Planfeststellungsverfahren zur Stilllegung des Endlagers für radioaktive Abfälle Morsleben

Verfahrensunterlage

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.		
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN		
	9M	22343021		AJ			GH	BY	0054	00	DBED	
Verfüllmaterial für Strecken mit hohen Anforderungen – Materialeigenschaften und Materialkennwerte Salzbeton M2												

Stichwörter: Abdichtungen, Materialeigenschaften, Rezeptur M2, Rheologie, Salzbeton, Streckenverfüllungen

Zusammenfassung

Nach dem Stilllegungskonzept des Endlagers für radioaktive Abfälle (ERAM) sind zur Gewährleistung des radiologischen Schutzzieles die Einlagerungsfelder von der zutrittsgefährdeten Restgrube durch qualifizierte Streckenverfüllungen bzw. Strecken mit hohen Anforderungen abzudichten. Als Baustoff für die Errichtung der Streckenverfüllungen ist der Salzbeton M2 vorgesehen.

Der vorliegende Bericht fasst den Kenntnisstand zu Materialparametern zusammen, soweit diese im Hinblick auf die Einbringung als Pumpversatz, die Beherrschung der Bauzustände sowie zur Beurteilung der mechanischen Integrität der Streckenverfüllungen erforderlich sind. Zuerst werden die Materialzusammensetzung, das Verhalten des Salzbetons während der Verarbeitung und die Frischbetoneigenschaften behandelt. Im Anschluss werden Resultate von Messungen physikalischer und thermodynamischer Materialeigenschaften beschrieben.

Der Salzbeton M2 besteht aus Zement, Steinkohlenflugasche und Salzzuschlag. Das Anmischen erfolgt mit Wasser. Für die Rezeptur liegt eine allgemeine Zulassung gemäß § 4 der Bergverordnung zum gesundheitlichen Schutz der Beschäftigten (GesBergV) vor. Die rheologischen Untersuchungen zeigten, dass ein Suspensionstransport durch Rohrleitungen auch bei erhöhtem oder verringertem Wassergehalt über mehrere Stunden möglich ist. Die Korngröße des Salzzuschlages beeinflusst nur untergeordnet das Fließverhalten des Frischbetons. Kornsedimentations- bzw. -absetzerscheinungen waren nicht nachweisbar. So ergab beispielsweise ein Freifallversuch im ERAM, bei dem Suspension über eine Höhe von 37 m in eine Schalung verstürzt wurde, dass der Frischbeton zu einem homogenen Baustoffkörper abbindet.

Untersuchungen physikalischer Festbetoneigenschaften umfassten die Ermittlung der Betondichte, der Salzbetonsteifigkeit und -festigkeit, des Schwind- und Kriechverhaltens sowie Bestimmungen von Parametern, die zur Charakterisierung der hydraulischen Durchlässigkeit des Salzbetons erforderlich sind, wie die Porosität, die Porenradienverteilung und die Permeabilität. Es wurden einaxiale Druckfestigkeiten von mehr als 30 MPa und statische Elastizitätsmoduli von über 20.000 MPa erzielt. Die Messungen ergaben, dass abgebundene Proben des geförderten Materials im Vergleich zu Prüfkörpern, deren Herstellung unmittelbar nach dem Anmischen erfolgte, vergleichbare Festigkeiten aufweisen. Triaxiale Druckversuche ergaben,

Г		Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
		NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
		9M	22343021		AJ			GH	ΒY	0054	00	DBED
	Verfüllmaterial für Strecken mit hohen Anforderungen –											Blatt 4

Materialeigenschaften und Materialkennwerte Salzbeton M2

dass die Dilatanzgrenze nahe der Bruchgrenze liegt. Beide Parameter steigen mit wachsendem Manteldruck.

Das Schwinden des Baustoffes ist bereits nach einer Abbindezeit von etwa 50 Tagen weitgehend abgeklungen. Für das Normalklimat 20/65 kann ein Endschwindmaß von 1,1 mm/m angegeben werden. Die Laboruntersuchungen zur Ermittlung der hydraulischen Durchlässigkeit ergaben, dass der Salzbeton ein Porensystem aufweist, das nur für Gase geringfügig durchlässig ist. So reduzierte sich die Gaspermeabilität einer getrockneten Probe bei einer Zunahme des Manteldruckes von 1 MPa auf 10 MPa von 5,4·10⁻¹⁸ m² auf 1,0·10⁻¹⁸ m², während im Normalklimat 20/65 gelagerte Prüfkörper auf Werte von 6,1·10⁻²⁰ m² bis 5,3·10⁻²¹ m² kamen. Eine Durchströmung mit Salzlösungen war dagegen nicht nachweisbar. Auf Grund der Sättigungsverhältnisse der Poren- und Überschusslösung sind im Rahmen der Verfüllung Anlöseerscheinungen der Hohlraumkonturen vernachlässigbar.

Bestimmungen thermodynamischer Eigenschaften des Salzbetons sind erforderlich, da die im Verlauf des Abbindeprozesses freigesetzte Wärme thermomechanisch bedingte Zwangsbeanspruchungen in den Streckenverfüllungen sowie im angrenzenden Salzgebirge erzeugen kann. Die Hydratationswärme ist damit eine nicht zu vernachlässigende Größe. Die zum Nachweis der Beherrschung der Bauzustände notwendigen Daten, wie die unter adiabatischen Bedingungen bestimmte Temperaturentwicklung beim Abbinden, die spezifische Wärmeleitfähigkeit und der Wärmeausdehnungskoeffizient werden beschrieben. Zusätzlich sind Untersuchungsresultate zur Temperaturstabilität des Salzbetons angegeben.

Abschließend wird dargestellt, wie aus den Ergebnissen der Laboruntersuchungen thermodynamischer und physikalischer Baustoffeigenschaften Materialkennwerte ermittelt werden, die in die Sicherheitsnachweisführung eingehen und welche Materialmodelle in den numerischen Berechnungen zur Anwendung kommen.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr. Rev.	
					AANNNA	AANN		PV		DBED
N/	914	22343021					GR	ы	0054 00	
Vertülli Materi	material fü	ir Strecken m	it hohen . Iterialken	Anforderu	ngen – Izbeton I	MO				Blatt 5
Materia	aleigensci		licitaiken							
Inhalts	sverzeich	nis								
										Blatt
Zusam	imenfassu	ing								3
Inhalts	verzeichni	is								5
Tabelle	enverzeich	nnis								7
Abbildu	ungsverze	ichnis								11
1	Einleitur	ng								13
2	Ausgan	gsstoffe und I	Rezeptur							15
3	Bergbau	uhygienische	Beurteilu	ng gemäß	Gesund	heitss	chutz-E	Berg	verordnun	g 17
4	Rheolog	gische Unters	uchunge	n						18
4.1	Versuch	ne im Rohrvisl	kosimete	r						18
4.2	Konsiste	enzmessunge	n							23
4.2.1	V-Tricht	er-Prüfung								23
4.2.2	Ausbrei	tmaß								24
4.2.3	Setzflie	ßmaß								25
4.3	Fließwir	nkel								25
5	Untersu	ichungen zur l	Kornsedi	mentation	und zur	Übers	chusslö	bsur	ng	27
5.1	Untersu	ichungen zum	Sedime	ntationsve	rhalten					27
5.1.1	Sedime	ntationsversu	ch in eine	er vertikale	en Rohrle	eitung				27
5.1.2	Sedime	ntationsversu	ch bei ve	ränderten	Wasser	gehalte	en			27
5.1.3	Begutad	chtung von Bo	hrkerner	n des in -s i	tu Freifal	lversu	ches			28
5.1.4	Bestimn	nung der sedi	mentatio	nsstabilen	Korngrö	öße				29
5.2	Untersu	Ichungen zur	Bildung v	on Überso	chusslös	ung				31
5.2.1	Untersu	ichungen in A	bhängigk	eit der Be	tonoberf	läche (konsta	nte	Füllhöhe)	31
5.2.2	Untersu	ichungen in A	bhängigk	eit der Fü	llhöhe (k	onstar	te Beto	onob	perfläche)	32
5.2.3	Untersu	ichungen in A	bhängig	keit der Fü	illhöhe (l	konsta	ntes Fü	illvo	lumen)	33
5.3	Zusamn	nenfassung d	er Result	ate zur Bi	ldung vo	n Über	schuss	lösı	ung	35
5.4	Chemis	cher Stoffbes	tand der	Poren- un	d Überso	chusslö	ösung			35
6	Physika	lische Unters	uchunge	ı						37
6.1	Festmat	terialdichte								38
6.2	Statisch	er E-Modul								39
6.3	Querko	ntraktionszahl								42
6.4	Einaxial	e Druckfestig	keit							43
6.5	Dilatanz	verhalten und	triaxiale	Druckfes	tigkeit					45
6.6	Einaxial	e Zugfestigke	it							50
6.7	Kriechve	erhalten								51
6.8	Schwing	den								53
6.9	Porositä	ät								55
6.10	Porenra	dienverteilun	9							56
6.11	Permea	bilität								58
7	Thermo	dynamische l	Intersuc	nungen						64

		Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.				
		NAAN	NNNNNNNNN	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	ΝN	ndee			
		9M	22343021		AJ			GH	ΒY	0054	00				
,	Verfüllmat	erial fü	ir Strecken mi	t hohen	Anforderu	ngen –						Blatt 6			
	Materialei	gensch	aften und Ma	terialken	nwerte Sa	Izbeton	M2								
.	71 A	diabati	ische Temper	aturontw	icklung be	im Abbir	ndon					64			
					icklung be		luen					04			
	7.2 S	pezifis	che Wärmeka	apazitát								65			
	7.3 W	/ärmel	eitfähigkeit									65			
	7.4 W	/ärmea	ausdehnungsł	koeffizier	nt							66			
	7.5 T	empera	aturstabilität									66			
	8 Zusammenstellung der Materialkennwerte														
	9 Materialkennwerte für die Sicherheitsnachweisführung														
	9.1 Nicht gekoppelte Materialkennwerte														
1	9.2 G	ekopp	elte Materialk	ennwerte	9							78			
	9.2.1 H	lydrata	tionsgradentw	/icklung								78			
1	9.2.2 H	lydrata	tionsgradabha	ängige W	/erkstoffei	genscha	ften					80			
1	9.3 lo	dentifik	ation der hydr	atations	gradabhär	ngigen W	/erksto	ffeigen	sch	aften a	aus				
	V	ersuch	ien									82			
	10 V	erwend	dete Unterlage	en								85			
	11 G	Glossar													

Gesamte Blattzahl der Unterlage: 90

		PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.		
		223/3021		λ.T	AANNNA	AANN	CH	BV	0.054		D	BED
Vorfüllmator	riol fü	r Strockon mi	it bobon	Anfordoru	ngon		GII		0034	00	Diatt	7
Materialeige	ensch	aften und Ma	terialken	nwerte Sa	alzbeton	M2				1	Diall	7
Tabellenve	rzeic	hnis										DI 11
												Blatt
Tabelle 2-1		Mengenver	hältnisse	der Salz	hetonhes	standte	ile in kr	n/m	³ und	Mass	sen-	
	•	%	nanniose		betonbet			g/111	unu	Mast	JCII	15
Tabelle 4 1-	-1·	Fließeigens	schaften	und progr	nostiziert	e Druc	kverlus	te b	ei Tra	nspo	ort	10
		der Salzbei	tonsusne	ension in F	Rohrleitur	naen di	er Neni	nwe	ite DN	1 100)	
					arenze	K. Kon	sistenz	nwe n.		100	,	
		Strukturevr	onent	J. 10. I HEIS	grenze,	N. NON	31310112	.,				10
Taballa 4 1	<u>م</u> .	ElioRaronz	ound Mi	adoctdruc	kvorlusta	nach	Station	ioru	00070	iton	dor	19
	-2.	Fuenonaia						Sta	tionio		uei	20
Taballa 4 1	2.	Wassorant	nilo doru	untorquicht	on Salzh	n SOWR		ono		ung. io		20
	-5.	boroobnoto) Vorhältn		lonsu	spensi	one	:11 50W	IE		21
Taballa 4 1	1.	Tomporatu	r und Die)-Verhaltin	alzhatan	ouonor	nionon					21
	-4. 5.	Fließeigen	n unu Dic	und progr	alzbeion	susper o Druo	kvorluo	l. to b	oi Tra	nond	art	21
Tabelle 4.1-	-5.	Fileiseigen:		unu progr						nspo	Л	
									izo ui	iu 		
DN 150. τ₀: Fließgrenze nach Herschel-Bulkley, K: Konsistenz, n:Strukturexponent.22												
T		Strukturexp	bonent.							-l' -		22
Tabelle 4.2-	-1:	Resultate c		/ersuche i	m v-iric	nter. Ir	Klamr	neri	n sind	aie	_	
		Abweichun	gen des	vvasserar	ntelles de	er Salzi	petonsi	JSDe	ension	von	ר	
T I II 40		Sollwert an	gegeber	l. 					.,			24
Tabelle 4.2-	-2:	Ausbreitma	als der Sa	lzbetonsu	ispensio	n nach	Abbind	leze	eiten v	on U	bis	05
-		90 Minuten	sowie F	rischbetor	ntempera	atur zu	Versuc	nsb	eginn	•		25
I abelle 4.2-	-3:	Setzfließma	als in Abl	nängigkeit	: vom Wa	asserar	nteil de	r				~-
		Salzbetons	uspensio	on.						<i>.</i>		25
Tabelle 5.2-	-1:	Menge der	Ubersch	usslösung	g in Abhä	ingigke	eit der E	Beto	nober	fläch	ne	
		(Zylinderdu	irchmess	er) bei ko	nstanter	Füllhöl	ne (2 m	ı), a	ber			
		variierende	r Füllme	nge. Maxi	malwerte	e sind d	lurch F	etts	chrift		_	
		hervorgeho	ben. Ind	ex *: Die I	Baustoffo	oberfläd	che ist	feuc	cht, die	e Hö	he	
		der Flüssig	keitsschi	cht jedoch	n nicht m	essbar						32
Tabelle 5.2-	-2:	Menge der	Übersch	usslösung	g in Abhä	angigke	eit der F	Füllt	nöhe d	es		
		Salzbetons	bei eine	r konstant	ten Betoi	noberfl	äche vo	on 1	22 cn	۱²		
		(Zylinderdu	irchmess	er 125 mr	m), aber	variiere	ender F	ülln	nenge			
		Maximalwe	rte sind	durch Fett	schrift he	ervorge	ehoben	. Inc	dex *:	Die		
		Baustoffob	erfläche	ist feucht,	die Höh	e der F	lüssigk	eits	schic	nt		
		jedoch nich	nt messba	ar.								33
Tabelle 5.2-	-3:	Menge der	Übersch	usslösung	g in Abhä	angigke	eit der F	Füllh	nöhe d	es		
		Salzbetons	bei kons	stantem F	üllvolume	en (12	Liter), a	abei	⁻ variie	erenc	ler	
		Betonoberf	läche (Z	ylinderdur	chmesse	er). Max	kimalwe	erte	sind o	lurch	۱	
		Fettschrift I	hervorge	hoben. In	dex *: Die	e Baus	toffobe	rflä	che ist	feu	cht,	
		die Höhe d	er Flüssi	gkeitsschi	cht jedoo	ch nich	t messl	bar.				34

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.		
	9M	22343021		AJ	AANNNA	AANN	GH	BY	0054	00	DBE	\square
Verfüllmat	erial fi	ir Strecken mi	it hohen	Anforderu	naen -						Riatt 8	
Materialei	gensch	aften und Ma	terialken	nwerte Sa	alzbeton	M2					Diate	
	1 1.	Chomische	or Stoffbo	etand dor	Poron	und Üb	orechu	مماذ				
	4 -1.	Salzhetons	Für die	Porenlösi		Salzhe	tons M	2 or	raah si	nes ch e	in	
		pH-Wert vo	on 10.9 u	nd für die	Übersch	usslös	una eir	יט ב ח וו⊦	l-Wert	von		
		11.3.					en g en					36
Tabelle 6.2	2-1:	Statische E	Elastizität	smoduli u	nd Lager	unaste	empera	ture	en von	Prol	ben	
		nach 3 bis	530 Tag	en Abbind	ezeit; R.	T.: Rau	umtemp	bera	atur, k./	۹.:		
		keine Anga	ibe.									39
Tabelle 6.2	2-2:	Elastizitäts	moduli n	ach 28 Ta	gen Abb	indeze	it (in-sit	tu				
		Freifallvers	uch). Im	Anschluss	s des Bo	hrvorga	anges e	erfo	lgte die	Э		
		Lagerung o	ler Bohrk	kerne bei F	Raumten	nperatu	ır. Der	Mitt	elwert			
		sämtlicher	Messres	ultate betr	ägt 25.6	80 MPa	a.					40
Tabelle 6.2	2-3:	Statische E	lastizität	smoduli d	es Salzb	etons i	n Abhä	ingi	gkeit d	er		
		Abweichun	g des W	assergeha	altes der	Suspe	nsion v	om	Sollwe	ert. D	Die	
		Prüfkörper	herstellu	ng erfolgte	e im Anso	chluss	der För	rder	versuc	he i	m	
		Rohrviskos	imeter (ł	Kapitel 4.1); n.b.: n	icht be	stimmt					41
Tabelle 6.2	2-4:	Vergleich c	ler Mess	resultate z	zum stati	schen	Elastizi	täts	modul	von	I	
		Prüfkörper	n, die im	direkten A	Anschlus	s des N	Nischpr	oze	sses			
		hergestellt	wurden,	von Bohrk	kernen de	es in-si	itu Freit	fallv	ersuch	ies		
		sowie von	Prüfkörp	ern, die na	ach den F	-örder\	/ersuch	nen	im			
	~ 1	Rohrviskos	imeter a	ngefertigt	wurden.							41
l abelle 6.	3-1:	Querkontra	iktionsza	hien des s	Salzbeto	ns in A	bhangi	gke	it der			40
	1 1.	Abbindezei	l. Windord	uckfootial	coit und l	ogoru	nantom		otur 2	hia		42
	4-1.		yiii uei ui altor Drüf	ucklesligr körner: D		tompo	ngsten vratur l	iper	alur J · koino	DIS		
			rüfkörner	die hei 4	0°C dela	nempe	urden	n.m. Zeid	nen in l	- - - -		
		eines höhe	ren Hvdr	atationsor	ades höl	here Fe	estiake	iten	Jennin	oig	C	44
Tabelle 6.4	4-2:	Einaxiale D	ruckfest	iakeit (Zvli	inderdrug	ckfestic	akeit) d	es S	Salzbet	ons		
		nach 28 Ta	igen Abb	indezeit (i	n-situ Fr	eifallve	rsuch).	Die	e Lage	runc	a	
		der Bohrke	rne bzw.	der Prüfk	örper erf	olgte b	, ei Rau	mte	mpera	tur.	, Die	
		höchste un	d niedrig	ste Druck	festigkei	t ist du	rch Fet	tsch	nrift			
		gekennzeid	chnet.									45
Tabelle: 6	.5.1:	Messresult	ate zum	Festigkeit	s- und D	ilatanz	verhalte	en.				47
Tabelle 6.	5-2:	Axialspann	ung im E	Bruchzusta	and (Bruc	chfestig	gkeit) u	nd i	m			
		Volumenm	inimum (Dilatanzfe	stigkeit),	Mante	ldruck	SOV	vie ber	echr	nete	
		Oktaeders	bannung	en und mi	ttlere Spa	annung	gen vor	۱ Pr	üfkörp	ern	der	
		triaxialen D	ruckvers	uche.					_			48
Tabelle 6.0	6-1:	Einaxiale Z	ugfestig	keit und La	agerungs	stempe	ratur d	er 5	6 und			
_	• <i>i</i>	90 Tage al	ten Prüfk	örper.	-							50
Tabelle 6.8	8-1:	Resultate o	er Schw	Indmessu	ngen. Sä	mtliche	e Mess	date	en sinc	1		- 4
		angegeber	i in der E	inneit mm	/m bzw.	‰.						54

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA A A	Lfd. Nr.	Rev.		
	9M	22343021		AJ			GH	BY	0054	00	DB	ED
Verfüllmat Materialeig	erial fü gensch	r Strecken mi aften und Ma	it hohen terialken	Anforderu nwerte Sa	ngen – Ilzbeton	M2					Blatt 9	
Tabelle 6.	11-1:	Gasperme	abilität be	ei 105 °C o	petrockn	eter Pr	üfkörde	er in	Abhä	naia	keit	
		vom Mante	ldruck u	nd des Ga	sströmu	ngsdru	ckes zı	лM	essbeg	jinn.		
		Die Permea	abilitäten	wurden je	eweils na	nch 24s	stündige	er u	nd	-		
		36stündige	r Halteze	eit des Ma	nteldruck	kes bes	stimmt.					60
Tabelle 6.7	11-2:	Gaspermea	abilität kl	imatisiert g	gelagerte	en Salz	betons	bei	Varia	tion	des	
		Mantel- uno	d Strömu	ingsdrucke	es.							61
Tabelle 6.7	11-3.	Chemische	r Stoffbe	estand der	Strömur	ngsfluid	de.					62
Tabelle 8-	1:	Zusammen	stellung	der Mater	ialparam	eter.						
		Rezepturzu	usammer	nsetzung ι	ind Resi	ultate d	er rheo	logi	schen			
		Untersuchu	ungen im	Rohrvisko	osimeter							68
Tabelle 8-2	2:	Zusammen	stellung	der Mater	ialparam	eter. R	Resultat	e d	er			
		Konsistenz	messung	gen (V-Trio	chter-Prü	ifung, A	Ausbrei	itma	aß,			
		Setzfließma	aß, Fließ	winkel) so	wie Erge	ebnisse	e der Ur	nter	suchu	nger	า	
		zum Sedim	entation	sverhalten	; * nach	60mini	ütiger					
		Scherbean	spruchur	ng in einer	n modifiz	zierten	Betonn	nisc	:her; *'	' nac	ch	
		180minütig	er Scher	beansprue	chung in	einem	modifiz	zier	en			
		Betonmisch	ner.									69
Tabelle 8-3	3:	Zusammen	stellung	der Mater	ialparam	eter. U	Intersu	chu	ngen z	ur		
		Bildung vor	n Ubersc	husslösun	g. Index	*: Die	Bausto	ffob	perfläc	ne is	st	
		feucht, die	Höhe de	r Flüssigk	eitsschic	ht jedo	och nich	nt m	essba	r.		70
Tabelle 8-4	4:	Zusammen	stellung	der Mater	ialparam	eter. U	Intersu	chu	ngen z	ur		
		Bildung vor	n Ubersc	husslösun	ig sowie	zum ch	nemiscl	hen	Stoffb	esta	and	
		der Poren-	und Ube	erschusslö	sung. Ind	dex *: L	Die Bau	isto	ttoberl	läch	ie	- 4
T I II O	_	ist feucht, c	die Hohe	der Fluss	igkeitsso	hicht je	edoch r	nich	t mess	bar.		/1
l abelle 8-	b:	Zusammen	istellung	der Mater	lalparam	eter. P	'hysikal	ISC	ne			
		Untersucht	Ingen. R	esultate zi	ur Festm	aterial	dicnte l	ina	zum			
		statischen			K. I.: Rai	umtem	peratur	; n.		าเ		70
	0.		K.A.: Kein	e Angabe				: k				72
Tabelle 8-0	0:	Zusammen	istellung	der Mater	alparam	eter. P	'nysikai	ISCI		_		
		Untersuchu	Ingen. R	esuitate zi	ur Querk	ontrak	tionsza	ni u	na zur			
				tigkeit; R.	I.: Raun	itempe	eratur; r	1.D.:	nicht			70
		bestimmt; i	K.A.: Keir	e Angabe								73

	1	1		1							1
	Projekt N A A N	PSP-Element	Obj. Kenn. N N N N N N	Funktion	Komponente A A N N N A	Baugruppe A A N N	Aufgabe XAAXX	UA A A	Lfd. Nr. I	Rev. N N	-
	9M	22343021		AJ			GH	BY	0054	00	DBED
Verfüllmat Materialeig	erial fü gensch	ir Strecken minaften und Ma	t hohen terialken	Anforderu	ngen – Izbeton	M2	1	<u> </u>	I I_		Blatt 10
Tabelle 8-	7:	Zusammer	stellung	der Mater	ialparam	eter. P	hysika	lisch	ne		
		Untersuchu	ingen. D	ilatanzverl	nalten ur	nd triax	iale Dr	uckf	estigke	eit,	
		einaxiale Z	ugfestigk	keit und Kr	riechverh	alten.	Axialsp	ann	iung im		
		Volumenm	inimum (σ _{1,Dil}), Axia	alverform	ung (ε	_{1,Dil}),				
		Volumenve	rformun	g (ε _{v,Dil}); be	ei mittler	er Spa	nnung	(σ_{Dil}))		
		aufnehmba	ire Oktae	ederspann	ung ($ au_{Dil}$)	. Axial	spannu	ing	$(\sigma_{1,max})$	un	d
		-verformun	g (ε_{1,max})	im Bruchz	zustand;	bei mit	tlerer S	Spar	nnung (σ_{m}	_{ax})
		aufnehmba	re Oktae	ederspann	ung ($ au_{max}$, σ 1,Re	est: Res	tfest	tigkeit b	bei	
		$\epsilon_{1,Rest}$ (Axial	verformu	ung im Re	stfestigke	eitsber	eich); E	Entf.	-Mod.:		
		Entfestigur	igsmodu	l; v: Querk	ontraktio	onszah	l; ψ: Di	lata	nzwinke	el	74
Tabelle 8-	8:	Zusammer	stellung	der Mater	ialparam	eter. P	hysika	lisch	ne		
		Untersuchu	ingen. S	chwinden,	Porositä	at, Pore	enradie	nve	rteilung	,	
T . L . II. O	•	Permeabilit	ät.			· · · · -					75
I abelle 8-	9:	Zusammer	istellung	der Mater	alparam	eter. I	nermo	ayna	amische	Э	
			ngen. A	he Wärme	e rempe kanazita	st Wär	moloitf	ung ähic	vein		
		Wärmeaus	dehnunc	ne wanne iskoeffizie	nt Temr	n, wai peratur	stahilitä	anig it: n	h · nicł	nt	
		bestimmt.	donnang	joncoomizio	in, romp	Joratan		, 11			76
Tabelle 9.	1-1:	Für die nur	nerische	n Berechn	ungen a	ls Eing	angsda	aten	verwei	nde	ete
		Materialker	nwerte o	der Festm	aterialdic	chte, is	obaren	spe	zifisch	en	
		Wärmekap	azität, W	/ärmeleitfä	ahigkeit u	und des	5	-			
		Wärmeaus	dehnung	skoeffizie	nten.						77

