.25<br>1.25<br>1.80<br>1.80<br>1.00 | 473<br>473<br>778<br>622<br>238<br>168 | 0.0631<br>0.0631<br>0.3283<br>0.2101<br>0.0000<br>0.0000 | 1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8<br>1.0E -8 | 6.3E-10<br>6.3E-10<br>3.3E -9<br>2.1E -9<br>0.0E 1<br>0.0E 1 | 1.8E -9<br>1.8E -9<br>4.7E -9<br>3.0E -9<br>4.4E-10<br>2.2E-10 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 34 m  $T = 1.37E - 4 \text{ m}^3/\text{s}$ Teufenbereich: 34 - 461 m  $T = 3.68E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 461 - 694 m  $T = 4.68E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 34 - 694 m  $T = 3.98E - 9 \text{ m}^3/\text{s}$ Teufenbereich: 694 - 926 m  $T = 3.35E - 10 \text{ m}^3/\text{s}$ 

Tab. E 13.3 / 24 D : Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung WEDTLENSTEDT 1

# Bohrung Nr. 315: WIERTHE 1

Fall B mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufent | nereich    |                        |                       |             |            | В          | ohrlochfüllung | -                 |              |                                       |            |                        | Auflockerun                         | gszone       |                                       |                             |
|------------------|---------|------------|------------------------|-----------------------|-------------|------------|------------|----------------|-------------------|--------------|---------------------------------------|------------|------------------------|-------------------------------------|--------------|---------------------------------------|-----------------------------|
| tigraphie<br>(-) | von [m] | bis<br>[m] | d <sub>1</sub><br>[mm] | E <sub>1</sub><br>[−] | d 2<br>[mm] | E 2<br>[-] | dg<br>[mm] | Füllung<br>(-) | [m <sup>2</sup> ] | kfF<br>[m/s] | T <sub>F</sub><br>[m <sup>3</sup> /s] | E A<br>(-) | d <sub>A</sub><br>[mm] | A <sub>A</sub><br>(m <sup>2</sup> ) | kfA<br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | TF+A<br>[m <sup>3</sup> /s] |
| QUAR             | 0       | 1          | 340                    | 1.15                  | 391         | 1.00       | 391        | BK/ZEM         | 0.1201            | 1.0E -8      | 1.2E -9                               | 1.00       | 391                    | 0.0000                              | 1.0E -8      | 0.0E 1                                | 1.2E -9                     |
| GUAR             | 1       | 10         | 245                    | 1.15                  | 282         | 1.00       | 282        | BK/ZEM         | 0.0623            | 1.0E -B      | 6.2E-10                               | 1.00       | 282                    | 0.0000                              | 1.0E ~B      | 0.0E 1                                | 6.2E-10                     |
| QUAR             | 10      | 28         | 245                    | 1.15                  | 585         | 1.00       | 282        | HD             | 0.0623            | 1.0E -3      | 6.2E -5                               | 1.00       | 282                    | 0.0000                              | 1.0E -8      | 0.0E 1                                | 6.2E -5                     |
| UKA2             | 28      | 29         | 245                    | 1.40                  | 343         | FLLG       | 343        | HD             | 0.0924            | 1.0E ~3      | 9.2E ~5                               | 1.25       | 429                    | 0.0520                              | 1.0E -B      | 5.2E-10                               | 9.2E -5                     |
| UKR2             | 29      | 62         | 245                    | 1.40                  | 343         | FLLG       | 343        | SED/ZE         | 0.0924            | -1.0E -B     | 9.2E-10                               | 1.25       | 429                    | 0.0520                              | 1.0€ -8      | 5.2E-10                               | 1.4E -9                     |
| UKR2             | 62      | 63         | 216                    | 1.40                  | 302         | FLLG       | 302        | SED/ZE         | 0.0718            | 1.0E -8      | 7.2E-10                               | 1.25       | 378                    | 0.0404                              | 1.0E -8      | 4.0E-10                               | 1.1E -9                     |
| UKA2             | 63      | 76         | 216                    | 1.40                  | 302         | FLLG       | 302        | HO             | 0.0718            | 1.0E -3      | 7.2E -5                               | 1.25       | 378                    | 0.0404                              | 1.0E -B      | 4.0E-10                               | 7.2E -5                     |
| UKR2             | 76      | 100        | 216                    | 1.40                  | 302         | FLLG       | 302        | SED/ŽE         | 0.0718            | 1.0E -B      | 7.2E-10                               | 1.25       | 378                    | 0.0404                              | 1.0E -8      | 4.0E-10                               | 1.1E -9                     |
| UKR2             | 100     | 148        | 216                    | 1.40                  | 305         | 1.35       | 408        | HD             | 0.1309            | 1.0E -3      | 1.3E ~4                               | 1.25       | 510                    | 0.0736                              | 1.0E -8      | 7.4E-10                               | 1.3E -4                     |
| UKR2             | 148     | 293        | 216                    | 1.40                  | 302         | 1.35       | 408        | NF             | 0.1309            | 1.0E -8      | 1.3E -9                               | 1.25       | 510                    | 0.0736                              | 1.0E -8      | 7.4E-10                               | 2.0E -9                     |
| UKR2             | 293     | 339        | 216                    | 1.40                  | 302         | FLLG       | 302        | SED            | 0.0718            | 1.0E -B      | 7.2E-10                               | 1.25       | 378                    | 0.0404                              | 1.0E →8      | 4.0E-10                               | 1.1E ~9                     |
| UKB1             | 339     | 530        | 216                    | 1.60                  | 346         | FLLG       | 346        | SED            | 0.0938            | 1.0E -8      | 9.4E-10                               | 1.80       | 622                    | 0.2101                              | 1.0E -B      | 2.1E -9                               | 3.0E -9                     |
| UKR1             | 530     | 580        | 216                    | 1.60                  | 346         | 1.00       | 346        | HD             | 0.0938            | 1.0E -3      | 9.4E ~5                               | 1.80       | 622                    | 0.2101                              | 1.0E -8      | 2.1E -9                               | 9.4E -5                     |
| MALM             | 580     | 777        | 216                    | 1.10                  | 238         | 1.00       | 238        | HD             | 0.0443            | 1.0E -3      | 4.4E -5                               | 1.00       | 238                    | 0.0000                              | 1.0E -8      | 0.0E 1                                | 4.4E -5                     |
| MALM             | 777     | 1230       | 216                    | 1.10                  | 238         | 1.00       | 238        | SED            | 0.0443            | 1.0E -8      | 4.4E-10                               | 1.00       | 238                    | 0.0000                              | 1.0€ -8      | 0.0E 1                                | 4.4E-10                     |
| MALM             | 1230    | 1258       | 216                    | 1.10                  | 238         | 1.00       | 238        | ZEM            | 0.0443            | 1.0E -8      | 4.4E-10                               | 1.00       | 238                    | 0.0000                              | 1.0E →B      | 0.0E 1                                | 4.4E-10                     |
| MALM             | 1258    | 1275       | 153                    | 1.10                  | 158         | 1.00       | 168        | ZEM            | 0.0222            | 1.0 E −B     | 2.2E-10                               | 1.00       | 168                    | 0.0000                              | 1.0E -8      | 0.0E 1                                | 2.2E-10                     |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 28 m T= 1.83E -9 m $^3$ /s Teufenbereich: 28 - 339 m T= 1.98E -9 m $^3$ /s Teufenbereich: 339 - 580 m T= 3.83E -9 m $^3$ /s Teufenbereich: 28 - 580 m T= 2.51E -9 m $^3$ /s Teufenbereich: 580 - 1275 m T= 5.98E-10 m $^3$ /s

