

Physikalisch-Technische Bundesanstalt

DECKBLATT

Projekt	PSP-Element	Obj Kenn	Funktion	Komponente	Baugruppe	Aulgabe	ÜA	uta Nr	a e v
VAAV	NNNNNNNNN	ининии	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	N N
9K						HS	RB	0002	00
Ste "Mä	r Unterlage llungnahme zu G chtigkeit und V t" (lfd. Nr. 27	erbreitung	des Dogger	- ß- Sandste	in im Mo	dellge-	Se I. Sta	ana 1 9. p ril 19 8	१५.8 इड
Erstene	BGR			_			Tex	ktnummer	•

Stempelfeid

PSP-Element TP 2: zu Plan-Kapitel: 3.1.9

22.05.89
Freigabe für Behörden Freigabe im Projekt

Diese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch bei Beforderung und Verruchtung und darf vom Empfänger nur auftragsbezogen genutzt, vervielfältigt und Dritten zugänglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrucklichen Zustummung der PTB.

REVISIONSBLATT

K			:					HS	RB	0002	00
itel	der Unterlage								Seit		
	11ungnahme	e zu GE	0 16						II		
Mäc	htigkeit (und Ver	breitung o	des D	ogger	-/3-Sandstein	im Mode	11-	<u> </u>		
geb	iet" (lfd	. Nr. 2	275)							14 .0°	
									Ap	il 198 9	-
ev.	Revisionsst. Datum	verant. Stelle	Gegenzeichn. Name	rev. Seite	Kat.		Erläuterur	ng der Revis	sion		
!											
į											
į	į			1							
!											
i											
					i i						
		;									
				1							
i	1										
-											
i											
:	!										
	;				İ						
!											
•											
-											
					i						
i				1	1						
i											
:											
į											
:	:										
1											
:	:	:									
!											
:											

86 / 718 / 2

Kategorie V = verdeutlichende Verbesserung

iüssen Erläuterungen angegeben werden.

Kategorie S = subc

Mindestens bei de

BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE HANNOVER

Hannover, den 19.04.1989

Betr.: Nachforderung des NLfB im Rahmen der Fachgespräche vom 24.03.1988

hier: Geo 16, Tiefenlinien-, Mächtigkeits- und Faziespläne des Dogger-ß-Sandstein im Modellgebiet.

Stellungnahme zur Fazies, Mächtigkeit und Verbreitung des Dogger- β -Sandstein im Modellgebiet.

Der Dogger- β -Sandstein ist ein Schichtglied des Oberaalenium (jmalo). Nach der biostratigraphischen Zonengliederung werden im Oberaalenium zwei Zonen und fünf Subzonen unterschieden (Tab. 1). Die lithostratigraphischen Benennungen für die einzelnen Sandsteinhorizonte in der Literatur sind uneinheitlich.

Eine Übersicht über die Faziesverteilung im Oberaalenium gibt (1949). Demzufolge ist im Oberaalenium des Ostteils des Niedersächsischen Beckens der als Erdölträgergestein geltende Dogger-ß-Sandstein weitflächig verbreitet. Aus diesem Grunde liegen aus zahlreichen Bohrungen des Modellgebiets und darüber hinaus umfangreiche veröffentlichte Daten über Fazies und Mächtigkeit des Sandsteins vor (1954; 1952; 1987). Eines der aus dem Dogger-ß-Sandstein produzierenden Erdölfelder ist das Feld Rühme nördlich Braunschweig. In Anlage 1 sind diejenigen

Bohrungen im Modellgebiet gekennzeichnet, die Dogger-ß-Sandstein angetroffen haben (Anl. 2 und 1988).