Projekt	PSP-Element	Obj. Kenn.		Komponente	Baugruppe	Aufgabe	UA A A	Lfd. Nr.	Rev.			
9M	22343021		D.T	AANNNA		GH	BY	0054		DBED		
Verfüllmaterial f	ür Strecken mi	t hohen	Anforderu	ngen –		GII	DI	0001		I Rlatt 11		
Materialeigensc	haften und Mat	terialken	nwerte Sa	alzbeton	M2							
Abbildungsvor	zoichnis											
Abbilduligsvel	2011113									Blatt		
Abbildung 2-1:	Siebanalyse	en des Z	ementes,	der Stei	nkohler	nflugas	che	und o	des	Blatt		
	Flotationsrü	ickstand	es vom Ka	aliwerk Z	ielitz.					16		
Abbildung 2-2:	Siebanalyse	en der A	ufbereitun	ngsrückst	ände d	les Kali	iwer	ks Zie	elitz.			
	Flotationsrü	ickstand	sowie Ba	ndbreite	des Ge	emisch	es F	lotati	ons-			
	/Heißlöserü	ickstand	im Verhäl	ltnis 70:3	0.					16		
Abbildung 4.2-1	: V-Trichter z	ur Ermit	tlung der A	Ausfließz	zeit von	Beton	(Vo	olume	n			
	9.577 cm³).									23		
Abbildung 5.1-1	: Schnittfläch	nen der S	Salzbetonp	oroben a	us 1.00)0-ml-S	tan	dzylin	dern	mit		
	Heißlöse- u	ind Flota	tionsrücks	stand als	Salzzu	ischlag	. Vo	on link	s na	ch		
	rechts sind	dargest	ellt Salzbe	tone mit	einem	Wasse	eran	teil vo	n			
	(Abweichur	ng des W	/assergeh	altes vor	n Sollw	ert in k	Klan	nmern)			
	12,9 % (-4	%), 13,2	2 % (–2 %), 13,4 %	6 (0 %)	, 13,8 %	% (+	-4 %),	14,1	1 %		
	(+6 %) und	14,5 %	(+10 %). [Die Höhe	e der Pr	oben b	etra	agt 36	cm.	28		
Abbildung 5.1-2	: Bohrschem	a des Ve	ersatzkörp	pers (in-s	itu Frei	fallvers	such	n) mit	einei	r		
rechteckigen Grundfläche von ca. 3,0 m · 3,2 m und einer Höhe von												
etwa 1,5 m. 29												
Abbildung 5.1-3	: Abhängigke	eit der m	aximalen	sedimen	tations	stabiler	ו Ko	orngrö	ße v	on		
	der Fließgre	enze (τ_0)	der Susp	ension.					_	30		
Abbildung 6-1:	Kernbohrun	igen zur	Gewinnur	ng von P	rüfkörp	ern de	s Ve	ersatz	körp	ers		
	Im IB-Gese	nk 1B de	es ERAM		reifally	ersuch). D	er				
	versatzkorp	ber nat e		eckige Gi	runatia(ка Г		inge	n		
	Voll Ca. 3,0	TH UNU C	immuna d		footiak	n ca. i ⊲i+ ⊏• i	,5 II Drok	1. D.				
	Magaung d	ZUI Besi	ininiung a	tizitötom	liesligk odulo	eil. E. I	-101	Jen Zu	11	20		
Abbildung 6 5 1	· Abbängigke	es statis	ktaodoren		buuis. Im Pruz	bzueta	nd	von d	or	30		
Abbildung 0.5-1	. Abrianyiyke		Klaeuersp	annung		IIZUSIa	mu	von u	EI	40		
Abbildung 6 5-2	· Abbängigke		ktaodorsn	annung i	m Volu	monm	inim	um		49		
Abbildung 0.0-2	(Dilatanzor		n der mittl	leren Sn:		I Rei M	lant	eldrüc	ken	>		
	2.5 MPa wa	ar kein V	olumenmi	inimum b	estimn	har D	ie P	rüfköi	ner	-		
	wurden bis	in den N	lachbruch	hereich k	omnak	tiert		Tunto	per	50		
Abbildung 6.7-1	: Messresulta	ate zum	Kriechver	halten de	es Salz	betons.	Die	e Abbi	inde:	zeit		
	der Prüfkör	per. die	mit Kriech	Ispannun	aen va	n 9.9 N	ЛРа	und				
	10.9 MPa b	elastet v	vurden. be	etrua zu '	Versuc	hsbeai	nn 4	20 Ta	aae i	und		
	der Prüfzyli	nder, die	e mit 9,0 N	/IPa, 11,8	3 MPa i	und 13.	4 N	1Pa be	elast	et		
	wurden 56	Tage.	,	, ,		·				52		
Abbildung 6.8-1	: Schwindma	iße in At	hängigke	it der Ab	bindeze	eit der I	Prüf	körpe	er.	55		
Abbildung 6.10-	1: Porenradie	nverteilu	ng des Sa	alzbetons	darge	stellt al	s					
U I	Volumensu	mmenku	irve und ir	n Prozen	t des a	esamte	en					
	Porenvolum	nens (V _m	_{lax}).							57		
		、 11								-		

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.				
	NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN	ndee			
	9M	22343021		AJ			GH	ΒY	0054	00	PDEE			
Verfüllm	naterial f	ür Strecken m	it hohen .	Anforderu	ngen –						Blatt 12			
Material	eigensc	haften und Ma	terialken	nwerte Sa	Izbeton	M2								
Abbildui	ng 6.11-	1: Schematise	che Dars	tellung de	r Zwei-K	ammer	-Metho	de.	In Fol	ge c	ler			
		Prüfkörper	permeab	ilität sinkt	der Druc	k in de	er Einga	angs	skamm	her \	/1,			
		während in	der Aus	gangskarr	nmer V2	ein Dru	uckanst	ieg	zu					
		registrierer	n ist.								59			
Abbildu	ng 6.11-	2: Gasperme	abilität ei	nes getro	ckneten I	Prüfkör	pers so	owie	e im					
	-	Normalklim	nat 20/65	gelagerte	r Proben	in Abł	nängigk	eit	vom					
Manteldruck.														
Abbildung 7.1-1: Adiabatische Temperaturentwicklung (Messtemperaturen in Grad														
	Abbildung 7.1-1: Adiabatische Temperaturentwicklung (Messtemperaturen in Grad													
۵bbildu	na 9 2-1	· Veraleich c	les Hydra	atationsar		adiah	atische	200 n M	essun	aen	mit			
7.0011001	ng 0.2 T	dor funktion	nolon An	noooung (Nöborun				coouri	gen	00			
A L L 1 L	0.0.4			passung (INALIELULI	yα).					00			
Abbildui	ng 9.3-1		der eina	xialen Zyli	nderaruo	CKTESTIC	jkeit un	ia R	ecnen	wer	le			
		der Param	eterident	ifikation in	Abhäng	igkeit v	om wir	ksa	men					
		Betonalter	t_e .								83			
Abbildu	ng 9.3-2	: Messwerte	der eina	xialen Zug	gfestigke	it und F	Recher	wei	te der					
		Parameteri	dentifika	tion in Abl	nängigke	it vom	wirksa	mer	n Betor	nalte	er <i>t_e.</i> 84			
Abbildu	ng 9.3-3	: Statische E	lastizität	smoduli u	nd Rech	enwert	e der							
		Parameteri	dentifika	tion in Abl	nängigke	it vom	wirksa	mer	n Betor	nalte	er <i>t_e.</i> 84			

	Projekt N A A N	PSP-Element	Obj. Kenn. N N N N N N	Funktion N N A A A N N	Komponente A A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd. Nr. N N N N	Rev. N N	nder	
	9M	22343021		AJ			GH	BY	0054	00	PDEL	
Verfüllmet	9M 22343021 AJ GH BY 0054											

Blatt 13

1 Einleitung

Im Rahmen der Stillegung des Endlagers für radioaktive Abfälle Morsleben (ERAM) sollen Teile des Grubengebäudes, z.B. Abbaukammern und Strecken, mit Baustoffen im Sinne eines Massenbetons stabilisierend verfüllt werden. Ein weiterer wesentlicher Bestandteil des Stilllegungskonzeptes ist die Errichtung qualifizierter Streckenverfüllungen, die auch als Strecken mit hohen Anforderungen oder Abdichtungen bezeichnet werden. Ihre Aufgabe ist es, definierte Strömungswiderstände im Grubengebäude darzustellen.

Die Abdichtungen sollen als hydraulisches Dichtelement und gleichzeitig als Widerlager fungieren. Sie sollen aus monolithischen Segmenten hergestellt werden. Zur Reduktion von Zwangsbeanspruchungen, die z.B. aus geologischen Bewegungen und Temperaturzwang resultieren, dienen plastische Trennfugen. Der Baustoff zur Erstellung der einzelnen Segmente soll als Suspension durch Rohrleitungen vor Ort transportiert werden. An den Baustoff resultieren somit Anforderungen an die rheologischen, thermodynamischen und physikalischen Materialeigenschaften, wie ausreichende Festigkeit und geringe Durchlässigkeit sowie Anforderungen, die aus dem Umwelt- und Arbeitsschutz resultieren.

Unter Berücksichtigung der aus konstruktiven Erfordernissen abgeleiteten Anforderungen wurde zur Erstellung der Abdichtsegmente die Baustoffrezeptur - Salzbeton M2 - ausgewählt. Als Bindemittel dienen sulfatbeständiger Hochofenzement sowie Steinkohlenflugasche, die über latent hydraulische bzw. puzzolanische Eigenschaften verfügt. Steinkohlenflugaschen wird darüber hinaus eine Steigerung der Sulfatbeständigkeit zugeschrieben, eine Erhöhung der Endfestigkeit sowie auf Grund des Auftretens von SiO₂-Cenosphären eine Verbesserung der rheologischen Eigenschaften. Als Zuschlag findet Steinsalzgrus Verwendung, so dass nach dem Anmischen der Salzbetonkomponenten eine gesättigte NaCl-Lösung entsteht. Hierdurch werden Anlösungserscheinungen des anstehenden Gebirges (Steinsalz) ausgeschlossen und die Anbindung des Bauwerks an das Gebirge gewährleistet.

Der vorliegende Bericht beinhaltet eine Beschreibung der Ausgangsstoffe sowie der Rezeptur - Salzbeton M2 - und verschafft einen Überblick über die Durchführung und die Resultate von rheologischen, physikalischen und thermodynamischen Untersuchungen. Die Arbeiten erfolgten im Wesentlichen an der Materialprüfanstalt für das Bauwesen des Institutes für Baustoffe, Massivbau und Brandschutz (IBMB) der TU Braunschweig, bei der Deutschen Montan Technologie GmbH (DMT), bei der Ingenieurpartnerschaft für Bergbau, Wasser- und Deponietechnik, Wilsnack & Partner (IBeWa) sowie am Institut für Gebirgsmechanik GmbH (IfG). Weitere Untersuchungen waren erforderlich zur Erlangung einer allgemeinen Zulassung gemäß § 4 der Bergverordnung zum gesundheitlichen Schutz der Beschäftigten (GesBergV).

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.		
	NAAN	NNNNNNNNN	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN		
	9M	22343021		AJ			GH	BY	0054	00	DBED	
Verfüllmaterial für Strecken mit hohen Anforderungen – Blatt 14 Materialeigenschaften und Materialkennwerte Salzbeton M2												

Des Weiteren wird dargestellt, welche Ergebnisse der Laboruntersuchungen thermodynamischer und physikalischer Baustoffeigenschaften zur Ermittlung von Materialkennwerten für die Sicherheitsnachweisführung Verwendung finden und welche Materialmodelle in den numerischen Berechnungen zur Anwendung kommen. Abschließend werden die Materialkennwerte für die Sicherheitsnachweisführung quantitativ angegeben.

Projekt N A A N	PSP-Element	Obj. Kenn. N N N N N N	Funktion	Komponente A A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd. Nr. N N N N	Rev. N N		
9M	22343021		AJ			GH	BY	0054	00	DBED	

Blatt 15

2 Ausgangsstoffe und Rezeptur

Die Bestandteile der Rezeptur - Salzbeton M2 - sind Zement CEM III/B 32,5 - NW/HS/NA gemäß DIN EN 197, Teil 1 /1/ und DIN 1164 /2/, Steinkohlenflugasche (Filterasche) HKV mit dem Prüfzeichen PA-VII/21 (vgl. DIN EN 450 /3/), Steinsalzzuschlag und Wasser. Die Zusammensetzung des Salzbetons beschreibt Tabelle 2-1.

Als Steinsalzzuschlag fanden Aufbereitungsrückstände des Kaliwerks Zielitz Verwendung. Der Salzbeton wurde hergestellt mit Flotationsrückstand, der eine Kornverteilung zwischen 0 und 2 mm aufweist oder mit einer Mischung von Flotations- und Heißlöserückstand, im Verhältnis 70:30. Der Heißlöserückstand hat ein Größtkorn von 20 mm. Die Resultate von Siebanalysen der Steinsalzzuschläge sind dargestellt in den Abbildungen 2-1 und 2-2. Abbildung 2-1 zeigt zusätzlich Korngrößenspektren des Zementes und der Steinkohlenflugasche. Da die Aufbereitungsrückstände Feuchtigkeiten von 2 bis 9 Massen-% aufwiesen, war es erforderlich den Wasseranteil der Rezeptur entsprechend zu korrigieren.

Bei der Herstellung der Salzbetonsuspension wurde stets der Steinsalzzuschlag mit dem Zugabewasser vermengt, bevor der Zement und die Steinkohlenflugasche zugegeben wurde.

Betonkomponenten	kg / m³	Massen-%
Zement	328	16,4
Steinkohlenflugasche	328	16,4
Wasser	267	13,4
Steinsalzzuschlag	1.072	53,8
Summe	1.995	100,0

Tabelle 2-1:Mengenverhältnisse der Salzbetonbestandteile in kg/m³ und Massen-%.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED
Verfüllmaterial für Strecken mit hohen Anforderungen											Platt 17

Blatt 17

3 Bergbauhygienische Beurteilung gemäß Gesundheitsschutz-Bergverordnung

Der Umgang mit Salzbeton und seinen Ausgangsstoffen erfordert eine allgemeine Zulassung gemäß § 4 (Absatz 1 und 2) der Bergverordnung zum gesundheitlichen Schutz der Beschäftigten (Gesundheitsschutz-Bergverordnung, GesBergV). Zur Beurteilung der Ausgangsstoffe dienen die in den Prüfbestimmungen des Landesoberbergamtes Nordrhein-Westfalen aufgeführten Grenzwerte. Die Prüfungen der Ausgangsstoffe und der Salzbetonrezeptur erfolgten am Hygiene-Institut des Ruhrgebietes, Gelsenkirchen und am Institut für Gefahrstoff-Forschung der Bergbau-Berufsgenossenschaft (IGF), Bochum. Der Salzbeton erfüllt als Trockenmischung und unter Zusatz von Wasser die Vorgaben der Prüfbestimmungen. Die Zulassung wurde daher auf der Grundlage der Prüfungen unter Berücksichtigung der "Technischen Regeln für den Einsatz von bergbaufremden Abfällen als Versatz" vom Bergamt Staßfurt erteilt /4/ (Zulassungsnummer: 34004-4841-GesBergV-M5300).

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	NNNNNN	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED

Blatt 18

4 Rheologische Untersuchungen

Zur Untersuchung des Fließ- und Förderverhaltens des Salzbetons wurden Messungen in einem Rohrviskosimeter sowie mit Konsistenzprüfverfahren (V-Trichter, Ausbreit- und Setzfließmaß) durchgeführt. Zusätzlich wurde der Fließwinkel ermittelt, da er Aussagen zum Ausbreitverhalten des Frischbetons im Verlauf der Verfüllung von Grubenhohlräumen erlaubt.

4.1 Versuche im Rohrviskosimeter

Für einen Rohrleitungstransport von Betonsuspensionen ist eine Mindest- oder Anfangsschubspannung, die sog. Fließgrenze (τ_0) erforderlich. Die während des Förderprozesses auftretende Schubspannung (τ) steigt mit der Viskosität oder Konsistenz (K) des Frischbetons und mit dem Schergefälle (γ) in der fließenden Suspension. Mathematisch ist das Fließverhalten beschreibbar durch das Fließgesetz nach Herschel-Bulkley (Gl. 4.3):

$$\tau = \tau_0 + K \cdot \gamma^n, \tag{4.3}$$

wobei n als Strukturexponent, -ziffer oder Fließindex bezeichnet wird und die Abhängigkeit der Viskosität vom Schergefälle beschreibt.

Die bei der Förderung in einer Rohrleitung auftretenden Druckverluste ergeben sich in Abhängigkeit von der Rohrleitungslänge (ΔI), der Schubspannung und dem Rohrdurchmesser (D) nach Gl. (4.4):

$$\Delta p/\Delta I = 4 / D \cdot (\tau_0 + K \cdot \gamma^n)$$
(4.4)

Der bei reduzierter Förderleistung bzw. Schergefälle auftretende Mindestdruckverlust $(\Delta p/\Delta I)_{min}$ berechnet sich in Analogie zu GI. (4.4) nach GI. (4.5), wobei die Schubspannung (τ) durch die Fließgrenze (τ_0) ersetzt wird:

$$\Delta p_{\min} / \Delta I = 4 \cdot \tau_0 / D.$$
(4.5)

Bei Rohrviskosimetern wird das zu untersuchende Medium durch eine Rohrschleife gepumpt. Gemessen wird die Fließgeschwindigkeit und der Druck an verschiedenen Messpunkten des Rohres (Druckverlustmessstrecken), woraus die Berechnung der Fließgesetzparameter und des Druckverlustes möglich ist. Darüber hinaus ermöglicht ein Rohrviskosimeter die Bestimmung von Anfahrdruckspitzen, die bei Wiederbeginn einer Förderung im Anschluss einer Stationierungsphase auftreten können.

Varfüllerstariel für Otreskan mit hehen Anfendenungen												
		9M	22343021		AJ			GH	BY	0054	00	DBELL
I		NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	ΝΝΑΑΑΝΝ	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
ſ		Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	

Die Konditionierung des Salzbetons zu einer homogenen Suspension erfolgte in einem Pflugschartrommelmischer. Zur Bestimmung der Druckverluste diente ein DMT On-line Suspensionsviskosimeter DN 40. Die Auswertung der Messergebnisse erfolgte PC gestützt. Die Förderversuche dienten zur Charakterisierung des Fließverhaltens der Suspension in Abhängigkeit der Förder- bzw. Stationierungszeit in der Rohrleitung sowie des Wasseranteils des Salzbetons.

Zu Beginn von Förderversuchen sinken die Druckverluste um ca. 25 bis 30 %. Um den Einfluss "des Nachmischeffekts" auszuschließen, beziehen sich sämtliche Angaben zu den Fließgesetzparametern und den Druckverlusten auf die anschließende sog. stationäre Fließphase, in der die Druckverluste nahezu konstant sind.

Fließverhalten in Abhängigkeit der Stationierungszeit

Zur Bestimmung des Fließverhaltens der Salzbetonsuspension in Abhängigkeit der Stationierungszeit in Rohrleitungen dienten Messungen sofort nach dem Einfüllen des Frischbetons in den Pumpkreislauf des Viskosimeters sowie nach Stationierungszeiten von 30, 60 und 90 Minuten. Die Suspension enthielt als Salzzuschlag das Gemisch aus Heißlöse- und Flotationsrückständen.

Die Förderversuche ergaben, dass das rheologische Verhalten der Suspension dem Fließgesetz von Herschel-Bulkley folgt. Tabelle 4.1-1 fasst die Werte der Fließgesetzparameter sowie die prognostizierten Druckverluste bei einer Förderleistung von 55 m³/h für die Rohrquerschnitte DN 100, DN 125 und DN 150 zusammen. Die Werte belegen das pseudoplastische (strukturviskose) Fließverhalten.

				R	ohrnennwei	te			
				DN 100	DN 125	DN 150			
Versuchsdauer	$ au_0$	К	n	prognostizierte Druckverluste					
[Minuten]	[Pa]	[Pa s ⁿ]	—	[bar / 1	00 m bei 55	m ³ / h]			
0	29,2	20,1	0,42	9,1	4,0				
30	22,9	17,3	0,44	8,0	5,0	3,5			
60	24,5	23,4	0,40	9,0 5,8 4					
90	29,5	43,6	0,31	10,6	7,2	5,2			

Tabelle 4.1-1:Fließeigenschaften und prognostizierte Druckverluste bei Transport der
Salzbetonsuspension in Rohrleitungen der Nennweite DN 100, DN 125 und
DN 150. τ₀: Fließgrenze, K: Konsistenz, n: Strukturexponent.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	ΒY	0054	00	DBED
Verfüllmat	Verfüllmaterial für Strecken mit hohen Anforderungen –										Blatt 20

Materialeigenschaften und Materialkennwerte Salzbeton M2

Die beim Anfahren der Suspension bei einer Förderleistung von 55 m³/h gemessene maximale Anfahrdruckspitze lag nach 60 Minuten bei einer Wandschubspannung von 326 Pa. Der daraus berechnete Druckverlust liegt in Abhängigkeit der Rohrleitungsnennweite zwischen 8,7 und 13,0 bar/100 m. Für die Beurteilung der Stationierbarkeit ist jedoch nicht der Druckverlust bei Nennvolumenstrom, sondern der aufzuwendende Mindestdruckverlust bei reduzierter Förderleistung maßgeblich. Die Ergebnisse zu den Mindestdruckverlusten $(\Delta p_{min}/\Delta I)$ sind zusammengestellt in Tabelle 4.1-2.

			Rohrnennweite	
		DN 100	DN 125	DN 150
Stationierungszeit	Fließgrenze (τ_0)	Mindes	tdruckverluste (2	Δp _{min} /ΔI)
[Minuten]	[Pa]		[bar / 100 m]	
0	29,2	1,2	0,9	0,8
30	22,9	0,9	0,7	0,6
60	24,5	1,0	0,8	0,7
90	29,5	1,2	0,9	0,8

Tabelle 4.1-2: Fließgrenze und Mindestdruckverluste nach Stationierungszeiten der Suspension von 30, 60 und 90 Minuten sowie ohne Stationierung.

Fließverhalten in Abhängigkeit des Wasseranteiles

Ziel der Untersuchungen war die Ermittlung der Fließeigenschaften des Salzbetons in Abhängigkeit der zugegebenen Wassermenge bei einer Förderleistung von 45 m³/h. Zusätzlich wurde der Einfluss unterschiedlicher Kornverteilungen des Salzzuschlages auf das Förderverhalten der Suspension bestimmt. Verwendung fand feinkörniger Flotationsrückstand sowie das Gemisch von Flotations- und Heißlöserückständen. Angaben zu den Mischungen enthält Tabelle 4.1-3.

				a			-				_	
	Projekt	PSP-Eleme	ent	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝ	ΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	AA	ΝΝΝΝ	NN	D
	9M	2234302	1		AJ			GH	BY	0054	00	DBF
erfüllmat	ərial fü	ir Strecke	n mi	it hohen	Anforderu	naen _						Riatt 21
lotorioloic				torialka		laboton	N/O					
laterialeig	jensch	laiten und	i wa	tenaikei	inwerte Sa	alzbelon						
S	alzzus	chlag Ge	misc	h Flotat	tions-/Heiß	löserück	stand		Flo	tation	srüc	kstand
Wasseranteil der Salzbetonrezeptur [Massen-%]												
12.9	Ī	13 2	13	4	13.9	14 1	14	4.5	1	29		13 4
12,0		10,2		,-	10,0	, .		1,0		2,0		10,4
Wassera	anteil c	ler Salzb	etoni	rezeptur	· [kg/m³]							
259		263	26	67	275	279	2	86	2	259		267
Abweich	ung de	es Wasse	ergeł	nalts [Ma	assen-%] t	ezogen	auf die	vorgeg	gebe	ene Re	ezep	tur
-4		-2	C)	+4	+6	+	10		-4		0
	-					<i>a</i> .	. 7		_			
W/(F+Z)	-Wert	(Verhältn	is W	asser/(Steinkohle	nflugasch	ne+∠er	nent))				

Tabelle 4.1-3:Wasseranteile der untersuchten Salzbetonsuspensionen sowie berechnete
W/(F+Z)-Verhältnisse.

Neben den Parametern zur Ermittlung der rheologischen Eigenschaften wurde die Temperatur und die Dichte der Suspensionen gemessen. Die Messdaten sind aufgeführt in Tabelle 4.1-4. Tabelle 4.1-5 fasst die Werte der Fließgesetzparameter sowie der prognostizierten Druckverluste für die Rohrnennweiten DN 100, DN 125 und DN 150 zusammen.

Sala	Salzzuschlag Gemisch Flotations-/Heißlöserückstand Flotationsrückstand											
Wasserant	Wasseranteil der Salzbetonrezeptur [kg/m³]											
259	259 263 267 275 279 286 259 267											
Abweichur	ng des Was	sergehalts [Massen-%]	bezogen a	uf die vorge	gebene Rez	zeptur					
-4	-2	0	+4	+6	+10	-4	0					
Suspensio	nstemperat	ur [°C]										
18,3	19,1	19,4	18,5	19,7	17,8	21,5	20,9					
Suspensio	Suspensionsdichte [kg/m³]											
2.013	1.939	1.918	1.920	1.892	1.899	1.978	1.972					

 Tabelle 4.1-4:
 Temperatur und Dichte der Salzbetonsuspensionen.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
1	NAAN	N N N N N N N N N N N	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	nde
	9M	22343021		AJ		GH BY 0054					DDE
erfüllmate aterialeige	rial fü ensch	r Strecken m aften und Ma	it hohen <i>i</i> terialken	Anforderu nwerte Sa	ngen – Ilzbeton	M2					Blatt 22
							Roh	rnei	nnweit	е	
						DN 10	0 [DN	125	D	N 150
Wassera	nteil	τ_0	K	1	n	prog	nostizie	erte	Druck	verl	uste
[Masser	n-%]	[Pa]	[Pa s ⁿ] –	—	[b	ar/100	m l	bei 45	m³/ł	ן]
Salzzusch	hlag (Semisch Flota	ations- ur	nd Heißlös	erücksta	and (Ko	rngröß	e <	20 mr	n)	
12,9 (–4	%)	14,6	3,0	0,	75	5,6		2,	9		1,8
13,2 (–2	%)	10,1	3,0	0,	74	5,0		2,	6		1,6
13,4 (0 9	%)	9,0	2,1	0,	83	4,9		2,	4		1,4
13,9 (+4	%)	8,5	1,5	0,	83	3,9		1,	9		1,1
14,1 (+6	%)	11,7	1,6	0,	79	3,6		1,	9		1,2
14,5 (+1	0 %)	7,4	1,3	0,	80	3,0		1,	6		0,9
Salzzusch	hlag F	lotationsrück	stand (K	orngröße	< 2 mm)			7			
12,9 (–4	%)	20,9	3,5	0,	75	6,7		3,	6		2,2
13 / (0 0	%)	10.7	3.6	0.	70	5.2		2.	8		2.0

Tabelle 4.1-5:Fließeigenschaften und prognostizierte Druckverluste bei Transport der
Suspension in Rohren der Nennweite DN 100, DN 125 und DN 150. τ₀:
Fließgrenze nach Herschel-Bulkley, K: Konsistenz, n: Strukturexponent.

Die Verwendung von Flotationsrückstand an Stelle des Gemisches Heißlöse-/Flotationsrückstand bewirkt eine Zunahme der Fließgrenze und der Viskosität. Ein signifikanter Unterschied der Strukturexponenten konnte dagegen nicht ermittelt werden. Die Struktureigenschaften der Suspensionen, die das pseudoplastische Verhalten verursachen, scheinen demnach unabhängig von der Korngrößenverteilung (Kornzusammensetzung) des Salzzuschlages ähnlich ausgeprägt zu sein.

Die Abhängigkeit der prognostizierten Druckverluste vom Wassergehalt der Rezeptur ist nahezu linear. Geringfügige Abweichungen vom Sollwert bei der Dosierung des Wasseranteils sind im praktischen Betrieb risikolos. Bei Versuchen mit Suspensionen, die ausschließlich Flotationsrückstand enthielten, wurden tendenziell etwas höhere Druckverluste ermittelt. So entspricht beispielsweise das Verhalten einer Rezeptur ohne Abweichung des Wasseranteiles vom Sollwert (0 %) mit Flotationsrückstand einer Suspension, der das Gemisch aus Heißlöseund Flotationsrückständen zugegeben wurde, bei einer Reduzierung des Wasseranteiles um 2,3 %. Diese Differenz ist auf einen höheren Wasseranspruch des feinkörnigen Flotationsrückstandes zurückzuführen.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED
Verfüllmaterial für Strecken mit boben Anforderungen											Platt 22

Materialeigenschaften und Materialkennwerte Salzbeton M2

Blatt 23

4.2 Konsistenzmessungen

Zur Bestimmung des Fließverhaltens des Frischbetons erfolgten Messungen der Ausfließzeit aus einem V-Trichter sowie Bestimmungen des Ausbreit- und Setzfließmaßes. Bei sogenannten Ausfließverfahren, wie der V-Trichter-Prüfung, werden die Fließzeiten vor allem von der Viskosität des fluiden Mediums bestimmt, während bei Ausbreitverfahren (Ausbreit- und Setzfließmaß) die Fließgrenze einen größeren Einfluss auf die Messresultate hat.

4.2.1 V-Trichter-Prüfung

Die Bestimmung der Ausfließzeit aus dem V-Trichter (Abbildung 4.2-1) basiert auf keiner Norm oder Richtlinie, wird jedoch häufig angewendet zur Untersuchung des Fließverhaltens selbstverdichtender Betone. Vor der Prüfung werden die Innenwände des Trichters befeuchtet. Nach dem Befüllen wird die Suspension entlang der Trichteroberkante bündig abgezogen, die Verschlussklappe geöffnet und die Fließzeit gemessen.

Abbildung 4.2-1: V-Trichter zur Ermittlung der Ausfließzeit von Beton (Volumen 9.577 cm³).