Tab. E - 13.3 / 25 B: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung WIERTHE 1

### Bohrung Nr. 315: WIERTHE 1

Fall C mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                        |                |                        |      | В                                     | ohrlochfüllung |                   |                       |                                    |                | _              | Auflockerun           | gszone                   |                          |                                         |
|------------------|------------|------------|------------------------|----------------|------------------------|------|---------------------------------------|----------------|-------------------|-----------------------|------------------------------------|----------------|----------------|-----------------------|--------------------------|--------------------------|-----------------------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | d <sub>1</sub><br>[mm] | Ε <sub>1</sub> | d <sub>2</sub><br>[mm] | E 2  | dg<br>[mm]                            | Füllung<br>[-] | [m <sup>2</sup> ] | k <sub>fF</sub> [m/s] | T <sub>F</sub> [m <sup>3</sup> /s] | E <sub>A</sub> | d <sub>A</sub> | A A [m <sup>2</sup> ] | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m3/s] | T <sub>F+A</sub><br>[m <sup>3</sup> /s] |
|                  |            |            | <del> </del>           |                | 1                      |      | · · · · · · · · · · · · · · · · · · · | ·              | · · · · · ·       | -                     |                                    | 1              |                |                       |                          | <del> </del>             |                                         |
| QUAR<br>QUAR     | 0          | 28         | 340                    | 1.15           | 391<br>282             | 1.00 | 391<br>282                            | HO<br>HD       | 0.1201            | 1.0E -3               | 1.2E -4<br>6.2E -5                 | 1.00           | 391<br>282     | 0.0000                | 1.0E -8                  | 0.0E 1                   | 1.2E -4<br>6.2E -5                      |
| UKR2             | 28         | 62         | 245                    | 1.40           | 343                    | 1.35 | 463                                   | HO             | 0.1684            | 1.0E ~3               | 1.7E -4                            | 1.25           | 579            | 0.0947                | 1.0E -8                  | 9.5E-10                  | 1.7E -4                                 |
| UKR2             | 62         | 117        | 216                    | 1.40           | 302                    | 1.35 | 408                                   | HD             | 0.1309            | 1.0E ~3               | 1.3E -4                            | 1.25           | 510            | 0.0736                | 1.0E -8                  | 7.4E-10                  | 1.3E -4                                 |
| UKR2             | 117        | 339        | 216                    | 1.40           | 302                    | 1.35 | 408                                   | NF             | 0.1309            | 1.0E -8               | 1.38 -9                            | 1.25           | 510            | 0.0736                | 1.0E -B                  | 7.4E-10                  | 2.0E -9                                 |
| UKR1             | 339        | 385        | 216                    | 1.60           | 346                    | 1.35 | 467                                   | NF             | 0.1710            | 1.0E -8               | 1.7E -9                            | 1.80           | 840            | 0.3830                | 1.0E -8                  | 3.8E -9                  | 5.5E -9                                 |
| UKR1             | 385        | 396        | 216                    | 1.60           | 346                    | FLLG | 346                                   | BK/ZEM         | 0.0938            | 1.0E -8               | 9.4E-10                            | 1.80           | 622            | 0.2101                | 1.0E -8                  | 2.1E -9                  | 3.0E -9                                 |
| UKA1             | 396        | 580        | 216                    | 1.60           | 346                    | FLLG | 346                                   | SED            | 0,0938            | 1,0E -8               | 9.4E-10                            | 1.80           | 625            | 0.2101                | 1.0E -8                  | 2.1E -9                  | 3.0E ~9                                 |
| MALM             | 580        | 1230       | 216                    | 1.10           | 238                    | 1.00 | 238                                   | SED            | 0.0443            | 1.0E -8               | 4.4E-10                            | 1.00           | 238            | 0.0000                | 1.0E -8                  | 0.0E 1                   | 4.4E-10                                 |
| MALM             | 1230       | 1258       | 216                    | 1,10           | 238                    | 1.00 | 238                                   | ZEM            | 0.0443            | 1.0E -B               | 4.4E-10                            | 1.00           | 238            | 0.0000                | 1.0E -8                  | 0.0E 1                   | 4.4E-10                                 |
| MALM             | 1258       | 1275       | 153                    | 1.10           | 168                    | 1.00 | 168                                   | ZEM            | 0.0222            | 1.0E -8               | 2.2E-10                            | 1.00           | 168            | 0.0000                | 1.0E -8                  | 0,0E 1                   | 2.2E-10                                 |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 28 m T= 6.34E -5 m $^3$ /s Teufenbereich: 28 - 339 m T= 2.87E -9 m $^3$ /s Teufenbereich: 339 - 580 m T= 3.33E -9 m $^3$ /s Teufenbereich: 28 - 580 m T= 3.05E -9 m $^3$ /s Teufenbereich: 580 - 1275 m T= 4.33E-10 m $^3$ /s

Tab. E - 13.3 / 25 C: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung WIERTHE 1