Stuf	Ee:	Zone:	Subzone:	Lithostratigraphie:
	0	Graphoceras concava		(Concava-Sdst. nicht entw.)
A A L E N I	b e r	Ludwigia murchisoni	L.bradfordensis St. staufensis St. discoidea St. sehndense Staufenia (Co- stil.) sinon	Staufensis-Sdst. Sinon-Sdst. (Sandflaserzone)
M u n.		Leioceras opalinum	L.comptum L.opalinum	Tonstein

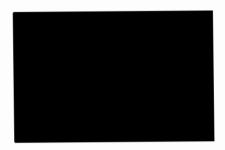
Tab. 1: Zonengliederung des Aalenium im Modellgebiet nach (erstellt 1980), Lithostratigraphische Gliederung nach (1963).

Aufgrund der vorliegenden Bohrdaten 1988) und anhand der von (1986) berichteten Auswertung seismischer Profile kann davon ausgegangen werden, daß der Dogger-ß-Sandstein im Modellgebiet weitflächig verbreitet ist. Ausgenommen davon ist jeweils ein Streifen auf der Ost- und Westflanke des östlichen Randsenkensystems der Salzstöcke Broistedt, Vechelde und Rolfsbüttel sowie auf den Flanken der Strukturen Thiede und Bechtsbüttel. Entlang dieser Randsenkenflanken werden die Schichten von jüngeren Transgressionen gekappt. Auf der östlichen Randsenkenflanke wird der Dogger-ß-Sandstein im allgemeinen transgressiv von tonigem Obervalangin (Erdfölfeld Rühme) bzw. Unterhauterive überlagert. Auf der Westflanke wird er dagegen von transgredierenden Schichten des hohen Dogger, Bajocium bis Calabgeschnitten. Das heißt, der Dogger-ß-Sandstein lovium, reicht nach dem derzeitigen Kenntnisstand nicht an die Flanken der Salzstöcke Broistedt und Rolfsbüttel heran 1986). Schichten des Oxford dürften nach dem derzeitigen Kenntnisstand keinen stratiformen Kontakt mit dem

Dogger-ß-Sandstein haben. Diese Situation liegt z.B. bei der Bohrung Bleckenstedt 3 vor, in der Dogger-ß-Sandstein in vorwiegend tonig-schluffiger bis feinstsandiger Fazies mit einer Kalksandsteinbank entwickelt ist. In den Bohrungen auf der Westflanke des Salzstocks Thiede war der Sandstein entweder verwässert oder die Matrix war wie in der Bohrung Bleckenstedt 3 karbonatisch verkittet. In den Bohrungen Vechelde 2 und 4 fällt der Dogger-ß-Sandstein vermutlich durch Transgression aus (Anl. 2). Südlich der Schachtanlage Konrad findet sich in den Bohrungen kein Hinweis auf Dogger-ß-Sandstein. (1939/40) berichtet über einen Sandstein aus der Grube Friederike bei Bad Harzburg.

Die Schichten des Oberaalenium (Dogger ß) setzen sich aus Wechselfolgen von tonig-sandigen Lagen (Sandflasern) und verschieden mächtigen Sandsteinbänken zusammen. In der erdölgeologischen Literatur wird auch von "Lagern" gesprochen. So unterscheidet man in den Erdölfeldern ein Oberes und ein Unteres Lager von Dogger-&-Sandstein 1957) aus denen noch einmal bis zu acht verschiedene Sandlagen ausgeschieden werden können. Diese Maximalentwicklung findet sich jedoch nur im Norden, außerhalb des Modellgebiets. Im Modellgebiet nimmt in den bekannten Bohraufschlüssen die Zahl und Mächtigkeit der Sandsteinbänke von Norden nach Süden ab. Nach Süden und Westen nehmen die Korngrößen der Sandfraktion ab (et al. 1963; gradierte Schichtenaufbau entspricht der einer voranschreitenden Deltafront. So lassen sich die von den einzelnen Sandkörpern ausgehenden lateralen Übergänge zu sandflaserigen, stark bioturbaten Tonsteinen erklären. Die in der 1963) auch als Sinon-Sandstein Literatur (bezeichneten geringmächtigen, mürben, gut absandenden, mittel- und fein- bis feinstkörnigen Sandsteine und Sandflaserschichten des tieferen Teils des Oberaalenium finden die gleichmäßigste Verbreitung in den Aufschlüssen des Modellgebiets. Die höheren Sandsteine, Staufensis- und ObtusaSandstein (s. Tab. 1), scheinen lokal zusammenzuhängen, in der Fläche jedoch lösen sie sich wieder in einzelne Schüttungskörper auf. Sie entsprechen nach (1954) einer von der Schüttung der Sandsteine der Sandflaser-Zone (Bereich des Sinon-Sandstein) getrennten Entwicklung.