Prüfungen erfolgten mit Salzbeton, der ein Gemisch aus Heißlöse- und Flotationsrückständen enthielt. Bei einer Messreihe, die im Anschluss von Förderversuchen im Rohrviskosimeter erfolgte, wurde die Größe der Trichteröffnung durch kreisförmige Blenden reduziert. In Tabelle 4.2-1 sind die Mittelwerte der Messdaten angegeben. Im Original-Trichter (ohne Blende) erfolgten 6 Messungen, bei der Verwendung von Blenden jeweils 3 Prüfungen. Zusätzlich

ſ		Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
I		NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
		9M	22343021		AJ			GH	ΒY	0054	00	DBED
ĺ	Verfüllmeteriel für Streeken mit behen Anferderungen											

Blatt 24

wurden auf der Basis des V-Trichter-Volumens, der Messzeiten und der Fläche der Auslauföffnungen die Strömungsgeschwindigkeiten der Salzbetonsuspension berechnet.

Größe Trichteröffnung	6,5·7,5 cm	Ø 4,4 cm	Ø 3,5 cm	Ø 2,6 cm
Fläche Trichteröffnung	48,8 cm ²	15,2 cm²	9,6 cm ²	5,3 cm ²
Ausfließzeit aus dem V-T	richter (+10 %)	· · · ·		
	1,33 s	4,37 s	7,43 s	13,40 s
Ausfließzeit aus dem V-T	richter (–6 %)	•••••••••••••••••••••••••••••••••••••••		
	1,63 s	nicht bestimmt	8,03 s	nicht bestimmt
Strömungsgeschwindigke	it der Salzbeton	suspension		
Suspension +10 %	147 cm/s	144 cm/s	134 cm/s	135 cm/s
Suspension –6 %	120 cm/s	nicht bestimmt	124 cm/s	nicht bestimmt

Tabelle 4.2-1:Resultate der Fließversuche im V-Trichter. In Klammern sind die Abwei-
chungen des Wasseranteiles der Salzbetonsuspension vom Sollwert
angegeben.

Die niedrigen Ausfließzeiten weisen auf geringe Viskositäten der Salzbetonsuspensionen hin. Die Strömungsgeschwindigkeiten des Frischbetons sind nahezu unabhängig von der Größe der Auslauföffnung. Eine Behinderung des Strömungsprozesses durch den im Salzbeton dispergierten körnigen Salzzuschlag konnte nicht nachgewiesen werden.

4.2.2 Ausbreitmaß

Die Bestimmung des Ausbreitmaßes gibt Aufschluss über das Fließverhalten eines Frischbetons. Das Ausbreitmaß wurde nach DIN 1048, Teil 1 /5/ bestimmt. Es erfolgten jeweils eine Versuchsreihe bei Raumklima, eine bei 40 °C und 30 % relative Luftfeuchtigkeit sowie eine bei 20 °C und 65 % relative Luftfeuchtigkeit (Normalklimat 20/65, /6/). Zusätzlich wurde bei den Versuchen die Frischbetontemperatur aufgezeichnet. Resultate liegen vor für Abbindezeiten von 0, 30, 45, 60 und 90 Minuten.

Die Messresultate des Ausbreitmaßes sowie der Temperaturen des Frischbetons sind zusammengestellt in Tabelle 4.2-2. Das Ausbreitmaß der Salzbetonsuspension variiert demnach bei Abbindezeiten von maximal 90 Minuten zwischen 65 und 70 cm. Nach DIN 1045-2 sind Suspensionen mit einem Ausbreitmaß von \geq 63 cm der Ausbreitmaßklasse F6 (sehr fließfähig) zuzuordnen.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	NNNNNNNNN	ΝΝΝΝΝ	ΝΝΑΑΑΝΝ	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
9M	22343021		AJ			GH	ΒY	0054	00	DBED

Blatt 25

	Raumklima			Klima	40/30	Normalklimat 20/65			
Abbindezeit	0 min	30 min	60 min	60 min	90 min	0 min	45 min		
Ausbreitmaß	70 cm	67 cm	65 cm	70 cm	66 cm	69 cm	66 cm		
Betontemperatur	28 °C	24 °C	22 °C	28 °C	28 °C	20,8 °C	20,8 °C		

Tabelle 4.2-2:Ausbreitmaß der Salzbetonsuspension nach Abbindezeiten von 0 bis
90 Minuten sowie Frischbetontemperatur zu Versuchsbeginn.

4.2.3 Setzfließmaß

Das Setzfließmaß dient, wie das Ausbreitmaß (vgl. Kapitel 4.2.2), zur Charakterisierung des Fließverhaltens eines Frischbetons. Es wurde nach der DAfStb-Richtlinie "Selbstverdichtender Beton" /9/ bestimmt, jedoch floss die Suspension, abweichend von der Richtlinie, auf eine trockene Ausbreitplatte. Als Salzzuschlag des Salzbetons diente das Gemisch aus Heißlöseund Flotationsrückstand (Größtkorn 20 mm).

Eine Messreihe zur Ermittlung des Setzfließmaßes in Abhängigkeit des Wasseranteiles der Suspension erfolgte unter Normalbedingungen ca. 10 bis 30 Minuten nach dem Anmischprozess. Die Mittelwerte von jeweils drei Prüfungen sind zusammengestellt in Tabelle 4.2-3.

Abweichung des Wassergehaltes vom Sollwert (Wasseranteil in kg/m³)										
-6 % (255)	–3 % (261)	0 % (267)	+3 % (272)	+6 % (278)	+10 % (286)					
Setzfließmaß i	Setzfließmaß in Anlehnung an die DAfStb-Richtlinie "Selbstverdichtender Beton"									
49 cm	51 cm	55 cm	58 cm	64 cm	68 cm					

 Tabelle 4.2-3:
 Setzfließmaß in Abhängigkeit vom Wasseranteil der Salzbetonsuspension.

Die Messwerte belegen, dass das Setzfließmaß gut mit dem Wasseranteil des Salzbetons korreliert. Eine weitere Doppelbestimmung des Setzfließmaßes, die 10 Minuten nach dem Anmischen der Suspension (ohne Abweichung des Wassergehaltes vom Sollwert) durchgeführt wurde, kam ebenso im Mittel auf 55 cm.

4.3 Fließwinkel

Die Bestimmung des Fließwinkels ist in keiner Norm oder Richtlinie beschrieben, liefert jedoch wesentliche Aussagen zum Ausbreitverhalten des Frischbetons, zum Verfüllvorgang der Grubenhohlräume sowie zur Firstanbindung.

orfüllmot	9M	22343021	it hohon	AJ	ngon		GH	BY	0054	00	PDEE Plott 26
	NAAN	NNNNNNNNN	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN	ndee
	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	

Bestimmungen des Fließwinkels erfolgten in einer 2 m langen Plexiglasrinne, mit einer Breite von 277 mm und einer Höhe von 291 mm. Die Rinne wurde von einer Endseite über einen DN 40-Schlauch mit ca. 35 Liter Suspension befüllt, die zuvor 20 Minuten in einem Rohrviskosimeter gepumpt wurde (Simulation der Förderung, vgl. Kapitel 4.1). Die Suspension floss frei, d.h. ohne die Aufbringung zusätzlicher Energie, aus. Füllstandsmessungen erfolgten im Abstand von 10 cm, an der linken und rechten Wandung sowie in der Mitte der Fließrinne.

Der mittlere Fließwinkel betrug 1,25 %, entsprechend 0,7 Grad.

Materialeigenschaften und Materialkennwerte Salzbeton M2

Proiekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	
9M	22343021		AJ			GH	BY	0054	00	DBED

Blatt 27

5 Untersuchungen zur Kornsedimentation und zur Überschusslösung

5.1 Untersuchungen zum Sedimentationsverhalten

Zur Ermittlung möglicher Entmischungserscheinungen der Salzbetonkomponenten in Folge von Förderunterbrechungen, veränderten Wassergehalten sowie des Verstürzens der Suspension erfolgten Untersuchungen an frischen und abgebundenen Salzbetonproben.

5.1.1 Sedimentationsversuch in einer vertikalen Rohrleitung

Zur Untersuchung des Materialverhaltens der Suspension in vertikalen Rohrleitungen wurde ein 6 m hohes Stahlrohr (Innendurchmesser 125 mm) vollständig mit Salzbetonsuspension befüllt, die das Gemisch Flotations-/Heißlöserückstand enthielt. Das Füllvolumen betrug 73,6 Liter (ca. 147 kg). Das Standrohr besaß, von der Standfläche aus gesehen, 6 Probenahmemöglichkeiten in jeweils 250 mm Abstand. Die oberste Probenahmestelle befand sich demnach in einer Höhe von 1,5 m.

Suspensionsproben wurden nach 3, 4, 8, 14 und 24 Stunden entnommen. Die Beprobungen ergaben eine vergleichbare Konsistenz (Fließfähigkeit) der Suspension unabhängig von der Höhe der Probeentnahme. Bestimmungen mit einem Infrarottrockner bei 160 °C ergaben Wasseranteile von 12 bis 13 Massen-%, unabhängig von der Probenahmestelle sowie vom Zeitpunkt der Probeentnahme.

Der Versuch zeigt, dass eine Entmischung der Salzbetonsuspension, z.B. in vertikalen Rohrleitungen, auch nach längeren Standzeiten auszuschließen ist.

5.1.2 Sedimentationsversuch bei veränderten Wassergehalten

Im Rahmen der Förderversuche bei Wassergehaltsabweichungen von –4 bis +10 % erfolgten Untersuchungen zum Sedimentationsverhalten der Salzbetonsuspension. Hierzu wurden nach jedem Förderversuch Materialproben in 1.000-ml-Standzylinder eingefüllt und diese anschließend abgedeckt. Nach dem Abbinden wurden die Proben aus den Standzylindern entnommen und entlang der Längsachse gesägt (vgl. /10/, Kapitel 6.4).

Die visuelle Beurteilung der Probeoberflächen ergab, unabhängig vom Anteil des Anmischwassers der Salzbetonsuspension, ein einheitliches Korngefüge der Materialproben und folglich keine Anzeichen für Sedimentations- bzw. Absetzerscheinungen (Abbildung 5.1-1).

Zur Untersuchung möglicher Entmischungserscheinungen der Salzbetonkomponenten im Verlauf der Verfüllung untertägiger Hohlräume diente ein Freifallversuch von der 2. zur 3. Sohle im IB-Gesenk 1B des ERAM. Insgesamt wurden etwa 12,5 m³ Suspension über eine Fallhöhe von 37 m verstürzt und in einer Schalung aufgefangen (Grundfläche: ca. 3,0 m · 3,2 m, Höhe ca. 1,5 m). Eine Seite der Schalung bestand aus Mauerwerk und eine zweite aus dem Steinsalzstoß. Nach dem Verstürzen des Salzbetons wurde der Versatzkörper mit Folie abgedeckt. Die Ausschalung erfolgte nach 3 Wochen. Anschließend wurden nach dem in Abbildung 5.1-2 dargestellten Schema Kernbohrungen in den Versatzkörper gestoßen. Mit Ausnahme der Bohrungen 21 und 22 handelt es sich um Horizontalbohrungen. Die Bohrungen 11 bis 20 verlaufen diagonal in die Stöße (Steinsalz und Mauerwerk).

Abbildung 5.1-2: Bohrschema des Versatzkörpers (in-situ Freifallversuch) mit einer rechteckigen Grundfläche von ca. 3,0 m · 3,2 m und einer Höhe von etwa 1,5 m.

Die Oberflächen von Kernstücken mit einer Länge von ≥ 30 cm wurden gescannt. Darüber hinaus erfolgte PC gestützt eine Analyse der Kornverteilung. Die visuelle Beurteilung der Bohrkerne sowie die digitale Bildanalyse ergaben einen gleichmäßigen Kornaufbau des Versatzkörpers.

Die Kerne der schräg in die Stöße gestoßenen Bohrungen zeigen eine formschlüssige Anbindung des Versatzkörpers am Steinsalzstoß bzw. am Mauerwerk. Einzelne Brüche an den Kontaktflächen zum Steinsalzstoß und Mauerwerk sowie des Kernmaterials aus dem Versatzkörper sind auf den Bohrvorgang zurückzuführen. Der RQD-Index (Rock Quality Designation) beträgt 100 %, d.h., alle Kernstücke sind > 10 cm.

5.1.4 Bestimmung der sedimentationsstabilen Korngröße

Die Bewertung einer möglichen Sedimentation/Entmischung von Salzbetonkomponenten kann mit Hilfe der "Sedimentationsstabilen Korngröße" erfolgen (Gl. 5.1). Die "Sedimentationsstabile Korngröße" ist proportional der Fließgrenze der Suspension und berechnet sich wie folgt:

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED
Verfüllmaterial für Strecken mit hohen Anforderungen –										Blatt 30	

Materialeigenschaften und Materialkennwerte Salzbeton M2

$$d_{max} = \frac{3}{2} \cdot \pi \cdot \tau_0 / (\Delta \rho \cdot g).$$

(5.1)

mit

- d_{max} maximale sedimentationsstabile Partikelgröße [m]
- g Gravitationsbeschleunigung [m/s²]
- τ₀ Fließgrenze [Pa]

Δρ Dichtedifferenz Suspension (ρ: 1.995 kg/m³) zu Salzzuschlag (Halit: 2.168 kg/m³),
 Steinkohlenflugasche (2.255 bis 2.271 kg/m³) und Zement (2.974 bis 3.024 kg/m³).

Abbildung 5.1-3 zeigt nach GI. (5.1) berechnete "Sedimentationsstabile Korngrößen" der Salzbetonkomponenten für Fließgrenzen zwischen 0 und 10 Pa. Zusätzlich ist die niedrigste gemessene Fließgrenze von 7,4 Pa eingetragen, die eine Salzbetonsuspension mit einer Abweichung des Wassergehalts von +10 % vom Sollwert bei einem Förderversuch im Rohrviskosimeter aufwies (vgl. Tabelle 4.1-5). Aus der Abbildung geht hervor, dass die Korngrößen der Feststoffkomponenten des Salzbetons (vgl. Abbildungen 2-1 und 2-2) immer kleiner als die entsprechende sedimentationsstabile Korngröße sind. Selbst bei einer Wassergehaltsabweichung von +10 % ($\tau_0 = 7,4$ Pa) sind demnach Sedimentations- bzw. Entmischungserscheinungen auszuschließen. Die Befunde bestätigen damit auch die Ergebnisse der Sedimentationsversuche (vgl. Kap. 5.1.2).

Abbildung 5.1-3: Abhängigkeit der maximalen sedimentationsstabilen Korngröße von der Fließgrenze (τ_0) der Suspension.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
9M	22343021		AJ			GH	ΒY	0054	00	DBED

Blatt 31

5.2 Untersuchungen zur Bildung von Überschusslösung

Bei der Überschusslösung handelt es sich um eine Flüssigkeit, die sich während des Abbindens auf der Oberfläche des frischen Salzbetons bildet. Dieser Vorgang wird in der Baustofftechnologie auch als "Bluten" bezeichnet. Eine Ursache zur Entstehung von Überschusslösung ist, wenn die der Betonmischung zugegebene Wassermenge vom Baustoff nicht vollständig chemisch oder physikalisch gebunden werden kann. Eine Beurteilung dieses Sachverhalts ist bei Baustoffen, denen auch Flugaschen als Bindemittel zugefügt werden, mit Hilfe des W/(Z+F)-Wertes oder des Zementäquivalentwertes (W/(Z+0,4·F)) möglich.

Der W/Z-Wert der Salzbetonrezeptur M2 beträgt etwa 0,81 und der W/(Z+F)-Wert ca. 0,41 (vgl. Tabelle 2-1). Der Zementäquivalentwert ergibt sich zu 0,58, wobei jedoch zu berücksichtigen ist, dass die oben angegebene Formel für Normalbetone mit einem Flugaschegehalt von höchstens 0,25·Z entwickelt wurde. Anhand der berechneten Werte ist davon auszugehen, dass entsprechend der Zusammensetzung der Salzbetonrezeptur die zugefügte Wassermenge im Verlauf der Hydratation vollständig von den Bindemitteln aufgenommen werden kann, wobei ein Teil des Wassers in Kapillarporen physikalisch gebunden wird. Steinkohlenflugaschen nehmen jedoch meist, auf Grund ihres latent hydraulischen Verhaltens, erst zu einem späteren Zeitpunkt am Hydratationsprozess teil.

Zur Untersuchung der Bildung von Überschusslösung des frischen Salzbetons erfolgten in 1000-ml-Standzylindern Absetzversuche in Abhängigkeit des Wassergehalts der Suspension sowie der Korngrößenverteilung des Salzzuschlages. Weitere Versuchsreihen im Technikumsmaßstab hatten zum Ziel das Absetzverhalten der Originalrezeptur (Wassergehalt entspricht dem Sollwert), zu deren Herstellung ein Gemisch von Flotations- und Heißlöserückständen verwendet wurde, in Prüfformen unterschiedlicher Höhe und Durchmessers zu bestimmen.

5.2.1 Untersuchungen in Abhängigkeit der Betonoberfläche (konstante Füllhöhe)

Zur Bestimmung einer möglichen Abhängigkeit der Menge an Überschusslösung von der Größe der Betonoberfläche erfolgte eine Messreihe bei konstanter Füllhöhe (2 m) in Zylindern unterschiedlichen Durchmessers. Die Zylinder waren mit einer Folie abgedeckt. Die Messresultate (Eintauchtiefe eines Lineals) finden sich in Tabelle 5.2-1. Die Messgenauigkeit beträgt 1 mm.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	NN	DREF
	9M	22343021		AJ			GH	ΒY	0054	00	
erfüllmate	erial fü	r Strecken m	it hohen A	Anforderu	ngen –						Blatt 32
aterialeig	ensch	aften und Ma	terialken	nwerte Sa	alzbeton	M2					
			Z	ylinderinn	endurch	messei	[mm]				
		50	1(00	200		300			500	
				Beton	oberfläc	ne [cm²	²]				
		20	7	9	314		707		1	964	
Stand	zeit			Füll	volumen	[Liter]			-		
[Stund	den]	3,9	15	5,7	62,8		141,4	1	3	92,7	
			i	Höhe Flüs	sigkeitss	schicht	[mm]				
1		1		1	1		1			1	
3		2	4	2	2		2		3	3 – 4	
6		3	3	3	3		3			4	
8		6	(6	6		6			6	
15		6 – 7	(6	8		9			10	
24		8	(6	7		10			10	
48		7 – 8	(6	6		10		9	- 10)
96 (4 0	d)	_*		_*	_*		_*			*	
120 (5	5 d)	_*		-*	*		_*			*	
144 (6	6 d)	_*	—	-*	*		_*	7		*	

Tabelle 5.2-1:Menge der Überschusslösung in Abhängigkeit der Betonoberfläche
(Zylinderdurchmesser) bei konstanter Füllhöhe (2 m), aber variierender
Füllmenge. Maximalwerte sind durch Fettschrift hervorgehoben. Index *: Die
Baustoffoberfläche ist feucht, die Höhe der Flüssigkeitsschicht jedoch nicht
messbar.

Nach Tabelle 5.2-1 ist keine Abhängigkeit der sich absetzenden Lösungsmenge von der Betonoberfläche bzw. dem Füllvolumen zu erkennen. Zwar ergeben sich auf der Basis der Maximalwerte (Standzeit 8 bis 48 Stunden) Unterschiede der Höhe der Flüssigkeitsschicht, eine eindeutige Tendenz ist jedoch nicht erkennbar. Nach einer Standzeit von 96 Stunden waren die Betonoberflächen in den Zylindern noch feucht, die Höhe der Flüssigkeitsschichten jedoch nicht messbar.

5.2.2 Untersuchungen in Abhängigkeit der Füllhöhe (konstante Betonoberfläche)

Zur Bestimmung der Menge an Überschusslösung in Abhängigkeit der Füllhöhe erfolgten Messungen in 2, 4 und 6 m hohen Zylindern. Auf Grund des konstanten Zylinderdurchmessers (125 mm, Betonoberfläche 122 cm²) variierte das Salzbetonvolumen. Die Zylinder waren mit einer Folie abgedeckt. Die Messwerte sind dargestellt in Tabelle 5.2-2. Die Messgenauigkeit beträgt 1 mm.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	
9M	22343021		AJ			GH	ΒY	0054	00	DBED

Blatt 33

i			
	Füllt	nöhe des Salzbetons [mm]
	2.000	4.000	6.000
Standzeit		Füllvolumen [Liter]	
[Stunden]	24,5	49,1	73,6
	Höh	e Flüssigkeitsschicht [mm]
1,5	2	2	2
5	5	5	5
8	6	6	6
14	8	8	10
23	7 – 8	7 – 8	9
47	7	7	8 – 9
95	_*	*	_*
119	-*	*	_*
143	_*	-*	_*

Tabelle 5.2-2:Menge der Überschusslösung in Abhängigkeit der Füllhöhe des Salzbetons
bei einer konstanten Betonoberfläche von 122 cm² (Zylinderdurchmesser
125 mm), aber variierender Füllmenge. Maximalwerte sind durch Fettschrift
hervorgehoben. Index *: Die Baustoffoberfläche ist feucht, die Höhe der
Flüssigkeitsschicht jedoch nicht messbar.

Im Ergebnis der Untersuchungen zeigt sich, dass die maximale Höhe der Überschusslösung nach 14 Stunden erreicht wird. Die maximalen Höhen der Überschusslösung betragen 8 und 10 mm. Nach 95 Stunden war die Baustoffoberfläche nur noch feucht. Die Höhe der Flüssigkeitsschicht war nicht messbar.

5.2.3 Untersuchungen in Abhängigkeit der Füllhöhe (konstantes Füllvolumen)

In einer weiteren Messreihe wurde die Menge an Überschusslösung in Abhängigkeit der Füllhöhe und des Zylinderdurchmessers (Betonoberfläche) bestimmt. Das Füllvolumen war in sämtlichen Zylindern identisch (12 Liter, ca. 24 kg). Die Zylinder waren mit einer Folie abgedeckt. Die ermittelten Höhen der Flüssigkeitsschichten sind aufgeführt in Tabelle 5.2-3. Die Messgenauigkeit beträgt 1 mm.

	Desistet	DCD Floment	Ohi Kann	Funktion	Kampananta	Deverunne	Aufacho		L Gel Mar	Davis		
	N A A N	N N N N N N N N N N N N	N N N N N N N			A A N N	Aurgabe X A A X X	A A	Lta. Nr.	N N		
	9M	22343021		AJ			GH	BY	0054	00	DBED	
Verfüllmat Materialei	terial fü gensch	r Strecken m aften und Ma	it hohen . Iterialken	Anforderu nwerte Sa	ngen – Izbeton	M2		1			Blatt 34	
				F	üllhöhe [[mm]						
		17	70	380	_	1.53	0		6.11	0		
			Zylinderinnendurchmesser [mm]									
		30	00	200		100)	50				
St	andzei	t	Betonoberfläche [cm²]									
[S	tunden] 70)7	314 79				20				
			Höhe Flüssigkeitsschicht [mm]									
1,	5	—	_*	1		2			2			
5		3	3	3		3			4			
8		6	5	5		6		5 12				
14	1	6	6	8		8						
23	3	5	5	9		8			9			
47	7	4 -	- 5	9		8			_*			
95	5	4	ł	8		7			*			
11	19	3 -	- 4	7		6 –	7		*			
14	13	3	3	6 – 7	'	6			*			

Tabelle 5.2-3:Menge der Überschusslösung in Abhängigkeit der Füllhöhe des Salzbetons
bei konstantem Füllvolumen (12 Liter), aber variierender Betonoberfläche
(Zylinderdurchmesser). Maximalwerte sind durch Fettschrift hervorgehoben.
Index *: Die Baustoffoberfläche ist feucht, die Höhe der Flüssigkeitsschicht
jedoch nicht messbar.

Nach Tabelle 5.2-3 variiert die maximale Höhe der Flüssigkeitsschicht bei Standzeiten von 8 bis 47 Stunden zwischen 6 und 12 mm. Eine eindeutige Tendenz in Bezug zur Betonoberfläche sowie zur Füllhöhe ist nicht erkennbar. Nach einer Standzeit von 47 Stunden war im 50 mm-Zylinder (\emptyset = 50 mm; Füllhöhe = 6.110 mm) nur noch eine feuchte Betonoberfläche festzustellen.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.
NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN
9M	22343021		AJ			GH	BY	0054	00

Blatt 35

5.3 Zusammenfassung der Resultate zur Bildung von Überschusslösung

Auf Grund der Vielzahl von Analysenresultaten zur Bildung von Überschusslösung ist es erforderlich die Datenbasis nicht nur getrennt nach den Versuchsreihen, sondern auch in ihrer Gesamtheit zu betrachten. Folgende Schlussfolgerungen können gezogen werden:

- Die Überschusslösung entsteht auf der Oberfläche der frischen Salzbetonsuspension.
- Die Flüssigkeitsmenge ist unabhängig von der Größe der Suspensionsoberfläche.
- Die Höhe der Flüssigkeitsschicht ist von der Füllhöhe des Salzbetons unabhängig. Die Überschusslösung stammt demnach ausschließlich aus einer oberflächennahen Schicht der Suspension.
- Die Bildung der Überschusslösung erfolgt in den ersten 8 bis 24 Stunden.
- Die nach Standzeiten von 8 bis 24 Stunden ermittelten maximalen Schichthöhen der Überschusslösung variieren im Falle der Technikumsversuche zwischen 6 und 12 mm. Bei darüber hinausgehenden Standzeiten nimmt die Menge an Überschusslösung deutlich ab.
- Nach 4 Tagen konnte unter den gegebenen Versuchsbedingungen in 9 von 12 Technikumsversuchen keine Lösungsschicht mehr nachgewiesen werden.
- Die Menge an Überschusslösung nimmt nahezu proportional mit dem Wasseranteil der Salzbetonrezeptur zu.

5.4 Chemischer Stoffbestand der Poren- und Überschusslösung

Im Rahmen der Untersuchungen zum Absetzverhalten des Salzbetons (Kapitel 5.1) erfolgten Beprobungen der Poren- und Überschusslösung. Bei der Überschusslösung handelt es sich um eine Flüssigkeit, die sich während des Abbindens auf der Oberfläche des frischen Salzbetons bildet. Die Überschusslösung ist demnach Porenlösung des Salzbetons, die in Folge des Absinkens der suspendierten Feststoffpartikel an der Oberfläche des ruhenden Frischbetons austritt.

Die Elementkonzentrationen wurden gemäß DIN 38404, Teil 5, DIN EN ISO 14911 und DIN EN ISO 10304, Teil 1 /11/12/13/ ermittelt. Der chemische Stoffbestand der Lösungsproben fasst Tabelle 5.4-1 zusammen.

Pro N A	jekt A N	PSP-Element	Obj. Kenn. N N N N N N	Funktion NNAAANN	KomponenteA A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd. Nr. N N N N	Rev.		
9M	1	22343021		AJ			GH	BY	0054	00	DBE	
üllmateria erialeigen	al fü sch	r Strecken mi aften und Ma	it hohen terialken	Anforderu nwerte Sa	ngen – Izbeton I	M2					Blatt 36	
					Konzen	tration						
Gelöste lonen		en [g/kg H ₂ C)]	[Massen-%]			[g/L]				
Porenlös	sung	g des Salzbet	ons									
Na⁺			121,70			8,64			105,35			
K⁺			44,73		3,18			38,72				
Mg ²⁺				n	icht nach	nweisb	ar					
Ca ²⁺			5,152			0,37			4,46			
Cl-			235,78			16,73			204,10			
SO4 ²⁻	SO4 ²⁻		1,860		0,13			1,61				
CO3 ²⁻	CO3 ²⁻		0,133		0,01			0,12				
H₂O	H₂O		1.000,0		70,96			865,65				
Dichte			1,221 g/cm ³									
Übersch	uss	lösung des S	alzbeton	s								
Na⁺			128,27		8,99			110,23				
K⁺	K⁺		46,55		3,26			40,00				
Mg ²⁺			nicht nachweisbar									
Ca ²⁺			4,10		0,29			3,52				
CI-			245,53		17,21			211,00				
SO4 ²⁻			2,20		0,15			1,89				
CO3 ²⁻			0,12		0,01			0,10				
H ₂ O			1.000,00)	70,09			859,26				
Dichte					1,226	g/cm ³						

Tabelle 5.4-1:Chemischer Stoffbestand der Poren- und Überschusslösung des
Salzbetons. Für die Porenlösung des Salzbetons M2 ergab sich ein pH-Wert
von 10,9 und für die Überschusslösung ein pH-Wert von 11,3.