### Bohrung Nr. 315: WIERTHE 1

Fall D mit Berücksichtigung der Auskesselungen beim Bohren

Sedimentationsanteil der Spülung: 60 % Sedimentationsanteil des Nachfalls: 75 %

| Strati-          | Teufen     | bereich    |                     |                |             |              | В          | ohrlochfüllung  | -                |                    |                                       |                |                        | Auflockerun      | igszone                  |                                       |                            |
|------------------|------------|------------|---------------------|----------------|-------------|--------------|------------|-----------------|------------------|--------------------|---------------------------------------|----------------|------------------------|------------------|--------------------------|---------------------------------------|----------------------------|
| tigraphie<br>[-] | von<br>[m] | bis<br>[m] | d <sub>1</sub> (mm) | E <sub>1</sub> | d 2<br>[mm] | E 2<br>[~]   | (mm)       | Füllung<br>[+-] | AF<br>[m²]       | kfF<br>[m/s]       | T <sub>F</sub><br>[m <sup>3</sup> /s] | E <sub>A</sub> | d <sub>A</sub><br>[mm] | A A [m2]         | k <sub>fA</sub><br>[m/s] | T <sub>A</sub><br>[m <sup>3</sup> /s] | T <sub>F+A</sub><br>[m3/s] |
| QUAR             | 0          | 1          | 340                 | 1.15           | 391         | 1.00         | 391        | HD<br>HD        | 0.1201           | 1.0E -3            | 1.2E -4                               | 1.00           | 391<br>282             | 0.0000           | 1.0E -8<br>1.0E -8       | 0.0E 1<br>0.0E 1                      | 1.2E -4<br>6.2E -5         |
| QUAR<br>UKR2     | 1<br>28    | 28<br>62   | 245<br>245          | 1.15           | 282<br>343  | 1.00<br>1.35 | 282<br>463 | HD<br>CH        | 0.0623<br>0.1684 | 1.0E -3<br>1.0E -3 | 6.2E -5<br>1.7E -4                    | 1.00           | 579                    | 0.0000           | 1.0E →8<br>1.0E −8       | 9.5E-10                               | 1.7E -4                    |
| UKR2<br>UKR2     | 62<br>126  | 126<br>339 | 216<br>216          | 1.40           | 302         | 1.35<br>1.35 | 408<br>408 | HD<br>NF        | 0.1309           | 1.0E -3            | 1.3E -4                               | 1.25           | 510<br>510             | 0.0736<br>0.0736 | 1.0E -8<br>1.0E -8       | 7.4E-10<br>7.4E-10                    | 1.3E -4<br>2.0E -9         |
| UKR1             | 339        | 421        | 216                 | 1.60           | 346         | 1.35         | 467        | NF              | 0.1710           | 1.0E -8            | 1.7E -9                               | 1.80           | 840                    | 0.3830           | 1.0E -8                  | 3.8E -9                               | 5.5E -9                    |
| UKR1<br>UKR1     | 421<br>426 | 426<br>580 | 216                 | 1.60           | 346<br>346  | FLLG<br>FLLG | 346<br>346 | BK<br>SED       | 0.0938           | 1.0E -8            | 9.4E-10<br>9.4E-10                    | 1.80           | 622<br>622             | 0.2101           | 1.0E -8                  | 2.1E -9<br>2.1E -9                    | 3.0E -9<br>3.0E -9         |
| MALM             | 580        | 1258       | 216                 | 1.10           | 238         | 1.00         | 238        | SED             | 0.0443           | 1.0E -8            | 4.4E-10                               | 1.00           | 238                    | 0.0000           | 1.0E -8                  | 0.0E 1                                | 4.4E-10                    |
| MALM             | 1258       | 1275       | 153                 | 1.10           | 168         | 1.00         | 168        | SED             | 0.0222           | 1.0E -8            | 2.2E-10                               | 1.00           | 168                    | 0.0000           | 1.0E -B                  | 0.0E 1                                | 2.2E-10                    |

#### mittlere (axiale) Transmissivitäten

Teufenbereich: 0 - 28 m T=  $6.34E - 5 m^3/s$ Teufenbereich: 28 - 339 m T=  $2.99E - 9 m^3/s$ Teufenbereich: 339 - 580 m T=  $3.59E - 9 m^3/s$ Teufenbereich: 28 - 580 m T=  $3.22E - 9 m^3/s$ Teufenbereich: 580 - 1275 m T=  $4.33E - 10 m^3/s$ 

Tab. E - 13.3 / 25 D: Bestimmung der mittleren Bohrlochtransmissivitäten Bohrung WIERTHE 1

# Vergleich der ermittelten Transmissivitäten mit den Annahmen des Referenzfalles R34:

Tabelle E-14.1/1: Bohrungen ALVESSE 1, BLECKENSTEDT 1

und BLECKENSTEDT 2

Tabelle E-14.1/2: Bohrungen BLECKENSTEDT 3,

BLECKENSTEDT 4 und BROISTEDT 33

Tabelle E-14.1/3: Bohrungen BROISTEDT 34, DENSTORF 1 und

**GLEIDINGEN 1** 

Tabelle E-14.1/4: Bohrungen HALLENDORF 1,

HÜTTENBERG 1 und KONRAD 101

Tabelle E-14.1/5: Bohrungen SAUINGEN 1, SAUINGEN 2 und

SONNENBERG 1

Tabelle E-14.1/6: Bohrungen SONNENBERG 2,

SONNENBERG 3 und SONNENBERG 4

Tabelle E-14.1/7: Bohrungen ÜFINGEN 1, ÜFINGEN 2 und

VECHELDE (2a+3+4)

Tabelle E-14.1/8: Bohrungen VECHELDE 2a, VECHELDE 3 und

**VECHELDE 4** 

Tabelle E-14.1/9: Bohrungen WEDTLENSTEDT 1 und

WIERTHE 1

Abb. E - 14.1

Deckblatt zu den Tabellen "Vergleich der ermittelten Transmissivitäten mit den Annahmen des – Referenzfalles R 34"



