BfS

Bundesamt für Strahlenschutz

DECKBLATT

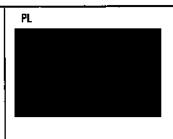
	Projekt N A A N	PSP-Element NNNNNNNNNNN	Obj. Kenn.	Aufgabe X X A A X	UA A A	Lid, Nr.	Rev. N N
EU 028.3	9 K	3162.31		HG	RB	0013	01

Titel der Unterlage: Grundwasserhöhengleichenpläne, Erstellen von 7 Pegelbohrungen (Spülbohrungen) einschließlich Ausrüstung mit automatischen Pegelschreibern Seite:

Stand: 25.06.87

Ersteller: GSF Textnummer:

Stempelfeld:


PSP-Element TP.....:

zu Plan-Kapitel: 3.1.9.6.3

PL

Freigabe für Behörden

Freigabe im Projekt

Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beförderung und Vernichtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Dritten zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrücklichen Zustimmung des 8fS.

Revisionsblatt

·	Projekt N A A N	P5P-Etement NNNNNNNNN	Obj. Kenn.	X A A X X	A A	N N N N	Rev.
EU 028.3	9K	3162.31		HG	RB	0013	00
Titel der Unterlage: Grund	wasserhöhengle.	ichenpläne,	<u>-</u>		Seite:	<u>. </u>	
Erstellung von 7 P	egelbohrungen	(Spülbohrungen)	einschließ	Blich		II.	
Ausrüstung mit aut	omatischen Peg	elschreibern			Stand	l:	
			•		03.0	.07.85	

Rev.	Revisionsst. Datum	verant. Stelle	Gegenzeichn. Name	rev. Seite	Kat. *)	Erläuterung der Revision
01	25.06.87	SE 1.4		Anl. 3		Aufgrund der vorgenommenen Änderung des GWM-Netzes (Herausnahme von GWM 2386) wurde eine Änderung in der Anlage 3 not- wendig.
	·				:	

^{*)} Kategorie R = redaktionelle Korrektur
Kategorie V = verdeutlichende Verbesserung
Kategorie S = substantielle Änderung
Mindestens bei der Kategorie S müssen Erläuterungen angegeben werden.

LV-Nr. 2219.02

AP-Nr. 1

II. Bauabschnitt

Ergänzende Unterlagen zum Plan Endlager Schachtanlage Konrad Leistungsverzeichnis-Nummer 2219.02 Grundwasserhöhengleichenpläne Arbeitspaket Nummer 1 II. Bauabschnitt 1985 Erstellen von 7 Pegelbohrungen (Spülbohrungen) einschließlich Ausrüstung mit automatischen Pegelschreibern

Gesellschaft für Strahlen- und Umweltforschung Institut für Tieflagerung

LV-Nr. 2219.02

Grundwasserhöhengleichenpläne

AP-Nr. 1

II. Bauabschnitt 1985
Erstellen von 7 Pegelbohrungen (Spülbohrungen)
einschließlich Ausrüstung mit automatischen
Pegelschreibern.

Braunschweig, den 03.07.1985

Der Bericht wurde im Auftrag der PHYSIKALISCH TECHNISCHEN BUNDES-ANSTALT (PTB) erstellt. Die PTB behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit Zustimmung der PTB zitiert, ganz oder teilweise vervielfältigt bzw. Dritten zugänglich gemacht werden.

Inhalt	sverzeichnis	Seite
	Kurzfassung	1
	Vorbemerkungen	2
1	Einleitung und Problemstellung	5
2 2.1	Bohrprogramm Festlegung der Bohransatzpunkte	7 7 8
2.2	Genehmigung zu den Baumaßnahmen	8
2.3	Technische Ausführung der Bohrungen	9
2.4	Technische Angaben zum Geräteeinsatz	11
3 3.1	Hydrogeologische Aufschlußbohrungen	12 12
3.1.1	Probengewinnung Spülproben	12
3.1.2	Sonderproben	13
3.1.3	Probenverteilung und Bearbeitung	14
3.2	Geophysikalische Bohrlochmessungen	15
4	Ausbau hydrogeologischer Aufschlußbohrungen zu Grundwassermeßstellen	17
4.1	Einbau von Filter- und Aufsatzrohren	17
4.2	Einbau von Filterkies und Tonabdichtungen	19
4.3	Abschlußbauwerke der Grundwassermeßstellen	20
4.4	Entwickeln der Grundwassermeßstellen	21
5	Pumpversuche	22
5.1 5.2	Durchführung der Pumpversuche Technische Ausführung der Pumpversuche	22 23
0.2	resimilations indicate and resimple resimilations	25
6	Einmessen der Lage der Grundwassermeßstellen	24
7	Nutzung der Grundwassermeßstellen	25
8	Zusammenfassung der Ergebnisse	26
	Verzeichnis der Abbildungen 1 - 15	28
	Verzeichnis der Tabellen 1 - 6	44
	Verzeichnis der Anlagen 1 - 3	51
	Literatur	55

 $\prod_{i=1}^{n}$

Kurzfassung

II. Bauabschnitt 1985: Erstellen von 7 Pegelbohrungen (Spülbohrungen) einschließlich Ausrüstung mit automatischen Pegelschreibern

Stichwörter: Aufschlußbohrung, Grundwassermeßstelle - Hydrogeologie - Konrad - oberflächennahes Grundwasser.

Zur Verbesserung der geologischen und hydrogeologischen Erkenntnisse im Nahbereich um die Schachtanlage Konrad wurden in einem
zweiten Bauabschnitt im Jahre 1985 sieben Aufschlußbohrungen
(im Spülbohrverfahren) in den quartären Ablagerungen niedergebracht; vier Aufschlußbohrungen wurden als Grundwassermeßstellen
ausgebaut und in das Grundwasserbeobachtungsnetz Konrad integriert.

Vorbemerkungen

Im Februar/März 1983 wurden der PTB/BGR erste Vorschläge seitens des IfT der GSF über die Errichtung eines Grundwassermeßstellenund Grundwasserbeobachtungsnetzes für den Nahbereich um die
Schachtanlage Konrad unterbreitet. Das damalige Konzept sah die
Erweiterung des aus ca. 43 Grundwassermeßstellen bestehenden
Grundwasserbeobachtungsnetzes um vier Grundwassermeßstellen sowie eine Überprüfung der bestehenden Grundwassermeßstellen auf ihre
Funktionsfähigkeit vor. Übereinstimmung bestand darüber, daß das
Grundwassermeßstellen- bzw. Grundwasserbeobachtungsnetz in erster
Linie das Zu- und Abstromgebiet des oberflächennahen Grundwassers im Bereich der mit quartärem Lockergesteinsmaterial gefüllten
Senken erfassen müsse.

Als Ergebnis der Fachdiskussion zwischen BGR, GSF und PTB wurde die Zahl der zu errichtenden Grundwassermeßstellen auf neun Grundwassermeßstellen erhöht, um eine flächendeckende Überwachung der oberflächennahen Grundwasserverhältnisse in den grundwasserführenden quartären Ablagerungen der Senken im Bereich der Schachtanlage Konrad zu gewährleisten.

Da bei zahlreichen der zu sanierenden Grundwassermeßstellen keine Unterlagen über die Art des Ausbaues vorhanden waren und die erfolgreiche Sanierung der Pegelbohrungen fraglich war, wurde bei einer Fachsitzung im August 1983 zwischen BGR, GSF und PTB beschlossen, einige der bis dahin zur Sanierung vorgesehenen Pegelbohrungen durch neu zu erstellende Bohrungen zu ersetzen.

Im August 1983 stellte die GSF ein modifiziertes Bohr- und Sanierungsprogramm vor. Danach wies das überarbeitete Konzept 17 sanierungsfähige Grundwasserbeobachtungsrohre (anstelle von 43) und 18 zu erstellende Grundwassermeßstellen (anstelle von 9) auf. Auf der Basis dieses Konzeptes wurden am 14.10.1983 sechs verschiedene Firmen im Rahmen einer öffentlichen Ausschreibung zur Abgabe eines Angebotes aufgefordert. Als Submissionstermin wurde der 10.11.1983 festgelegt.

Bevor es zu einer Auftragsvergabe im geplanten Umfang kommen konnte, wurde das hydrogeologische Untersuchungsprogramm Konrad aufgrund neuer fachlicher und finanzieller Überlegungen von der PTB storniert. Das Bohr- und Sanierungsprogramm wurde daraufhin von der GSF überarbeitet und im Dezember 1983, aufgeteilt in zwei Bauabschnitte, wieder vorgelegt.

Im ersten Bauabschnitt (1984) sollten nur solche Arbeiten ausgeführt werden, die für den auszulegenden Plan notwendig sind; ergänzende bzw. weiterführende Untersuchungen, die für den festzustellenden Plan erforderlich sind, sollten in den zweiten Bauabschnitt im Jahre 1985 verlagert werden. Im Einvernehmen mit PTB und BGR sollten von den geplanten 18 Grundwassermeßstellen im ersten Bauabschnitt 11 Grundwassermeßstellen erstellt werden; die Erstellung der restlichen 7 Grundwassermeßstellen war für den zweiten Bauabschnitt vorgesehen. Im Bereich der Sanierungen von 17 Grundwassermeßstellen sah der Entwurf für den ersten Bauabschnitt lediglich 9 Sanierungen vor; die Sanierungen der restlichen 8 Grundwassermeßstellen war für den zweiten Bauabschnitt geplant.

Nach Prüfung der Angebote der Bieterfirmen durch ein von der PTB beauftragtes Ingenieurbüro (Kassel) fand am 14.02.1984 unter Beteiligung von PTB, GSF und dem Ingenieurbüro aus fachlichen und finanztechnischen Gründen eine zweite Verhandlungsrunde mit dem günstigsten Bieter statt. Die Ergebnisse dieser Nachverhandlung stellen sich wie folgt dar:

Das hydrogeologische Untersuchungsprogramm Konrad mit 18 zu erstellenden Grundwassermeßstellen und 17 Sanierungen von Grundwassermeßstellen wird in zwei Bauabschnitten in den Jahren 1984 und 1985 durchgeführt.

Im ersten Bauabschnitt (Beginn April/Mai 1984) werden zehn Grund-wassermeßstellen im Rotary-Spülbohrverfahren erstellt (Teilaufgabe 2219.02/AP 1, I. BA), eine Grundwassermeßstelle wird im Trockenbohrverfahren als Schlauchkernbohrung geteuft (Teilaufgabe 2219.02/AP 2). Die restlichen sieben der geplanten 18 Grundwassermeßstellen gelangen im zweiten Bauabschnitt zur Ausführung (Teilaufgabe 2219.02/AP 1, II. BA). In der zweiten Verhandlungs-runde wurde aus Kostenersparnisgründen die Sanierung aller 17 vorgesehenen Grundwassermeßstellen in einem Bauabschnitt beschlossen (Teilaufgabe 2219.02/AP 3, I. und II. Bauabschnitt, Teilaufgabe 2219.06/AP 1, I. und II. Bauabschnitt).

Am 13.04.1984 erfolgte die Vergabe der Arbeiten zum ersten Bauabschnitt an den preisgünstigsten Bieter – die Bietergemeinschaft der Firmen und ...

Die Bohrarbeiten wurden vom Auftragnehmer am 14.04.1984 aufgenommen und am 19.07.1984 mit der Geländebegehung abgeschlossen.

Nach fachlicher Diskussion der Untersuchungsergebnisse des ersten Bauabschnittes wurde von BGR, GSF und PTB im September 1984 die Notwendigkeit der Fortführung der Arbeiten in einem zweiten Bauabschnitt bestätigt.

Die Vergabe der Arbeiten des zweiten Bauabschnittes des hydrogeologischen Untersuchungsprogrammes fand durch die GSF an die
Bietergemeinschaft (Europe und am 07.01.1985 statt. Nach 10-wöchiger Dauer wurden die
Arbeiten in der 15. KW 1985 (12.04.1985) abgeschlossen. Die Abnahme
der Bohrarbeiten erfolgte am 03.06.1985 (23. KW 1985).

1 Einleitung und Problemstellung

Im Bereich der Schachtanlage Konrad nehmen am meteorologischen Kreislauf Grundwässer aus den mit quartärem Lockergesteinsmaterial gefüllten Senken (Porenwasserleiter) und den Plänerkalken der Oberkreide (Kluftwasserleiter) teil. Diese oberflächennahen Grundwässer haben Kontakt miteinander und beeinflussen sich gegenseitig in ihrem hydraulischen Potential und ihrem Chemismus.

Als Grundwasserspeichergesteine und als Grundwasserleiter sind jedoch vor allem die sandig-kiesigen Ablagerungen des Pleistozäns von Bedeutung. Die Verteilung der quartären Ablagerungen im Untersuchungsgebiet ist aus Anlage 1 ersichtlich.

Eine Bestandsaufnahme und Überprüfung von vorhandenen Grundwassermeßstellen/Grundwasserbeobachtungsrohren im Untersuchungsgebiet
der GSF (Nahbereich um die Schachtanlage Konrad) im Jahre 1983
zeigte, daß eine Vielzahl von Grundwassermeßstellen bzw. Grundwasserbeobachtungsrohren für die Beantwortung einer Reihe von
weitergehenden hydrogeologischen Fragestellungen im Bereich der
quartären Ablagerungen ungeeignet sind.

Infolgedessen erstellte das Institut für Tieflagerung der GSF im Jahre 1983 ein umfangreiches Bohr- und Sanierungsprogramm für Grundwassermeßstellen bzw. Grundwasserbeobachtungsrohre (vgl. Teilaufgabe 2219.02/AP 1 - I. BA), das nach einer Reihe von Änderungen und Umstellungen in zwei Bauabschnitte aufgeteilt wurde.

Ziel dieses Bohr- und Sanierungsprogrammes ist die Verbesserung der stratigraphischen und sedimentpetrographischen Aufschlußver- hältnisse der quartären Ablagerungen in den Senkenzonen sowie die Verbesserung der hydrogeologischen und hydraulischen Erkenntnisse über die grundwasserführenden quartären Lockergesteine im Grund-

wassereinzugsgebiet um die Schachtanlage Konrad. Zur Beantwortung dieser wichtigen Fragestellungen wurden im ersten Bauabschnitt im Jahre 1984 elf Grundwassermeßstellen erstellt und siebzehn Grundwassermeßstellen erfolgreich saniert. Während die Pegelsanierungen und Bohrungen des ersten Bauabschnittes hauptsächlich das nähere Grundwassereinzugsgebiet um die Schachtanlage Konrad geologisch und hydrogeologisch erschließen, sollen die im Rahmen des zweiten Bauabschnittes geplanten sieben Pegelbohrungen der Untersuchung der Randbereiche des Untersuchungsgebietes dienen.

Wie in den im ersten Bauabschnitt erstellten Grundwassermeßstellen sind in den Grundwassermeßstellen des zweiten Bauabschnittes folgende hydrogeologische Untersuchungen zur Beweissicherung vorgesehen:

- Durchführung von Kurzzeitpumpversuchen zur Bestimmung der örtlichen Transmissivitäten bzw. Durchlässigkeitsbeiwerte grundwasserführender quartärer Lockergesteine.
- Beobachtung der Grundwasserspiegellagen des oberflächennahen Grundwassers.
- Bestimmung der Fließrichtungen und Fließgeschwindigkeiten des oberflächennahen Grundwassers in den quartären Ablagerungen.
- In situ-Messungen hydrochemisch wichtiger Parameter, wie Wassertemperatur, elektrische Leitfähigkeit, pH-Wert, Eh-Wert, Sauerstoffgehalt sowie eine hydrochemische und altersmäßige Charakterisierung des oberflächennahen Grundwassers durch Vollanalysen.
- Bestimmung des Radionuklidgehaltes des oberflächennahen Grundwassers.

2 Bohrprogramm

2.1 Festlegung der Bohransatzpunkte

Die Aufteilung des hydrogeologischen Untersuchungsprogrammes auf zwei Bauabschnitte wirkte sich nicht auf die bereits im August 1983 erfolgte vorläufige Festlegung der Standorte aller 18 Bohransatz-punkte für Pegelbohrungen aus. Vielmehr wurde festgelegt, daß die Bohrungen des ersten Bauabschnittes der Klärung der geologischen bzw. hydrogeologischen Verhältnisse des Nahbereiches um die Schachtanlage Konrad dienen sollten, während im zweiten Bauabschnitt die Randbereiche des Untersuchungsgebietes abgedeckt werden.

Bei der Auswahl der Bohransatzpunkte wurden die geologischen und hydrogeologischen Erkenntnisse aus bereits im Untersuchungsgebiet vorhandenen Aufschlußbohrungen bzw. Pegelbohrungen berücksichtigt. Die Festlegung der einzelnen Bohransatzpunkte orientierte sich stark an der mit der Errichtung der Grundwassermeßstellen verbundenen Aufgabenstellung. Als Auswahlkriterien lassen sich folgende Gesichtspunkte anführen:

- Erkundung der Mächtigkeitsverhältnisse der quartären Ablagerungen.
- Aufschluß sedimentpetrographischer Verhältnisse mit der Möglichkeit einer quartärstratigraphischen Gliederung.
- Erschließung von grundwasserführenden Schichten mit guten hydraulischen Eigenschaften.
- Erschließung der natürlichen und anthropogenen Grundwasserverhältnisse im Bereich der quartären Lockergesteinsablagerungen der Senkenzonen.

Nach Beendigung der Bohrarbeiten des ersten Bauabschnittes wurden aufgrund der dort erzielten Untersuchungsergebnisse die für den zweiten Bauabschnitt geplanten Bohrungen im Hinblick auf die mit der Standortauswahl verbundenen Fragestellung überprüft. Aus dieser Überprüfung resultierten gegenüber dem Planungsstand vom 14.02.1984 folgende Änderungen:

Als Ersatzbohrung für die Bohrung XVII, die für den zweiten Bauabschnitt geplant war, jedoch schon im ersten Bauabschnitt zur Ausführung gelangte, ist die Bohrung II A vorgesehen (vgl. Tab. 1, Bem.1)).

Mit Hilfe der als Grundwassermeßstelle auszubauenden Aufschlußbohrung II A bei SZ-Heerte soll die Lage der unterirdischen Wasserscheide in diesem Bereich erkundet werden. Für den Fall, daß die hydrogeologischen Aufschlußverhältnisse der Bohrung II A den Ausbau der Aufschlußbohrung zu einer Grundwassermeßstelle als nicht sinnvoll erscheinen lassen, ist als Ersatz die Bohrung XIX vorgesehen (vgl. Tab. 1, Bem. 2)).

In Tabelle 1 sind die für den zweiten Bauabschnitt geplanten Aufschlußbohrungen/Grundwassermeßstellen sowie ihre Planungsdaten - unter Berücksichtigung der Ergebnisse des ersten Bauabschnittes - mit Stand vom 03.09.1984 zusammengestellt; die Lage der Bohrungen ist Anlage 1 zu entnehmen.

2.2 Genehmigung zu den Baumaßnahmen

In Zusammenarbeit mit der PTB wurden die zur Durchführung der Baumaßnahmen notwendigen Genehmigungen bei den zuständigen Behörden
und Verbänden erwirkt. Mit den von den Baumaßnahmen betroffenen
Grundstückseigentümern wurden Gestattungs- und Nutzungsverträge
abgeschlossen, die die Erstellung und den Zugang zu den erstellten Grundwassermeßstellen sicherstellen.

2.3 Technische Ausführung der Bohrungen

Am 28.01.1985 (5. KW 1985) wurde mit den Gelände- und Bohrarbeiten zum zweiten Bauabschnitt des hydrogeologischen Untersuchungsprogrammes Konrad begonnen.

Die Aufschlußbohrungen des zweiten Bauabschnittes wurden als Spülbohrungen mit direkter Spülung (Rechtsspülung) und offener Bohrkrone im Rotary-Verfahren bis zur Quartärbasis bzw. bis in den obersten Teil der Liegendformation (Unter-/Oberkreide) abgeteuft. Als Spülungszusatz wurde der Reinwasserspülung pumpfertig verarbeitetes Johnson-Revert zugemischt.

Laut Ausschreibungsunterlagen war bei den Bohrungen ein Bohrenddurchmesser von mindestens 300 mm durch alle vorkommenden Gesteinsarten (quartäre Lockergesteine sowie Festgesteine der Ober- bzw. Unterkreide) gefordert, um die Bohrung anschließend als Grundwassermeßstelle mit einer DN 150-Verrohrung ausbauen zu können.