Die Analysenresultate belegen die Dominanz von gelöstem NaCl. Auffallend sind ferner relativ hohe KCl-Konzentrationen, die aus dem Entzug von Wasser aus der Salzlösung resultieren dürfte (Hydratationsreaktionen der Bindemittelanteile). Hierbei kristallisiert Halit, während KCl auf Grund der höheren Löslichkeit in der Lösung verbleibt. Die Salzlösung der Rezeptur Salzbeton M2 ist gesättigt an Halit (NaCl), Anhydrit (CaSO₄), Gips (CaSO₄·2H₂O) und übersättigt an Calcit (CaCO₃).

Auf Grund der Sättigungsverhältnisse sind Anlöseerscheinungen von Anhydrit- und Carbonatgesteinen sowie von Steinsalz im Rahmen der Verfüllung untertägiger Hohlräume vernachlässigbar.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	ΒY	0054	00	DBED

Blatt 37

6 Physikalische Untersuchungen

Im Folgenden werden die Resultate physikalischer Untersuchungen des Salzbetons M2 beschrieben. Sie umfassten die Ermittlung von Parametern, die das Verformungs- und Festigkeitsverhalten im ein- und triaxialen Spannungszustand beschreiben sowie zur Beurteilung der hydraulischen Eigenschaften erforderlich sind.

Die Materialparameter wurden an Prüfkörpern ermittelt, die im Labor oder im Anschluss an die Förderversuche im Rohrviskosimeter hergestellt wurden. Im Rahmen des in-situ Freifallversuches wurden Prüfkörper aus Bohrkernen mit einem Durchmesser von 100 mm gewonnen (Abbildung 6-1).

Abbildung 6-1: Kernbohrungen zur Gewinnung von Prüfkörpern des Versatzkörpers im IB-Gesenk 1B des ERAM (in-situ Freifallversuch). Der Versatzkörper hat eine rechteckige Grundfläche mit Kantenlängen von ca. 3,0 m und 3,2 m sowie eine Höhe von ca. 1,5 m. D: Prüfkörper zur Bestimmung der Druckfestigkeit. E: Proben zur Messung des statischen Elastizitätsmoduls.

6.1 Festmaterialdichte

Die Festmaterialdichte eines Baustoffes ergibt sich aus den Mengenverhältnissen und spezifischen Dichten seiner Komponenten unter Berücksichtigung des Porenvolumens (vgl. Tabelle 2-1). Die Bestimmungen der Betondichte erfolgten nach DIN 1048, Teil 5 (Abschnitt 7.1 /14/) bei einem Prüfkörperalter von 3 bis 252 Tagen.

Vorfüllmot	Vorfüllmatorial für Strockon mit haben Anforderungen										Platt 20
	9M	22343021		AJ			GH	BY	0054	00	DBED
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	

venulimalenai iur Strecken mit nonen Aniorderungen -Materialeigenschaften und Materialkennwerte Salzbeton M2

Für 38 Proben, die bei 20 °C und 65 % relative Luftfeuchtigkeit lagerten, ergab sich im Durchschnitt ein Wert von 1.965 kg/m³. Bei 40 °C und 30 % relative Luftfeuchtigkeit gelagerter Salzbeton (15 Prüfkörper) kommt dagegen auf durchschnittlich 1.970 kg/m³.

6.2 Statischer E-Modul

Der Elastizitätsmodul (E-Modul) gibt das Verhältnis der Spannung σ zur zugehörigen Verzerrung ε an. Der E-Modul erlaubt Aussagen zur Steifigkeit und Stützwirkung eines Baustoffes. Die Bestimmungen erfolgten nach DIN 1048, Teil 5 /14/, Abschnitt 7.5. Resultate liegen vor für Proben nach einer Abbindezeit von 3 bis 530 Tagen. Das Verhältnis der Höhe zum Durchmesser der Zylinder betrug 2,0 bis 2,3.

Im Anschluss des Mischprozesses hergestellte Prüfkörper

Abweichend von DIN 1048 wurde bei den Versuchen der 3 und 7 Tage alten Proben die Unterlast und die Belastungsgeschwindigkeit reduziert. Die Messresultate sind in Tabelle 6.2-1 zusammengestellt. Dargestellt sind die Mittelwerte von jeweils drei Messungen mit Ausnahme der Bestimmungen nach einer Abbindezeit des Betons von 270 Tagen (6 Prüfkörper) und 530 Tagen (5 Prüfkörper).

Abbindezeit [Tage]	3		7			14		28
Einzolmoooworto	800		3.8	00	ę	9.400		11.500
[MPa_N/mm ²]	800		3.9	00	Ģ	9.700		11.600
	900	0	4.9	00	1	0.100		11.900
Mittelwert [MPa, N/mm ²]	800		4.2	00	ç	9.700		11.700
Lagerungstemperatur [°C]	20		20)		20		20
Abbindezeit [Tage]	28		90		2	70		530
Finzelmesswerte	11.500	1	4.400	17.0	000	20.200		
[MPa_N/mm ²]	12.300	14	4.900	17.1	00	22.500)	k.A.
	13.500	1	5.300	18.6	600	22.700	1	
Mittelwert [MPa, N/mm ²]	12.400 1		4.900		19.700			23.900
Lagerungstemperatur [°C]	R.T.		40		R	T.	-	k.A.

Statische Elastizitätsmoduli und Lagerungstemperaturen von Proben nach 3 Tabelle 6.2-1: bis 530 Tagen Abbindezeit; R.T.: Raumtemperatur, k.A.: keine Angabe.

Bohrkerne des in-situ Freifallversuches

Im Falle des Freifallversuches wurden jeder Kernbohrung Prüfkörper aus folgenden Bohrteufen entnommen (mittlere Bohrteufe in Klammern): 0,20 bis 0,40 m (0,30 m), 1,38 bis 1,58 m (1,48 m) und 2,38 bis 2,58 m (2,48 m). Die Messungen erfolgten nach einer Abbindezeit von

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	
9M	22343021		AJ			GH	ΒY	0054	00	DBED

Blatt 40

28 Tagen. Die Messergebnisse sind, geordnet nach der Bohrungsnummer und der mittleren Bohrteufe, zusammengestellt in Tabelle 6.2-2.

Bohrung	Stati	scher Ela	stizitätsn	nodul	Bohrung	Statis	scher Ela	stizitätsn	nodul
Nr.		[MPa, I	N/mm²]		Nr.		[MPa,	N/mm²]	
	Mittler	e Bohrtei	ufe [m]	Mittel-		Mittler	e Bohrte	ufe [m]	Mittel-
	0,30	1,48	2,48	wert		0,30	2,48	wert	
5	21.410	22.230	19.590	21.100	10	22.410	22.420	22.600	
4	19.390	23.400	22.030	21.600	9	26.210	24.000	25.200	
3	23.430	22.710	30.050	25.400	8	23.300	25.890	27.080	25.400
2	25.140	24.500	24.660	24.800	7	28.360	26.450	29.680	28.200
1	31.460	33.070	37.000	33.800	6	28.000	28.700		
Mittelwert	24.170	25.180	26.670	25.340	Mittelwert	25.660	26.150	26.260	26.020

Tabelle 6.2-2:Elastizitätsmoduli nach 28 Tagen Abbindezeit (in-situ Freifallversuch). Im
Anschluss des Bohrvorganges erfolgte die Lagerung der Bohrkerne bei
Raumtemperatur. Der Mittelwert sämtlicher Messresultate beträgt
25.680 MPa.

Die Elastizitätsmoduli betragen zwischen 19.390 MPa (siehe Bohrung Nr. 4) und 37.000 MPa (siehe Bohrung Nr. 1), bei einem Mittelwert sämtlicher Messresultate von 25.680 MPa. Die Prüfkörper von der Basis weisen im Vergleich zu Proben vom Top des Betonkörpers höhere Elastizitätsmoduli auf. Eine Abhängigkeit des Elastizitätsmoduls von der Bohrteufe der Prüfkörper ist, insbesondere vor dem Hintergrund der Messgenauigkeit des Messverfahrens, nicht gegeben.

Prüfkörper im Rohrviskosimeter geförderten Materials

Die nach Abschluss der rheologischen Untersuchungen hergestellten Prüfzylinder (vgl. Kapitel 4.1), mit einem Durchmesser von 70 mm und einer Höhe von 140 mm, wurden in Anlehnung an DIN 50014 /6/ bei 20 °C und 100 % relativer Luftfeuchtigkeit gelagert. Eine Ausnahme sind die nach 156 bzw. 165 Tagen geprüften Zylinder. Diese wurden nach 28 Tagen getrocknet und 7 Tage vor der Prüfung in gesättigter NaCl-Lösung gelagert. Die Messresultate sind, in Abhängigkeit des Wassergehaltes des Salzbetons, zusammengestellt in Tabelle 6.2-3. Bei den 156 bzw. 165 Tage alten Proben handelt es sich um Mittelwerte von drei Messungen.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	NNNNNNNNN	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	
9M	22343021		AJ			GH	ΒY	0054	00	DBED

Blatt 41

			Ela	stizitätsmodu	ul [MPa, N/m	m²]							
Salzzuschlag Gemiso	ch Flotati	ons- und Heißl	öserückstan	d (Korngröße	e < 20 mm)								
Abw. Wassergehalt	Was	sergehalt	Abbi	ndezeit des S	Salzbetons [7	[age]							
vom Sollwert	[kg/m³]	[Massen-%]	7	14	28	165							
-4% 259 12,9 8.950 8.040 25.080 n.b.													
0 % 267 13,4 n.b. 10.460 19.260 17.600													
+ 4 %	275	13,9	1.180	9.510	22.680	n.b.							
+ 10 %	286	14,5	7.780	10.020	23.610	n.b.							
Salzzuschlag Flotatic	onsrückst	and (Korngröß	e < 2 mm)	•									
Abw. Wassergehalt	Was	sergehalt	Abbi	ndezeit des S	Salzbetons [7	[age]							
vom Sollwert	[kg/m³]	[Massen-%]	7	14	28	156							
0 %	0 % 267 13,4 1.870 7.120 20.850 15.370												
		Lageru	ng bei 20 °C										

Tabelle 6.2-3:Statische Elastizitätsmoduli des Salzbetons in Abhängigkeit der Abweichung
des Wassergehaltes der Suspension vom Sollwert. Die
Prüfkörperherstellung erfolgte im Anschluss der Förderversuche im
Rohrviskosimeter (Kapitel 4.1); n.b.: nicht bestimmt.

Eine Abhängigkeit des E-Moduls von der Menge an Anmachwasser und der Korngrößenverteilung des Salzzuschlages ist nicht erkennbar. Die E-Moduli der nach 156 bzw. 165 Tagen geprüften Proben sind im Vergleich zu den 28 Tage-Werten niedriger, liegen jedoch im Schwankungsbereich des Messverfahrens. Eventuell ist diese Tendenz auf die unterschiedlichen Lagerungsbedingungen der Prüfkörper zurückzuführen.

Abbindezeit [Tage]	7	14	28
Im direkten Anschluss des Misch	prozesses hergestel	llte Prüfkörper	
Elastizitätsmodul [MPa, N/mm ²]	4.200	9.700	11.700 / 12.400
Bohrkerne des in-situ Freifallvers	suches		
	n.b.	n.b.	25.680
			(19.390–37.000)
Im Anschluss der Förderversuch	e im Rohrviskosimet	er hergestellte Prüfkö	rper
	4.950	9.030	22.300
	(1.180–8.950)	(7.120–10.460)	(19.260–25.080)

Tabelle 6.2-4:Vergleich der Messresultate zum statischen Elastizitätsmodul von
Prüfkörpern, die im direkten Anschluss des Mischprozesses hergestellt
wurden, von Bohrkernen des in-situ Freifallversuches sowie von
Prüfkörpern, die nach den Förderversuchen im Rohrviskosimeter angefertigt
wurden.

Г	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED
			9 L . L	A . C							

Blatt 42

Nach Tabelle 6.2-4 weisen die Prüfkörper nach Abbindezeiten von 7 und 14 Tagen vergleichbare Elastizitätsmoduli auf. Nach Abbindezeiten von 28 Tagen sind jedoch die Elastizitätsmoduli der Proben aus dem Versatzkörper (in-situ Freifallversuch) sowie des geförderten Materials im Vergleich zu den Prüfkörpern, die unmittelbar nach dem Anmischen hergestellt wurden, höher.

6.3 Querkontraktionszahl

Die bei Längsdehnung ε_1 auftretende Querdehnung ε_q wird durch die Querkontraktionszahl μ gekennzeichnet: $\mu = \varepsilon_q / \varepsilon_1$. Die Querkontraktionszahl (Querdehnzahl) wurde nach DIN 1048, Teil 5 (Prüfverfahren für Beton /14/) im Rahmen der Untersuchungen des E-Moduls (vgl. Kapitel 6.2) ermittelt.

Im Anschluss des Mischprozesses hergestellte Prüfkörper

Die Messresultate sind aufgeführt in Tabelle 6.3-1. Es handelt sich um Mittelwerte von jeweils drei Bestimmungen.

Abbindezeit [Tage]	3	7	14	28
Querkontraktionszahl µ	0,19	0,30	0,33	0,33
Lagerung im Nor	rmalklimat 20/65	6 (20 °C, 65 % re	elative Luftfeuch	tigkeit)

 Tabelle 6.3-1:
 Querkontraktionszahlen des Salzbetons in Abhängigkeit der Abbindezeit.

Prüfkörper im Rohrviskosimeter geförderten Materials

Die nach Abschluss der Förderversuche hergestellten Prüfzylinder (Durchmesser 70 mm, Höhe 140 mm) wurden entsprechend der Ausgangsrezeptur ohne Abweichung vom Wassergehalt hergestellt. Die Probenlagerung erfolgte bei 20 °C; die Luftfeuchtigkeit wurde jedoch variiert. Sie betrug in den ersten 28 Tagen 100 % (relativ). Anschließend erfolgte die Trocknung der Proben und 7 Tagen vor der Prüfung eine Lagerung in gesättigter NaCl-Lösung.

Nach insgesamt 165tägiger Lagerung wurde an zwei Proben, zu deren Herstellung Salzzuschlag mit Heißlöse- und Flotationsrückstand (Korngröße < 20 mm) verwendet wurde im Mittel eine Querkontraktionszahl von 0,28 bestimmt. Für zwei weitere Proben, die ausschließlich mit Flotationsrückstand (Korngröße < 2 mm) hergestellt wurden, ergab sich im Durchschnitt eine Querkontraktionszahl von 0,30 (156tägige Lagerung).

Weitere Messwerte wurden im Verlauf von Untersuchungen der triaxialen Druckfestigkeit gewonnen und sind beschrieben in Kapitel 6.5 (vgl. Tabelle 6.5-1).

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN	
9M	22343021		AJ			GH	BY	0054	00	DBED

Blatt 43

6.4 Einaxiale Druckfestigkeit

Die Untersuchungen zur einaxialen Druckfestigkeit erfolgten nach DIN 1048, Teil 5, Abschnitt 7.2 (Prüfverfahren für Beton /14/) an zylinderförmigen Proben. Resultate liegen vor von Prüfkörpern, die im direkten Anschluss des Mischprozess hergestellt wurden sowie von Bohrkernen des in-situ Freifallversuches.

Im Anschluss des Mischprozesses hergestellte Prüfkörper

Insgesamt liegen Messergebnisse nach Abbindezeiten des Salzbetons von 3 bis 530 Tagen vor. Das Verhältnis der Höhe zum Durchmesser der Prüfzylinder betrug 2,0 bis 2,2. Bei der Versuchsserie, die 3, 7, 14 und 28 Tage alte Prüfkörper umfasste, erfolgten jeweils vier Messungen. Bei den restlichen Bestimmungen konnte, mit Ausnahme der 270 d-Druckfestigkeit (6 Prüfkörper) und der 530 d-Druckfestigkeit (5 Prüfkörper), für jedes Betonalter ein Mittelwert auf der Basis von drei Einzelmessungen berechnet werden.

Die Mittelwerte der Messresultate sind aufgeführt in Tabelle 6.4-1. Es ist demnach eine Zunahme der Druckfestigkeit von 1,48 MPa auf über 30 MPa festzustellen.

Projekt N A A N	PSP-I	Element	Obj. Kenn. N N N N N N N	Funktion	Komponente A A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd. Nr. N N N N	Rev. N N	
9M	22343	3021		AJ			GH	BY	0054	00	DB
erfüllmaterial f laterialeigensc	ür Streo haften	cken mi und Ma	it hohen terialker	Anforder inwerte S	ungen – alzbeton	M2		1			Blatt 4
Abbindezeit [Tage]	3		7	14	2	28		28		28
Einaxiale Dru	ckfestig	keit [M	Pa, N/m	m²]		•				•	
		1,46	3 7	7,41	17,6	23	3,6		30,3	I	21,3
Einzelmesswe	erte	1,45	5 5	5,99	17,9	24	4,5		30,8		20,6
[MPa, N/mm ²]]	1,42	2 7	7,34	20,6	2'	1,8		30,0		21,7
		1,57	7 5	5,90	19,2	23	3,5		—	1	—
Mittelwert [MPa, N/mm ²]]	1,48	3 6	6,66	18,8	23	3,4	1	30,4		21,2
Lagerungsten	nperatu	r [°C]						7			
		20		20	20	2	20		40		R.T.
Abbindezeit [Tage]	42	56	90	90	252		2	70		530
Einaxiale Dru	ckfestig	keit [M	Pa, N/m	m²]	•						
Finzelmess	vorto	30,4	32,2	30,6	31,3	39,3	30	,9	-34,2	2	
IMPa N/m	m ² 1	30,5	32,0	32,3	32,8	39,6	31	,3	34,3	3	k.A.
		31,1	33,2	32,2	34,3	40,2	32	,8	35,2	2	
Mittelwert [MPa, N/mm ²]		30,7	32,5	31,7	32,8	39,7		33	3,1		33
Lagerungsten	nperatu	r [°C]									
		40	40	40	20	40		R	.T.		k.A.

Tabelle 6.4-1:Einaxiale Zylinderdruckfestigkeit und Lagerungstemperatur 3 bis 530 Tage
alter Prüfkörper; R.T.: Raumtemperatur, k.A.: keine Angabe. Prüfkörper, die
bei 40°C gelagert wurden, zeigen in Folge eines höheren
Hydratationsgrades höhere Festigkeiten.

Bohrkerne des in-situ Freifallversuches

Den Kernbohrungen des Versatzkörpers (in-situ Freifallversuch) wurden jeweils drei Prüfkörper aus folgenden Bohrteufen entnommen (mittlere Bohrteufe in Klammern): 0,10 bis 0,20 m (0,15 m), 1,28 bis 1,38 m (1,33 m) und 2,28 bis 2,38 m (2,33 m). Das Verhältnis der Höhe zum Durchmesser der Zylinder betrug demnach nur 1,0 und weicht damit von den anderen Druckfestigkeitsuntersuchungen ab. Die Messungen erfolgten nach einer Abbindezeit von 28 Tagen. Die Messresultate sind, geordnet nach der Bohrungsnummer sowie der mittleren Bohrteufe, aufgeführt in Tabelle 6.4-2.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	AA	NNNN	ΝN	
9M	22343021		AJ			GH	BY	0054	00	DBED

Blatt 45

Bohrung	Ein	axiale Dr	uckfestig	ıkeit	Bohrung	Eina	ixiale Dr	uckfesti	gkeit
Nr.		[MPa, I	N/mm²]		Nr.		[MPa, I	N/mm²]	
	Mittler	e Bohrtei	ufe [m]	Mittel-		Mittlere	e Bohrte	ufe [m]	Mittel-
	0,15 1,33 2,33			wert		0,15	1,33	2,33	wert
5	23,2	21,4	24,3	23,0	10	22,9	17,3	22,3	20,8
4	28,2 22,7 22,2		24,4	9	20,3	21,9	26,2	22,8	
3	26,3	18,0	18,8	21,0	8	24,5	23,2	20,9	22,9
2	27,8	27,9	22,9	26,2	7	25,2	26,0	18,3	23,2
1	27,8	30,2	29,1	29,0	6	29,1	28,4	26,7	28,1
Mittelwert	26,7	24,0	23,5	24,7	Mittelwert	24,4	23,4	22,9	23,5

Tabelle 6.4-2:Einaxiale Druckfestigkeit (Zylinderdruckfestigkeit) des Salzbetons nach
28 Tagen Abbindezeit (in-situ Freifallversuch). Die Lagerung der Bohrkerne
bzw. der Prüfkörper erfolgte bei Raumtemperatur. Die höchste und
niedrigste Druckfestigkeit ist durch Fettschrift gekennzeichnet.

Nach Tabelle 6.4-2 variiert die Druckfestigkeit von 17,3 MPa (siehe Bohrung Nr. 10) bis 30,2 MPa (siehe Bohrung Nr. 1), bei einem gesamten Mittelwert von 24,1 MPa. Die Abweichungen der Festigkeitswerte vom Mittelwert liegen im Rahmen üblicher Streuungen der Messwerte von Normalbeton.

6.5 Dilatanzverhalten und triaxiale Druckfestigkeit

Im Folgenden werden triaxiale Druckversuche beschrieben, die das Ziel hatten das Spannungs-/Verformungs- und das Dilatanzverhalten des Salzbetons zu ermitteln. Die Untersuchungen erfolgten an zylindrischen Prüfkörpern mit einer Höhe von 200 mm und einem Durchmesser von 100 mm, deren Abbindezeit 28 Tage betrug. Die Zylinder lagerten bei Raumtemperatur (21°C) und bei einer relativen Luftfeuchtigkeit von 63 % und wurden vor den Messungen mittels Ultraschall auf Vorschädigungen geprüft.

Der Versuchsdurchführung lag die DIN 18137, Teil 2 /15/ bzw. die Technische Prüfvorschrift Boden und Fels im Straßenbau, Teil C2 /16/ zugrunde. Bei Messungen mit einer Verformungsrate von 10^{-5} 1/s betrug der Manteldruck 2,5 MPa; eine ergänzende Untersuchung erfolgte ohne Manteldruckbelastung. Eine weitere Versuchsreihe umfasste Messungen bei einem Manteldruck von 2,5 MPa und einer Verformungsrate von 2,5 $\cdot 10^{-5}$ 1/s. Zusätzlich wurden Prüfkörper bei einer Verformungsrate von 10^{-6} 1/s bis zu einem Manteldruck von maximal 10 MPa belastet.

Die Zylinder wurden nach dem Einbau in die Triaxialzelle hydrostatisch, bis zur Höhe des jeweiligen Manteldrucks (σ_3) belastet (Kompaktions- oder Temperierphase). Die Druckzunahme betrug 2·10⁻³ MPa·1/s. Ausgehend von diesem Spannungsniveau ($\sigma_1=\sigma_3$) und der Ursprungs-

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.		
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN		
	9M	22343021		AJ			GH	BY	0054	00	DBED	
Verfüllmaterial für Strecken mit hohen Anforderungen – Blatt Materialeigenschaften und Materialkennwerte Salzbeton M2												

verformung ε_1 =0 wurden die Prüfkörper mit den angegebenen Raten verformt. Die Messresultate sind aufgeführt in Tabelle 6.5-1.

Die Bestimmung der Dilatanzfestigkeit erfolgt anhand der Deviatorspannung, bei der mit zunehmender Axialverformung die Volumenverformung ein Minimum aufweist, d.h. eine Volumenzunahme des Prüfkörpers einsetzt. Je größer die Volumendilatanz, desto größer ist die schädigungsbedingte Auflockerung des Materials. Anhand der Messdaten ist erkennbar, dass sich die Dilatanz- und Bruchfestigkeit des Salzbetons nicht signifikant unterscheiden. Beide Materialparameter steigen, wie die Restfestigkeit mit zunehmendem Manteldruck, während der Dilatanzwinkel abnimmt. Darüber hinaus belegen die Messwerte von Prüfkörpern, die mit einem Manteldruck von 2,5 MPa belastet wurden, eine Abnahme der Dilatanz- und Bruchfestigkeit, des Dilatanzwinkels und des Entfestigungsmoduls bei einer Senkung der Verformungsrate. Bei Manteldrücken über 2,5 MPa waren die Materialparameter, die das Dilatanzverhalten des Salzbetons beschreiben, nicht bestimmbar, da die Prüfkörper während des gesamten Verformungsprozess kompaktiert wurden.

			9M	[22	234	130	21						A	J								GH	E	BY	0054	1 00	
rfüll teri	lma ale	ate eig	ria ens	l fü sch	ir S haft	Stre ten	eck i ur	en nd	m Ma	it h atei	ioh rial	nen kei	nn	nfo we	orde rte	eru Sa	ing alzl	en bet	– on	M	2							Blatt
																								Ner-	-40m	esti-	, v.; inder	Ver-
				····					******					4101001010				wannaw	anasana Marana	0000000	potenti	20127020	0000000001	Axia	Ъ	Entt	⁶ 1,Rest rüfkö	bei /olun
															les	-Suc	nicht	ar*						(iid),	Ē	i.pod.:	lina o tier P	erst em \
∍	0		,982	,712	2,866		7,935	,054	,379	,379		3,289	3,516	,468	olde (paktic	tens	mmb		7,016	7,696	,965	,943	o) ل	a de la de l	tt -V	ion c	reise Ich o
			8	7	-		5	~	9	9		4	÷	N	In F(Kom	rerhal	besti		4	4	Q	Ŷ	nnn	с В	ំណ៍ ។ ៣	n o _t , npakt	teilw ηg nε
									~	~		~	~	10	_	_	~	~		0	6	~		alspa	unuu	reich	i Kon	i trat
2	E		0,26	0,25	0,2		0,23 0	0,26	0,27	0,23		0,22	0,15	0,2%	0,2	0,2-	0,23	0,13		0,2(0,2	ы С	0,2	e Axi	/erfol	itsbe	ar bei	Werfo
d.							914.1175																	tende		tigke		hen
fMc	MPa]		331	284	294		.900	145	134	122		.086	220	77	48	32	<u>ы</u>	79		424	643	251	280	orliec	'n	stfes	iysut II, ^{EV} L	umei etrisc
Ш		-					Ś																	nm v	[mav	D He	11111111111111111111111111111111111111	s Vol
Rest	6]		0,0	0,0	0,0		o,	0'(0,0),0		o	0,0	0,0	0,0	0,0	0'(0,0		o	0,	0'0	0,0	inim	0)		Veric (σ _{1.Di}	. Da: der v
£1,1	<u></u>		1	10	10		က	10	1	10		e	10	4	10	7	4	7		S	ъ	10	10	nenr	unut	rmur	enze	mbar tieg (
Rest	Pa]		4	9,6	4,		0	7,7	9,6	9,6		N	υ	0,0	0,0	ω,	0,0	õ		б	6	1.	5,5	Volun	Ispar	Verfo	nzgre	stim: Ans
d,	Z		20	ž	4		e	÷	12	4		CI	Ţ	Ϋ́	ы М	2	స	4		2 2	4	-	18	m.	Axia	Axia	Dilata	ht be dem
тах.	[%]		38	39	90		61	53	01	77		60	02	8	8	88	8	69		61	62	07	02	alten	; =2	1,Rest (gieici Die [h nic 1 aus
-3	Ľ			***	-		0		N	T		0		N	က	က	က	9		0	0	-	-	zverh	<u>(</u> 9)		ex *:	ereio at sich
1,max	[Pa]		3,1	1,3	2,8		4,1	6,4	5,8	5,9		6,7	1.1	2,7	7,2	9,3	7,0	3,2		3,7	6,8	2,7	4,8	atan;	มนทด	Keit 1	I, Ind	(eitsb ergit
8	2		က	က	က		N	N	N	N			N	CV	Q	N	(C)	4		*****	- A	Q	N	lid Di	erton	estigl	vinke	estigk I (ψ)
V,Dil	[%]		,452	,499	,334		,089	,387	,451	,458		,130	,419	,574		ons-	nbar*			,097	,074	,335	,343	s- un	nenvi	Restf	tanzv	lestfe vinke
Ψ			Ŷ	Ŷ	Ŷ		Ŷ	Ŷ	Ŷ			Ŷ	9	Ŷ		pakti	estim			Ŷ	Ŷ	Ŷ	Ŷ	gkeit	/olun	est:	Dilat	tanzv
E1,Dil	[%]		45	,52),81),32	141	,53	,58		37	98	1,96		s Kon	cht be),31),26	0,90	1,15	Festi	p	d.,P	ייין: רו: לי	s- bz Dilat
		51/S		, 	_	51/S			<u> </u>	<u> </u>	6 1/S					je de:	in sna		7 1/s	<u> </u>	_	_	•••••	mnz	ر ال	tand;	nszal	gung . Der
σ1,Dil	MPa]	5.10	33,0	31,3	31,9	0.10	20,4	26,4	25,7	25,9	0.10	14,9	20,9	22,6		n Folg	srhalte		0.10	11,7	12,7	22,5	24,7	tate	(E1 Dil	SUZSI	aktiol	e auf
С	.	ite 2,				ite 1,					ite 1,					 	ξ	ļ	ite 1,					resul	DUI	agen	kontr	in Er send(
Jck g	[Jgsra				Jgsra					ngsra								ogsra					Vess	ormu	Vers	Querl	n de suchs
teldr	[MPa	Inmur	2,5	2°. G	2,5	Inmu	0'0	2,5	2,5	2,5	Inmu	0'0	1,0	2,5	3,5	5,0	7,0	10,0	Inmur	0'0	0'0	2,5	2,5	5-1-				07
lan		/erfc				/erfc					/erfc								/erfc					e 6.5				

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED
Verfüllmat			Blatt 48								

Materialeigenschaften und Materialkennwerte Salzbeton M2

Basierend auf den Angaben zum Manteldruck und der Axialspannungen wurden die entsprechenden Oktaederspannungen (τ) und die mittlere Spannungen (σ) nach Gl. (6.1) und Gl. (6.2) für die Bruchfestigkeit (triaxiale Druckfestigkeit) und die Dilatanzfestigkeit (Dilatanzgrenze) berechnet. Die Resultate enthält Tabelle 6.5-2; ihre graphische Darstellung die Abbildungen 6.5-1 und 6.5-2.

$$\tau = {}^{1}/_{3} \cdot \left[(\sigma_{1} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right]^{0,5} = ({}^{2}/_{9})^{0,5} \cdot (\sigma_{1} - \sigma_{3})$$

(6.1)

(6.2)

 $\sigma = \frac{1}{3} \cdot (\sigma_1 + \sigma_3 \cdot 2) = (\sigma_1 - \sigma_3) / 3 + \sigma_3$

	Triax	iale Bruchfest	igkeit	Di	latanzfestigkei	t					
σ_3	$\sigma_{1,max}$	$ au_{max}$	σ_{max}	$\sigma_{1,\text{Dil}}$	$ au_{Dil}$	σ_{Dil}					
	4		[MPa, N/mm ²]	â						
Verformun	gsrate 2,5·10⁻	⁻⁵ 1/s									
2,5	33,1	14,42	12,70	33,0	14,38	12,67					
2,5	31,3	13,58	12,10	31,3	13,58	12,10					
2,5	32,8	14,28	12,60	31,9	13,86	12,30					
Verformun	gsrate 1,0·10⁻	⁻⁵ 1/s									
0,0	24,1	11,36	8,03	20,4	9,62	6,80					
2,5	26,4	11,27	10,47	26,4	26,4 11,27 10,47						
2,5	25,8	10,98	10,27	25,7	10,94	10,23					
2,5	25,9	11,03	10,30	25,9	11,03	10,30					
Verformun	gsrate 1,0·10⁻	⁶ 1/s			·						
0,0	16,7	7,87	5,57	14,9	7,02	4,97					
1,0	21,1	9,48	7,70	20,9	9,38	7,63					
2,5	22,7	9,52	9,23	22,6	9,48	9,20					
3,5	27,2	11,17	11,40								
5,0	29,3	11,46	13,10	In Folge des	s Kompaktions	verhaltens					
7,0	37,0	14,14	17,00	nic	ht bestimmba	r.					
10,0	43,2	15,65	21,07								
Verformun	gsrate 1,0·10⁻	⁷ 1/s									
0,0	13,7	6,46	4,57	11,7	5,52	3,90					
0,0	16,8	7,92	5,60	12,7	5,99	4,23					
2,5	22,7	9,52	9,23	22,5	9,43	9,17					
2,5	24,8	10,51	9,93	24,7	10,47 9,90						

Tabelle 6.5-2: Axialspannung im Bruchzustand (Bruchfestigkeit) und im Volumenminimum (Dilatanzfestigkeit), Manteldruck sowie berechnete Oktaederspannungen und mittlere Spannungen von Prüfkörpern der triaxialen Druckversuche.

ze) von der mittleren Spannung. Bei Manteldrücken > 2,5 MPa war kein Volumenminimum bestimmbar. Die Prüfkörper wurden bis in den Nachbruchbereich kompaktiert.

