

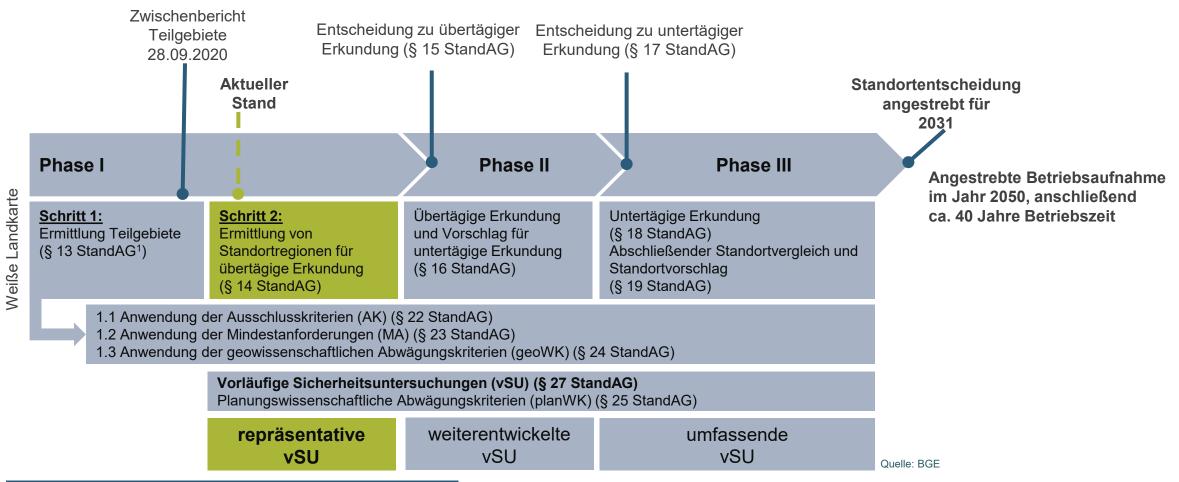
AGENDA

01 KURZE VORSTELLUNG METHODENENTWICKLUNG rvSU

GENERELLE BEDEUTUNG DER vSU IM RAHMEN DES STANDORTAUSWAHLVERFAHRENS

03 ENTWICKLUNGEN

04 UNGEWISSHEITEN


05 WEITERE ASPEKTE

BGE BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

DIE REPRÄSENTATIVE vSU

Stand des Verfahrens

4 DIE SUCHE NACH EINEM ENDLAGER | PD DR. WOLFRAM RÜHAAK

25.06.2022

DIE REPRÄSENTATIVE vSU

Überblick der rvSU Bausteine

Untersuchungsraum 5 5 Geosynthese

§ 6
Vorläufiges
Sicherheitskonzept;
vorläufige Auslegung des
Endlagers; Optimierung
des Endlagersystems