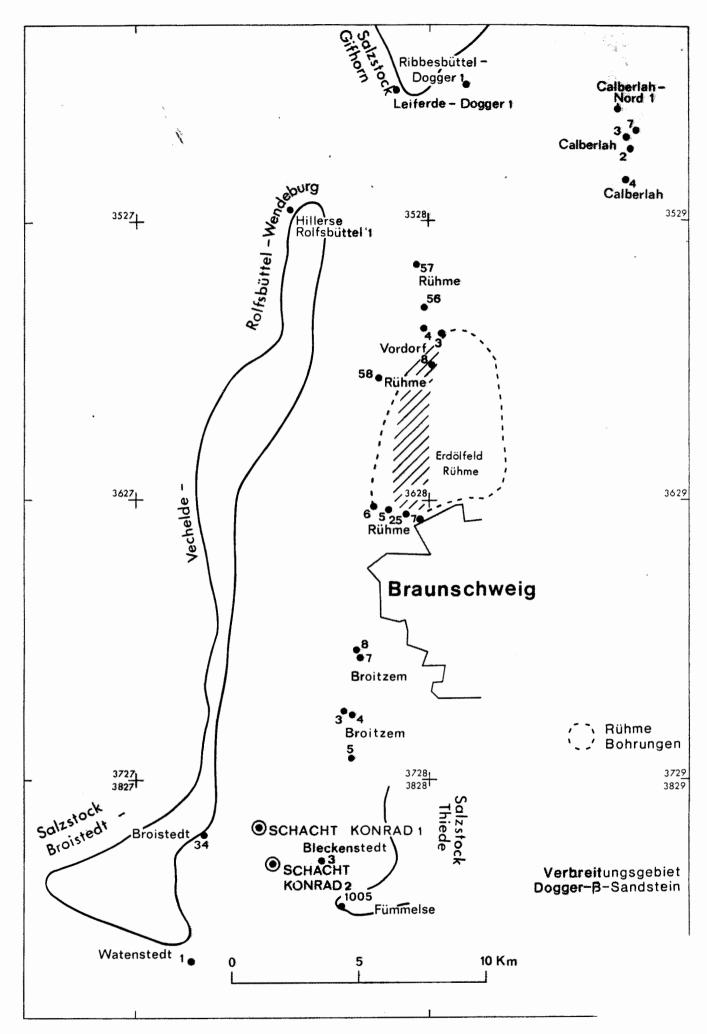
Die Mächtigkeits- und Faziesentwicklung der Sandsteine steht in direktem Zusammenhang mit deren Entfernung vom Liefergebiet und der Beckenposition des Ablagerungsraumes. Die Frage nach der ursprünglichen Mächtigkeit der Doggerß-Sandsteine im Erdölfeld Rühme kann nicht alleine durch den Verweis auf die mächtigen Bohrprofile des Feldes beantwortet werden, da auch die Randsenkenentwicklung beachtet werden muß. Die absoluten Mächtigkeiten wurden neben den Teufen der einzelnen Sandsteinbänke aus den geophysikalischen Bohrlochmessungen abgegriffen oder den Schichtenverzeichnissen entnommen. Bei Vorhandensein von Kernbeschreibungen der Bearbeiter der Erdölindustrie wurde auf deren Beurteilung zurückgegriffen. Die Ergebnisse wurden in der Anlage 2 zusammengefaßt.