6.6 Einaxiale Zugfestigkeit

Die Bestimmung der zentrischen Zugfestigkeit erfolgte nach DIN 1048, Teil 5 /14/ (vgl. /17/, Abschnitt 3.3). Die Zylinder hatten eine Höhe (h) von ca. 170 mm und einen Durchmesser (d) von 80 mm (h : d = ca. 2,1). Die Messgrößen wurden an jeweils drei Prüfkörpern nach einer Lagerungsdauer von 56 und 90 Tagen ermittelt. Die berechneten Mittelwerte finden sich in Tabelle 6.6-1.

Abbindezeit	56 Tage	90 Tage
Finzelmesswerte	1,97	2,89
[MPa_N/mm ²]	2,06	2,98
	2,08	3,23
Mittelwert [MPa, N/mm ²]	2,04	3,03
Lagerungstemperatur [°C]	40	40

Tabelle 6.6-1:Einaxiale Zugfestigkeit und Lagerungstemperatur der 56 und 90 Tage alten
Prüfkörper.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DRED
Vorfüllmot		Diatt 51									

Blatt 51

6.7 Kriechverhalten

Kriechen ist die zeitabhängige Verformungszunahme eines Materiales unter konstanter Spannung. Das Kriechmaß steigt mit der Höhe der kriecherzeugenden Spannung, mit zunehmender Dauer der Lasteinwirkung sowie mit sinkendem Belastungsalter, d.h. je jünger der Beton zum Zeitpunkt der Belastung ist desto größer wird das Kriechmaß. Bei konventionellen Betonen, die nicht kriechfähige Zuschläge enthalten, steigt das Kriechvermögen bei zunehmendem Wassergehalt und steigender Geschwindigkeit des Wasserverlustes. Es sinkt dagegen mit abnehmender Zementsteinporosität, mit sinkendem W/Z-Wert und steigendem Hydratationsgrad (Betonalter). Das Kriechen ist insbesondere zurückzuführen auf Drucklösungserscheinungen der Hydratphasen sowie auf die Verdrängung bzw. Umlagerung von Porenlösung zwischen den Bindemittelteilchen. Im Gegensatz zu konventionellen Betonen weist der Salzzuschlag des Salzbetons selbst ein Kriechvermögen auf. Als Messwerte von Kriechversuchen (Kriechmaße) werden die Längenänderungen des Prüfkörpers ($\varepsilon = \Delta I/I_0$) in Abhängigkeit von der Axialkraft bzw. Kriechspannung (σ_{κ}) sowie der Messdauer erhalten. Zu berücksichtigen ist, dass Kriechmaße vom Schwindverhalten des Baustoffes beeinflusst werden (vgl. Kapitel 6.8).

Die Bestimmungen erfolgten nach DIN 1048, Teil 5 /10/ sowie gemäß Heft 422 des DAfStb (Abschnitt 2.7) /16/. Der Salzzuschlag des Salzbetons bestand aus Flotationsrückstand. Folienstreifen schützten den Salzbeton vor Austrocknen. Bei einer Messreihe betrug die Ursprungshöhe der Prüfkörper 176 mm (I₀) und der Durchmesser (d) 80 mm (I₀:d=2,2). Die Messungen begannen nach einer Abbindezeit der Zylinder von 56 Tagen. Es wurde jeweils ein Prüfkörper mit Kriechspannungen von 9,0 MPa, 11,8 MPa und 13,4 MPa belastet. Die Versuche erfolgten bei 40 °C und 30 % relativer Luftfeuchtigkeit.

Abbildung 6.7-1: Messresultate zum Kriechverhalten des Salzbetons. Die Abbindezeit der Prüfkörper, die mit Kriechspannungen von 9,9 MPa und 10,9 MPa belastet wurden, betrug zu Versuchsbeginn 420 Tage und der Prüfzylinder, die mit 9,0 MPa, 11,8 MPa und 13,4 MPa belastet wurden 56 Tage.

Die zu Messbeginn 56 Tage abgebundenen Prüfzylinder weisen nach 196tägiger Versuchsdauer, entsprechend einer Abbindezeit des Salzbetons von 252 Tagen Verformungen von 3,5 mm/m (σ_{K} 9,0 MPa), 4,7 mm/m (σ_{K} 11,8 MPa) sowie 6,6 mm/m (σ_{K} 13,4 MPa) auf. Die Kriechmaße der vor Messbeginn 420 Tage abgebundenen Prüfzylinder betragen nach den 190tägigen Messungen, d.h. einer Abbindezeit von 610 Tagen 1,8 mm/m (σ_{K} 9,9 MPa) sowie 2,2 mm/m (σ_{K} 10,9 MPa).

Nach Abbildung 6.7-1 nehmen die Verformungen von Prüfzylindern, die identische Abbindezeiten aufweisen bei einem Anstieg der Kriechspannung zu. Prüfzylinder höheren Betonalters kommen bei vergleichbaren Kriechspannungen auf geringere Kriechmaße.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.		
	NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN		
	9M	22343021		AJ			GH	BY	0054	00	DBED	

Blatt 53

6.8 Schwinden

Das Schwinden ist die Volumenabnahme eines erhärteten Baustoffes, welche bei Beton mit dichtem Zuschlag auf eine Reduzierung der Feuchte im Zementstein, d.h. eine Evaporation an Porenflüssigkeit, zurückzuführen ist ("Trocknungsschwinden"). Der Prozess wird demnach ausschließlich durch eine Veränderung des Wasserhaushaltes des Betons verursacht und nicht durch Last- oder Temperatureinwirkung. Das Schwinden ist zu betrachten, da es Eigenspannungen im Bauwerk, Bauteilverkürzungen und -verkrümmungen bzw. einen Verlust an Vorspannkraft verursachen kann. Das Ausmaß des Schwindens, das Schwindmaß, nimmt ab mit der Material-Permeabilität, steigt mit der Temperatur und bei einer Abnahme der Luftfeuchtigkeit.

Hinsichtlich der Beurteilung von Schwindmaßen ist zu berücksichtigen, dass Laborproben auf Grund der geringen Abmessungen und des ungünstigen Verhältnisses von Oberfläche zu Volumen oft stärker schwinden als ein aus dem Baustoff erstelltes Bauwerk.

Die Ermittlung des Schwindverhaltens erfolgte nach Heft 422 des Deutschen Ausschusses für Stahlbeton (DAfStb), Abschnitt 2.6 /17/. Es wurden 3 Serien bestehend aus jeweils 3 Prüfzylindern mit einem Durchmesser von 150 mm und einer Höhe von 300 mm hergestellt. Die Suspensionen wurden nach dem Einfüllen in die Formen verdichtet und mit einer Folie abgedeckt. Nach einer Abbindezeit von 7 Tagen wurden die Prüfkörper entformt, die Stirnflächen versiegelt und die Nullmessungen durchgeführt.

Eine Prüfkörperserie lagerte bei 20 °C und 65 % relativer Luftfeuchtigkeit (Normalklimat 20/65); eine weitere wurde nach 266 Tagen im Normalklimat 20/65 anschließend in gesättigter NaCl-Lösung gelagert. Die dritte Serie lagerte 65 Tage, d.h. bis zu einem Prüfalter von 58 Tagen, bei 20 °C und 40 % relative Luftfeuchtigkeit (Klima 20/40), danach bei 23 °C und 45 % relativer Luftfeuchtigkeit (Klima 23/45).

Die Schwindmaße ε_s der Prüfkörper berechnen sich nach GI. (6.3) aus der Länge der Messstrecke zum Messzeitpunkt (I_t) und der Ursprungslänge der Messstrecke (I₀ = 200 mm):

 $\varepsilon_{\rm S} = (I_{\rm t} - I_0) / I_0$

(6.3)

Die berechneten Schwindmaße sind in Abhängigkeit der Abbindezeit und des Prüfalters in Tabelle 6.8-1 zusammengestellt bzw. in Abbildung 6.8-1 grafisch dargestellt.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	N N	DREM
	9M	22343021		AJ			GH	BY	0054	00	PPhE
Verfüllmat	erial fü	ir Strecken m	it hohen A	Anforder	ungen –						Blatt 54
Materialeig	gensch	haften und Ma	terialken	nwerte S	alzbeton	M2					
Abbinde	zeit	Prüfalter	Klima 2	0/40	Vormalklii	mat	Prüfa	altei	r	Norr	nalklimat
[Tage]	[Tage]			20/65		[Tag	ge]			20/65
7		0	0,00	0	0,000					(0,000
8		1	0,03	4	0,035					(0,038
9		2	0,07	6	0,083					(0,074
10		3	0,11	0	0,153					(0,147
15		8	0,40	8	0,485					(0,466
25		18	0,64	4	0,735					(0,723
38		31	0,831		0,862					(D,861
65		58	1,00	4	0,942						0,957
			Klima 2	3/45							
98		91	1,08	8	1,001						1,013
192		185	1,17	5	1,023						1,048
273		266	1	Nicht best	immt						1,048
							Lage	run	g in Na	aCI-l	_ösung
274		267					1	7		,	1,049
275		268					2			,	1,045
277		270	N	licht hes	immt		4	•		,	1,037
280	280 273			None Des	annin		7	,			1,033
287	287 280						14	4			1,005
301		294					28	8		(0,980
367		360	1,29	6	1,032		94	4		(0,836

Tabelle 6.8-1:Resultate der Schwindmessungen. Sämtliche Messdaten sind angegeben in
der Einheit mm/m bzw. ‰.

Abbildung 6.8-1: Schwindmaße in Abhängigkeit der Abbindezeit der Prüfkörper.

Die Untersuchungen belegen, dass im Klima 20/45 bzw. 23/45 gelagerte Prüfkörper die höchsten Schwindmaße aufweisen. Im Normalklimat 20/65 ist der Schwindprozess bereits nach einer Abbindezeit von etwa 50 Tagen weitgehend abgeschlossen und bei einem Kontakt mit Salzlösung ist eine Volumenzunahme ("Quellen") der Prüfkörper festzustellen. Für das Normalklimat 20/65 kann ein Endschwindmaß von 1,1 mm/m angegeben werden.

6.9 Porosität

Festbetone verfügen über ein Porensystem. Die Ursache ist die Beimengung von Luft, z.B. während des Anmischens, die Fixierung von Wasser in die Kristallstruktur der Hydratationsprodukte, die eine Volumenabnahme ("Schrumpfen") bewirkt sowie das Auftreten von Wasser ("Gel- und Kapillarwasser"), das nicht in die Struktur der Reaktionsprodukte fixiert werden kann.

Der Anteil des Porensystems am gesamten Volumen des Salzbetons, d.h. die totale Porosität, wurde an Proben ermittelt, zu deren Herstellung das Gemisch aus Heißlöse- und Flotationsrückstand Verwendung fand. Die Anfertigung der verdichteten Probekörper mit einer Höhe und einem Durchmesser von 5 cm erfolgte nach DIN 1048, Teil 5 /14/ (vgl. /17/). Nach dem Ausschalen wurden die Proben 6 Wochen bei 20 °C und 65 % relativer Luftfeuchtigkeit gelagert. Die Bestimmung der totalen Porosität erfolgte nach folgendem Arbeitsschema:

- 3stündige Entgasung der gewogenen Proben unter Vakuum
- Einströmen des Sättigungsfluids (gesättigte NaCI-Lösung oder Gleichgewichtslösung Q des Quinären Systems ozeaner Evaporite) bei Unterdruck

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	N N N N N N N N N N	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	ΒY	0054	00	DBED
Verfüllmat	erial fü	ır Strecken mi	ngen –					l	Blatt 56		

Materialeigenschaften und Materialkennwerte Salzbeton M2

- 2stündige Lagerung der Proben bei Unterdruck
- Wägung der Proben
- Trocknung der Proben bei 105 °C bis zur Massekonstanz.
- Berechnung der totalen Porosität nach Gleichung (6.4):

Totale Porosität = $m_{ges} - (m_t - m_K) / (\rho_F \cdot V)$, (6.4)

wobei m_{aes} die Masse der mit dem Sättigungsfluid gesättigten Probe, m_t die Trockenmasse der Probe, m_K die Masse der im Fluid gelösten Komponenten, ρ_F die Fluiddichte und V das Probevolumen ist. Ausfällungseffekte durch die Vermischung der Porenflüssigkeit mit dem Sättigungsfluid wurden berücksichtigt.

Bei einer weiteren Messung wurde konzentrierte NaCI-Lösung mit 0,5 mol/L NaOH bei einem Druck von 6 MPa bis zur vollständigen Sättigung in eine Probe gepresst.

Bei Verwendung einer NaCI-Lösung als Sättigungsfluid ergab sich als Mittelwert von 4 Proben eine totale Porosität von 17,8 %, bei Aufsättigung mit einer Gleichgewichtslösung Q 19,0 % (2 Proben). Die bei einem Druck von 6 MPa aufgesättigte Probe wies eine totale Porosität von 19,0 % auf. Sämtliche Proben zeigen demnach vergleichbare Messresultate. Als Mittelwert ergibt sich für die totale Porosität 18,2 %.

6.10 Porenradienverteilung

Betone können in Abhängigkeit ihres Wasser-/Bindemittel-Verhältnisses mehrere Porenarten enthalten, die auf Grund ihrer Größe und Entstehung unterscheidbar sind. So haben beispielsweise Gelporen, die in den Zwischenräumen des Bindemittelgels eingeschlossen sind Radien von weniger als ca. 0,1 µm. Die Ursache ihrer Bildung ist das im Verlauf des Hydratationsprozesses auftretende Schrumpfen des Baustoffes. Darüber hinaus vorhandenes Wasser oder die bei Salzbetonen auftretende Salzlösung kann dagegen in Kapillarporen vorliegen, die Radien von ca. 0,1 µm bis etwa 100 µm aufweisen. Kapillarporen sind häufig vernetzt. Sie können daher als bevorzugte Fließwege für Lösungen und Gase fungieren.

Im Gegensatz von Angaben zur Gesamtporosität bzw. totalen Porosität erlaubt die Porenradienverteilung eine nähere Charakterisierung des Porengefüges eines Baustoffes und eine Identifizierung der Porenarten. Die Bestimmungen ermöglichen damit auch Rückschlüsse auf die Durchlässigkeit eines Betons sowie Aussagen zum kapillaren Saugvermögen.

Die Untersuchungen erfolgten mittels der Quecksilberdruckporosimetrie in Anlehnung an DIN 66133 /18/ (vgl. /17/). Quecksilber hat eine hohe Oberflächenspannung (484 mN/nm) und ist bei Raumtemperatur eine nicht benetzende Flüssigkeit. Aus diesem Grund dringt es nur unter Druck in poröse Festkörper ein. Die Quecksilberdruckporosimetrie nutzt diese Eigenschaften, wobei die druckabhängige Quecksilberintrusion, d.h. die Abhängigkeit des Queck-

Verfüllmat		Blatt 57									
	9M	22343021		AJ			GH	BY	0054	00	DBED
	NAAN	N N N N N N N N N N N	NNNNNN	ΝΝΑΑΑΝΝ	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	

Materialeigenschaften und Materialkennwerte Salzbeton M2

silbervolumens vom Druck registriert wird. Der aufgewendete Druck ist ein Maß für den Porenradius. Poren mit Radien von weniger als 0,0037 µm, d.h. sog. Mikroporen des Gelporenbereiches, sind mit dieser Methode nicht nachweisbar, ebenso Porenradien > 55 µm.

Verwendet wurden verdichtete und getrocknete Prüfkörper mit einer Abmessung von 10.10.10 mm, die aus Zylindern trocken herausgesägt wurden. Die Abbindezeit des Salzbetons betrug mindestens 42 Tage. Abbildung 6.10-1 zeigt die Prozentanteile des injizierten Quecksilbervolumens in Abhängigkeit des Porenradius (Volumensummenkurve) sowie die differentielle Form der Volumensummenkurve, die den Anteil der Porenradien am Gesamtporenvolumen wiedergibt. Es handelt sich um Durchschnittsverteilungen von 6 Prüfkörpern.

Gelporen im Bereich 0,01 µm dominieren das Porensystem des Salzbetons. Der Anteil von Porenradien > 0,02 µm ist gering. Der Salzbeton weist praktisch keine Kapillarporosität auf. Die mit der Quecksilberdruckporosimetrie messbare Porosität betrug im Durchschnitt 14,2 ± 0,3 %. Sie ist im Vergleich zu den im Kapitel 6.9 beschriebenen Werten geringer, dies dürfte jedoch auf den eingeschränkten Messbereich des Porosimeters zurückzuführen sein.

Abbildung 6.10-1: Porenradienverteilung des Salzbetons dargestellt als Volumensummenkurve und in Prozent des gesamten Porenvolumens (V_{max}).

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED

Blatt 58

6.11 Permeabilität

Die Permeabilität beschreibt den hydraulischen Widerstand eines Festkörpers gegenüber Fluiden. Untersucht wurde die Lösungspermeabilität sowie die Gaspermeabilität an getrockneten Salzbetonproben und an Prüfkörpern, die bei definierter Luftfeuchtigkeit und Temperatur lagerten. Zusätzlich erfolgten Untersuchungen zur Ermittlung des Gaseindringdruckes.

Die Herstellung der zylindrischen Prüfkörper mit einer Höhe und einem Durchmesser von 5 cm erfolgte nach DIN 1048 /14/. Als Salzzuschlag fand das Gemisch aus Flotations- und Heißlöserückständen Verwendung (Größtkorn < 20 mm). Das Ausschalen der verdichteten Prüfkörper erfolgte nach 5 Tagen.

Zum Einsatz kam die Zwei-Kammer-Methode für die instationäre Durchströmung poröser Medien. Bei diesem Verfahren wird der Prüfkörper in eine Druckzelle eingebaut (Abbildung 6.11-1). Die Endflächen des Zylinders sind mit Druckbehältern definierten Volumens verbunden (V1, V2), die mit einem Gas, das nicht sorbiert wird, oder einer entgasten Flüssigkeit befüllt sind. Der Druck des Strömungsfluids in der sog. Eingangskammer (Startdruck p_E) ist höher als der Druck in der Ausgangskammer (Startdruck p_A). Nach dem Öffnen der Kammern liegt somit an den Endflächen des Zylinders ein Druckgefälle an. Ist der Prüfkörper hydraulisch durchlässig, erfolgt ein Druckausgleich, dessen zeitlicher Verlauf ein Maß für die Probenpermeabilität ist. Ein Manteldruck auf die den Prüfkörper umhüllende Gummimanschette verhindert ein Umströmen und ermöglicht Untersuchungen der Probe in Abhängigkeit der Druckeinspannung. Das Verfahren ist insbesondere zur Permeabilitätsbestimmung geringdurchlässiger Festkörper prädestiniert, da eine Volumenstrommessung entfällt.

Abbildung 6.11-1: Schematische Darstellung der Zwei-Kammer-Methode. In Folge der Prüfkörperpermeabilität sinkt der Druck in der Eingangskammer V1, während in der Ausgangskammer V2 ein Druckanstieg zu registrieren ist.

Gaspermeabilität

Verwendet wurden Prüfkörper nach einer Abbindezeit von 92 Tagen, die bei 20 °C und 65 % relative Luftfeuchtigkeit (klimatisiert) lagerten sowie ein Prüfkörper, der zur Ermittlung der maximal möglichen Gaspermeabilität bei 105 °C bis zur Massekonstanz getrocknet wurde. Als Strömungsfluid diente Stickstoff. Bei der Auswertung der Rohmessdaten wurde eine totale Porosität der verwendeten Prüfkörper von 18,1 % berücksichtigt (vgl. Kapitel 6.9).

Da der Einfluss einer Druckeinspannung auf die Permeabilität des Salzbetons am besten am getrockneten Material nachweisbar ist, wurde der Manteldruck und der Strömungsdruck zu Messbeginn im Verlauf der Messreihe stufenweise erhöht. Die Gaspermeabilität wurde jeweils nach 24stündiger und 36stündiger Haltezeit des Manteldruckes ermittelt. Die Resultate fasst Tabelle 6.11-1 zusammen.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	AA	NNNN	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED
Verfülln Materia	naterial fü lleigensch	ir Strecken m naften und Ma	it hohen Iterialken	Anforderu nwerte Sa	ngen – Ilzbeton	M2					Blatt 60
Ma	Inteldruck	[MPa] Str	ömungso	lruck [MPa	a]	G	asperm	eat	oilität [I	m²]	

1,0	0,56	$5,4.10^{-10}$ (24 h) – $5,3.10^{-10}$ (36 h)
2,5	1,5	2,8·10 ⁻¹⁸ (24 h) – 2,8·10 ⁻¹⁸ (36 h)
4,5	3,5	2,3·10 ⁻¹⁸ (24 h) – 2,9·10 ⁻¹⁸ (36 h)
6,5	5,5	1,5·10 ⁻¹⁸ (24 h) – 1,5·10 ⁻¹⁸ (36 h)
8,5	7,5	1,3·10 ^{−18} (24 h) – 1,1·10 ^{−18} (36 h)
10,0	9,0	1,1·10 ⁻¹⁸ (24 h) – 1,0·10 ⁻¹⁸ (36 h)

Tabelle 6.11-1:Gaspermeabilität bei 105 °C getrockneter Prüfkörper in Abhängigkeit vom
Manteldruck und des Gasströmungsdruckes zu Messbeginn. Die
Permeabilitäten wurden jeweils nach 24stündiger und 36stündiger Haltezeit
des Manteldruckes bestimmt.

Festzustellen ist, dass bei einer Zunahme des Manteldruckes die Gaspermeabilität von etwa $5,4\cdot10^{-18}$ m² auf $1,0\cdot10^{-18}$ m² sinkt.

Zur Ermittlung der Gaspermeabilität klimatisiert gelagerten Salzbetons (Normalklimat 20/65) erfolgten Untersuchungen in Abhängigkeit des Mantel- und Strömungsdruckes sowie eine Messreihe (6 Prüfkörper) bei einem Manteldruck von 2,5 MPa und einem Strömungsdruck (Startdruck zu Versuchsbeginn) von 1,8 MPa. Bei den Messresultaten handelt es sich um effektive Permeabilitäten (k_{eff}), die gültig sind für den Sättigungszustand der Prüfkörper. Berechnet wurden zusätzlich die relativen Gaspermeabilitäten (k_{rel}) nach Gleichung (6.5), die das Verhältnis der Permeabilitäten der klimatisiert gelagerten zu den getrockneten Prüfkörpern wiedergibt. Würde die Aufsättigung des Porenraumes mit Lösung keine Veränderung der Permeabilität verursachen, so wäre die relative Gaspermeabilität = 1.

 $k_{rel} = k_{eff} / k_{abs}$

(6.5)

Als absolute Gaspermeabilitäten wurden die am getrockneten Salzbeton bei vergleichbaren Manteldrücken ermittelten Gaspermeabilitäten verwendet.

Die Resultate der Messungen, bei denen der Mantel- und Strömungsdruck variiert wurde, sind dargestellt in Tabelle 6.11-2. Bestimmungen des Sättigungsgrades des Porenraumes wurden an diesen Prüfkörpern nicht durchgeführt.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	NNNNNNNNN	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	NN	
9M	22343021		AJ			GH	BY	0054	00	\mathcal{D}

Blatt 61

Manteldruck	Strömungsdruck	Gaspern	neabilität	Abbindezeit
		effektiv (k _{eff})	relativ (k _{rel})	
[MPa]	[MPa]	[m²]	[m²]	[Tage]
Prüfkörper 1				
2,5	1,3	5,8·10 ⁻²⁰	0,021	48
2,5	1,4	5,5·10 ⁻²⁰	0,020	51
4,7	1,8	1,4·10 ⁻²⁰	0,005	56
Prüfkörper 2	-			
2,5	1,5	2,1·10 ⁻²⁰	0,008	54
10,0	5,6	5,3·10 ⁻²¹	0,005	55
2,5	1,5	9,2·10 ⁻²¹	0,003	56
Untersuchung der G	aspermeabilität bei k	onstantem Mar	nteldruck	
2,5	1,8	2,1·10 ⁻²⁰	0,008	54
2,5	1,8	1,6·10 ⁻²⁰	0,006	96
2,5	1,8	1,5·10 ⁻²⁰	0,005	96
2,5	1,8	3,3·10 ⁻²⁰	0,012	97
2,5	1,8	6,1·10 ⁻²⁰	0,022	137
2,5	1,8	4,9·10 ⁻²⁰	0,018	138

Tabelle 6.11-2: Gaspermeabilität klimatisiert gelagerten Salzbetons bei Variation des Mantel- und Strömungsdruckes.