Eine Aufstellung der im zweiten Bauabschnitt abgeteuften Aufschlußbohrungen vermittelt Tabelle 2. Die Lage der ausgeführten Aufschlußbohrungen/Grundwassermeßstellen ist der topographischen Karte 1:15.000 (Anlage 2) zu entnehmen.

Ein Vergleich der Tabellen 1 und 2 verdeutlicht die Änderungen, die im Verlauf der Geländearbeiten gegenüber dem Planungsstand vom 03.09.1984 aus den unterschiedlichsten Gründen eingetreten sind. Im folgenden sollen die Ursachen der Änderungen aufgezeigt werden:

Bei der Festlegung der Bohransatzpunkte für die Bohrungen I und II in Leinde war in den quartären Lockergesteinsablagerungen in diesem Bereich mit einem "quasi-Stockwerksbau" der grundwasserführenden Schichten gerechnet worden, den die Bohrungen I und II hydrogeologisch erschließen sollten. Bei den Bohrarbeiten bis in die Liegendformation des Quartärs wurden bei der Aufschlußbohrung I jedoch nur Lößlehm und Schluff erschlossen, so daß die Bohrung nicht aus Grundwassermeßstelle ausgebaut und demzufolge die Aufschlußbohrung II nicht ausgeführt wurde. Die Aufschlußbohrung I wurde mit Tonkugeln verfüllt. Ersatzweise wurde die Bohrung I A geteuft und aufgrund der hydrogeologischen Verhältnisse als Grundwassermeßstelle ausgebaut (vgl. Tab. 2, Bem. 1) u. 2)).

Die mit der Bohrung II A verbundene Fragestellung nach der Lage der unterirdischen Wasserscheide im Bereich des Standortes der Bohrung blieb unbeantwortet, da die potentiell grundwasserführende Schicht von nur knapp einem Meter Mächtigkeit den Ausbau der Bohrung als Grundwassermeßstelle nicht gerechtfertigt hätte. Die daraufhin in Absprache mit BGR und PTB festgelegte und als Ersatzbohrung ausgeführte Aufschlußbohrung II B zeigte ähnliche Verhältnisse wie Bohrung II A. Auch hier wies die als grundwasserführende Schicht in Frage kommende stark lehmige Feinkies-

lage zu geringe Mächtigkeiten auf. Beide Bohrungen wurden mit Tonkugeln verfüllt. Entsprechend den Planungen wurde als Ersatz-bohrung für die Bohrung II A bzw. II B die Bohrung XIX geteuft und als Grundwassermeßstelle ausgebaut (vgl. Tab. 2, Bem. 2), 3) und 6)).

Westlich der Ortschaft Fümmelse sahen die Planungen die Erstellung einer Grundwassermeßstellengruppe bestehend aus drei, in unterschiedlichen Teufen verfilterten Pegelbohrungen vor. Beim Abteufen der Bohrung X wurde jedoch nur ein zusammenhängender Grundwasserleiter erschlossen, so daß die Bohrungen XI und XII entfallen konnten (vgl. Tab. 2, Bem. 5)).

Sowohl das lithologische Profil als auch die geophysikalische Vermessung (GR, FEL) weisen für die Bohrung XVIII zwei durch Schlufflagen voneinander getrennte grundwasserführende Horizonte in Teufen von 19,00 - 22,50 m bzw. 29,50 - 33,00 m aus. Beim Ausbau als Grundwassermeßstelle wurde jedoch nur der obere Horizont verfiltert, da es sich beim unteren Horizont, bestehend aus Feinkiesen mit einem hohen Anteil an Plänerkalkgeröllen, um die Verwitterungs- bzw. Aufbereitungszone im Hangenden der oberkretazischen Plänerkalke handelt.

2.4 Technische Angaben zum Geräteeinsatz

Bei der eingesetzten Bohranlage (Masthöhe 6 - 7 m über Gelände) handelte es sich um eine auf LKW montierte Bohranlage mit der Bezeichnung M 300. Die Bohranlage war nur für Spülbohrungen einsetzbar. Der Antrieb der Bohranlage erfolgte hydraulisch über den 175 PS (129 kW) starken Dieselmotor des Trägerfahrzeuges. Das Drehmoment der Fahrzeugmaschine betrug in Abhängigkeit von der Drehzahl 400 - 600 kp/m. Die maximal erreichbare Bohrteufe dieser Anlage war bei Einsatz eines Bohrgestänges mit einem Außendurchmesser von 83 mm und einem Innendurchmesser von 65 mm in Verbindung mit einem 130-mm-Bohrmeißel auf 300 m Teufe beschränkt; bei Einbau eines Bohrgestänges mit einem Außendurchmesser von 146 mm

und einem Innendurchmesser von 130 mm sowie einem 300-mm-Bohrmeißel verringert sich die Einsatztiefe der Bohranlage aufgrund
des höheren Gewichtes des Gestänges bzw. des Bohrmeißels. Der
Bohrandruck der Bohranlage war bis zu 7 t ausgelegt; im Bedarfsfall konnte der Andruck durch Schwerestangen verstärkt werden.
Die Zugkraft der Bohranlage betrug ca. 6 - 7 t. Das Bohrgestänge
konnte stufenlos im Bereich 0 - 150 U/min betrieben werden.

Für Aufschlußbohrungen mit kleinen Bohrdurchmessern (130 mm) war eine auf dem LKW montierte Doppelkolbenpumpe mit einer Pump-leistung von ca. 35 m³/h vorgesehen; für Teufenbereiche bis zu 100 m und einem Bohrdurchmesser von 300 mm war zum Spülungs-transport eine Kreiselpumpe mit einer Leistung von ca. 60 m³/h vorhanden.

Zur Gewinnung von Stoßkernen wurde ein 4 m langes Stoßkernrohr mit einem Innendurchmesser von 40 mm mitgeführt. Der Stoßkern selbst wurde von einer auf dem Stoßkernrohr aufschraubbaren 20 cm langen Stoßkernhülse mit einem Innendurchmesser von 40 mm aufgenommen.

3 Hydrogeologische Aufschlußbohrungen

3.1 Probengewinnung

3.1.1 Spülproben

Die Spülproben wurden aus Aufschlußbohrungen mit einem Bohrdurchmesser von 130 mm gewonnen. Bestimmt durch die Länge des eingesetzten Bohrgestänges (3 m je Gestängetour) wurden die Spülproben über die gesamte Teufe der Bohrungen in Abständen von 1,50 m am Auslauf der Bohrung aus dem zwischen Bohrgestänge und Bohrlochwandung aufsteigenden Spülungsstrom entnommen. Zur geologischen Ansprache wurden die Spülproben neben der Bohrstelle übersichtlich abgelegt und teufenmäßig gekennzeichnet. Nach dem Abtrocknen des Probenmaterials erfolgte die Verpackung der Proben. Die Bearbeitungsproben wurden in Plastikbeutel verpackt und die für das Kernarchiv der BGR bestimmten Proben (Belegproben) in stapelbaren Styroporkisten untergebracht.

3.1.2 Sonderproben

Über die Spülprobengewinnung in Abständen von 1,50 m hinaus wurden auf Anweisung der GSF für quartärstratigraphische Untersuchungen (Teilaufgabe 2219.14/AP 1) Sonderproben gezogen.

Für petrographische Fein- und Mittelkiesanalysen wurden entsprechend den geologischen Aufschlüssen durch die Spülproben zusätzlich Geschiebemergel- und Feinkieslagen beprobt.

Im zweiten Bauabschnitt des hydrogeologischen Untersuchungsprogrammes Konrad wurden insgesamt 18 Spülproben mit einer Probenmenge von 10 - 20 1 für petrographische Fein- und Mittelkiesanalysen entnommen und in Plastikeimer gefüllt.

Die Bearbeitung dieses Probenmaterials und die Dokumentation der Ergebnisse erfolgt unter Teilaufgabe 2219.14/AP 1 (Quartärstratigraphie).

Ebenfalls zum Zweck einer genaueren stratigraphischen Einordnung der erbohrten quartären Ablagerungen wurden Kernproben
aus unverwitterten grauen Ton- und Schlufflagen gestoßen. Die
Auswahl der zu beprobenden Horizonte geschah zum einen über die
Korrelation bekannter, in der näheren Umgebung der Bohrungen gelegener älterer geologischer Bohrprofile als auch über die jeweiligen sedimentpetrographischen Aufschlüsse der Spülproben.

Zur Gewinnung der Stoßkerne wurde eine ca. 20 cm lange Stoßkern-hülse eingesetzt, die am unteren Ende des Stoßkernrohres angeschraubt war. An einem Seil hängend wurde das Stoßkernrohr ins Bohrloch hinuntergelassen, so daß sich die Stoßkernhülse in den zu beprobenden Horizont eindrücken konnte. Nach dem Ziehen des Stoßkernrohres wurde der Stoßkern (Ø mindestens 40 mm) aus der

Stoßkernhülse gedrückt und nach dem Liegenden und Hangenden orientiert gekennzeichnet. Zum Schutz vor Oxidation wurden die Stoßkerne mit Paraffin ummantelt und in Plastikbeutel verschweißt.

Sofern Spülprobenmaterial (insbesondere Sande) humose Bestandteile aufwiesen, wurde auch dieses Material separiert und in Plastikbeutel verpackt.

Die Stoßkerne sowie die Proben mit humosem Material wurden der BGR für pollenanalytische Untersuchungen überlassen. Die Untersuchungsergebnisse werden unter Teilaufgabe 2219.14/AP 1 (Quartärstratigraphie) dokumentiert.

In Tabelle 3 ist die Anzahl der Spül- und Sonderproben jeder Bohrung ausgewiesen.

3.1.3 Probenverteilung und Bearbeitung

Die Bearbeitung der aus den Aufschlußbohrungen stammenden Spülproben (Bearbeitungsproben) fiel in den Aufgabenbereich der GSF. Das entsprechende Belegprobenmaterial wurde in der 16. KW 1985 von der GSF ins Kernarchiv der BGR überführt.

Pollenanalytische Untersuchungen an Stoßkernen wurden von der BGR übernommen. Das Probenmaterial wurde den entsprechenden Bearbeitern in der BGR übergeben.

Für petrographische Fein- bis Mittelkiesanalysen wurden während der Bohrarbeiten zusätzlich Geschiebemergel- und Feinkieslagen beprobt. Die Untersuchungen an diesem Probenmaterial wurden von

, im Auftrag der GSF durchgeführt.

3.2 Geophysikalische Bohrlochmessungen

Die im Rotary-Spülbohrverfahren abgeteuften Bohrungen mit nicht gesicherter Teufentreue der Spülproben sowie deren Fraktionierung machten eine geophysikalische Vermessung dieser Bohrungen notwendig.

Zur direkten stratigraphischen und lithologischen Korrelation der Spülproben wurden im zweiten Bauabschnitt von der BGR sieben hydrogeologische Aufschlußbohrungen geophysikalisch vermessen. Die Aufnahme der geophysikalischen Logs erfolgte in den unverrohrten Aufschlußbohrungen unmittelbar nach dem Ausbau des Bohrgestänges. Mit Ausnahme der Bohrung XIX, die nach dem Abteufen der 300-mm-Bohrung vermessen wurde, fanden die Vermessungen der anderen Aufschlußbohrungen aus zeitlichen und technischen Gründen jeweils im Anschluß an die 130-mm-Vorbohrungen statt.

Tabelle 4 gibt einen Überblick über die in den einzelnen Aufschlußbohrungen bei bestimmten Bohrdurchmessern gefahrenen geophysikalischen Logs.

Von der BGR wurden in Absprache mit der GSF im einzelnen folgende bohrlochphysikalische Messungen durchgeführt:

Kaliber-Log

Diese Messung diente der genauen Abgrenzung zwischen Sanden und Tonen sowie der Bestimmung von Auskolkungen und dem damit verbundenen Nachfall. Weiterhin gab diese Messung Hinweise auf aufgelockerte bzw. verfestigte Schichtlagen.

Natürliche Gamma-Strahlung (GR)

Geringmächtige Schluff- bzw. Tonlagen, deren feine Kornfraktionen in den Spülproben nicht mehr nachweisbar waren, wurden mit Hilfe der GR-Messung identifiziert.

Fokussierter Widerstand (FE)

FE-Messungen wiesen Schichten unterschiedlicher Leitfähigkeit aus, wobei die Zusammensetzung der Bohrspülung zu berücksichtigen war.

Eigenpotential (SP)

Die Eigenpotential-Messungen ermöglichten die Grenzziehung zwischen geologisch unterschiedlich aufgebauten Schichten (z. B. Feststellung von Tonen bzw. Tonsteinen).

In den Abbildungen 1 bis 7 sind die in den einzelnen Bohrungen gemessenen geophysikalischen Logs sowie ihre geologische Interpretation aufgrund der Spülproben dargestellt. Bei der Zuordnung der geophysikalischen Grenzflächen der einzelnen Logs zu den Spülproben ergaben sich in den ungünstigsten Fällen Unterschiede von 0,50 m, die jedoch zu Lasten der teufenungenaueren Spülproben gingen und in der Art des Bohrverfahrens begründet lagen.

4 <u>Ausbau hydrogeologischer Aufschlußbohrungen zu</u> Grundwassermeßstellen

Nach Festlegung der Ausbaupläne, unter Berücksichtigung der Spülproben und der geophysikalischen Meßergebnisse, wurden die 130-mm-Aufschlußbohrungen bis zu den vorgegebenen Endteufen auf einen Bohrlochenddurchmesser von mindestens 300 mm aufgewältigt.

Bei den Ausbaumaßnahmen der Aufschlußbohrungen zu Grundwassermeßstellen wurde die DIN 4021, Teil 3 berücksichtigt.

4.1 Einbau von Filter- und Aufsatzrohren

Der Ausbau der aufgewältigten Aufschlußbohrungen erfolgte mit PVC-Kunststoffrohren DN 150 (6") unterschiedlicher Einbaulängen mit einer Wandstärke von 7,5 mm. Den oberen Abschluß der Verrohrung von 0,80 m unter Geländeoberkante bis 1,60 m unter Gelängeoberkante bildet bei den Grundwassermeßstellen IA, X und XIX jeweils ein 0,80 m langes verzinktes Stahlrohr DN 150. Bei der Grundwassermeßstelle XVIII wurde als oberer Abschluß ein 1,30 m langes verzinktes Stahlrohr DN 150 eingebaut.

In allen Grundwassermeßstellen wurden PVC-Kunststoffilterrohre als Horizontalschlitzfilter mit einer Schlitzweite von 0,75 mm in Abhängigkeit von der im Gelände abschätzbaren Kennkorngröße des Aquifers und der Kennkorngröße des einzubauenden Filterkieses gewählt.

Unter den Filterstrecken wurden jeweils 2 m lange Sumpfrohre angeordnet, deren unteres Ende mit einer Bodenplatte verschlossen wurde.

Die Einbaulängen der Filterstrecken wurden den Mächtigkeiten des Aquifers angepaßt, um den Aquifer möglichst in seiner gesamten Mächtigkeit zu erfassen. Der Abstand der Ober- bzw. Unterkante der Filterstrecke zu schlecht bzw. undurchlässigen Schichten im Liegenden und Hangenden des Aquifers wurde in Abhängigkeit von der hydrogeologischen Gesamtsituation ≥ 1 m gewählt, um ein Zusetzen des Filterkieses bzw. der Filterschlitze zu vermeiden.

Um das Eindringen von Fremdwasser im Bereich der Rohrverbindungen der Aufsatzrohre zu verhindern, wurden in den Übergangsbereichen der Aufsatzrohrtouren (einschließlich Übergang Aufsatzrohr - Stahlrohr) Schrumpfmuffen eingebaut.

Während des Absenkens der Verrohrung ins Bohrloch erfolgte der Einbau von dreistegigen PVC-Zentrierschellen (PVC-Kunststoffabstandhalter) in Abständen von ca. 5 m.

Nach dem Einbau der Verrohrung ins Bohrloch wurde die Oberkante der Verrohrung (Sollwert: 0,80 m unter Geländeoberkante) eingemessen und durch Anheben bzw. Absenken der Verrohrung korrigiert.

4.2 Einbau von Filterkies und Tonabdichtungen

Nach Festlegung des Ausbauplanes und vor dem Aufweiten der Aufschlußbohrung auf mindestens 300 mm wurde der mit ca. 130 mm Bohrdurchmesser gebohrte Bereich unterhalb der vorgesehenen Sohle der 300 mm Aufweitungsbohrung mit Kies bzw. Ton verfüllt.

Im Bereich der Aufsatzrohre erfolgte die Verfüllung des Ringraumes in der Regel in Anpassung an die geologischen Aufschlußver-hältnisse mit Ton bzw. Kies.

Als Filterkiesschüttung wurde in allen Grundwassermeßstellen sauberer Quarzfilterkies mit kugeliger Form in der Korngröße 1 - 2 mm verwendet. Um die Bildung einer Schlammhaut an der Außenwandung der Filterstrecken zu vermeiden, wurde vor und während des Einbaues des Filterkieses Reinwasser durch die Verrohrung nach unten gedrückt.

Die Schüttung des Filterkieses erfolgte kontinuierlich und gleichmäßig an allen Seiten der Verrohrung, um Verstopfungen und Brückenbildungen insbesondere im Bereich der Zentrierschellen zu vermeiden. In Anlehnung an die DIN 4021, Teil 3 wurde der Filterkies so eingebaut, daß er die Filterstrecke sowohl nach unten zum Sumpfrohr als auch die Aufsatzrohrtour oberhalb der Filterstrecke um mindestens einen Meter überdeckt.

Zur Wiederherstellung der natürlichen Sperrschichten und zur Abdichtung der Grundwassermeßstelle gegen eindringendes Oberflächenwasser außerhalb der Filterstrecke wurden Tonkugeln (Duranit) durch Schüttung bis ca. 1,30 m unter Geländeoberkante eingebracht.

Durch ständiges Loten der Schütthöhen des Filterkieses und der Tonkugeln sowie der Registrierung der eingebrachten Mengen wurden die eingebrachten Volumina mit dem berechneten Ringraum verglichen.

Den Abschluß der Abdichtung des Ringraumes oberhalb der Tonabdichtung bildet jeweils eine 0,20 m starke Stahlbetonlage, die die Sohle des unterflurigen Abschlußbauwerkes der Grundwassermeßstelle darstellt.

Genaue Angaben zum Ausbau der Grundwassermeßstellen in Abhängigkeit vom aufgeschlossenen Profil liefern die Ausbaupläne in den Abbildungen 8 - 14.

4.3 Abschlußbauwerke der Grundwassermeßstellen

Abweichend von den im ersten Bauabschnitt über Gelände errichteten Abschlußbauwerken vom Typ 1 und Typ 2 wurden die Abschlußbauwerke für die im zweiten Bauabschnitt errichteten Grundwassermeßstellen vom Typ 3 unterhalb der Geländeoberkante eingebaut. Bei dieser Entscheidung spielten sowohl sicherheitstechnische Überlegungen als auch die Forderung von Grundstückseigentümern – nach unauffälligen baulichen Lösungen – eine wesentliche Rolle.

Einzelheiten über den konstruktiven Aufbau des Abschlußbauwerkes vom Typ 3 vermittelt Abbildung 15.

Die Sicherung der Schachtdeckel der Einstiegsöffnung wurde mit Spezialschrauben vorgenommen.

Im Zuge der Änderung des Abschlußbauwerkes wurde auch ein neues System zur Aufzeichnung der Grundwasserspiegellagen eingeführt. Die bereits in Grundwassermeßstellen des ersten Bauabschnittes eingesetzten und auch für die Ausrüstung der Grundwassermeßstellen des zweiten Bauabschnittes vorgesehenen Pegelscheiber vom Typ Alpha N der wurden im zweiten Bauabschnitt durch ein neues elektronisches Datenerfassungssystem - mit der Bezeichnung MDS = mobiles Datenerfassungssystem - ersetzt.

tritt an die Stelle des herkömmlichen Pegelschreibers ein Datenspeicher, der über einen Meßwertgeber (Druckdose) die Meßwerte in digitaler Form speichert. Der Vorteil dieses Systems besteht darin, daß die im Datenspeicher gespeicherten Meßwerte entweder vor Ort auf einen mobilen Massenspeicher überschrieben werden können, der dann die Meßwerte auf den Auswerterechner überspielt oder aber der Datenspeicher selbst wird zum Auswerterechner gebracht und dort eingelesen. Über entsprechende Auswerteprogramme kann dann die weitere Bearbeitung der Meßdaten erfolgen.