ENDLAGER KONRAD

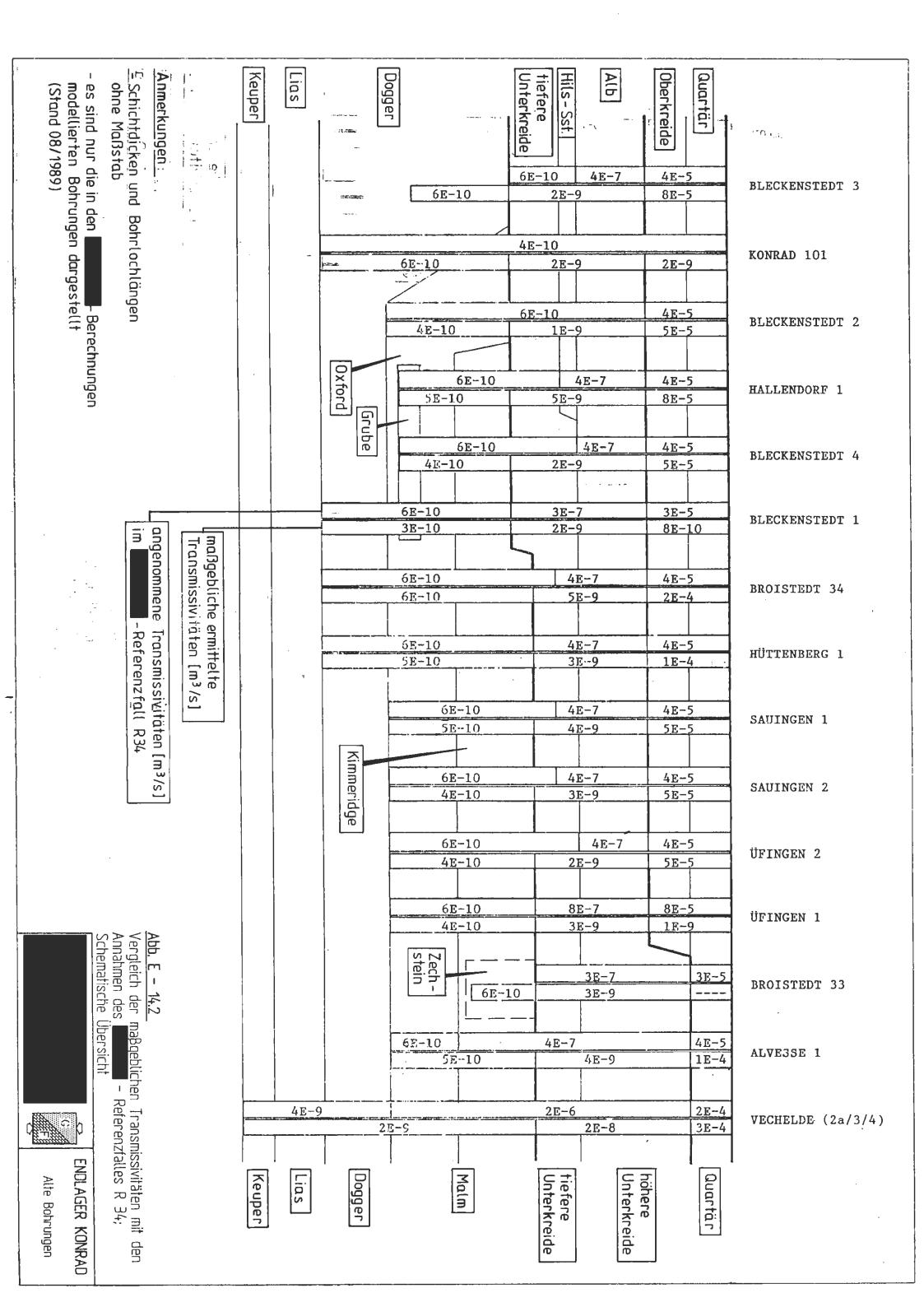
Alte Bohrungen

| ALVESSE 1                                  | mittlere (axiale                                                       | ) Transmissivitäten [m                                            | <sup>3</sup> /s]                                                        |                                                            |
|--------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|
| Abschnitt von [m] bis [m]                  | Fall B                                                                 | Fall C                                                            | Fall D                                                                  | Reffall R34                                                |
| Top UKR - GOF 30                           | 1,2 · 10 <sup>-9</sup>                                                 | 1,2 · 10 <sup>-4</sup>                                            | 1,2 · 10 <sup>-4</sup>                                                  | 4 · 10 <sup>-5</sup>                                       |
| UKR2 30 30 30 UKR 623                      | $\frac{2,9 \cdot 10^{-9}}{4,0 \cdot 10^{-9}} - 3,2 \cdot 10^{-9}$      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$              | $\frac{3,2\cdot 10^{-9}}{4,4\cdot 10^{-9}}$ 3,5\cdot 10^{-9}            | $\frac{4 \cdot 10^{-7}}{4 \cdot 10^{-7}}  4 \cdot 10^{-7}$ |
| ET-Basis UKR 623<br>1377                   | 5,5 · 10 <sup>-10</sup>                                                | 4,5 · 10 <sup>-10</sup>                                           | 4,5 · 10 <sup>-10</sup>                                                 | $4 \cdot 10^{-7}$<br>6 · $10^{-10}$ (bis<br>Basis Kimmer.) |
| BLECKENSTEDT 1                             | mittlere (axiale                                                       | ) Transmissivitäten [m                                            | <sup>3</sup> /s]                                                        |                                                            |
| Abschnitt von [m] bis [m]                  | Fall B                                                                 | Fall C                                                            | Fall D                                                                  | Reffall R34                                                |
| Top UKR - GOF 0 267                        | 7,5 · 10 <sup>-10</sup>                                                | 1,2 · 10 <sup>-9</sup>                                            | 1,6 · 10 <sup>-9</sup>                                                  | 3 · 10 <sup>-5</sup>                                       |
| UKR2 536<br>UKR1 536<br>UKR1 688 UKR 688   | $\begin{array}{c} 1,7 \cdot 10^{-9} \\ -3,1 \cdot 10^{-9} \end{array}$ | $\frac{7,9\cdot 10^{-10}}{9,4\cdot 10^{-10}} = 8,4\cdot 10^{-10}$ | 7,9·10 <sup>-10</sup><br>9,4·10 <sup>-10</sup><br>8,4·10 <sup>-10</sup> | $\frac{3 \cdot 10^{-7}}{3 \cdot 10^{-7}}  3 \cdot 10^{-7}$ |
| ET-Basis UKR 623<br>1200                   | 2,6 - 10-10                                                            | 2,2 · 10 <sup>-10</sup>                                           | 2,2 · 10 <sup>-10</sup>                                                 | 6 · 10 <sup>-10</sup>                                      |
| BLECKENSTEDT 2                             | mittlere (axiale                                                       | ) Transmissivitäten [m                                            | <sup>3</sup> /s]                                                        |                                                            |
| Abschnitt von [m] bis [m]                  | Fall B                                                                 | Fall C                                                            | Fall D                                                                  | Reffall R34                                                |
| Top UKR - GOF 0                            | 1,4 · 10-8                                                             | 4,6 · 10 <sup>-5</sup>                                            | 4,6 · 10 <sup>-5</sup>                                                  | 4 · 10 <sup>-5</sup>                                       |
| UKR2 260<br>484<br>UKR1 484<br>592 UKR 592 | $\begin{array}{c} 1,0\cdot 10^{-9} \\$                                 | $\frac{9,3\cdot 10^{-10}}{2,4\cdot 10^{-9}}$ 1,2·10 <sup>-9</sup> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                   | 6.10-10                                                    |
| ET-Basis UKR 592 691                       | 3,5 · 10 <sup>-10</sup>                                                | 3,5 · 10 <sup>-10</sup>                                           | 3,5 · 10 <sup>-10</sup>                                                 | 6 · 10 <sup>-10</sup>                                      |