Bei einer Erstbelastung der Prüfkörper mit einem Manteldruck von 2,5 MPa variiert die Gaspermeabilität zwischen $1,5 \cdot 10^{-20}$ m² und $6,1 \cdot 10^{-20}$ m² (Mittelwert $3,7 \cdot 10^{-20}$ m²). Bei einer Erhöhung des Manteldruckes sinkt die Gaspermeabilität in Analogie zu den Befunden des getrockneten Prüfkörpers. Darüber hinaus belegen die am Prüfkörper 2 durchgeführten Messungen, dass die Permeabilitätszunahme bei einer Absenkung des Manteldruckes nur zu einem geringen Umfang reversibel ist. Zur Veranschaulichung der Befunde zur Gaspermeabilität fasst Abbildung 6.11-2 sämtliche Messresultate graphisch zusammen.

Abbildung 6.11-2: Gaspermeabilität eines getrockneten Prutkorpers sowie im Normalklim 20/65 gelagerter Proben in Abhängigkeit vom Manteldruck.

Lösungspermeabilität

In einem Salzbergwerk können bei einem Lösungszufluss NaCl-dominierte Lösungen sowie bei einem Aufschluss von Carnallitit oder kieseritischem Hartsalz MgCl₂-reiche Lösungen wie die Gleichgewichtslösung IP21 des Hexären-Systems ozeaner Evaporite oder die Q-Lösung des Quinären-Systems auftreten. Bei der Verwendung einer IP21-Lösung als Strömungsfluid ist im Porenraum von Salzbeton eine Ausfällung von Calciumsulfat-haltigen Mineralen zu erwarten. Aus diesem Grund wurde eine Gleichgewichtslösung Q des Quinären Systems ozeaner Evaporite verwendet, die keine CaSO₄-Komponente enthält. Die chemische Zusammensetzung der verwendeten Lösungen ist dokumentiert in Tabelle 6.11-3.

		NaCI-Lösung		Gleid	chgewichtslösi	ung Q
	[g/kg H ₂ O]	[mol/	[Massen-%]	[g/kg H ₂ O]	[mol/	[Massen-%]
		kmol H₂O]			kmol H ₂ O]	
Na⁺	140,34	110,0	10,344	10,64	8,34	0,728
K^{+}	0,00	0,0	0,00	21,75	10,02	1,489
Mg ²⁺	0,00	0,0	0,00	103,27	76,55	7,069
Cl⁻	216,43	110,0	15,952	315,25	160,19	21,578
SO4 ²⁻	0,00	0,00	0,00	10,05	1,88	0,688
H ₂ O	1.000	1.000	73,704	1.000	1.000	68,448

 Tabelle 6.11-3.
 Chemischer Stoffbestand der Strömungsfluide.

ſ		Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
I		NAAN	NNNNNNNNN	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN	
		9M	22343021		AJ			GH	BY	0054	00	DBED
I	Vorfüllmot	orial fü	r Strockon mi	thohon	Apfordoru	ngon						Diatt 62

Materialeigenschaften und Materialkennwerte Salzbeton M2

Die Vorbereitung der Prüfkörper bestand aus einer 3stündigen Entgasung unter Vakuum, der Zugabe der jeweiligen Salzlösung sowie einer 2stündigen Lagerung der Prüfkörper bei Unterdruck. Die Messungen erfolgten bei einem Manteldruck von 2,5 MPa und einem Lösungsdruck von 1,8 MPa. Die Abbindezeit der Prüfkörper, die mit NaCI-Lösung beaufschlagt wurden (5 Stück) betrug zwischen 108 und 113 Tage. Die Messungen mit der Gleichgewichtslösung Q erfolgten an 4 Prüfkörpern, die 117 bzw. 118 Tage lagerten.

Eine Permeabilität des Salzbetons gegenüber NaCl- und Q-Lösung war nicht nachweisbar. Für das angewendete Druckregime ist der Salzbeton hydraulisch dicht.

Auf der Basis der Nachweisgrenze des Messverfahrens, die bei einem Druckabfall von 0,025 MPa in 12 Stunden liegt und den Viskositäten der Lösungen, die $1,5 \cdot 10^{-3}$ Pa·s (NaCl-Lösung) bzw. $6,3 \cdot 10^{-3}$ Pa·s (Q-Lösung) betragen, konnten jedoch Obergrenzen für die Lösungspermeabilität von $6 \cdot 10^{-24}$ m² (NaCl-Lösung) bzw. $3 \cdot 10^{-23}$ m² (Q-Lösung) ermittelt werden.

Gaseindringdruck

Der Gaseindringdruck ist der zur Verdrängung der Porenflüssigkeit im Prüfkörper erforderliche Mindestdruck eines Gases. Er entspricht dem Kapillardruck der größten Poren im Material (vgl. Kapitel 6.9).

Die Untersuchungen erfolgten an gesättigten Proben (Q-Lösung), deren Abbindezeit 113 bzw. 118 Tage betrug. Im Verlauf der Bestimmungen wurde der Gasdruck bei einem Manteldruck von 2,5 MPa beginnend bei 0,2 MPa in Stufen von 0,05 bis 0,075 MPa bis zu einem Maximaldruck von 2,1 MPa erhöht. Abschließend wurde der Manteldruck auf 8 MPa und der Gasdruck auf 7 MPa angehoben.

Es war keine Gasdurchströmung bzw. ein Austritt von Lösung aus den Prüfkörpern feststellbar.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	N N N N N N N N N N N	ΝΝΝΝΝ	ΝΝΑΑΑΝΝ	AANNNA	AANN	ΧΑΑΧΧ	ΑA	ΝΝΝΝ	ΝN	
9M	22343021		AJ			GH	ΒY	0054	00	DBED
 									_	

Blatt 64

7 Thermodynamische Untersuchungen

Zur Herstellung des Salzbetons findet ein Zement niedriger Hydratationswärmeentwicklung Verwendung (CEM III/B - NW/HS/NA) sowie eine Flugasche, die über latent hydraulische Eigenschaften verfügt. Zur Charakterisierung der thermodynamischen Eigenschaften des Baustoffs erfolgten Bestimmungen der adiabatischen Temperaturentwicklung beim Abbinden, der spezifischen Wärmekapazität, der Wärmeleitfähigkeit, des Wärmeausdehnungskoeffizienten sowie Untersuchungen zur Temperaturstabilität.

7.1 Adiabatische Temperaturentwicklung beim Abbinden

Die im Verlauf der Hydratation des Bindemittelsystems (Zement, Flugasche) stattfindenden chemischen Reaktionen sind exotherm. Die entstehende Bildungs- bzw. Reaktionswärme kann zu thermomechanischen Zwangsbeanspruchungen im Versatzkörper und im Gebirge führen. Die Bestimmung der Hydratationstemperaturen erfolgte im Labor unter adiabatischen Bedingungen, bei denen die Temperatur der hydratisierenden Probe proportional zur Wärmemenge ansteigt.

Die Bestimmungen erfolgten in einem adiabatischen Kalorimeter. Der Aufbau des Kalorimeters entsprach im Wesentlichen dem vom Forschungsinstitut der Zementindustrie, Düsseldorf, im Jahre 1970 herausgegebenen "Vorläufigen Merkblatt für die Messung der Temperaturerhöhung des Betons mit dem adiabatischen Kalorimeter" /19/.

Es erfolgten zwei Messungen des Temperaturverlaufs. Eine 7tägige Bestimmung erreichte bei einer Starttemperatur von 28,4 °C eine adiabatische Temperaturerhöhung von 47,7 K. Bei einem weiteren Versuch, der bei einer Temperatur von 20,0 °C begonnen wurde, konnte nach 14 Tagen eine Temperaturerhöhung von 41,1 K festgestellt werden. In Abbildung 7.1-1 sind die Messresultate graphisch dargestellt.

Abbildung 7.1-1: Adiabatische Temperaturentwicklung (Messtemperaturen in Grad Celsius) des Salzbetons im Verlauf des Abbindeprozesses.

7.2 Spezifische Wärmekapazität

Die spezifische Wärmekapazität ist definiert als die Wärmemenge, die je Masseneinheit m bei einer Temperaturzunahme um 1 K aufgenommen wird. Entsprechend den Versuchsbedingungen wird eine Wärmekapazität bei konstantem Volumen (c_V) und konstantem Druck (c_P) unterschieden. Bestimmungen der isobaren spezifischen Wärmekapazität (c_P) des Salzbetons erfolgten im Temperaturbereich von 20 bis 90 °C gemäß DIN 51007 mittels Differentialthermoanalyse (DTA) /20/21/ (vgl. /8/). Als Mittelwert resultiert für den Temperaturbereich von 20 bis 90 °C ein Wert von 0,93 J/(g·K).

7.3 Wärmeleitfähigkeit

Die Wärmeleitfähigkeit gibt an, welche Wärmemenge je Zeiteinheit durch die Flächeneinheit eines Materials von der Dicke d = 1 m bei einer Temperaturdifferenz von 1 K hindurchgeht. Sie wurde mit einem Heizplattengerät nach DIN 52612 ermittelt /22/. Als Probe diente eine Scheibe (Durchmesser 150 mm, Höhe 27,9 mm), die aus einem Zylinder (Durchmesser 150 mm, Höhe 250 mm) mittig herausgeschnitten und anschließend bei 105 °C bis zur Massekonstanz getrocknet wurde. Als Mittelwert aus 4 Proben ergab sich eine Wärmeleitfähigkeit von 1,14 W/(m·K).

	Projekt N A A N	PSP-Element	Obj. Kenn. N N N N N N	Funktion N N A A A N N	Komponente A A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd. Nr. N N N N	Rev. N N	
	9M	22343021		AJ			GH	BY	0054	00	DBED
V auf Uluce at	anial fr			A set a set a set a							

Blatt 66

7.4 Wärmeausdehnungskoeffizient

Der Wärmeausdehnungskoeffizient beschreibt die thermische, d.h. in Folge Erhitzung bzw. Abkühlung, hervorgerufene Längenänderung eines Materials in Bezug auf die Ursprungslänge. Die Bestimmungen erfolgten nach DIN 51045, Teil 1 /23/ an 90 Tage alten Prismen mit den Abmessungen 40·40·160 mm, die aus einem Zylinder (Durchmesser 150 mm, Höhe 300 mm) trocken herausgesägt wurden. Die Prismen wurden während einer 2stündigen Aufheizphase von 40 auf 60 °C erwärmt und anschließend über eine Zeitdauer von 2 Stunden auf 0 °C abgekühlt. Abschließend fand eine Messung bei 40 °C statt.

Die Aufheizung erbrachte einen mittleren Wärmeausdehnungskoeffizienten von $4,8\cdot10^{-5}$ 1/K. Für das Temperaturintervall von 60 °C bis 0 °C (Abkühlungsphase) beträgt der durchschnittliche Wärmeausdehnungskoeffizient $3,2\cdot10^{-5}$ 1/K. Die bleibende Dehnung, d.h. der irreversible Anteil der Längenänderung, betrug nach 24 Stunden, bezogen auf eine Temperatur von 40 °C, 0,367 mm/m [‰].

7.5 Temperaturstabilität

Informationen zur Stabilität des Salzbetons in Abhängigkeit der Temperatur können aus zwei Untersuchungen abgeleitet werden.

- Die zur Bestimmung der Wärmeleitfähigkeit verwendeten Prüfkörper wurden bei 105°C bis zur Massekonstanz getrocknet und zur Abkühlung auf Raumtemperatur in einem geschlossenen Behälter (Exsikkator) gelagert. Der aufgetretene Massenverlust betrug 0,02 %.
- Bei der Durchführung einer DTA/TG-Analyse (Differentialthermoanalyse/-gravimetrie) wird die Probe bei vorgegebenem Temperaturgradienten aufgeheizt und dabei der Massenverlust in Abhängigkeit der Temperatur registriert. Bei der Aufheizung des Salzbetons auf 800 °C wurde ein gesamter Massenverlust von 11,3 ± 0,2 Massen-% gemessen. Der gesamte Wassergehalt des Salzbetons beträgt ca. 13,4 Massen-%.

Es ist davon auszugehen, dass für den Massenverlust in erster Linie Wasser verantwortlich ist, welches chemisch oder physikalisch gebunden ist und thermisch ausgetrieben wird.

Projekt NAAN 9M	PSP-Element NNNNNNNNN 22343021	Obj. Kenn. N N N N N N	Funktion NNAAANN AJ	Komponente A A N N N A	Baugruppe A A N N	Aufgabe XAAXX GH	ua a a BY	Lfd. Nr. N N N N 0 0 5 4	Rev. N N 0 0	DBE

Blatt 67

8 Zusammenstellung der Materialkennwerte

Der nachfolgende Überblick fasst die ermittelten Versuchsresultate für die einzelnen Parameter tabellarisch zusammen. Die Tabellen wurden entsprechend den Versuchsbeschreibungen im Bericht gegliedert:

Ausgangsstoffe und Rezeptur sowie rheologische Untersuchungen

- Rezepturzusammensetzung und Resultate der rheologischen Untersuchungen im Rohrviskosimeter.

Physikalische Untersuchungen

- Resultate zur Festmaterialdichte und zum statischen Elastizitätsmodul.
- Resultate zur Querkontraktionszahl und zur einaxialen Druckfestigkeit.
- Dilatanzverhalten und triaxiale Druckfestigkeit, einaxiale Zugfestigkeit und Kriechverhalten.
- Schwinden, Porosität, Porenradienverteilung, chemischer Stoffbestand der Porenlösung, Permeabilität.

Thermodynamische Untersuchungen

• Adiabatische Temperaturerhöhung beim Abbinden, spezifische Wärmekapazität, Wärmeleitfähigkeit, Wärmeausdehnungskoeffizient, Temperaturstabilität.

-	Pro N A	jekt A N	N	F	SP-I	Elem	nent N N I	NN	C N	0bj. ⊧ N N	Kenn N N	N	F	unktion	JN	Ko	ompo A N	nen N N	te E	Bauę A A	grupp N N N	be i	Aufga	ibe X X		JA A A	Lf N	d. Ni N N	r. N	Rev N N	<u>'.</u> 1	
-	91	4	2	223	343	302	21						I	AJ									GH		I	BY	0	054	4	00)	DBED
Verfüllmate Materialeig	eria Jen	al f SC	ür ha	St fte	re en	cke un	en d I	m Ma	it ł ite	noł ria	nei Ike	n A enr	Anfo nwe	orde erte	eru Sa	ng Izl	ler be	ı – tor	ר א ר	/12											В	latt 68
	1														1								1					0		_		
	 	10	/m³]	9,5	9,5	6,1	44,1	sen-%]	,22	,22	.,53	;,03			 		L	0,31		150	5,2	- 0,6				0	2	6 0,70		5 150	8 2,0	
		+	[kg	31	31	28	1.0	[Mas	16	16	14	53			 	uten		6					1	マン nii		13,4	<u>د</u>	0,7 3,		00 12	,2 2,	
			اء] ا	8	8	5	5,1	n-%]	-	-	7	~			 	90 Min	×	43,6		125	7,2	0,7		ncvola			c	,75 1		50 1	2,2 5	
		9+ +	[kg/n	322,	322,	278,	1.055	Masse	16,3	16,3	14,0	53,3			 	Ŭ,	τ0	9,5		00	0,6				vert)	,9 (4)	×	3,5 0		125 1	3,6	
								%] [Ñ		-	-					12	τ_0	20,9		100	6,7	
	/cm ^{3.}	+4	[kg/m³]	324,5	324,5	274,7	1.060,6	assen-	16,35	16,35	13,85	53,45					L	0,40		150	4,0		1 1 1 1		tes vol	10)	Ľ	0,80		150	0,9	
	n 1,0 g						` 	Ž					,		d (< 20	iten			[m 00			- 			rgenal	14,5 (+	×	1,3		0 125	0 1,6	
	ing voi	+3	J/m³]	25,4	25,4	72,8	63,5		3,38	3,38	3,73	3,52			skstand	0 Minu	×	23,4	[bar/1(125	5,8	0' 0'		/	vvasse	`	ۍ ۲0	79 7,4		50 100	2 3,0	
	enlösu		[kc	32	3	2	1.0		9	۹	÷	ទី			onsrüc	Ō		5	nweite	0					g des	(9+)	×	, 0,		25 15	,9 1,	
	ler Por		ມ _ີ ງ]	~	~		2	l%-u	4	4	4	8			Flotati		τ ₀	24,	hrnenr	10) б		111		elcnun	14,1	د 0	1,7 1		100	3,6 1	
	ichte c	0	[kg/n	328	328	267	1.07	Vasse	16,4	16,4	13,4	53,6			ßlöse-/		c	44	der Ro	50	ۍ	0			e ADW		۲	0,83 1		150 、	1,1	
	einer D							%] [I					;	,	ch Hei	u		°,	igkeit (7	ĉ				centual	3,9 (+4	×	1,5 (125	1,9	
	t auf €	7	kg/m³]	329,7	329,7	263,1	.077,7	assen- ⁽	16,49	16,49	13,15	53,87	-	oitel 4.	Gemis	Minute	×	17,3	bhäng	125	5,0	0,8			017) o		<u></u> 2	8,5		100	3,9	
	basie		_				~	Ξ					2	gl. Kap	chlag (30			te in A				101010		ssen-%	0	c	0,83		150	. 1,4	
	kg/m ³	က္	/m³]	0,7	0,7	1,1	80,7		,51	,51	,03	,95	•	ter (vo	alzzus		t 0	22,9	cverlus	100	8,0	, , , ,	h		In Ma	13,4	×	0 2,1		0 125	9 2,4	
			[kg	33	33	26	1.0		16	16	13	53		55 m ³	s S S S S S S S S S S S S S S S S S S S			2	stdruc	0	_	'' ''	45 m ³	ח פבוד	genait		n T	,74 9,	_	50 10	,6 4	
	setzur]]]	5	ۍ	-	J.	1-%]	<i>е</i>	с С	2	2		g von			n	0,4	Minde	15	4,(0.1	g von		vassei	2 (-2)	¥	3,0	100 m	125 1	2,6 1	
	ammer	4	[kg/m	331,	331,	259,	1.083	Vassei	16,5	16,5	12,9	54,0	-	im Ro eistun		nuten	~	1	te und	25	7	0	eistun	79122	~	13,	t0	10,1	te [ban	100	5,0	
ptur	nrzuse							6] [ľ						örderl		0 Mir	×	20	verlust	1	'n	, , , , , , , , , , , , , , , , , , ,	örderl			(1	ح	0,75	verlust	150	1,8	
Reze	Rezept	φ	(g/m³]	333,3	333,3	255,1	089,4	ssen-9	6,57	6,57	2,68	54,17		suchu iner F			.0	9,9	förder	00	Ĺ,	<u>ان</u>	iner F			2,9 (<u> </u>	×	3,0	förder	125	2,9	
fe und	g der F		×.				1.	[Ma				4,		Unter bei ei			6	ž	Druck	=	റ					-	1 0	14,6	Druck	10 10	5,6	
Ausgangsstof	Die Berechnung			Zement	Flugasche	Wasser	Salzzuschlag		Zement	Flugasche	Wasser	Salzzuschlag	- - - -	Rheologische Fließverhalten	 	Versuchsdauer	Fließ-	parameter	Prognostizierte	DN	Druckverlust	Mindestdruck	Fließverhalten				Fließ-	parameter	Prognostizierte	DN	Druckverlust	

Tabelle 8-1:Zusammenstellung der Materialparameter. Rezepturzusammensetzung und
Resultate der rheologischen Untersuchungen im Rohrviskosimeter

Artificitie: Friend in the first of the		Pro N A 91	ojekt A A N M	N N 2.2		P-Ele N N N 1 3 (men INN)21	N N	N	Dbj. Ke N N N	nn. N N	N	Funk N A A A,T	A N	N	Kom A A I	pone N N I	nte NA	Baug A A	grupp NNN	X /	ufgat A A X GH		UA A A BY	Lfd. N N	Nr. N N 5 4	Rev. NN	Þ	B		
Color Color Frictiter F-Huturg (Qri, Kaptiel 4.2.1) Procentuale Alwelchung Gei, Kasengelanles vom Solweit +10 Frictiter F-Huturg (Qri, Kaptiel 4.2.1) +10 Frictiter F-Huturg (Qri, Kaptiel 4.2.1) 0.3.5 (9.6 cm) 6.5.7 cm 9.2.6 (5.3 cm) Grüce Fleiden jer V. Treiter-Offung -10 -10 -10 -10 Austificitier F 6.7.3 cm 6.8.7.5 cm 6.9.7.5 cm 9.2.6 (5.3 cm) 9.2.6 (5.3 cm) Austificitier F 6.7.7 and (4.8 cm) 0.3.6 (9.6 cm) 6.5.7.1 and (4.2 cm) 9.2.6 (5.3 cm) 9.2.6 (5.3 cm) Austificitier F 0.5.7 cm 0.6.0 cm 6.6 cm 7.0.5 9.2 cm <	Verfüllmat Materialeio	eria	al fü nsch	ir S haft	Stre	eck	ker nd	n m Ma	it I ate	hoho	en	Ar חחע	nfor	de e S	run Sali	ige zbi	n - eto	- on N	v12			-				-		Blat	t 69		
sungen (V-Trichter-Prüfung, Ausbreitmaß, Setzfließmaß, Fließwinkel) sowie Ergebnisse der Untersuchungen zum Sedimentationsverhalten; * nach 60minütiger Scherbeanspruchung in einem modifizierten Betonmischer; ** nach 180minütiger Scherbeanspruchung in einem modifizierten Beton-	Trichter-Prüfung (vgl. Kapitel 4.2.1, Tabelle 4.2.1)	C Procentuate Advertishing des wassetigenates voln Soliment	Größe (Fläche) der V-Trichter-Öffnung	Ξ 9 Ξ 9 Ξ 9 Ξ 9 Ξ 9 Z 2 (9,6 cm ²) 0 3,5 (9,6 cm ²) 6,5.7,5 cm (48,8 cm ²) 0 4,4 (15,2 cm ²) 0 3,5 (9,6 cm ²) 0 2,6 (5,3 cm ²) Ξ	2 U G U S Ausfließzeit 1,63 s 8,03 s 1,33 s 4,37 s 7,43 s 13,40 s 9	U U G B W Ausbreitmaß nach DIN 1048, Teil 1 (vgl. Kapitel 4.2.2, Tabelle 4.2-2)	08 bit si) B Abbindezeit 0 Minuten 30 Minuten 45 Minuten 60 Minuten 90 Minuten D	Image Image	10. S P J; P Temperatur 28 °C 20,8 °C 24 °C 20,8 °C 28 °C 28 °C 28 °C 72 °C 28 °C 72	道 マ ユ 平 同 Setzfließmaß nach SVB-Richtlinie (vgl. Kapitel 4.2.3, Tabelle 4.2-3) a ユ ユ の D Moscomobalt in Moscom 8. (Personational Abundation			da d		de n de rei de la lontersuchungen zur Kornsedimentation und zur Überschusslösung (vgl. Kapitel 5)	Die D	u u a b Sedimentationsversuch in einer vertikalen Rohrleitung (vgl. Kapitel 5.1.1)	👼 😨 🗴 🖶 📮 Die Proben einer Salzbetonsäule wiesen vergleichbare Konsistenzen und Lösungsanteile auf. Sedimentations- bzw. Entmischungserscheinungen 🦷 👿	in South Sind demnach auszuschließen.	a a S B Sedimentationsversuch bei veränderten Wassergehalten (vgl. Kapitel 5.1.2)	a o i f S An Prüfkörpern von Suspensionen mit einer Wassergehaltsabweichung von -4 bis +10 % vom Sollwert waren visuell keine Sedimentations- bzw.	a si	o o o o o begutacriturig von bonnkernen des in-situ Frenanversuches (vgl. Kapitel 3.1.3) O o o Solotation der üher eine Höhe von 37 min eine Schelung verefürst wurde zeinte noch dem Abhinden eine hömonene Komverteilung	Be of 3 0 a by a Bestimmung der sedimentationsstahilen Konnnrikte (vol Kanitel 5.1.4)	a a H X Field A Subjection and the second and the s	며 한 열 월 월 . [Wassergehaltsabweichung vom Sollwert von -6 % bis +10 % nicht zu erwarten sind.	sten wink ;* n Be	nzm. el) s ach che ton-	es- sowi r; **	e	

yzw. des Zylinderdurchmessers (konstante Füllhöhe, 2000 mm) 30 30	200 mm 300 mm 500 mm	314 cm^2 707 cm^2 1964 cm^2 3	62,8 Liter 141,4 Liter 392,7 Liter 5	ne der Flüssigkeitsschicht [mm] Z		2 2 3 - 4 eire	اللاق ۲	9 9	9 10 em	10 10 10 10	6 10 <u>9</u> -10 <u>8</u>	*I	te Betonoberfläche, 122 cm²; Zylinderdurchmesser 125 mm)	4.000 mm (49,1 Liter) 6.000 mm (73,6 Liter) 8	he der Flüssigkeitsschicht [mm]	2 2	5 5	6 6	8 10	7 - 8 9	7 8-9	*1
keit der Betonoberfläche b	100 mm	79 cm ²	15,7 Liter	Höh	1	2	3	9	9	9	9	*	keit der Füllhöhe (konstan	(24,5 Liter)	Höh	2	2		8	- 8	7	*
sslösung in Abhängigk	50 mm	20 cm ²	3,9 Liter		L	2	3	9	6 – 7	8	7 – 8	*1	sslösung in Abhängigk	2.000 mm				9	ω	- 7	7	
öhe der Überschu ol. Kanitel 5.2.1)	dinderdurchmesser	stonoberfläche	illvolumen	andzeit [Stunden]								; (4 d)	bhe der Überschu al. Kap. 5.2.2)	Ilhöhe (-volumen)	andzeit [Stunden]	5					•	

Tabelle 8-3:Zusammenstellung der Materialparameter. Untersuchungen zur Bildung von
Überschusslösung. Index *: Die Baustoffoberfläche ist feucht, die Höhe der
Flüssigkeitsschicht jedoch nicht messbar.