Eine entsprechende Abstimmung mit PTB über die Einführung des MDS fand im Januar/Februar 1985 statt.

4.4 Entwickeln der Grundwassermeßstellen

Vor Inbetriebnahme der Grundwassermeßstellen wurden diese im air-lift-Verfahren bis zur Sand- und Spülungsfreiheit entwickelt. Zu diesem Zweck wurden 2"-PVC-Kunststoffrohre bis zur Sohle der Grundwassermeßstelle eingebaut. Über einen an der Außenwandung der PVC-Kunststoffrohre befestigten Gummischlauch wurde Preßluft in die Verrohrung der Grundwassermeßstelle gedrückt. Als Folge des Preßluftdruckes wurde der feine und feinste Korngrößenanteil aus dem Bereich des Kiesfilters und dem anstehenden Lockergestein des Aquifers freigespült. Fein- und Feinstkornanteile, die sich im Sumpf abgelagert hatten, wurden über die eingebaute PVC-Kunststoffverrohrung übertägig ausgeworfen.

5 Pumpversuche

5.1 Durchführung der Pumpversuche

Ziel der Pumpversuche in den einzelnen Grundwassermeßstellen war es, Angaben über die örtlichen Durchlässigkeitsbeiwerte bzw. Transmissivitäten sowie einen möglichen Stockwerksbau des Aquifers zu erhalten.

Entsprechend den Auflagen der zuständigen Behörden durfte im Untersuchungsgebiet wöchentlich nur ein Pumpversuch durchgeführt werden.

Abweichend von den Planungen, die in sieben im zweiten Bauabschnitt zu erstellenden Grundwassermeßstellen Pumpversuche vorsahen, wurden entsprechend der Anzahl der erstellten Grundwassermeßstellen nur vier Pumpversuche gefahren.

Der Pumpversuch in der Grundwassermeßstelle XVIII mußte wiederholt werden, da die aus dem Pumpbrunnen geförderte Grundwasserentnahmemenge von ca. 12,5 1/s nach nur dreieinhalbminütigem Pumpbetrieb zum Trockenfallen der Grundwassermeßstelle führte. Nach Wiedererreichen der Ruhelage des Grundwasserspiegels wurde der Pumpversuch mit einer Grundwasserförderrate von ca. 7,6 1/s neu gestartet.

Die Auswertung der Pumpversuchsergebnisse wird in einer gesonderten Teilaufgabe (2219.03/AP 2) dargestellt.

Eine Übersicht über die Pumpversuche im Rahmen des zweiten Bauabschnittes vermittelt Tabelle 5.

5.2 Technische Ausführung der Pumpversuche

Die Pumpversuche wurden auf eine Dauer von jeweils 24 Stunden je Pumpbrunnen ausgelegt. Der Einbau der Unterwasserpumpe erfolgte jeweils im Sumpf des Pumpbrunnens. Mit Ausnahme des Pumpversuchsortes XVIII lag die durchschnittliche Grundwasserförderleistung bei ca. 15 l/s. Aufgrund der ungenügenden Wasserführung des Aquifers im Bereich der Grundwassermeßstelle XVIII wurde die Grundwasserfördermenge dort auf ca. 7,6 l/s begrenzt. Abgesehen von Schwankungen in den Grundwasserfördermengen zu Beginn eines Pumpversuches wurde die Grundwasserförderrate über die gesamte Laufzeit der einzelnen Pumpversuche relativ konstant gehalten.

Die Messungen der gehobenen Grundwassermengen wurden auf folgende Art und Weise durchgeführt:

- 1. Wasseruhr
- 2. Ponceletmeßkasten

Das Ableiten der geförderten Grundwassermengen erfolgte über Schlauchleitungen in den nächstgelegenen Vorfluter oder Entwässerungskanal.

Vor und während der Pumpversuche wurden die Grundwasserspiegellagen im Pumpbrunnen und in Grundwassermeßstellen in der Umgebung des Pumportes eingemessen. Zur kontinuierlichen Aufzeichnung der Grundwasserspiegellagen in Grundwassermeßstellen in der Umgebung der Pumporte wurden dort Pegelschreiber installiert. In den Pumpbrunnen selber wurden die Grundwasserspiegellagen mittels Kabellichtlot eingemessen. In der ersten Pumpversuchsstunde, während der stärksten Absenkungsphase, erfolgten die Messungen in halbminütigen bis minütigen Abständen. Nach Erreichen eines quasistationären Strömungszustandes wurden die Meßintervalle zunächst auf fünfminütige und später auf stündliche Messungen verlängert. Zur Aufzeichnung der Wiederanstiegsphase bis zur Wiederherstellung der Ruhewasserspiegellage wurde entsprechend den Meßintervallen zu Beginn des Pumpversuches verfahren.

Um unbeeinflußte Grundwasserspiegellagen außerhalb der Pumpversuchsorte zu erhalten, wurden außerhalb der Absenkungsbereiche "Referenzpegel" ausgewählt, deren Filterstrecken in dem zu untersuchenden Aquifer stehen.

Um Veränderungen in der hydrochemischen Charakteristik der Grundwässer während der Pumpversuche festzustellen, wurden aus jedem Pumpbrunnen über einen Entnahmehahn am Bohrlochkopf Wasserproben gezogen. Darüber hinaus wurden im Durchfluß Temperatur, Leitfähigkeit, pH-Wert, Redoxpotential und Sauerstoffgehalt des geförderten Grundwassers gemessen.

6 Einmessen der Lage der Grundwassermeßstellen

Vor der Eingliederung der erstellten Grundwassermeßstellen in das bereits vorhandene Grundwassermeßstellennetz Konrad wurden die Grundwassermeßstellen ihrer Höhenlage nach eingemessen. Die Hoch- und Rechtswerte jeder Grundwassermeßstelle wurden aus der topographischen Karte bestimmt. Die Geländehöhen sowie die Meßpunkthöhen für Grundwasserspiegelmessungen bezogen auf NN wurden über Nivellements ermittelt. Die Höhenangaben wurden durch Vor- und Rücknivellements bzw. Schleifennivellements abgesichert. Die Teufen der Grundwassermeßstellen, bezogen auf verschiedene Festpunkte, wurden zusätzlich durch genaues Loten überprüft.

In Tabelle 6 sind die technischen Daten der im zweiten Bauabschnitt erstellten Grundwassermeßstellen zusammengefaßt.

7 Nutzung der Grundwassermeßstellen

Nach Abnahme der im zweiten Bauabschnitt des hydrogeologischen Untersuchungsprogrammes Konrad erstellten Grundwassermeßstellen in der 23. KW des Jahres 1985 wurden die Meßstellen in das bereits bestehende Grundwassermeßstellennetz Konrad integriert.

Einen Überblick über den derzeitigen Umfang des Grundwassermeßstellennetzes Konrad (I. und II. BA) vermittelt der Lageplan in Anlage 3 (Stand 30.06.1985).

Während der Untersuchungs-/Beweissicherungsphase bis Ende 1985 sind in den Grundwassermeßstellen noch folgende Untersuchungen vorgesehen:

- Beobachtung der Grundwasserspiegellagen des oberflächennahen Grundwassers
- Einbohrlochmessungen zur Bestimmung der Fließrichtungen und Fließgeschwindigkeiten des oberflächennahen Grundwassers.
- In situ-Messungen hydrochemisch wichtiger Parameter.
- Hydrochemische und altersmäßige Charakterisierung der oberflächennahen Grundwässer.
- Bestimmung des Radionuklidgehaltes des oberflächennahen Grundwassers.

Pumpversuche zur Ermittlung der Durchlässigkeitsbeiwerte bzw. Transmissivitäten des Aquifers wurden bereits im Rahmen der Baumaßnahmen durchgeführt.

Die technische Wartung und wissenschaftliche Betreuung des im zweiten Bauabschnitt in vier Grundwassermeßstellen eingebauten MDS zur Aufzeichnung der Änderungen der Grundwasserspiegellagen wird z.Zt. noch ausschließlich von der GSF durchgeführt.

8 Zusammenfassung der Ergebnisse

Zur Verbesserung der geologischen und hydrogeologischen Erkenntnisse in den quartären Ablagerungen im Nahbereich um die Schachtanlage Konrad wurden im Rahmen des zweiten Bauabschnittes des
hydrogeologischen Untersuchungsprogrammes Konrad sieben Aufschlußbohrungen (Bohrdurchmesser 130 mm) im Spülbohrverfahren geteuft.

Für stratigraphische Untersuchungen (Pollenanalysen und Kieszählungen) wurden zahlreiche Sonderproben gewonnen.

Geophysikalische Bohrlochmessungen dienten der genaueren teufenmäßigen Einordnung der Spülproben sowie der Festlegung der Ausbaupläne der Aufschlußbohrungen zu Grundwassermeßstellen.

Von sieben Aufschlußbohrungen wurden vier auf einen Bohrdurchmesser von mindestens 300 mm aufgewältigt und zu Grundwassermeß-stellen mit einer Verrohrung von DN 150 (6") ausgebaut. Die übrigen drei Aufschlußbohrungen wurden wieder verfüllt, da sich die hydrogeologischen Verhältnisse für die Errichtung von Grundwassermeßstellen als unzureichend erwiesen.

Zur Bestimmung der lokalen Durchlässigkeitsbeiwerte bzw. Transmissivitäten des quartären Grundwasserleiters wurden in vier Grundwassermeßstellen 24stündige Pumpversuche mit einer Pumpleistung von max. 18 l/s durchgeführt.

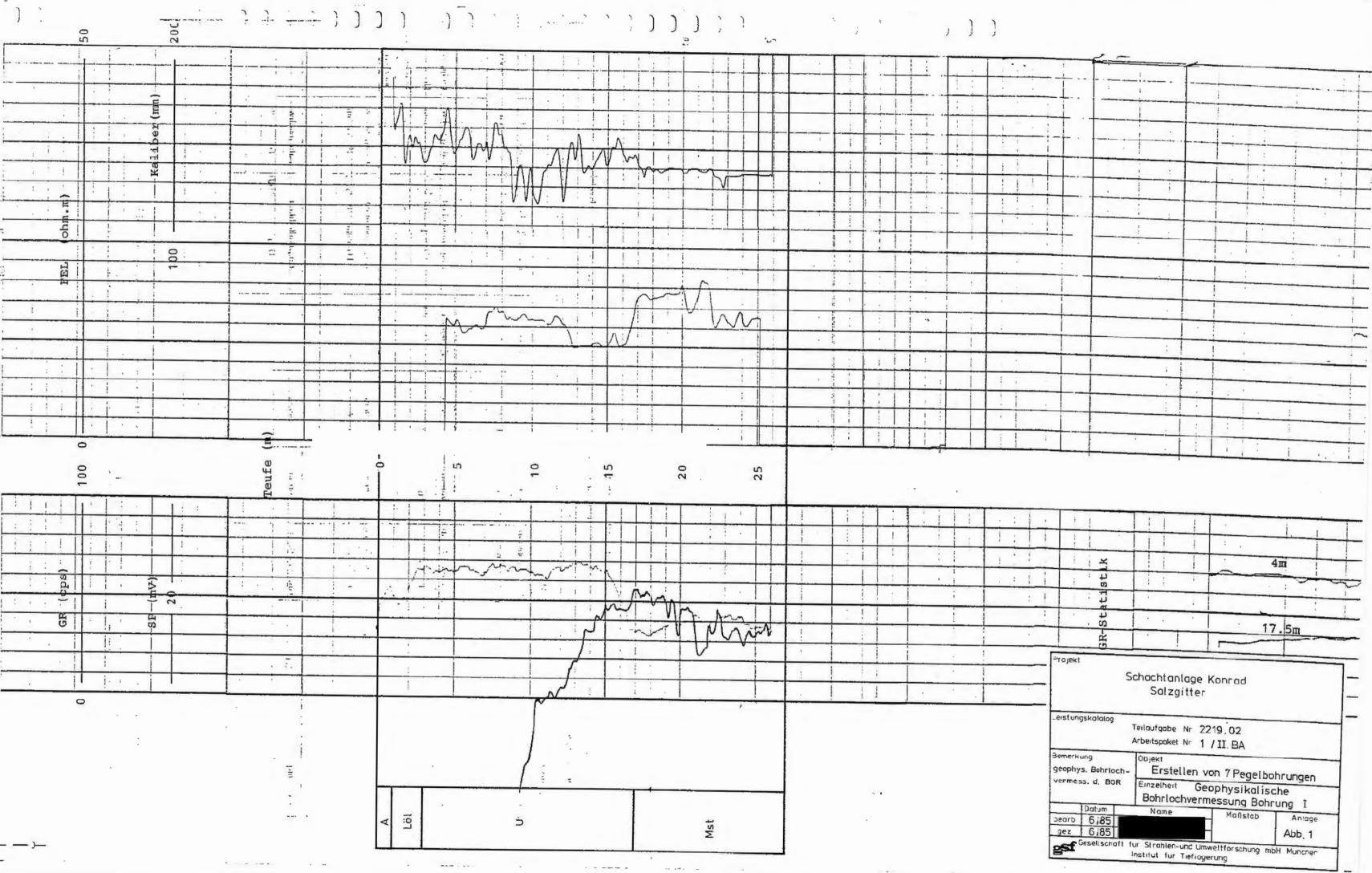
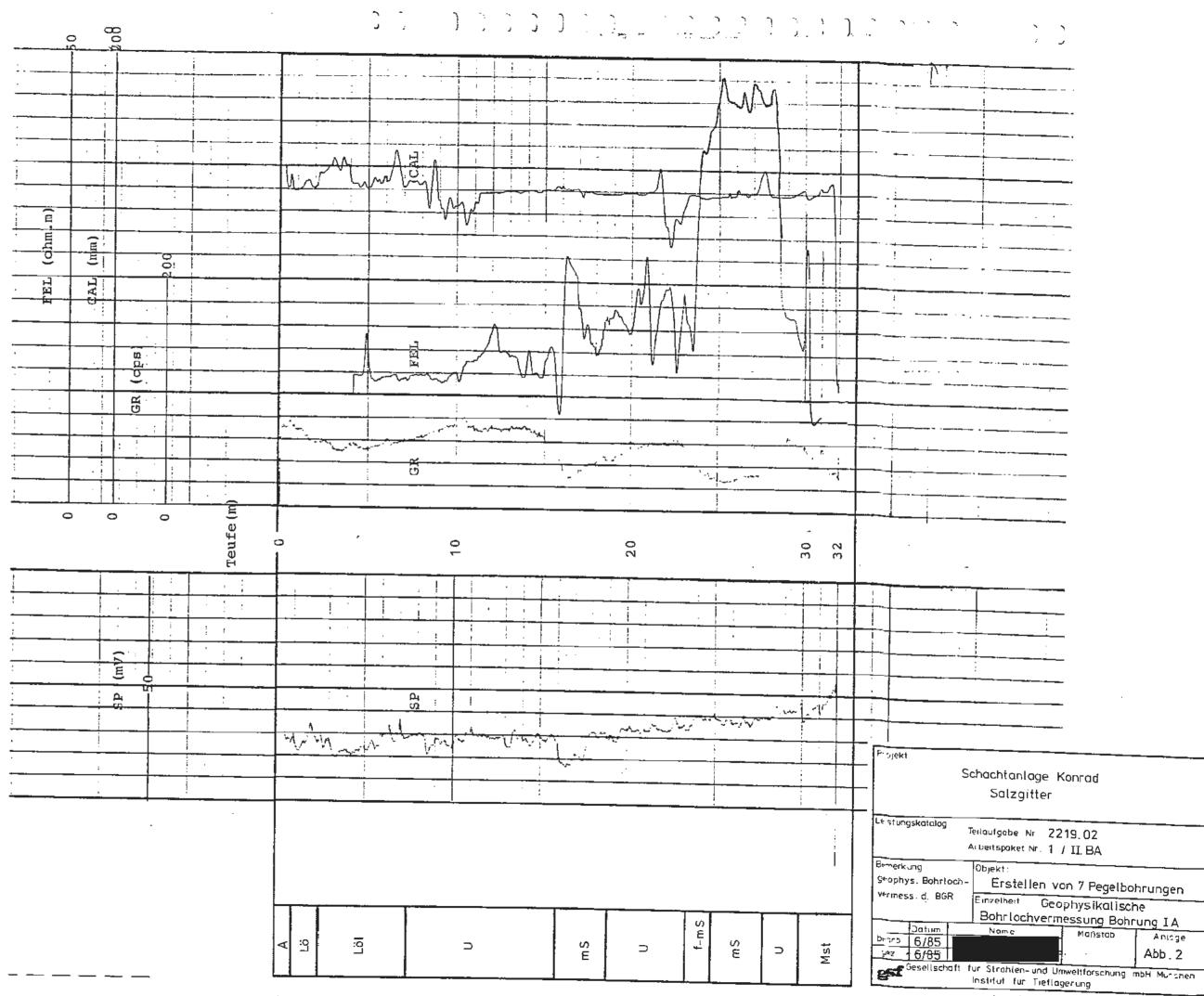

Verzeichnis der Abbildungen

Abbildung 1:	Geophysikalisch	e Bohrlochverm	essung der	Bohrung	I
Abbildung 2:	II .	U	"	11	I A
Abbildung 3:		.01	11	"	II A
Abbildung 4:	TT .	U	II II	11	II B
Abbildung 5:	U	U	11	11	X
Abbildung 6:	п	H	11	11	XVIII
Abbildung 7:	II .	0	"	11	XIX
Abbildung 8:	Litho-Log der E	ohrung		I	
Abbildung 9:	Litho-Log und A	usbauplan der	Bohrung	I A	
Abbildung 10:	Litho-Log der E	ohrung		II A	
Abbildung 11:	Litho-Log " "	u		II B	
Abbildung 12:	Litho-Log und A	usbauplan der	Bohrung	X	
Abbildung 13:	Litho-Log " "		п	XVIII	
Abbildung 14:	Litho-Log " "		11	XIX	
Abbildung 15:	Abschlußbauwerk	(Typ 3) der G	rundwasser	meßstell	en

DADE	The state of the s	प्रतिकार करणा है। सहस्र क र्
DUAR	. Gamma Ray, Spont. Potential,	
Ha nnover	Focussed Electrolog, Kaliber	

gitter		Auftraggebe	er:	GSF/	IfT			
Salz	H					arkung:		
adt adt			iedersac			stadt S	alzgit	ter
Land: Nieden Kreis: Stadt	Gemarkung: Bohrung:	Topogr. Kart Rechtswert: Hochwert:	35988	Lebensted 40 15	t Ost		1	Messungen:
Überstand _				m	m üb	er Teufenbezugs	Teuten	skala:
Messung			GR	Cal	SP	FEL		
Datum Uh	rzeit			31.1.85				i
Tiefster Meß	punkt		26m	26m				
Höchster Me	Bpunkt		0 "	.7"	9"	4.3m		
Meßstrecke			26m	25.3m	15m	20.7m		
Rohrschuh								
Erreichte Ter	ıfe		1					
Endteufe (Bo	hrmeistera	angabe)						
Spülung Zus	ammense	tzung	Wass	er				
* Spe	z. Gewich	Viskos.					-	i
	erstand R		12 ohm	bei 7.5°C		bei °C		bei °C
" Rmf	Rmc		1 Onn	bei °C		bei °C		bei °C
* pH-	Wert	Niveau		1				
MeBwagen			H - 1	786				
Ausführende	r							
Geologische	Bearbeitu	ing						
	Bohrl	ochdaten				Verrohrungsdat	en	
ø	V	on m	·bis m·	ø	Wand	stärke vo	n m	bis m
4.5								
130 mm	26		0					