| BLECKENSTEDT 3            | mittlere (axiale                                                         | ) Transmissivitäten [m                                                                           | 1 <sup>3</sup> /s]                                                                               |                                                                                               |
|---------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Abschnitt von [m] bis [m] | Fall B                                                                   | Fall C                                                                                           | Fall D                                                                                           | Reffall R34                                                                                   |
| Top UKR - GOF 266         | 3,1 · 10 <sup>-8</sup>                                                   | 1,8 · 10-8                                                                                       | 7,5 · 10 <sup>-5</sup>                                                                           | 4 · 10 <sup>-5</sup>                                                                          |
| UKR2 266<br>              | $\begin{array}{c} 1,7 \cdot 10^{-9} \\$                                  | $\begin{array}{c} 1,7 \cdot 10^{-9} \\$                                                          | $\begin{array}{c c} 1,7 \cdot 10^{-9} \\ \hline 3,2 \cdot 10^{-9} \end{array}$ 2,0 \cdot 10^{-9} | 4·10 <sup>-7</sup><br>                                                                        |
| ET-Basis UKR 560<br>801   | 5,7 · 10 <sup>-10</sup>                                                  | 5,7 · 10 <sup>-10</sup>                                                                          | 5,7 · 10 <sup>-10</sup>                                                                          | 6 · 10 <sup>-10</sup>                                                                         |
| BLECKENSTEDT 4            | mittlere (axiale                                                         | e) Transmissivitäten [m                                                                          | n <sup>3</sup> /s]                                                                               |                                                                                               |
| Abschnitt von [m] bis [m] | Fall B                                                                   | Fall C                                                                                           | Fall D                                                                                           | Reffall R34                                                                                   |
| Top UKR - GOF 0 278       | 8,6 · 10 <sup>-10</sup>                                                  | 5,1 · 10 <sup>-5</sup>                                                                           | 5,1 · 10 <sup>-5</sup>                                                                           | 4 · 10 <sup>-5</sup>                                                                          |
| UKR2 278 278<br>          | $\begin{array}{c c} 1,8 \cdot 10^{-9} \\$                                | $\begin{array}{c c} 1,4 \cdot 10^{-9} \\ \hline 3,0 \cdot 10^{-9} \end{array}$ 1,8 \cdot 10^{-9} | $\begin{array}{c c} 1,7 \cdot 10^{-9} \\$                                                        | 4·10 <sup>-7</sup><br>6·10 <sup>-10</sup> 2·10 <sup>-9</sup>                                  |
| ET-Basis UKR 745<br>1064  | 4,5 • 10-10                                                              | 3,8 · 10 <sup>-10</sup>                                                                          | 3,8 · 10 <sup>-10</sup>                                                                          | 6 · 10 <sup>-10</sup>                                                                         |
| BROISTEDT 33              | mittlere (axiale                                                         | e) Transmissivitäten (m                                                                          | n <sup>3</sup> /s]                                                                               |                                                                                               |
| Abschnitt von [m] bis [m] | Fall B                                                                   | Fall C                                                                                           | Fall D                                                                                           | Reffall R34                                                                                   |
| Top UKR - GOF             |                                                                          |                                                                                                  |                                                                                                  | 3 · 10 <sup>-5</sup>                                                                          |
| UKR2 0 0 UKR2 0 UKR 405   | $\begin{array}{c c} 1,5 \cdot 10^{-9} \\ -2,4 \cdot 10^{-9} \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                            | $\begin{array}{c c} 3,4 \cdot 10^{-9} \\ \hline 3,1 \cdot 10^{-9} \end{array}$                   | $\begin{array}{c c} 3 \cdot 10^{-7} \\ \hline 3 \cdot 10^{-7} \\ 3 \cdot 10^{-7} \end{array}$ |
| ET-Basis UKR 405<br>753   | 8,4 · 10-10                                                              | 5,7 · 10 <sup>-10</sup>                                                                          | 5,7 · 10 <sup>-10</sup>                                                                          | nicht modelliert                                                                              |

| BROISTEDT 34                |                | mittlere (axiale                                                                                 | ) Transmissivitäten [m                                                                                | <sup>3</sup> /s)                                                     |                                                                                                                    |
|-----------------------------|----------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                             | n [m]<br>s [m] | Fall B                                                                                           | Fall C                                                                                                | Fall D                                                               | Reffall R34                                                                                                        |
| Top UKR - GOF               | 0<br>25        | 1,6 · 10 <sup>-9</sup>                                                                           | 1,6 · 10-4                                                                                            | 1,6 · 10-4                                                           | 4 · 10 <sup>-5</sup>                                                                                               |
| UKR2 25<br>465<br>UKR1 833  | 25<br>833      | 4,1·10 <sup>-9</sup><br>4,5·10 <sup>-9</sup><br>4,3·10 <sup>-9</sup>                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                  | 5,9·10 <sup>-9</sup><br>5,0·10 <sup>-9</sup><br>5,5·10 <sup>-9</sup> | $ \begin{array}{c c} 4 \cdot 10^{-7} \\ \hline 4 \cdot 10^{-7} \\ 6 \cdot 10^{-10} \end{array} $ $3 \cdot 10^{-9}$ |
| ET-Basis UKR                | 833<br>1198    | 7,5 · 10 <sup>-10</sup>                                                                          | 6,3 · 10 <sup>-10</sup>                                                                               | 6,3 · 10 <sup>-10</sup>                                              | 6 · 10 <sup>-10</sup>                                                                                              |
| DENSTORF 1                  | <del></del>    | mittlere (axiale                                                                                 | ) Transmissivitäten [m                                                                                | 1 <sup>3</sup> /s]                                                   |                                                                                                                    |
|                             | n [m]<br>s [m] | Fall B                                                                                           | Fall C                                                                                                | Fall D                                                               | Reffall R34                                                                                                        |
| Top UKR - GOF               | 0<br>48        | 1,1 · 10 <sup>-9</sup>                                                                           | 7,6 · 10 <sup>-5</sup>                                                                                | 7,6 · 10 <sup>-5</sup>                                               |                                                                                                                    |
| UKR2 48<br>                 | 48<br>708      | $\begin{array}{c} 2,5 \cdot 10^{-9} \\$                                                          | $\begin{array}{c} 2,4\cdot 10^{-9} \\ \hline 3,0\cdot 10^{-9} \end{array} = 2,6\cdot 10^{-9}$         | $\begin{array}{c} 2,7 \cdot 10^{-9} \\$                              | Bohrung<br>nicht modelliert                                                                                        |
| ET-Basis UKR                | 708<br>995     | 4,0 - 10-10                                                                                      | 4,0 · 10 <sup>-10</sup>                                                                               | 4,0 · 10 <sup>-10</sup>                                              |                                                                                                                    |
| GLEIDINGEN 1                |                | mittlere (axiale                                                                                 | n) Transmissivitäten (m                                                                               | n <sup>3</sup> /s]                                                   |                                                                                                                    |
|                             | n [m]<br>s [m] | Fall B                                                                                           | Fall C                                                                                                | Fall D                                                               | Reffall R34                                                                                                        |
| Top UKR - GOF               | 0<br>115       | 8,8 · 10 <sup>-10</sup>                                                                          | 5,5 · 10 <sup>-5</sup>                                                                                | 5,5 · 10 <sup>-5</sup>                                               |                                                                                                                    |
| UKR2 115<br>522<br>UKR1 717 | 115<br>717     | $\begin{array}{c} 2,1\cdot 10^{-9} \\ \hline -3,0\cdot 10^{-9} \end{array}$ 2,3·10 <sup>-9</sup> | $\begin{array}{c c} 1,8 \cdot 10^{-9} \\ \hline 3,0 \cdot 10^{-9} \end{array}$ 2,1 · 10 <sup>-9</sup> | $\begin{array}{c c} 2,1 \cdot 10^{-9} \\ \hline$                     | Bohrung<br>nicht modelliert                                                                                        |
| ET-Basis UKR                | 717<br>821     | 4,1 - 10-10                                                                                      | 4,1 · 10 <sup>-10</sup>                                                                               | 4,1 · 10-10                                                          |                                                                                                                    |