§ 7
Analyse
des
Endlagersystems

§ 10 Umfassende Bewertung des Endlagersystems

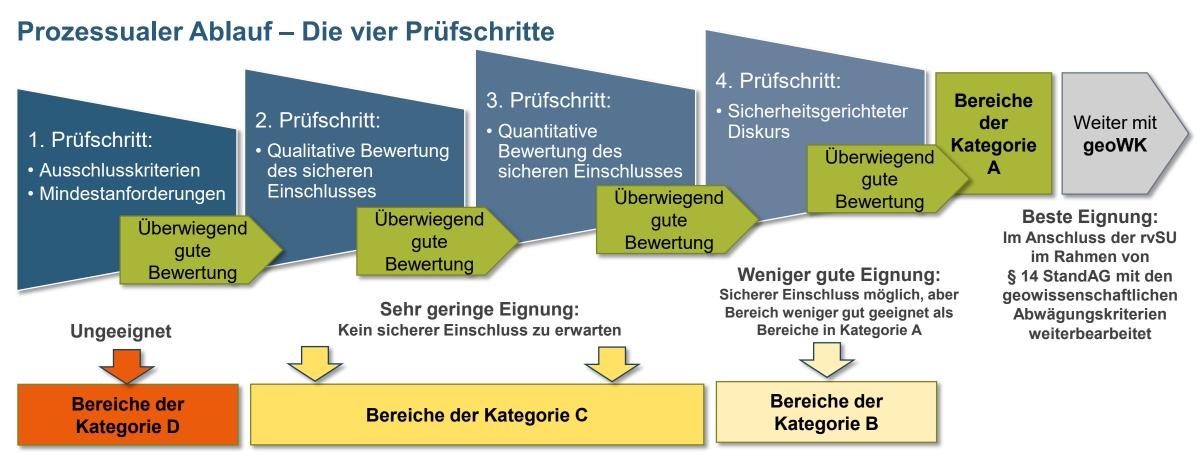
§ 11
Bewertung
von
Ungewissheiten

§ 12
Ableitung des
ErkundungsForschungs- und
Entwicklungsbedarfs

Je

3

8



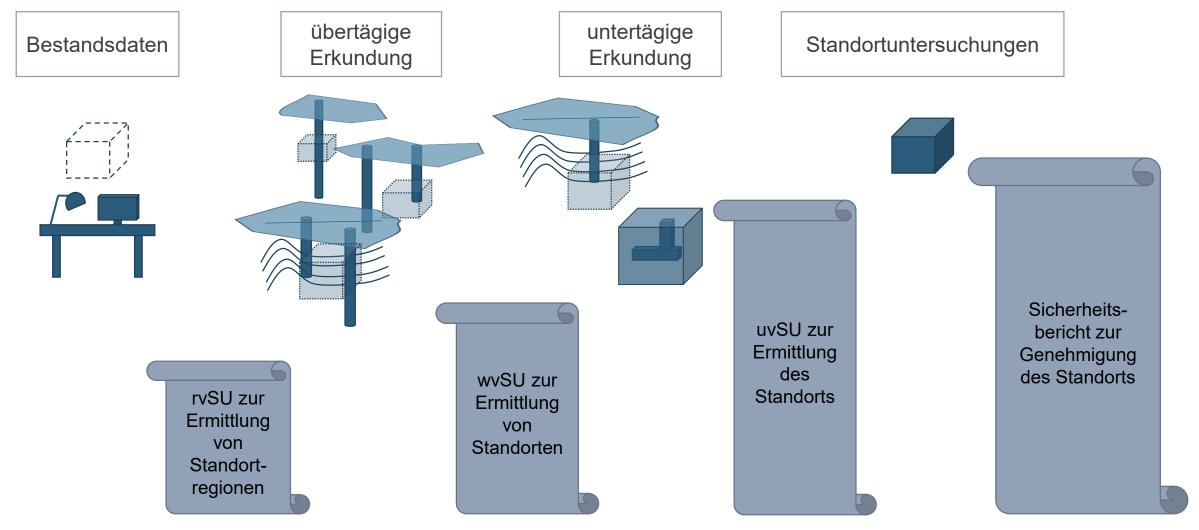
Quelle: BGE

DIE REPRÄSENTATIVE vSU

Schrittweise Fokussierung auf aussichtsreiche Gebiete

BEDEUTUNG DER VORLÄUFIGEN SICHERHEITSUNTERSUCHUNGEN

Im Rahmen des Standortauswahlverfahrens


- "Sicherheitsanalysen bilden meist die Basis und den Kern umfangreicher Sicherheitsberichte.
- International hat sich für derartige Berichte die Bezeichnung "Safety Case" eingebürgert, (…).
- Der Safety Case entsteht durch die Zusammenführung der sicherheitsrelevanten Elemente und Argumente aus Standorterkundung, Forschung, Endlagerentwicklung und -auslegung, Sicherheitsanalyse, Managementaspekten u. v. m. und stellt ein strukturierendes und integrierendes Element hinsichtlich der Darlegung des Entwicklungsstands von Endlagerprojekten, der Ableitung von Sicherheits- und Vertrauensaussagen sowie von Schlussfolgerungen zum weiteren Vorgehen (Erkundung, Forschung, Entwicklung, Beginn der Errichtung, Betriebsbeginn) dar.
- Er bildet damit eine wesentliche Entscheidungsgrundlage in Genehmigungssituationen, vor politischen Entscheidungen oder intern zur Weiterentwicklung des Endlagerprogramms beim Betreiber/Antragsteller."