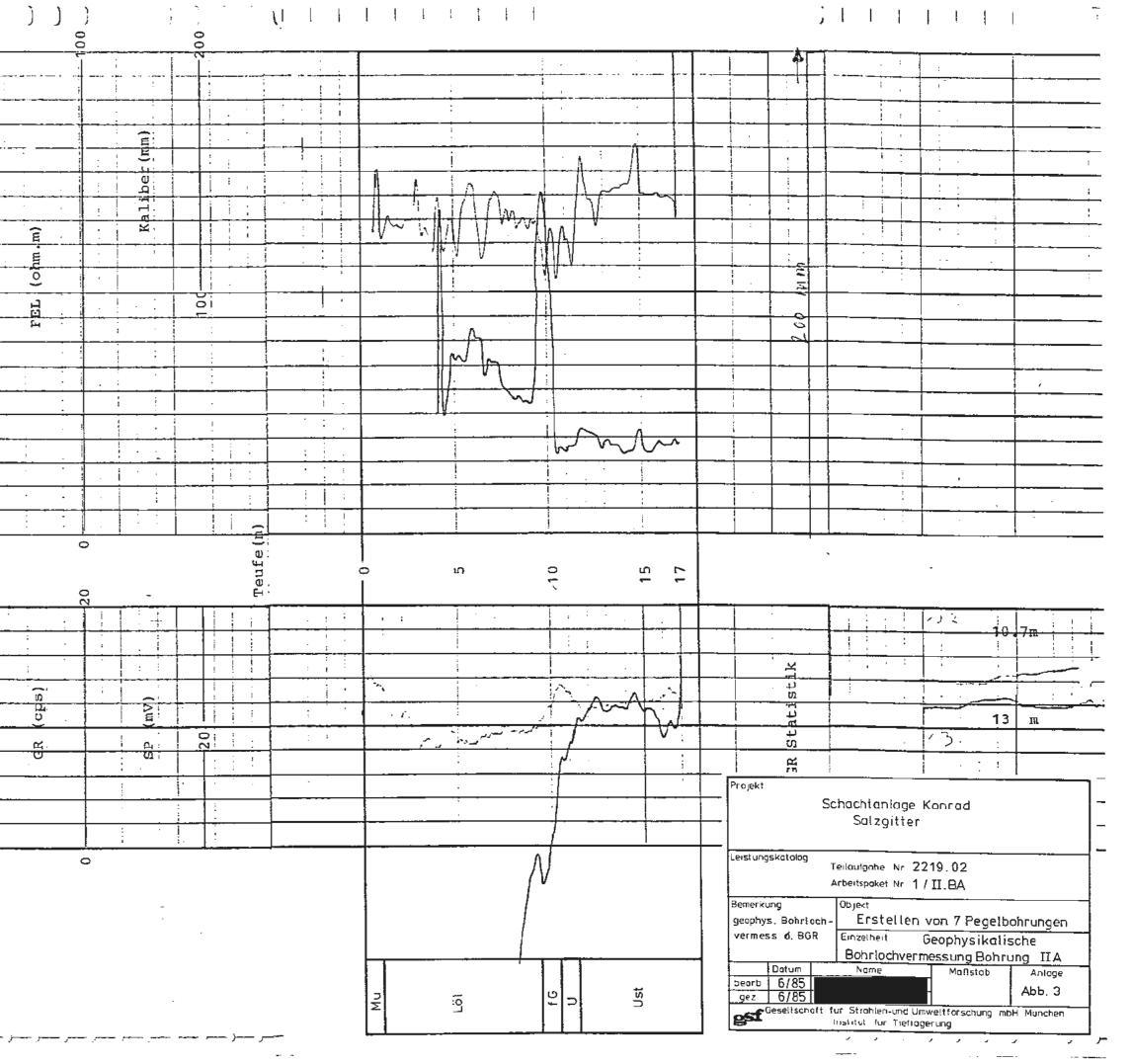
M 300 Bohrverfahren: Rotary Rotary Bohrmeister: Fige 2 FEL Taufenmaßtab von m bis m Spacing Empfindichkeit Fahrgeschw. 2 1;200 25 4,3 25 tim/10 Sk7 10 m/min 6 1;200 26 0 5 sec 100cps /10 Sk7 5 m/min β: 1;200 26 0,7 100mm /10 Sk7 8 m/min β: 1;200 26 0,7 100mm /10 Sk7 8 m/min β: 1;200 26 0,7 100mm /10 Sk7 8 m/min β: 1;200 26 9 10 m/min β: 1;200 26 9 10 m/min β: 1;200 26 9 20 m/m /10 sk7 8 m/min β: 1;200 26 9 20 m/m /10 sk7 8 m/min β: 1;200 26 9 20 m/m /10 sk7 10 m/min solitumager: 1;200 26 9 20 m/m	Bohrunlarnehmen:			-					
Land Land	Bohrgeråt :	- 1		Bohrverfahren:	- 1		Bohrmeister:		
ES	Bemerkungen :							:	
ES			**					The state of the s	
FE □ FEL □ Toulenmaßetab von m bis m Spacing Empfindlichkeit Fahrgeschw. Nr. φ: 1:200 25 4.3 25 tan/10 Sk² 10 m/min hb: GR Teulenmaßetab von m bis m Zeitkonst. Empfindlichkeit Fahrgeschw. n: (GR) Teulenmaßetab von m bis m Empfindlichkeit Fahrgeschw. n: (GR)	Gerätedaten								:
Nr. φ! 1:200 25 4.3 25 μπ/10 Sk² 10 m² m² List GR Teufenmaßstab von m bis m Zeitkonst. Empfindlichkeit Fahrgeschw. Nr. φ: 1:200 26 0.7 5 sec 100cps /10 Sk² 5 m/min nr. Kaliber Teufenmaßstab von m bis m Empfindlichkeit Fahrgeschw. Nr. φ: 1:200 26 0.7 100mm / 100mm / 10 Sk² 8 m/min bb: i gr Empfindlichkeit Fahrgeschw. Nr. φ: 1:200 26 0.7 100mm / 10 Sk² 8 m/min bb: m bis m Empfindlichkeit Fahrgeschw. gen: gen: 20 m/ / 10 gk² 10 m/min stern: m bis m 20 m/ / 10 gk² 10 m/min stern: m bis m 20 m/ / 10 gk² 10 m/min gen: gen: m m m stern: m m m m m stern	1	FEL	Teufenmaßstab		bis m	Spacing	Empfindlichkeit	Fahrgeschw.	Sp
lbe: GR Teulenmaßstab frei frei frei frei frei frei frei frei	Sonde-Nr.	Ø:	1:200	25	4.3		12m/10	10	mV/10
Nr. φ: Teufenmaßstab von m bis m Zeitkonst. Empfindtichkeit Fahrgeschw. nr. φ: 1:200 26 0 5 sec 100cps /10 Sk7 5 m/min nr. kal1ber Teufenmaßstab von m bis m Empfindtichkeit Fahrgeschw. Nr. φ: 1:200 26 0.7 100mm / 10 Sk7 8 m/min Nr. φ: 1:200 26 9 20 mV /10 3k7 10 m/min ubb: nr. nr. nr. nr. nr. nr. gen: nr. nr. nr. nr. nr. nr. sperit nr. nr. nr. nr. nr. nr. gen: nr. nr. nr. nr. nr. nr. nr. gen: nr. nr. nr. nr. nr. nr. nr. nr. gen: nr. nr. nr. nr. nr. nr	Einschübe:							-	-
Nr. φ: Teufermaßstab von m bis m Zeikkonst. Empfindlichkeit Fahrgeschw. n: h: 1:200 26 0 5 sec 100cps /10 Sk7 5 m/min n: Kal1ber Teufenmaßstab von m bis m Empfindlichkeit Fahrgeschw. Nr. φ: 1:200 26 0,7 100mm / 10 Sk7 8 m/min bbe: i feufenmaßstab von m bis m Empfindlichkeit Fahrgeschw. Nr. φ: 1:200 26 9 20 mV /10 gkg 10 m/min gen: n n bis m Empfindlichkeit Fahrgeschw. gen: n 26 9 20 mV /10 gkg 10 m/min gen: n n n n n gen: n n n n n gen: n n n n n gen: n n n n n <t< td=""><td></td><td></td><td></td><td>C</td><td></td><td></td><td>ż</td><td></td><td></td></t<>				C			ż		
φ: 1;200 26 0 5 sec 100cps /10 Sk1 5 m/min Kal1ber Teufenmaßslab von m bis m Empfindlichkeit Fahrgeschw. φ: 1:200 26 9 20 mV /10 gk1 Fahrgeschw. φ: 1:200 26 9 20 mV /10 gk1 Fahrgeschw. mrückführung "B": Nullpotential "N.: Spülgrube Ü, außerhalb [X], (Abstand — m) Background – cps / Background + Eichquelle — cps / Eichausschlag (Bereich) — (Messung:	GR	Teufenmaßstab		bis m	Zeitkonst.		-	Eichquelle
Kaliber Teufenmaßslab von m bis m Empfindlichkeit Fahrgeschw. β 1:200 26 0,7 100mm /10 SkT 8 m/min i SP Teufenmaßslab von m bis m Empfindlichkeit Fahrgeschw. φ: 1:200 26 9 20 mV /10 gkg 10 m/min mrückführung "B": n. n. n. Background - Cops / Eichausschlaß (Sherich) — Cops / Eichausschlaß (Bereich) — Cops / Eichausschlaß (Bereich) — Cops	Sonde-Nr.	:0	1:200	26	0			5	ž
Kaliber Teulenmaßslab von m bis m Empfindlichkeit Fahrgeschw. φ: 1:200 26 9 20 mV /10 gkg /10 m/min φ: 1:200 26 9 20 mV /10 gkg /10 m/min mrücklührung "B": Nullpotential "N": Spülgrube [L"], außerhalb [K], (Abstand — m) Background — ops / Background + Eichquelle — ops / Eichausschlag (Bereich) — (Einschub:						E -	-	Sonden-Pos.
Kaliber Teufenmaßslab von m bis m Empfindlichkeit Fahrg φ: 1:200 26 0.7 100mm /10 SkT 8 i Eufenmaßslab von m bis m Empfindlichkeit Fahrg φ: 1:200 26 9 20 mV /10 skT 10 mrücklührung "B":: Nullpotential "N": Spülgrube [L], außerlialb [KZ], (Abstand—Background - — ops / Eichausschlag (Bereich) ——	Detektor:	-		-			E.		hor./vert.
φ: 1:200 26 0.7 100mm 10 SkT 8 i Sp Teufenmaßslab von m bis m Empfindlichkeit Fahrg φ: 1:200 26 9 20 mV //10 gkg 10 nrückführung "B": Nullpotential "N": Spülgrube L", außerhalb [X], (Abstand—Background + Eichquelle—gps / Eichausschlag (Bereich)—gps / Eichausschlag (Bereich)—	Messung:	Kaliber	Teufenmaßstab	m nov	m sid		Empfindlichkeit	Fahrgeschw.	
SP Teufenmabstab von m bis m Empfindichkeit Fahrg 1:200 26 9 20 mV /10 gkg 10 nrückführung "B": Nullpotential "N": Spülgrübe L", außerhalb [X], (Abstand — Aps / Barkground + Eichqueile — ops / Eichausschlag (Bereich) —	Sonde-Nr.	ë	1:200	26	0.7		9	8	
Sp Teufenmaßstab von m bis m Empfindlichkeit Fahrg Fahrg 1.200 26 9 2.0 mV /10 gkg 10	Einschübe:			-			P	2	
Sp Teufenmaßstab von m bis m Empfindlichkeit Fahrg Fahrg		-					=	E	
## ## ## ## ## ## ## ## ## ## ## ## ##	Messung:		Teufenmaßstab	w nov	bis m		Empfindlichkeit	Fahrgeschw.	
### " " " " " " " " " " " " " " " " " "	Sonde-Nr.	ø:	1:200	26	6		01/ Vm	10	
"	Einschub:			-					
nrtickführung "B":) Background cps / Background + Eichquelle cps / Eichausschlag (Bereich)				-				=	
nrückführung "B": Background cps / Background + Eichquelle cps / Eichausschlag (Bereich)	Bemerkungen:	-							
nrtückführung "B":: Background cps / Background + Eichquelle cps / Eichausschlag (Bereich)			-	- 4-					
nrückführung "B":: Nullpotential "N": Spülgrube [], außerhalb [赵], (Abstand		-		-			2		
nrückführung "B": Background cps / Background + Eichquelle cps / Eichausschlag (Bereich)			***						
Background cps / Background+Eichqueile cps /	ES/FEL: Stromrückfi	uhrung "B":			Nullpotentia	I "N": Spülgrube			
		ckground -	,	ckground + Eich	dueile	cbs /	Eichausschlag (Bereich))	(


	C	F		· · · · · · · · · · · · · · · · · · ·
H	3 N N (ove.	r	

Gamma Ray, Spont. Potential,

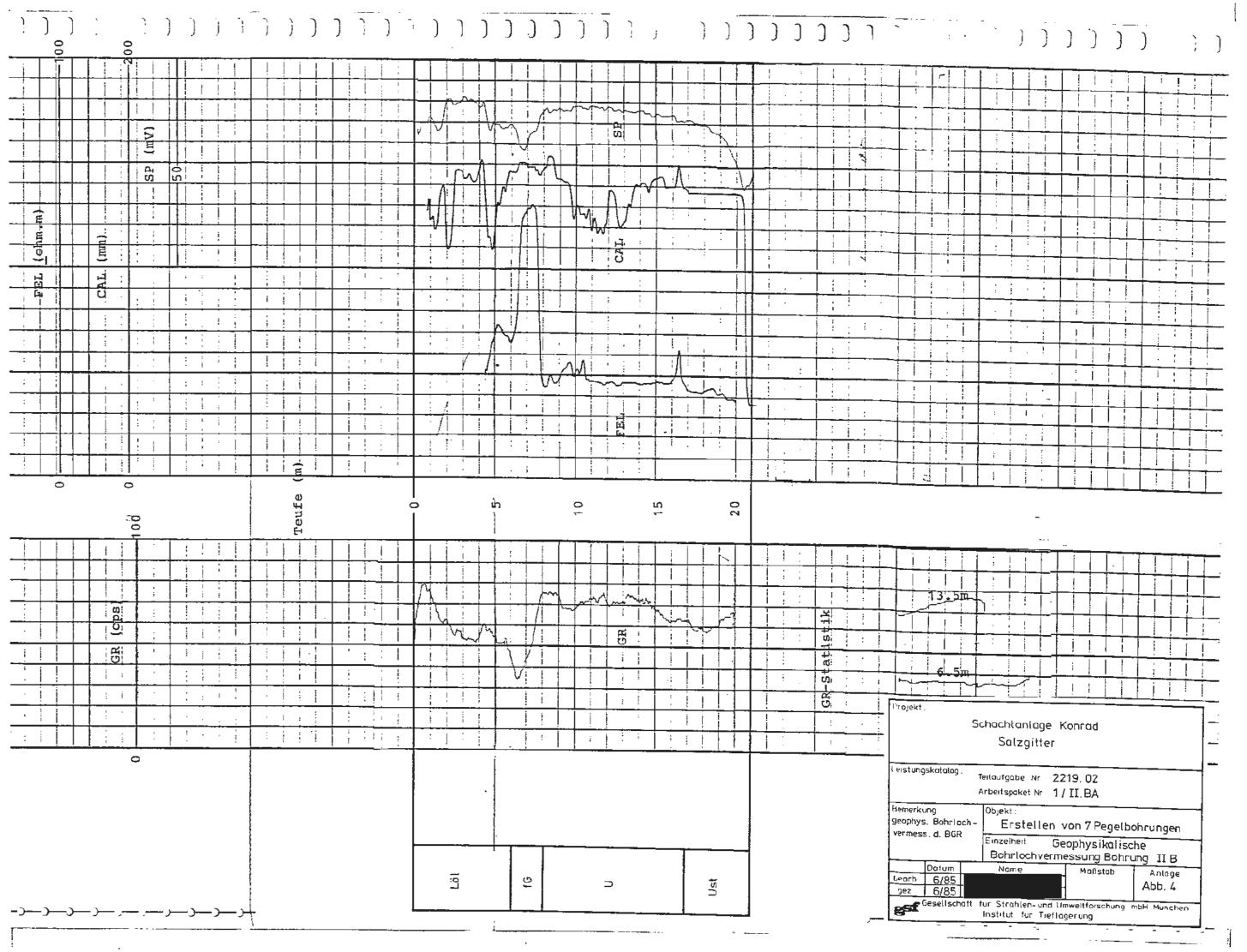
 -	177 2442	<u> </u>				
7-	130 883					ļ i
130mm	32	0				
Ø	von m	bis m	- ø	Wandstärke	von m	bis in
	Bohriochdaten		- *	· Verrohr	ungsdáten	
Geologische Bea	arbeitung .		1			
\usführender ⁱ				*		
Иевwagen		+1+				
" pH-Wer	t Niveau		<u> </u>	.:		
"Rmf	Rmc		bei °C	bei	°C	bei °C⁻
" Widerst	tand Rm (1)		bei °C	bei	°C	bei · °C :
" Spez. G	iewicht Viskos.		1 %			
Spülung Zusamı	gensetzung	··				
- Endteufe (Bohrπ	neisterapgabe)					
Erreichte Teufe						
Rohrschuh	· a,				 !	<u> </u>
	, 21 (18)	32		5 - 3 31.5 28		
	nkt		1		·	
Tiefster Meßpun		11.2.8 32	5 11-2.85 32	1 <u>1 2 85 11 </u>	1	<u> </u>
Datum Uhrzei	t-	<u>!</u>	1 . 1	i	· · · · · ·	· · · · · · · · · · · · · · · · · · ·
fessung	trans tale to E	GR	CAL	SP FE	T. 1 2 2 2 2	
Bohrbezugspunk	d: <u></u>			m * -	- _	
berstand	Alexander of	_ +: 57" + -:		m über Teufe	ŀ	<u> </u>
Feufenbezugspu	nkt:_Äckersoble_⊟	ähe-äber-N.N	m	· · · · · · · · · · · · · · · · · · ·	Teuf	enskala:
ق ن خ د	Hochwert:	<i>≟_e → -</i> 577	9285			
Land: Kreis: Gemari	Topogr, Kart		8360			keine
<u> </u>	Topogr, Kart			edt Ost		ere Messungen:
Stadt "."	Land:					- :-
ers t	A load.	Mindor	anahaan.	Kreis: Sta	dt Salzqit	ter
Niedersachsen Stadt Salzgit	Bohrung:			Gemarkung	:	···
hse zgi		IA	***			•
chsen	Auftraggebe	er:	GS GS	SF/IfT		
H 3		- L		Control of the control	بداء أحو معيمتم ييدان ال	Company of the State of the Sta
			<u> </u>	· • ·		
		•				
in Han	почет	ome 2 €	rocussed	Electrolog	,Kaliber	