| HALLENDORF 1                      | mittlere (axiale                                                                            | ) Transmissivitäten (m                                                                                | <sup>3</sup> /s]                                                  |                                                                                                 |
|-----------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Abschnitt von [m] bis [m]         | Fall B                                                                                      | Fall C                                                                                                | Fall D                                                            | Reffall R34                                                                                     |
| Top UKR - GOF 0<br>345            | 2,0 · 10-8                                                                                  | 7,5 · 10 <sup>-5</sup>                                                                                | 7,5 · 10 <sup>-5</sup>                                            | 4 - 10-5                                                                                        |
| UKR2 345<br>                      | $\begin{array}{c} 4.3 \cdot 10^{-9} \\$                                                     | 4,3·10 <sup>-9</sup><br>4,8·10 <sup>-9</sup><br>4,5·10 <sup>-9</sup>                                  | 4,4·10 <sup>-9</sup><br>5,0·10 <sup>-9</sup> 4,6·10 <sup>-9</sup> | 4·10 <sup>-7</sup><br>6·10 <sup>-10</sup><br>1·10 <sup>-9</sup>                                 |
| ET-Basis UKR 914<br>1315          | 4,5 · 10 <sup>-10</sup>                                                                     | 4,5 · 10 <sup>-10</sup>                                                                               | 4,5 · 10 <sup>-10</sup>                                           | 6 · 10 <sup>-10</sup>                                                                           |
| HÜTTENBERG 1                      | mittlere (axiale                                                                            | n) Transmissivitäten [m                                                                               | n <sup>3</sup> /s]                                                |                                                                                                 |
| Abschnitt von [m] bis [m]         | Fall B                                                                                      | Fall C                                                                                                | Fall D                                                            | Reffall R34                                                                                     |
| Top UKR - GOF 0                   | 2,1 · 10 <sup>-9</sup>                                                                      | 1,0 · 10-4                                                                                            | 1,0 · 10-4                                                        | 4 · 10 <sup>-5</sup>                                                                            |
| UKR2 540 UKR 148 UKR1 885 UKR 885 | $\begin{array}{c} 2,5 \cdot 10^{-9} \\ \hline 3,1 \cdot 10^{-9} \end{array}$                | $\begin{array}{c c} 1,9 \cdot 10^{-9} \\ \hline -3,1 \cdot 10^{-9} \\ \end{array}  2,3 \cdot 10^{-9}$ | $\begin{array}{c} 2,2 \cdot 10^{-9} \\ \hline$                    | $\begin{array}{c c} 4 \cdot 10^{-7} \\ \hline \\ 4 \cdot 10^{-7} \end{array} + 4 \cdot 10^{-7}$ |
| ET-Basis UKR 885<br>1549          | 4,6 · 10 <sup>-10</sup>                                                                     | 4,6 · 10 <sup>-10</sup>                                                                               | 4,6 · 10 <sup>-10</sup>                                           | 6 · 10 <sup>-10</sup>                                                                           |
| KONRAD 101                        | mittlere (axiale                                                                            | e) Transmissivitäten [1                                                                               | n <sup>3</sup> /s]                                                |                                                                                                 |
| Abschnitt von [m] bis [m]         | Fall B                                                                                      | Fall C                                                                                                | Fall D                                                            | Reffall R34                                                                                     |
| Top UKR - GOF 0 250               | 1,6 · 10 <sup>-9</sup>                                                                      | 1,6 · 10 <sup>-9</sup>                                                                                | 1,6 · 10 <sup>-4</sup>                                            | 4 · 10 <sup>-10</sup>                                                                           |
| UKR2 250<br>                      | $\begin{array}{c} 1,5 \cdot 10^{-9} \\ -1,5 \cdot 10^{-9} \\ 1,5 \cdot 10^{-9} \end{array}$ |                                                                                                       |                                                                   |                                                                                                 |
| ET-Basis UKR 626<br>1002          | 5,6 · 10 <sup>-10</sup>                                                                     | 5,6 · 10 <sup>-10</sup>                                                                               | 5,6 · 10 <sup>-5</sup>                                            | 4 · 10-10                                                                                       |


| SAUINGEN 1       |                | mittlere (axiale)                                    | Transmissivitäten (m                                           | <sup>3</sup> /s]                                               | <u> </u>                                                                                                               |
|------------------|----------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Abschnitt von    |                | Fall B                                               | Fall C                                                         | Fall D                                                         | Reffall R34                                                                                                            |
|                  | 280 4          | 4,4 · 10 <sup>-9</sup>                               | 5,2 · 10 <sup>-5</sup>                                         | 5,2 · 10 <sup>-5</sup>                                         | 4 · 10 <sup>-5</sup>                                                                                                   |
|                  | 280 3<br>757 3 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\frac{3,0\cdot 10^{-9}}{3,5\cdot 10^{-9}} - 3,2\cdot 10^{-9}$ | $\frac{3,2\cdot 10^{-9}}{3,9\cdot 10^{-9}}$ 3,5\cdot 10^{-9}   | $ \begin{array}{c ccccc} 4 \cdot 10^{-7} \\ \hline 4 \cdot 10^{-7} \\ 6 \cdot 10^{-10} \end{array} $ $3 \cdot 10^{-9}$ |
|                  | 757<br>1100 4  | 4,6 · 10 <sup>-10</sup>                              | 4,6 - 10 <sup>-10</sup>                                        | 4,6 · 10 <sup>-10</sup>                                        | 6 · 10 <sup>-10</sup>                                                                                                  |
| SAUINGEN 2       |                | mittlere (axiale)                                    | Transmissivitäten [m                                           | <sup>3</sup> /s]                                               |                                                                                                                        |
| Abschnitt von    |                | Fall B                                               | Fall C                                                         | Fall D                                                         | Reffall R34                                                                                                            |
| I mae iivb - cor | 227            | 2,6 · 10 <sup>-9</sup>                               | 5,3 · 10 <sup>-5</sup>                                         | 5,3 · 10 <sup>-5</sup>                                         | 4 · 10 <sup>-5</sup>                                                                                                   |
|                  | 789            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\frac{3,0\cdot 10^{-9}}{3,6\cdot 10^{-9}}  3,2\cdot 10^{-9}$  | $\frac{3,1\cdot 10^{-9}}{3,9\cdot 10^{-9}}  3,4\cdot 10^{-9}$  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                 |
|                  | 789<br>1222 '  | 4,1 · 10 <sup>-10</sup>                              | 4,1 · 10 <sup>-10</sup>                                        | 4,1 · 10-10                                                    | 6 · 10 <sup>-10</sup>                                                                                                  |
| SONNENBERG 1     |                | mittlere (axiale                                     | ) Transmissivitäten [π                                         | <sup>3</sup> /s]                                               |                                                                                                                        |
|                  | [m] 1          | Fall B                                               | Fall C                                                         | Fall D                                                         | Reffall R34                                                                                                            |
|                  | 0<br>115       | 1,3 · 10 <sup>-9</sup>                               | 8,0 · 10 <sup>-5</sup>                                         | 8,0 · 10 <sup>-5</sup>                                         |                                                                                                                        |
| 510 UKR          | 720            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$           | $\frac{3,2\cdot 10^{-9}}{4,2\cdot 10^{-9}} - 3,5\cdot 10^{-9}$ | Bohrung<br>nicht modelliert                                                                                            |
| I DO Desis IIVD  | 720<br>1137    | 3,9 : 10 <sup>-10</sup>                              | 3,9 · 10 <sup>-10</sup>                                        | 3,9 · 10 <sup>-10</sup>                                        |                                                                                                                        |