			F	Projek A A	at N I	P	SP-E	leme N N	nt N N N	N N	Obj. ⊭ N N	(enn. N N N	I N	Funl N A A	tion A N	N	Kom A A N	onei N N N	nte I A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd. N N N N	r. N	Rev. N N	ndea
			9	9M		223	343	02	1					AJ							GH	BY	005	4	00	DDEE
/erf ∕/at	füllı eria	ma alei	ter iae	ial nso	für cha	St St	rec en ι	ke Ind	n n I M	nit I ate	hoł ria	nen Ikei	⊢Ar nnv	nfor veri	der te S	run Sal	ige zbe	n – eto	n N	И2						Blatt 71
			<u> </u>																	 						
	50 mm	6.110 mm		2	4	5	12	6	*	*	*	*		co ₃ ²⁻	[g/L] [Massen-%]		0,12 0,01		0,10 0,01							
apitel 5.2.3)			 											SO4 ²⁻	[Massen-%]		0,13		0,15							
2 Liter) (vgl. Ka	100 mm	1.530 mm	chicht [mm]	2	3	6	8	8	8	7	6 – 7	9			en-%] [g/L]		73 1,61		21 1,89							
Füllvolumen, 1			ler Flüssigkeitss										tel 5.4)	G	[g/L] [Masse		204,10 16,		211,00 17,2							
he (konstantes	200 mm	380 mm	Höhe d	1	3	5	8	6	6	8	7	6 – 7	sung (vgl. Kapit	Ca ²⁺	[Massen-%]		0,37 2		0,29							
t der Füllhöl			1 1 1 1 1 1 1										erschusslös] [g/L]		4,46		3,52							
Abhängigkei	300 mm	170 mm		< 1	3	9	9	5	4 – 5	4	3 – 4	S	oren- und Üb	×⁺	[Massen-%		3,18		3,26							
slösung in													tand der Po] [6/L]	eton	38,72	Salzbetons	40,00							
der Überschuss	erdurchmesser	he	zeit [Stunden]										iischer Stoffbest	Na⁺	-] [Massen-%	lösung des Salzb	35 8,64	chusslösung des	23 8,99							
Höhe	Zylind	Fülhö	Stand	1,5	5	ø	14	23	47	95	119	143	Cherr		[g/l	Poren	105,	Übers	110,							
Tab	elle	e 8 [.]	-4:		2	Zus Übe Übe	san ers ers	nm chi chi	ens JSS	ste lös	llur sun sun	ng c g s a. l	der owi nde	Ma ie z ex *	iter :um *: D	ialp 1 cł Die	bar her Ba	arr nis usi	iet ch tof	er. Unt en Sto foberfla	ersuch ffbesta äche is	nung Ind It fe	gen z der F ucht	zur Por . di	[·] Bilo ren- ie H	Jung von und löhe der

Flüssigkeitsschicht jedoch nicht messbar.

erfü ate	illmat rialei	eria ger	al 1 1sc	für :ha	Str fte	ecl n u	ken nd	mi Mat	t ho teria	ohe alke	n A enn	nfo we	orde rte	erur Sal	nge Izbe	n – eto	n №	12								Blatt 72
	`	-				1	1	1		-		1	1	1	1										<u>. </u>	
			050	23.900	k.A.	N/mm ²)		Mittelwert	22.600	25.200	25.400	28.200	28.700	26.020			65 Tage		It bestimmt	17.700	ut hactimmt			56 Tage	15.370	
			7/N	19.700	R.T.	en in MPa,	r [m]	,48	.420	.000	.080	.680	.100	.260		ons	28 Tage 1	e < 20 mm)	nich		40:0			-		
070 kn/m ³			707	n.b.	I	ige, Angab	- Prüfkörpe	~ 7) 22) 24) 27) 29) 28) 26	(mm²)				25.080	19.260	22.680	23.610		28 Tage	20.850	
			an	14.900		lezeit 28 Ta	hrteufe der	1,48	23.090	25.300	25.890	26.450	30.000	26.150	in MPa, N	des Salzbei										
t delagerte Dr			00	n.b.		sratur, Abbind	Mittlere Bo	0,30	22.410	26.210	23.300	28.360	28.000 25.660	°C, Angaben	Abbindezeit o	14 Tage	nd (Korngröße	8.040	10.460	9.510	10.020	ße < 2 mm)	14 Tage	7.120		
ftfeuchtinkei			42	n.b.	1	Raumtempe	L I I I I I I I I	ohrung Nr.	10	6	ω	7	9	littelwert	erung bei 20			löserückstar		mt			ind (Korngrö			
130 % relative 1	(apitel 6.2)	oc	70	11.700/12.400	20 °C/R.T.	ies (Lagerung bei		Mittelwert Bo	21.100	21.600	25.400	24.800	33.800	25.340 N	Prüfkörper (Lage		7 Tage	otations- und Heiß	8.950	nicht bestim	1.180	7.780	Flotationsrücksta	7 Tage	1.870	
	Teil 5 (vgl. l	rurkorper	4	9.700	20 °C	in-situ Freifallversuch	per [m]	2,48	19.590	22.030	2.030 0.050	24.660	37.000	26.670	hergestellte	alt	^{[3}] [Massen-%]	Gemisch Flo	12,9	13,4	13,9	14,5	alzzuschlag		13,4	
5 kn/m ³ h	DIN 1048,	rgestellte F	,	4.200	20 °C		ler Prüfkör	· · · ·	30	00	10	00	20	80	skosimeter	Nassergeh		zzuschlag	~	7	6	0	S		7	
Mittel 1 06	dul nach l	Dzesses ne	s	800	20 °C	zkörper de	Sohrteufe c	1,4	22.2	19.390 23.40	22.7	24.5	33.0	25.1	im Rohrvi		rt [kg/r	Sal	25	26	27(29			26	
nat 20/65 im	istizitätsmo	des Mischpr	agej	h, N/mm²]	peratur	dem Versal	Mittlere E	0,30	21.410		23.430	25.140	31.460	24.170	lerversucher	Abweichung	vom Sollwe		4	_	4	0				
ei Normalklir	tatischer Els	1 Anschiuss	i) nezennigo	esswert [MP	agerungstem	ohrkerne aus		Sohrung Nr.	5	4	З	2	1	Mittelwert	ach den För	Prozentuale	Vassergehalt		Ī	J	÷	+			C	

Resultate zur Festmaterialdichte und zum statischen Elastizitätsmodul; R.T.: Raumtemperatur; n.b.: nicht bestimmt; k.A.: keine Angabe.

ateria	alei	gen	ISC	ha	ftei	n u	nd	Ma	ate	rial	ker	nnv	ver	te	Sa	lzb	eton	M2							
		neter					(E			10,0	0,13			530	33	k.A.	(mm²)	Aittelwert	20,8	22,8	22,9	23,2	28,1	23,5	
		hrviskosii	9r	165	0,28*		3e < 2 mi			7,0	0,23			270	33,1	R.T.	n MPa, N	2					•		
		en im Roi	Prüfkörpe				(Korngröl			5,0	0,21			252	39,7	40	ngaben ir	2,33	22,3	26,2	20,9	18,3	26,7	22,9	
		wersuch	gestellte				ickstand		1,0.10 ⁻⁶	3,5	0,21			 	1,7	_	Tage, Ar	,33	7,3	1,9	3,2	6,0	8,4	3,4	
		len Förde	her	156	,30**		otationsri			2,5	0,25		-	06	32,9/3	20/4(ndezeit 28		-	N	0	N	N	7	
		Nach				∋i 20 °C	uschlag Fl			1,0	0,19			56	32,5	40	atur, Abbii	0,15	22,9	20,3	24,5	25,2	29,1	24,4	
		 		~		gerung b∈	, ** Salzz	8 Tage		0'0	0,22			42	30,7	40	imtemper	ng Nr.	0	6	8	7	9	Iwert	
		es es		ñ	0,3	La	< 20 mm)	körper 2		0	0,28	pitel 6.3		- - - - - - - - -	1,2		g bei Raı	Bohru	1				v	Mitte	
		lischprozess	rüfkörper	14	0,33*		Korngröße <	zeit der Prüt).10 ⁻⁵	2,5	0,27	il 5 (vgl. Ka		28	23,4/30,4/2	20/40/R.T	es (Lagerun,	Mittelwert	23,0	24,4	21,0	26,2	29,0	24,7	
		uss des N	estellte P		*0		ckstand (, Abbinde	1,0		0,26	1048, Te	körper	14	18,8	20	llversuch	33	4,3	2,2	3,8	2.9	9,1	3,5	
		n Anschli	herg	~	0,3		eißlöserü	pitel 6.5)		0,0	0,25	ach DIN	ellte Prüt	L	,66	20	itu Freifal	2	5	2	18	5	Ъ З	2:	
	oitel 6.2)			ი	0,19*		H pun -st	e (vgl. Ka	10 ⁻⁵	5	0,25	drisch) r	hergest		48 6	0	er des in-	1,33	21,4	22,7	18,0	27,9	30,2	24,0	
	(vgl. Kag	 					Flotation	kversuch	2,5	2	0,26	eit (zylin	prozesse		1,1	2 C]	satzkörpe				•				
	onszahl	 		age]			Gemisch	aler Druc	te [1/s]	[MPa]		ckfestigk	tes Misch	age]	a, N/mm²	oeratur [°	dem Ver	0,15	23,2	28,2	26,3	27,8	27,8	26,7	
	Querkontrakti	- 		Vbbindezeit [Ta	Aesswert [–]		Salzzuschlag	Resultate triaxi	/orformungsra	Manteldruck တ	Aesswert [–]	Einaxiale Drug	m Anschluss c	Abbindezeit [Ta	Aesswert [MP¿	-agerungstem	3ohrkerne aus	Bohrung Nr.	5	4	3	2	1	Mittelwert	

Raumtemperatur; n.b.: nicht bestimmt; k.A.: keine Angabe.
/				.		54.	2 U د مارد	4 L	~	4 -	<u>_</u>	<u> </u>	^	A	ں ام ر									GH		נם	- -	05	+	00	
Vertuili Materia	nat alei	eri gei	ai nso	cha	afte	tre en	cke un	en d N	mi Ma	ter	on iall	en kei	AI חחי	nio Ne	rte	ert Sa	alz	jer be	ı – tor	۱N	12										Blatt 74
					2	2	80		35	4	ი	ი		60	6	8						9	96	5	с С						
		⇒	<u> </u>		8,98	7,71	12,86		57,93	7,05	6,37	6,37		48,28	13,51	2,46		*				47,01	47,69	6,96	6,94		40 °C		age)		
		EntfMod.	[MPa]		331	284	294		2.900	145	134	122		1.086	220	77	11,40	13,10	17,00	21,07		424	643	251	280		temperatur		ezeit 610 Ta	2,2 (10,9	
		E1,Rest	[%]		10,0	10,0	10,0		3,0	10,0	10,0	10,0		3,0	10,0	10,0	10,0	10,0	10,0	10,0		5,0	5,0	10,0	10,0		, Lagerungs		gen (Abbind		
		σ1,Rest	[MPa]		20,4	20,6	18,4		3,0	19,7	19,6	19,6		2,2	11,5	19,0	25,0	27,3	35,0	41,0		5,9	4,9	17,7	18,5		eit 90 Tage		ach 420 Tag	1,8 (9,9)	
		tmax	Pa]		14,42	13,58	14,28		11,36	11,27	10,98	11,03		7,87	9,48	9,52	11,17	11,46	14,14	15,65		6,46	7,92	9,52	10,51] Abbindez		Ñ.	(†	
		Gmax	N		12,70	12,10	12,60		8,03	10,47	10,27	10,30	7	5,57	7,70	9,23	11,40	13,10	17,00	21,07		4,57	5,60	9,23	9,93		IPa [N/mm ²	5	it 252 Tage	6,6 (13,4	
		E1, max	[%]		1,38	1,39	1,06		0,61	1,53	2,01	1,77		0,60	1,02	2,00	3,03	3,88	3,03	6,69		0,61	0,62	1,07	1,02		3,03 M		Abbindeze	7 (11,8)	
	l 6.5)	σ _{1,max}	[MPa]		33,1	31,3	32,8		24,1	26,4	25,8	25,9		16,7	21,1	22,7	27,2	29,3	37,0	43,2		13,7	16,8	22,7	24,8		ur 40 °C		96 Tagen () 4,	
	'gl. Kapite	τ_{Dil}	Pa]		14,38	13,58	13,86		9,62	11,27	10,94	11,03		7,02	9,38	9,48		sus				5,52	5,99	9,43	10,47		gstemperat		Nach 1	3,5 (9,(
	stigkeit (v	مDil	2		12,67	12,10	12,30		6,80	10,47	10,23	10,30		4,97	7,63	9,20		insverhalte	oar*.			3,90	4,23	9,17	9,90		, Lagerun			a])	
	le Druckfe	EV, Dil	[%]		-0,452	-0,499	-0,334		-0,089	-0,387	-0,451	-0,458		-0,130	-0,419	-0,574		Kompaktic	nt bestimm			-0,097	-0,074	-0,335	-0,343	Kapitel 6.6	eit 56 Tage	6.7)		nnung [MP	
	und triaxia	E1, Dil	<u>_</u>	5·10 ⁻⁵ 1/S	1,45	1,52	0,81)·10 ⁻⁵ 1/S	0,32	1,41	1,53	1,58)·10 ⁻⁶ 1/S	0,37	0,98	1,96		Folge des	nict)-10 ^{-/} 1/S	0,31	0,26	0,90	1,15	jkeit (vgl.] Abbindez	gl. Kapitel		(Kriechspa	
	/erhalten t	01,Dil	[MPa]	ngsrate 2, [£]	33,0	31,3	31,9	ngsrate 1,(20,4	26,4	25,7	25,9	ngsrate 1,0	14,9	20,9	22,6			r		ngsrate 1,0	11,7	12,7	22,5	24,7	: Zugfestic	Pa [N/mm ²	rhalten (v		ß [mm/m]	
	atanzv	σ ₃	MPa]	rformu	2,5	2,5	2,5	rformu	0,0	2,5	2,5	2,5	rformu	0,0	1,0	2,5	3,5	5,0	7,0	10,0	rformu	0,0	0,0	2,5	2,5	naxiale	2,04 MI	iechve		echma	

Tabelle 8-7:

Zusammenstellung der Materialparameter. Physikalische Untersuchungen. Dilatanzverhalten und triaxiale Druckfestigkeit, einaxiale Zugfestigkeit und Kriechverhalten. Axialspannung im Volumenminimum ($\sigma_{1,Dil}$), Axialverformung ($\epsilon_{1,Dil}$), Volumenverformung ($\epsilon_{V,Dil}$); bei mittlerer Spannung (σ_{Dil}) aufnehmbare Oktaederspannung (τ_{Dil}). Axialspannung ($\sigma_{1,max}$) und -verformung ($\epsilon_{1,max}$) im Bruchzustand; bei mittlerer Spannung (σ_{max}) aufnehmbare Oktaederspannung (τ_{max}); $\sigma_{1,Rest}$: Restfestigkeit bei $\epsilon_{1,Rest}$ (Axialverformung im Restfestigkeitsbereich); Entf.-Mod.: Entfestigungsmodul; v: Querkontraktionszahl; ψ : Dilatanzwinkel

	rfül	llm		9ľ	۷ ما f	2 iiir	223 Ct	43 ro		1 	mit	hc	h	<u></u>	۸r	Au	J rde		na	on					GH		Βĭ	00	154	00	Blatt 75
Ma	ter	iale	eig	len	SC	ha	fte	n ı	unc	d N	late	eria	alk	en	inv	ver	te	Sa	alzl	bet	on	Μ	2								Diall 75
	67	60		296		332		336		6	1				1 1 1				1			Ize									
	ñ	ო		1,		1,0		õ		8,2 %					 	/ 9,0	10 ⁻¹⁸	10 ⁻¹⁸	- - - -	(У		sgrer		Istritt							
	301	294						0,980		ittel 1					- - - -	10,0	1,1.	1,0 ,	- - - -	eldru		chwei		an Au							
	37	õ	eit)				sung	05		im N										Mant	21	er Nac	slösu	DZW.							
	5	ñ	:htigk		n/m.		CI-Lö	1,0		osität					- 	5 S	8	80		ikung	2·10	isis de	wicht	t grung t							
	280	273	ftfeuc	nt	,1 mn	ц	in Na	1,033		Por					 	5/7,	3·10 ⁻	1·10 ⁻	1	(Sen	ດົ	ler Ba	eichge	Istron							
	17	20	el. Lu	estimr	naß 1	estim	srung	37								σ	-	-		5/1,5		Auf o	² (Gl	durch							
	2	2	-5 % r	cht be	windr	cht be	Lage	1,0		aOH)		igbar.							1	Ņ		isbar.	0_ ²³ m	e Gas							
	275	268	ς Υ	L	ndsch	. <u> </u>		1,045		N/L N		chläss				5,5) ⁻¹⁸) ⁻¹⁸				Ichwe	v. 3.1(n kein							
	74	67	t5 (23		9it); El			049		,5 mc		/ernac	%		- - - - -	6,5 /	1,5.1(1,5.1(~		cht na) bzv	rober							
	2	Ñ	a 23/4		htigke			3,1,0		mit 0		it ist v	0,3 %		- - - - - -				körpei) / 5,6	·10 ⁻²¹	Q	ösung	gten F							
	273	266	Klim		ftfeuc			1,048		isung		orosită	14,2±		 		~	~	Prüf	10,0	5,3	ösung	laCI-L	esättig							
	92	85		175	ve Lu	023	gkeit)	048		aCI-Lö		illarpo	sität `			5/3,5	·10 ⁻¹⁸	·10 ⁻¹⁸	gertei			ichtsl	m ²	ð O O							
	Σ	-		8 1,	relati	1 1,	uchti	3 1,		% (N		e Kap	ntporo		 	4	5.0	2,6) gela			hgew	10 ⁻²⁴	osunç							
	98	91		1,08	65 %	1,00	Luftfe	1,01:		19,0		ц. Д	esan		 				igkeit	/ 1,8	10 ⁻²⁰	Gleio	/on 6	vichtsl							
	65	58	(eit)	004	°, C	942	lative	,957				minie	die G			/ 1,5	10 ⁻¹⁸	10 ⁻¹⁸	feuch	4,7	4	g und	äten	chgev							
			chtigł	4 1	/65 (2	5	% re	0		(6		nm do	oetrug		S	2,5	2,8.	2,8.	e Luft			Lösun	eabilit	t Glei							
	25	18	uftfeu	0,64	lat 20	0,73	C, 65	0,72		ösun		0,01	h (mu		körpei				elativ	ω		VaCI-	perm.	en mi							
	10	ო	rel. L	,110	alklim	,153	。 (20	,147		% (Q-L		U VON	ois 55		Prüf	56	-18	-18	5 % 1	bis 1	0_20	Von	sounds	bei d	_						
			40 %	0 9	Norm	0 ო	20/65	4		9,0 %	()	Radie	, µm t		neter	0/0	4 10	.3·10	°C/6	5 / 1,3	3,7·1	gunpu	ale Lö	ar, da							
	6	2	ູ່ ດ	0,07		0,08	limat	0,07			el 6.1(mit	,0037		etrock	Ļ	5	5	65 (2)	3		erwer	axime	allotot							
	ω	-	/40 (2	034		035	rmalk	038			(apite	porer	ers (0	11)	ŝ				at 20/			bei ∨	ich m	t besti m foc	5						
6.8)	- 		na 20	0		0	٩	0	(6	ng)	vgl. Þ	n Gel	simet	tel 6.1	ei 105	[MPa]	h [m²	h [m²	alklim	[MPa]		<i>it</i> war	ben s	r nichi							
apitel	7	0	Klin	0,0		0,0		0,0	itel 6	-Lösu) bun	ird vo	: Poro	Kapi	nes be	Iruck	ck 24	ck 26	Vorm	Iruck)²]	abilité	erge	ZK Wal							
'gl. K	age]	3		m/m]		[ɯ/ʉ		[m/u	. Kap	NaCI	erteil	em w	sh des	(vgl.	tät eii	nngsc	eldruc	eldru(ăt im I	nngsc	ität [n	oerme	hrens	ngdruc App							
len (v	zeit [T	Πage		te [m		te [m		te [m	t (vg	,8 %	dienv	sussi	bereic	oilität	neabili	Ström	Mant	Mant	abilit	Ström	leabil	tsbun	sverfa	Ind na	ar III da						
winc	zindez	falter		sswer		sswer		sswer	rositä	17	renra	S Pore	Mess	meat	sperm	ntel-/{	tezeit	tezeit	sperm	ntel-/5	sperm	e Lös	Mes	Gase							
Scł	Abt	Prü		Me		Me		Me	Pol		Pol	Ğ	E	Per	Ğ	Mai	Hal	Hal	Ga	Mai	Ğ	ш	des	Ē	$\overline{\mathbf{b}}$						
Гat	bel	le 8	8-8	3:		Z	Zus	sar	nm	er	ste	ellu	ng	g d	er	Ma	ate	ria	lpa	ara	me	ete	r. F	'ny	sika	lisc	che	U	ntei	suc	chungen.

	Projekt N A A N	PSF N N N N	P-Element	Obj. K	ienn. N N N	Funktion N N A A A N N	Komponente A A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd. Nr. N N N N	Rev. N N	
	9M	2234	3021			AJ			GH	BY	0054	00	DBED
Verfüllmat	erial fü	ir Stre	ecken m	nit hoh	nen /	Anforderu	ngen –	M-0		•			Blatt 76
Materialei	genscr	atten		ateria	ken	nwerte Sa	alzbeton	IVIZ					
Adiabatische Temperaturentwicklung beim Abbinden (vgl. Kapitel 7.1)	Versuchsdauer [Tage] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 13 14 15 14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 14 15	Temperaturdifferenz [K] 4,2 11,7 27,9 38,9 43,4 46,1 47,7 n.b. n.b. n.b. n.b. n.b. n.b. n.b. <u>n.b. n.b. </u>	Temperaturdifferenz [K] 1,6 5,6 10,8 19,3 33,0 37,2 38,9 40,1 40,6 40,8 40,9 41,0 41,1 41,1 m 20 u u v 20 u	Spezifische Wärmekapazität (vgl. Kapitel 7.2) Für den Temperaturintervall von 20 bis 90 °C beträgt der Mittelwert (cp) 0,93 J/(g·K).	Wärmeleitfähigkeit (vgl. Kapitel 7.3) 1,14 W/(m·K).	Wärmeausdehnungskoeffizient (vgl. Kapitel 7.4) 2stündige Aufheizphase von 40 °C auf 60 °C 2stündige Abkühlung von 60 °C auf 0 °C	Temperaturestabilität (vgl. Kapitel 7.5)	Masseverlust 0,02 %, 3,6 % Masseverlust 11,3 ± 0,2 % ca. 13,4 Massen-% る					Blatt 76
Tabelle 8-	<u>- ir i</u> 9:	Zusa	ammens	stellur	na de	er Materia		نيا ter. The	ermodv	'nan	nische	•	
		Unte	rsuchu	ngen.	Adia	abatische	Tempera	aturent	wicklur	ng b	eim A	bbin	den,
		spez	ifische	Wärm	neka	pazität, W	/ärmeleit	fähigke	eit, abilität:	nh	· nich	tha	etimmt
		vvari	meauso	iennu	ngsk	Coeffizient	, rempe	ratursta	adilitat;	n.D	.: nich	t des	summt.

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
9M	22343021		AJ			GH	BY	0054	00	DBEL

Verfüllmaterial für Strecken mit hohen Anforderungen – Materialeigenschaften und Materialkennwerte Salzbeton M2 Blatt 77

9 Materialkennwerte für die Sicherheitsnachweisführung

Für die Berechnungen zur Sicherheitsnachweisführung benötigt man Zahlenwerte zur Beschreibung der in Kapitel 6 und 7 aufgeführten physikalischen und thermodynamischen Materialeigenschaften. Die Materialkennwerte gehen teilweise als unabhängige, nicht gekoppelte Einzelwerte in die Berechnungen ein, zum Teil besteht ein funktionaler Zusammenhang bzw. eine Kopplung zwischen den Kennwerten.

Bei nicht gekoppelten Einzelwerten werden die Zahlenwerte, die als Eingangsgrößen für die Berechnung dienen, durch Bildung von Mittelwerten bestimmt. Im Falle funktionaler Zusammenhänge erfolgt eine Parameteridentifikation nach der Methode der kleinsten Fehlerquadrate. Im Folgenden werden die den Berechnungen zu Grunde liegenden funktionalen Zusammenhänge beschrieben sowie die Zahlenwerte der Materialparameter und -kennwerte angegeben.

9.1 Nicht gekoppelte Materialkennwerte

Für die numerischen Berechnungen sind die Materialkennwerte Festmaterialdichte, Querkontraktionszahl, spezifische Wärmekapazität, Wärmeleitfähigkeit und Wärmeausdehnungskoeffizient voneinander unabhängig. Als Eingangswerte für die Berechnungen dienen die in Tabelle 9.1-1 aufgeführten Mittelwerte, wobei eine sinnvolle Anzahl signifikanter Stellen berücksichtigt wurde. Der Wärmeausdehnungskoeffizient entspricht dem Mittelwert der Messwerte bei Aufheizung und Abkühlung der Probekörper.

Festmaterialdichte	isobare spezifische	Wärmeleitfähigkeit	Wärmeausdehnungs-
	Wärmekapazität		koeffizient
[kg/m ³]	[J/(g·K)]	[W/(m·K)]	[1/K]
1.980	0,93	1,14	4,0 · 10 ⁻⁵

Tabelle 9.1-1:Für die numerischen Berechnungen als Eingangsdaten verwendete
Materialkennwerte der Festmaterialdichte, isobaren spezifischen
Wärmekapazität, Wärmeleitfähigkeit und des
Wärmeausdehnungskoeffizienten.

Für die Querkontraktionszahl wurde als Referenzwert der 28-Tage-Wert gewählt (vgl. Tabelle 6.3-1). In den numerischen Berechnungen wird der Einfluss des Abbindeprozesses auf die Querkontraktionszahl vernachlässigt. Damit gilt

 $\mu = 0,33$ [-]

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	NNNNNNNNN	NNNNN	NNAAANN	AANNNA	AANN	ΧΑΑΧΧ	ΑA	NNNN	ΝN	
	9M	22343021		AJ			GH	ΒY	0054	00	DBED
Man filling a f	and all for	0	4 h a h a u	A							

Verfüllmaterial für Strecken mit hohen Anforderungen – Materialeigenschaften und Materialkennwerte Salzbeton M2 Blatt 78

9.2 Gekoppelte Materialkennwerte

Der Elastizitätsmodul sowie die Druck- und Zugfestigkeit zeigen eine starke Abhängigkeit vom Abbindeprozess des Baustoffes, d.h. sie sind über den Hydratationsprozess gekoppelt. Der Hydratationsfortschritt lässt sich, aufgrund der entstehenden Reaktionswärme, aus den adiabatischen Temperaturmessungen (Kapitel 7.1) bestimmen. Grundlage ist das im Folgenden beschriebene Hydratationsmodell gemäß /24/.

9.2.1 Hydratationsgradentwicklung

Die Hydratationswärme Q(t) ist die Ursache für die Erwärmung des Betons während der Erhärtungsphase. Sie wird primär vom Zementgehalt *C* und von der Hydratationswärmeentwicklung $Q_{ce}(t)$ beeinflusst, aber auch andere Phasenanteile des Bindemittelsystems (Steinkohlenflugasche) tragen zur Wärmeentwicklung bei:

$$Q(t) = C \cdot Q_{ce}(t) \tag{9.1}$$

Die maximal generierbare Wärmemenge Q_c^{max} des Betons, die bis zur vollständigen Hydratation des Zementes freigesetzt wird, lässt sich theoretisch aus den Phasenanteilen des Bindemittelsystems bestimmen:

$$Q_c^{max} = C \cdot Q_{ce}^{max} \tag{9.2}$$

Unter adiabatischen Verhältnissen führt die Hydratationswärmeentwicklung im Beton zu der Temperaturerhöhung ΔT_a (mit: ρ = Salzbetondichte, c_p = isobare spez. Wärmekapazität):

$$\Delta T_a(t) = \frac{C \cdot Q_{ce}(t)}{c_p \cdot \rho}$$
(9.3)

Die zur vollständigen Hydratation des Betons gehörende Temperaturerhöhung max. ΔT_a lässt sich analog ausdrücken:

$$\Delta T_a^{max} = \frac{C \cdot Q_{ce}^{max}}{c_p \cdot \rho} \tag{9.4}$$

Eine wesentliche innere Zustandsvariable des Hydratationsmodells ist der Hydratationsgrad α , der als das Verhältnis der Masse der hydratisierten Bestandteile zur Ausgangsmasse der hydratisierbaren Bestandteile definiert wird.

Γ		Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
I		NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN	
		9M	22343021		AJ			GH	BY	0054	00	DBED
ſ	Verfüllmat	orial fü	ir Strecken mi	it hohen	Anforderu	naen _						Riatt 70

Materialeigenschaften und Materialkennwerte Salzbeton M2

Blatt 79

(9.5)

(9.6)

Normiert man die bis zu einem bestimmten wirksamen Alter (t_e) eingetretene Hydratationswärme $Q_{ce}(t_e)$ auf den theoretischen Endwert Q_{ce}^{max} , so ergibt sich der Hydratationsgrad nach Gl. (9.5):

$$\alpha(t_e) = \frac{Q_{ce}(t_e)}{Q_{ce}^{max}} = \frac{Q_c(t_e)}{Q_c^{max}} = \frac{\Delta T_a(t_e)}{\Delta T_a^{max}}$$

Das Betonalter *t* des adiabatischen Prozesses wird dabei mit Hilfe der Reifefunktion von Arrhenius/Freiesleben /24/ durch Integration der Reaktionsgeschwindigkeit auf das wirksame Alter t_e transformiert:

$$t_e = \int_0^t e^{\frac{E_A}{R} \left[\frac{l}{293} - \frac{l}{T} \right]} dt$$

mit

 E_A Aktivierungsenergie des Zementes:

- ≈ 33,5 + 1,47 · (293-T) [kJ/mol] für T < 293 K /24/
- *R* universelle Gaskonstante: 8,314 [J/mol]
- T Betontemperatur [K]

Zur Beschreibung der nichtlinearen Entwicklung des Hydratationsgrades α als Funktion des wirksamen Betonalters t_e wird nachstehender Ansatz gewählt /24/:

$$\alpha(t_e) = e^{-\left(ln\left(l + \frac{t_e}{t_l}\right)\right)^b}$$
(9.7)

Die betonspezifischen Faktoren t_1 und b ergaben sich nach den Versuchen zur adiabatischen Temperaturentwicklung zu $t_1 = 3,287$ [d] und b = -1,3425. Hieraus berechnet sich eine fiktive adiabatische Temperaturerhöhung von 58,7 K (ΔT_a^{max}) nach unendlich langer Zeit. Für die numerischen Berechnungen ist es erforderlich Q_{ce}^{max} zu bestimmen, jedoch nicht auf die Gesamtmasse der Phasenanteile des Bindemittelsystems (Zement, Steinkohlenflugasche) bezogen, sondern ausschließlich auf die Zementmenge C von 328 kg/m³. Nach Gl. (9.4) wurde ein Q_{ce}^{max} von 3,295 · 10⁵ J/kg ermittelt. Da als Basis für die Parameteridentifikation die adiabatischen Temperaturversuche dienen, ist das latent hydraulische Verhalten, d.h. die Wärmeentwicklung in Folge der Abbindereaktionen der Steinkohlenflugasche mit erfasst (vgl. Abbildung 9.2-1).