The second secon

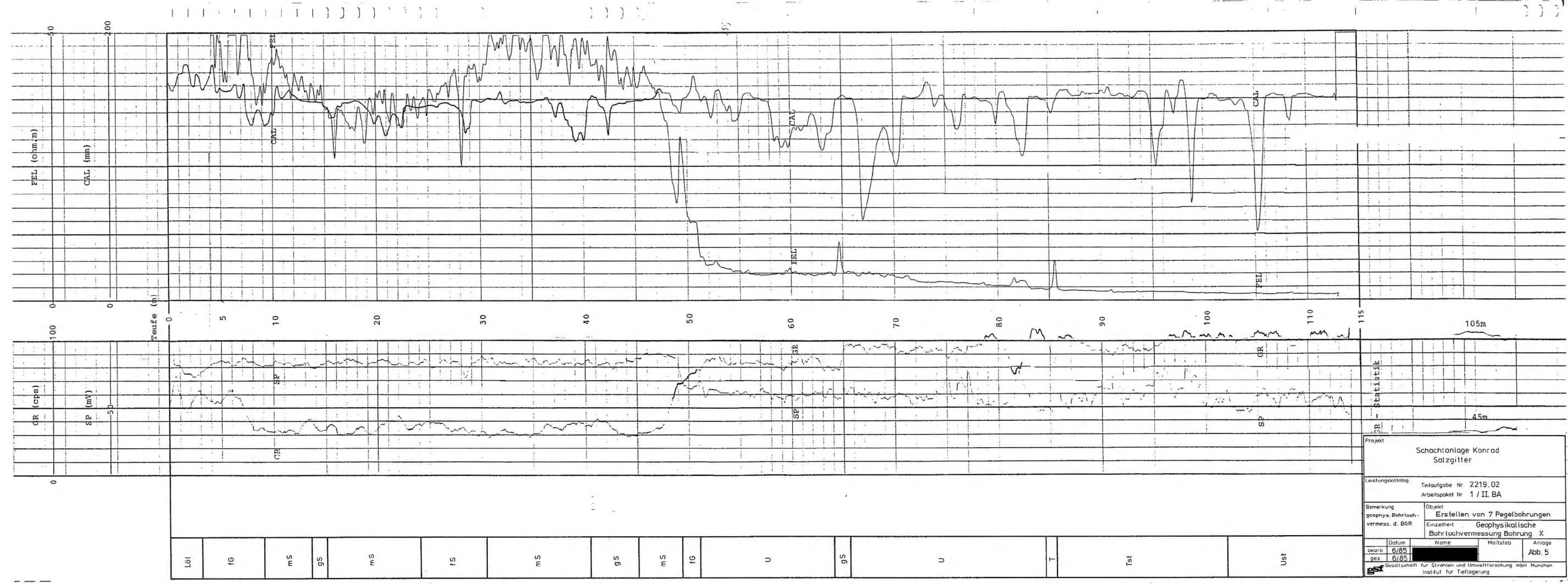

Bohrgeräl	Σ	1 300		Bohrverfahren:	Rotary		Bohrmeister:		
3emerkungen :	in :	- Park							
äledaten			Meßdaten						,
Bung: E	ES 🗆	FEL 🖫	Teufenmaßstab	WON IT	n sid	Spacing	Emplindlichkeit	Fahrgeschw,	SP
Sonde-Nr.		.;;	1:200	3.1	6		25 9m/10 SkT	10 ա/ատ	mV/10
inschube:							T	E	±
							*	± .	=
:Bunsı		GR	Teufenmaßstab	von m	E sid	Zeilkonst.	Emplindlichkeit	Fahrgeschw.	Eichquelle
Sonde-Nr.			1:200	32	0	5 860	200cps /10 Sk1	7 , 5 տ/ուն	Ŋŗ.
inschub:							2	=	Sonden-Pos.
Jetektor:							\$	=	hor/vert.
:Buns:	*	Kaliber	Teufenmaßstab	m nov	bis m		Empfindlichkeit	Falligeschw.	
Sonde-Nr.		ë	1:200	32	£.		100mm /10 SkT	8 m/min	
:inschübe:							=	=	
							÷	•	
:Buns:		SP	Teufenmaßstab	m nov	E eid		Emplindlichkeit	Fahrgeschw.	
Sonde-Nr.		.;.	1:200	32	0		50mV /10 SkT	1 In/min	
inschub:								E	
					:		#	-	
nerkungen									
		· · · · · · · · · · · · · · · · · · ·			emiller de trada i a la trada live de l'emiller	terry del - drayly di Makabakan panja, pan di di			
ES/FEL: Stromrückführung "B":	rockführung				Nullpotential	Nullpotential "N": Spülgrube	e [], außerhalb [XZ], (Abstand	(ш	
GR Eichdalen:	Background		cps / Ba	Background + Eichguelle	elleur	cps /	Eichausschlag (Bereich)		
							The second secon		

3.4				13
				1
		. .		
				1.3
250				i Japan
4				3
7.7			_	
1.1		- 10 TO 1	1	
	yHa r	HILLA	1. 一	
	100 mg		1	

Hanno		Focu	a Ray,Spo	ctrolog,	Kalib	er	2 3 - 472 <i>4</i> 7		
다. 라	Auftraggebe	r:	GSF/	IfT			_		
Niedersachsen Stadt Salzgitter ng:	Bohrung:		3	Gemar	kung: _				
iderse idt Se	l !		ısen	,	Stad	lt Sa	lzgit	ter	
Land: Nieder Kreis: Stadt Gemarkung: I	Topogr. Karte Rechtswert: Hochwert:	359555	ebenstedt 5 0	0st -			İ	ine	n:
Teufenbezugspunkt: Überstand Bohrbezugspunkt:				m über	Teufenb	ezugsp.		skala:	
Messung	<u> </u>	GR	Cal	SP	FEL		·		
Datum Uhrzeit		:	1 .	1.2.85	1.2.	85		į	
Tiefster Meßpunkt		17m	17m	17m	17m				
Höchster Meßpunkt		Om	.7m	8m	4.	2m			
Meßstrecke		17m	16.3m	9m	12.8	m			
Rohrschuh			-						
Erreichte Teufe	· 					<u> </u>			
Endteufe (Bohrmeis	terangabe)								
Spülung Zusammen	setzung	Wass	er						
* Spez. Gew	icht Viskos.				•			<u> </u>	
* Widerstand	I Rm	33ohm.	m ^{bei} 7 °C		bei	°C		bei	°C
" Rmf Rm	nc		bei °C		bei	°C		bei	°C
* pH-Wert	Niveau		<u> </u>		<u> </u>			<u> </u>	
Meßwagen		<u>H-1</u>	786						
Ausführender									
Geologische Bearb	eitung	-		<u> </u>					
Во	hrlochdaten			Ve	errohrun	gsdate	n		
· Ø	von m	bis m	ø	Wandst	ärke	von	m]	bis m	
130 mm	17	0							
	.						_		
					<u> </u>		_		
į.	I '		ı	1	1		1	I	


Bohrgarät :	М 300	1.0 T. O.	Bohrverfahren:	Rotary		Bohrmeister:		
Bemerkungen:							-	
Geräledaten		Meßdaten						-
Messung: ES [FEL KI	Teufenmaßstab	von m	bis m	Spacing	Emplindlichkeit	Fahrgeschw.	Sp
Sonde-Nr.	. B	1:200	17	4.2		50 9m/10 Sky	12 m/min	mV/10
Einschübe:						E	*	F
							Ξ	2
Меввипд:	GR	Teufenmaßstab	von m	bis m	Zeilkonst.		Fahrgeschw.	Eichqueile
Sonde-Nr.	ë	1:200	17	0	5 800	100cps/10 SkT	5 ա/աiո	ž
Einschub:						=	*	Sonden-Pos.
Detektor:			-			Ξ.	•	hor/vert.
Messung:	Kaliber	Teufenmaßslab	WOLL IT	bis m		Emplindlichkeit	Fahrgeschw.	
Sonde-Nr.	100	1:200	17	-		100mm/10 SKT	8 m/min	
Einschübe:						F	*	
							=	
Messung:	SP	Teufenmaßstab	von m	bis m		Emplindlichkeit	Fahrgeschw.	
Sonde-Nr.	;ø	1:200	17	Ф		20mV/10 SKT	12 m/min	
Einschub:						#	F	
						-	#	
Bemerkungen:								
ES/FEL: Stromrückführung "B":	նիւսոց "Ց":			Nullpotentia	"N": Spuigrupe	Nullpotential "N": Spulgrube LJ, aubernato tol, tabstand	/III	
GR-Eichdaten; Bac	Background	ops / Bi	Background + Eichquelle	duelle	cbs /	Eichausschlag (Bereich)		

					10.7
3-1		_		_	-
ME 7					
* F				19	
			-		1
				T .	
	. B	1 7			F-5
* × 5					
				_	7.7
7.					
Ē.		nnż	-1 (35		
	: 51 L.C.	nnc	A F		
	17 Sec. 1		7 6 3 - 3	- 4	

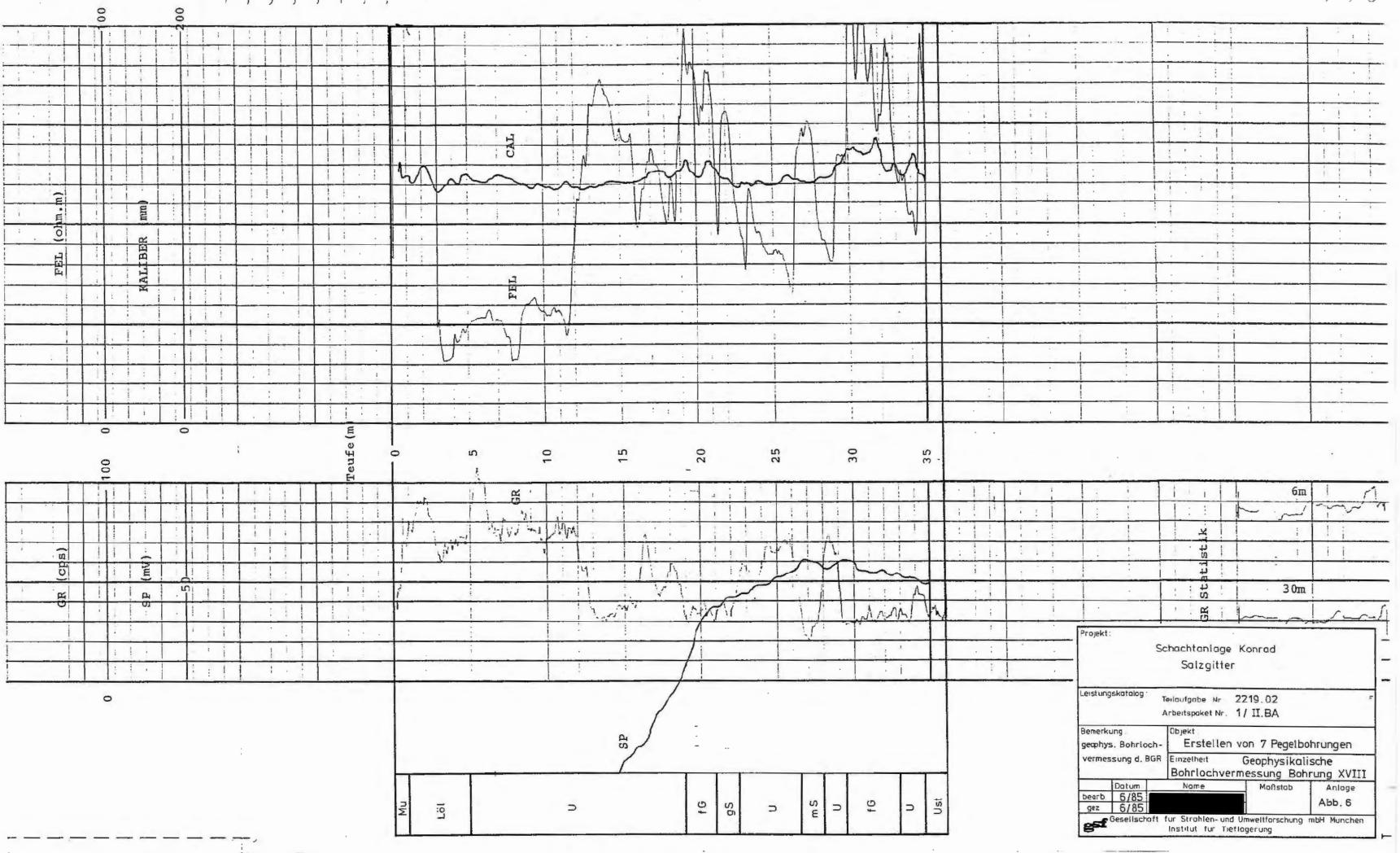

Han				Foc	na Ray,Sp issed Ele	ctrolog	,Kali	iber		***	
ter		Auftragg	eber		GSF/	ıf <u>r</u>					
Niedersachsen Stadt Salzgitter ng:							rkung:				
Nieders Stadt S Ing:	IIB				hsen		Sta	adt Sa	lzgit	ter	
Land: N1. Kreis: St. Gemarkung:	Bohrung:	Rechtswe	ert:	3828 L 359660 577807	ebenstedt 0 5	0st -			[re Wessunger eine	
Überstand					n	m übe	r Touler	nbezugsp.		enskala;	
Messung			1	GR	Cal	SP	FE:	<u>. </u>			
Datum Uhrze	eit.		<u> </u>		\$13.2.85					į	
Tiefster Meßpur	nkt		<u></u>	20	21	21	2				
Höchster Meßp	unkt			0 -	.8	.3		4.3			
Meßstrecke		<u>.</u>	i	20	20.2	20.7	1.	5.7			
Rohrschuh								1			
Erreichte Teufe	:					_		<u> </u>			
Endteufe (Bahr	meistera	angabe)									
Spūlung Zusan	nmense	tzung	Ì	Wass	er						:
* Spez.	Gewich	t Viskos	s.				1			j	
* Wider	stand R	m		10.9oh	mmbei 1.9°C		bei	°C		bei	ů
* Rmf	Rmc				bei °C		bei	°C		beî	°C
• pH-W	ert	Niveau				1	1			[
Meßwagen				н – 1	786						
Ausführender											
Geologische B	earbeitu	ing									
	Bohri	ochdaten				V	errohri	ungsdate	n		
ø	v	on m		bis m	ø	Wands	tärke ·	von	m	bis m	
130 mm		21		0							
		-	1								
				,							
			4					-			

Rohmaniannahman:			į					
Bohrgerät :	M 300		Bohrverfahren:	Rotary		Bohrmeister:		ļ
Bemerkungen:								
rätedaten		Meßdaten						-
Janu8: ES □	D FEL K	Teufenmaßstab	m nov	bis m	Spacing	Emplindlichkeit	Fahrgeschw.	Sp
Sonde-Nr.	.;¢	1:200	20	4.3		50 Dm/10 BKT	12 m/min	mV/10
Einschübe:				1		H.	*	1
				***************************************		H	=	
seung:	GR	Teufenmaßstab	von m	bis m	Zeitkonst.	Emplindlichkeit	Fahrgeschw,	Eichquelle
Sonde-Nr.	Ö	1:200	20	0	pas 5	100cps/10 SkT	5 m/min	ž.
Einschub:							=	Sonden-Pos.
Delektor:			-			.	=	hor/vert.
senng:	Kaliber	Teufenmaßstab	m nov	bis m		Emplindlichkeit	Fahrgeschw.	
Sonde-Nr.	ğ	1:200	21	8		100mm/10 SKT	8 m/min	
Einschübe:						F	Ξ	
						£	2	
Bsung;	S.P	Teufenmaßstab	m nev	bis m		Empfindlichkeit	Fahrgeschw.	
Sonde-Nr.	ğ	1:200	21	٠,3		50mV /10 SKT	10 m/min	
Einschub:						Ŧ		
						*	٤	
merkungen:								
ES/FEL: Stromrückführung "B":	ckführung "B":	-		Nullpotentia	Nullpotential "N": Spülgrubs	[], außerhalb [X], (Abstand	(m pui	
GR-Fichdalen:	Background	, cps / B	Background + Eichquelle	alleine	/ súb	Eichausschlag (Bereich)		

BG Hanno				Ray,Spo	-				
1/20	Auftragget	oer:	GSF/	IfT			WV-		
Land: Kieder Sack Son Kreis: Hady Pulzyith Gemarkung: X	Bohrung:	Х		Gema	arkung:				
× 200 ×	Johnson								
1 4	Land:	Nieders	achsen	Kreis	: Sta	it Sal	Lzgitt	er	
ing:	Topogr. Kai	382	8 Lebenst	edt Ost	t		Ander	e Messunge	en:
Kreis: 1/22 Gemarkung: Bohrung:	Rechtswert	3600	510	_			1	eine	
Land: Kreis: Gemar Bohrur	Hochwert:	E701/	80						
Teufenbezugspunkt: Überstand Bohrbezugspunkt:			1-	m üb	er Teufen	bezugsp.		nskala:	
Messung		GR	Cal	SP	FEL				
Datum Uhrzeit		5.2.85	5.2.85	5.2.85	5-2-	85			
Tiefster Meßpunkt		114	113		11	ĺ			
Höchster Meßpunkt		0	0	0		4.2			
Meßstrecke		114	113	113	10	8.8			
Rohrschuh									
Erreichte Teufe									
Endteufe (Bohrmeiste	rangabe)								
Spülung Zusammens	etzung								
Spez. Gewice	ht Viskos.								
" Widerstand	Rm	2.5	bei 9.5°C		bei	°C		bei	°C
* Rmf Rmc			bei °C		bei	°C		bei	°C
" pH-Wert	Niveau							1	
Meßwagen					· · · · · · · · · · · · · · · · · · ·				
Ausführender									
Geologische Bearbei	tung								_
	rlochdaten				Verrohru	ngsdate	n		
				1					
	von m	bis m	ø	Wand	stärke	von	m	bis n	n