| SONNENBERG 2                        | mittlere (axiale                                                                    | ransmissivitäten [π                     | <sup>3</sup> /s]                                                                                 |                             |
|-------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|
| Abschnitt von [m] bis [m]           | Fall B                                                                              | Fall C                                  | Fall D                                                                                           | Reffall R34                 |
| Top UKR - GOF 0 192                 | 3,0 · 10 <sup>-9</sup>                                                              | 9,5 · 10 <sup>-5</sup>                  | 9,5 · 10 <sup>-5</sup>                                                                           |                             |
| UKR2 192 192 UKR 737                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                               | $\begin{array}{c} 4.3 \cdot 10^{-9} \\$ | 4,5·10 <sup>-9</sup> 6,3·10 <sup>-9</sup> 4,9·10 <sup>-9</sup>                                   | Bohrung<br>nicht modelliert |
| ET-Basis UKR 737<br>1082            | 3,6 · 10 <sup>-10</sup>                                                             | 3,6 · 10 <sup>-10</sup>                 | 3,6 · 10 <sup>-10</sup>                                                                          |                             |
| SONNENBERG 3                        | mittlere (axiale                                                                    | 2) Transmissivitäten [m                 | n <sup>3</sup> /s]                                                                               |                             |
| Abschnitt von [m] bis [m]           | Fall B                                                                              | Fall C                                  | Fall D                                                                                           | Reffall R34                 |
| Top UKR - GOF 0 202                 | 1,9 · 10 <sup>-9</sup>                                                              | 5,0 · 10 <sup>-5</sup>                  | 5,0 · 10 <sup>-5</sup>                                                                           |                             |
| UKR2 202<br>565<br>UKR1 745 UKR 745 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                               | $\begin{array}{c} 2,6 \cdot 10^{-9} \\$ | $\begin{array}{c} 2,8 \cdot 10^{-9} \\ \hline 3,2 \cdot 10^{-9} \end{array}  2,9 \cdot 10^{-9}$  | Bohrung<br>nicht modelliert |
| ET-Basis UKR 745<br>967             | 3,8 · 10 <sup>-10</sup>                                                             | 3,8 · 10 <sup>-10</sup>                 | 3,8 · 10 <sup>-10</sup>                                                                          |                             |
| SONNENBERG 4                        | mittlere (axiale                                                                    | e) Transmissivitäten [1                 | n <sup>3</sup> /s]                                                                               |                             |
| Abschnitt von [m] bis [m]           | Fall B                                                                              | Fall C                                  | Fall D                                                                                           | Reffall R34                 |
| Top UKR - GOF 0                     | 1,2 · 10 <sup>-9</sup>                                                              | 1,2 · 10 <sup>-4</sup>                  | 1,2 · 10 <sup>-4</sup>                                                                           |                             |
| UKR2 26 26 UKR 26 UKR 554           | $\begin{array}{c c} 2, 3 \cdot 10^{-9} \\ \hline 3, 1 \cdot 10^{-9} \\ \end{array}$ | 2,2·10 <sup>-9</sup><br>                | $\begin{array}{c} 2,3 \cdot 10^{-9} \\ \hline 3,1 \cdot 10^{-9} \end{array} = 2,7 \cdot 10^{-9}$ | Bohrung<br>nicht modelliert |
| ET-Basis UKR 554<br>1176            | 4,6 · 10 <sup>-10</sup>                                                             | 4,6 · 10 <sup>-10</sup>                 | 4,6 - 10 <sup>-10</sup>                                                                          |                             |

| ÜENGENA                     |                  |                                                                                            |                                                                  |                                                                                               |                                                                    |
|-----------------------------|------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ÜFINGEN 1                   |                  | mittlere (axiale                                                                           | ) Transmissivitäten [m                                           | 3/s)                                                                                          | ·                                                                  |
|                             | on (m)<br>is (m) | Fall B                                                                                     | Fall C                                                           | Fall D                                                                                        | Reffall R34                                                        |
| Top UKR - GOF               | 0<br>183         | 9,6 · 10 <sup>-10</sup>                                                                    | 9,6 · 10 <sup>-10</sup>                                          | 1,2 · 10 <sup>-9</sup>                                                                        | 8 · 10 <sup>-5</sup>                                               |
| UKR2 183<br>                | 183<br>R<br>687  | $\begin{array}{c} 2,3 \cdot 10^{-9} \\ \\ 6,3 \cdot 10^{-9} \end{array}$ 3,0 \cdot 10^{-9} | $\frac{2,3\cdot 10^{-9}}{6,3\cdot 10^{-9}}  3,0\cdot 10^{-9}$    | 2,3·10 <sup>-9</sup><br>                                                                      | 8·10 <sup>-7</sup><br>8·10 <sup>-7</sup>                           |
| ET-Basis UKR                | 687<br>1239      | 3,9 · 10 <sup>-10</sup>                                                                    | 3,9 · 10 <sup>-10</sup>                                          | 3,9 · 10 <sup>-10</sup>                                                                       | 6 - 10 <sup>-10</sup>                                              |
| ÜFINGEN 2                   | ····             | mittlere (axiale                                                                           | ) Transmissivitäten (m                                           | <sup>3</sup> /s]                                                                              |                                                                    |
| Abschnitt Vo                | on [m]<br>is [m] | Fall B                                                                                     | Fall C                                                           | Fall D                                                                                        | Reffall R34                                                        |
| Top UKR - GOF               | 0<br>260         | 1,9 · 10 <sup>-9</sup>                                                                     | 5,0 · 10 <sup>-5</sup>                                           | 5,0 · 10 <sup>-5</sup>                                                                        | 4 · 10 <sup>-5</sup>                                               |
| UKR2 554<br>554<br>UKR1 705 | 260 °R 705       | $\begin{array}{c} 2,2 \cdot 10^{-9} \\ \hline 3,0 \cdot 10^{-9} \end{array}$               | $\frac{1,8 \cdot 10^{-9}}{3,0 \cdot 10^{-9}}  2,1 \cdot 10^{-9}$ | $\begin{array}{c} 2,1\cdot 10^{-9} \\ \hline -3,0\cdot 10^{-9} \end{array}$ 2,4 \cdot 10^{-9} | $\begin{array}{c c} 4 \cdot 10^{-7} \\ \hline$                     |
| ET-Basis UKR                | 705<br>1011      | 4,3 · 10 <sup>-10</sup>                                                                    | 4,3 - 10-10                                                      | 4,3 · 10 <sup>-10</sup>                                                                       | 6 · 10 <sup>-10</sup>                                              |
| VECHELDE (2a+               | 3+4)             | mittlere (axiale                                                                           | r) Transmissivitäten (m                                          | n <sup>3</sup> /s)                                                                            |                                                                    |
| Abschnitt b                 | on [m] is [m]    | Fall B                                                                                     | Fall C                                                           | Fall D                                                                                        | Reffall R34                                                        |
| Top UKR - GOF               | 0 30             | 3,1 · 10 <sup>-9</sup>                                                                     | 2,6 · 10 <sup>-4</sup>                                           | 2,6 · 10 <sup>-4</sup>                                                                        | 2 · 10-4                                                           |
| UKR2<br>UKR1                | 30<br>R<br>578   | 1,9.10-8                                                                                   | 2,1:10-8                                                         | 6,6·10 <sup>-5</sup>                                                                          | $\begin{array}{c c} 2 \cdot 10^{-6} \\$                            |
| ET-Basis UKR                | 578<br>1844      | 2,5 · 10 <sup>-9</sup>                                                                     | 2,0 · 10 <sup>-9</sup>                                           | 2,1 · 10 <sup>-9</sup>                                                                        | 2 · 10 <sup>-6</sup><br>4 · 10 <sup>-9</sup> (bis<br>Basis Oxford) |