(Aus: K.-J. Röhlig: Safety Case, Sicherheitsanalyse und Szenarien - Aktuelle Entwicklungen zur Bewertung der Langzeitsicherheit von Endlagern in tiefen geologischen Formationen. Glückauf 147 (4), 228)

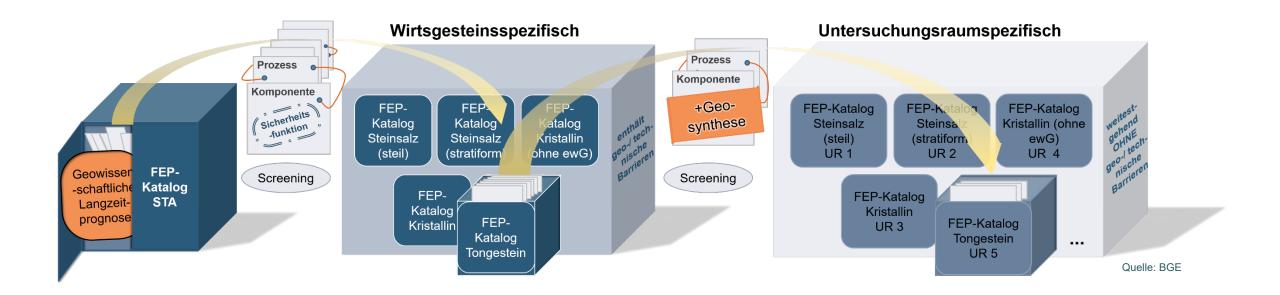
- → Nachweis der Sicherheit im Genehmigungsverfahren
- → Vergleich von Standorten → multipler Safety Case

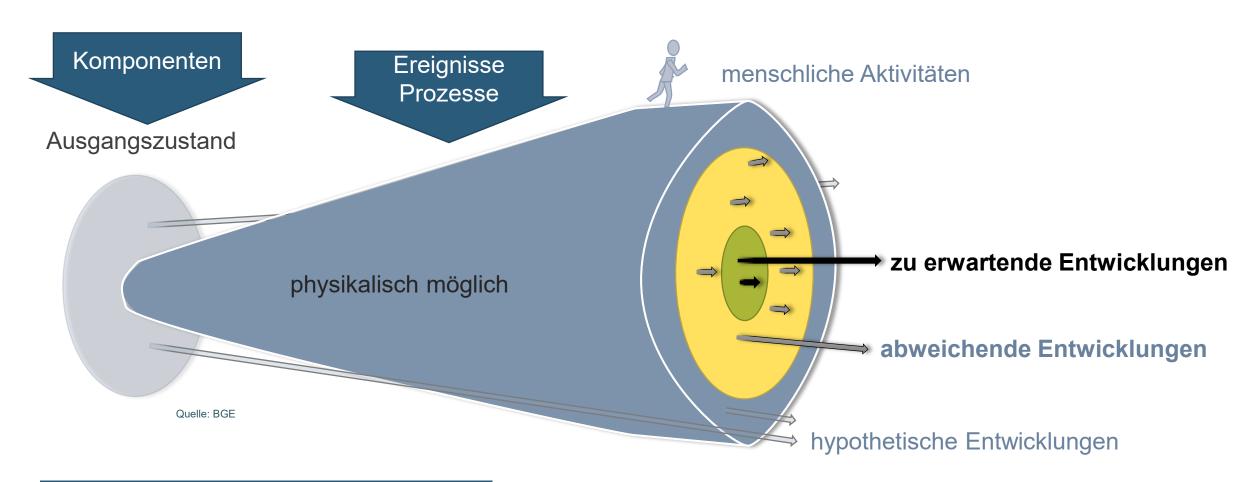
LERNEN IM VERFAHREN

Quelle: BGE

SICHERHEITSUNTERSUCHUNGEN

Unterschiede zur Schweiz


- Drei Wirtsgesteine in Deutschland nur eines in der Schweiz
- Endlagersystem Typ 2 (kein ewG) für Kristallin wird in der Schweiz nicht verfolgt
- Geringere Abfallmenge in der Schweiz:
 - Bestrahlte Brennelemente (BE):
 - CH: ca. 12.000 BE
 - DE: ca. 34.000 BE (zuzüglich Forschungsabfälle)
 - Verglaste Abfälle:
 - CH: ca. 700 Kokillen
 - DE: ca. 3.900 Kokillen
 - Schwach- und mittelradioaktive Abfälle (SMA):
 - CH: ca. 83.000 m³ (Kombilager)
 - DE: ca. 360.000 m³ (separates Endlager)
- Dadurch ist auch der untertägige (und übertägige) Flächenbedarf entsprechend kleiner.