M 300 Bohrverfahren: ROt al. No. m bis m Spacing Empfindlichkeit Fahrgeschw. 3 1; 200 113 4,2 25 lm/l0 SkT 10m/min 6: 1; 200 114 0 5 sec 100 cps / lo SkT 5 m/min 6: 1; 200 114 0 5 sec 100 cps / lo SkT 5 m/min β: 1; 200 113 0 100 cps / lo SkT 8 m/min β: 1; 200 113 0 100 cps / lo SkT 8 m/min β: 1; 200 114 0 5 sec 100 cps / lo SkT 8 m/min β: 1; 200 113 0 100 cps / lo SkT 8 m/min β: 1; 200 114 0 5 cm / lo SkT 10 m/min β: 1; 200 114 0 5 cm / lo SkT 10 m/min β: 1; 200 114 0 5 cm / lo SkT 10 m/min β: 1; 200 114 0 5 cm / lo SkT 10 m/min <th>M 300 Boltverfairen: Rôtaxy Bohrmeister: Bohrmeister: Bohrmeister: Fahrgeschw. β: 11:200 113 4.2 Spacing Emplindichkeit Fahrgeschw. β: 11:200 114 0 5 seo 1000cps.no SKT 5 m/min φ: 11:200 113 0 100mm./10 SKT 6 m/min Kaliber Teufermaßsab von m bie m 2alkonst Emplindichkeit Fahrgeschw. φ: 11:200 113 0 100mm./10 SkT 6 m/min g: Teufermaßsab von m bie m Emplindichkeit Fahrgeschw. φ: 11:200 114 0 5 seo 100mm./10 SkT 6 m/min φ: 11:200 114 0 5 m/min Fahrgeschw. 11:200 φ: 11:200 114 0 5 m/min 6 m/min φ: 11:200 114 0 5 m/min φ: 11:200 11:200 10 m/min</th> <th>Bohrunlernehmen:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	M 300 Boltverfairen: Rôtaxy Bohrmeister: Bohrmeister: Bohrmeister: Fahrgeschw. β: 11:200 113 4.2 Spacing Emplindichkeit Fahrgeschw. β: 11:200 114 0 5 seo 1000cps.no SKT 5 m/min φ: 11:200 113 0 100mm./10 SKT 6 m/min Kaliber Teufermaßsab von m bie m 2alkonst Emplindichkeit Fahrgeschw. φ: 11:200 113 0 100mm./10 SkT 6 m/min g: Teufermaßsab von m bie m Emplindichkeit Fahrgeschw. φ: 11:200 114 0 5 seo 100mm./10 SkT 6 m/min φ: 11:200 114 0 5 m/min Fahrgeschw. 11:200 φ: 11:200 114 0 5 m/min 6 m/min φ: 11:200 114 0 5 m/min φ: 11:200 11:200 10 m/min	Bohrunlernehmen:								
Meddaten Spacing Emplindichkeit Fahrgeschw.	MeBdaten MeBdaten Spacing Empfindicities Fell Ly Tentenmelistab von m bis m Spacing Empfindicities Fallgeschw. SP 10 m/min mV10	Bohrgeråt :	1 1		lohrverfahren: _	Rotary		Bohrmeister:		
Medication M	Methodolome Methodolome Spacing Emplindicible Febrgaschw. SP	Bemerkungen :								
SS □ FEL □ Teufermaßstab von m bis m Spacing Empfindlichkeit Fehrgeschw. GR 11:200 113 4.2 25 βm/10 Sk7 10 m/min GR Teufermaßstab von m bis m Zeitkonst. Empfindlichkeit Fahrgeschw. Ø: 11:200 114 0 5 sec 100cps f/0 Sk7 5 m/min Ø: 11:200 113 0 100mm f/0 Sk7 8 m/min Sp Teufenmaßstab von m bis m Empfindlichkeit Fahrgeschw. Sp 11:200 114 0 5 omv f/0 Sk7 8 m/min Ø: 11:200 114 0 5 omv f/0 Sk7 10 m/min Ø: 11:200 114 0 5 omv f/0 Sk7 10 m/min Ø: 11:200 114 0 5 omv f/0 Sk7 10 m/min I: Ai: II: II: II: II: Background - Fichquand + Eichquand + Eichquand + Eichquand - Fichquand - II: Aps / II: II	SE FEL Teulematistab von m bis m Spacing Empfindichteit Fahrgeschw SP	Geräledaten		MeBdaten						
Nr. φ: 11:200 113 4.2 25 Ωm/10 Sk² 10m/min lbb: GR Teuferma8stab von m bis m Zeitkonst. Empfindichkeit Fahrgeschw. n: φ: 11:200 114 0 5 sec 100 cps /n Sk² 5 m/min n: Kaliber Teuferma8stab von m bis m Empfindichkeit Fahrgeschw. n: φ: 11:200 113 0 100mm/l0 Sk² 8 m/min lbe: Sp Teuferma8stab von m bis m Empfindichkeit Fahrgeschw. lb: gen: 11:200 114 0 50mV /lo Sk² 10mm/lo min gen: sp: 11:200 114 0 50mV /lo Sk² 10mm/lo m/min gen: sp: Nullpotental JN: Spillgrube Li, außerhab Käl, (Abstand min) m m	the: φ: 11:200 113 4.2 25 3th/10 SK 10 cm/min m/lo the: GR Teufenmaßslab von m bis m Zeltkonst. Empfindlichkeit Fahrgeschw. Echquelle tr. fr. dr. 11:200 113 0 bis m bis m/los krit bi	S		Teufenmaßstab	won m	bis m	Spacing	Emplindlichkeit	Fahrgeschw.	SP
lbe: GR Teufenmaðslab von m bis m Zeitkonst. Empfindichkeit Fahrgaschw. r: fra. 1,200 114 0 5 sec 100cps/10 SkT 5 m/min r: Kaliber Teufenmaðslab von m bis m Empfindichkeit Fahrgaschw. lbe: 3. 11200 113 0 1100mm/l0 SkT 8 m/min lbe: 5. 11200 114 0 5 m/min m/min lbe: 5. 11200 114 0 5 m/min m/min lbe: bis m bis m Empfindichkeit Fahrgaschw. lbe: 11200 114 0 5 m/m. lbe: 11200 114 0 5 m/m. gen: 11200 114 0 10 m/m. <td> Care /td> <td>i i</td> <td></td> <td>1:200</td> <td>113</td> <td></td> <td></td> <td>2</td> <td></td> <td>mV/10</td>	Care	i i		1:200	113			2		mV/10
Nr. β: Teufenmaßtab (von m) bis m (bis m) Zeitkonst. (Empfindlichkeit (Empfindlichke	CGR Teufenmatelab Von m Dis m Zeitkonst Empfindichkeit Fahrgeschw. Eichqueile Fahrgeschw. Eichqueile Fahrgeschw. Eichqueile Fahrgeschw. Eichqueile Fahrgeschw. Eichqueile Fahrgeschw. Eichqueile Fahrgeschw. Fahrgesc	Einschübe:							z	E
Nr. φ: 1:200 114 0 5 sec 100cps/10 SK1 5 m/min h: 1:200 114 0 5 sec 100cps/10 SK1 5 m/min r: Kaliber Teutenmaßslab von m bis m Empfindlichkeit Fahrgaschw. Nr. φ: 1:200 113 0 100mm/10 SK1 8 m/min be: Sp Teutenmaßslab von m bis m Empfindlichkeit Fahrgaschw. bi: Sp 1:200 114 0 50mV/10 SK1 10 m/min bi: p: 1:200 114 0 50mV/10 SK1 10 m/min sgen: n: Nullpotential "N: Spuligrube [I], außerhalb [K], (Abstand min m. m.	Nr. φs. Teufenmaßelab von m bis m Zeitkonst, exp (200 ps /10 SKT) SKT (200 ps /10 SKT							=	=	=
Nr. φ: 11.200 114 0 5 sec 100cps /10 SkT 5 m/min r: r: r: r:	Nr.	Messung:	GR	Teufenmaßstab	w wo	bis m	Zeitkonst.		Fahr	Eichquelle
tr: Kaliber Teufenmaßstab von m bis m Empfindlichkeit Fahtgaschw. Nr. φ: 11200 113 0 100mm/10 SkT 8 m/min lbe: Teufenmaßstab von m bis m m m/min Nr. φ: 11200 114 0 50mV/10 SkT 10m/min bb: n: m/min m/min m/min gen: n: m/min m/min Stomrückführung "B": n: m/min m/min Stomrückführung "B": n: m/min m/min Bankground - cps f Eichausschlag (Bareich) m/min m/min	Figure Fabrican	Sonde-Nr.	.ø	1:200	114	0				Ŋ.
r: Kaliber Teufenma6stab von m bis m Empfindlichkeit Fahrgoschw. Nr. φ: 11:200 113 0 100πш/10 SkT 8 m/min Ibe: SP Teufenma6stab von m bis m Empfindlichkeit Fahrgeschw. Nr. φ: 11:200 114 0 SOmV/10 SkT 10m/min Jb: sp: Nr. Nr. sp: n n Stomrückführung "B": sp: Nullpotentiat "N": Spulgrube Ü, außerhab Kil, (Abstand — m) n	r: Ka 1 Lber Teufenmaßslab von m bis n Empfindlichkeit Fahrgeschw. hor/vert Nr. φ: 11:200 113 0 1100mm/10 Skgr 8 m/min Nr. φ: 11:200 114 0 5 m/min " " Nr. φ: 11:200 114 0 5 m/min Fhrigsschw. " bb: s: 11:200 114 0 5 m/min Fhrigsschw. bb: s: 11:200 114 0 5 m/min " " gen: secondicklibrung "B: kickligenbe —], außerhab [K], (Abstand — m) " " " gen: secondicklibrung "B: kickligenbe —], außerhab [K], (Abstand — m) (Chm.im) <	Einschub:		7					*	Sonden-Pos.
Nr. φ: 11:200 113 0 Tolomm /10 SkT Fahrgeso Ibe: Sp Tevfenmaßstab von m bis m 1100mm /10 SkT 8 m/ Ibe: Sp Tevfenmaßstab von m bis m Empfindlichkeit Fahrgeso Nr. φ: 11:200 114 0 50mV/10 SkT 10m/ Jb: sp: n 50mV/10 SkT 10m/ gen: n Nullpotential "N': Spuligrube Cl., außerhab [KI, (Abstand Bareich) — ops kichausschlab (Bareich) — ops	Nr. φ: 11:200 113 0 ToOmm/10 Skg 8 m/min lbe: Sp Trulenmaßslab von m be m Empfindlichkeit Fahrgeschw. lb: Sp Trulenmaßslab von m be m 50mV/lo Skg 10m/min lb: d: 11:200 114 0 50mV/lo Skg 10m/min gen: scentricklührung "B": Nullpotentist "N*: Spuligrube L", außerhab [Kil (Absland — m)] sten: Barkground + Eichquelle spe / Eichausschlag (Brreich) Chin "n)	Delektor:						=	£	hor./vert.
Nr. φ: 1:200 113 0 100mm/l0 Sk½ 8 m/ Ibe: SP Teufenmaßslab von m bis m Empfindlichkeit Fahrgeso Nr. φ: 1:200 114 0 50mV/l0 Sk½ 10m/ Jb: sien: sien:<	11:200 11:3	Messung:	Kaliber	Teufenmaßstab	m nov	bis m		Empfindlichkeit	Fahrgeschw.	
1	Sp Teufenmaßslab Von m bis m Empfindlichkait Fahrgeschw. Li 200 114 0 50mV/10 Sk1 10 m/min Lib:	Sonde-Nr.	ë	1:200	113	0			80	
SP Teufenmaßstab von m bis m Empfindlichkeit Fahrgeson Nr. φ; 1;200 114 0 50mV/10 SkT 10m/ gen: " " " " " Image: North tip	Sp TeufennaBstab Von m bis m Empfindichkeit Fahrgeschw. 1:200 114 0 50mV /10 Skg 10m/min 10 112 10m/min 10 112 10m/min 10m/min 112 1	Einschübe:						=	=	
Nr. φ; 1:200 114 0 Empfindlickeit Fahrgeso Jb: SomV/10 Skg " 10 m/ gen: " " " 10 m/ SkomVilo Skg " " 10 m/ " 10 m/ gen: " " " " 10 m/ In this specific speci	Nr. φ; 1:200 114 0 Empfindlichkeit Fahrgeschw. Jb:							£	£	
Nr. φ: 11:200 114 0 50mV/10 Sk1 10m/ sgen: " " " " Image: " " " Image: " Image: " " Image: "	11:200	Messung:	SP	Teufenmaßstab	w nov	m eid		Empfindlichkeit	Fahrgeschw.	
nrücklührung "B": Background - cps / Background + Eichquelle	nrickführung "B": Nullpotenitäl "N": Spulgrube Ü., außerhab Ki. (Abstand m) Background — cps / Brickground + Eichquelle — cps / Brickground + Eichquelle — cps / Brickground + Eichquelle — cps / Eichaussohlag (Bereich) — (Chm m)	Sonde-Nr.	ë.	1:200	114	0		50mV/10 SKI		
nrückführung "B": Background — cps / Background + Eichquelle	### Nullpotential _N*: Spulgrube, außerliab _K; (Abstandm) #### Background _ Gps	Einschub:						E	=	
nrückführung "B": Background Cps / Background+Eichquelle	nrückführung "B": Nullpotenital "N": Spülgrube Č.], außerhalb [X], (Abstand m) Background — cps / Bnrkground + Eichquelle cps / Eichausschlag (Bareich) () 0 FELL (Ohm m) ()							£	=	
กาปองführung "B": Nullpotential "N": Spülgrube [二], außerhalb [X], (Abstand —— Background — cps / Background + Eichquelle ดาย / Eichausschlag (Bereich)	Background	Bemerkungen:								
nrückführung "B": Background cps / Background + Eichquelle	Background - Eichquelle cps / Eichquelle FEL (Ohm.m) 0 FEL (Ohm.m)							Walter (Aberla		
Background cps / Background + Eichquelle cps /	Background Eichausschlag (Bereich) 0 FEL	ES/FEL: Stromrückfü	hrung "B":			Nullpotentia	"N. Spuigrupe	aubernaio kai, (Absic		
	GR (cps)		kground	,	kground + Eicho	quelle elloup	, cps /	Eichausschlag (Bereich)		
				R (cps)	5	c	·	шцо)	: :	
GR (cps)										

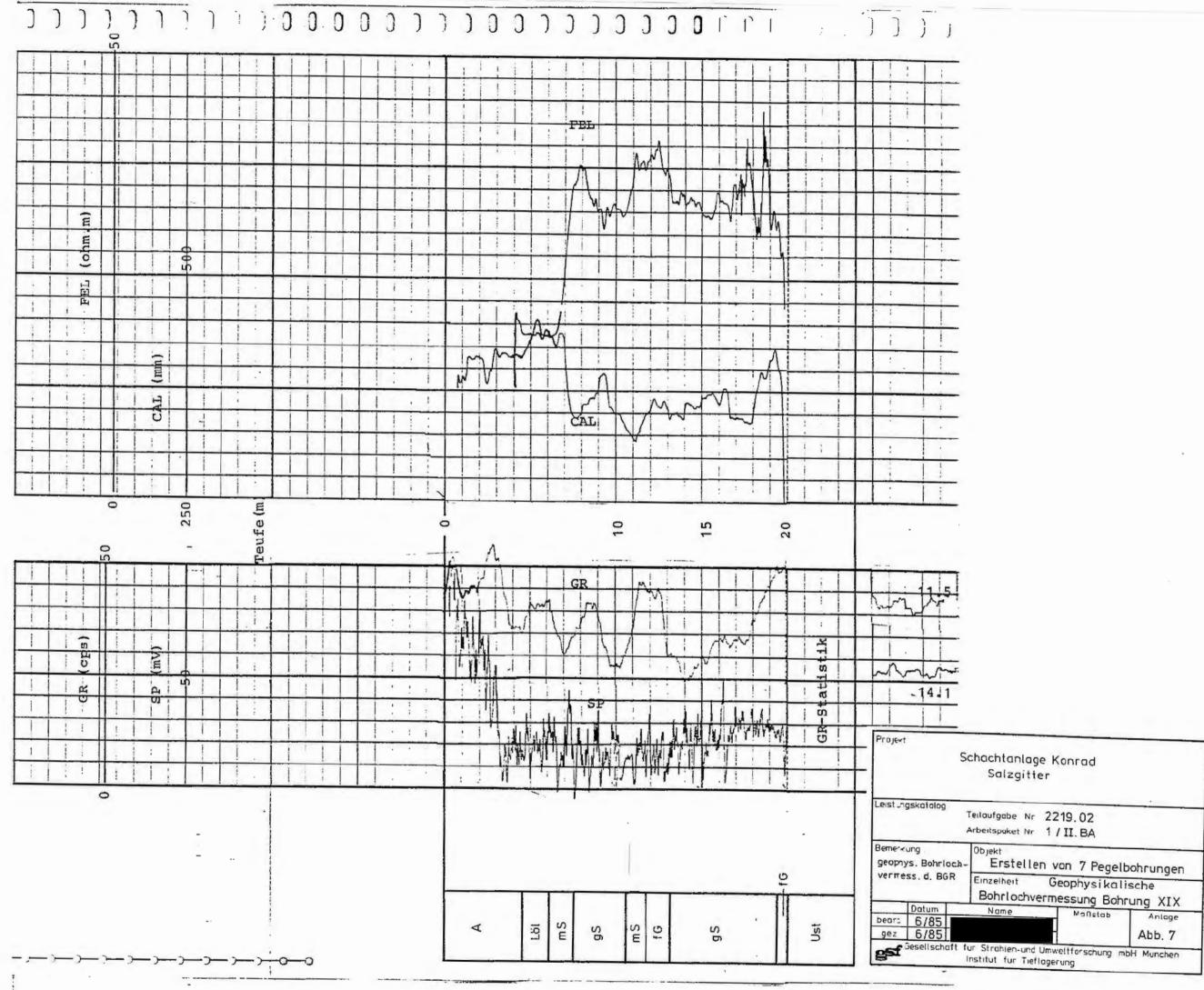
-


1 -----

Gamma Ray, Spont. Potential, Focussed Electrolog, Kaliber

	gitter) ja		Auftraggebe	er:			GSF/	IfT						
Niedersachsen	. Salz		XVIII	Bohrung:		I						ndt Sa		tter	
Land: Nie	Kreis: Stadt	Gemarkung: _	Bohrung:	Topogr. Karto Rechtswert: Hochwert:	359	382 5090 2225)	ebens	sted_	<u>t o</u> s	st			re Messunge eine	en:
Über	rstand			Ackersohie H			_			m übe m *	er Teufen	bezugsp.		enskala:	_
Mes	sung				GR		Ca	1	S	P	FEI	.			
Datu	ım	Uhrze	eit		29.1	.85	29	.1.85	29.	1.8	529_1	-85		į	
Tiefs	ster M	eßpu	nkt		36	m		5 m	35		35	m			
Höc	hster	Мевр	unkt		0	m		. 3m	15	m	3	m			
MeB	streck	e			36	m	3.	4.7m	20	m	32	m			
Rohi	rschul	n													
Erre	ichte	Teufe													
Endt	teufe	Bohr	meister	angabe)	1										
Spül	lung 2	Lusan	menset	zung	Wa	asse	r								
	. 5	pez (Gewicht	Viskos.		-					}			1	
	• V	Viders	stand R	m	7.70	hm.ı	nbei	9 °C			bei	°C		bei	°C
	F	Rmf	Rmc				bei	°C			bei	°C		bei	°C
	* P	H-We	ert	Niveau											
MeB	wage	n			H -	- 17	86								
Aust	führer	der												•	
Geo	logisc	he Be	earbeitu	ng	1										
			Bohrl	ochdaten						٧	errohru	ngsdater	1		
	Ø		v	on m	bis m			ø	V	/ands	tärke	von	m	bis m	
13	0 m	m	3	6	0				1		1				
				.											
		-									1				

Bohrunternehmen:								1
Bohrgeråt : M 300			Bolirverfahren:	Rotary		Bohrmeister:		
räfedalen		Meßdaten						:
Saund: ES FEL	N N	Teufenmaßstab	won m	bis m	Spacing	Empfindlichkeit	Fahrgeschw.	SP
ź.		1:200	35	3		25 sm/10 Skr	10 m/min	MV/IO
Finschübe:								
						z	=	=
issung:		Teufenmaßstab	m nov	bis m	Zeilkonst.	Empfindlichkeit		Eichquelle
Sonde-Nr.		1:200	36	C	2 860	100cps //0 SkT	7 . Sn/min	Ž.
						=	*	Sonden-Pos.
Delektor:						£	=	hor/vert.
ssung: Kaliber	er	Teufenmaßstab	won m	bis m		Empfindlichkeil	2	
Ę.		1:200	35	0.5		100mm /10 SkT	8 m/min	
Einschübe:						=	5	
							\$	
essung:		Teufenmaßstab	m nov	m sıq		Empfindlichkeit	Fahrgeschw.	
Ŋ.		1:200	35	18		100mV /10 SKT	10 m/min	
Einschub:								
						I	=	
втегкипдеп:								
				N linitation	N.: Spellgrube	(Abstand	(m pu	
ES/FEL: Stromrückführung "B.:	1000					1	-	
GR-Eichdaten; Background		ops / Ba	Background + Eichquelle	quelle	cbs /	Elchausschiag (Bereich)	· · · · · · · · · · · · · · · · · · ·	



	· ·····	
SI -		
	111	
		4
	IV:P	1
	3G	3GR

Gamma Ray, Spont. Potential, Focussed Electrolog, Kaliber

chsen lzgitter Bohrnug	eber:	CSF/	IfT					
त्यं। त्यं।	:xı	x	Gema	arkung:				
Nieders Stadt S Tauq: -	Niedersa	chsen	Kreis	Stad	t Sa	lzgi	tter	
Bunarku Rechtswe	ert: <u>3597</u>	Braunschv	-	st	_	1	re Messung eine	en:
Teufenbezugspunkt: Ackersohle Überstand	Höhe über N.I	,	m übe		zugsp	1	enskala:	
Messung	GR	Cal	SP	FEL		•		
Datum Uhrzeit	14.2.8	5 14.2.85	14.2.8	514.2.8	5		i	
iefster MeBpunkt	20	21	20	20				
Höchster Meßpunkt	0	. 7	.2	4.1				
Meßstrecke	20	20.3	19.8	15.9				
Rohrschuh								
rreichte Teufe								
Endteufe (Bohrmeisterangabe)								
Spülung Zusammensetzung	Was	ser						
 Spez. Gewicht Viskos. 								
 Widerstand Rm 	10.2 0	hmagei 3.9c		bei	°C		bei	°C
* Rmf Rmc		bei °C		bei	°C	T	bei	°C
pH-Wert Niveau				1			1	
MeBwagen	н -	1786						
Ausführender								
eologische Bearbeitung					1			
Bohrlochdaten			V	errohrung:	date	1		
Ø von m	bis m	ø	Wands	tärke	von	m	bis m	1
-500mm 21	0							

Bemerkungen: M 300 Bemerkungen: MeBdaten Gerätedaten Messung: ES □ FEL 🛣 Teufenmaßstab						
on:	Bohrverfahren:	Rotary		Bohrmeister:		
S FEL C						
ES FELC						-
	ab von m	bis m	Spacing	- Empfindlichkeit	Fahrgeschw.	SP
Sonde-Nr. Ø: 1:200	20	4.1		25 ohm. Rm/10 SkT	10 m/min	mV/10
Einschübe:				•		•
Messund: GR Teufenmaßstab	ab von m	bis m	Zeilkonst.	Emplindlichkeit	Fahrgeschw.	Eichquelle
Nr. Ø:		c	5 sec	50cps /10 SkT	5 m/min	Ŋ.
Einschub:					=	Sonden-Pos.
Detektor:				H.	4	hor./vert.
Messung: Kaliber Teufenmaßstab	up von m	bis m		Emplindlichkeil	Fahrgeschw.	
Sonde-Nr. Ø: 1:200	21	7.		250mm/10 SkT	8 m/min	
Einschübe:				*		
				*	z	
Messung: SP Teulenmaßslab	ab von m	bis m		Emplindlichkeit	Fahrgeschw.	
Sonde-Nr. Ø: 1:200	20	0		50mV /10 SKT	12 m/min	
Einschub:				±c	-	
				*	•	
Bemerkungen:						
SP-Messungen (u.U. auch FEL-Messungen)stark durch.	-Messungen)	stark duro		Einstreuungen aus		
benachbarter Bundesbahnstrecke beeinträchtigt ES/FEL: Stromrückführung "B":	nträchtigt.	Nullpotential	". Spulgrube	Nullpotential "N": Spulgrube LJ, außerhalb [X], (Abstand	(m pt	
GR-Eichdaten: Background cps /	Background + Eichquelle	uelle	- cps /	Eichausschlag (Bereich)		