Wegen der sehr ungleichgewichtig verteilten Aufschlußpunkte im Modellgebiet läßt sich für den Dogger-ß-Sandstein keine verläßliche Mächtigkeitskarte erstellen.

Tagesaufschlüsse von Dogger-β-Sandstein sind aus dem Modellgebiet nicht bekannt. Lediglich in größerer Entfernung davon, z.B. im Stadtgebiet von Wolfsburg, existieren Tagesaufschlüsse. Dort wurde der Sandstein z.T. als Werkstein abgebaut 1985; 1952; 1929).

BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROSTOFFE HANNOVER

im Auftrage:


Literaturliste

- BRAND, E. & HOFFAMNN, K.(1963):Stratigraphie und Fazies des nordwestdeutschen Jura und Bildungsbedingungen seiner Erdöllagerstätten.- Erdöl u. Kohle, 16. Jhg., Juni 1963, Nr. 6-I,S.437-450, 13 Abb.; Hamburg.
- GERARDI, J.(1988): Revision von Tiefbohrungen.- BGR, interner Bericht, Archiv-Nr. 100 547/1 bis 7, 7 Bd., 5 Tab., 1 Abb., 27 Anl.; Hannover.
- GRUSS, H., HOFFMANN, K. & THIENHAUS, R.(1969):Die marinsedimentären Eisenerze des Dogger in Nordwestdeutschland.- Beih. Geol. Jb., 79, S.121-213,
 37 Abb., 14 Tab., 2 Taf.; Hannover.
- HEDEMANN, H.(1954): Sedimentationsverhältnisse im unteren Dogger beta, besonders der Sandsteinbänke, im NW- Teil des Gifhorner Trogs.- Roemeriana, 1, Dahlgrün-Festschrift, S. 335-360, 12 Abb., 1 Tab.; Clausthal.
- HOFFMANN, K.(1949): Zur Paläogeographie des nordwestdeutschen Lias und Dogger.- Erdöl und Tektonik in Nordwestdeutschland, S. 113-129, 3 Abb., 1 Tab.; Celle.
- JARITZ, W.(1986): Zur Tektonik der Umgebung der Schachtanlage Konrad (Salzgitter) aufgrund reflexionsseismischer Untersuchungen.- Z. dt. geol.
 Ges., 137, S. 137-155, 11 Abb., 1 Tab.; Hannover.
- KUMM, A.(1939/40): Beiträge zur Kenntnis des Lias u.

 Doggers im nördlichen Harzvorlande.- Braun-

- schw. Jb., Dritte Folge, 1, 18 S., 1 Tab.; Braunschweig.
- KUMM, A.(1952): Der Dogger (Mittlerer oder Brauner
 Jura).- Schr. wirtschaftswiss. Ges. Studium
 Niedersachsens, 2. Das Mesozoikum in Niedersachsen, 2. Abt., S. 329-509, Abb. 80-96;
 Bremen-Horn.
- LOOK, E.-R.(1985): Geologie und Bergbau im Braunschweiger Land.- Geol. Jb., A, Heft 88, 452 S., 181 Abb., 18 Tab., 1 Kt.; Hannover.
- PHILIPP, W., DRONG, H. J., FÜCHTBAUER, H., HADDENHORST, H.-G., JANKOWSKY, W.(1963): Zur Geschichte der Migration im Gifhorner Trog.- Erdöl u. Kohle, Sonderausgabe zum 6. Welt-Erdöl-Kongreß, 16. Jhg., Juni 1963, Nr. 6-I, S. 456-468, 15 Abb., 3 Taf.; Hamburg.
- RÜHL, W. & SCHMIDT, CH.(1957): Über das Verhältnis der vertikalen zur horizontalen absoluten Permeabilität von Sandsteinen.- Geol.Jb., 74, S.447-462, 1 Taf., 8 Abb., 1 Tab.; Hannover.
- SCHOTT, W.(1955): Geologische Ergebnisse und wirtschaftliche Erfolge der westdeutschen Erdölbohrtätigkeit im Jahre 1954.- Erdöl u. Kohle, 8.Jg., 4, S. 217-230, 9 Abb., 9 Tab.; Hamburg.
- SCHWARZKOPF, T.(1987): Herkunft und Migration des Erdöls in ausgewählten Dogger beta Lagerstätten des Gifhorner Troges: Wechselwirkungen zwischen Kohlenwasserstoffgenese und Sandsteindiagenese.- Diss., RWTH Aachen, 257 S., 67 Abb., 3 Taf., 12 Tab.; Aachen.