Abbildung 9.2-1: Vergleich des Hydratationsgrades aus adiabatischen Messungen mit der funktionalen Anpassung (Näherung α).

9.2.2 Hydratationsgradabhängige Werkstoffeigenschaften

Die Beziehungen für die hydratationsgradabhängigen Materialeigenschaften lassen sich mit Hilfe des Hydratationsmodells zeit- und temperaturvariant ausdrücken. Die in Folge der erhöhten Temperatur entstehende Zeitverzerrung wird mit Hilfe der Beziehungen in Kapitel 9.2.1 erfasst.

Zugfestigkeitsentwicklung

Die einaxiale Zugfestigkeit in Abhängigkeit vom Hydratationsgrad wird durch einen linearen Ansatz beschrieben:

$$f_{ct}(\alpha) = \overline{a} \cdot \alpha(t_e) + \overline{b}$$
(9.8)

Die Parameter \overline{a} und \overline{b} werden aus zentrischen Zugversuchen ermittelt. Der Gültigkeitsbereich für α ist gemäß /24/ zwischen 0,17 und 1,00 abgesteckt. Die untere Schranke α_{o} kennzeichnet das Ende der Ruhephase der Erhärtung. Ab diesem Zeitpunkt werden erste Festkörpereigenschaften wirksam. Der Abszissenwert α_{o} , als Mindesthydratationsgrad bezeichnet, ist betonspezifisch. Durch Umformung der Gleichung (9.8) mit Hilfe des Nulldurchgangs α_{o} las-

Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
NAAN	ΝΝΝΝΝΝΝΝΝ	ΝΝΝΝΝ	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
9M	22343021		AJ			GH	ΒY	0054	00	DBED
		9 L . L	A . C							

Verfüllmaterial für Strecken mit hohen Anforderungen – Materialeigenschaften und Materialkennwerte Salzbeton M2 Blatt 81

sen sich die Parameter \overline{a} und \overline{b} eliminieren. Der Ansatz für die Zugfestigkeit wird damit in eine dimensionslose bezogene Form überführt:

$$\hat{f}_{ct}(\alpha) = \frac{f_{ct}(\alpha)}{f_{cte}} = \frac{\alpha - \alpha_0}{1 - \alpha_0}$$
(9.9)

Als frei variierbare Parameter in GI. (9.9) verbleiben f_{cte} und α_{o} . Die Endzugfestigkeit f_{cte} für α = 1 ist ein rein theoretischer Wert und wird durch Extrapolation der Versuchswerte ermittelt.

Druckfestigkeitsentwicklung

Für die Beschreibung der Druckfestigkeitsentwicklung des Betons ist die Zylinderdruckfestigkeit entscheidend. Auch dieser Materialparameter lässt sich, analog zur Zugfestigkeit, in Abhängigkeit vom Hydratationsgrad formulieren. Dabei wird auf den nachstehenden Ansatz /24/ zurückgegriffen, wobei *c* ein betonspezifischer Parameter ist:

$$f_{ct} = c \cdot f_{c,cube}^{2/3}$$
 (9.10)

Ersetzt man in Gl. (9.10) die Zugfestigkeit f_{ct} durch die Beziehung $f_{ct}(\alpha)$ aus Gl. (9.9) und die Würfeldruckfestigkeit $f_{c,cube}$ durch die Zylinderdruckfestigkeit f_c , so erhält man folgenden Zusammenhang:

$$f_{c}(\boldsymbol{\alpha}) = 0.85 \left[f_{cte} \cdot \frac{(\boldsymbol{\alpha} - \boldsymbol{\alpha}_{0})/(l - \boldsymbol{\alpha}_{0})}{c} \right]^{\frac{3}{2}}$$
(9.11)

Für den Hydratationsgrad α = 1 gilt:

$$f_{ce} = 0.85 \left[\frac{f_{cte}}{c} \right]^{3/2}$$
 (9.12)

Aus den Gl. (9.11) und (9.12) ergibt sich die Funktion für die bezogene Zylinderdruckfestigkeit:

$$\hat{f}_{c}(\alpha) = \frac{f_{c}(\alpha)}{f_{ce}} = \left[\frac{\alpha - \alpha_{0}}{1 - \alpha_{0}}\right]^{\frac{3}{2}}$$
(9.13)

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	NNNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	ΝΝΝΝ	ΝN	
	9M	22343021		AJ			GH	ΒY	0054	00	DBED
Verfüllmat	erial fü	ir Strecken mi	it hohen .	Anforderu	ngen –						Blatt 82

Materialeigenschaften und Materialkennwerte Salzbeton M2

Im Gegensatz zu der Beziehung für die Druckfestigkeit nach GI. (9.11) ist die Funktion in GI. (9.13) unabhängig von der Endzugfestigkeit f_{cte} und enthält keine dimensionsgebundenen Parameter. Die Anzahl der Freiwerte bleibt auf den theoretischen Endwert für die Druckfestigkeit f_{ce} beschränkt. Die Enddruckfestigkeit f_{ce} für α = 1 wird wiederum durch Extrapolation der Versuchswerte ermittelt und ist ein rein theoretischer Wert. Die Druckfestigkeit und der Zugfestigkeit sind über den Mindesthydratationsgrad α_0 miteinander verknüpft.

Elastizitätsmodul

Aus dehngeregelten Zugversuchen zu verschiedenen Altersstufen wurde eine hydratationsgradabhängige Funktion für den Zugelastizitätsmodul abgeleitet /24/. Es wird vorausgesetzt, dass Zug- und Druckelastizitätsmodul sich zeitlich vergleichbar entwickeln und Unterschiede zwischen Zug- und Druckelastizitätsmodul für praktische Zwecke vernachlässigbar sind. Damit gilt

$$\hat{E}_{ct}(\alpha) = \frac{E_{ct}(\alpha)}{E_{cte}} = \left[\frac{\alpha - \alpha_0}{1 - \alpha_0}\right]^a$$
(9.14)

Der Exponent für die Potenzfunktion wurde in /24/ zu $a \cong 2/3$ bestimmt. Auch Gl. (9.14) enthält keine dimensionsgebundenen Größen. Der einzige Freiwert ist der theoretische Endwert für den E-Modul E_{cte} . Über den Mindesthydratationsgrad α_0 ist die Entwicklung des E-Moduls mit der Entwicklung von Zug- und Druckfestigkeit gekoppelt.

9.3 Identifikation der hydratationsgradabhängigen Werkstoffeigenschaften aus Versuchen

Auf Grundlage der Versuche zum statischen E-Modul (Kapitel 6.2), zur einaxialen Druckfestigkeit (Kapitel 6.4) und zur einaxialen Zugfestigkeit (Kapitel 6.6) wurden die Parameter wie folgt identifiziert

Mindesthydratationsgrad: $\alpha_0 = 0,263$ [-] $E_{cte} = 15.350 \, [MPa]$ Elastizitätsmodul bei α = 1: Zugfestigkeit bei α = 1: $f_{cte} = 2,95 \,[\text{MPa}]$ Druckfestigkeit bei α = 1: f_{ce} = 46,8 [MPa]

Durch die in GI. (9.12) gegebene Beziehung lässt sich der betonspezifische Parameter c = 0,2037 ermitteln, der formal die Einheit [MPa^{1/3}] trägt. Der Exponent *a* nach Gl. (9.14) wurde analog zu /24/ zu 2/3 gesetzt.

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	NAAN	ΝΝΝΝΝΝΝΝΝ	NNNNN	NNAAANN	AANNNA	AANN	XAAXX	ΑA	NNNN	ΝN	
	9M	22343021		AJ			GH	BY	0054	00	DBED
Verfüllmate Materialeio	erial fü gensch	ir Strecken m aften und Ma	it hohen . terialken	Anforderu nwerte Sa	ngen – Izbeton	M2					Blatt 83

Die Ergebnisse der Identifikation und die Mittelwerte der Versuchsreihen sind in den Abbildungen 9.3-1 bis 9.3-3 dargestellt. Einige der in den Tabellen aufgeführten Versuchsreihen wurden bei der Identifikation nicht berücksichtigt. Sie sind zur Kontrolle ebenfalls in die Abbildungen eingetragen. Beim Vergleich der Abbildungen 9.3-1 bis 9.3-3 mit den in Kapitel 6.2, 6.4 und 6.6 beschriebenen Datenwerten ist zu beachten, dass in den o.g. Abbildungen die Versuchsdaten gemäß Gl. (9.6) entsprechend ihren Lagerungsbedingungen, die in den Tabellen 6.2-1, 6.4-1 und 6.6-1 (vgl. Tabelle 8-3, 8-4, 8-5) angegeben sind, vom realen in das wirksame Betonalter transformiert wurden.

Abbildung 9.3-1: Messwerte der einaxialen Zylinderdruckfestigkeit und Rechenwerte der Parameteridentifikation in Abhängigkeit vom wirksamen Betonalter t_e .

Abbildung 9.3-3: Statische Elastizitätsmoduli und Rechenwerte der Parameteridentifikation in Abhängigkeit vom wirksamen Betonalter t_e .

Verfül	Imaterial fü	Ir Strecken m	it hohen .	Anforderu	ngen –		311	<u>ـ تـ تـ</u>	0004		I Blatt 85
Mater	ialeigensch	aften und Ma	terialken	nwerte Sa	alzbeton	M2					
10	Verwen	dete Unterla	aen								
			0								
/1/	DIN EN	197, Teil 1									
	Zement.	Zusammens	etzung, A	Anforderur	ngen und	l Konfo	rmitäts	krite	erien	/on	
	Normalz	ement. Deuts	sche Fas	sung EN 1	197: 200	0. Febr	uar 20	01,	Beuth	Ver	lag
	GmbH, I	Berlin, 17 Sei	ten.								
101											
121	DIN 116 Zomont	4 mit besender	on Eigon	achaftan	Zucomn	onaata		nfo	rdorur	aan	
	Liberein	mit besonder	en Eigen chweis	Schallen.			ung, A arlag G	mb		igen din .	, 7 Soiton
	Oberein	summungana	criweis. I	Vovernber	2000, D	cuil v	enag c	uno	n, Dei	,	r Gentern.
/3/	DIN EN	450									
	Flugasc	he für Beton.	Definitio	nen, Anfor	rderunge	n und (Güteüb	erw	achur	ng. D	eutsche
	Fassung	g EN 450: 199	94. Janua	ar 1995, B	euth Ver	lag Gm	bH, Be	erlin	, 6 Se	iten.	
/4/	Bergam	t Staßfurt									
	Allgeme	ine Zulassun	g "Salzbe	eton - Dick	stoffmis	chung 2	2", "Sal	zbe	ton -		
	Dickstof	fmischung 3"	gemäß §	§ 4 GesBe	ergV. Sta	ßfurt, 1	1.09.2	000	,		
	9M/WM	B/DB/EV/000	7/01.								
/5/	DIN 104	8 Teil 1									
101	Prüfverf	ahren für Bet	on. Frisc	hbeton. Ju	uni 1991.	Beuth	Verlag	Gn	nbH. E	Berlir	۱.
	5 Seiten	l.				Doddii	ronag	0			.,
/6/	DIN 500	14									
	Klimate	und ihre teo	hnische	Anwendu	ing. Nor	malklim	nate. J	uli	1985,	Beu	th Verlag
	GmbH, I	Berlin, 2 Seite	en.								
171											
///	DIN 104	o. Tell∠ rke aus Betor	Stablbe	aton und S	Snannhe	ton Ro	ton F	Toot	امريبها	~ Ei	aonschat
	ten Hers	stellunfa und l	konformi	tät Juli 20)01 Reu	th Verla	an Gml	nH D	Berlin	י_, ∟י 48	Seiten
		Active and 1	Comornia		, Deu		ig onn	<i></i> ,	Dermin	, 10	Centern.
/8/	DIN EN	206, Teil 1									
	Beton. F	estlegung, E	igenscha	ften, Hers	stellung u	ind Kor	nformita	ät. C	Deutso	he F	assung
											_
	EN 206-	1: 2000. Juli	2001, Be	uth Verlag	g GmbH,	Berlin,	77 Se	iten			
	EN 206-	1: 2000. Juli .	2001, Be	uth Verlag	g GmbH,	Berlin,	77 Se	iten			

		Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
		N A A N QM	223/3021	NNNNNN	Λ.T	AANNNA	AANN	СЦ	BV	0.054		DBED
) (a of the					A	<u> </u>		GII		0054	00	
Vertuii Materi	imati	eriai tu tensch	ir Strecken m aften und Ma	it nonen . iterialken	Antorderu nwerte Sa	ngen – Izbeton	M2					Blatt 86
		90110011										
/9/	D	AfStB										
	R	ichtlini	e Selbstverdi	chtender	Beton (S\	/B-Richt	linie). E	Ergänzu	ung	zu Dll	N 10	45: 1988-
	7.											
/10/	D	BV e.∖	/.									
	D	BV-Me	erkblatt Vergu	ussmörte	I. Merkbla	att für di	e Anw	endun	g vo	on we	rkge	mischtem
	V	erguss	mörtel. Fassi	ung Sept	ember 19	90, reda	ktionel	l übera	rbei	itet 19	96. I	Deutscher
	B	eton-V	erein e.V.									
/11/	D	IN 384	04, Teil 5									
	D	eutsch	e Einheitsve	rfahren	zur Wass	er-, Abv	vasser	- und	Sch	lamm	unte	rsuchung.
	Ρ	hysika	lische und ph	ysikaliscl	n-chemisc	he Kenn	größer	า (Grup	pe	С). Ве	stim	mung des
	pł	H-Wer	tes (C5). Janı	uar 1984	, Beuth Ve	erlag Gm	bH, Be	erlin, 7	Seit	en.		
	_											
/12/	D		ISO 14911						.+	. + .	+	· · · · · · · · · · · · · · · · · · ·
	W			De ²⁺	nmung de	r geloste	en Kati		.I, [Na, N	H_4 ,	K,Mn⁻,
		a⁻, ivi	g ⁻ , Sr ⁻ una		tels ioner	icnromat	ograpr		rtan	ren tu	rvv	asser und
	A	owass	er. Dezember	1999, B	euth veria	ag Gmbr	i, Beriir	n, 27 S	eite	n.		
/13/	П		190 10304 1	Tail 1								
/13/	B		nung der gel	östen Ar	ionen Eli	uorid Ch	alorid	Nitrit (Crth	onhos	nha	t Bromid
	N	itrat ur	nd Sulfat mitt	els Ioner	nonch, i n	aranhie	Verfat	nren fü	r ae	rina h	elas	tete Wäs-
	SE	er Anr	il 1995. Beuth	verlag (GmbH Be	erlin 21.9	Seiten		ge	ing b	ciuo	
		511 7 Q51		i vonag	onnorn, 20	, =						
/14/	D	IN 104	8, Teil 5									
	P	rüfverf	ahren für Be	ton. Fest	beton, ge	sondert	herges	stellte F	Prob	ekörp	er	Juni 1991,
	B	euth V	erlag GmbH,	Berlin, 8	Seiten.		0					,
			-									
/15/	D	IN 181	37, Teil 2									
	B	augrur	nd, Versuche	und Ver	suchsgerä	ite. Best	immun	g der S	Sch	erfesti	gkei	t. Triaxial-
	Ve	ersuch	. Dezember 1	990, Bei	th Verlag	GmbH, I	Berlin,	20 Seit	en.			
/16/	D	GEG										
	Te	echnis	che Prüfvors	chrift Bo	den und	Fels im	Straße	enbau	(TP	BF-S	StB),	Teil C 2,
	D	reiaxia	le Druckvers	uche an	Gesteinsp	proben. 1	1986, E	Deutsch	ne C	Sesells	scha	ft für Erd-
	ur	nd Gru	ndbau e.V.									
(47)	-											
/1//	D.	AISID	ven Deten D								404	0. a wa whai
	PI to		Arbeiteeueee			ninweise		iganzui	ng z	u Din	104 stop	
	le ц	ະ VUIII ດft 422	AIDEIISaUSSC	nuss DII a Cmhu	N 1040. D Rorlin 11	euischer 001	Auss	JIUSS T	ui c	orgining	eion	(DAISID),
	11			ig Ginbh		551.						

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.	
	OM	22242021	NNNNNN		AANNNA	AANN		DV			DBED
	914	22343021		AU			GH	ВІ	0054	00	
Verfüllma Materiale	Vertuimaterial für Strecken mit nonen Anforderungen – Blatt 87 Materialeigenschaften und Materialkennwerte Salzbeton M2										
/18/ DIN 66133											
	Bestimmung der Porenvolumenverteilung und der spezifischen Oberfläche von Fest-										
	stoffen durch Quecksilberintrusion. Juni 1993, Beuth Verlag GmbH, Berlin, 3 Seiten.										
					,		Ũ			,	
/19/	Verein Deutscher Zementwerke e.V.										
-	Vorläufiges Merkblatt für die Messung der Temperaturerhöhung des Betons mit dem										
	adiabati	ischen Kalorir	neter Fa	assung De	zember	Düss	eldorf	Bet	on 20	(197	70) H 12
	S 545/5	549 [.] ehenso F	Retontect	nnische B	erichte 1	970 B	eton-V	erla	a Düs	sela	horf 1971
	S 170/	102				ого, в		enia	<u>у</u> , Duo	oon	
	0. 170/	102.									
/20/		707									
1201	Thormic	sobo Analyza		ifforonzth	rmoono			_ rur	dlagor		uni 1004
			(TA). D		linoana	iyse (L	л <i>А</i>). С	Jui	lulayei	I. J	uni 1994,
	Deutit v	enag Ghibn,	Deriiri, I	T Sellen.							
1011		006									
/21/		006							0		1000
	i nermis	sche Analyse	(TA).	nermogra	avimetrie	(TG).	Grund	lag	en. O	KIO	ber 1990,
	Beuth V	erlag GmbH,	Berlin, 4	Seiten.							
/22/	DIN 526	612, Teil 1									
	Wärme	schutztechniso	che Prüf	ungen. B	estimmu	ng dei	r Wärn	nele	eitfähig	keit	mit dem
	Platteng	gerät. Durchfü	hrung ur	nd Auswei	rtung. Se	eptemb	er 197	9, B	euth V	'erla	ag GmbH,
	Berlin, 6	6 Seiten.									
/23/	DIN 510	045, Teil 1									
	Bestimn	nung der ther	mischen	Längenä	nderung	fester	Körper	: G	rundlag	gen	. Septem-
	ber 198	9, Beuth Verla	ag Gmb⊢	l, Berlin, 8	Seiten.						
/24/	Onken,	Rostásy									
	Wirksar	ne Betonzugf	estigkeit	im Bauwe	erk bei fr	üh ein	setzeno	dem	Temp	era	turzwang.
	Deutsch	ner Ausschuss	s für Stah	lbeton, He	eft 449, 1	1995.					

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente	Baugruppe	Aufgabe	UA	Lfd. Nr.	Rev.				
		223/3021			AANNNA	AANN	CH	BV	0054		DBED			
Vorfüllmotor	riol fü	r Strockon mi	it bobon	Anfordoru	ngon		GII	DI	0034	00	Diatt 99			
Materialeigenschaften und Materialkennwerte Salzbeton M2														
11 Glo	ossar													
adiabatisch		Ohne Wä	Ohne Wärmeaustausch mit der Umgebung.											
Aktivierungs	S-	Mindester	nergie zu	r Erzielung	g einer c	hemisc	hen Re	eakt	ion.					
energie														
_														
Druckfestig	keit	Festigkeit	Festigkeit eines Materials unter Druckbeanspruchung.											
				o		-								
Elastizität		Eigenscha	aft eines	Stoffes n	ach eine	r Belas	stung u	nd	ansch	ließe	ender Ent-			
		lastung w	lastung wieder seine ursprüngliche Form anzunehmen. Die Geschwindig-											
		keit der L	astaufbr	ingung ka	ann gerii	ng (sta	tisch)	ode	r hoci	ו (d	ynamisch)			
		sein.	sein.											
F 4h - 4 - 1		A h	Abrohundener Deten, der eine bestimmte Destinbeit erfeltett bet											
Festbeton		Abgebund	Abgebundener Beton, der eine bestimmte Festigkeit entwickelt hat.											
-lotation		Aufbereitu	Aufbereitungsverfahren. Die Mineraltrennung erfolgt in wässerigen Lö-											
		sungen m	sungen mit Hilfe von sog. Sammler-Reagenzien, die die Benetzbarkeit											
		einzelner	Mineralp	hasen dur	ch Wass	ser redu	Jzieren							
Flugasche		(Filterasch	(Filterasche) Feinkörniges Material, das bauntsächlich aus kugelförmigen											
riugusene		alasiaen F	(i incrascie) reinkoniges material, das nauptsattilith aus kugelionnigen, alasigen Partikeln besteht und bei der Verbrennung von Kohle anfällt											
		gladigen					onnan	9.0		ne a				
Frischbeton		Beton, de	Beton, der noch im verarbeitbaren Zustand ist.											
Heißlösever	fahre	n Aufhereiti	ingsverfa	ahren zur	Gewinn	ina vo	n KCl	has	sieren	d au	ıf den un-			
		terschiedli	terschiedlichen Temperaturahhängigkeiten der Löslichkeit von Salzon											
		tersenieun		mperature	briangig	Kenterr		51101		511 0				
Hydratation	S-	Verhältnis	von hyd	ratisierten	ı zu hydr	atisierb	aren B	inde	emittel	ante	eilen.			
grad			2											
-														
Hydratation	S-	Mathemat	ische Be	schreibun	ig des Al	binde	/organg	ges	von B	inde	mittelsy-			
Modell		stemen im	Hinblick	k auf die N	/laterialei	gensch	naften E	E-M	odul, l	Druc	kfestig-			
		keit und Z	keit und Zugfestigkeit in Abhängigkeit der Temperaturentwicklung.											
Hydratations	S-	Wärme, d	ie als Fo	lge exothe	ermer Mi	neralre	aktione	en d	er Bin	dem	ittel (z.B.			
wärme		Zement, F	Zement, Flugasche) mit der Anmischflüssigkeit freigesetzt wird.											

	Projekt	PSP-Element	Obj. Kenn.	Funktion	Komponente A A N N N A	Baugruppe A A N N	Aufgabe	UA A A	Lfd. Nr. Rev.				
	9M	22343021		AJ			GH	BY	0054 00	DBED			
Verfüllmat Materialeio	Verfüllmaterial für Strecken mit hohen Anforderungen – Blatt 89 Materialeigenschaften und Materialkennwerte Salzbeton M2												
Normalbet	Normalbeton		Baustoff, erzeugt durch Mischen von Zement, Zuschlag und Wasser, mit oder ohne Zugabe von Zusatzmitteln und Zusatzstoffen, mit einer Rohdichte (ofentrocken) über 2.000 kg/m³, höchstens aber 2.600 kg/m³.										
Querkontra	aktion	Verformur festen Kö der Quer-	Verformung normal zur Längsdeformation bzwdehnung bei elastisch festen Körpern. Die Querkontraktionszahl µ ist das negative Verhältnis der Quer- zur Längsverformung.										
Salzbeton	Salzbeton Baustoff mit Salzzuschlag, der durch Abbinden eines Bindemittelsystems entsteht. Als Grundbestandteile können neben Bruchstücken von Evapo- ritgesteinen, insbesondere Steinsalz, Zemente und Steinkohlenflug- aschen dienen sowie Wasser oder Salzlösungen als Anmachflüssigkeit.									elsystems on Evapo- ohlenflug- ssigkeit.			
Rheologie	Rheologie Wissenschaft, die sich mit dem Verformungsverhalten (Fließeigenschaf- ten) von Fluiden unter der Einwirkung äußerer Kräfte befasst.												
RQD-Inde:	RQD-Index Rock Quality Designation-Index. Maß der Klüftigkeit bzw. der Felsqualität eines Gesteinskörpers. Summe der Kernstücklängen > 10 cm bezoger auf die Gesamtbohr- bzwkernstrecke.								elsqualität bezogen				
Schergefä	lle	Geschwin sigkeit od	digkeitsg er Suspe	jefälle inne nsion [1/s	erhalb ei , s ⁻¹].	ner Pro	obe, be	eispi	elsweise e	iner Flüs-			
Schubspannung Scherwiderstand, den eine Substanz einer Bewegung ente bezieht sich auf die bewegte Fläche und hat daher die Einl [Pa].						g entgeger e Einheit d	ısetzt. Sie es Drucks						
Sedimenta	Sedimentation Absinken von Feststoffteilchen in einer Flüssigkeit unter der Wirkung der Schwerkraft.									irkung der			
Spezifisch Wärmekap	e bazität	Zum Erwä ge [J/(g·K zität bei k den.	ärmen vo)]. Entsp onstante	n 1 g Sub rechend c m Volume	stanz um len Mess en (c _∨) ui	n 1 Keli sbeding nd kon:	vin erfo gungen stanten	orde ⊨wir n Di	rliche Wär d eine Wä ruck (c _P) u	memen- irmekapa- nterschie-			

	Projekt N A A N	PSP-Element	Obj. Kenn. N N N N N N N	Funktion	Komponente A A N N N A	Baugruppe A A N N	Aufgabe X A A X X	UA A A	Lfd. Nr. N N N N	Rev. N N					
	9M	22343021		AJ			GH	BY	0054	00	DBED				
Verfüllmat Materialeig	erial fü gensch	r Strecken mi aften und Ma	it hohen terialken	Anforderu nwerte Sa	ngen – Izbeton I	M2					Blatt 90				
Steifigkeit		Ein aus M Verformur spruchung	Ein aus Materialverhalten und Formgebung entwickeltes Maß, das den Verformungswiderstand eines Baustoffes oder -werkes gegenüber Bean- spruchungen kennzeichnet.												
Stilllegung		Alle Maßr triebes.	Alle Maßnahmen zum Sichern des Bergwerkes nach Einstellung des Be- triebes.												
Suspensio	n	2phasige	2phasige Fluide. Verteilung von festen Partikeln in einer Flüssigkeit.												
universelle Gaskonsta	e ante	physikalis	physikalische Konstante: 8,314 [J/(mol · K)].												
Verdichter	I	Verkleiner durch mar	Verkleinern der Hohlräume oder Verdrängen der Luft in einer Suspension durch manuelles oder maschinelles Rütteln, Stampfen oder Rühren.												
Versatz		Verfüllgut	für die V	/erfüllung	von unte	rtägige	n Hohl	räur	men.						
Wärmeaus nungskoef	sdeh- ffizient	Maß der N raturerhöh lere Läng geben (α änderung	Maß der Volumen- bzw. Längenänderung eines Körpers in Folge Temperaturerhöhung bzw. –erniedrigung [1/K, K ⁻¹]. Im Allgemeinen ist der mittlere Längenausdehnungskoeffizient α für ein Temperaturintervall angegeben ($\alpha = \Delta l/(l_0 \cdot \Delta T)$, l_0 : Länge bei Bezugstemperatur, ΔT : Temperaturänderung, Δl : Längenänderung infolge ΔT).												
Wärmeleit	fähigk	eit Stoffeiger Wärmestr der Fläche	Stoffeigenschaft, die bestimmt, wie groß in einem Temperaturfeld der Wärmestrom ist, der die Messfläche unter der Wirkung des in Richtung der Flächennormale genommenen Temperaturgefälles durchströmt.												
Zement		Hydrauliso infolge ch dauerhaft	Hydraulisches Bindemittel. Anorganischer, fein aufbereiteter Stoff, der infolge chemisch-mineralogischer Reaktionen mit der Anmachflüssigkeit dauerhaft erhärtet.												
Zugfestigk	eit	Festigkeit	eines M	aterials ur	nter Zugb	eanspi	ruchun	g.							
Zwang, the mechanise	ermo- ch	Beanspru derung vo	chung, d n Deforr	ie nicht au nationen (ıs einem Tempera	Lastein aturdeh	ntrag s nungei	ond n) e	ern au ntsteh	us de nt.	er Behin-				