Bohrung I

± 0.00		OK Gelände	
- 1.00	Δ	Α	Aufschüttung, graubraun
- 3.00	100 pg	Löl, f-mg	Lößlehm, fein- bis mittelkiesig, ockergelb, bunt
-17.00		U, t, fs; k	Schluff, lagenweise tonig und schwach fein- sandig, kalkig, grau
- 19.00	Zv-I -IZv	Mst, u	Mergelstein, schluffig (Verwitterungszone), hellgrau-graugrün
-27.00	Z-I IZ- Z-I -IZ IZ- Z-I -IZ	Mst, u	Mergelstein, schluffig, hellgrau-graugrün

Projekt:						
	Schachtanlage	Konrad				
	Salzgitter					
Leistungskatalog ;	Teilaufgabe Nr. 2 Arbeitspaket Nr. 1					
Bemerkung:	Objekt : Ersteile n	Objekt: Ersteilen von 7 Pegelbohrungen				
	Einzelheit: Litho - Log	Einzelheit: Litho-Log der Bohrung				
	Name	Manstab	Anlage			
Datum						
bearb. 6 / 85 gez. 6 / 85	· · · · · · · · · · · · · · · · · · ·	1:200	Abb. 8			

Bohrung I A

± 0.00		OK Gelände					chlußbauwerk (Ty		± 0.00
- 1.00	A	A	Aufschüttung, braungelb				Stahl-Aufsatzroh	r, verz. DN	
- 2.50	$I^{\dagger}I^{\dagger}$	Lö-Löt	Löß bis Lößlehm, braungelb		T	UK	Stahlbeton Stahl-Aufsatzrohi	verz. DN	- 1.30 150 - 1.60
- 4.50	1	Löl, y	Lößlehm mit Kalkbruchstücken ver- backen, ockergelb, grauweiß	且	I				
7.50		Löl, fg, gs	Lößlehm, feinkiesig, grobsandig, ocker- gelb, bunt						
- 9.00		U, fg, gs	Schluff, feinkiesig, grobsandig, ocker- gelb-grau, bunt	目	目				
- 16.00	4444444	U, fs,t,k,h	Schluff, feinsandig, lagenweise tonig, kalkig mit humosen Schlieren, grau- grün, braun				-		
-19.00		mS, fs, ū,h	Mittelsand, feinsandig, lagenweise stark schluffig m. hum. Material, graubraun						
-23.50	11111	U, t-fs,h, k	Schluff, tonig bis feinsandig mit hum. Material, kalkig, grau, braun			UK	Duranit - Tonkuge	eln	-23.20
25.00		f=mS,u;h	Fein- bis Mittelsand, leicht schluffig mit humosem Material, grau, braun			UK	PVC Aufsatzrohr	DN 150/7	.5 -25.10
-28.00		mS, gs, uʻ,hʻ	Mittelsand, grobsandig, schwach schluffig, schwach humos, braun-gelb			UK	PVC Filterrohr D	N 150 Sw	0.75 -28.10
-30.00		U, k	Schluff, kalkig, grau			UK	PVC Sumpfrohr D	N 150 m. B	oden-30.10
-33.00	Z-I IZ- -IZ	Mst, u	Mergelstein, schluffig, graugrün-mittel- grau			OK OK OK	Quarzfilterkies 1 Bohr # 300 mm Duranit - Tonkuge Bohr # 130 mm / E	−2 mm ln	- 32.00 - 33.00

Schrumpfmuffen	PVC Zentrier~ schellen
- 1.60	- 1.80
- 2.10	- 4.10
- 5.10	
- 9.10	- 9.30
_13.10	- 14.10
-17.10	
-21.10	-19.10
	-24.10
	-29,10

Projekt	·	Schachtanlage l	Konrad					
Leistung	gskatalog:	Teilaufgabe Nr. 22 Arbeitspaket Nr. 1						
Bemerk	ung:	Objekt: Erstellen v	Objekt: Erstellen von 7 Pegelbohrungen					
			Einzelheit: Litho - Log und Ausbauplan der Bohrung I A					
	Datum	Nome	Manstab	Anlage				
bearb.	6 / 85		1:20/200	Abb. 9				
gez	6 / 85		1.20, 200					
gsf	Gesellscho	ift für Strahlen- und U Institut für Tiefle		mbH Munchen				

Pactell Mr 6/2/22 DOIDE alam

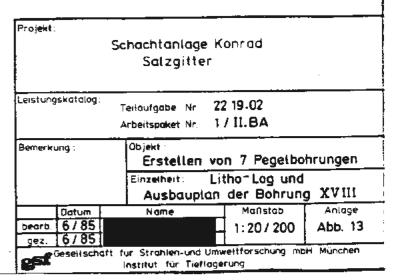
Bohrung II A

± 0.00		OK Gelände	
- 1.00	Mu	Mu, t	Mutterboden, lehmig (Aufschüttung?), braun
- 3.00	مورونو مورو	Löl	Lößlehm, ockergelb – braun
- 4.50	٥٠٠	Löl, fG, mG	Lößlehm mit Fein- und Mittelkies verbacken, kalkig, ockergelb, bunt
- 9.50	9,0°0 9,0°0 9,0°0 9,0°0	Löl, Y	Lößlehm mit Kalkbruchstücken verbacken, hellgelb~graugelb
- 10.50		fG, mg	Feinkies, mittelkiesig, bunt
- 11.50		U, t, k	Schluff, tonig, kalkig, graugrün
- 18.00	Z - Z - Z - Z - Z - Z - Z - Z - Z - Z	Ust, t, k	Schluffstein, tonig, kalkig, graugrün

Projekt:						
l -	chachtanlage K Salzgitter	onrad				
	Feilaufgabe Nr. 22 Arbeitspaket Nr. 1/					
Bemerkung :	Objekt: Erstellen von 7 Pegelbohrungen					
	Einzelheit: Litho - Log	der Bohrung	II A			
Datum	Name	Manstab	Antage			
pearo 6/85		1:200	Abb. 10			
	ür Strahlen-und Umw	reltforschung mb	H München			

Bohrung II B

± 0.00_		OK Gelände	
- 1.50	أوموم	Löl	Lößlehm, ockerbraun – braun
- 6.00		Löl, mgʻ, k	Lößlehm, schwach mittelkiesig, kalkig, ockerbraun-braun, bunt
- 8.00		fG, mg,T, y	Feinkies, mittelkiesig, stark lehmig mit Kalkbruchstücken verbacken, ockergelb, bunt
- 16.00	# # # # # # # # # # # # # # # # # # #	U, t, k	Schluff, tonig, kalkig, grau – graugrün
-17.00		U,y,k,t'	Schluff mit Kalkbruchstücken verbacken, kalkig, schwach tonig, graugrün
-21.00	Z Z Z	Ust, k, t	Schluffstein, kalkig, tonig, graugrün

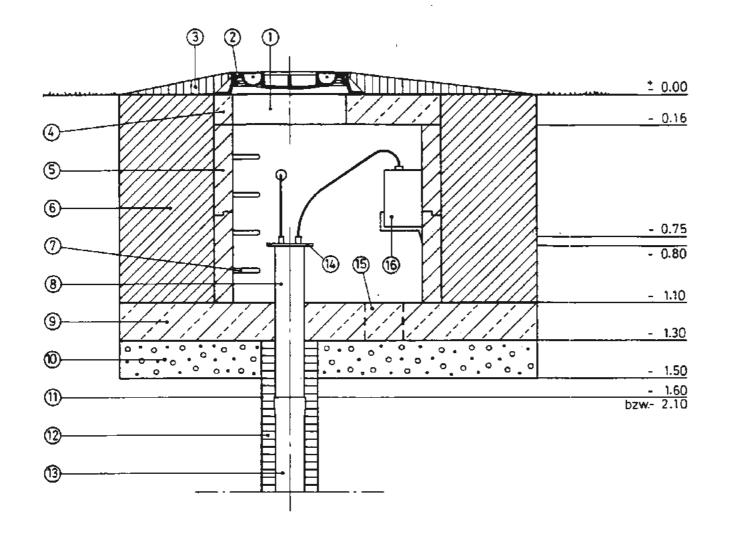

Projekt:			•		
}		Sc	chachtanlage K	onrad	
			Salzgitter		
Leistung	jskatalog	7	Tellaufgabe Nr. 22 Arbeitspaket Nr. 1/		
Bemerkung :			Objekt : Erstellen \	on 7 Pegel	bohrungen
			Einzelheit: Litho = Log	der Bohrun	g 11 B
	Datum		Name	Manstab	Anlage
bearb.	6/85	Ī		1: 200	Abb. 11
gez.	6 / 85				
esf	Gesellsch	aft f	ür Strahlen-und Umv Institut für Tieflage	veitforschung mb rung	H München

Schrumpfmuffen	PVC Zentrier - schellen	± 0.00		OK Gelän		Abschlußbauwerk (Typ 3) ±
- 1.60	- 1.80	- 1.00	1/	Löl, g	Lößlehm mit Kiesen verbacken (A?), ockergelb-hellbraun, bunt	OK Stahl-Aufsatzrohr, verz. DN 150 -
- 2.10	1.00	- 3.00	1	Löl, ms,fg	Lößlehm, mittelsandig, feinkiesig,	UK Stahl-Aufsatzrohr, verz. DN 150 -
- 3.10				60	ockergelb-hellbraun,bunt	UK Duranit - Tonkugeln -
4 -		- 6.00	4 *	fG, gs,mg, l, y	Feinkies, grobsandig, mittelkiesig, lehmig m. Kalkgeröllen, ockergelb,	
- 7.10	- 7.30		*		bunt	
		- 9.00		fG, gs,mg	Feinkies, grobsandig, leicht :: mittelkiesig, bunt ::	
	0.0				:	
- 11.10	10.10			mS, gs,y,	Mittelsand, grobsandig mit Kalk-	18
	- 12.10	12.50		h'	bruchstücken, leicht humos,	4 M
		- 13.50		gS, ms,fg,	Grobsand, mittelsandig, feinkiesig	1 [3]
-15.10		- 15.00		mS, gs; h	mit Kalkbruchstücken, grau	1 [3]
	- 17.10	- 16.50		1110, 95, 11	Mittelsand, schwach grobsandig :: mit humosem Material, grau ::	1 [3]
-19.10						
- 19.10				mS,fs,fī	Mittelsand, lagenweise feinsandig	
+	-22,10			1113,13,11	lagenweise stark humos, grau,	
-23.10	-22,10				braun 🔆	UK Quarzfilterkies 1 - 2 mm - 2
		- 24,00				
					E E	i E
-27.10	-27.30			fS ms'u	Feinsand, leicht mittelsandig,	I E
				fS, ms; u, h	schluffig, stark humos, grau-	UK Duranit - Tonkugeln -2
		-30.50			graubraun	
	-32.10				:17	UK PVC Aufsatzrohr DN 150 / 7.5 -3
110	-32.10					
					1:11	
118				mS,gs,fs,	Mittelsand, grobsandig, lagen	
1	-37.10			h'	weise feinsandig, lagenweise :	
					schwach humos, grau	
		-40.50			1:1	
	-42.10	10100				
	-42.10			gS, fg	Grobsand, feinkiesig, grau, bunt	
118		-45.00				
		-45.00				UK PVC Filterrohr DN 150 Sw 0.75 -4
. 1	-47.10		1111	mS, gs, u,	Mittelsand, grobsandig, schluffig,	
				h,	leicht humos, grau	UK PVC Sumpfrohr DN 150 m. Boden-
		-49.50		fG, gs, ms,	Feinkies grob- und mittelsandia.	UK Bohr # 300 mm
		- 51.00		_ 0, y	Feinkies, grob- und mittelsandig, stark schluffig m. Kalkbruch	UK Quarzfilterkies 1 - 2 mm - 5
				U,fs,t,y	stücken, grau, grauweiß Schluff, lagenweise feinsandig, tonig, m. Kalkbruchstücken, dunkelgrau	UK Duranit-Tonkugeln -5
		- 54.00	44		m. Kalkbruchstücken, dunkelgrau – graugrün, grauweiß	
					greeg en, greenem	
			**	0.414		
			-48	U, t, k'	Schluff, tonig, schwach kalkig, dunkelgrau-graugrün	
					l:	위원 -
		-64.00		gS,fg,u	Grobsand, feinkiesig, schluffig, grau,	
		-65.50		95,19,0	bunt .	[4]
						. .
Bemerk	Frojekt					
6	tung					
- - E	Frojekt			U,t,k'	Schluff, tonig, schwach kalkig,	
305	plog			0,1,1	dunkelgrau-blaugrau	(1) No.
	s s					
Arbeitspaket Objekt Erstell Einzelheit Ausl	Schachtanlage Salzgitter					43
bjekt Erstell inzelheit Aust	Sali					
	Salzgitter	- 91 00			1	<u> </u>
1 1 7	tter .	- 81.00		U, t, y	Schluff, tonig m. Kalkbruchstücken,	11
Dian tith von 1	22 K	-82.50			dunkelgrau-blaugrau_	
	Konrad 22 19.02	-84.50	-1	U,t,k	Schluff, tonig, kalkig, dunkelgrau	
7 Pegelbo o-Log un der Bohr Manstab	02	- 85.50	7-	T, u, y	Ton, schluffig m. Kalkbruchstücken, grau-graugrün, grauweiß	84
elb ohr			14 7	= Tst, ū, y	grau-graugrün, grauweiß Tonstein, stark schluffig m. Kalk- bzw. Tonmergel bruchstücken (Nach-	
		-102.00	7 -		fall?), grau-graugrün, grauweiß	(i)
ungen g X Anlage			14 <u> 1</u>	= Ust, t, k'	Schluffstein, tonig, schwach kalkig,	UK Quarzfilterkies 3 - 8 mm
5 g × 6		-115.00			graubraun-graugrün '	UK Bohr # 130 mm / Endtiefe -1

Bohrung XVIII

± 0.00		OK Gelände					lußbauwerk (± 0.00
- 1.00	Mu	Mu, h	Mutterboden, humos, graubraun				hl-Aufsatzrof	r, ve <u>rz. DN 150</u>	
		Löl	Lößlehm, ockergelb-braun	<u> </u>			hlbeton hl-Aufsatzron	r, verz. DN 150	- 1.30) - 2.10
- 3.00				1	Ħ				
- 5.00	1	Löl, g'	Lößlehm, schwach kiesig, ockergelb, bunt						
<u>- 12.50</u>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	U, t, h', k	Schluff, lagenweise tonig, schwach humos, kalkig, grau-graubraun						
***	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	U,f⁻ms,h,k	Schluff, lagenweise fein- bis mittel- sandig, leicht humos, kalkig, grau- graubraun			UK Du	ranit - Tonkuge	ein	17.80
<u>- 19.00</u> - 21.00		fG, gs, mg; bk	Feinkies, grobsandig, leicht mittelkiesig, m. Braunkohlestückchen, grau-grau- braun, bunt		╏		C Aufsatzrohr		
-22.50		gS ,fg,u ,h	Grobsand, feinkiesig, schluffige Zwischen- lagen, humos, grau-graubraun, bunt		╂┼	UK PV	C Filterrohr [N 150 Sw 0.7	5 - 21,60
- 26.50	11111	U, f-ms, k', h	Schluff, fein- bis mittelsandig, schwach kalkig, humos, grau			UK Que UK Bol	C Sumpfrohr (grzfilterkies hr # 300 mm	1 - 2 mm	-24.40 -27.00
- 28.00		mS,fs,u	Mittelsand, feinsandig, schluffig, grau			OK DU	ranit - Tonkug	em	-2 1.00
-29.50	** **	U, ms; h, k	Schluff, leicht mittelsandig, humos, kalkig,						
-33.00		fG, y	Feinkies mit Kalkbruchstücken, bunt, grauweiß						
-34.50	"	U, y	Schluff m. Kalkgeröllen, glaukonitisch, graugrün-grauweiß-				# T. T. T.	102	
-36.00	Ζź	Ust, k	Schluffstein, kalkig, grauweiß		1		arzfilterkies hr#130 mm/		- 36.00

Schrumpfmuffen	PVC Zentrier- schellen
- 2.10 - 2.50	- 1.60
- 3.60	~ 4.60
- 7.60 - 11.60	- 9.60
-15.60	-14.60
	- 19.50
	- 2 2.60



Bohrung XIX

± 0.00		OK Gelände		Abschlußbauwerk (Typ 3) ± 0.00
- 4.50	А	Α	Aufschüttung, braun – braungelb	OK Stahl-Aufsatzrohr, verz DN 150 - 0.80
- 6.00	مومو	Löl	Lößlehm, graugelb-braungelb	
- 7.50		mS, gs, u	Mittelsand, grobsandig, schluffig, grau- braun, grünlich	
- 10.50		gS, fg,ms, u	Grobsand, feinkiesig, mittelsandig, lagen* weise schluffig, graubraun, bunt	UK Duranit - Tonkugeln - 8.50
-11.50	::::	mS,gs,u,h'	Mittelsand, schw. grobsandig, lagenweise schluffig, schw. humos, glaukonitisch, grau	UK PVC Aufsatzrohr DN 150/7.5 - 11.10
- 13.00		fG, g s	gelb-graugrün Feinkles, grobsandig, glaukonitisch, grau	
- 15.00		gS,fg,mg*	gelb-graugrün, bunt Grobsand, feinkiesig, schw. mittel kiesig, glaukonitisch, graugrün, bunt	
<u>- 18.00</u>		gS, ms, fk'	Grobsand, mittelsandig, schwach fein- kiesig, glaukonitisch, graugrün, bunt	UK PVC Filterrohr DN 150 Sw0.75 -18.10
- 19.50		gS, ms,fg,y	Grobsand, mittelsandig, feinklesig mit Mergelgeröllen, graugrün – weiß, bunt	UK PVC Sumpfrohr DN 150 m. Boden
-20.00	Z-	- 1G, gs,y	Feinkies, grobsandig mit Mergelgeröllen, graugrün weiß, bunt	UK Quarzfitterkies 1 = 2 mm -20.10 UK Duranit = Tonkugeln -21.00
	- Z Z -	Ust	Schluffstein, mergelig, graugrün	O UK Bohr # 300 mm OK Nachfall
- 24.00	4	<u> </u>		UK Bohr # 130 mm / Endtiefe -24.00

Schrumpfmuff en	PVC Zentrier = schellen
- 1.60 - 2.10	- 1.80
~ 5.10	- 4.10
- 8.10	- 9.10
	-14.10
	-19.10

Frojekt						
		Sc	:hachtanlagi	eК	onrad	
			Salzgitte			
			20129			
Leistung	jskatalog	T	'eilaufgabe Nr	22	2 19.02	
			-	1	/ II.BA	
		2	krbeitspaket Nr	1 4	. II. DA	
Semerki	ung	-	Objekt			
	,		Erstellen	YO	n 7 Pegelbo	phrungen
			Einzelheit:	Li	tho-Log und	<u></u> -
					der Bohrun	
	Datum		Name		Mafistab	Antage
pearb	6 / 85				1:20/200	Abb. 14
gez.	6 / 85					
	Besell sch		ar Strahlen-und			bH Munchen
			Tigh	1000	L C. C.	

- 1 Einstiegsöffnung 🗸 600 mm
- Schachtabdeckung Kl. D = 40 t, verschraubt
- 3 Estrich
- 4 Stahlbetondecke
- ⑤ Betonfertigteilringe ≠ 1000 / 1200 mm
- **(6)** Magerbeton # 1200 / 2200 mm
- Steigeisen nach DIN
- 8 Stahl-Aufsatzrohr, verzinkt, DN 150
- Stahlbetonfußboden
- 10 Kies 8 16 mm
- 1) Bohr # 300 mm
- ② Abdichtung mit Duranit-Tonkugeln
- 13 PVC Aufsatzrohr DN 150
- 16 Flansch mit Abdeckplatte
- (5) Drainage 200 x 200 mm
- 16 MDS-System

Projekt: Schachtaniage Konrad Salzgitter Leistungskatalog Teilautgabe Nr. 22 19.02 Arbeitspoket Nr. 1/ II. BA Bemerkung Erstellen von 7 Pegelbohrungen Einzelheit: Abschlußbauwerk (Typ 3) der Grundwassermeßstellen Manstab Anlage 1:20 Abb. 15 für Strahlen-und Umweitforschung mbH Munchen Institut for Tieflagerung

Bestell-Nr 643432 90195 alam

Verzeichnis der Tabellen

Tabelle 1: Aufstellung der für den zweiten Bauabschnitt geplanten Aufschlußbohrungen/Grundwassermeßstellen - unter Berücksichtigung der Ergebnisse des ersten Bauabschnittes (Stand 03.09.1984).