WOLDSTEDT, P.(1929):Erläuterungen zur geologischen Karte von Preußen und benachbarten deutschen Ländern, Blatt Fallersleben (Nr. 1892), Nr.3530; Berlin.

Anlage 1: Lageplan von Tiefbohrungen im Modellgebiet mit Dogger-

Anlage 2: Teufenlage und Mächtigkeit der Dogger-ß-Sandsteine im Modellgebiet L= nach Sp und Widerstandsmessung, VZ= nach Schichtenverzeichnis

Archiv- nummer	Bohrung	Teufe Dogger- beta-Sandsteine	Mäch- Bemer- tigkeit kungen
TK 25: 3	528		
469	Hillerse-Rolfsbüttel 1	2150.0 - 2151.0 m 2179.5 - 2183.5 m 2210.5 - 2211.5 m 2221.0 - 2222.0 m	1,0 m VZ 4,0 m VZ 1,0 m VZ 1,0 m VZ
206	Leiferde-Dogger 1	2375.0 - 2377.0 m	2,0 m VZ
TK 25: 3	529		
70	Calberlah 2	255.0 - 268.0 m 276.0 - 281.0 m	13,0 m L 5,0 m L
71	Calberlah 3	501.0 - 503.0 m 507.0 - 509.0 m 512.0 - 517.0 m 521.0 - 524.0 m	2,0 m L 2,0 m L 5,0 m L 3,0 m L
72	Calberlah 4	300.0 - 300.9 m 317.0 - 319.0 m	0,9 m VZ 2,0 m VZ
75	Calberlah 7	352.0 - 359.0 m 361.0 - 365.0 m 371.0 - 374.0 m	•
113	Calberlah 9	Sandstein an Störu	ng ausgefallen
292	Calberlah-Nord 1	961.5 - 988.0 m	26,5 m VZ
239	Ribbesbüttel-Dogger 1	1922.5 - 1924.5 m	2,0 m VZ
TK 25: 3	628		
123	Rühme 2	751.6 - 753.4 m 762.4 - 763.2 m 770.4 - 775.4 m	1,8 m L 0,8 m L 5,0 m L
124	Rühme 3	749.0 - 753.0 m	4,0 m L
132	Rühme 4	732.0 - 734.5 m 749.0 - 750.0 m 758.0 - 767.0 m	2,5 m L 1,0 m L 9,0 m L
127	Rühme 9	724.0 - 729.5 m 736.8 - 737.5 m	5,5 m L 0,7 m L