STRUKTURIERTE SYSTEMBESCHREIBUNG

Features, Events and Processes – Komponenten, Ereignisse und Prozesse

UNGEWISSHEITEN DER ENTWICKLUNG

UNGEWISSHEITEN

- Ungewissheit ist ein Mangel an Gewissheit und/oder Informationen zur Beschreibung des Systems und somit zur Einschätzung möglicher (negativer) Konsequenzen
- Ungewissheiten können sowohl durch fehlendes Wissen, als auch durch natürliche
 Variabilität entstehen (epistemische und aleatorische Ungewissheiten)

Kategorisierung nach verschiedenen Ursachen:

Modellungewissheiten

Szenarienungewissheiten

Daten- und Parameterungewissheiten

Methodische Ungewissheiten

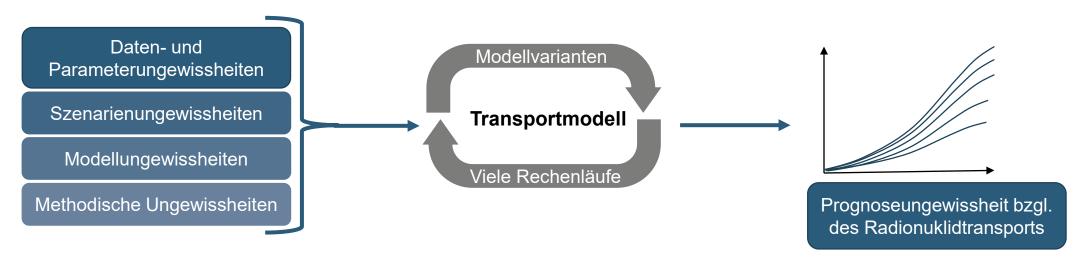
HERANGEHENSWEISE ZUR BEWERTUNG VON UNMGEWISSHEITEN (§ 11 EndISiUntV)

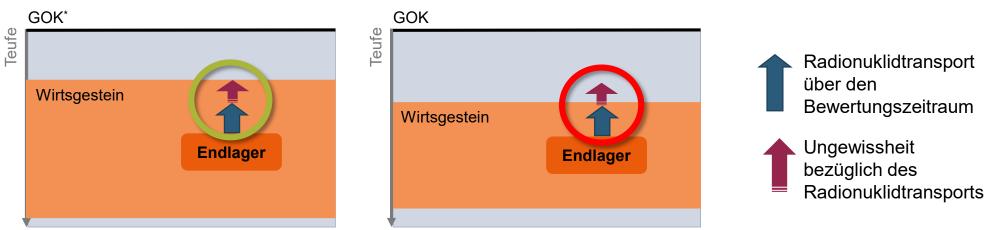
Systematische Dokumentation

Systematische
Identifikation
und
Ausweisung
der
bestehenden
Ungewissheiten

Charakterisierung
und

Kategorisierung der
bestehenden
Ungewissheiten


Beschreibung
des **Umgangs**mit den
identifizierten
Ungewissheiten


Auswirkungen
der bestehenden
Ungewissheiten,
insbesondere
hinsichtlich der
Sicherheit des
Endlagersystems

Abschätzung des
Einflusses weiterer
Erkundungs-,
Forschungs- und
Entwicklungsmaßnahmen auf die
identifizierten
Ungewissheiten

AUSWIRKUNGEN VON UNGEWISSHEITEN

Quelle: BGE

*GOK: Geländeoberkante GZ: SG01201/5/3-2022#1 | Objekt-ID: 931736

25.06.2022

DIE SUCHE NACH EINEM ENDLAGER | PD DR. WOLFRAM RÜHAAK

UNGEWISSHEITEN UND ROBUSTHEIT (URS)

Ungewissheiten und Robustheit mit Blick auf die Sicherheit eines Endlagers für HAW*