Tabelle 2: Übersicht über die im zweiten Bauabschnitt abgeteuften hydrogeologischen Aufschlußbohrungen unter Angabe der Standorte, des Ausführungszeitraumes, der Bohrdurchmesser, der erreichten Teufen und der aufgeschlossenen Formationen.

Tabelle 3: Übersicht über die Anzahl der im zweiten Bauabschnitt aus den Aufschlußbohrungen gewonnenen Proben in Abhängigkeit von der Teufe.

Tabelle 4: Übersicht über die im zweiten Bauabschnitt abgeteuften hydrogeologischen Aufschlußbohrungen unter
Angabe der bei bestimmten Bohrdurchmessern gefahrenen geophysikalischen Logs.

Tabelle 5: Übersicht über die Pumpversuchsorte im Rahmen des zweiten Bauabschnittes.

Tabelle 6: Zusammenstellung der technischen Daten der Grundwassermeßstellen des zweiten Bauabschnittes
(Stand 6/1985).

Tab. 1: Aufstellung der für den zweiten Bauabschnitt geplanten Aufschlußbohrungen/Grundwassermeßstellen - unter Berücksichtigur der Ergebnisse des ersten Bauabschnittes (Stand 03.09.1984)

Aufschlußbohrung Gw-Meßstelle	Standort	Teui			Ausbaudurch- messer	Bemerkunger
I	Leinde	ca.	35	m	DN 150 (6")	
II	u	ca.	20	m	11	
II A	SZ-Heerte	ca.	25	m	"	1)
X	Fümmelse	ca.	110	m	11	
XI	"	ca.	60	m	n	
XII	"	ca.	30	m	11	
XVIII	SZ-Hallendorf,	ca.	38	m	"	
	Streitholz					
XIX	Gr. Gleidingen	ca.	30	m	"	2)

Bemerkung 1), 2) siehe Text Seite 8

Tab. 2: Übersicht über die im zweiten Bauabschnitt abgeteuften hydrogeologischen Aufschlußbohrungen unter Angabe der Standorte, des Ausführungszeitraumes, der Bohrdurchmesser, der erreichten Teufen und der aufgeschlossenen Formationen.

Bohrung		Ausführungs- zeitraum	Vorbohrung Ø 130 mm von GOK bis m Teufe	aufgeschlos- sene Forma- tionen	Aufweitungsboh- rung Ø 300 mm von COK bis m Teufe	aufgeschlos- sene Forma- tionen	Bemerkungen	
ı	Leinde	31.01.85	27,00	Quartär, Oberkreide	-	-	1)	
I A	Leinde Fa. Friedrich	11.212.2.85	33,00	Quartär, Oberkreide	32,00	Quartär	2)	
II A	SZ-Heerte	1.2.85	18,00	Quartär, Oberkreide	-	-	3)	
II B	SZ-Heerte Westerkamp	13.2.85	21,00	Quartär, Oberkreide	-	-	4)	46
x	Fümmelse	4.28.2.85	115,00	Quartär, Unterkreide	51,00	Quartär	5)	
XVIII	SZ-Hallendorf Streitholz	28.130.1.85	36,00	Quartär, Oberkreide	24,40	Quartär		
XIX	Gr. Gleidingen	14.2.85	24,00	Quartär, Oberkreide	21,00	Quartär	6)	

Bemerkung 1) bis 6) siehe Text Seite 10 u. 11

Tab. 3: Übersicht über die Anzahl der im zweiten Bauabschnitt aus den Aufschlußbohrungen gewonnenen Proben in Abhängigkeit von der Teufe.

		Son	derproben	}
Bohrung	Spülproben	Spülproben	Stoßkerne	Spülproben
	(in Abständen	für Kies-	für Pollen-	mit hum.
	von 1,50 m)	analysen	analysen	Material
		-	-	
I	18	-	-	-
	(0-27,0 m)			
I A	22	1	3	4
	(0-33,0 m)	(7,5- 9,0 m)	(12,0 m)	(12,0-13,5 m)
			(18,0 m)	(13,5-15,0 m)
			(21,0 m)	(16,5-18,0 m)
				(19,5-21,0 m)
II A	12	2	-	-
	(0-18,0 m)	(6,0-7,0 m)		
		(10,0-11,0 m)		
II B	14	2	1	
	(0-21,0 m)	(4,5- 6,0 m)	(9,0 m)	
		(7,0-8,0 m)		
х	100	4		6
	(0-115,0 m)	(3,0- 6,0 m)		(18,0-19,5 m)
		(6,0-9,0 m)		(21,0-22,5 m)
		(39,0-42,0 m)		(22,5-24,0 m)
		(48,0-51,0 m)		(24,0-25,5 m)
		(= 0,0 0 1,0 11,		(25,5-27,0 m)
				(27,0-28,5 m)
				(= , , = = , , , , , , , , , , , , , , ,

Fortsetzung Tabelle 3

		Son	derproben	
Bohrung	Spülproben	Spülproben	Stoßkerne	Spülproben
	(in Abständen	für Kies-	für Pollen-	mit hum.
	von 1,50 m)	analysen	analysen	Material
XVIII	24	4	4	8
	(0-36,0 m)	(18,0-19,5 m)	(6,0 m)	(4,5- 6,0 m)
		(19,5-21,0 m)	(15,0 m)	(9,0-10,5 m)
		(21,0-22,5 m)	(18,0 m)	(12,0-13,5 m)
		(30,0-33,0 m)	(24,0 m)	(13,5-15,0 m)
			}	(15,0-16,5 m)
				(19,5-21,0 m)
				(21,0-22,5 m)
				(24,0-25,5 m)
XIX	16	5	-	-
	(0-24,0 m)	(4,5- 6,0 m)		
		(7,5- 9,0 m)		
		(9,0-10,5 m)		
		(12,0-15,0 m)		
		(18,0-20,0 m)		

Tab. 4: Übersicht über die im zweiten Bauabschnitt abgeteuften hydrogeologischen Aufschlußbohrungen unter Angabe der bei bestimmten Bohrdurchmessern gefahrenen geophysikalischen Logs.

Bohrung	Bohrdur Ø 130 mm	chmesser Ø 300 mm	geoph FE	nysika GR	l. M	essungen Kaliber
I	х		х	x	х	x
IA	x		х	х	х	x
II A	x		х	х	х	x
II B	х		x	x	x	x
X	x		x	х	х	x
XVIII	×		x	х	x	x
XIX		x	x	x	х	x
	<u> </u>					

Tab. 5: Übersicht über die Pumpversuchsorte im Rahmen des zweiten Bauabschnittes.

GW-Meßstelle	Meßstellentyp	Anzahl der Pumpversuche
IA	Einfachmeßstelle	1
Х	89	1
XVIII	н	2
XIX	11	1

Tab. 6: Zusammenstellung der technischen Daten der Grundwassermeßstellen des zweiten Bauabschnittes.

GW- Meß- stelle	Lage Rechtswert Hochwert	Gelände- höhe üb. NN	OK. Schacht- abdeck. üb. NN (m)	Meßpunkt üb. NN (m)	OK. Stahl- betonfußb. üb. NN	T unt. GOK (m)		W-Meßstelle unt. Meß- punkt (m)	unt. OK Stahl- betonfußb. (m)	unt. GOK	Lage der F unt. OK Schacht- abdeck. (m)	ilterstrecke unt. Meß- punkt (m)	unt. OK Stahl- betonfußb. (m)
1	35 ₉₈₈₄₀ 57 ₇₉₀₁₅	-	-	-	-	-	-	-	-	-	-	-	-
IA	³⁵ 98360 ⁵⁷ 79285	102,64	102,73	101,87 ¹⁾	101,49 ²⁾	30,08	30,17	29,31 ¹⁾	28,93 ²)	25,07 28,07	25,16 28,16	24,30 ¹⁾ 27,30	23,92 ²) 26,92
HA	35 ₉₅₅₅₅ 57 ₇₇₉₃₀	-	-	-	-	-	-	-	-	-	-	-	-
IIB	35 ₉₆₆₀₀ 57 ₇₈₀₇₅	-	-	-	-	-	-	-	-	-	-	-	-
x	³⁶ 00510 ⁵⁷ 81480	92,31	92,47	91,55 ¹⁾	91,21 ²⁾	47,89	48,05	47,13 ¹⁾	46,79 ²	31,06	31,22	30,30 ¹⁾	29,96 ²)
VVIII	35 ₉₅₀₉₀ 57 ₈₂₂₂₅	91,15	91,26	90,30 ¹⁾	89,99 ²⁾	23,63	23,74	22,78 ¹⁾	22,47 ²⁾	46,06 19,45	1	45,30 18,60 ¹⁾	44,96 18,29 ²)
,,,	35 ₉₇₉₆₀ 57 ₈₉₃₇₅	79,84	79,90	78,95 ¹	78,63 ²⁾	20,26	20,32	19,37 ¹⁾	19,05 ²)	21,45 11,19 18,19	21,56 11,25 18,25	20,60 10,30 ¹⁾ 17,30	20,29 9,98 ²) 16,98
											,		

bezogen auf Oberkante Rohrstutzen der Flanschplatte
 bezogen auf Oberkante Stahlbetonfußboden (Stand 6/1985)

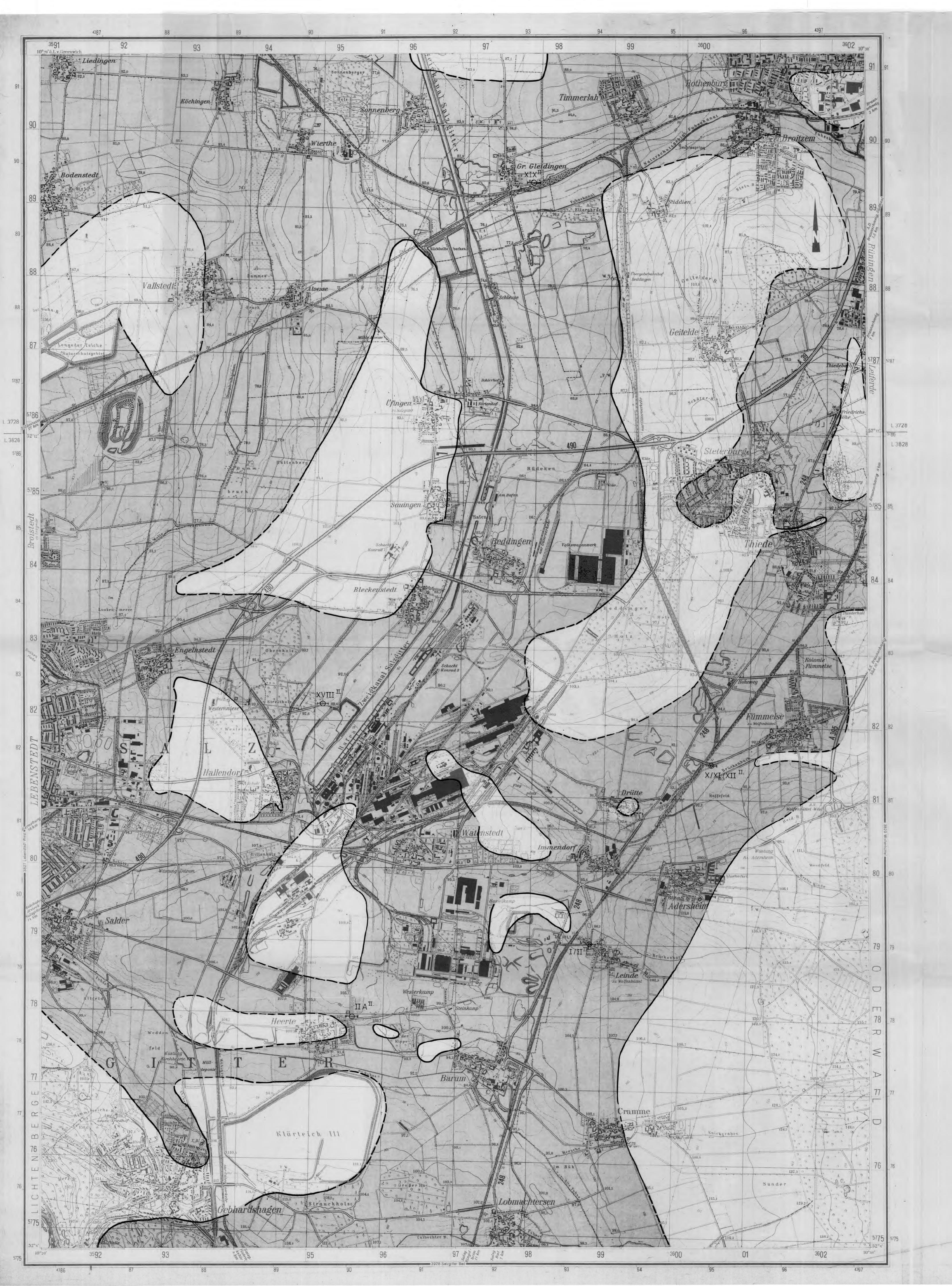
Verzeichnis der Anlagen

Anlage 1: Topographische Karte (1:15000) des Untersuchungsgebietes

> Lage der im zweiten Bauabschnitt des hydrogeologischen Untersuchungsprogrammes Konrad zu erstellenden Grundwassermeßstellen (Stand 03.09.1984).

Anlage 2: Topographische Karte (1:15000) des Untersuchungsgebietes

> Lage der im zweiten Bauabschnitt des hydrogeologischen Untersuchungsprogrammes Konrad erstellten Aufschlußbohrungen und Grundwassermeßstellen.


Anlage 3: Topographische Karte (1:15000) des Untersuchungsgebietes

> Lage der Grundwassermeßstellen des Grundwassermeßstellennetzes Konrad nach Fertigstellung des ersten und zweiten Bauabschnittes des hydrogeologischen Untersuchungsprogrammes Konrad (Stand 30.06.1985).

Literatur

(1985): unveröffentlichter Bericht über bohrlochgeophysikalische Messungen in sieben Bohrlöchern im Bereich der Schachtanlage Konrad - Fortsetzung des Meßprogrammes vom Sommer 1984 - im Auftrag der GSF/IfT.

Bundesanstalt für Geowissenschaften und Rohstoffe, Archiv-Nr. 98.151, 3 Seiten, 7 Anlagen.

Topographische Karte 1:15 000

3728 Braunschweig/West 3828 Lebenstedt/Ost

LEGENDE:

Untersuchungsgebiet der GSF: R::3592000 - 3602000 H::5775000 - 5791000

Gebiete mit Quartärmächtigkeiten ≥5m

O Grundwassermeßstelle

Grundwassermeßstellengruppe

Grundwassermeßstelle mit sporadischer Aufzeichnung

Grundwassermeßstelle mit kontinuierlicher Aufzeichnung
Grundwassermeßstellengruppe mit sporadischer Aufzeichng.

Grundwassermeßstellengruppe mit sporadischer und kontinuierlicher Aufzeichnung

Grundwassermeßstellengruppe mit kontinuierlicher Aufzeichnung

im II.Bauabschnitt zu erstellende

Grundwassermeßstellengruppe

im II.Bauabschnitt zu erstellende Grundwassermeßstelle

150 300 450 600 750 900 1050 1200 1350 1500

Kartengrundlage: Topographische Karte 1:25000 3728 (1983) und 3828 (1982) Vervielfältigt mit Erlaubnis des Herausgebers: Niedersächs. Landesverwaltungsamt-Landesvermessung - B5 - 378/84

Projekt:	Schachtanlage Salzgitter		28
Leistungskatalog:	Teilaufgabe Nr. 2	2219.02	
Bemerkung:		n von 7 Pegelbohru tung mit autom. Peg	
		der im zweiten Bo undwassermeßstell (Stand: 0)	
Datum	Name	Manstab	Anlage
		1: 15 000	1
bearb. 6/85			

bruck Klärteich III o Groper Hai Sunder Strauchholzof

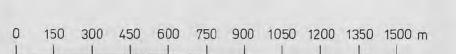
Topographische Karte 1:15000

3728 Braunschweig/West 3828 Lebenstedt/Ost

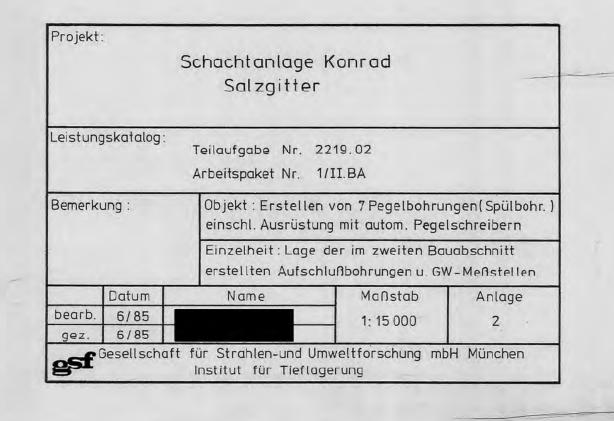
LEGENDE:

H.: ⁵⁷75 000 -⁵⁷91 000

Untersuchungsgebiet der GSF : R :: 3592 000 - 3602 000


Gebiete mit Quartärmächtigkeiten ≥5 m

- Aufschlußbohrung
- O Grundwassermeßstelle
- © Grundwassermeßstellengruppe
- Grundwassermeßstelle mit kontinuierlicher Aufzeichnung


Grundwassermeßstelle mit sporadischer Aufzeichnung

- Grundwassermeßstellengruppe mit sporadischer Aufz.
 Grundwassermeßstellengruppe mit sporadischer und kontinuierlicher Aufzeichnung
- Grundwassermeßstellengruppe mit kontinuierlicher Aufzeichnung
- o ^{III.} im II.Bauabschnitt erstellte Aufschlußbohrung
- XIX II.

 im II. Bauabschnitt erstellte Grundwassermeßstelle

Kartengrundlage: Topographische Karte 1:25000 3728 (1983) und 3828 (1982) Vervielfältigt mit Erlaubnis des Herausgebers: Niedersächs. Landesverwaltungsamt-Landesvermessung - B5 - 378/84

Hüttenber Klärteich III o Graßer Hai Sunder

Topographische Karte 1:15 000

3728 Braunschweig/West 3828 Lebenstedt/Ost

LEGENDE:

Untersuchungsgebiet der GSF: R.: $^{35}92\,000 - ^{36}02\,000$ H.: $^{57}75\,000 - ^{57}91\,000$

Gebiete mit Quartärmächtigkeiten ≥5m

- Lattenpegel
- O Grundwassermeßstelle
- Grundwassermeßstellengruppe
- Grundwassermenstelle mit sporadischer Aufzeichnung
- Grundwassermeßstelle mit kontinuierlicher Aufzeichnung
 Grundwassermeßstellengruppe mit sporadischer Aufzeichnung
- Grundwassermeßstellengruppe mit sporadischer und kontinuierlicher Aufzeichnung
- Grundwassermeßstellengruppe mit kontinuierlicher Aufzeichnung
- sanierte Grundwassermeßstelle (I.u.II. Bauabschnitt)
- im I. Bauabschnitt erstellte Grundwassermeßstelle
- im II. Bauabschnitt erstellte Grundwassermeßstelle

Kartengrundlage: Topographische Karte 1:25 000 3728 (1983) und 3828 (1982) Vervielfältigt mit Erlaubnis des Herausgebers: Niedersächs. Landesverwaltungsamt-Landesvermessung - B5 - 378 / 84

Projekt:

Schachtanlage Konrad
Salzgitter

Leistungskatalog:

Teilaufgabe Nr. 2219.02
Arbeitspaket Nr. 1/II.BA

Bemerkung:

Objekt: Erstellen von 7 Pegelbohrungen (Spülbohr.)
einschl. Ausrüstung mit autom. Pegelschreiber

Einzelheit: Lage der GW-Meßstellen des
GW-Meßstellennetzes Konrad nach Fertigstellung
des I.BAu. II.BA (Stand 30.06.85)

Datum Name Maßstab Anlage
bearb. 6/85
gez. 6/85

Gesellschaft für Strahlen-und Umweltforschung mbH München
Institut für Tieflagerung