Archiv- nummer	Bohru	ng	Teufe Dog beta-Sand			Mäch- tigkeit	Bemer- kungen
126	Rühme	11	695.0 - 704.5 -			4,0 m 4,5 m	VZ VZ
159	Rühme	13	741.0 -	743.4	m	2,4 m	L
160	Rühme	14	709.0 - 733.4 -		m m	13,4 m 5,4 m	VZ VZ
161	Rühme	15	727.0 - 748.5 -		m m	15,0 m 5,0 m	VZ VZ
129	Rühme	16	608.0 -	610.4	m	2,4 m	L
162	Rühme	18	654.5 - 672.0 -		m m	12,0 m 1,5 m	VZ VZ
163	Rühme	26	682.7 - 703.4 -		m m	8,8 m 1,9 m	VZ VZ
164	Rühme	28	679.0 - 699.0 -		m m	3,7 m 6,6 m	VZ VZ
136	Rühme	29	725.5 - 754.3 -		m m	6,0 m 7,9 m	VZ VZ
165	Rühme	31	701.2 -	709.6	m	8,4 m	VZ,Stör-
166	Rühme	38	605.8 - 636.2 -			28,4 m 1,8 m	
167	Rühme	39	629.0 - 645.0 - 653.0 -	649.0	m m m	8,0 m 4,0 m 3,0 m	VZ VZ VZ
168	Rühme	43	585.0 -	590.0	m	5,0 m	VZ
169	Rühme	44	645.0 -	649.0	m	4,0 m	VZ
170	Rühme	45	703.0 -	705.0	m	2,0 m	VZ
171	Rühme	46	822.0 -	827.0	m	5,0 m	VZ
172	Rühme	47	618.7 - 638.0 -		m m	1,8 m 4,0 m	VZ VZ
173	Rühme	48	701.0 -	703.0	m	2,0 m	VZ
174	Rühme	49	738.0 -	740.5	m	2,5 m	VZ
175	Rühme	50	819.0 -	823.0	m	4,0 m	VZ

Archiv- nummer	Bohrung	Teufe Dogger- beta-Sandsteine	Mäch- Bemer- tigkeit kungen
TK25: 36	28 (Forts.)		
176	Rühme 51	766.5 - 768.5 m	2,0 m VZ
177	Rühme 52	747.0 - 757.0 m 767.5 - 770.5 m 775.0 - 777.0 m	10,0 m VZ 3,0 m VZ 2,0 m VZ
178	Rühme 53	823.0 - 827.0 m	4,0 m VZ
158	Rühme 55 A	715.5 - 718.0 m	2,5 m VZ
300	Rühme 56	599.0 - 601.5 m	2,5 m VZ
397	Rühme 57	1187.0 - 1191.0 m	4,0 m VZ
142	Rühme 61 A	641.0 - 656.0 m 666.0 - 670.0 m	15,0 m VZ 4,0 m VZ
128	Rühme 64	647.5 - 662.5 m 672.5 - 675.5 m	15,0 m VZ 3,0 m VZ
138	Rühme 66	665.0 - 689.0 m 691.0 - 693.0 m	14,0 m VZ 2,0 m VZ
139	Rühme 67	696.5 - 712.5 m 714.0 - 716.0 m	16,0 m VZ 2,0 m VZ
86	Rühme 69	708.5 - 714.5 m 730.0 - 736.0 m	6,5 m VZ 6,0 m VZ
87	Rühme 70	705.5 - 710.0 m 725.5 - 728.5 m	4,5 m VZ 3,0 m VZ
179	Rühme H 1	730.5 - 743.8 m 753.5 - 755.5 m	
180	Rühme H 2	702.5 - 716.5 m 728.0 - 732.0 m	
399	Rühme R 5	613.0 - 636.0 m 640.0 - 643.0 m	
81	Vordorf 4	tonige Sandflasers	chichten
TK 25: 3	629		
105	Rühme 12	658.0 - 660.5 m	2,0 m VZ
106	Rühme 19	612.0 - 636.0 m 638.0 - 640.0 m	