Projektpartner: Siehe nachfolgende Folie

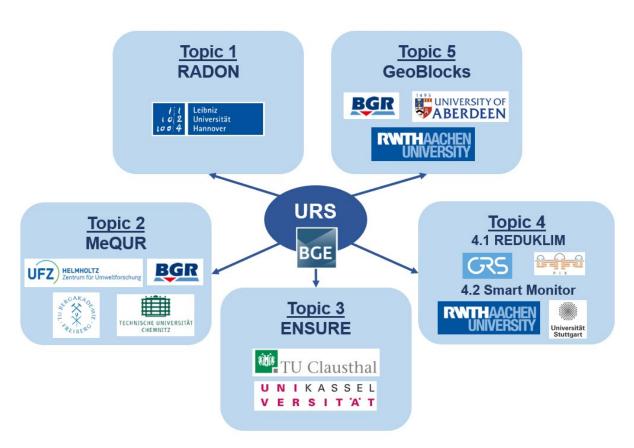
Volumen: Ca. 6 Mio. €

Projektbeschreibung:

- Gemäß § 11 EndlSiUntV müssen Ungewissheiten bewertet werden.
- In einem Forschungscluster, bestehend aus sechs Forschungsverbünden sollen
 - unterschiedliche Themen hinsichtlich Ungewissheiten anhand verschiedener Fragestellungen untersucht werden, um die Robustheit und damit die Sicherheit eines Endlagers für hochradioaktive Abfälle zu verbessern.
- Dabei wird nicht nur auf dem Stand der Forschung gearbeitet, sondern dieser auch weiter vorangetrieben
 - im Zuge des Projektes werden durch die Einbindung von Doktorand+innen mehrere Promotionen erwartet.

Quelle: https://urs.ifgt.tu-freiberg.de/en/home

E SUCHE NACH EINEM ENDLAGER | PD DR. WOLFRAM RÜHAAK

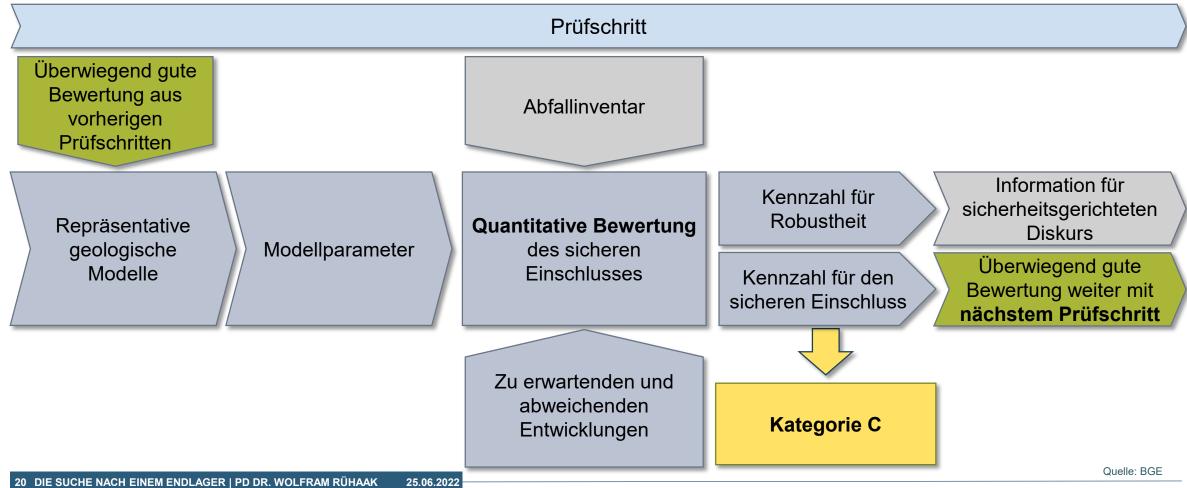

GZ: SG01201/5/3-2022#1 | Objekt-ID: 931736

*HAW: hochradioaktive Abfälle

UNGEWISSHEITEN UND ROBUSTHEIT (URS)

Ungewissheiten und Robustheit mit Blick auf die Sicherheit eines Endlagers für HAW

Quelle: https://urs.ifgt.tu-freiberg.de/en/home



Quelle: https://urs.ifgt.tu-freiberg.de/en/home

RECHENMODELLE

Prüfschritt Quantitative Bewertung – Übersicht

GZ: SG01201/5/3-2022#1 | Objekt-ID: 931736

RECHENMODELLE

Prüfschritt Quantitative Bewertung – Anforderungen

 § 4 Abs. 5 EndlSiAnfV* legt für die zu erwartenden Entwicklungen Grenzwerte für den Massenund Stoffmengenaustrag aus dem Bereich der wesentlichen Barrieren fest