| VECHELDE 2a            | ,                  | mittlere (axiale                                     | ) Transmissivitäten [m                  | 1 <sup>3</sup> /s]                                                   |                                        |
|------------------------|--------------------|------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| Abschnitt              | von [m]<br>bis [m] | Fall B                                               | Fall C                                  | Fall D                                                               | Reffall R34                            |
| Top UKR - GOF          | 0<br>30            | 1,2 · 10 <sup>-9</sup>                               | 1,2 · 10 <sup>-4</sup>                  | 1,2 - 10 <sup>-4</sup>                                               |                                        |
| UKR2<br>UKR1 30<br>538 | 30<br>UKR<br>538   | 8,2·10 <sup>-9</sup>                                 | 4,4.10 <sup>-9</sup>                    | 6,6·10 <sup>-5</sup> 6,6·10 <sup>-5</sup>                            | Bohrung<br>nicht einzeln<br>modelliert |
| ET-Basis UKR           | 538<br>1853        | 7,0 · 10 <sup>-10</sup>                              | 5,8 · 10 <sup>-10</sup>                 | 7,0 · 10 <sup>-10</sup>                                              |                                        |
| VECHELDE 3             |                    | mittlere (axiale                                     | ) Transmissivitäten [m                  | n <sup>3</sup> /s]                                                   |                                        |
| Abschnitt              | von [m]<br>bis [m] | Fall B                                               | Fall C                                  | Fall D                                                               | Reffall R34                            |
| Top UKR - GOF          | 3 O<br>O           | 7,3 · 10 <sup>-10</sup>                              | 6,1 · 10 <sup>-5</sup>                  | 6,1 · 10 <sup>-5</sup>                                               |                                        |
| UKR2 310<br>UKR1 605   | 30<br>UKR<br>605   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1,8·10 <sup>-8</sup>                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                | Bohrung<br>nicht einzeln<br>modelliert |
| ET-Basis UKR           | 605<br>1863        | 1,0 · 10 <sup>-9</sup>                               | 6,9 · 10-10                             | 6,9 · 10 <sup>-10</sup>                                              |                                        |
| VECHELDE 4             | <u> </u>           | mittlere (axiale                                     | ransmissivitäten [r                     | n <sup>3</sup> /s]                                                   |                                        |
| Abschnitt              | von [m]<br>bis [m] | Fall B                                               | Fall C                                  | Fall D                                                               | Reffall R34                            |
| Top UKR - GOF          | 0<br>3 0           | 1,2 · 10-9                                           | 8,0 • 10-5                              | 8,0 · 10 <sup>-5</sup>                                               |                                        |
| UKR2 30<br>            | 30<br>UKR<br>592   | 2,5·10 <sup>-8</sup><br>                             | $\begin{array}{c} 7,9 \cdot 10^{-8} \\$ | 1,1·10 <sup>-4</sup><br>1,1·10 <sup>-8</sup><br>1,8·10 <sup>-8</sup> | Bohrung<br>nicht einzeln<br>modelliert |
| ET-Basis UKR           | 592<br>1817        | 8,3 · 10 <sup>-10</sup>                              | 6,9 · 10 <sup>-10</sup>                 | 6,9 · 10 <sup>-10</sup>                                              |                                        |

| WEDTLENSTEDT 1                                       |                               | mittlere (axiale) Transmissivitäten [m³/s]                        |                                                                  |                                                               |                                       |  |
|------------------------------------------------------|-------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|--|
| Abschnitt                                            | von [m]<br>bis [m]            | Fall B                                                            | Fall C                                                           | Fall D                                                        | Reffall R34                           |  |
| Top UKR - GOF                                        | 0<br>34                       | 1,4 · 10 <sup>-9</sup>                                            | 1,4 · 10-4                                                       | 1,4 · 10-4                                                    |                                       |  |
| UKR2 34<br>461<br>UKR1 461<br>694                    | 34<br>UKR<br>694              | 2,3·10 <sup>-9</sup><br>4,7·10 <sup>-9</sup> 2,8·10 <sup>-9</sup> | $\frac{3,4\cdot 10^{-9}}{4,7\cdot 10^{-9}}$ 3,8·10 <sup>-9</sup> | $\frac{3,7\cdot 10^{-9}}{4,7\cdot 10^{-9}}  4,0\cdot 10^{-9}$ | Bohrung<br>nicht modelliert           |  |
| ET-Basis UKR                                         | 694<br>1926                   | 3,4 · 10 <sup>-10</sup>                                           | 3,4 · 10 <sup>-10</sup>                                          | 3,4 - 10-10                                                   |                                       |  |
| WIERTHE 1 mittlere (axiale) Transmissivitäten [m³/s] |                               |                                                                   |                                                                  |                                                               |                                       |  |
| WIERTHE 1                                            |                               | mittlere (axiale                                                  | ) Transmissivitäten (m                                           | n <sup>3</sup> /s)                                            |                                       |  |
| WIERTHE 1 Abschnitt                                  | von [m]<br>bis [m]            | mittlere (axiale                                                  | ) Transmissivitäten [m                                           | n <sup>3</sup> /s) Fall D                                     | Reffall R34                           |  |
|                                                      | von [m]<br>bis [m]<br>0<br>28 | <u> </u>                                                          | <u> </u>                                                         | <del></del>                                                   | Reffall R34                           |  |
| Abschnitt                                            | bis [m]                       | Fall B                                                            | Fall C                                                           | Fall D  6,3 · 10 <sup>-5</sup>                                | Reffall R34  Bohrung nicht modelliert |  |