Archiv- nummer	Bohru	ng	Teufe Dogger- beta-Sandsteine		Mäch- tigkeit	Bemer- kungen
TK 25: 3	629 (F	orts.)				
107	Rühme	20	597.5 - 609.0 616.0 - 618.0	m m	11,5 m 2,0 m	VZ VZ
103	Rühme	21	731.0 - 734.0 751.0 - 756.6	m m	3,0 m 4,6 m	VZ VZ
109	Rühme	22	591.0 - 608.0 616.5 - 618.0	m m	17,0 m 1,5 m	VZ VZ
110	Rühme	23	606.5 - 621.0 631.0 - 633.0	m m	14,5 m 2,0 m	VZ VZ
111	Rühme	24	611.0 - 624.0 635.0 - 637.7	m m	13,0 m 2,7 m	VZ VZ
112	Rühme	27	624.8 - 628.0 644.3 - 645.75	m m	3,2 m 1,45m	VZ VZ
113	Rühme	30	641.5 - 646.5	m	5,0 m	VZ
114	Rühme	32	681.5 - 692.5 704.0 - 706.5	m m	11,0 m 1,5 m	VZ VZ
115	Rühme	33	673.0 - 675.5 685.5 - 687.5	m m	2,5 m 2,0 m	VZ VZ
116	Rühme	34	677.2 - 682.4 691.0 - 693.2	m m	5,2 m 2,2 m	VZ VZ
117	Rühme	35	686.0 - 687.0 705.4 - 710.8	m m	1,0 m 5,4 m	VZ VZ
118	Rühme	36	558.7 - 582.1 583.4 - 585.0		23,4 m 1,6 m	VZ VZ
120	Rühme	37	556.3 - 571.5 580.0 - 581.3		15,2 m 1,3 m	VZ VZ
119	Rühme	40	575.0 - 578.0	m	10,5 m 3,0 m 11,0 m 2,0 m	VZ VZ VZ VZ
121	Rühme	41	567.5 - 572.5 587.5 - 590.5	m m	5,0 m 3,0 m	VZ VZ
149	Rühme	54	427.0 - 429.0	m	2,0 m	VZ
151	Rühme	59	455.0 - 458.5	m	3,5 m	Störun
150	Rühme	60	417.0 - 420.0	m	3,0 m	VZ

Archiv- nummer	Bohrung	Teufe Dogger- beta-Sandsteine	Mäch- tigkeit	Bemer- kungen
TK 25: 3	3629 (Forts.)			
152	Rühme 62		14,5 m 3,0 m	VZ VZ
153	Rühme 63	557.5 - 585.0 m 588.5 - 590.5 m	27,5 m 2,0 m	VZ VZ
2	Rühme 65		9,0 m 2,0 m	VZ VZ
11	Rühme 68	507.0 - 518.0 m 528.5 - 536.0 m	11,0 m 7,5 m	
9	Rühme 71	482.0 - 505.0 m 509.2 - 513.9 m		VZ VZ
74	Vordorf 3	tonige Sandflasers	chichten	
101	Vordorf 8	508.5 - 510.0 m	1,5 m	VZ
73	Wedelheine 1	406.0 - 419.0 m 427.0 - 429.0 m		L L
TK 25: 3	3728			
57	Broitzem 3	690.0 - 695.0 m	5,0 m	L
112	Broitzem 4	605.5 - 610.8 m	5,3 m	VZ
109	Broitzem 5	824.0 - 829.0 m	5,0 m	VZ
370	Broitzem 7	650.0 - 655.0 m	5,0 m	VZ
430	Broitzem 8	714.8 - 720.3 m	5,5 m	VZ
102	Rühme 5	747.2 - 748.8 m 750.4 - 752.0 m	1,6 m 1,6 m	L L
103	Rühme 6	766.0 - 768.0 m 781.0 - 782.0 m	2,0 m 1,0 m	L L
104	Rühme 7	800.0 - 803.3 m 821.0 - 824.5 m 826.0 - 827.0 m	3,3 m 3,5 m 1,0 m	L L L
105	Rühme 25	781.5 - 787.5 m		VZ
106	Vechelde 2 a	805.4 - 810.3 m Sandstein an Störn		VZ durch
111	Vechelde 4	Transgression ausg Sandstein an Stört Transgression ausg	ing oder d	urch

Archiv- nummer	- Bohrung	Teufe Dogger- Mäch- beta-Sandsteine tigkeit	Bemer- kungen
TK 25:	3828		
71	Bleckenstedt 3	776.0 - 778.0 m 2,0 m	L
80	Broistedt 34	tonige Sandflaserschichten	VZ
86	Fümmelse 1005	170.5 - 172.5 m 2,0 m	VZ
426	Watenstedt 1	tonige Sandflaserschichten	VZ