Für die zu erwartenden Entwicklungen ist gemäß § 4 Abs. 5 EndlSiAnfV zu prüfen und

darzustellen, dass:

(1) insgesamt höchstens ein Anteil von 10⁻⁴ und

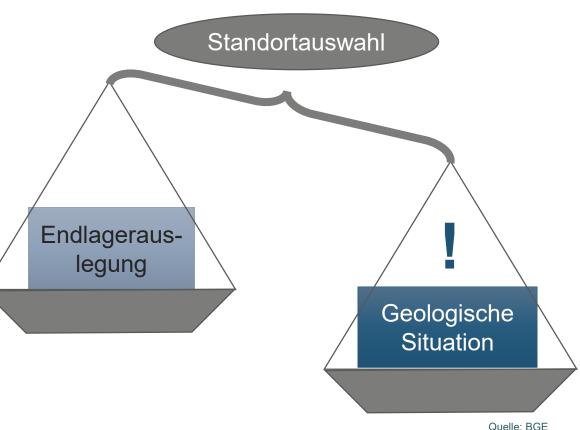
(2) jährlich höchstens ein Anteil von 10⁻⁹

sowohl der **Masse** als auch der **Anzahl** der Atome aller ursprünglich eingelagerten Radionuklide aus dem Bereich der wesentlichen Barrieren ausgetragen wird.

§ 4 Abs. 5 EndlSiAnfV Massen- und Stoffmengenaustrag für zu erwartende Entwicklungen erfüllt

§ 4 Abs. 5 EndlSiAnfV Massen- und Stoffmengenaustrag für zu erwartende Entwicklungen nicht erfüllt

Quelle: BGF


WEITERE ASPEKTE

- Betriebssicherheit
 - Darstellung der grundsätzlichen Möglichkeit eines sicheren Betriebs
 - Keine vollständige betriebliche Sicherheitsanalyse
 - Arbeitsschutz, Bergrecht, Brandschutz, Strahlenschutz, Freisetzung radioaktiver Stoffe
 - Katalog: Mögliche Einwirkungen und Maßnahmen zur Erfüllung der Betriebssicherheit
 - Bewertung der Robustheit der Betriebssicherheit → eine Grundlage für sicherheitsgerichteten Diskurs
- Zusätzliche Endlagerung von schwach- und mittelradioaktiven Abfällen
 - Am gleichen Standort eines Endlagers für hochradioaktive Abfälle
 - Bestmögliche Sicherheit des Standortes muss gewährleistet bleiben
 - Beurteilung der Möglichkeit aktuell anhand des Volumens des potentiellen Wirtsgesteins

NATUR ODER TECHNIK?

- Endlagerauslegung spielt früh eine wichtige Rolle
 - → Vorläufige Auslegung des Endlagers gemäß § 6 Abs. 4 EndlSiUntV bereits in den rvSU notwendig
- Geologie (Ton, Salz, Kristallin) ist wesentliche Barriere zum Erreichen des sicheren Einschlusses der radioaktiven Abfälle und wird ergänzt durch technische und geotechnische Barrieren (Endlagersystem Typ 1)
- Besondere Herausforderung bei der Endlagerauslegung gemäß Endlagersystem Typ 2
 - Kristallin ohne ewG*
 - Technische und geotechnische Barrieren sorgen im Wesentlichen für den sicheren Einschluss

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT! SIE WOLLEN NOCH EINMAL NACHLESEN?

- Die interaktive Einführung zur Erstellung des Zwischenberichts und zu allen Kriterien und Anforderungen
- Ihre Fragen und unsere Antworten
- Den Zwischenbericht Teilgebiete mit allen Unterlagen und Anlagen
- Eine eigene Seite zu jedem Teilgebiet
- Eine interaktive Karte mit allen Teilgebieten und den ausgeschlossenen Gebieten
- Steckbriefe für die Gebiete zur Methodenentwicklung

Kontakt: dialog@bge.de

www.bge.de www.einblicke.de

BUNDESGESELLSCHAFT FÜR ENDLAGERUNG

PD DR. WOLFRAM RÜHAAK

Abteilungsleitung STA-SU

Eschenstraße 55 | 31224 Peine

www.bge.de www.einblicke.de

